blob: 424f74427be48949250f36ad6711b0e7f5d9d4c2 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000124 print(dbgs());
125 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000126}
127
Dan Gohman4ce32db2010-11-17 22:27:42 +0000128void SCEV::print(raw_ostream &OS) const {
129 switch (getSCEVType()) {
130 case scConstant:
131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132 return;
133 case scTruncate: {
134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135 const SCEV *Op = Trunc->getOperand();
136 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137 << *Trunc->getType() << ")";
138 return;
139 }
140 case scZeroExtend: {
141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142 const SCEV *Op = ZExt->getOperand();
143 OS << "(zext " << *Op->getType() << " " << *Op << " to "
144 << *ZExt->getType() << ")";
145 return;
146 }
147 case scSignExtend: {
148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149 const SCEV *Op = SExt->getOperand();
150 OS << "(sext " << *Op->getType() << " " << *Op << " to "
151 << *SExt->getType() << ")";
152 return;
153 }
154 case scAddRecExpr: {
155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156 OS << "{" << *AR->getOperand(0);
157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158 OS << ",+," << *AR->getOperand(i);
159 OS << "}<";
Chris Lattnerf1859892011-01-09 02:16:18 +0000160 if (AR->hasNoUnsignedWrap())
161 OS << "nuw><";
162 if (AR->hasNoSignedWrap())
163 OS << "nsw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000164 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
165 OS << ">";
166 return;
167 }
168 case scAddExpr:
169 case scMulExpr:
170 case scUMaxExpr:
171 case scSMaxExpr: {
172 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000173 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000174 switch (NAry->getSCEVType()) {
175 case scAddExpr: OpStr = " + "; break;
176 case scMulExpr: OpStr = " * "; break;
177 case scUMaxExpr: OpStr = " umax "; break;
178 case scSMaxExpr: OpStr = " smax "; break;
179 }
180 OS << "(";
181 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
182 I != E; ++I) {
183 OS << **I;
184 if (llvm::next(I) != E)
185 OS << OpStr;
186 }
187 OS << ")";
188 return;
189 }
190 case scUDivExpr: {
191 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
192 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
193 return;
194 }
195 case scUnknown: {
196 const SCEVUnknown *U = cast<SCEVUnknown>(this);
197 const Type *AllocTy;
198 if (U->isSizeOf(AllocTy)) {
199 OS << "sizeof(" << *AllocTy << ")";
200 return;
201 }
202 if (U->isAlignOf(AllocTy)) {
203 OS << "alignof(" << *AllocTy << ")";
204 return;
205 }
206
207 const Type *CTy;
208 Constant *FieldNo;
209 if (U->isOffsetOf(CTy, FieldNo)) {
210 OS << "offsetof(" << *CTy << ", ";
211 WriteAsOperand(OS, FieldNo, false);
212 OS << ")";
213 return;
214 }
215
216 // Otherwise just print it normally.
217 WriteAsOperand(OS, U->getValue(), false);
218 return;
219 }
220 case scCouldNotCompute:
221 OS << "***COULDNOTCOMPUTE***";
222 return;
223 default: break;
224 }
225 llvm_unreachable("Unknown SCEV kind!");
226}
227
228const Type *SCEV::getType() const {
229 switch (getSCEVType()) {
230 case scConstant:
231 return cast<SCEVConstant>(this)->getType();
232 case scTruncate:
233 case scZeroExtend:
234 case scSignExtend:
235 return cast<SCEVCastExpr>(this)->getType();
236 case scAddRecExpr:
237 case scMulExpr:
238 case scUMaxExpr:
239 case scSMaxExpr:
240 return cast<SCEVNAryExpr>(this)->getType();
241 case scAddExpr:
242 return cast<SCEVAddExpr>(this)->getType();
243 case scUDivExpr:
244 return cast<SCEVUDivExpr>(this)->getType();
245 case scUnknown:
246 return cast<SCEVUnknown>(this)->getType();
247 case scCouldNotCompute:
248 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
249 return 0;
250 default: break;
251 }
252 llvm_unreachable("Unknown SCEV kind!");
253 return 0;
254}
255
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000256bool SCEV::isZero() const {
257 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
258 return SC->getValue()->isZero();
259 return false;
260}
261
Dan Gohman70a1fe72009-05-18 15:22:39 +0000262bool SCEV::isOne() const {
263 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
264 return SC->getValue()->isOne();
265 return false;
266}
Chris Lattner53e677a2004-04-02 20:23:17 +0000267
Dan Gohman4d289bf2009-06-24 00:30:26 +0000268bool SCEV::isAllOnesValue() const {
269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270 return SC->getValue()->isAllOnesValue();
271 return false;
272}
273
Owen Anderson753ad612009-06-22 21:57:23 +0000274SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000275 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000276
Chris Lattner53e677a2004-04-02 20:23:17 +0000277bool SCEVCouldNotCompute::classof(const SCEV *S) {
278 return S->getSCEVType() == scCouldNotCompute;
279}
280
Dan Gohman0bba49c2009-07-07 17:06:11 +0000281const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000282 FoldingSetNodeID ID;
283 ID.AddInteger(scConstant);
284 ID.AddPointer(V);
285 void *IP = 0;
286 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000287 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000288 UniqueSCEVs.InsertNode(S, IP);
289 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000290}
Chris Lattner53e677a2004-04-02 20:23:17 +0000291
Dan Gohman0bba49c2009-07-07 17:06:11 +0000292const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000293 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000294}
295
Dan Gohman0bba49c2009-07-07 17:06:11 +0000296const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000297ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000298 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
299 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000300}
301
Dan Gohman3bf63762010-06-18 19:54:20 +0000302SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000303 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000304 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000305
Dan Gohman3bf63762010-06-18 19:54:20 +0000306SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000307 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000308 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000309 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
310 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000311 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000312}
Chris Lattner53e677a2004-04-02 20:23:17 +0000313
Dan Gohman3bf63762010-06-18 19:54:20 +0000314SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000315 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000316 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000317 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
318 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000319 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000320}
321
Dan Gohman3bf63762010-06-18 19:54:20 +0000322SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000323 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000324 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000325 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
326 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000327 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000328}
329
Dan Gohmanab37f502010-08-02 23:49:30 +0000330void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000331 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000332 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000333
334 // Remove this SCEVUnknown from the uniquing map.
335 SE->UniqueSCEVs.RemoveNode(this);
336
337 // Release the value.
338 setValPtr(0);
339}
340
341void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000342 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000343 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000344
345 // Remove this SCEVUnknown from the uniquing map.
346 SE->UniqueSCEVs.RemoveNode(this);
347
348 // Update this SCEVUnknown to point to the new value. This is needed
349 // because there may still be outstanding SCEVs which still point to
350 // this SCEVUnknown.
351 setValPtr(New);
352}
353
Dan Gohman0f5efe52010-01-28 02:15:55 +0000354bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000355 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000356 if (VCE->getOpcode() == Instruction::PtrToInt)
357 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000358 if (CE->getOpcode() == Instruction::GetElementPtr &&
359 CE->getOperand(0)->isNullValue() &&
360 CE->getNumOperands() == 2)
361 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
362 if (CI->isOne()) {
363 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
364 ->getElementType();
365 return true;
366 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000367
368 return false;
369}
370
371bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000372 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000373 if (VCE->getOpcode() == Instruction::PtrToInt)
374 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000375 if (CE->getOpcode() == Instruction::GetElementPtr &&
376 CE->getOperand(0)->isNullValue()) {
377 const Type *Ty =
378 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
379 if (const StructType *STy = dyn_cast<StructType>(Ty))
380 if (!STy->isPacked() &&
381 CE->getNumOperands() == 3 &&
382 CE->getOperand(1)->isNullValue()) {
383 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
384 if (CI->isOne() &&
385 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000386 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 AllocTy = STy->getElementType(1);
388 return true;
389 }
390 }
391 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000392
393 return false;
394}
395
Dan Gohman4f8eea82010-02-01 18:27:38 +0000396bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000398 if (VCE->getOpcode() == Instruction::PtrToInt)
399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
400 if (CE->getOpcode() == Instruction::GetElementPtr &&
401 CE->getNumOperands() == 3 &&
402 CE->getOperand(0)->isNullValue() &&
403 CE->getOperand(1)->isNullValue()) {
404 const Type *Ty =
405 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
406 // Ignore vector types here so that ScalarEvolutionExpander doesn't
407 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000408 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000409 CTy = Ty;
410 FieldNo = CE->getOperand(2);
411 return true;
412 }
413 }
414
415 return false;
416}
417
Chris Lattner8d741b82004-06-20 06:23:15 +0000418//===----------------------------------------------------------------------===//
419// SCEV Utilities
420//===----------------------------------------------------------------------===//
421
422namespace {
423 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
424 /// than the complexity of the RHS. This comparator is used to canonicalize
425 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000426 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000427 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000428 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000429 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000430
Dan Gohman67ef74e2010-08-27 15:26:01 +0000431 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000432 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000433 return compare(LHS, RHS) < 0;
434 }
435
436 // Return negative, zero, or positive, if LHS is less than, equal to, or
437 // greater than RHS, respectively. A three-way result allows recursive
438 // comparisons to be more efficient.
439 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000440 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
441 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000442 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000443
Dan Gohman72861302009-05-07 14:39:04 +0000444 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000445 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
446 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000447 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000448
Dan Gohman3bf63762010-06-18 19:54:20 +0000449 // Aside from the getSCEVType() ordering, the particular ordering
450 // isn't very important except that it's beneficial to be consistent,
451 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000452 switch (LType) {
453 case scUnknown: {
454 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000455 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000456
457 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
458 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000459 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000460
461 // Order pointer values after integer values. This helps SCEVExpander
462 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000463 bool LIsPointer = LV->getType()->isPointerTy(),
464 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000465 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000466 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000467
468 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000469 unsigned LID = LV->getValueID(),
470 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000471 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000472 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000473
474 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000475 if (const Argument *LA = dyn_cast<Argument>(LV)) {
476 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000477 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
478 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000479 }
480
Dan Gohman67ef74e2010-08-27 15:26:01 +0000481 // For instructions, compare their loop depth, and their operand
482 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000483 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
484 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000485
486 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000487 const BasicBlock *LParent = LInst->getParent(),
488 *RParent = RInst->getParent();
489 if (LParent != RParent) {
490 unsigned LDepth = LI->getLoopDepth(LParent),
491 RDepth = LI->getLoopDepth(RParent);
492 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000493 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000494 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000495
496 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000497 unsigned LNumOps = LInst->getNumOperands(),
498 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000499 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000500 }
501
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000503 }
504
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 case scConstant: {
506 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000507 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000508
509 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000510 const APInt &LA = LC->getValue()->getValue();
511 const APInt &RA = RC->getValue()->getValue();
512 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000513 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000514 return (int)LBitWidth - (int)RBitWidth;
515 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000516 }
517
Dan Gohman67ef74e2010-08-27 15:26:01 +0000518 case scAddRecExpr: {
519 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000520 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000521
522 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000523 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
524 if (LLoop != RLoop) {
525 unsigned LDepth = LLoop->getLoopDepth(),
526 RDepth = RLoop->getLoopDepth();
527 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000529 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000530
531 // Addrec complexity grows with operand count.
532 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
533 if (LNumOps != RNumOps)
534 return (int)LNumOps - (int)RNumOps;
535
536 // Lexicographically compare.
537 for (unsigned i = 0; i != LNumOps; ++i) {
538 long X = compare(LA->getOperand(i), RA->getOperand(i));
539 if (X != 0)
540 return X;
541 }
542
543 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000544 }
545
Dan Gohman67ef74e2010-08-27 15:26:01 +0000546 case scAddExpr:
547 case scMulExpr:
548 case scSMaxExpr:
549 case scUMaxExpr: {
550 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000551 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000552
553 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000554 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
555 for (unsigned i = 0; i != LNumOps; ++i) {
556 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000557 return 1;
558 long X = compare(LC->getOperand(i), RC->getOperand(i));
559 if (X != 0)
560 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000561 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000562 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000563 }
564
Dan Gohman67ef74e2010-08-27 15:26:01 +0000565 case scUDivExpr: {
566 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000567 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000568
569 // Lexicographically compare udiv expressions.
570 long X = compare(LC->getLHS(), RC->getLHS());
571 if (X != 0)
572 return X;
573 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000574 }
575
Dan Gohman67ef74e2010-08-27 15:26:01 +0000576 case scTruncate:
577 case scZeroExtend:
578 case scSignExtend: {
579 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000580 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000581
582 // Compare cast expressions by operand.
583 return compare(LC->getOperand(), RC->getOperand());
584 }
585
586 default:
587 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000588 }
589
590 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000591 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000592 }
593 };
594}
595
596/// GroupByComplexity - Given a list of SCEV objects, order them by their
597/// complexity, and group objects of the same complexity together by value.
598/// When this routine is finished, we know that any duplicates in the vector are
599/// consecutive and that complexity is monotonically increasing.
600///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000601/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000602/// results from this routine. In other words, we don't want the results of
603/// this to depend on where the addresses of various SCEV objects happened to
604/// land in memory.
605///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000606static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000607 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000608 if (Ops.size() < 2) return; // Noop
609 if (Ops.size() == 2) {
610 // This is the common case, which also happens to be trivially simple.
611 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000612 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
613 if (SCEVComplexityCompare(LI)(RHS, LHS))
614 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000615 return;
616 }
617
Dan Gohman3bf63762010-06-18 19:54:20 +0000618 // Do the rough sort by complexity.
619 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
620
621 // Now that we are sorted by complexity, group elements of the same
622 // complexity. Note that this is, at worst, N^2, but the vector is likely to
623 // be extremely short in practice. Note that we take this approach because we
624 // do not want to depend on the addresses of the objects we are grouping.
625 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
626 const SCEV *S = Ops[i];
627 unsigned Complexity = S->getSCEVType();
628
629 // If there are any objects of the same complexity and same value as this
630 // one, group them.
631 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
632 if (Ops[j] == S) { // Found a duplicate.
633 // Move it to immediately after i'th element.
634 std::swap(Ops[i+1], Ops[j]);
635 ++i; // no need to rescan it.
636 if (i == e-2) return; // Done!
637 }
638 }
639 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000640}
641
Chris Lattner53e677a2004-04-02 20:23:17 +0000642
Chris Lattner53e677a2004-04-02 20:23:17 +0000643
644//===----------------------------------------------------------------------===//
645// Simple SCEV method implementations
646//===----------------------------------------------------------------------===//
647
Eli Friedmanb42a6262008-08-04 23:49:06 +0000648/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000649/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000650static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000651 ScalarEvolution &SE,
652 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000653 // Handle the simplest case efficiently.
654 if (K == 1)
655 return SE.getTruncateOrZeroExtend(It, ResultTy);
656
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000657 // We are using the following formula for BC(It, K):
658 //
659 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
660 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000661 // Suppose, W is the bitwidth of the return value. We must be prepared for
662 // overflow. Hence, we must assure that the result of our computation is
663 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
664 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000665 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000666 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000667 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000668 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
669 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000670 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000672 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000673 // This formula is trivially equivalent to the previous formula. However,
674 // this formula can be implemented much more efficiently. The trick is that
675 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
676 // arithmetic. To do exact division in modular arithmetic, all we have
677 // to do is multiply by the inverse. Therefore, this step can be done at
678 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000679 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000680 // The next issue is how to safely do the division by 2^T. The way this
681 // is done is by doing the multiplication step at a width of at least W + T
682 // bits. This way, the bottom W+T bits of the product are accurate. Then,
683 // when we perform the division by 2^T (which is equivalent to a right shift
684 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
685 // truncated out after the division by 2^T.
686 //
687 // In comparison to just directly using the first formula, this technique
688 // is much more efficient; using the first formula requires W * K bits,
689 // but this formula less than W + K bits. Also, the first formula requires
690 // a division step, whereas this formula only requires multiplies and shifts.
691 //
692 // It doesn't matter whether the subtraction step is done in the calculation
693 // width or the input iteration count's width; if the subtraction overflows,
694 // the result must be zero anyway. We prefer here to do it in the width of
695 // the induction variable because it helps a lot for certain cases; CodeGen
696 // isn't smart enough to ignore the overflow, which leads to much less
697 // efficient code if the width of the subtraction is wider than the native
698 // register width.
699 //
700 // (It's possible to not widen at all by pulling out factors of 2 before
701 // the multiplication; for example, K=2 can be calculated as
702 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
703 // extra arithmetic, so it's not an obvious win, and it gets
704 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000705
Eli Friedmanb42a6262008-08-04 23:49:06 +0000706 // Protection from insane SCEVs; this bound is conservative,
707 // but it probably doesn't matter.
708 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000709 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000710
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000711 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000712
Eli Friedmanb42a6262008-08-04 23:49:06 +0000713 // Calculate K! / 2^T and T; we divide out the factors of two before
714 // multiplying for calculating K! / 2^T to avoid overflow.
715 // Other overflow doesn't matter because we only care about the bottom
716 // W bits of the result.
717 APInt OddFactorial(W, 1);
718 unsigned T = 1;
719 for (unsigned i = 3; i <= K; ++i) {
720 APInt Mult(W, i);
721 unsigned TwoFactors = Mult.countTrailingZeros();
722 T += TwoFactors;
723 Mult = Mult.lshr(TwoFactors);
724 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000725 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000726
Eli Friedmanb42a6262008-08-04 23:49:06 +0000727 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000728 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000729
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000730 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000731 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
732
733 // Calculate the multiplicative inverse of K! / 2^T;
734 // this multiplication factor will perform the exact division by
735 // K! / 2^T.
736 APInt Mod = APInt::getSignedMinValue(W+1);
737 APInt MultiplyFactor = OddFactorial.zext(W+1);
738 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
739 MultiplyFactor = MultiplyFactor.trunc(W);
740
741 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000742 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
743 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000744 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000746 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747 Dividend = SE.getMulExpr(Dividend,
748 SE.getTruncateOrZeroExtend(S, CalculationTy));
749 }
750
751 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000752 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000753
754 // Truncate the result, and divide by K! / 2^T.
755
756 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
757 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000758}
759
Chris Lattner53e677a2004-04-02 20:23:17 +0000760/// evaluateAtIteration - Return the value of this chain of recurrences at
761/// the specified iteration number. We can evaluate this recurrence by
762/// multiplying each element in the chain by the binomial coefficient
763/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
764///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000765/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000766///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000767/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000768///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000769const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000770 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000771 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000772 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000773 // The computation is correct in the face of overflow provided that the
774 // multiplication is performed _after_ the evaluation of the binomial
775 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000776 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000777 if (isa<SCEVCouldNotCompute>(Coeff))
778 return Coeff;
779
780 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000781 }
782 return Result;
783}
784
Chris Lattner53e677a2004-04-02 20:23:17 +0000785//===----------------------------------------------------------------------===//
786// SCEV Expression folder implementations
787//===----------------------------------------------------------------------===//
788
Dan Gohman0bba49c2009-07-07 17:06:11 +0000789const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000790 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000791 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000792 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000793 assert(isSCEVable(Ty) &&
794 "This is not a conversion to a SCEVable type!");
795 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000796
Dan Gohmanc050fd92009-07-13 20:50:19 +0000797 FoldingSetNodeID ID;
798 ID.AddInteger(scTruncate);
799 ID.AddPointer(Op);
800 ID.AddPointer(Ty);
801 void *IP = 0;
802 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
803
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000804 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000805 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000806 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000807 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
808 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000809
Dan Gohman20900ca2009-04-22 16:20:48 +0000810 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000811 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000812 return getTruncateExpr(ST->getOperand(), Ty);
813
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000814 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000815 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000816 return getTruncateOrSignExtend(SS->getOperand(), Ty);
817
818 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000819 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000820 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
821
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000822 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
823 // eliminate all the truncates.
824 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
825 SmallVector<const SCEV *, 4> Operands;
826 bool hasTrunc = false;
827 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
828 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
829 hasTrunc = isa<SCEVTruncateExpr>(S);
830 Operands.push_back(S);
831 }
832 if (!hasTrunc)
833 return getAddExpr(Operands, false, false);
834 }
835
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000836 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
837 // eliminate all the truncates.
838 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
839 SmallVector<const SCEV *, 4> Operands;
840 bool hasTrunc = false;
841 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
842 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
843 hasTrunc = isa<SCEVTruncateExpr>(S);
844 Operands.push_back(S);
845 }
846 if (!hasTrunc)
847 return getMulExpr(Operands, false, false);
848 }
849
Dan Gohman6864db62009-06-18 16:24:47 +0000850 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000851 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000852 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000853 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000854 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
855 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000856 }
857
Dan Gohmanf53462d2010-07-15 20:02:11 +0000858 // As a special case, fold trunc(undef) to undef. We don't want to
859 // know too much about SCEVUnknowns, but this special case is handy
860 // and harmless.
861 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
862 if (isa<UndefValue>(U->getValue()))
863 return getSCEV(UndefValue::get(Ty));
864
Dan Gohman420ab912010-06-25 18:47:08 +0000865 // The cast wasn't folded; create an explicit cast node. We can reuse
866 // the existing insert position since if we get here, we won't have
867 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000868 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
869 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000870 UniqueSCEVs.InsertNode(S, IP);
871 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000872}
873
Dan Gohman0bba49c2009-07-07 17:06:11 +0000874const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000875 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000876 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000877 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000878 assert(isSCEVable(Ty) &&
879 "This is not a conversion to a SCEVable type!");
880 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000881
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000882 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000883 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
884 return getConstant(
885 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
886 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000887
Dan Gohman20900ca2009-04-22 16:20:48 +0000888 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000889 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000890 return getZeroExtendExpr(SZ->getOperand(), Ty);
891
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000892 // Before doing any expensive analysis, check to see if we've already
893 // computed a SCEV for this Op and Ty.
894 FoldingSetNodeID ID;
895 ID.AddInteger(scZeroExtend);
896 ID.AddPointer(Op);
897 ID.AddPointer(Ty);
898 void *IP = 0;
899 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
900
Dan Gohman01ecca22009-04-27 20:16:15 +0000901 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000902 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000903 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000904 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000905 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000906 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000907 const SCEV *Start = AR->getStart();
908 const SCEV *Step = AR->getStepRecurrence(*this);
909 unsigned BitWidth = getTypeSizeInBits(AR->getType());
910 const Loop *L = AR->getLoop();
911
Dan Gohmaneb490a72009-07-25 01:22:26 +0000912 // If we have special knowledge that this addrec won't overflow,
913 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000914 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000915 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
916 getZeroExtendExpr(Step, Ty),
917 L);
918
Dan Gohman01ecca22009-04-27 20:16:15 +0000919 // Check whether the backedge-taken count is SCEVCouldNotCompute.
920 // Note that this serves two purposes: It filters out loops that are
921 // simply not analyzable, and it covers the case where this code is
922 // being called from within backedge-taken count analysis, such that
923 // attempting to ask for the backedge-taken count would likely result
924 // in infinite recursion. In the later case, the analysis code will
925 // cope with a conservative value, and it will take care to purge
926 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000927 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000928 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000929 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000930 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000931
932 // Check whether the backedge-taken count can be losslessly casted to
933 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000934 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000935 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000936 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000937 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
938 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000939 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000940 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000941 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000942 const SCEV *Add = getAddExpr(Start, ZMul);
943 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000944 getAddExpr(getZeroExtendExpr(Start, WideTy),
945 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
946 getZeroExtendExpr(Step, WideTy)));
947 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000948 // Return the expression with the addrec on the outside.
949 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
950 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000951 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000952
953 // Similar to above, only this time treat the step value as signed.
954 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000955 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000956 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000957 OperandExtendedAdd =
958 getAddExpr(getZeroExtendExpr(Start, WideTy),
959 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
960 getSignExtendExpr(Step, WideTy)));
961 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000962 // Return the expression with the addrec on the outside.
963 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
964 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000965 L);
966 }
967
968 // If the backedge is guarded by a comparison with the pre-inc value
969 // the addrec is safe. Also, if the entry is guarded by a comparison
970 // with the start value and the backedge is guarded by a comparison
971 // with the post-inc value, the addrec is safe.
972 if (isKnownPositive(Step)) {
973 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
974 getUnsignedRange(Step).getUnsignedMax());
975 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000976 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000977 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
978 AR->getPostIncExpr(*this), N)))
979 // Return the expression with the addrec on the outside.
980 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
981 getZeroExtendExpr(Step, Ty),
982 L);
983 } else if (isKnownNegative(Step)) {
984 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
985 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +0000986 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
987 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000988 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
989 AR->getPostIncExpr(*this), N)))
990 // Return the expression with the addrec on the outside.
991 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
992 getSignExtendExpr(Step, Ty),
993 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000994 }
995 }
996 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000997
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000998 // The cast wasn't folded; create an explicit cast node.
999 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001000 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001001 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1002 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001003 UniqueSCEVs.InsertNode(S, IP);
1004 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001005}
1006
Dan Gohman0bba49c2009-07-07 17:06:11 +00001007const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00001008 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001009 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001010 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001011 assert(isSCEVable(Ty) &&
1012 "This is not a conversion to a SCEVable type!");
1013 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001014
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001015 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001016 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1017 return getConstant(
1018 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1019 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001020
Dan Gohman20900ca2009-04-22 16:20:48 +00001021 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001022 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001023 return getSignExtendExpr(SS->getOperand(), Ty);
1024
Nick Lewycky73f565e2011-01-19 15:56:12 +00001025 // sext(zext(x)) --> zext(x)
1026 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1027 return getZeroExtendExpr(SZ->getOperand(), Ty);
1028
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001029 // Before doing any expensive analysis, check to see if we've already
1030 // computed a SCEV for this Op and Ty.
1031 FoldingSetNodeID ID;
1032 ID.AddInteger(scSignExtend);
1033 ID.AddPointer(Op);
1034 ID.AddPointer(Ty);
1035 void *IP = 0;
1036 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1037
Dan Gohman01ecca22009-04-27 20:16:15 +00001038 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001039 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001040 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001041 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001042 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001043 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001044 const SCEV *Start = AR->getStart();
1045 const SCEV *Step = AR->getStepRecurrence(*this);
1046 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1047 const Loop *L = AR->getLoop();
1048
Dan Gohmaneb490a72009-07-25 01:22:26 +00001049 // If we have special knowledge that this addrec won't overflow,
1050 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001051 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001052 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1053 getSignExtendExpr(Step, Ty),
1054 L);
1055
Dan Gohman01ecca22009-04-27 20:16:15 +00001056 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1057 // Note that this serves two purposes: It filters out loops that are
1058 // simply not analyzable, and it covers the case where this code is
1059 // being called from within backedge-taken count analysis, such that
1060 // attempting to ask for the backedge-taken count would likely result
1061 // in infinite recursion. In the later case, the analysis code will
1062 // cope with a conservative value, and it will take care to purge
1063 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001064 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001065 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001066 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001067 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001068
1069 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001070 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001071 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001072 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001073 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001074 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1075 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001076 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001077 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001078 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001079 const SCEV *Add = getAddExpr(Start, SMul);
1080 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001081 getAddExpr(getSignExtendExpr(Start, WideTy),
1082 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1083 getSignExtendExpr(Step, WideTy)));
1084 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001085 // Return the expression with the addrec on the outside.
1086 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1087 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001088 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001089
1090 // Similar to above, only this time treat the step value as unsigned.
1091 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001092 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001093 Add = getAddExpr(Start, UMul);
1094 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001095 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001096 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1097 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001098 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001099 // Return the expression with the addrec on the outside.
1100 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1101 getZeroExtendExpr(Step, Ty),
1102 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001103 }
1104
1105 // If the backedge is guarded by a comparison with the pre-inc value
1106 // the addrec is safe. Also, if the entry is guarded by a comparison
1107 // with the start value and the backedge is guarded by a comparison
1108 // with the post-inc value, the addrec is safe.
1109 if (isKnownPositive(Step)) {
1110 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1111 getSignedRange(Step).getSignedMax());
1112 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001113 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001114 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1115 AR->getPostIncExpr(*this), N)))
1116 // Return the expression with the addrec on the outside.
1117 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1118 getSignExtendExpr(Step, Ty),
1119 L);
1120 } else if (isKnownNegative(Step)) {
1121 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1122 getSignedRange(Step).getSignedMin());
1123 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001124 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001125 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1126 AR->getPostIncExpr(*this), N)))
1127 // Return the expression with the addrec on the outside.
1128 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1129 getSignExtendExpr(Step, Ty),
1130 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001131 }
1132 }
1133 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001134
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001135 // The cast wasn't folded; create an explicit cast node.
1136 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001137 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001138 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1139 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001140 UniqueSCEVs.InsertNode(S, IP);
1141 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001142}
1143
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001144/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1145/// unspecified bits out to the given type.
1146///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001147const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001148 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001149 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1150 "This is not an extending conversion!");
1151 assert(isSCEVable(Ty) &&
1152 "This is not a conversion to a SCEVable type!");
1153 Ty = getEffectiveSCEVType(Ty);
1154
1155 // Sign-extend negative constants.
1156 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1157 if (SC->getValue()->getValue().isNegative())
1158 return getSignExtendExpr(Op, Ty);
1159
1160 // Peel off a truncate cast.
1161 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001162 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001163 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1164 return getAnyExtendExpr(NewOp, Ty);
1165 return getTruncateOrNoop(NewOp, Ty);
1166 }
1167
1168 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001169 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001170 if (!isa<SCEVZeroExtendExpr>(ZExt))
1171 return ZExt;
1172
1173 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001174 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001175 if (!isa<SCEVSignExtendExpr>(SExt))
1176 return SExt;
1177
Dan Gohmana10756e2010-01-21 02:09:26 +00001178 // Force the cast to be folded into the operands of an addrec.
1179 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1180 SmallVector<const SCEV *, 4> Ops;
1181 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1182 I != E; ++I)
1183 Ops.push_back(getAnyExtendExpr(*I, Ty));
1184 return getAddRecExpr(Ops, AR->getLoop());
1185 }
1186
Dan Gohmanf53462d2010-07-15 20:02:11 +00001187 // As a special case, fold anyext(undef) to undef. We don't want to
1188 // know too much about SCEVUnknowns, but this special case is handy
1189 // and harmless.
1190 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1191 if (isa<UndefValue>(U->getValue()))
1192 return getSCEV(UndefValue::get(Ty));
1193
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001194 // If the expression is obviously signed, use the sext cast value.
1195 if (isa<SCEVSMaxExpr>(Op))
1196 return SExt;
1197
1198 // Absent any other information, use the zext cast value.
1199 return ZExt;
1200}
1201
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001202/// CollectAddOperandsWithScales - Process the given Ops list, which is
1203/// a list of operands to be added under the given scale, update the given
1204/// map. This is a helper function for getAddRecExpr. As an example of
1205/// what it does, given a sequence of operands that would form an add
1206/// expression like this:
1207///
1208/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1209///
1210/// where A and B are constants, update the map with these values:
1211///
1212/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1213///
1214/// and add 13 + A*B*29 to AccumulatedConstant.
1215/// This will allow getAddRecExpr to produce this:
1216///
1217/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1218///
1219/// This form often exposes folding opportunities that are hidden in
1220/// the original operand list.
1221///
1222/// Return true iff it appears that any interesting folding opportunities
1223/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1224/// the common case where no interesting opportunities are present, and
1225/// is also used as a check to avoid infinite recursion.
1226///
1227static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001228CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1229 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001230 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001231 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001232 const APInt &Scale,
1233 ScalarEvolution &SE) {
1234 bool Interesting = false;
1235
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001236 // Iterate over the add operands. They are sorted, with constants first.
1237 unsigned i = 0;
1238 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1239 ++i;
1240 // Pull a buried constant out to the outside.
1241 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1242 Interesting = true;
1243 AccumulatedConstant += Scale * C->getValue()->getValue();
1244 }
1245
1246 // Next comes everything else. We're especially interested in multiplies
1247 // here, but they're in the middle, so just visit the rest with one loop.
1248 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001249 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1250 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1251 APInt NewScale =
1252 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1253 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1254 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001255 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001256 Interesting |=
1257 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001258 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001259 NewScale, SE);
1260 } else {
1261 // A multiplication of a constant with some other value. Update
1262 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001263 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1264 const SCEV *Key = SE.getMulExpr(MulOps);
1265 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001266 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001267 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001268 NewOps.push_back(Pair.first->first);
1269 } else {
1270 Pair.first->second += NewScale;
1271 // The map already had an entry for this value, which may indicate
1272 // a folding opportunity.
1273 Interesting = true;
1274 }
1275 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001276 } else {
1277 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001278 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001279 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001280 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001281 NewOps.push_back(Pair.first->first);
1282 } else {
1283 Pair.first->second += Scale;
1284 // The map already had an entry for this value, which may indicate
1285 // a folding opportunity.
1286 Interesting = true;
1287 }
1288 }
1289 }
1290
1291 return Interesting;
1292}
1293
1294namespace {
1295 struct APIntCompare {
1296 bool operator()(const APInt &LHS, const APInt &RHS) const {
1297 return LHS.ult(RHS);
1298 }
1299 };
1300}
1301
Dan Gohman6c0866c2009-05-24 23:45:28 +00001302/// getAddExpr - Get a canonical add expression, or something simpler if
1303/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001304const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1305 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001306 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001307 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001308#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001309 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001310 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001311 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001312 "SCEVAddExpr operand types don't match!");
1313#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001314
Dan Gohmana10756e2010-01-21 02:09:26 +00001315 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1316 if (!HasNUW && HasNSW) {
1317 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001318 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1319 E = Ops.end(); I != E; ++I)
1320 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001321 All = false;
1322 break;
1323 }
1324 if (All) HasNUW = true;
1325 }
1326
Chris Lattner53e677a2004-04-02 20:23:17 +00001327 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001328 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001329
1330 // If there are any constants, fold them together.
1331 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001332 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001333 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001334 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001335 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001336 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001337 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1338 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001339 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001340 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001341 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001342 }
1343
1344 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001345 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001346 Ops.erase(Ops.begin());
1347 --Idx;
1348 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001349
Dan Gohmanbca091d2010-04-12 23:08:18 +00001350 if (Ops.size() == 1) return Ops[0];
1351 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001352
Dan Gohman68ff7762010-08-27 21:39:59 +00001353 // Okay, check to see if the same value occurs in the operand list more than
1354 // once. If so, merge them together into an multiply expression. Since we
1355 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001356 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001357 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001358 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001359 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001360 // Scan ahead to count how many equal operands there are.
1361 unsigned Count = 2;
1362 while (i+Count != e && Ops[i+Count] == Ops[i])
1363 ++Count;
1364 // Merge the values into a multiply.
1365 const SCEV *Scale = getConstant(Ty, Count);
1366 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1367 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001368 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001369 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001370 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001371 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001372 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001373 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001374 if (FoundMatch)
1375 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001376
Dan Gohman728c7f32009-05-08 21:03:19 +00001377 // Check for truncates. If all the operands are truncated from the same
1378 // type, see if factoring out the truncate would permit the result to be
1379 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1380 // if the contents of the resulting outer trunc fold to something simple.
1381 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1382 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1383 const Type *DstType = Trunc->getType();
1384 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001385 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001386 bool Ok = true;
1387 // Check all the operands to see if they can be represented in the
1388 // source type of the truncate.
1389 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1390 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1391 if (T->getOperand()->getType() != SrcType) {
1392 Ok = false;
1393 break;
1394 }
1395 LargeOps.push_back(T->getOperand());
1396 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001397 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001398 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001399 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001400 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1401 if (const SCEVTruncateExpr *T =
1402 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1403 if (T->getOperand()->getType() != SrcType) {
1404 Ok = false;
1405 break;
1406 }
1407 LargeMulOps.push_back(T->getOperand());
1408 } else if (const SCEVConstant *C =
1409 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001410 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001411 } else {
1412 Ok = false;
1413 break;
1414 }
1415 }
1416 if (Ok)
1417 LargeOps.push_back(getMulExpr(LargeMulOps));
1418 } else {
1419 Ok = false;
1420 break;
1421 }
1422 }
1423 if (Ok) {
1424 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001425 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001426 // If it folds to something simple, use it. Otherwise, don't.
1427 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1428 return getTruncateExpr(Fold, DstType);
1429 }
1430 }
1431
1432 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001433 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1434 ++Idx;
1435
1436 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001437 if (Idx < Ops.size()) {
1438 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001439 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001440 // If we have an add, expand the add operands onto the end of the operands
1441 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001442 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001443 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001444 DeletedAdd = true;
1445 }
1446
1447 // If we deleted at least one add, we added operands to the end of the list,
1448 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001449 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001450 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001451 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001452 }
1453
1454 // Skip over the add expression until we get to a multiply.
1455 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1456 ++Idx;
1457
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001458 // Check to see if there are any folding opportunities present with
1459 // operands multiplied by constant values.
1460 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1461 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001462 DenseMap<const SCEV *, APInt> M;
1463 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001464 APInt AccumulatedConstant(BitWidth, 0);
1465 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001466 Ops.data(), Ops.size(),
1467 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001468 // Some interesting folding opportunity is present, so its worthwhile to
1469 // re-generate the operands list. Group the operands by constant scale,
1470 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001471 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001472 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001473 E = NewOps.end(); I != E; ++I)
1474 MulOpLists[M.find(*I)->second].push_back(*I);
1475 // Re-generate the operands list.
1476 Ops.clear();
1477 if (AccumulatedConstant != 0)
1478 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001479 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1480 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001481 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001482 Ops.push_back(getMulExpr(getConstant(I->first),
1483 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001484 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001485 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001486 if (Ops.size() == 1)
1487 return Ops[0];
1488 return getAddExpr(Ops);
1489 }
1490 }
1491
Chris Lattner53e677a2004-04-02 20:23:17 +00001492 // If we are adding something to a multiply expression, make sure the
1493 // something is not already an operand of the multiply. If so, merge it into
1494 // the multiply.
1495 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001496 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001497 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001498 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001499 if (isa<SCEVConstant>(MulOpSCEV))
1500 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001501 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001502 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001503 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001504 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001505 if (Mul->getNumOperands() != 2) {
1506 // If the multiply has more than two operands, we must get the
1507 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001508 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1509 Mul->op_begin()+MulOp);
1510 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001511 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001512 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001513 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001514 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001515 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001516 if (Ops.size() == 2) return OuterMul;
1517 if (AddOp < Idx) {
1518 Ops.erase(Ops.begin()+AddOp);
1519 Ops.erase(Ops.begin()+Idx-1);
1520 } else {
1521 Ops.erase(Ops.begin()+Idx);
1522 Ops.erase(Ops.begin()+AddOp-1);
1523 }
1524 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001525 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001526 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001527
Chris Lattner53e677a2004-04-02 20:23:17 +00001528 // Check this multiply against other multiplies being added together.
1529 for (unsigned OtherMulIdx = Idx+1;
1530 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1531 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001532 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001533 // If MulOp occurs in OtherMul, we can fold the two multiplies
1534 // together.
1535 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1536 OMulOp != e; ++OMulOp)
1537 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1538 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001539 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001540 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001541 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001542 Mul->op_begin()+MulOp);
1543 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001544 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001545 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001546 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001547 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001548 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001549 OtherMul->op_begin()+OMulOp);
1550 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001551 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001552 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001553 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1554 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001555 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001556 Ops.erase(Ops.begin()+Idx);
1557 Ops.erase(Ops.begin()+OtherMulIdx-1);
1558 Ops.push_back(OuterMul);
1559 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001560 }
1561 }
1562 }
1563 }
1564
1565 // If there are any add recurrences in the operands list, see if any other
1566 // added values are loop invariant. If so, we can fold them into the
1567 // recurrence.
1568 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1569 ++Idx;
1570
1571 // Scan over all recurrences, trying to fold loop invariants into them.
1572 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1573 // Scan all of the other operands to this add and add them to the vector if
1574 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001575 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001576 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001577 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001578 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001579 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001580 LIOps.push_back(Ops[i]);
1581 Ops.erase(Ops.begin()+i);
1582 --i; --e;
1583 }
1584
1585 // If we found some loop invariants, fold them into the recurrence.
1586 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001587 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001588 LIOps.push_back(AddRec->getStart());
1589
Dan Gohman0bba49c2009-07-07 17:06:11 +00001590 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001591 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001592 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001593
Dan Gohmanb9f96512010-06-30 07:16:37 +00001594 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001595 // outer add and the inner addrec are guaranteed to have no overflow.
1596 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1597 HasNUW && AddRec->hasNoUnsignedWrap(),
1598 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001599
Chris Lattner53e677a2004-04-02 20:23:17 +00001600 // If all of the other operands were loop invariant, we are done.
1601 if (Ops.size() == 1) return NewRec;
1602
1603 // Otherwise, add the folded AddRec by the non-liv parts.
1604 for (unsigned i = 0;; ++i)
1605 if (Ops[i] == AddRec) {
1606 Ops[i] = NewRec;
1607 break;
1608 }
Dan Gohman246b2562007-10-22 18:31:58 +00001609 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001610 }
1611
1612 // Okay, if there weren't any loop invariants to be folded, check to see if
1613 // there are multiple AddRec's with the same loop induction variable being
1614 // added together. If so, we can fold them.
1615 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001616 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1617 ++OtherIdx)
1618 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1619 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1620 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1621 AddRec->op_end());
1622 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1623 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001624 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001625 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001626 if (OtherAddRec->getLoop() == AddRecLoop) {
1627 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1628 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001629 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001630 AddRecOps.append(OtherAddRec->op_begin()+i,
1631 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001632 break;
1633 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001634 AddRecOps[i] = getAddExpr(AddRecOps[i],
1635 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001636 }
1637 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001638 }
Dan Gohman32527152010-08-27 20:45:56 +00001639 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1640 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001641 }
1642
1643 // Otherwise couldn't fold anything into this recurrence. Move onto the
1644 // next one.
1645 }
1646
1647 // Okay, it looks like we really DO need an add expr. Check to see if we
1648 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001649 FoldingSetNodeID ID;
1650 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001651 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1652 ID.AddPointer(Ops[i]);
1653 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001654 SCEVAddExpr *S =
1655 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1656 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001657 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1658 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001659 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1660 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001661 UniqueSCEVs.InsertNode(S, IP);
1662 }
Dan Gohman3645b012009-10-09 00:10:36 +00001663 if (HasNUW) S->setHasNoUnsignedWrap(true);
1664 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001665 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001666}
1667
Dan Gohman6c0866c2009-05-24 23:45:28 +00001668/// getMulExpr - Get a canonical multiply expression, or something simpler if
1669/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001670const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1671 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001672 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001673 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001674#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001675 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001676 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001677 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001678 "SCEVMulExpr operand types don't match!");
1679#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001680
Dan Gohmana10756e2010-01-21 02:09:26 +00001681 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1682 if (!HasNUW && HasNSW) {
1683 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001684 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1685 E = Ops.end(); I != E; ++I)
1686 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001687 All = false;
1688 break;
1689 }
1690 if (All) HasNUW = true;
1691 }
1692
Chris Lattner53e677a2004-04-02 20:23:17 +00001693 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001694 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001695
1696 // If there are any constants, fold them together.
1697 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001698 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001699
1700 // C1*(C2+V) -> C1*C2 + C1*V
1701 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001702 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001703 if (Add->getNumOperands() == 2 &&
1704 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001705 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1706 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001707
Chris Lattner53e677a2004-04-02 20:23:17 +00001708 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001709 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001710 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001711 ConstantInt *Fold = ConstantInt::get(getContext(),
1712 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001713 RHSC->getValue()->getValue());
1714 Ops[0] = getConstant(Fold);
1715 Ops.erase(Ops.begin()+1); // Erase the folded element
1716 if (Ops.size() == 1) return Ops[0];
1717 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001718 }
1719
1720 // If we are left with a constant one being multiplied, strip it off.
1721 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1722 Ops.erase(Ops.begin());
1723 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001724 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001725 // If we have a multiply of zero, it will always be zero.
1726 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001727 } else if (Ops[0]->isAllOnesValue()) {
1728 // If we have a mul by -1 of an add, try distributing the -1 among the
1729 // add operands.
1730 if (Ops.size() == 2)
1731 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1732 SmallVector<const SCEV *, 4> NewOps;
1733 bool AnyFolded = false;
1734 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1735 I != E; ++I) {
1736 const SCEV *Mul = getMulExpr(Ops[0], *I);
1737 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1738 NewOps.push_back(Mul);
1739 }
1740 if (AnyFolded)
1741 return getAddExpr(NewOps);
1742 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001743 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001744
1745 if (Ops.size() == 1)
1746 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001747 }
1748
1749 // Skip over the add expression until we get to a multiply.
1750 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1751 ++Idx;
1752
Chris Lattner53e677a2004-04-02 20:23:17 +00001753 // If there are mul operands inline them all into this expression.
1754 if (Idx < Ops.size()) {
1755 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001756 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001757 // If we have an mul, expand the mul operands onto the end of the operands
1758 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001759 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001760 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001761 DeletedMul = true;
1762 }
1763
1764 // If we deleted at least one mul, we added operands to the end of the list,
1765 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001766 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001767 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001768 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001769 }
1770
1771 // If there are any add recurrences in the operands list, see if any other
1772 // added values are loop invariant. If so, we can fold them into the
1773 // recurrence.
1774 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1775 ++Idx;
1776
1777 // Scan over all recurrences, trying to fold loop invariants into them.
1778 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1779 // Scan all of the other operands to this mul and add them to the vector if
1780 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001781 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001782 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001783 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001784 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001785 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001786 LIOps.push_back(Ops[i]);
1787 Ops.erase(Ops.begin()+i);
1788 --i; --e;
1789 }
1790
1791 // If we found some loop invariants, fold them into the recurrence.
1792 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001793 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001794 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001795 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001796 const SCEV *Scale = getMulExpr(LIOps);
1797 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1798 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001799
Dan Gohmanb9f96512010-06-30 07:16:37 +00001800 // Build the new addrec. Propagate the NUW and NSW flags if both the
1801 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohman0f32ae32010-08-29 14:55:19 +00001802 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
Dan Gohmana10756e2010-01-21 02:09:26 +00001803 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001804 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001805
1806 // If all of the other operands were loop invariant, we are done.
1807 if (Ops.size() == 1) return NewRec;
1808
1809 // Otherwise, multiply the folded AddRec by the non-liv parts.
1810 for (unsigned i = 0;; ++i)
1811 if (Ops[i] == AddRec) {
1812 Ops[i] = NewRec;
1813 break;
1814 }
Dan Gohman246b2562007-10-22 18:31:58 +00001815 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001816 }
1817
1818 // Okay, if there weren't any loop invariants to be folded, check to see if
1819 // there are multiple AddRec's with the same loop induction variable being
1820 // multiplied together. If so, we can fold them.
1821 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001822 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1823 ++OtherIdx)
1824 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1825 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1826 // {A*C,+,F*D + G*B + B*D}<L>
1827 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1828 ++OtherIdx)
1829 if (const SCEVAddRecExpr *OtherAddRec =
1830 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1831 if (OtherAddRec->getLoop() == AddRecLoop) {
1832 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1833 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1834 const SCEV *B = F->getStepRecurrence(*this);
1835 const SCEV *D = G->getStepRecurrence(*this);
1836 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1837 getMulExpr(G, B),
1838 getMulExpr(B, D));
1839 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1840 F->getLoop());
1841 if (Ops.size() == 2) return NewAddRec;
1842 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1843 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1844 }
1845 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001846 }
1847
1848 // Otherwise couldn't fold anything into this recurrence. Move onto the
1849 // next one.
1850 }
1851
1852 // Okay, it looks like we really DO need an mul expr. Check to see if we
1853 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001854 FoldingSetNodeID ID;
1855 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001856 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1857 ID.AddPointer(Ops[i]);
1858 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001859 SCEVMulExpr *S =
1860 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1861 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001862 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1863 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001864 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1865 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001866 UniqueSCEVs.InsertNode(S, IP);
1867 }
Dan Gohman3645b012009-10-09 00:10:36 +00001868 if (HasNUW) S->setHasNoUnsignedWrap(true);
1869 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001870 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001871}
1872
Andreas Bolka8a11c982009-08-07 22:55:26 +00001873/// getUDivExpr - Get a canonical unsigned division expression, or something
1874/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001875const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1876 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001877 assert(getEffectiveSCEVType(LHS->getType()) ==
1878 getEffectiveSCEVType(RHS->getType()) &&
1879 "SCEVUDivExpr operand types don't match!");
1880
Dan Gohman622ed672009-05-04 22:02:23 +00001881 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001882 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001883 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001884 // If the denominator is zero, the result of the udiv is undefined. Don't
1885 // try to analyze it, because the resolution chosen here may differ from
1886 // the resolution chosen in other parts of the compiler.
1887 if (!RHSC->getValue()->isZero()) {
1888 // Determine if the division can be folded into the operands of
1889 // its operands.
1890 // TODO: Generalize this to non-constants by using known-bits information.
1891 const Type *Ty = LHS->getType();
1892 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001893 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001894 // For non-power-of-two values, effectively round the value up to the
1895 // nearest power of two.
1896 if (!RHSC->getValue()->getValue().isPowerOf2())
1897 ++MaxShiftAmt;
1898 const IntegerType *ExtTy =
1899 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1900 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1901 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1902 if (const SCEVConstant *Step =
1903 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1904 if (!Step->getValue()->getValue()
1905 .urem(RHSC->getValue()->getValue()) &&
1906 getZeroExtendExpr(AR, ExtTy) ==
1907 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1908 getZeroExtendExpr(Step, ExtTy),
1909 AR->getLoop())) {
1910 SmallVector<const SCEV *, 4> Operands;
1911 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1912 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1913 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001914 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001915 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1916 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1917 SmallVector<const SCEV *, 4> Operands;
1918 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1919 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1920 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1921 // Find an operand that's safely divisible.
1922 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1923 const SCEV *Op = M->getOperand(i);
1924 const SCEV *Div = getUDivExpr(Op, RHSC);
1925 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1926 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1927 M->op_end());
1928 Operands[i] = Div;
1929 return getMulExpr(Operands);
1930 }
1931 }
Dan Gohman185cf032009-05-08 20:18:49 +00001932 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001933 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1934 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1935 SmallVector<const SCEV *, 4> Operands;
1936 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1937 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1938 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1939 Operands.clear();
1940 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1941 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1942 if (isa<SCEVUDivExpr>(Op) ||
1943 getMulExpr(Op, RHS) != A->getOperand(i))
1944 break;
1945 Operands.push_back(Op);
1946 }
1947 if (Operands.size() == A->getNumOperands())
1948 return getAddExpr(Operands);
1949 }
1950 }
Dan Gohman185cf032009-05-08 20:18:49 +00001951
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001952 // Fold if both operands are constant.
1953 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1954 Constant *LHSCV = LHSC->getValue();
1955 Constant *RHSCV = RHSC->getValue();
1956 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1957 RHSCV)));
1958 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001959 }
1960 }
1961
Dan Gohman1c343752009-06-27 21:21:31 +00001962 FoldingSetNodeID ID;
1963 ID.AddInteger(scUDivExpr);
1964 ID.AddPointer(LHS);
1965 ID.AddPointer(RHS);
1966 void *IP = 0;
1967 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001968 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1969 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001970 UniqueSCEVs.InsertNode(S, IP);
1971 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001972}
1973
1974
Dan Gohman6c0866c2009-05-24 23:45:28 +00001975/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1976/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001977const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001978 const SCEV *Step, const Loop *L,
1979 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001980 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001981 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001982 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001983 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001984 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001985 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001986 }
1987
1988 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001989 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001990}
1991
Dan Gohman6c0866c2009-05-24 23:45:28 +00001992/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1993/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001994const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001995ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001996 const Loop *L,
1997 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001998 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001999#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002000 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002001 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002002 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002003 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002004 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002005 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002006 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002007#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002008
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002009 if (Operands.back()->isZero()) {
2010 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00002011 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002012 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002013
Dan Gohmanbc028532010-02-19 18:49:22 +00002014 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2015 // use that information to infer NUW and NSW flags. However, computing a
2016 // BE count requires calling getAddRecExpr, so we may not yet have a
2017 // meaningful BE count at this point (and if we don't, we'd be stuck
2018 // with a SCEVCouldNotCompute as the cached BE count).
2019
Dan Gohmana10756e2010-01-21 02:09:26 +00002020 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2021 if (!HasNUW && HasNSW) {
2022 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002023 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2024 E = Operands.end(); I != E; ++I)
2025 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002026 All = false;
2027 break;
2028 }
2029 if (All) HasNUW = true;
2030 }
2031
Dan Gohmand9cc7492008-08-08 18:33:12 +00002032 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002033 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002034 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002035 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002036 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002037 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002038 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002039 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002040 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002041 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002042 // AddRecs require their operands be loop-invariant with respect to their
2043 // loops. Don't perform this transformation if it would break this
2044 // requirement.
2045 bool AllInvariant = true;
2046 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002047 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002048 AllInvariant = false;
2049 break;
2050 }
2051 if (AllInvariant) {
2052 NestedOperands[0] = getAddRecExpr(Operands, L);
2053 AllInvariant = true;
2054 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002055 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002056 AllInvariant = false;
2057 break;
2058 }
2059 if (AllInvariant)
2060 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002061 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002062 }
2063 // Reset Operands to its original state.
2064 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002065 }
2066 }
2067
Dan Gohman67847532010-01-19 22:27:22 +00002068 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2069 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002070 FoldingSetNodeID ID;
2071 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002072 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2073 ID.AddPointer(Operands[i]);
2074 ID.AddPointer(L);
2075 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002076 SCEVAddRecExpr *S =
2077 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2078 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002079 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2080 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002081 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2082 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002083 UniqueSCEVs.InsertNode(S, IP);
2084 }
Dan Gohman3645b012009-10-09 00:10:36 +00002085 if (HasNUW) S->setHasNoUnsignedWrap(true);
2086 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002087 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002088}
2089
Dan Gohman9311ef62009-06-24 14:49:00 +00002090const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2091 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002092 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002093 Ops.push_back(LHS);
2094 Ops.push_back(RHS);
2095 return getSMaxExpr(Ops);
2096}
2097
Dan Gohman0bba49c2009-07-07 17:06:11 +00002098const SCEV *
2099ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002100 assert(!Ops.empty() && "Cannot get empty smax!");
2101 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002102#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002103 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002104 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002105 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002106 "SCEVSMaxExpr operand types don't match!");
2107#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002108
2109 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002110 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002111
2112 // If there are any constants, fold them together.
2113 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002114 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002115 ++Idx;
2116 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002117 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002118 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002119 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002120 APIntOps::smax(LHSC->getValue()->getValue(),
2121 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002122 Ops[0] = getConstant(Fold);
2123 Ops.erase(Ops.begin()+1); // Erase the folded element
2124 if (Ops.size() == 1) return Ops[0];
2125 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002126 }
2127
Dan Gohmane5aceed2009-06-24 14:46:22 +00002128 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002129 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2130 Ops.erase(Ops.begin());
2131 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002132 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2133 // If we have an smax with a constant maximum-int, it will always be
2134 // maximum-int.
2135 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002136 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002137
Dan Gohman3ab13122010-04-13 16:49:23 +00002138 if (Ops.size() == 1) return Ops[0];
2139 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002140
2141 // Find the first SMax
2142 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2143 ++Idx;
2144
2145 // Check to see if one of the operands is an SMax. If so, expand its operands
2146 // onto our operand list, and recurse to simplify.
2147 if (Idx < Ops.size()) {
2148 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002149 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002150 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002151 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002152 DeletedSMax = true;
2153 }
2154
2155 if (DeletedSMax)
2156 return getSMaxExpr(Ops);
2157 }
2158
2159 // Okay, check to see if the same value occurs in the operand list twice. If
2160 // so, delete one. Since we sorted the list, these values are required to
2161 // be adjacent.
2162 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002163 // X smax Y smax Y --> X smax Y
2164 // X smax Y --> X, if X is always greater than Y
2165 if (Ops[i] == Ops[i+1] ||
2166 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2167 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2168 --i; --e;
2169 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002170 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2171 --i; --e;
2172 }
2173
2174 if (Ops.size() == 1) return Ops[0];
2175
2176 assert(!Ops.empty() && "Reduced smax down to nothing!");
2177
Nick Lewycky3e630762008-02-20 06:48:22 +00002178 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002179 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002180 FoldingSetNodeID ID;
2181 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002182 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2183 ID.AddPointer(Ops[i]);
2184 void *IP = 0;
2185 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002186 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2187 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002188 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2189 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002190 UniqueSCEVs.InsertNode(S, IP);
2191 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002192}
2193
Dan Gohman9311ef62009-06-24 14:49:00 +00002194const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2195 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002196 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002197 Ops.push_back(LHS);
2198 Ops.push_back(RHS);
2199 return getUMaxExpr(Ops);
2200}
2201
Dan Gohman0bba49c2009-07-07 17:06:11 +00002202const SCEV *
2203ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002204 assert(!Ops.empty() && "Cannot get empty umax!");
2205 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002206#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002207 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002208 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002209 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002210 "SCEVUMaxExpr operand types don't match!");
2211#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002212
2213 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002214 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002215
2216 // If there are any constants, fold them together.
2217 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002218 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002219 ++Idx;
2220 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002221 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002222 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002223 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002224 APIntOps::umax(LHSC->getValue()->getValue(),
2225 RHSC->getValue()->getValue()));
2226 Ops[0] = getConstant(Fold);
2227 Ops.erase(Ops.begin()+1); // Erase the folded element
2228 if (Ops.size() == 1) return Ops[0];
2229 LHSC = cast<SCEVConstant>(Ops[0]);
2230 }
2231
Dan Gohmane5aceed2009-06-24 14:46:22 +00002232 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002233 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2234 Ops.erase(Ops.begin());
2235 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002236 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2237 // If we have an umax with a constant maximum-int, it will always be
2238 // maximum-int.
2239 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002240 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002241
Dan Gohman3ab13122010-04-13 16:49:23 +00002242 if (Ops.size() == 1) return Ops[0];
2243 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002244
2245 // Find the first UMax
2246 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2247 ++Idx;
2248
2249 // Check to see if one of the operands is a UMax. If so, expand its operands
2250 // onto our operand list, and recurse to simplify.
2251 if (Idx < Ops.size()) {
2252 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002253 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002254 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002255 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002256 DeletedUMax = true;
2257 }
2258
2259 if (DeletedUMax)
2260 return getUMaxExpr(Ops);
2261 }
2262
2263 // Okay, check to see if the same value occurs in the operand list twice. If
2264 // so, delete one. Since we sorted the list, these values are required to
2265 // be adjacent.
2266 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002267 // X umax Y umax Y --> X umax Y
2268 // X umax Y --> X, if X is always greater than Y
2269 if (Ops[i] == Ops[i+1] ||
2270 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2271 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2272 --i; --e;
2273 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002274 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2275 --i; --e;
2276 }
2277
2278 if (Ops.size() == 1) return Ops[0];
2279
2280 assert(!Ops.empty() && "Reduced umax down to nothing!");
2281
2282 // Okay, it looks like we really DO need a umax expr. Check to see if we
2283 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002284 FoldingSetNodeID ID;
2285 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002286 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2287 ID.AddPointer(Ops[i]);
2288 void *IP = 0;
2289 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002290 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2291 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002292 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2293 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002294 UniqueSCEVs.InsertNode(S, IP);
2295 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002296}
2297
Dan Gohman9311ef62009-06-24 14:49:00 +00002298const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2299 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002300 // ~smax(~x, ~y) == smin(x, y).
2301 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2302}
2303
Dan Gohman9311ef62009-06-24 14:49:00 +00002304const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2305 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002306 // ~umax(~x, ~y) == umin(x, y)
2307 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2308}
2309
Dan Gohman4f8eea82010-02-01 18:27:38 +00002310const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002311 // If we have TargetData, we can bypass creating a target-independent
2312 // constant expression and then folding it back into a ConstantInt.
2313 // This is just a compile-time optimization.
2314 if (TD)
2315 return getConstant(TD->getIntPtrType(getContext()),
2316 TD->getTypeAllocSize(AllocTy));
2317
Dan Gohman4f8eea82010-02-01 18:27:38 +00002318 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2319 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002320 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2321 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002322 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2323 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2324}
2325
2326const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2327 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2328 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002329 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2330 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002331 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2332 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2333}
2334
2335const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2336 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002337 // If we have TargetData, we can bypass creating a target-independent
2338 // constant expression and then folding it back into a ConstantInt.
2339 // This is just a compile-time optimization.
2340 if (TD)
2341 return getConstant(TD->getIntPtrType(getContext()),
2342 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2343
Dan Gohman0f5efe52010-01-28 02:15:55 +00002344 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2345 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002346 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2347 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002348 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002349 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002350}
2351
Dan Gohman4f8eea82010-02-01 18:27:38 +00002352const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2353 Constant *FieldNo) {
2354 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002355 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002356 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2357 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002358 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002359 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002360}
2361
Dan Gohman0bba49c2009-07-07 17:06:11 +00002362const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002363 // Don't attempt to do anything other than create a SCEVUnknown object
2364 // here. createSCEV only calls getUnknown after checking for all other
2365 // interesting possibilities, and any other code that calls getUnknown
2366 // is doing so in order to hide a value from SCEV canonicalization.
2367
Dan Gohman1c343752009-06-27 21:21:31 +00002368 FoldingSetNodeID ID;
2369 ID.AddInteger(scUnknown);
2370 ID.AddPointer(V);
2371 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002372 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2373 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2374 "Stale SCEVUnknown in uniquing map!");
2375 return S;
2376 }
2377 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2378 FirstUnknown);
2379 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002380 UniqueSCEVs.InsertNode(S, IP);
2381 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002382}
2383
Chris Lattner53e677a2004-04-02 20:23:17 +00002384//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002385// Basic SCEV Analysis and PHI Idiom Recognition Code
2386//
2387
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002388/// isSCEVable - Test if values of the given type are analyzable within
2389/// the SCEV framework. This primarily includes integer types, and it
2390/// can optionally include pointer types if the ScalarEvolution class
2391/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002392bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002393 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002394 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002395}
2396
2397/// getTypeSizeInBits - Return the size in bits of the specified type,
2398/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002399uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002400 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2401
2402 // If we have a TargetData, use it!
2403 if (TD)
2404 return TD->getTypeSizeInBits(Ty);
2405
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002406 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002407 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002408 return Ty->getPrimitiveSizeInBits();
2409
2410 // The only other support type is pointer. Without TargetData, conservatively
2411 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002412 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002413 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002414}
2415
2416/// getEffectiveSCEVType - Return a type with the same bitwidth as
2417/// the given type and which represents how SCEV will treat the given
2418/// type, for which isSCEVable must return true. For pointer types,
2419/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002420const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002421 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2422
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002423 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002424 return Ty;
2425
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002426 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002427 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002428 if (TD) return TD->getIntPtrType(getContext());
2429
2430 // Without TargetData, conservatively assume pointers are 64-bit.
2431 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002432}
Chris Lattner53e677a2004-04-02 20:23:17 +00002433
Dan Gohman0bba49c2009-07-07 17:06:11 +00002434const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002435 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002436}
2437
Chris Lattner53e677a2004-04-02 20:23:17 +00002438/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2439/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002440const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002441 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002442
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002443 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2444 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002445 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002446
2447 // The process of creating a SCEV for V may have caused other SCEVs
2448 // to have been created, so it's necessary to insert the new entry
2449 // from scratch, rather than trying to remember the insert position
2450 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002451 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002452 return S;
2453}
2454
Dan Gohman2d1be872009-04-16 03:18:22 +00002455/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2456///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002457const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002458 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002459 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002460 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002461
2462 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002463 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002464 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002465 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002466}
2467
2468/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002469const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002470 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002471 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002472 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002473
2474 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002475 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002476 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002477 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002478 return getMinusSCEV(AllOnes, V);
2479}
2480
Chris Lattner6038a632011-01-11 17:11:59 +00002481/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1,
2482/// and thus the HasNUW and HasNSW bits apply to the resultant add, not
2483/// whether the sub would have overflowed.
Chris Lattner992efb02011-01-09 22:26:35 +00002484const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2485 bool HasNUW, bool HasNSW) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002486 // Fast path: X - X --> 0.
2487 if (LHS == RHS)
2488 return getConstant(LHS->getType(), 0);
2489
Dan Gohman2d1be872009-04-16 03:18:22 +00002490 // X - Y --> X + -Y
Chris Lattner992efb02011-01-09 22:26:35 +00002491 return getAddExpr(LHS, getNegativeSCEV(RHS), HasNUW, HasNSW);
Dan Gohman2d1be872009-04-16 03:18:22 +00002492}
2493
2494/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2495/// input value to the specified type. If the type must be extended, it is zero
2496/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002497const SCEV *
Chris Lattner992efb02011-01-09 22:26:35 +00002498ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002499 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002500 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2501 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002502 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002503 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002504 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002505 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002506 return getTruncateExpr(V, Ty);
2507 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002508}
2509
2510/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2511/// input value to the specified type. If the type must be extended, it is sign
2512/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002513const SCEV *
2514ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002515 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002516 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002517 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2518 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002519 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002520 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002521 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002522 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002523 return getTruncateExpr(V, Ty);
2524 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002525}
2526
Dan Gohman467c4302009-05-13 03:46:30 +00002527/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2528/// input value to the specified type. If the type must be extended, it is zero
2529/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002530const SCEV *
2531ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002532 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002533 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2534 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002535 "Cannot noop or zero extend with non-integer arguments!");
2536 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2537 "getNoopOrZeroExtend cannot truncate!");
2538 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2539 return V; // No conversion
2540 return getZeroExtendExpr(V, Ty);
2541}
2542
2543/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2544/// input value to the specified type. If the type must be extended, it is sign
2545/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002546const SCEV *
2547ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002548 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002549 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2550 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002551 "Cannot noop or sign extend with non-integer arguments!");
2552 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2553 "getNoopOrSignExtend cannot truncate!");
2554 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2555 return V; // No conversion
2556 return getSignExtendExpr(V, Ty);
2557}
2558
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002559/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2560/// the input value to the specified type. If the type must be extended,
2561/// it is extended with unspecified bits. The conversion must not be
2562/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002563const SCEV *
2564ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002565 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002566 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2567 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002568 "Cannot noop or any extend with non-integer arguments!");
2569 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2570 "getNoopOrAnyExtend cannot truncate!");
2571 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2572 return V; // No conversion
2573 return getAnyExtendExpr(V, Ty);
2574}
2575
Dan Gohman467c4302009-05-13 03:46:30 +00002576/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2577/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002578const SCEV *
2579ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002580 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002581 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2582 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002583 "Cannot truncate or noop with non-integer arguments!");
2584 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2585 "getTruncateOrNoop cannot extend!");
2586 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2587 return V; // No conversion
2588 return getTruncateExpr(V, Ty);
2589}
2590
Dan Gohmana334aa72009-06-22 00:31:57 +00002591/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2592/// the types using zero-extension, and then perform a umax operation
2593/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002594const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2595 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002596 const SCEV *PromotedLHS = LHS;
2597 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002598
2599 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2600 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2601 else
2602 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2603
2604 return getUMaxExpr(PromotedLHS, PromotedRHS);
2605}
2606
Dan Gohmanc9759e82009-06-22 15:03:27 +00002607/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2608/// the types using zero-extension, and then perform a umin operation
2609/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002610const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2611 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002612 const SCEV *PromotedLHS = LHS;
2613 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002614
2615 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2616 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2617 else
2618 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2619
2620 return getUMinExpr(PromotedLHS, PromotedRHS);
2621}
2622
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002623/// PushDefUseChildren - Push users of the given Instruction
2624/// onto the given Worklist.
2625static void
2626PushDefUseChildren(Instruction *I,
2627 SmallVectorImpl<Instruction *> &Worklist) {
2628 // Push the def-use children onto the Worklist stack.
2629 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2630 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002631 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002632}
2633
2634/// ForgetSymbolicValue - This looks up computed SCEV values for all
2635/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002636/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002637/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002638void
Dan Gohman85669632010-02-25 06:57:05 +00002639ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002640 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002641 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002642
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002643 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002644 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002645 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002646 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002647 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002648
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002649 ValueExprMapType::iterator It =
2650 ValueExprMap.find(static_cast<Value *>(I));
2651 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002652 const SCEV *Old = It->second;
2653
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002654 // Short-circuit the def-use traversal if the symbolic name
2655 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002656 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002657 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002658
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002659 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002660 // structure, it's a PHI that's in the progress of being computed
2661 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2662 // additional loop trip count information isn't going to change anything.
2663 // In the second case, createNodeForPHI will perform the necessary
2664 // updates on its own when it gets to that point. In the third, we do
2665 // want to forget the SCEVUnknown.
2666 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002667 !isa<SCEVUnknown>(Old) ||
2668 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002669 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002670 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002671 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002672 }
2673
2674 PushDefUseChildren(I, Worklist);
2675 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002676}
Chris Lattner53e677a2004-04-02 20:23:17 +00002677
2678/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2679/// a loop header, making it a potential recurrence, or it doesn't.
2680///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002681const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002682 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2683 if (L->getHeader() == PN->getParent()) {
2684 // The loop may have multiple entrances or multiple exits; we can analyze
2685 // this phi as an addrec if it has a unique entry value and a unique
2686 // backedge value.
2687 Value *BEValueV = 0, *StartValueV = 0;
2688 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2689 Value *V = PN->getIncomingValue(i);
2690 if (L->contains(PN->getIncomingBlock(i))) {
2691 if (!BEValueV) {
2692 BEValueV = V;
2693 } else if (BEValueV != V) {
2694 BEValueV = 0;
2695 break;
2696 }
2697 } else if (!StartValueV) {
2698 StartValueV = V;
2699 } else if (StartValueV != V) {
2700 StartValueV = 0;
2701 break;
2702 }
2703 }
2704 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002705 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002706 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002707 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002708 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002709 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002710
2711 // Using this symbolic name for the PHI, analyze the value coming around
2712 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002713 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002714
2715 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2716 // has a special value for the first iteration of the loop.
2717
2718 // If the value coming around the backedge is an add with the symbolic
2719 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002720 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002721 // If there is a single occurrence of the symbolic value, replace it
2722 // with a recurrence.
2723 unsigned FoundIndex = Add->getNumOperands();
2724 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2725 if (Add->getOperand(i) == SymbolicName)
2726 if (FoundIndex == e) {
2727 FoundIndex = i;
2728 break;
2729 }
2730
2731 if (FoundIndex != Add->getNumOperands()) {
2732 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002733 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002734 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2735 if (i != FoundIndex)
2736 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002737 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002738
2739 // This is not a valid addrec if the step amount is varying each
2740 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002741 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00002742 (isa<SCEVAddRecExpr>(Accum) &&
2743 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002744 bool HasNUW = false;
2745 bool HasNSW = false;
2746
2747 // If the increment doesn't overflow, then neither the addrec nor
2748 // the post-increment will overflow.
2749 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2750 if (OBO->hasNoUnsignedWrap())
2751 HasNUW = true;
2752 if (OBO->hasNoSignedWrap())
2753 HasNSW = true;
Chris Lattner96518702011-01-11 06:44:41 +00002754 } else if (const GEPOperator *GEP =
2755 dyn_cast<GEPOperator>(BEValueV)) {
Chris Lattner6d5a2412011-01-09 02:28:48 +00002756 // If the increment is a GEP, then we know it won't perform an
2757 // unsigned overflow, because the address space cannot be
2758 // wrapped around.
Chris Lattner96518702011-01-11 06:44:41 +00002759 HasNUW |= GEP->isInBounds();
Dan Gohmana10756e2010-01-21 02:09:26 +00002760 }
2761
Dan Gohman27dead42010-04-12 07:49:36 +00002762 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002763 const SCEV *PHISCEV =
2764 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002765
Dan Gohmana10756e2010-01-21 02:09:26 +00002766 // Since the no-wrap flags are on the increment, they apply to the
2767 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002768 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00002769 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2770 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002771
2772 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002773 // to be symbolic. We now need to go back and purge all of the
2774 // entries for the scalars that use the symbolic expression.
2775 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002776 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002777 return PHISCEV;
2778 }
2779 }
Dan Gohman622ed672009-05-04 22:02:23 +00002780 } else if (const SCEVAddRecExpr *AddRec =
2781 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002782 // Otherwise, this could be a loop like this:
2783 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2784 // In this case, j = {1,+,1} and BEValue is j.
2785 // Because the other in-value of i (0) fits the evolution of BEValue
2786 // i really is an addrec evolution.
2787 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002788 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002789
2790 // If StartVal = j.start - j.stride, we can use StartVal as the
2791 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002792 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002793 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002794 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002795 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002796
2797 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002798 // to be symbolic. We now need to go back and purge all of the
2799 // entries for the scalars that use the symbolic expression.
2800 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002801 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002802 return PHISCEV;
2803 }
2804 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002805 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002806 }
Dan Gohman27dead42010-04-12 07:49:36 +00002807 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002808
Dan Gohman85669632010-02-25 06:57:05 +00002809 // If the PHI has a single incoming value, follow that value, unless the
2810 // PHI's incoming blocks are in a different loop, in which case doing so
2811 // risks breaking LCSSA form. Instcombine would normally zap these, but
2812 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00002813 if (Value *V = SimplifyInstruction(PN, TD, DT))
2814 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00002815 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00002816
Chris Lattner53e677a2004-04-02 20:23:17 +00002817 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002818 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002819}
2820
Dan Gohman26466c02009-05-08 20:26:55 +00002821/// createNodeForGEP - Expand GEP instructions into add and multiply
2822/// operations. This allows them to be analyzed by regular SCEV code.
2823///
Dan Gohmand281ed22009-12-18 02:09:29 +00002824const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002825
Dan Gohmanb9f96512010-06-30 07:16:37 +00002826 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2827 // Add expression, because the Instruction may be guarded by control flow
2828 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002829 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002830
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002831 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002832 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002833 // Don't attempt to analyze GEPs over unsized objects.
2834 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2835 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002836 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002837 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002838 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002839 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002840 I != E; ++I) {
2841 Value *Index = *I;
2842 // Compute the (potentially symbolic) offset in bytes for this index.
2843 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2844 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002845 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002846 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2847
Dan Gohmanb9f96512010-06-30 07:16:37 +00002848 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002849 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002850 } else {
2851 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002852 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2853 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002854 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002855 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2856
Dan Gohmanb9f96512010-06-30 07:16:37 +00002857 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002858 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002859
2860 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002861 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002862 }
2863 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002864
2865 // Get the SCEV for the GEP base.
2866 const SCEV *BaseS = getSCEV(Base);
2867
Dan Gohmanb9f96512010-06-30 07:16:37 +00002868 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002869 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002870}
2871
Nick Lewycky83bb0052007-11-22 07:59:40 +00002872/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2873/// guaranteed to end in (at every loop iteration). It is, at the same time,
2874/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2875/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002876uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002877ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002878 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002879 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002880
Dan Gohman622ed672009-05-04 22:02:23 +00002881 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002882 return std::min(GetMinTrailingZeros(T->getOperand()),
2883 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002884
Dan Gohman622ed672009-05-04 22:02:23 +00002885 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002886 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2887 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2888 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002889 }
2890
Dan Gohman622ed672009-05-04 22:02:23 +00002891 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002892 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2893 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2894 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002895 }
2896
Dan Gohman622ed672009-05-04 22:02:23 +00002897 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002898 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002899 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002900 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002901 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002902 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002903 }
2904
Dan Gohman622ed672009-05-04 22:02:23 +00002905 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002906 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002907 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2908 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002909 for (unsigned i = 1, e = M->getNumOperands();
2910 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002911 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002912 BitWidth);
2913 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002914 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002915
Dan Gohman622ed672009-05-04 22:02:23 +00002916 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002917 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002918 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002919 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002920 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002921 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002922 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002923
Dan Gohman622ed672009-05-04 22:02:23 +00002924 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002925 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002926 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002927 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002928 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002929 return MinOpRes;
2930 }
2931
Dan Gohman622ed672009-05-04 22:02:23 +00002932 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002933 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002934 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002935 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002936 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002937 return MinOpRes;
2938 }
2939
Dan Gohman2c364ad2009-06-19 23:29:04 +00002940 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2941 // For a SCEVUnknown, ask ValueTracking.
2942 unsigned BitWidth = getTypeSizeInBits(U->getType());
2943 APInt Mask = APInt::getAllOnesValue(BitWidth);
2944 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2945 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2946 return Zeros.countTrailingOnes();
2947 }
2948
2949 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002950 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002951}
Chris Lattner53e677a2004-04-02 20:23:17 +00002952
Dan Gohman85b05a22009-07-13 21:35:55 +00002953/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2954///
2955ConstantRange
2956ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002957 // See if we've computed this range already.
2958 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
2959 if (I != UnsignedRanges.end())
2960 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002961
2962 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002963 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00002964
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002965 unsigned BitWidth = getTypeSizeInBits(S->getType());
2966 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2967
2968 // If the value has known zeros, the maximum unsigned value will have those
2969 // known zeros as well.
2970 uint32_t TZ = GetMinTrailingZeros(S);
2971 if (TZ != 0)
2972 ConservativeResult =
2973 ConstantRange(APInt::getMinValue(BitWidth),
2974 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2975
Dan Gohman85b05a22009-07-13 21:35:55 +00002976 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2977 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2978 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2979 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002980 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002981 }
2982
2983 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2984 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2985 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2986 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002987 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002988 }
2989
2990 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2991 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2992 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2993 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002994 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002995 }
2996
2997 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2998 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2999 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3000 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003001 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003002 }
3003
3004 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3005 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3006 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003007 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003008 }
3009
3010 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3011 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003012 return setUnsignedRange(ZExt,
3013 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003014 }
3015
3016 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3017 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003018 return setUnsignedRange(SExt,
3019 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003020 }
3021
3022 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3023 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003024 return setUnsignedRange(Trunc,
3025 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003026 }
3027
Dan Gohman85b05a22009-07-13 21:35:55 +00003028 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003029 // If there's no unsigned wrap, the value will never be less than its
3030 // initial value.
3031 if (AddRec->hasNoUnsignedWrap())
3032 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003033 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003034 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003035 ConservativeResult.intersectWith(
3036 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003037
3038 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003039 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003040 const Type *Ty = AddRec->getType();
3041 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003042 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3043 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003044 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3045
3046 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003047 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003048
3049 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003050 ConstantRange StepRange = getSignedRange(Step);
3051 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3052 ConstantRange EndRange =
3053 StartRange.add(MaxBECountRange.multiply(StepRange));
3054
3055 // Check for overflow. This must be done with ConstantRange arithmetic
3056 // because we could be called from within the ScalarEvolution overflow
3057 // checking code.
3058 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3059 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3060 ConstantRange ExtMaxBECountRange =
3061 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3062 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3063 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3064 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003065 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003066
Dan Gohman85b05a22009-07-13 21:35:55 +00003067 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3068 EndRange.getUnsignedMin());
3069 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3070 EndRange.getUnsignedMax());
3071 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003072 return setUnsignedRange(AddRec, ConservativeResult);
3073 return setUnsignedRange(AddRec,
3074 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003075 }
3076 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003077
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003078 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003079 }
3080
3081 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3082 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003083 APInt Mask = APInt::getAllOnesValue(BitWidth);
3084 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3085 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003086 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003087 return setUnsignedRange(U, ConservativeResult);
3088 return setUnsignedRange(U,
3089 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003090 }
3091
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003092 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003093}
3094
Dan Gohman85b05a22009-07-13 21:35:55 +00003095/// getSignedRange - Determine the signed range for a particular SCEV.
3096///
3097ConstantRange
3098ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003099 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3100 if (I != SignedRanges.end())
3101 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003102
Dan Gohman85b05a22009-07-13 21:35:55 +00003103 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003104 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003105
Dan Gohman52fddd32010-01-26 04:40:18 +00003106 unsigned BitWidth = getTypeSizeInBits(S->getType());
3107 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3108
3109 // If the value has known zeros, the maximum signed value will have those
3110 // known zeros as well.
3111 uint32_t TZ = GetMinTrailingZeros(S);
3112 if (TZ != 0)
3113 ConservativeResult =
3114 ConstantRange(APInt::getSignedMinValue(BitWidth),
3115 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3116
Dan Gohman85b05a22009-07-13 21:35:55 +00003117 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3118 ConstantRange X = getSignedRange(Add->getOperand(0));
3119 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3120 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003121 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003122 }
3123
Dan Gohman85b05a22009-07-13 21:35:55 +00003124 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3125 ConstantRange X = getSignedRange(Mul->getOperand(0));
3126 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3127 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003128 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003129 }
3130
Dan Gohman85b05a22009-07-13 21:35:55 +00003131 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3132 ConstantRange X = getSignedRange(SMax->getOperand(0));
3133 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3134 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003135 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003136 }
Dan Gohman62849c02009-06-24 01:05:09 +00003137
Dan Gohman85b05a22009-07-13 21:35:55 +00003138 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3139 ConstantRange X = getSignedRange(UMax->getOperand(0));
3140 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3141 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003142 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003143 }
Dan Gohman62849c02009-06-24 01:05:09 +00003144
Dan Gohman85b05a22009-07-13 21:35:55 +00003145 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3146 ConstantRange X = getSignedRange(UDiv->getLHS());
3147 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003148 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003149 }
Dan Gohman62849c02009-06-24 01:05:09 +00003150
Dan Gohman85b05a22009-07-13 21:35:55 +00003151 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3152 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003153 return setSignedRange(ZExt,
3154 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003155 }
3156
3157 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3158 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003159 return setSignedRange(SExt,
3160 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003161 }
3162
3163 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3164 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003165 return setSignedRange(Trunc,
3166 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003167 }
3168
Dan Gohman85b05a22009-07-13 21:35:55 +00003169 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003170 // If there's no signed wrap, and all the operands have the same sign or
3171 // zero, the value won't ever change sign.
3172 if (AddRec->hasNoSignedWrap()) {
3173 bool AllNonNeg = true;
3174 bool AllNonPos = true;
3175 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3176 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3177 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3178 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003179 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003180 ConservativeResult = ConservativeResult.intersectWith(
3181 ConstantRange(APInt(BitWidth, 0),
3182 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003183 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003184 ConservativeResult = ConservativeResult.intersectWith(
3185 ConstantRange(APInt::getSignedMinValue(BitWidth),
3186 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003187 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003188
3189 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003190 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003191 const Type *Ty = AddRec->getType();
3192 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003193 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3194 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003195 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3196
3197 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003198 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003199
3200 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003201 ConstantRange StepRange = getSignedRange(Step);
3202 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3203 ConstantRange EndRange =
3204 StartRange.add(MaxBECountRange.multiply(StepRange));
3205
3206 // Check for overflow. This must be done with ConstantRange arithmetic
3207 // because we could be called from within the ScalarEvolution overflow
3208 // checking code.
3209 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3210 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3211 ConstantRange ExtMaxBECountRange =
3212 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3213 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3214 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3215 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003216 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003217
Dan Gohman85b05a22009-07-13 21:35:55 +00003218 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3219 EndRange.getSignedMin());
3220 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3221 EndRange.getSignedMax());
3222 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003223 return setSignedRange(AddRec, ConservativeResult);
3224 return setSignedRange(AddRec,
3225 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003226 }
Dan Gohman62849c02009-06-24 01:05:09 +00003227 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003228
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003229 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003230 }
3231
Dan Gohman2c364ad2009-06-19 23:29:04 +00003232 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3233 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003234 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003235 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003236 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3237 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003238 return setSignedRange(U, ConservativeResult);
3239 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003240 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003241 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003242 }
3243
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003244 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003245}
3246
Chris Lattner53e677a2004-04-02 20:23:17 +00003247/// createSCEV - We know that there is no SCEV for the specified value.
3248/// Analyze the expression.
3249///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003250const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003251 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003252 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003253
Dan Gohman6c459a22008-06-22 19:56:46 +00003254 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003255 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003256 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003257
3258 // Don't attempt to analyze instructions in blocks that aren't
3259 // reachable. Such instructions don't matter, and they aren't required
3260 // to obey basic rules for definitions dominating uses which this
3261 // analysis depends on.
3262 if (!DT->isReachableFromEntry(I->getParent()))
3263 return getUnknown(V);
3264 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003265 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003266 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3267 return getConstant(CI);
3268 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003269 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003270 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3271 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003272 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003273 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003274
Dan Gohmanca178902009-07-17 20:47:02 +00003275 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003276 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003277 case Instruction::Add: {
3278 // The simple thing to do would be to just call getSCEV on both operands
3279 // and call getAddExpr with the result. However if we're looking at a
3280 // bunch of things all added together, this can be quite inefficient,
3281 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3282 // Instead, gather up all the operands and make a single getAddExpr call.
3283 // LLVM IR canonical form means we need only traverse the left operands.
3284 SmallVector<const SCEV *, 4> AddOps;
3285 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003286 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3287 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3288 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3289 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003290 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003291 const SCEV *Op1 = getSCEV(U->getOperand(1));
3292 if (Opcode == Instruction::Sub)
3293 AddOps.push_back(getNegativeSCEV(Op1));
3294 else
3295 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003296 }
3297 AddOps.push_back(getSCEV(U->getOperand(0)));
3298 return getAddExpr(AddOps);
3299 }
3300 case Instruction::Mul: {
3301 // See the Add code above.
3302 SmallVector<const SCEV *, 4> MulOps;
3303 MulOps.push_back(getSCEV(U->getOperand(1)));
3304 for (Value *Op = U->getOperand(0);
3305 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3306 Op = U->getOperand(0)) {
3307 U = cast<Operator>(Op);
3308 MulOps.push_back(getSCEV(U->getOperand(1)));
3309 }
3310 MulOps.push_back(getSCEV(U->getOperand(0)));
3311 return getMulExpr(MulOps);
3312 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003313 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003314 return getUDivExpr(getSCEV(U->getOperand(0)),
3315 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003316 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003317 return getMinusSCEV(getSCEV(U->getOperand(0)),
3318 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003319 case Instruction::And:
3320 // For an expression like x&255 that merely masks off the high bits,
3321 // use zext(trunc(x)) as the SCEV expression.
3322 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003323 if (CI->isNullValue())
3324 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003325 if (CI->isAllOnesValue())
3326 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003327 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003328
3329 // Instcombine's ShrinkDemandedConstant may strip bits out of
3330 // constants, obscuring what would otherwise be a low-bits mask.
3331 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3332 // knew about to reconstruct a low-bits mask value.
3333 unsigned LZ = A.countLeadingZeros();
3334 unsigned BitWidth = A.getBitWidth();
3335 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3336 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3337 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3338
3339 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3340
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003341 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003342 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003343 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003344 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003345 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003346 }
3347 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003348
Dan Gohman6c459a22008-06-22 19:56:46 +00003349 case Instruction::Or:
3350 // If the RHS of the Or is a constant, we may have something like:
3351 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3352 // optimizations will transparently handle this case.
3353 //
3354 // In order for this transformation to be safe, the LHS must be of the
3355 // form X*(2^n) and the Or constant must be less than 2^n.
3356 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003357 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003358 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003359 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003360 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3361 // Build a plain add SCEV.
3362 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3363 // If the LHS of the add was an addrec and it has no-wrap flags,
3364 // transfer the no-wrap flags, since an or won't introduce a wrap.
3365 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3366 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3367 if (OldAR->hasNoUnsignedWrap())
3368 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3369 if (OldAR->hasNoSignedWrap())
3370 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3371 }
3372 return S;
3373 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003374 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003375 break;
3376 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003377 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003378 // If the RHS of the xor is a signbit, then this is just an add.
3379 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003380 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003381 return getAddExpr(getSCEV(U->getOperand(0)),
3382 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003383
3384 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003385 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003386 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003387
3388 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3389 // This is a variant of the check for xor with -1, and it handles
3390 // the case where instcombine has trimmed non-demanded bits out
3391 // of an xor with -1.
3392 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3393 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3394 if (BO->getOpcode() == Instruction::And &&
3395 LCI->getValue() == CI->getValue())
3396 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003397 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003398 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003399 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003400 const Type *Z0Ty = Z0->getType();
3401 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3402
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003403 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003404 // mask off the high bits. Complement the operand and
3405 // re-apply the zext.
3406 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3407 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3408
3409 // If C is a single bit, it may be in the sign-bit position
3410 // before the zero-extend. In this case, represent the xor
3411 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003412 APInt Trunc = CI->getValue().trunc(Z0TySize);
3413 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003414 Trunc.isSignBit())
3415 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3416 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003417 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003418 }
3419 break;
3420
3421 case Instruction::Shl:
3422 // Turn shift left of a constant amount into a multiply.
3423 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003424 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003425
3426 // If the shift count is not less than the bitwidth, the result of
3427 // the shift is undefined. Don't try to analyze it, because the
3428 // resolution chosen here may differ from the resolution chosen in
3429 // other parts of the compiler.
3430 if (SA->getValue().uge(BitWidth))
3431 break;
3432
Owen Andersoneed707b2009-07-24 23:12:02 +00003433 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003434 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003435 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003436 }
3437 break;
3438
Nick Lewycky01eaf802008-07-07 06:15:49 +00003439 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003440 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003441 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003442 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003443
3444 // If the shift count is not less than the bitwidth, the result of
3445 // the shift is undefined. Don't try to analyze it, because the
3446 // resolution chosen here may differ from the resolution chosen in
3447 // other parts of the compiler.
3448 if (SA->getValue().uge(BitWidth))
3449 break;
3450
Owen Andersoneed707b2009-07-24 23:12:02 +00003451 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003452 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003453 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003454 }
3455 break;
3456
Dan Gohman4ee29af2009-04-21 02:26:00 +00003457 case Instruction::AShr:
3458 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3459 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003460 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003461 if (L->getOpcode() == Instruction::Shl &&
3462 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003463 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3464
3465 // If the shift count is not less than the bitwidth, the result of
3466 // the shift is undefined. Don't try to analyze it, because the
3467 // resolution chosen here may differ from the resolution chosen in
3468 // other parts of the compiler.
3469 if (CI->getValue().uge(BitWidth))
3470 break;
3471
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003472 uint64_t Amt = BitWidth - CI->getZExtValue();
3473 if (Amt == BitWidth)
3474 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003475 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003476 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003477 IntegerType::get(getContext(),
3478 Amt)),
3479 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003480 }
3481 break;
3482
Dan Gohman6c459a22008-06-22 19:56:46 +00003483 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003484 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003485
3486 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003487 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003488
3489 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003490 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003491
3492 case Instruction::BitCast:
3493 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003494 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003495 return getSCEV(U->getOperand(0));
3496 break;
3497
Dan Gohman4f8eea82010-02-01 18:27:38 +00003498 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3499 // lead to pointer expressions which cannot safely be expanded to GEPs,
3500 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3501 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003502
Dan Gohman26466c02009-05-08 20:26:55 +00003503 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003504 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003505
Dan Gohman6c459a22008-06-22 19:56:46 +00003506 case Instruction::PHI:
3507 return createNodeForPHI(cast<PHINode>(U));
3508
3509 case Instruction::Select:
3510 // This could be a smax or umax that was lowered earlier.
3511 // Try to recover it.
3512 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3513 Value *LHS = ICI->getOperand(0);
3514 Value *RHS = ICI->getOperand(1);
3515 switch (ICI->getPredicate()) {
3516 case ICmpInst::ICMP_SLT:
3517 case ICmpInst::ICMP_SLE:
3518 std::swap(LHS, RHS);
3519 // fall through
3520 case ICmpInst::ICMP_SGT:
3521 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003522 // a >s b ? a+x : b+x -> smax(a, b)+x
3523 // a >s b ? b+x : a+x -> smin(a, b)+x
3524 if (LHS->getType() == U->getType()) {
3525 const SCEV *LS = getSCEV(LHS);
3526 const SCEV *RS = getSCEV(RHS);
3527 const SCEV *LA = getSCEV(U->getOperand(1));
3528 const SCEV *RA = getSCEV(U->getOperand(2));
3529 const SCEV *LDiff = getMinusSCEV(LA, LS);
3530 const SCEV *RDiff = getMinusSCEV(RA, RS);
3531 if (LDiff == RDiff)
3532 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3533 LDiff = getMinusSCEV(LA, RS);
3534 RDiff = getMinusSCEV(RA, LS);
3535 if (LDiff == RDiff)
3536 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3537 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003538 break;
3539 case ICmpInst::ICMP_ULT:
3540 case ICmpInst::ICMP_ULE:
3541 std::swap(LHS, RHS);
3542 // fall through
3543 case ICmpInst::ICMP_UGT:
3544 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003545 // a >u b ? a+x : b+x -> umax(a, b)+x
3546 // a >u b ? b+x : a+x -> umin(a, b)+x
3547 if (LHS->getType() == U->getType()) {
3548 const SCEV *LS = getSCEV(LHS);
3549 const SCEV *RS = getSCEV(RHS);
3550 const SCEV *LA = getSCEV(U->getOperand(1));
3551 const SCEV *RA = getSCEV(U->getOperand(2));
3552 const SCEV *LDiff = getMinusSCEV(LA, LS);
3553 const SCEV *RDiff = getMinusSCEV(RA, RS);
3554 if (LDiff == RDiff)
3555 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3556 LDiff = getMinusSCEV(LA, RS);
3557 RDiff = getMinusSCEV(RA, LS);
3558 if (LDiff == RDiff)
3559 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3560 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003561 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003562 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003563 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3564 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003565 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003566 cast<ConstantInt>(RHS)->isZero()) {
3567 const SCEV *One = getConstant(LHS->getType(), 1);
3568 const SCEV *LS = getSCEV(LHS);
3569 const SCEV *LA = getSCEV(U->getOperand(1));
3570 const SCEV *RA = getSCEV(U->getOperand(2));
3571 const SCEV *LDiff = getMinusSCEV(LA, LS);
3572 const SCEV *RDiff = getMinusSCEV(RA, One);
3573 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003574 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003575 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003576 break;
3577 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003578 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3579 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003580 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003581 cast<ConstantInt>(RHS)->isZero()) {
3582 const SCEV *One = getConstant(LHS->getType(), 1);
3583 const SCEV *LS = getSCEV(LHS);
3584 const SCEV *LA = getSCEV(U->getOperand(1));
3585 const SCEV *RA = getSCEV(U->getOperand(2));
3586 const SCEV *LDiff = getMinusSCEV(LA, One);
3587 const SCEV *RDiff = getMinusSCEV(RA, LS);
3588 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003589 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003590 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003591 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003592 default:
3593 break;
3594 }
3595 }
3596
3597 default: // We cannot analyze this expression.
3598 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003599 }
3600
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003601 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003602}
3603
3604
3605
3606//===----------------------------------------------------------------------===//
3607// Iteration Count Computation Code
3608//
3609
Dan Gohman46bdfb02009-02-24 18:55:53 +00003610/// getBackedgeTakenCount - If the specified loop has a predictable
3611/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3612/// object. The backedge-taken count is the number of times the loop header
3613/// will be branched to from within the loop. This is one less than the
3614/// trip count of the loop, since it doesn't count the first iteration,
3615/// when the header is branched to from outside the loop.
3616///
3617/// Note that it is not valid to call this method on a loop without a
3618/// loop-invariant backedge-taken count (see
3619/// hasLoopInvariantBackedgeTakenCount).
3620///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003621const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003622 return getBackedgeTakenInfo(L).Exact;
3623}
3624
3625/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3626/// return the least SCEV value that is known never to be less than the
3627/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003628const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003629 return getBackedgeTakenInfo(L).Max;
3630}
3631
Dan Gohman59ae6b92009-07-08 19:23:34 +00003632/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3633/// onto the given Worklist.
3634static void
3635PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3636 BasicBlock *Header = L->getHeader();
3637
3638 // Push all Loop-header PHIs onto the Worklist stack.
3639 for (BasicBlock::iterator I = Header->begin();
3640 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3641 Worklist.push_back(PN);
3642}
3643
Dan Gohmana1af7572009-04-30 20:47:05 +00003644const ScalarEvolution::BackedgeTakenInfo &
3645ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003646 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003647 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003648 // update the value. The temporary CouldNotCompute value tells SCEV
3649 // code elsewhere that it shouldn't attempt to request a new
3650 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003651 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003652 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
Chris Lattnerf1859892011-01-09 02:16:18 +00003653 if (!Pair.second)
3654 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00003655
Chris Lattnerf1859892011-01-09 02:16:18 +00003656 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3657 if (BECount.Exact != getCouldNotCompute()) {
3658 assert(isLoopInvariant(BECount.Exact, L) &&
3659 isLoopInvariant(BECount.Max, L) &&
3660 "Computed backedge-taken count isn't loop invariant for loop!");
3661 ++NumTripCountsComputed;
3662
3663 // Update the value in the map.
3664 Pair.first->second = BECount;
3665 } else {
3666 if (BECount.Max != getCouldNotCompute())
Dan Gohman01ecca22009-04-27 20:16:15 +00003667 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003668 Pair.first->second = BECount;
Chris Lattnerf1859892011-01-09 02:16:18 +00003669 if (isa<PHINode>(L->getHeader()->begin()))
3670 // Only count loops that have phi nodes as not being computable.
3671 ++NumTripCountsNotComputed;
3672 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003673
Chris Lattnerf1859892011-01-09 02:16:18 +00003674 // Now that we know more about the trip count for this loop, forget any
3675 // existing SCEV values for PHI nodes in this loop since they are only
3676 // conservative estimates made without the benefit of trip count
3677 // information. This is similar to the code in forgetLoop, except that
3678 // it handles SCEVUnknown PHI nodes specially.
3679 if (BECount.hasAnyInfo()) {
3680 SmallVector<Instruction *, 16> Worklist;
3681 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003682
Chris Lattnerf1859892011-01-09 02:16:18 +00003683 SmallPtrSet<Instruction *, 8> Visited;
3684 while (!Worklist.empty()) {
3685 Instruction *I = Worklist.pop_back_val();
3686 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003687
Chris Lattnerf1859892011-01-09 02:16:18 +00003688 ValueExprMapType::iterator It =
3689 ValueExprMap.find(static_cast<Value *>(I));
3690 if (It != ValueExprMap.end()) {
3691 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00003692
Chris Lattnerf1859892011-01-09 02:16:18 +00003693 // SCEVUnknown for a PHI either means that it has an unrecognized
3694 // structure, or it's a PHI that's in the progress of being computed
3695 // by createNodeForPHI. In the former case, additional loop trip
3696 // count information isn't going to change anything. In the later
3697 // case, createNodeForPHI will perform the necessary updates on its
3698 // own when it gets to that point.
3699 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3700 forgetMemoizedResults(Old);
3701 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003702 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003703 if (PHINode *PN = dyn_cast<PHINode>(I))
3704 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003705 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003706
3707 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003708 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003709 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003710 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003711}
3712
Dan Gohman4c7279a2009-10-31 15:04:55 +00003713/// forgetLoop - This method should be called by the client when it has
3714/// changed a loop in a way that may effect ScalarEvolution's ability to
3715/// compute a trip count, or if the loop is deleted.
3716void ScalarEvolution::forgetLoop(const Loop *L) {
3717 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003718 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003719
Dan Gohman4c7279a2009-10-31 15:04:55 +00003720 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003721 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003722 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003723
Dan Gohman59ae6b92009-07-08 19:23:34 +00003724 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003725 while (!Worklist.empty()) {
3726 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003727 if (!Visited.insert(I)) continue;
3728
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003729 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3730 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003731 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003732 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003733 if (PHINode *PN = dyn_cast<PHINode>(I))
3734 ConstantEvolutionLoopExitValue.erase(PN);
3735 }
3736
3737 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003738 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00003739
3740 // Forget all contained loops too, to avoid dangling entries in the
3741 // ValuesAtScopes map.
3742 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3743 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00003744}
3745
Eric Christophere6cbfa62010-07-29 01:25:38 +00003746/// forgetValue - This method should be called by the client when it has
3747/// changed a value in a way that may effect its value, or which may
3748/// disconnect it from a def-use chain linking it to a loop.
3749void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003750 Instruction *I = dyn_cast<Instruction>(V);
3751 if (!I) return;
3752
3753 // Drop information about expressions based on loop-header PHIs.
3754 SmallVector<Instruction *, 16> Worklist;
3755 Worklist.push_back(I);
3756
3757 SmallPtrSet<Instruction *, 8> Visited;
3758 while (!Worklist.empty()) {
3759 I = Worklist.pop_back_val();
3760 if (!Visited.insert(I)) continue;
3761
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003762 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3763 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003764 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003765 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003766 if (PHINode *PN = dyn_cast<PHINode>(I))
3767 ConstantEvolutionLoopExitValue.erase(PN);
3768 }
3769
3770 PushDefUseChildren(I, Worklist);
3771 }
3772}
3773
Dan Gohman46bdfb02009-02-24 18:55:53 +00003774/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3775/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003776ScalarEvolution::BackedgeTakenInfo
3777ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003778 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003779 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003780
Dan Gohmana334aa72009-06-22 00:31:57 +00003781 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003782 const SCEV *BECount = getCouldNotCompute();
3783 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003784 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003785 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3786 BackedgeTakenInfo NewBTI =
3787 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003788
Dan Gohman1c343752009-06-27 21:21:31 +00003789 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003790 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003791 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003792 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003793 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003794 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003795 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003796 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003797 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003798 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003799 }
Dan Gohman1c343752009-06-27 21:21:31 +00003800 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003801 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003802 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003803 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003804 }
3805
3806 return BackedgeTakenInfo(BECount, MaxBECount);
3807}
3808
3809/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3810/// of the specified loop will execute if it exits via the specified block.
3811ScalarEvolution::BackedgeTakenInfo
3812ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3813 BasicBlock *ExitingBlock) {
3814
3815 // Okay, we've chosen an exiting block. See what condition causes us to
3816 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003817 //
3818 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003819 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003820 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003821 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003822
Chris Lattner8b0e3602007-01-07 02:24:26 +00003823 // At this point, we know we have a conditional branch that determines whether
3824 // the loop is exited. However, we don't know if the branch is executed each
3825 // time through the loop. If not, then the execution count of the branch will
3826 // not be equal to the trip count of the loop.
3827 //
3828 // Currently we check for this by checking to see if the Exit branch goes to
3829 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003830 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003831 // loop header. This is common for un-rotated loops.
3832 //
3833 // If both of those tests fail, walk up the unique predecessor chain to the
3834 // header, stopping if there is an edge that doesn't exit the loop. If the
3835 // header is reached, the execution count of the branch will be equal to the
3836 // trip count of the loop.
3837 //
3838 // More extensive analysis could be done to handle more cases here.
3839 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003840 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003841 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003842 ExitBr->getParent() != L->getHeader()) {
3843 // The simple checks failed, try climbing the unique predecessor chain
3844 // up to the header.
3845 bool Ok = false;
3846 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3847 BasicBlock *Pred = BB->getUniquePredecessor();
3848 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003849 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003850 TerminatorInst *PredTerm = Pred->getTerminator();
3851 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3852 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3853 if (PredSucc == BB)
3854 continue;
3855 // If the predecessor has a successor that isn't BB and isn't
3856 // outside the loop, assume the worst.
3857 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003858 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003859 }
3860 if (Pred == L->getHeader()) {
3861 Ok = true;
3862 break;
3863 }
3864 BB = Pred;
3865 }
3866 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003867 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003868 }
3869
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003870 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003871 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3872 ExitBr->getSuccessor(0),
3873 ExitBr->getSuccessor(1));
3874}
3875
3876/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3877/// backedge of the specified loop will execute if its exit condition
3878/// were a conditional branch of ExitCond, TBB, and FBB.
3879ScalarEvolution::BackedgeTakenInfo
3880ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3881 Value *ExitCond,
3882 BasicBlock *TBB,
3883 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003884 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003885 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3886 if (BO->getOpcode() == Instruction::And) {
3887 // Recurse on the operands of the and.
3888 BackedgeTakenInfo BTI0 =
3889 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3890 BackedgeTakenInfo BTI1 =
3891 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003892 const SCEV *BECount = getCouldNotCompute();
3893 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003894 if (L->contains(TBB)) {
3895 // Both conditions must be true for the loop to continue executing.
3896 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003897 if (BTI0.Exact == getCouldNotCompute() ||
3898 BTI1.Exact == getCouldNotCompute())
3899 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003900 else
3901 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003902 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003903 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003904 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003905 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003906 else
3907 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003908 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003909 // Both conditions must be true at the same time for the loop to exit.
3910 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003911 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003912 if (BTI0.Max == BTI1.Max)
3913 MaxBECount = BTI0.Max;
3914 if (BTI0.Exact == BTI1.Exact)
3915 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003916 }
3917
3918 return BackedgeTakenInfo(BECount, MaxBECount);
3919 }
3920 if (BO->getOpcode() == Instruction::Or) {
3921 // Recurse on the operands of the or.
3922 BackedgeTakenInfo BTI0 =
3923 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3924 BackedgeTakenInfo BTI1 =
3925 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003926 const SCEV *BECount = getCouldNotCompute();
3927 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003928 if (L->contains(FBB)) {
3929 // Both conditions must be false for the loop to continue executing.
3930 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003931 if (BTI0.Exact == getCouldNotCompute() ||
3932 BTI1.Exact == getCouldNotCompute())
3933 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003934 else
3935 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003936 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003937 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003938 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003939 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003940 else
3941 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003942 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003943 // Both conditions must be false at the same time for the loop to exit.
3944 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003945 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003946 if (BTI0.Max == BTI1.Max)
3947 MaxBECount = BTI0.Max;
3948 if (BTI0.Exact == BTI1.Exact)
3949 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003950 }
3951
3952 return BackedgeTakenInfo(BECount, MaxBECount);
3953 }
3954 }
3955
3956 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003957 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003958 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3959 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003960
Dan Gohman00cb5b72010-02-19 18:12:07 +00003961 // Check for a constant condition. These are normally stripped out by
3962 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3963 // preserve the CFG and is temporarily leaving constant conditions
3964 // in place.
3965 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3966 if (L->contains(FBB) == !CI->getZExtValue())
3967 // The backedge is always taken.
3968 return getCouldNotCompute();
3969 else
3970 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003971 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003972 }
3973
Eli Friedman361e54d2009-05-09 12:32:42 +00003974 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003975 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3976}
3977
Chris Lattner992efb02011-01-09 22:26:35 +00003978static const SCEVAddRecExpr *
3979isSimpleUnwrappingAddRec(const SCEV *S, const Loop *L) {
3980 const SCEVAddRecExpr *SA = dyn_cast<SCEVAddRecExpr>(S);
3981
3982 // The SCEV must be an addrec of this loop.
3983 if (!SA || SA->getLoop() != L || !SA->isAffine())
3984 return 0;
3985
3986 // The SCEV must be known to not wrap in some way to be interesting.
3987 if (!SA->hasNoUnsignedWrap() && !SA->hasNoSignedWrap())
3988 return 0;
3989
3990 // The stride must be a constant so that we know if it is striding up or down.
3991 if (!isa<SCEVConstant>(SA->getOperand(1)))
3992 return 0;
3993 return SA;
3994}
3995
3996/// getMinusSCEVForExitTest - When considering an exit test for a loop with a
3997/// "x != y" exit test, we turn this into a computation that evaluates x-y != 0,
3998/// and this function returns the expression to use for x-y. We know and take
3999/// advantage of the fact that this subtraction is only being used in a
4000/// comparison by zero context.
4001///
4002static const SCEV *getMinusSCEVForExitTest(const SCEV *LHS, const SCEV *RHS,
4003 const Loop *L, ScalarEvolution &SE) {
4004 // If either LHS or RHS is an AddRec SCEV (of this loop) that is known to not
4005 // wrap (either NSW or NUW), then we know that the value will either become
4006 // the other one (and thus the loop terminates), that the loop will terminate
4007 // through some other exit condition first, or that the loop has undefined
4008 // behavior. This information is useful when the addrec has a stride that is
4009 // != 1 or -1, because it means we can't "miss" the exit value.
4010 //
4011 // In any of these three cases, it is safe to turn the exit condition into a
4012 // "counting down" AddRec (to zero) by subtracting the two inputs as normal,
4013 // but since we know that the "end cannot be missed" we can force the
4014 // resulting AddRec to be a NUW addrec. Since it is counting down, this means
4015 // that the AddRec *cannot* pass zero.
4016
4017 // See if LHS and RHS are addrec's we can handle.
4018 const SCEVAddRecExpr *LHSA = isSimpleUnwrappingAddRec(LHS, L);
4019 const SCEVAddRecExpr *RHSA = isSimpleUnwrappingAddRec(RHS, L);
4020
4021 // If neither addrec is interesting, just return a minus.
4022 if (RHSA == 0 && LHSA == 0)
4023 return SE.getMinusSCEV(LHS, RHS);
4024
4025 // If only one of LHS and RHS are an AddRec of this loop, make sure it is LHS.
4026 if (RHSA && LHSA == 0) {
4027 // Safe because a-b === b-a for comparisons against zero.
4028 std::swap(LHS, RHS);
4029 std::swap(LHSA, RHSA);
4030 }
4031
4032 // Handle the case when only one is advancing in a non-overflowing way.
4033 if (RHSA == 0) {
4034 // If RHS is loop varying, then we can't predict when LHS will cross it.
4035 if (!SE.isLoopInvariant(RHS, L))
4036 return SE.getMinusSCEV(LHS, RHS);
4037
4038 // If LHS has a positive stride, then we compute RHS-LHS, because the loop
4039 // is counting up until it crosses RHS (which must be larger than LHS). If
4040 // it is negative, we compute LHS-RHS because we're counting down to RHS.
4041 const ConstantInt *Stride =
4042 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4043 if (Stride->getValue().isNegative())
4044 std::swap(LHS, RHS);
4045
4046 return SE.getMinusSCEV(RHS, LHS, true /*HasNUW*/);
4047 }
4048
4049 // If both LHS and RHS are interesting, we have something like:
4050 // a+i*4 != b+i*8.
4051 const ConstantInt *LHSStride =
4052 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4053 const ConstantInt *RHSStride =
4054 cast<SCEVConstant>(RHSA->getOperand(1))->getValue();
4055
4056 // If the strides are equal, then this is just a (complex) loop invariant
Chris Lattner6038a632011-01-11 17:11:59 +00004057 // comparison of a and b.
Chris Lattner992efb02011-01-09 22:26:35 +00004058 if (LHSStride == RHSStride)
4059 return SE.getMinusSCEV(LHSA->getStart(), RHSA->getStart());
4060
4061 // If the signs of the strides differ, then the negative stride is counting
4062 // down to the positive stride.
4063 if (LHSStride->getValue().isNegative() != RHSStride->getValue().isNegative()){
4064 if (RHSStride->getValue().isNegative())
4065 std::swap(LHS, RHS);
4066 } else {
4067 // If LHS's stride is smaller than RHS's stride, then "b" must be less than
4068 // "a" and "b" is RHS is counting up (catching up) to LHS. This is true
4069 // whether the strides are positive or negative.
4070 if (RHSStride->getValue().slt(LHSStride->getValue()))
4071 std::swap(LHS, RHS);
4072 }
4073
4074 return SE.getMinusSCEV(LHS, RHS, true /*HasNUW*/);
4075}
4076
Dan Gohmana334aa72009-06-22 00:31:57 +00004077/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4078/// backedge of the specified loop will execute if its exit condition
4079/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4080ScalarEvolution::BackedgeTakenInfo
4081ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4082 ICmpInst *ExitCond,
4083 BasicBlock *TBB,
4084 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004085
Reid Spencere4d87aa2006-12-23 06:05:41 +00004086 // If the condition was exit on true, convert the condition to exit on false
4087 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004088 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004089 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004090 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004091 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004092
4093 // Handle common loops like: for (X = "string"; *X; ++X)
4094 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4095 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004096 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004097 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004098 if (ItCnt.hasAnyInfo())
4099 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004100 }
4101
Dan Gohman0bba49c2009-07-07 17:06:11 +00004102 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4103 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004104
4105 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004106 LHS = getSCEVAtScope(LHS, L);
4107 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004108
Dan Gohman64a845e2009-06-24 04:48:43 +00004109 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004110 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004111 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004112 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004113 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004114 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004115 }
4116
Dan Gohman03557dc2010-05-03 16:35:17 +00004117 // Simplify the operands before analyzing them.
4118 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4119
Chris Lattner53e677a2004-04-02 20:23:17 +00004120 // If we have a comparison of a chrec against a constant, try to use value
4121 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004122 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4123 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004124 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004125 // Form the constant range.
4126 ConstantRange CompRange(
4127 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004128
Dan Gohman0bba49c2009-07-07 17:06:11 +00004129 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004130 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004131 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004132
Chris Lattner53e677a2004-04-02 20:23:17 +00004133 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004134 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004135 // Convert to: while (X-Y != 0)
Chris Lattner992efb02011-01-09 22:26:35 +00004136 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEVForExitTest(LHS, RHS, L,
4137 *this), L);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004138 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004139 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004140 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004141 case ICmpInst::ICMP_EQ: { // while (X == Y)
4142 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004143 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4144 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004145 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004146 }
4147 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004148 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4149 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004150 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004151 }
4152 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004153 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4154 getNotSCEV(RHS), L, true);
4155 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004156 break;
4157 }
4158 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004159 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4160 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004161 break;
4162 }
4163 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004164 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4165 getNotSCEV(RHS), L, false);
4166 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004167 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004168 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004169 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004170#if 0
David Greene25e0e872009-12-23 22:18:14 +00004171 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004172 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004173 dbgs() << "[unsigned] ";
4174 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004175 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004176 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004177#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004178 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004179 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004180 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004181 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004182}
4183
Chris Lattner673e02b2004-10-12 01:49:27 +00004184static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004185EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4186 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004187 const SCEV *InVal = SE.getConstant(C);
4188 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004189 assert(isa<SCEVConstant>(Val) &&
4190 "Evaluation of SCEV at constant didn't fold correctly?");
4191 return cast<SCEVConstant>(Val)->getValue();
4192}
4193
4194/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4195/// and a GEP expression (missing the pointer index) indexing into it, return
4196/// the addressed element of the initializer or null if the index expression is
4197/// invalid.
4198static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004199GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004200 const std::vector<ConstantInt*> &Indices) {
4201 Constant *Init = GV->getInitializer();
4202 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004203 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004204 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4205 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4206 Init = cast<Constant>(CS->getOperand(Idx));
4207 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4208 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4209 Init = cast<Constant>(CA->getOperand(Idx));
4210 } else if (isa<ConstantAggregateZero>(Init)) {
4211 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4212 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004213 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004214 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4215 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004216 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004217 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004218 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004219 }
4220 return 0;
4221 } else {
4222 return 0; // Unknown initializer type
4223 }
4224 }
4225 return Init;
4226}
4227
Dan Gohman46bdfb02009-02-24 18:55:53 +00004228/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4229/// 'icmp op load X, cst', try to see if we can compute the backedge
4230/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004231ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004232ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4233 LoadInst *LI,
4234 Constant *RHS,
4235 const Loop *L,
4236 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004237 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004238
4239 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004240 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004241 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004242 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004243
4244 // Make sure that it is really a constant global we are gepping, with an
4245 // initializer, and make sure the first IDX is really 0.
4246 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004247 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004248 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4249 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004250 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004251
4252 // Okay, we allow one non-constant index into the GEP instruction.
4253 Value *VarIdx = 0;
4254 std::vector<ConstantInt*> Indexes;
4255 unsigned VarIdxNum = 0;
4256 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4257 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4258 Indexes.push_back(CI);
4259 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004260 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004261 VarIdx = GEP->getOperand(i);
4262 VarIdxNum = i-2;
4263 Indexes.push_back(0);
4264 }
4265
4266 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4267 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004268 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004269 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004270
4271 // We can only recognize very limited forms of loop index expressions, in
4272 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004273 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004274 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004275 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4276 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004277 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004278
4279 unsigned MaxSteps = MaxBruteForceIterations;
4280 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004281 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004282 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004283 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004284
4285 // Form the GEP offset.
4286 Indexes[VarIdxNum] = Val;
4287
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004288 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004289 if (Result == 0) break; // Cannot compute!
4290
4291 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004292 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004293 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004294 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004295#if 0
David Greene25e0e872009-12-23 22:18:14 +00004296 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004297 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4298 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004299#endif
4300 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004301 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004302 }
4303 }
Dan Gohman1c343752009-06-27 21:21:31 +00004304 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004305}
4306
4307
Chris Lattner3221ad02004-04-17 22:58:41 +00004308/// CanConstantFold - Return true if we can constant fold an instruction of the
4309/// specified type, assuming that all operands were constants.
4310static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004311 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004312 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4313 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004314
Chris Lattner3221ad02004-04-17 22:58:41 +00004315 if (const CallInst *CI = dyn_cast<CallInst>(I))
4316 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004317 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004318 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004319}
4320
Chris Lattner3221ad02004-04-17 22:58:41 +00004321/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4322/// in the loop that V is derived from. We allow arbitrary operations along the
4323/// way, but the operands of an operation must either be constants or a value
4324/// derived from a constant PHI. If this expression does not fit with these
4325/// constraints, return null.
4326static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4327 // If this is not an instruction, or if this is an instruction outside of the
4328 // loop, it can't be derived from a loop PHI.
4329 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004330 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004331
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004332 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004333 if (L->getHeader() == I->getParent())
4334 return PN;
4335 else
4336 // We don't currently keep track of the control flow needed to evaluate
4337 // PHIs, so we cannot handle PHIs inside of loops.
4338 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004339 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004340
4341 // If we won't be able to constant fold this expression even if the operands
4342 // are constants, return early.
4343 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004344
Chris Lattner3221ad02004-04-17 22:58:41 +00004345 // Otherwise, we can evaluate this instruction if all of its operands are
4346 // constant or derived from a PHI node themselves.
4347 PHINode *PHI = 0;
4348 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004349 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004350 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4351 if (P == 0) return 0; // Not evolving from PHI
4352 if (PHI == 0)
4353 PHI = P;
4354 else if (PHI != P)
4355 return 0; // Evolving from multiple different PHIs.
4356 }
4357
4358 // This is a expression evolving from a constant PHI!
4359 return PHI;
4360}
4361
4362/// EvaluateExpression - Given an expression that passes the
4363/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4364/// in the loop has the value PHIVal. If we can't fold this expression for some
4365/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004366static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4367 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004368 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004369 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004370 Instruction *I = cast<Instruction>(V);
4371
Dan Gohman9d4588f2010-06-22 13:15:46 +00004372 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004373
4374 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004375 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004376 if (Operands[i] == 0) return 0;
4377 }
4378
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004379 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004380 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004381 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004382 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004383 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004384}
4385
4386/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4387/// in the header of its containing loop, we know the loop executes a
4388/// constant number of times, and the PHI node is just a recurrence
4389/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004390Constant *
4391ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004392 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004393 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004394 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004395 ConstantEvolutionLoopExitValue.find(PN);
4396 if (I != ConstantEvolutionLoopExitValue.end())
4397 return I->second;
4398
Dan Gohmane0567812010-04-08 23:03:40 +00004399 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004400 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4401
4402 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4403
4404 // Since the loop is canonicalized, the PHI node must have two entries. One
4405 // entry must be a constant (coming in from outside of the loop), and the
4406 // second must be derived from the same PHI.
4407 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4408 Constant *StartCST =
4409 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4410 if (StartCST == 0)
4411 return RetVal = 0; // Must be a constant.
4412
4413 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004414 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4415 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004416 return RetVal = 0; // Not derived from same PHI.
4417
4418 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004419 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004420 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004421
Dan Gohman46bdfb02009-02-24 18:55:53 +00004422 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004423 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004424 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4425 if (IterationNum == NumIterations)
4426 return RetVal = PHIVal; // Got exit value!
4427
4428 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004429 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004430 if (NextPHI == PHIVal)
4431 return RetVal = NextPHI; // Stopped evolving!
4432 if (NextPHI == 0)
4433 return 0; // Couldn't evaluate!
4434 PHIVal = NextPHI;
4435 }
4436}
4437
Dan Gohman07ad19b2009-07-27 16:09:48 +00004438/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004439/// constant number of times (the condition evolves only from constants),
4440/// try to evaluate a few iterations of the loop until we get the exit
4441/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004442/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004443const SCEV *
4444ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4445 Value *Cond,
4446 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004447 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004448 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004449
Dan Gohmanb92654d2010-06-19 14:17:24 +00004450 // If the loop is canonicalized, the PHI will have exactly two entries.
4451 // That's the only form we support here.
4452 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4453
4454 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004455 // second must be derived from the same PHI.
4456 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4457 Constant *StartCST =
4458 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004459 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004460
4461 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004462 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4463 !isa<Constant>(BEValue))
4464 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004465
4466 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4467 // the loop symbolically to determine when the condition gets a value of
4468 // "ExitWhen".
4469 unsigned IterationNum = 0;
4470 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4471 for (Constant *PHIVal = StartCST;
4472 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004473 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004474 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004475
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004476 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004477 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004478
Reid Spencere8019bb2007-03-01 07:25:48 +00004479 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004480 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004481 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004482 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004483
Chris Lattner3221ad02004-04-17 22:58:41 +00004484 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004485 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004486 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004487 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004488 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004489 }
4490
4491 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004492 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004493}
4494
Dan Gohmane7125f42009-09-03 15:00:26 +00004495/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004496/// at the specified scope in the program. The L value specifies a loop
4497/// nest to evaluate the expression at, where null is the top-level or a
4498/// specified loop is immediately inside of the loop.
4499///
4500/// This method can be used to compute the exit value for a variable defined
4501/// in a loop by querying what the value will hold in the parent loop.
4502///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004503/// In the case that a relevant loop exit value cannot be computed, the
4504/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004505const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004506 // Check to see if we've folded this expression at this loop before.
4507 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4508 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4509 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4510 if (!Pair.second)
4511 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004512
Dan Gohman42214892009-08-31 21:15:23 +00004513 // Otherwise compute it.
4514 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004515 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004516 return C;
4517}
4518
4519const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004520 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004521
Nick Lewycky3e630762008-02-20 06:48:22 +00004522 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004523 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004524 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004525 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004526 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004527 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4528 if (PHINode *PN = dyn_cast<PHINode>(I))
4529 if (PN->getParent() == LI->getHeader()) {
4530 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004531 // to see if the loop that contains it has a known backedge-taken
4532 // count. If so, we may be able to force computation of the exit
4533 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004534 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004535 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004536 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004537 // Okay, we know how many times the containing loop executes. If
4538 // this is a constant evolving PHI node, get the final value at
4539 // the specified iteration number.
4540 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004541 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004542 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004543 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004544 }
4545 }
4546
Reid Spencer09906f32006-12-04 21:33:23 +00004547 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004548 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004549 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004550 // result. This is particularly useful for computing loop exit values.
4551 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004552 SmallVector<Constant *, 4> Operands;
4553 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004554 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4555 Value *Op = I->getOperand(i);
4556 if (Constant *C = dyn_cast<Constant>(Op)) {
4557 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004558 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004559 }
Dan Gohman11046452010-06-29 23:43:06 +00004560
4561 // If any of the operands is non-constant and if they are
4562 // non-integer and non-pointer, don't even try to analyze them
4563 // with scev techniques.
4564 if (!isSCEVable(Op->getType()))
4565 return V;
4566
4567 const SCEV *OrigV = getSCEV(Op);
4568 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4569 MadeImprovement |= OrigV != OpV;
4570
4571 Constant *C = 0;
4572 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4573 C = SC->getValue();
4574 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4575 C = dyn_cast<Constant>(SU->getValue());
4576 if (!C) return V;
4577 if (C->getType() != Op->getType())
4578 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4579 Op->getType(),
4580 false),
4581 C, Op->getType());
4582 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004583 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004584
Dan Gohman11046452010-06-29 23:43:06 +00004585 // Check to see if getSCEVAtScope actually made an improvement.
4586 if (MadeImprovement) {
4587 Constant *C = 0;
4588 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4589 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4590 Operands[0], Operands[1], TD);
4591 else
4592 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4593 &Operands[0], Operands.size(), TD);
4594 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004595 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004596 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004597 }
4598 }
4599
4600 // This is some other type of SCEVUnknown, just return it.
4601 return V;
4602 }
4603
Dan Gohman622ed672009-05-04 22:02:23 +00004604 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004605 // Avoid performing the look-up in the common case where the specified
4606 // expression has no loop-variant portions.
4607 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004608 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004609 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004610 // Okay, at least one of these operands is loop variant but might be
4611 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004612 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4613 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004614 NewOps.push_back(OpAtScope);
4615
4616 for (++i; i != e; ++i) {
4617 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004618 NewOps.push_back(OpAtScope);
4619 }
4620 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004621 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004622 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004623 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004624 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004625 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004626 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004627 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004628 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004629 }
4630 }
4631 // If we got here, all operands are loop invariant.
4632 return Comm;
4633 }
4634
Dan Gohman622ed672009-05-04 22:02:23 +00004635 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004636 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4637 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004638 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4639 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004640 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004641 }
4642
4643 // If this is a loop recurrence for a loop that does not contain L, then we
4644 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004645 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004646 // First, attempt to evaluate each operand.
4647 // Avoid performing the look-up in the common case where the specified
4648 // expression has no loop-variant portions.
4649 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4650 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4651 if (OpAtScope == AddRec->getOperand(i))
4652 continue;
4653
4654 // Okay, at least one of these operands is loop variant but might be
4655 // foldable. Build a new instance of the folded commutative expression.
4656 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4657 AddRec->op_begin()+i);
4658 NewOps.push_back(OpAtScope);
4659 for (++i; i != e; ++i)
4660 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4661
4662 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4663 break;
4664 }
4665
4666 // If the scope is outside the addrec's loop, evaluate it by using the
4667 // loop exit value of the addrec.
4668 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004669 // To evaluate this recurrence, we need to know how many times the AddRec
4670 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004671 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004672 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004673
Eli Friedmanb42a6262008-08-04 23:49:06 +00004674 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004675 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004676 }
Dan Gohman11046452010-06-29 23:43:06 +00004677
Dan Gohmand594e6f2009-05-24 23:25:42 +00004678 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004679 }
4680
Dan Gohman622ed672009-05-04 22:02:23 +00004681 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004682 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004683 if (Op == Cast->getOperand())
4684 return Cast; // must be loop invariant
4685 return getZeroExtendExpr(Op, Cast->getType());
4686 }
4687
Dan Gohman622ed672009-05-04 22:02:23 +00004688 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004689 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004690 if (Op == Cast->getOperand())
4691 return Cast; // must be loop invariant
4692 return getSignExtendExpr(Op, Cast->getType());
4693 }
4694
Dan Gohman622ed672009-05-04 22:02:23 +00004695 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004696 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004697 if (Op == Cast->getOperand())
4698 return Cast; // must be loop invariant
4699 return getTruncateExpr(Op, Cast->getType());
4700 }
4701
Torok Edwinc23197a2009-07-14 16:55:14 +00004702 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004703 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004704}
4705
Dan Gohman66a7e852009-05-08 20:38:54 +00004706/// getSCEVAtScope - This is a convenience function which does
4707/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004708const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004709 return getSCEVAtScope(getSCEV(V), L);
4710}
4711
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004712/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4713/// following equation:
4714///
4715/// A * X = B (mod N)
4716///
4717/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4718/// A and B isn't important.
4719///
4720/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004721static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004722 ScalarEvolution &SE) {
4723 uint32_t BW = A.getBitWidth();
4724 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4725 assert(A != 0 && "A must be non-zero.");
4726
4727 // 1. D = gcd(A, N)
4728 //
4729 // The gcd of A and N may have only one prime factor: 2. The number of
4730 // trailing zeros in A is its multiplicity
4731 uint32_t Mult2 = A.countTrailingZeros();
4732 // D = 2^Mult2
4733
4734 // 2. Check if B is divisible by D.
4735 //
4736 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4737 // is not less than multiplicity of this prime factor for D.
4738 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004739 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004740
4741 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4742 // modulo (N / D).
4743 //
4744 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4745 // bit width during computations.
4746 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4747 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00004748 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004749 APInt I = AD.multiplicativeInverse(Mod);
4750
4751 // 4. Compute the minimum unsigned root of the equation:
4752 // I * (B / D) mod (N / D)
4753 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4754
4755 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4756 // bits.
4757 return SE.getConstant(Result.trunc(BW));
4758}
Chris Lattner53e677a2004-04-02 20:23:17 +00004759
4760/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4761/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4762/// might be the same) or two SCEVCouldNotCompute objects.
4763///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004764static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004765SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004766 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004767 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4768 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4769 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004770
Chris Lattner53e677a2004-04-02 20:23:17 +00004771 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004772 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004773 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004774 return std::make_pair(CNC, CNC);
4775 }
4776
Reid Spencere8019bb2007-03-01 07:25:48 +00004777 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004778 const APInt &L = LC->getValue()->getValue();
4779 const APInt &M = MC->getValue()->getValue();
4780 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004781 APInt Two(BitWidth, 2);
4782 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004783
Dan Gohman64a845e2009-06-24 04:48:43 +00004784 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004785 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004786 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004787 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4788 // The B coefficient is M-N/2
4789 APInt B(M);
4790 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004791
Reid Spencere8019bb2007-03-01 07:25:48 +00004792 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004793 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004794
Reid Spencere8019bb2007-03-01 07:25:48 +00004795 // Compute the B^2-4ac term.
4796 APInt SqrtTerm(B);
4797 SqrtTerm *= B;
4798 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004799
Reid Spencere8019bb2007-03-01 07:25:48 +00004800 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4801 // integer value or else APInt::sqrt() will assert.
4802 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004803
Dan Gohman64a845e2009-06-24 04:48:43 +00004804 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004805 // The divisions must be performed as signed divisions.
4806 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004807 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004808 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004809 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004810 return std::make_pair(CNC, CNC);
4811 }
4812
Owen Andersone922c022009-07-22 00:24:57 +00004813 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004814
4815 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004816 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004817 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004818 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004819
Dan Gohman64a845e2009-06-24 04:48:43 +00004820 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004821 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004822 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004823}
4824
4825/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004826/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004827ScalarEvolution::BackedgeTakenInfo
4828ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004829 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004830 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004831 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004832 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004833 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004834 }
4835
Dan Gohman35738ac2009-05-04 22:30:44 +00004836 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004837 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004838 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004839
Chris Lattner7975e3e2011-01-09 22:39:48 +00004840 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4841 // the quadratic equation to solve it.
4842 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4843 std::pair<const SCEV *,const SCEV *> Roots =
4844 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004845 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4846 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00004847 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004848#if 0
David Greene25e0e872009-12-23 22:18:14 +00004849 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004850 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004851#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004852 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004853 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00004854 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
4855 R1->getValue(),
4856 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004857 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004858 std::swap(R1, R2); // R1 is the minimum root now.
Chris Lattner7975e3e2011-01-09 22:39:48 +00004859
Chris Lattner53e677a2004-04-02 20:23:17 +00004860 // We can only use this value if the chrec ends up with an exact zero
4861 // value at this index. When solving for "X*X != 5", for example, we
4862 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004863 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004864 if (Val->isZero())
4865 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004866 }
4867 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00004868 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004869 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004870
Chris Lattner7975e3e2011-01-09 22:39:48 +00004871 // Otherwise we can only handle this if it is affine.
4872 if (!AddRec->isAffine())
4873 return getCouldNotCompute();
4874
4875 // If this is an affine expression, the execution count of this branch is
4876 // the minimum unsigned root of the following equation:
4877 //
4878 // Start + Step*N = 0 (mod 2^BW)
4879 //
4880 // equivalent to:
4881 //
4882 // Step*N = -Start (mod 2^BW)
4883 //
4884 // where BW is the common bit width of Start and Step.
4885
4886 // Get the initial value for the loop.
4887 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
4888 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
4889
Chris Lattner53e1d452011-01-09 22:58:47 +00004890 // If the AddRec is NUW, then (in an unsigned sense) it cannot be counting up
4891 // to wrap to 0, it must be counting down to equal 0. Also, while counting
4892 // down, it cannot "miss" 0 (which would cause it to wrap), regardless of what
4893 // the stride is. As such, NUW addrec's will always become zero in
4894 // "start / -stride" steps, and we know that the division is exact.
4895 if (AddRec->hasNoUnsignedWrap())
Chris Lattnerbd9d53c2011-01-09 23:02:10 +00004896 // FIXME: We really want an "isexact" bit for udiv.
Chris Lattner53e1d452011-01-09 22:58:47 +00004897 return getUDivExpr(Start, getNegativeSCEV(Step));
4898
Chris Lattner7975e3e2011-01-09 22:39:48 +00004899 // For now we handle only constant steps.
4900 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
4901 if (StepC == 0)
4902 return getCouldNotCompute();
4903
4904 // First, handle unitary steps.
4905 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
4906 return getNegativeSCEV(Start); // N = -Start (as unsigned)
4907
4908 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4909 return Start; // N = Start (as unsigned)
4910
4911 // Then, try to solve the above equation provided that Start is constant.
4912 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4913 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4914 -StartC->getValue()->getValue(),
4915 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00004916 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004917}
4918
4919/// HowFarToNonZero - Return the number of times a backedge checking the
4920/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004921/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004922ScalarEvolution::BackedgeTakenInfo
4923ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004924 // Loops that look like: while (X == 0) are very strange indeed. We don't
4925 // handle them yet except for the trivial case. This could be expanded in the
4926 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004927
Chris Lattner53e677a2004-04-02 20:23:17 +00004928 // If the value is a constant, check to see if it is known to be non-zero
4929 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004930 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004931 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004932 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004933 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004934 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004935
Chris Lattner53e677a2004-04-02 20:23:17 +00004936 // We could implement others, but I really doubt anyone writes loops like
4937 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004938 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004939}
4940
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004941/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4942/// (which may not be an immediate predecessor) which has exactly one
4943/// successor from which BB is reachable, or null if no such block is
4944/// found.
4945///
Dan Gohman005752b2010-04-15 16:19:08 +00004946std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004947ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004948 // If the block has a unique predecessor, then there is no path from the
4949 // predecessor to the block that does not go through the direct edge
4950 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004951 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004952 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004953
4954 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004955 // If the header has a unique predecessor outside the loop, it must be
4956 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004957 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004958 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004959
Dan Gohman005752b2010-04-15 16:19:08 +00004960 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004961}
4962
Dan Gohman763bad12009-06-20 00:35:32 +00004963/// HasSameValue - SCEV structural equivalence is usually sufficient for
4964/// testing whether two expressions are equal, however for the purposes of
4965/// looking for a condition guarding a loop, it can be useful to be a little
4966/// more general, since a front-end may have replicated the controlling
4967/// expression.
4968///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004969static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004970 // Quick check to see if they are the same SCEV.
4971 if (A == B) return true;
4972
4973 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4974 // two different instructions with the same value. Check for this case.
4975 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4976 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4977 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4978 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004979 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004980 return true;
4981
4982 // Otherwise assume they may have a different value.
4983 return false;
4984}
4985
Dan Gohmane9796502010-04-24 01:28:42 +00004986/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4987/// predicate Pred. Return true iff any changes were made.
4988///
4989bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4990 const SCEV *&LHS, const SCEV *&RHS) {
4991 bool Changed = false;
4992
4993 // Canonicalize a constant to the right side.
4994 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4995 // Check for both operands constant.
4996 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4997 if (ConstantExpr::getICmp(Pred,
4998 LHSC->getValue(),
4999 RHSC->getValue())->isNullValue())
5000 goto trivially_false;
5001 else
5002 goto trivially_true;
5003 }
5004 // Otherwise swap the operands to put the constant on the right.
5005 std::swap(LHS, RHS);
5006 Pred = ICmpInst::getSwappedPredicate(Pred);
5007 Changed = true;
5008 }
5009
5010 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005011 // addrec's loop, put the addrec on the left. Also make a dominance check,
5012 // as both operands could be addrecs loop-invariant in each other's loop.
5013 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5014 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005015 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005016 std::swap(LHS, RHS);
5017 Pred = ICmpInst::getSwappedPredicate(Pred);
5018 Changed = true;
5019 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005020 }
Dan Gohmane9796502010-04-24 01:28:42 +00005021
5022 // If there's a constant operand, canonicalize comparisons with boundary
5023 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5024 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5025 const APInt &RA = RC->getValue()->getValue();
5026 switch (Pred) {
5027 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5028 case ICmpInst::ICMP_EQ:
5029 case ICmpInst::ICMP_NE:
5030 break;
5031 case ICmpInst::ICMP_UGE:
5032 if ((RA - 1).isMinValue()) {
5033 Pred = ICmpInst::ICMP_NE;
5034 RHS = getConstant(RA - 1);
5035 Changed = true;
5036 break;
5037 }
5038 if (RA.isMaxValue()) {
5039 Pred = ICmpInst::ICMP_EQ;
5040 Changed = true;
5041 break;
5042 }
5043 if (RA.isMinValue()) goto trivially_true;
5044
5045 Pred = ICmpInst::ICMP_UGT;
5046 RHS = getConstant(RA - 1);
5047 Changed = true;
5048 break;
5049 case ICmpInst::ICMP_ULE:
5050 if ((RA + 1).isMaxValue()) {
5051 Pred = ICmpInst::ICMP_NE;
5052 RHS = getConstant(RA + 1);
5053 Changed = true;
5054 break;
5055 }
5056 if (RA.isMinValue()) {
5057 Pred = ICmpInst::ICMP_EQ;
5058 Changed = true;
5059 break;
5060 }
5061 if (RA.isMaxValue()) goto trivially_true;
5062
5063 Pred = ICmpInst::ICMP_ULT;
5064 RHS = getConstant(RA + 1);
5065 Changed = true;
5066 break;
5067 case ICmpInst::ICMP_SGE:
5068 if ((RA - 1).isMinSignedValue()) {
5069 Pred = ICmpInst::ICMP_NE;
5070 RHS = getConstant(RA - 1);
5071 Changed = true;
5072 break;
5073 }
5074 if (RA.isMaxSignedValue()) {
5075 Pred = ICmpInst::ICMP_EQ;
5076 Changed = true;
5077 break;
5078 }
5079 if (RA.isMinSignedValue()) goto trivially_true;
5080
5081 Pred = ICmpInst::ICMP_SGT;
5082 RHS = getConstant(RA - 1);
5083 Changed = true;
5084 break;
5085 case ICmpInst::ICMP_SLE:
5086 if ((RA + 1).isMaxSignedValue()) {
5087 Pred = ICmpInst::ICMP_NE;
5088 RHS = getConstant(RA + 1);
5089 Changed = true;
5090 break;
5091 }
5092 if (RA.isMinSignedValue()) {
5093 Pred = ICmpInst::ICMP_EQ;
5094 Changed = true;
5095 break;
5096 }
5097 if (RA.isMaxSignedValue()) goto trivially_true;
5098
5099 Pred = ICmpInst::ICMP_SLT;
5100 RHS = getConstant(RA + 1);
5101 Changed = true;
5102 break;
5103 case ICmpInst::ICMP_UGT:
5104 if (RA.isMinValue()) {
5105 Pred = ICmpInst::ICMP_NE;
5106 Changed = true;
5107 break;
5108 }
5109 if ((RA + 1).isMaxValue()) {
5110 Pred = ICmpInst::ICMP_EQ;
5111 RHS = getConstant(RA + 1);
5112 Changed = true;
5113 break;
5114 }
5115 if (RA.isMaxValue()) goto trivially_false;
5116 break;
5117 case ICmpInst::ICMP_ULT:
5118 if (RA.isMaxValue()) {
5119 Pred = ICmpInst::ICMP_NE;
5120 Changed = true;
5121 break;
5122 }
5123 if ((RA - 1).isMinValue()) {
5124 Pred = ICmpInst::ICMP_EQ;
5125 RHS = getConstant(RA - 1);
5126 Changed = true;
5127 break;
5128 }
5129 if (RA.isMinValue()) goto trivially_false;
5130 break;
5131 case ICmpInst::ICMP_SGT:
5132 if (RA.isMinSignedValue()) {
5133 Pred = ICmpInst::ICMP_NE;
5134 Changed = true;
5135 break;
5136 }
5137 if ((RA + 1).isMaxSignedValue()) {
5138 Pred = ICmpInst::ICMP_EQ;
5139 RHS = getConstant(RA + 1);
5140 Changed = true;
5141 break;
5142 }
5143 if (RA.isMaxSignedValue()) goto trivially_false;
5144 break;
5145 case ICmpInst::ICMP_SLT:
5146 if (RA.isMaxSignedValue()) {
5147 Pred = ICmpInst::ICMP_NE;
5148 Changed = true;
5149 break;
5150 }
5151 if ((RA - 1).isMinSignedValue()) {
5152 Pred = ICmpInst::ICMP_EQ;
5153 RHS = getConstant(RA - 1);
5154 Changed = true;
5155 break;
5156 }
5157 if (RA.isMinSignedValue()) goto trivially_false;
5158 break;
5159 }
5160 }
5161
5162 // Check for obvious equality.
5163 if (HasSameValue(LHS, RHS)) {
5164 if (ICmpInst::isTrueWhenEqual(Pred))
5165 goto trivially_true;
5166 if (ICmpInst::isFalseWhenEqual(Pred))
5167 goto trivially_false;
5168 }
5169
Dan Gohman03557dc2010-05-03 16:35:17 +00005170 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5171 // adding or subtracting 1 from one of the operands.
5172 switch (Pred) {
5173 case ICmpInst::ICMP_SLE:
5174 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5175 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5176 /*HasNUW=*/false, /*HasNSW=*/true);
5177 Pred = ICmpInst::ICMP_SLT;
5178 Changed = true;
5179 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005180 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005181 /*HasNUW=*/false, /*HasNSW=*/true);
5182 Pred = ICmpInst::ICMP_SLT;
5183 Changed = true;
5184 }
5185 break;
5186 case ICmpInst::ICMP_SGE:
5187 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005188 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005189 /*HasNUW=*/false, /*HasNSW=*/true);
5190 Pred = ICmpInst::ICMP_SGT;
5191 Changed = true;
5192 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5193 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5194 /*HasNUW=*/false, /*HasNSW=*/true);
5195 Pred = ICmpInst::ICMP_SGT;
5196 Changed = true;
5197 }
5198 break;
5199 case ICmpInst::ICMP_ULE:
5200 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005201 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005202 /*HasNUW=*/true, /*HasNSW=*/false);
5203 Pred = ICmpInst::ICMP_ULT;
5204 Changed = true;
5205 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005206 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005207 /*HasNUW=*/true, /*HasNSW=*/false);
5208 Pred = ICmpInst::ICMP_ULT;
5209 Changed = true;
5210 }
5211 break;
5212 case ICmpInst::ICMP_UGE:
5213 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005214 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005215 /*HasNUW=*/true, /*HasNSW=*/false);
5216 Pred = ICmpInst::ICMP_UGT;
5217 Changed = true;
5218 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005219 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005220 /*HasNUW=*/true, /*HasNSW=*/false);
5221 Pred = ICmpInst::ICMP_UGT;
5222 Changed = true;
5223 }
5224 break;
5225 default:
5226 break;
5227 }
5228
Dan Gohmane9796502010-04-24 01:28:42 +00005229 // TODO: More simplifications are possible here.
5230
5231 return Changed;
5232
5233trivially_true:
5234 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005235 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005236 Pred = ICmpInst::ICMP_EQ;
5237 return true;
5238
5239trivially_false:
5240 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005241 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005242 Pred = ICmpInst::ICMP_NE;
5243 return true;
5244}
5245
Dan Gohman85b05a22009-07-13 21:35:55 +00005246bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5247 return getSignedRange(S).getSignedMax().isNegative();
5248}
5249
5250bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5251 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5252}
5253
5254bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5255 return !getSignedRange(S).getSignedMin().isNegative();
5256}
5257
5258bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5259 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5260}
5261
5262bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5263 return isKnownNegative(S) || isKnownPositive(S);
5264}
5265
5266bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5267 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005268 // Canonicalize the inputs first.
5269 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5270
Dan Gohman53c66ea2010-04-11 22:16:48 +00005271 // If LHS or RHS is an addrec, check to see if the condition is true in
5272 // every iteration of the loop.
5273 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5274 if (isLoopEntryGuardedByCond(
5275 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5276 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005277 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005278 return true;
5279 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5280 if (isLoopEntryGuardedByCond(
5281 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5282 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005283 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005284 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005285
Dan Gohman53c66ea2010-04-11 22:16:48 +00005286 // Otherwise see what can be done with known constant ranges.
5287 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5288}
5289
5290bool
5291ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5292 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005293 if (HasSameValue(LHS, RHS))
5294 return ICmpInst::isTrueWhenEqual(Pred);
5295
Dan Gohman53c66ea2010-04-11 22:16:48 +00005296 // This code is split out from isKnownPredicate because it is called from
5297 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005298 switch (Pred) {
5299 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005300 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005301 break;
5302 case ICmpInst::ICMP_SGT:
5303 Pred = ICmpInst::ICMP_SLT;
5304 std::swap(LHS, RHS);
5305 case ICmpInst::ICMP_SLT: {
5306 ConstantRange LHSRange = getSignedRange(LHS);
5307 ConstantRange RHSRange = getSignedRange(RHS);
5308 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5309 return true;
5310 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5311 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005312 break;
5313 }
5314 case ICmpInst::ICMP_SGE:
5315 Pred = ICmpInst::ICMP_SLE;
5316 std::swap(LHS, RHS);
5317 case ICmpInst::ICMP_SLE: {
5318 ConstantRange LHSRange = getSignedRange(LHS);
5319 ConstantRange RHSRange = getSignedRange(RHS);
5320 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5321 return true;
5322 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5323 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005324 break;
5325 }
5326 case ICmpInst::ICMP_UGT:
5327 Pred = ICmpInst::ICMP_ULT;
5328 std::swap(LHS, RHS);
5329 case ICmpInst::ICMP_ULT: {
5330 ConstantRange LHSRange = getUnsignedRange(LHS);
5331 ConstantRange RHSRange = getUnsignedRange(RHS);
5332 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5333 return true;
5334 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5335 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005336 break;
5337 }
5338 case ICmpInst::ICMP_UGE:
5339 Pred = ICmpInst::ICMP_ULE;
5340 std::swap(LHS, RHS);
5341 case ICmpInst::ICMP_ULE: {
5342 ConstantRange LHSRange = getUnsignedRange(LHS);
5343 ConstantRange RHSRange = getUnsignedRange(RHS);
5344 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5345 return true;
5346 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5347 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005348 break;
5349 }
5350 case ICmpInst::ICMP_NE: {
5351 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5352 return true;
5353 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5354 return true;
5355
5356 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5357 if (isKnownNonZero(Diff))
5358 return true;
5359 break;
5360 }
5361 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005362 // The check at the top of the function catches the case where
5363 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005364 break;
5365 }
5366 return false;
5367}
5368
5369/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5370/// protected by a conditional between LHS and RHS. This is used to
5371/// to eliminate casts.
5372bool
5373ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5374 ICmpInst::Predicate Pred,
5375 const SCEV *LHS, const SCEV *RHS) {
5376 // Interpret a null as meaning no loop, where there is obviously no guard
5377 // (interprocedural conditions notwithstanding).
5378 if (!L) return true;
5379
5380 BasicBlock *Latch = L->getLoopLatch();
5381 if (!Latch)
5382 return false;
5383
5384 BranchInst *LoopContinuePredicate =
5385 dyn_cast<BranchInst>(Latch->getTerminator());
5386 if (!LoopContinuePredicate ||
5387 LoopContinuePredicate->isUnconditional())
5388 return false;
5389
Dan Gohmanaf08a362010-08-10 23:46:30 +00005390 return isImpliedCond(Pred, LHS, RHS,
5391 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005392 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005393}
5394
Dan Gohman3948d0b2010-04-11 19:27:13 +00005395/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005396/// by a conditional between LHS and RHS. This is used to help avoid max
5397/// expressions in loop trip counts, and to eliminate casts.
5398bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005399ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5400 ICmpInst::Predicate Pred,
5401 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005402 // Interpret a null as meaning no loop, where there is obviously no guard
5403 // (interprocedural conditions notwithstanding).
5404 if (!L) return false;
5405
Dan Gohman859b4822009-05-18 15:36:09 +00005406 // Starting at the loop predecessor, climb up the predecessor chain, as long
5407 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005408 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005409 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005410 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005411 Pair.first;
5412 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005413
5414 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005415 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005416 if (!LoopEntryPredicate ||
5417 LoopEntryPredicate->isUnconditional())
5418 continue;
5419
Dan Gohmanaf08a362010-08-10 23:46:30 +00005420 if (isImpliedCond(Pred, LHS, RHS,
5421 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005422 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005423 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005424 }
5425
Dan Gohman38372182008-08-12 20:17:31 +00005426 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005427}
5428
Dan Gohman0f4b2852009-07-21 23:03:19 +00005429/// isImpliedCond - Test whether the condition described by Pred, LHS,
5430/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005431bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005432 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005433 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005434 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005435 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005436 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005437 if (BO->getOpcode() == Instruction::And) {
5438 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005439 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5440 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005441 } else if (BO->getOpcode() == Instruction::Or) {
5442 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005443 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5444 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005445 }
5446 }
5447
Dan Gohmanaf08a362010-08-10 23:46:30 +00005448 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005449 if (!ICI) return false;
5450
Dan Gohman85b05a22009-07-13 21:35:55 +00005451 // Bail if the ICmp's operands' types are wider than the needed type
5452 // before attempting to call getSCEV on them. This avoids infinite
5453 // recursion, since the analysis of widening casts can require loop
5454 // exit condition information for overflow checking, which would
5455 // lead back here.
5456 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005457 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005458 return false;
5459
Dan Gohman0f4b2852009-07-21 23:03:19 +00005460 // Now that we found a conditional branch that dominates the loop, check to
5461 // see if it is the comparison we are looking for.
5462 ICmpInst::Predicate FoundPred;
5463 if (Inverse)
5464 FoundPred = ICI->getInversePredicate();
5465 else
5466 FoundPred = ICI->getPredicate();
5467
5468 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5469 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005470
5471 // Balance the types. The case where FoundLHS' type is wider than
5472 // LHS' type is checked for above.
5473 if (getTypeSizeInBits(LHS->getType()) >
5474 getTypeSizeInBits(FoundLHS->getType())) {
5475 if (CmpInst::isSigned(Pred)) {
5476 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5477 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5478 } else {
5479 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5480 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5481 }
5482 }
5483
Dan Gohman0f4b2852009-07-21 23:03:19 +00005484 // Canonicalize the query to match the way instcombine will have
5485 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005486 if (SimplifyICmpOperands(Pred, LHS, RHS))
5487 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005488 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005489 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5490 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005491 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005492
5493 // Check to see if we can make the LHS or RHS match.
5494 if (LHS == FoundRHS || RHS == FoundLHS) {
5495 if (isa<SCEVConstant>(RHS)) {
5496 std::swap(FoundLHS, FoundRHS);
5497 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5498 } else {
5499 std::swap(LHS, RHS);
5500 Pred = ICmpInst::getSwappedPredicate(Pred);
5501 }
5502 }
5503
5504 // Check whether the found predicate is the same as the desired predicate.
5505 if (FoundPred == Pred)
5506 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5507
5508 // Check whether swapping the found predicate makes it the same as the
5509 // desired predicate.
5510 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5511 if (isa<SCEVConstant>(RHS))
5512 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5513 else
5514 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5515 RHS, LHS, FoundLHS, FoundRHS);
5516 }
5517
5518 // Check whether the actual condition is beyond sufficient.
5519 if (FoundPred == ICmpInst::ICMP_EQ)
5520 if (ICmpInst::isTrueWhenEqual(Pred))
5521 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5522 return true;
5523 if (Pred == ICmpInst::ICMP_NE)
5524 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5525 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5526 return true;
5527
5528 // Otherwise assume the worst.
5529 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005530}
5531
Dan Gohman0f4b2852009-07-21 23:03:19 +00005532/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005533/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005534/// and FoundRHS is true.
5535bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5536 const SCEV *LHS, const SCEV *RHS,
5537 const SCEV *FoundLHS,
5538 const SCEV *FoundRHS) {
5539 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5540 FoundLHS, FoundRHS) ||
5541 // ~x < ~y --> x > y
5542 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5543 getNotSCEV(FoundRHS),
5544 getNotSCEV(FoundLHS));
5545}
5546
5547/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005548/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005549/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005550bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005551ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5552 const SCEV *LHS, const SCEV *RHS,
5553 const SCEV *FoundLHS,
5554 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005555 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005556 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5557 case ICmpInst::ICMP_EQ:
5558 case ICmpInst::ICMP_NE:
5559 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5560 return true;
5561 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005562 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005563 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005564 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5565 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005566 return true;
5567 break;
5568 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005569 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005570 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5571 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005572 return true;
5573 break;
5574 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005575 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005576 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5577 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005578 return true;
5579 break;
5580 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005581 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005582 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5583 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005584 return true;
5585 break;
5586 }
5587
5588 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005589}
5590
Dan Gohman51f53b72009-06-21 23:46:38 +00005591/// getBECount - Subtract the end and start values and divide by the step,
5592/// rounding up, to get the number of times the backedge is executed. Return
5593/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005594const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005595 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005596 const SCEV *Step,
5597 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005598 assert(!isKnownNegative(Step) &&
5599 "This code doesn't handle negative strides yet!");
5600
Dan Gohman51f53b72009-06-21 23:46:38 +00005601 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005602 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005603 const SCEV *Diff = getMinusSCEV(End, Start);
5604 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005605
5606 // Add an adjustment to the difference between End and Start so that
5607 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005608 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005609
Dan Gohman1f96e672009-09-17 18:05:20 +00005610 if (!NoWrap) {
5611 // Check Add for unsigned overflow.
5612 // TODO: More sophisticated things could be done here.
5613 const Type *WideTy = IntegerType::get(getContext(),
5614 getTypeSizeInBits(Ty) + 1);
5615 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5616 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5617 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5618 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5619 return getCouldNotCompute();
5620 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005621
5622 return getUDivExpr(Add, Step);
5623}
5624
Chris Lattnerdb25de42005-08-15 23:33:51 +00005625/// HowManyLessThans - Return the number of times a backedge containing the
5626/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005627/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005628ScalarEvolution::BackedgeTakenInfo
5629ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5630 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005631 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00005632 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005633
Dan Gohman35738ac2009-05-04 22:30:44 +00005634 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005635 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005636 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005637
Dan Gohman1f96e672009-09-17 18:05:20 +00005638 // Check to see if we have a flag which makes analysis easy.
5639 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5640 AddRec->hasNoUnsignedWrap();
5641
Chris Lattnerdb25de42005-08-15 23:33:51 +00005642 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005643 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005644 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005645
Dan Gohman52fddd32010-01-26 04:40:18 +00005646 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005647 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005648 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005649 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005650 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005651 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005652 // value and past the maximum value for its type in a single step.
5653 // Note that it's not sufficient to check NoWrap here, because even
5654 // though the value after a wrap is undefined, it's not undefined
5655 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005656 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005657 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005658 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005659 if (isSigned) {
5660 APInt Max = APInt::getSignedMaxValue(BitWidth);
5661 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5662 .slt(getSignedRange(RHS).getSignedMax()))
5663 return getCouldNotCompute();
5664 } else {
5665 APInt Max = APInt::getMaxValue(BitWidth);
5666 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5667 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5668 return getCouldNotCompute();
5669 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005670 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005671 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005672 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005673
Dan Gohmana1af7572009-04-30 20:47:05 +00005674 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5675 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5676 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005677 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005678
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005679 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005680 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005681
Dan Gohmana1af7572009-04-30 20:47:05 +00005682 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005683 const SCEV *MinStart = getConstant(isSigned ?
5684 getSignedRange(Start).getSignedMin() :
5685 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005686
Dan Gohmana1af7572009-04-30 20:47:05 +00005687 // If we know that the condition is true in order to enter the loop,
5688 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005689 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5690 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005691 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005692 if (!isLoopEntryGuardedByCond(L,
5693 isSigned ? ICmpInst::ICMP_SLT :
5694 ICmpInst::ICMP_ULT,
5695 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005696 End = isSigned ? getSMaxExpr(RHS, Start)
5697 : getUMaxExpr(RHS, Start);
5698
5699 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005700 const SCEV *MaxEnd = getConstant(isSigned ?
5701 getSignedRange(End).getSignedMax() :
5702 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005703
Dan Gohman52fddd32010-01-26 04:40:18 +00005704 // If MaxEnd is within a step of the maximum integer value in its type,
5705 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005706 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005707 // compute the correct value.
5708 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005709 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005710 MaxEnd = isSigned ?
5711 getSMinExpr(MaxEnd,
5712 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5713 StepMinusOne)) :
5714 getUMinExpr(MaxEnd,
5715 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5716 StepMinusOne));
5717
Dan Gohmana1af7572009-04-30 20:47:05 +00005718 // Finally, we subtract these two values and divide, rounding up, to get
5719 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005720 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005721
5722 // The maximum backedge count is similar, except using the minimum start
5723 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005724 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005725
5726 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005727 }
5728
Dan Gohman1c343752009-06-27 21:21:31 +00005729 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005730}
5731
Chris Lattner53e677a2004-04-02 20:23:17 +00005732/// getNumIterationsInRange - Return the number of iterations of this loop that
5733/// produce values in the specified constant range. Another way of looking at
5734/// this is that it returns the first iteration number where the value is not in
5735/// the condition, thus computing the exit count. If the iteration count can't
5736/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005737const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005738 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005739 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005740 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005741
5742 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005743 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005744 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005745 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005746 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005747 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005748 if (const SCEVAddRecExpr *ShiftedAddRec =
5749 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005750 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005751 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005752 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005753 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005754 }
5755
5756 // The only time we can solve this is when we have all constant indices.
5757 // Otherwise, we cannot determine the overflow conditions.
5758 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5759 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005760 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005761
5762
5763 // Okay at this point we know that all elements of the chrec are constants and
5764 // that the start element is zero.
5765
5766 // First check to see if the range contains zero. If not, the first
5767 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005768 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005769 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005770 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005771
Chris Lattner53e677a2004-04-02 20:23:17 +00005772 if (isAffine()) {
5773 // If this is an affine expression then we have this situation:
5774 // Solve {0,+,A} in Range === Ax in Range
5775
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005776 // We know that zero is in the range. If A is positive then we know that
5777 // the upper value of the range must be the first possible exit value.
5778 // If A is negative then the lower of the range is the last possible loop
5779 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005780 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005781 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5782 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005783
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005784 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005785 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005786 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005787
5788 // Evaluate at the exit value. If we really did fall out of the valid
5789 // range, then we computed our trip count, otherwise wrap around or other
5790 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005791 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005792 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005793 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005794
5795 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005796 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005797 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005798 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005799 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005800 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005801 } else if (isQuadratic()) {
5802 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5803 // quadratic equation to solve it. To do this, we must frame our problem in
5804 // terms of figuring out when zero is crossed, instead of when
5805 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005806 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005807 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005808 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005809
5810 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005811 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005812 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005813 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5814 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005815 if (R1) {
5816 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005817 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005818 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005819 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005820 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005821 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005822
Chris Lattner53e677a2004-04-02 20:23:17 +00005823 // Make sure the root is not off by one. The returned iteration should
5824 // not be in the range, but the previous one should be. When solving
5825 // for "X*X < 5", for example, we should not return a root of 2.
5826 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005827 R1->getValue(),
5828 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005829 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005830 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005831 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005832 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005833
Dan Gohman246b2562007-10-22 18:31:58 +00005834 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005835 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005836 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005837 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005838 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005839
Chris Lattner53e677a2004-04-02 20:23:17 +00005840 // If R1 was not in the range, then it is a good return value. Make
5841 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005842 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005843 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005844 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005845 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005846 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005847 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005848 }
5849 }
5850 }
5851
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005852 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005853}
5854
5855
5856
5857//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005858// SCEVCallbackVH Class Implementation
5859//===----------------------------------------------------------------------===//
5860
Dan Gohman1959b752009-05-19 19:22:47 +00005861void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005862 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005863 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5864 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005865 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005866 // this now dangles!
5867}
5868
Dan Gohman81f91212010-07-28 01:09:07 +00005869void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005870 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005871
Dan Gohman35738ac2009-05-04 22:30:44 +00005872 // Forget all the expressions associated with users of the old value,
5873 // so that future queries will recompute the expressions using the new
5874 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005875 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005876 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005877 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005878 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5879 UI != UE; ++UI)
5880 Worklist.push_back(*UI);
5881 while (!Worklist.empty()) {
5882 User *U = Worklist.pop_back_val();
5883 // Deleting the Old value will cause this to dangle. Postpone
5884 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005885 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005886 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005887 if (!Visited.insert(U))
5888 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005889 if (PHINode *PN = dyn_cast<PHINode>(U))
5890 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005891 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005892 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5893 UI != UE; ++UI)
5894 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005895 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005896 // Delete the Old value.
5897 if (PHINode *PN = dyn_cast<PHINode>(Old))
5898 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005899 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005900 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005901}
5902
Dan Gohman1959b752009-05-19 19:22:47 +00005903ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005904 : CallbackVH(V), SE(se) {}
5905
5906//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005907// ScalarEvolution Class Implementation
5908//===----------------------------------------------------------------------===//
5909
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005910ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005911 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00005912 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005913}
5914
Chris Lattner53e677a2004-04-02 20:23:17 +00005915bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005916 this->F = &F;
5917 LI = &getAnalysis<LoopInfo>();
5918 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005919 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005920 return false;
5921}
5922
5923void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005924 // Iterate through all the SCEVUnknown instances and call their
5925 // destructors, so that they release their references to their values.
5926 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5927 U->~SCEVUnknown();
5928 FirstUnknown = 0;
5929
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005930 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005931 BackedgeTakenCounts.clear();
5932 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005933 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00005934 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00005935 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00005936 UnsignedRanges.clear();
5937 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005938 UniqueSCEVs.clear();
5939 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005940}
5941
5942void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5943 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005944 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005945 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005946}
5947
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005948bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005949 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005950}
5951
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005952static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005953 const Loop *L) {
5954 // Print all inner loops first
5955 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5956 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005957
Dan Gohman30733292010-01-09 18:17:45 +00005958 OS << "Loop ";
5959 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5960 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005961
Dan Gohman5d984912009-12-18 01:14:11 +00005962 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005963 L->getExitBlocks(ExitBlocks);
5964 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005965 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005966
Dan Gohman46bdfb02009-02-24 18:55:53 +00005967 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5968 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005969 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005970 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005971 }
5972
Dan Gohman30733292010-01-09 18:17:45 +00005973 OS << "\n"
5974 "Loop ";
5975 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5976 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005977
5978 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5979 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5980 } else {
5981 OS << "Unpredictable max backedge-taken count. ";
5982 }
5983
5984 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005985}
5986
Dan Gohman5d984912009-12-18 01:14:11 +00005987void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005988 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005989 // out SCEV values of all instructions that are interesting. Doing
5990 // this potentially causes it to create new SCEV objects though,
5991 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005992 // observable from outside the class though, so casting away the
5993 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005994 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005995
Dan Gohman30733292010-01-09 18:17:45 +00005996 OS << "Classifying expressions for: ";
5997 WriteAsOperand(OS, F, /*PrintType=*/false);
5998 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005999 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006000 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006001 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006002 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006003 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006004 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006005
Dan Gohman0c689c52009-06-19 17:49:54 +00006006 const Loop *L = LI->getLoopFor((*I).getParent());
6007
Dan Gohman0bba49c2009-07-07 17:06:11 +00006008 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006009 if (AtUse != SV) {
6010 OS << " --> ";
6011 AtUse->print(OS);
6012 }
6013
6014 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006015 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006016 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006017 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006018 OS << "<<Unknown>>";
6019 } else {
6020 OS << *ExitValue;
6021 }
6022 }
6023
Chris Lattner53e677a2004-04-02 20:23:17 +00006024 OS << "\n";
6025 }
6026
Dan Gohman30733292010-01-09 18:17:45 +00006027 OS << "Determining loop execution counts for: ";
6028 WriteAsOperand(OS, F, /*PrintType=*/false);
6029 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006030 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6031 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006032}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006033
Dan Gohman714b5292010-11-17 23:21:44 +00006034ScalarEvolution::LoopDisposition
6035ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6036 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6037 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6038 Values.insert(std::make_pair(L, LoopVariant));
6039 if (!Pair.second)
6040 return Pair.first->second;
6041
6042 LoopDisposition D = computeLoopDisposition(S, L);
6043 return LoopDispositions[S][L] = D;
6044}
6045
6046ScalarEvolution::LoopDisposition
6047ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006048 switch (S->getSCEVType()) {
6049 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006050 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006051 case scTruncate:
6052 case scZeroExtend:
6053 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006054 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006055 case scAddRecExpr: {
6056 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6057
Dan Gohman714b5292010-11-17 23:21:44 +00006058 // If L is the addrec's loop, it's computable.
6059 if (AR->getLoop() == L)
6060 return LoopComputable;
6061
Dan Gohman17ead4f2010-11-17 21:23:15 +00006062 // Add recurrences are never invariant in the function-body (null loop).
6063 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006064 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006065
6066 // This recurrence is variant w.r.t. L if L contains AR's loop.
6067 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006068 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006069
6070 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6071 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006072 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006073
6074 // This recurrence is variant w.r.t. L if any of its operands
6075 // are variant.
6076 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6077 I != E; ++I)
6078 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006079 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006080
6081 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006082 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006083 }
6084 case scAddExpr:
6085 case scMulExpr:
6086 case scUMaxExpr:
6087 case scSMaxExpr: {
6088 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006089 bool HasVarying = false;
6090 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6091 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006092 LoopDisposition D = getLoopDisposition(*I, L);
6093 if (D == LoopVariant)
6094 return LoopVariant;
6095 if (D == LoopComputable)
6096 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006097 }
Dan Gohman714b5292010-11-17 23:21:44 +00006098 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006099 }
6100 case scUDivExpr: {
6101 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006102 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6103 if (LD == LoopVariant)
6104 return LoopVariant;
6105 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6106 if (RD == LoopVariant)
6107 return LoopVariant;
6108 return (LD == LoopInvariant && RD == LoopInvariant) ?
6109 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006110 }
6111 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006112 // All non-instruction values are loop invariant. All instructions are loop
6113 // invariant if they are not contained in the specified loop.
6114 // Instructions are never considered invariant in the function body
6115 // (null loop) because they are defined within the "loop".
6116 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6117 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6118 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006119 case scCouldNotCompute:
6120 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman714b5292010-11-17 23:21:44 +00006121 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006122 default: break;
6123 }
6124 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman714b5292010-11-17 23:21:44 +00006125 return LoopVariant;
6126}
6127
6128bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6129 return getLoopDisposition(S, L) == LoopInvariant;
6130}
6131
6132bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6133 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006134}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006135
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006136ScalarEvolution::BlockDisposition
6137ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6138 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6139 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6140 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6141 if (!Pair.second)
6142 return Pair.first->second;
6143
6144 BlockDisposition D = computeBlockDisposition(S, BB);
6145 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006146}
6147
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006148ScalarEvolution::BlockDisposition
6149ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006150 switch (S->getSCEVType()) {
6151 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006152 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006153 case scTruncate:
6154 case scZeroExtend:
6155 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006156 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006157 case scAddRecExpr: {
6158 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006159 // to test for proper dominance too, because the instruction which
6160 // produces the addrec's value is a PHI, and a PHI effectively properly
6161 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006162 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6163 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006164 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006165 }
6166 // FALL THROUGH into SCEVNAryExpr handling.
6167 case scAddExpr:
6168 case scMulExpr:
6169 case scUMaxExpr:
6170 case scSMaxExpr: {
6171 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006172 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006173 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006174 I != E; ++I) {
6175 BlockDisposition D = getBlockDisposition(*I, BB);
6176 if (D == DoesNotDominateBlock)
6177 return DoesNotDominateBlock;
6178 if (D == DominatesBlock)
6179 Proper = false;
6180 }
6181 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006182 }
6183 case scUDivExpr: {
6184 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006185 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6186 BlockDisposition LD = getBlockDisposition(LHS, BB);
6187 if (LD == DoesNotDominateBlock)
6188 return DoesNotDominateBlock;
6189 BlockDisposition RD = getBlockDisposition(RHS, BB);
6190 if (RD == DoesNotDominateBlock)
6191 return DoesNotDominateBlock;
6192 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6193 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006194 }
6195 case scUnknown:
6196 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006197 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6198 if (I->getParent() == BB)
6199 return DominatesBlock;
6200 if (DT->properlyDominates(I->getParent(), BB))
6201 return ProperlyDominatesBlock;
6202 return DoesNotDominateBlock;
6203 }
6204 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006205 case scCouldNotCompute:
6206 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006207 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006208 default: break;
6209 }
6210 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006211 return DoesNotDominateBlock;
6212}
6213
6214bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6215 return getBlockDisposition(S, BB) >= DominatesBlock;
6216}
6217
6218bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6219 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006220}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006221
6222bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6223 switch (S->getSCEVType()) {
6224 case scConstant:
6225 return false;
6226 case scTruncate:
6227 case scZeroExtend:
6228 case scSignExtend: {
6229 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6230 const SCEV *CastOp = Cast->getOperand();
6231 return Op == CastOp || hasOperand(CastOp, Op);
6232 }
6233 case scAddRecExpr:
6234 case scAddExpr:
6235 case scMulExpr:
6236 case scUMaxExpr:
6237 case scSMaxExpr: {
6238 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6239 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6240 I != E; ++I) {
6241 const SCEV *NAryOp = *I;
6242 if (NAryOp == Op || hasOperand(NAryOp, Op))
6243 return true;
6244 }
6245 return false;
6246 }
6247 case scUDivExpr: {
6248 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6249 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6250 return LHS == Op || hasOperand(LHS, Op) ||
6251 RHS == Op || hasOperand(RHS, Op);
6252 }
6253 case scUnknown:
6254 return false;
6255 case scCouldNotCompute:
6256 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6257 return false;
6258 default: break;
6259 }
6260 llvm_unreachable("Unknown SCEV kind!");
6261 return false;
6262}
Dan Gohman56a75682010-11-17 23:28:48 +00006263
6264void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6265 ValuesAtScopes.erase(S);
6266 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006267 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006268 UnsignedRanges.erase(S);
6269 SignedRanges.erase(S);
6270}