blob: cdc8a1d431d0996ea5c9fdc1be59d2399824f08e [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Daniel Dunbara8dfb792010-02-13 09:27:52 +000017#include "X86FixupKinds.h"
Chris Lattner45762472010-02-03 21:24:49 +000018#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000019#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000020#include "llvm/MC/MCInst.h"
21#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000022using namespace llvm;
23
24namespace {
25class X86MCCodeEmitter : public MCCodeEmitter {
Argyrios Kyrtzidis8c8b9ee2010-08-15 10:27:23 +000026 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
27 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000028 const TargetMachine &TM;
29 const TargetInstrInfo &TII;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000030 MCContext &Ctx;
Chris Lattner1ac23b12010-02-05 02:18:40 +000031 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000032public:
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000033 X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000034 : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000035 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000036 }
37
38 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000039
40 unsigned getNumFixupKinds() const {
Rafael Espindolaa8c02c32010-09-30 03:11:42 +000041 return 6;
Daniel Dunbar73c55742010-02-09 22:59:55 +000042 }
43
Chris Lattner8d31de62010-02-11 21:27:18 +000044 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
45 const static MCFixupKindInfo Infos[] = {
Daniel Dunbarb36052f2010-03-19 10:43:23 +000046 { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
47 { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel },
Chris Lattner9fc05222010-07-07 22:27:31 +000048 { "reloc_pcrel_2byte", 0, 2 * 8, MCFixupKindInfo::FKF_IsPCRel },
Daniel Dunbarb36052f2010-03-19 10:43:23 +000049 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
Rafael Espindolaa8c02c32010-09-30 03:11:42 +000050 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
51 { "reloc_signed_4byte", 0, 4 * 8, 0}
Daniel Dunbar73c55742010-02-09 22:59:55 +000052 };
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000053
Chris Lattner8d31de62010-02-11 21:27:18 +000054 if (Kind < FirstTargetFixupKind)
55 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000056
Chris Lattner8d31de62010-02-11 21:27:18 +000057 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000058 "Invalid kind!");
59 return Infos[Kind - FirstTargetFixupKind];
60 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000061
Chris Lattner28249d92010-02-05 01:53:19 +000062 static unsigned GetX86RegNum(const MCOperand &MO) {
63 return X86RegisterInfo::getX86RegNum(MO.getReg());
64 }
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000065
66 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
67 // 0-7 and the difference between the 2 groups is given by the REX prefix.
68 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
69 // in 1's complement form, example:
70 //
71 // ModRM field => XMM9 => 1
72 // VEX.VVVV => XMM9 => ~9
73 //
74 // See table 4-35 of Intel AVX Programming Reference for details.
75 static unsigned char getVEXRegisterEncoding(const MCInst &MI,
76 unsigned OpNum) {
77 unsigned SrcReg = MI.getOperand(OpNum).getReg();
78 unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
Bruno Cardoso Lopese86b01c2010-07-09 18:27:43 +000079 if ((SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15) ||
80 (SrcReg >= X86::YMM8 && SrcReg <= X86::YMM15))
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000081 SrcRegNum += 8;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000082
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000083 // The registers represented through VEX_VVVV should
84 // be encoded in 1's complement form.
85 return (~SrcRegNum) & 0xf;
86 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000087
Chris Lattner37ce80e2010-02-10 06:41:02 +000088 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000089 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000090 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000091 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000092
Chris Lattner37ce80e2010-02-10 06:41:02 +000093 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
94 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000095 // Output the constant in little endian byte order.
96 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000097 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000098 Val >>= 8;
99 }
100 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000101
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000102 void EmitImmediate(const MCOperand &Disp,
Chris Lattnercf653392010-02-12 22:36:47 +0000103 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000104 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000105 SmallVectorImpl<MCFixup> &Fixups,
106 int ImmOffset = 0) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000107
Chris Lattner28249d92010-02-05 01:53:19 +0000108 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
109 unsigned RM) {
110 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
111 return RM | (RegOpcode << 3) | (Mod << 6);
112 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000113
Chris Lattner28249d92010-02-05 01:53:19 +0000114 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000115 unsigned &CurByte, raw_ostream &OS) const {
116 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000117 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000118
Chris Lattner0e73c392010-02-05 06:16:07 +0000119 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000120 unsigned &CurByte, raw_ostream &OS) const {
121 // SIB byte is in the same format as the ModRMByte.
122 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000123 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000124
125
Chris Lattner1ac23b12010-02-05 02:18:40 +0000126 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000127 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000128 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000129 SmallVectorImpl<MCFixup> &Fixups) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000130
Daniel Dunbar73c55742010-02-09 22:59:55 +0000131 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
132 SmallVectorImpl<MCFixup> &Fixups) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000133
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000134 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000135 const MCInst &MI, const TargetInstrDesc &Desc,
136 raw_ostream &OS) const;
137
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000138 void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
139 int MemOperand, const MCInst &MI,
140 raw_ostream &OS) const;
141
Chris Lattner834df192010-07-08 22:28:12 +0000142 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000143 const MCInst &MI, const TargetInstrDesc &Desc,
144 raw_ostream &OS) const;
Chris Lattner45762472010-02-03 21:24:49 +0000145};
146
147} // end anonymous namespace
148
149
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000150MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000151 TargetMachine &TM,
152 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000153 return new X86MCCodeEmitter(TM, Ctx, false);
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000154}
155
156MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000157 TargetMachine &TM,
158 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000159 return new X86MCCodeEmitter(TM, Ctx, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000160}
161
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000162/// isDisp8 - Return true if this signed displacement fits in a 8-bit
163/// sign-extended field.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000164static bool isDisp8(int Value) {
165 return Value == (signed char)Value;
166}
167
Chris Lattnercf653392010-02-12 22:36:47 +0000168/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
169/// in an instruction with the specified TSFlags.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000170static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
Chris Lattnercf653392010-02-12 22:36:47 +0000171 unsigned Size = X86II::getSizeOfImm(TSFlags);
172 bool isPCRel = X86II::isImmPCRel(TSFlags);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000173
Chris Lattnercf653392010-02-12 22:36:47 +0000174 switch (Size) {
175 default: assert(0 && "Unknown immediate size");
176 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
Chris Lattner9fc05222010-07-07 22:27:31 +0000177 case 2: return isPCRel ? MCFixupKind(X86::reloc_pcrel_2byte) : FK_Data_2;
Chris Lattnercf653392010-02-12 22:36:47 +0000178 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
Chris Lattnercf653392010-02-12 22:36:47 +0000179 case 8: assert(!isPCRel); return FK_Data_8;
180 }
181}
182
Chris Lattner8a507292010-09-29 03:33:25 +0000183/// Is32BitMemOperand - Return true if the specified instruction with a memory
184/// operand should emit the 0x67 prefix byte in 64-bit mode due to a 32-bit
185/// memory operand. Op specifies the operand # of the memoperand.
186static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
187 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
188 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
189
Nick Lewycky8892b032010-09-29 18:56:57 +0000190 if ((BaseReg.getReg() != 0 && X86::GR32RegClass.contains(BaseReg.getReg())) ||
191 (IndexReg.getReg() != 0 && X86::GR32RegClass.contains(IndexReg.getReg())))
Chris Lattner8a507292010-09-29 03:33:25 +0000192 return true;
193 return false;
194}
Chris Lattnercf653392010-02-12 22:36:47 +0000195
Chris Lattner0e73c392010-02-05 06:16:07 +0000196void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000197EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000198 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000199 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000200 // If this is a simple integer displacement that doesn't require a relocation,
201 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000202 if (DispOp.isImm()) {
Chris Lattnera08b5872010-02-16 05:03:17 +0000203 // FIXME: is this right for pc-rel encoding?? Probably need to emit this as
204 // a fixup if so.
Chris Lattner835acab2010-02-12 23:00:36 +0000205 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000206 return;
207 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000208
Chris Lattner835acab2010-02-12 23:00:36 +0000209 // If we have an immoffset, add it to the expression.
210 const MCExpr *Expr = DispOp.getExpr();
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000211
Chris Lattnera08b5872010-02-16 05:03:17 +0000212 // If the fixup is pc-relative, we need to bias the value to be relative to
213 // the start of the field, not the end of the field.
214 if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000215 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
216 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
Chris Lattnera08b5872010-02-16 05:03:17 +0000217 ImmOffset -= 4;
Chris Lattner9fc05222010-07-07 22:27:31 +0000218 if (FixupKind == MCFixupKind(X86::reloc_pcrel_2byte))
Chris Lattnerda3051a2010-07-07 22:35:13 +0000219 ImmOffset -= 2;
Chris Lattnera08b5872010-02-16 05:03:17 +0000220 if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
221 ImmOffset -= 1;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000222
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000223 if (ImmOffset)
Chris Lattnera08b5872010-02-16 05:03:17 +0000224 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000225 Ctx);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000226
Chris Lattner5dccfad2010-02-10 06:52:12 +0000227 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000228 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000229 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000230}
231
Chris Lattner1ac23b12010-02-05 02:18:40 +0000232void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
233 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000234 uint64_t TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000235 raw_ostream &OS,
236 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8a507292010-09-29 03:33:25 +0000237 const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
238 const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg);
239 const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt);
240 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000241 unsigned BaseReg = Base.getReg();
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000242
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000243 // Handle %rip relative addressing.
244 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Eric Christopher497f1eb2010-06-08 22:57:33 +0000245 assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode");
246 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000247 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000248
Chris Lattner0f53cf22010-03-18 18:10:56 +0000249 unsigned FixupKind = X86::reloc_riprel_4byte;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000250
Chris Lattner0f53cf22010-03-18 18:10:56 +0000251 // movq loads are handled with a special relocation form which allows the
252 // linker to eliminate some loads for GOT references which end up in the
253 // same linkage unit.
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000254 if (MI.getOpcode() == X86::MOV64rm ||
255 MI.getOpcode() == X86::MOV64rm_TC)
Chris Lattner0f53cf22010-03-18 18:10:56 +0000256 FixupKind = X86::reloc_riprel_4byte_movq_load;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000257
Chris Lattner835acab2010-02-12 23:00:36 +0000258 // rip-relative addressing is actually relative to the *next* instruction.
259 // Since an immediate can follow the mod/rm byte for an instruction, this
260 // means that we need to bias the immediate field of the instruction with
261 // the size of the immediate field. If we have this case, add it into the
262 // expression to emit.
263 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000264
Chris Lattner0f53cf22010-03-18 18:10:56 +0000265 EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
Chris Lattner835acab2010-02-12 23:00:36 +0000266 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000267 return;
268 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000269
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000270 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000271
Chris Lattnera8168ec2010-02-09 21:57:34 +0000272 // Determine whether a SIB byte is needed.
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000273 // If no BaseReg, issue a RIP relative instruction only if the MCE can
Chris Lattner1ac23b12010-02-05 02:18:40 +0000274 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
275 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000276
Chris Lattnera8168ec2010-02-09 21:57:34 +0000277 if (// The SIB byte must be used if there is an index register.
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000278 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000279 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
280 // encode to an R/M value of 4, which indicates that a SIB byte is
281 // present.
282 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000283 // If there is no base register and we're in 64-bit mode, we need a SIB
284 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
285 (!Is64BitMode || BaseReg != 0)) {
286
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000287 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000288 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000289 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000290 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000291 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000292
Chris Lattnera8168ec2010-02-09 21:57:34 +0000293 // If the base is not EBP/ESP and there is no displacement, use simple
294 // indirect register encoding, this handles addresses like [EAX]. The
295 // encoding for [EBP] with no displacement means [disp32] so we handle it
296 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000297 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000298 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000299 return;
300 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000301
Chris Lattnera8168ec2010-02-09 21:57:34 +0000302 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000303 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000304 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000305 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000306 return;
307 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000308
Chris Lattnera8168ec2010-02-09 21:57:34 +0000309 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000310 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Rafael Espindolaa8c02c32010-09-30 03:11:42 +0000311 EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
312 Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000313 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000314 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000315
Chris Lattner0e73c392010-02-05 06:16:07 +0000316 // We need a SIB byte, so start by outputting the ModR/M byte first
317 assert(IndexReg.getReg() != X86::ESP &&
318 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000319
Chris Lattner0e73c392010-02-05 06:16:07 +0000320 bool ForceDisp32 = false;
321 bool ForceDisp8 = false;
322 if (BaseReg == 0) {
323 // If there is no base register, we emit the special case SIB byte with
324 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000325 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000326 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000327 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000328 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000329 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000330 ForceDisp32 = true;
Chris Lattner618d0ed2010-03-18 20:04:36 +0000331 } else if (Disp.getImm() == 0 &&
332 // Base reg can't be anything that ends up with '5' as the base
333 // reg, it is the magic [*] nomenclature that indicates no base.
334 BaseRegNo != N86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000335 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000336 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000337 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000338 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000339 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000340 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
341 } else {
342 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000343 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000344 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000345
Chris Lattner0e73c392010-02-05 06:16:07 +0000346 // Calculate what the SS field value should be...
347 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
348 unsigned SS = SSTable[Scale.getImm()];
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000349
Chris Lattner0e73c392010-02-05 06:16:07 +0000350 if (BaseReg == 0) {
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000351 // Handle the SIB byte for the case where there is no base, see Intel
Chris Lattner0e73c392010-02-05 06:16:07 +0000352 // Manual 2A, table 2-7. The displacement has already been output.
353 unsigned IndexRegNo;
354 if (IndexReg.getReg())
355 IndexRegNo = GetX86RegNum(IndexReg);
356 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
357 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000358 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000359 } else {
360 unsigned IndexRegNo;
361 if (IndexReg.getReg())
362 IndexRegNo = GetX86RegNum(IndexReg);
363 else
364 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000365 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000366 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000367
Chris Lattner0e73c392010-02-05 06:16:07 +0000368 // Do we need to output a displacement?
369 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000370 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000371 else if (ForceDisp32 || Disp.getImm() != 0)
Rafael Espindolaa8c02c32010-09-30 03:11:42 +0000372 EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
373 Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000374}
375
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000376/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
377/// called VEX.
378void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000379 int MemOperand, const MCInst &MI,
380 const TargetInstrDesc &Desc,
381 raw_ostream &OS) const {
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000382 bool HasVEX_4V = false;
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000383 if ((TSFlags >> 32) & X86II::VEX_4V)
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000384 HasVEX_4V = true;
385
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000386 // VEX_R: opcode externsion equivalent to REX.R in
387 // 1's complement (inverted) form
388 //
389 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
390 // 0: Same as REX_R=1 (64 bit mode only)
391 //
392 unsigned char VEX_R = 0x1;
393
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000394 // VEX_X: equivalent to REX.X, only used when a
395 // register is used for index in SIB Byte.
396 //
397 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
398 // 0: Same as REX.X=1 (64-bit mode only)
399 unsigned char VEX_X = 0x1;
400
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000401 // VEX_B:
402 //
403 // 1: Same as REX_B=0 (ignored in 32-bit mode)
404 // 0: Same as REX_B=1 (64 bit mode only)
405 //
406 unsigned char VEX_B = 0x1;
407
408 // VEX_W: opcode specific (use like REX.W, or used for
409 // opcode extension, or ignored, depending on the opcode byte)
410 unsigned char VEX_W = 0;
411
412 // VEX_5M (VEX m-mmmmm field):
413 //
414 // 0b00000: Reserved for future use
415 // 0b00001: implied 0F leading opcode
416 // 0b00010: implied 0F 38 leading opcode bytes
417 // 0b00011: implied 0F 3A leading opcode bytes
418 // 0b00100-0b11111: Reserved for future use
419 //
420 unsigned char VEX_5M = 0x1;
421
422 // VEX_4V (VEX vvvv field): a register specifier
423 // (in 1's complement form) or 1111 if unused.
424 unsigned char VEX_4V = 0xf;
425
426 // VEX_L (Vector Length):
427 //
428 // 0: scalar or 128-bit vector
429 // 1: 256-bit vector
430 //
431 unsigned char VEX_L = 0;
432
433 // VEX_PP: opcode extension providing equivalent
434 // functionality of a SIMD prefix
435 //
436 // 0b00: None
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000437 // 0b01: 66
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000438 // 0b10: F3
439 // 0b11: F2
440 //
441 unsigned char VEX_PP = 0;
442
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000443 // Encode the operand size opcode prefix as needed.
444 if (TSFlags & X86II::OpSize)
445 VEX_PP = 0x01;
446
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000447 if ((TSFlags >> 32) & X86II::VEX_W)
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000448 VEX_W = 1;
449
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000450 if ((TSFlags >> 32) & X86II::VEX_L)
Bruno Cardoso Lopes87a85c72010-07-13 21:07:28 +0000451 VEX_L = 1;
452
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000453 switch (TSFlags & X86II::Op0Mask) {
454 default: assert(0 && "Invalid prefix!");
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000455 case X86II::T8: // 0F 38
456 VEX_5M = 0x2;
457 break;
458 case X86II::TA: // 0F 3A
459 VEX_5M = 0x3;
460 break;
461 case X86II::TF: // F2 0F 38
462 VEX_PP = 0x3;
463 VEX_5M = 0x2;
464 break;
465 case X86II::XS: // F3 0F
466 VEX_PP = 0x2;
467 break;
468 case X86II::XD: // F2 0F
469 VEX_PP = 0x3;
470 break;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000471 case X86II::TB: // Bypass: Not used by VEX
472 case 0:
473 break; // No prefix!
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000474 }
475
Bruno Cardoso Lopese86b01c2010-07-09 18:27:43 +0000476 // Set the vector length to 256-bit if YMM0-YMM15 is used
477 for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
478 if (!MI.getOperand(i).isReg())
479 continue;
480 unsigned SrcReg = MI.getOperand(i).getReg();
481 if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
482 VEX_L = 1;
483 }
484
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000485 unsigned NumOps = MI.getNumOperands();
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000486 unsigned CurOp = 0;
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000487 bool IsDestMem = false;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000488
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000489 switch (TSFlags & X86II::FormMask) {
490 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000491 case X86II::MRMDestMem:
492 IsDestMem = true;
493 // The important info for the VEX prefix is never beyond the address
494 // registers. Don't check beyond that.
495 NumOps = CurOp = X86::AddrNumOperands;
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000496 case X86II::MRM0m: case X86II::MRM1m:
497 case X86II::MRM2m: case X86II::MRM3m:
498 case X86II::MRM4m: case X86II::MRM5m:
499 case X86II::MRM6m: case X86II::MRM7m:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000500 case X86II::MRMSrcMem:
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000501 case X86II::MRMSrcReg:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000502 if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000503 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000504 VEX_R = 0x0;
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000505 CurOp++;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000506
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000507 if (HasVEX_4V) {
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000508 VEX_4V = getVEXRegisterEncoding(MI, IsDestMem ? CurOp-1 : CurOp);
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000509 CurOp++;
510 }
511
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000512 // To only check operands before the memory address ones, start
513 // the search from the begining
514 if (IsDestMem)
515 CurOp = 0;
516
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000517 // If the last register should be encoded in the immediate field
Bruno Cardoso Lopes01066802010-07-06 22:38:32 +0000518 // do not use any bit from VEX prefix to this register, ignore it
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000519 if ((TSFlags >> 32) & X86II::VEX_I8IMM)
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000520 NumOps--;
521
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000522 for (; CurOp != NumOps; ++CurOp) {
523 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000524 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
525 VEX_B = 0x0;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000526 if (!VEX_B && MO.isReg() &&
527 ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000528 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
529 VEX_X = 0x0;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000530 }
531 break;
Bruno Cardoso Lopescf6ca032010-07-21 08:56:24 +0000532 default: // MRMDestReg, MRM0r-MRM7r, RawFrm
533 if (!MI.getNumOperands())
534 break;
535
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000536 if (MI.getOperand(CurOp).isReg() &&
537 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
538 VEX_B = 0;
539
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000540 if (HasVEX_4V)
541 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
542
543 CurOp++;
544 for (; CurOp != NumOps; ++CurOp) {
545 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000546 if (MO.isReg() && !HasVEX_4V &&
547 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
548 VEX_R = 0x0;
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000549 }
550 break;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000551 }
552
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000553 // Emit segment override opcode prefix as needed.
554 EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
555
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000556 // VEX opcode prefix can have 2 or 3 bytes
557 //
558 // 3 bytes:
559 // +-----+ +--------------+ +-------------------+
560 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
561 // +-----+ +--------------+ +-------------------+
562 // 2 bytes:
563 // +-----+ +-------------------+
564 // | C5h | | R | vvvv | L | pp |
565 // +-----+ +-------------------+
566 //
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000567 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
568
Bruno Cardoso Lopesf5cd8c52010-07-02 22:06:54 +0000569 if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000570 EmitByte(0xC5, CurByte, OS);
571 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
572 return;
573 }
574
575 // 3 byte VEX prefix
576 EmitByte(0xC4, CurByte, OS);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000577 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000578 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
579}
580
Chris Lattner39a612e2010-02-05 22:10:22 +0000581/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
582/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
583/// size, and 3) use of X86-64 extended registers.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000584static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
Chris Lattner39a612e2010-02-05 22:10:22 +0000585 const TargetInstrDesc &Desc) {
Chris Lattner7e851802010-02-11 22:39:10 +0000586 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000587 if (TSFlags & X86II::REX_W)
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000588 REX |= 1 << 3; // set REX.W
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000589
Chris Lattner39a612e2010-02-05 22:10:22 +0000590 if (MI.getNumOperands() == 0) return REX;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000591
Chris Lattner39a612e2010-02-05 22:10:22 +0000592 unsigned NumOps = MI.getNumOperands();
593 // FIXME: MCInst should explicitize the two-addrness.
594 bool isTwoAddr = NumOps > 1 &&
595 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000596
Chris Lattner39a612e2010-02-05 22:10:22 +0000597 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
598 unsigned i = isTwoAddr ? 1 : 0;
599 for (; i != NumOps; ++i) {
600 const MCOperand &MO = MI.getOperand(i);
601 if (!MO.isReg()) continue;
602 unsigned Reg = MO.getReg();
603 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000604 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
605 // that returns non-zero.
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000606 REX |= 0x40; // REX fixed encoding prefix
Chris Lattner39a612e2010-02-05 22:10:22 +0000607 break;
608 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000609
Chris Lattner39a612e2010-02-05 22:10:22 +0000610 switch (TSFlags & X86II::FormMask) {
611 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
612 case X86II::MRMSrcReg:
613 if (MI.getOperand(0).isReg() &&
614 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000615 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000616 i = isTwoAddr ? 2 : 1;
617 for (; i != NumOps; ++i) {
618 const MCOperand &MO = MI.getOperand(i);
619 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000620 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000621 }
622 break;
623 case X86II::MRMSrcMem: {
624 if (MI.getOperand(0).isReg() &&
625 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000626 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000627 unsigned Bit = 0;
628 i = isTwoAddr ? 2 : 1;
629 for (; i != NumOps; ++i) {
630 const MCOperand &MO = MI.getOperand(i);
631 if (MO.isReg()) {
632 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000633 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000634 Bit++;
635 }
636 }
637 break;
638 }
639 case X86II::MRM0m: case X86II::MRM1m:
640 case X86II::MRM2m: case X86II::MRM3m:
641 case X86II::MRM4m: case X86II::MRM5m:
642 case X86II::MRM6m: case X86II::MRM7m:
643 case X86II::MRMDestMem: {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000644 unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
Chris Lattner39a612e2010-02-05 22:10:22 +0000645 i = isTwoAddr ? 1 : 0;
646 if (NumOps > e && MI.getOperand(e).isReg() &&
647 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000648 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000649 unsigned Bit = 0;
650 for (; i != e; ++i) {
651 const MCOperand &MO = MI.getOperand(i);
652 if (MO.isReg()) {
653 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000654 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000655 Bit++;
656 }
657 }
658 break;
659 }
660 default:
661 if (MI.getOperand(0).isReg() &&
662 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000663 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000664 i = isTwoAddr ? 2 : 1;
665 for (unsigned e = NumOps; i != e; ++i) {
666 const MCOperand &MO = MI.getOperand(i);
667 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000668 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000669 }
670 break;
671 }
672 return REX;
673}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000674
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000675/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
676void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
677 unsigned &CurByte, int MemOperand,
678 const MCInst &MI,
Chris Lattner9d199892010-07-04 22:56:10 +0000679 raw_ostream &OS) const {
Chris Lattner1e80f402010-02-03 21:57:59 +0000680 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000681 default: assert(0 && "Invalid segment!");
Chris Lattner834df192010-07-08 22:28:12 +0000682 case 0:
683 // No segment override, check for explicit one on memory operand.
Chris Lattner599b5312010-07-08 23:46:44 +0000684 if (MemOperand != -1) { // If the instruction has a memory operand.
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000685 switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
Chris Lattner834df192010-07-08 22:28:12 +0000686 default: assert(0 && "Unknown segment register!");
687 case 0: break;
688 case X86::CS: EmitByte(0x2E, CurByte, OS); break;
689 case X86::SS: EmitByte(0x36, CurByte, OS); break;
690 case X86::DS: EmitByte(0x3E, CurByte, OS); break;
691 case X86::ES: EmitByte(0x26, CurByte, OS); break;
692 case X86::FS: EmitByte(0x64, CurByte, OS); break;
693 case X86::GS: EmitByte(0x65, CurByte, OS); break;
694 }
695 }
696 break;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000697 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000698 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000699 break;
700 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000701 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000702 break;
703 }
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000704}
705
706/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
707///
708/// MemOperand is the operand # of the start of a memory operand if present. If
709/// Not present, it is -1.
710void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
711 int MemOperand, const MCInst &MI,
712 const TargetInstrDesc &Desc,
713 raw_ostream &OS) const {
714
715 // Emit the lock opcode prefix as needed.
716 if (TSFlags & X86II::LOCK)
717 EmitByte(0xF0, CurByte, OS);
718
719 // Emit segment override opcode prefix as needed.
720 EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000721
Chris Lattner1e80f402010-02-03 21:57:59 +0000722 // Emit the repeat opcode prefix as needed.
723 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000724 EmitByte(0xF3, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000725
Chris Lattner1e80f402010-02-03 21:57:59 +0000726 // Emit the address size opcode prefix as needed.
Chris Lattner8a507292010-09-29 03:33:25 +0000727 if ((TSFlags & X86II::AdSize) ||
728 (MemOperand != -1 && Is64BitMode && Is32BitMemOperand(MI, MemOperand)))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000729 EmitByte(0x67, CurByte, OS);
Chris Lattner78a19462010-09-29 03:43:43 +0000730
731 // Emit the operand size opcode prefix as needed.
732 if (TSFlags & X86II::OpSize)
733 EmitByte(0x66, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000734
Chris Lattner1e80f402010-02-03 21:57:59 +0000735 bool Need0FPrefix = false;
736 switch (TSFlags & X86II::Op0Mask) {
737 default: assert(0 && "Invalid prefix!");
738 case 0: break; // No prefix!
739 case X86II::REP: break; // already handled.
740 case X86II::TB: // Two-byte opcode prefix
741 case X86II::T8: // 0F 38
742 case X86II::TA: // 0F 3A
743 Need0FPrefix = true;
744 break;
745 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000746 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000747 Need0FPrefix = true;
748 break;
749 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000750 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000751 Need0FPrefix = true;
752 break;
753 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000754 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000755 Need0FPrefix = true;
756 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000757 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
758 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
759 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
760 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
761 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
762 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
763 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
764 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000765 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000766
Chris Lattner1e80f402010-02-03 21:57:59 +0000767 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000768 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000769 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000770 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000771 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000772 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000773
Chris Lattner1e80f402010-02-03 21:57:59 +0000774 // 0x0F escape code must be emitted just before the opcode.
775 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000776 EmitByte(0x0F, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000777
Chris Lattner1e80f402010-02-03 21:57:59 +0000778 // FIXME: Pull this up into previous switch if REX can be moved earlier.
779 switch (TSFlags & X86II::Op0Mask) {
780 case X86II::TF: // F2 0F 38
781 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000782 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000783 break;
784 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000785 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000786 break;
787 }
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000788}
789
790void X86MCCodeEmitter::
791EncodeInstruction(const MCInst &MI, raw_ostream &OS,
792 SmallVectorImpl<MCFixup> &Fixups) const {
793 unsigned Opcode = MI.getOpcode();
794 const TargetInstrDesc &Desc = TII.get(Opcode);
795 uint64_t TSFlags = Desc.TSFlags;
796
Chris Lattner757e8d62010-07-09 00:17:50 +0000797 // Pseudo instructions don't get encoded.
798 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
799 return;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000800
Chris Lattner834df192010-07-08 22:28:12 +0000801 // If this is a two-address instruction, skip one of the register operands.
802 // FIXME: This should be handled during MCInst lowering.
803 unsigned NumOps = Desc.getNumOperands();
804 unsigned CurOp = 0;
805 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
806 ++CurOp;
807 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
808 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
809 --NumOps;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000810
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000811 // Keep track of the current byte being emitted.
812 unsigned CurByte = 0;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000813
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000814 // Is this instruction encoded using the AVX VEX prefix?
815 bool HasVEXPrefix = false;
816
817 // It uses the VEX.VVVV field?
818 bool HasVEX_4V = false;
819
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000820 if ((TSFlags >> 32) & X86II::VEX)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000821 HasVEXPrefix = true;
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000822 if ((TSFlags >> 32) & X86II::VEX_4V)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000823 HasVEX_4V = true;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000824
Chris Lattner834df192010-07-08 22:28:12 +0000825 // Determine where the memory operand starts, if present.
826 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
827 if (MemoryOperand != -1) MemoryOperand += CurOp;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000828
Chris Lattner834df192010-07-08 22:28:12 +0000829 if (!HasVEXPrefix)
830 EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
831 else
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000832 EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000833
Chris Lattner74a21512010-02-05 19:24:13 +0000834 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000835 unsigned SrcRegNum = 0;
Chris Lattner1e80f402010-02-03 21:57:59 +0000836 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000837 case X86II::MRMInitReg:
838 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000839 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000840 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner757e8d62010-07-09 00:17:50 +0000841 case X86II::Pseudo:
842 assert(0 && "Pseudo instruction shouldn't be emitted");
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000843 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000844 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000845 break;
Chris Lattner59f8a6a2010-08-19 01:18:43 +0000846
Chris Lattner40cc3f82010-09-17 18:02:29 +0000847 case X86II::RawFrmImm8:
848 EmitByte(BaseOpcode, CurByte, OS);
849 EmitImmediate(MI.getOperand(CurOp++),
850 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
851 CurByte, OS, Fixups);
852 EmitImmediate(MI.getOperand(CurOp++), 1, FK_Data_1, CurByte, OS, Fixups);
853 break;
Chris Lattner59f8a6a2010-08-19 01:18:43 +0000854 case X86II::RawFrmImm16:
855 EmitByte(BaseOpcode, CurByte, OS);
856 EmitImmediate(MI.getOperand(CurOp++),
857 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
858 CurByte, OS, Fixups);
859 EmitImmediate(MI.getOperand(CurOp++), 2, FK_Data_2, CurByte, OS, Fixups);
860 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000861
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000862 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000863 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000864 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000865
Chris Lattner28249d92010-02-05 01:53:19 +0000866 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000867 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000868 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000869 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000870 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000871 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000872
Chris Lattner1ac23b12010-02-05 02:18:40 +0000873 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000874 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000875 SrcRegNum = CurOp + X86::AddrNumOperands;
876
877 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
878 SrcRegNum++;
879
Chris Lattner1ac23b12010-02-05 02:18:40 +0000880 EmitMemModRMByte(MI, CurOp,
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000881 GetX86RegNum(MI.getOperand(SrcRegNum)),
Chris Lattner835acab2010-02-12 23:00:36 +0000882 TSFlags, CurByte, OS, Fixups);
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000883 CurOp = SrcRegNum + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000884 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000885
Chris Lattnerdaa45552010-02-05 19:04:37 +0000886 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000887 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000888 SrcRegNum = CurOp + 1;
889
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000890 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000891 SrcRegNum++;
892
893 EmitRegModRMByte(MI.getOperand(SrcRegNum),
894 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
895 CurOp = SrcRegNum + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000896 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000897
Chris Lattnerdaa45552010-02-05 19:04:37 +0000898 case X86II::MRMSrcMem: {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000899 int AddrOperands = X86::AddrNumOperands;
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000900 unsigned FirstMemOp = CurOp+1;
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000901 if (HasVEX_4V) {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000902 ++AddrOperands;
903 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
904 }
Chris Lattnerdaa45552010-02-05 19:04:37 +0000905
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000906 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000907
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000908 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000909 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000910 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000911 break;
912 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000913
914 case X86II::MRM0r: case X86II::MRM1r:
915 case X86II::MRM2r: case X86II::MRM3r:
916 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000917 case X86II::MRM6r: case X86II::MRM7r:
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000918 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
919 CurOp++;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000920 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000921 EmitRegModRMByte(MI.getOperand(CurOp++),
922 (TSFlags & X86II::FormMask)-X86II::MRM0r,
923 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000924 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000925 case X86II::MRM0m: case X86II::MRM1m:
926 case X86II::MRM2m: case X86II::MRM3m:
927 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000928 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000929 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000930 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000931 TSFlags, CurByte, OS, Fixups);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000932 CurOp += X86::AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000933 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000934 case X86II::MRM_C1:
935 EmitByte(BaseOpcode, CurByte, OS);
936 EmitByte(0xC1, CurByte, OS);
937 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000938 case X86II::MRM_C2:
939 EmitByte(BaseOpcode, CurByte, OS);
940 EmitByte(0xC2, CurByte, OS);
941 break;
942 case X86II::MRM_C3:
943 EmitByte(BaseOpcode, CurByte, OS);
944 EmitByte(0xC3, CurByte, OS);
945 break;
946 case X86II::MRM_C4:
947 EmitByte(BaseOpcode, CurByte, OS);
948 EmitByte(0xC4, CurByte, OS);
949 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000950 case X86II::MRM_C8:
951 EmitByte(BaseOpcode, CurByte, OS);
952 EmitByte(0xC8, CurByte, OS);
953 break;
954 case X86II::MRM_C9:
955 EmitByte(BaseOpcode, CurByte, OS);
956 EmitByte(0xC9, CurByte, OS);
957 break;
958 case X86II::MRM_E8:
959 EmitByte(BaseOpcode, CurByte, OS);
960 EmitByte(0xE8, CurByte, OS);
961 break;
962 case X86II::MRM_F0:
963 EmitByte(BaseOpcode, CurByte, OS);
964 EmitByte(0xF0, CurByte, OS);
965 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000966 case X86II::MRM_F8:
967 EmitByte(BaseOpcode, CurByte, OS);
968 EmitByte(0xF8, CurByte, OS);
969 break;
Chris Lattnerb7790332010-02-13 03:42:24 +0000970 case X86II::MRM_F9:
971 EmitByte(BaseOpcode, CurByte, OS);
972 EmitByte(0xF9, CurByte, OS);
973 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000974 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000975
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000976 // If there is a remaining operand, it must be a trailing immediate. Emit it
977 // according to the right size for the instruction.
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000978 if (CurOp != NumOps) {
979 // The last source register of a 4 operand instruction in AVX is encoded
980 // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000981 if ((TSFlags >> 32) & X86II::VEX_I8IMM) {
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000982 const MCOperand &MO = MI.getOperand(CurOp++);
983 bool IsExtReg =
984 X86InstrInfo::isX86_64ExtendedReg(MO.getReg());
985 unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
986 RegNum |= GetX86RegNum(MO) << 4;
987 EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
988 Fixups);
Rafael Espindolaa8c02c32010-09-30 03:11:42 +0000989 } else {
990 unsigned FixupKind;
991 if (MI.getOpcode() == X86::MOV64ri32 || MI.getOpcode() == X86::MOV64mi32)
992 FixupKind = X86::reloc_signed_4byte;
993 else
994 FixupKind = getImmFixupKind(TSFlags);
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000995 EmitImmediate(MI.getOperand(CurOp++),
Rafael Espindolaa8c02c32010-09-30 03:11:42 +0000996 X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000997 CurByte, OS, Fixups);
Rafael Espindolaa8c02c32010-09-30 03:11:42 +0000998 }
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000999 }
1000
1001
Chris Lattner28249d92010-02-05 01:53:19 +00001002#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +00001003 // FIXME: Verify.
1004 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +00001005 errs() << "Cannot encode all operands of: ";
1006 MI.dump();
1007 errs() << '\n';
1008 abort();
1009 }
1010#endif
Chris Lattner45762472010-02-03 21:24:49 +00001011}