blob: 48b619a74ba8d7f044daa05fec53ecbc9cbd9c4c [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000027 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000029 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000030 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000031 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000032 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000033 </ol>
34 </li>
Chris Lattner00950542001-06-06 20:29:01 +000035 <li><a href="#typesystem">Type System</a>
36 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000038 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000039 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000040 <li><a href="#t_floating">Floating Point Types</a></li>
41 <li><a href="#t_void">Void Type</a></li>
42 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000043 </ol>
44 </li>
Chris Lattner00950542001-06-06 20:29:01 +000045 <li><a href="#t_derived">Derived Types</a>
46 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000047 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000048 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000049 <li><a href="#t_function">Function Type</a></li>
50 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000051 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000052 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000053 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000054 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000055 </ol>
56 </li>
57 </ol>
58 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000059 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000060 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000061 <li><a href="#simpleconstants">Simple Constants</a></li>
62 <li><a href="#aggregateconstants">Aggregate Constants</a></li>
63 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
64 <li><a href="#undefvalues">Undefined Values</a></li>
65 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000066 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000067 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000068 <li><a href="#othervalues">Other Values</a>
69 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000070 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000071 </ol>
72 </li>
Chris Lattner00950542001-06-06 20:29:01 +000073 <li><a href="#instref">Instruction Reference</a>
74 <ol>
75 <li><a href="#terminators">Terminator Instructions</a>
76 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000077 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
78 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000079 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
80 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000082 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000083 </ol>
84 </li>
Chris Lattner00950542001-06-06 20:29:01 +000085 <li><a href="#binaryops">Binary Operations</a>
86 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000087 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
88 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
89 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000090 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
91 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
92 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000093 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
94 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
95 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000096 </ol>
97 </li>
Chris Lattner00950542001-06-06 20:29:01 +000098 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
99 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000100 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
101 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
102 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000103 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000104 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000105 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000106 </ol>
107 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000108 <li><a href="#vectorops">Vector Operations</a>
109 <ol>
110 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
111 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
112 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000113 </ol>
114 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000115 <li><a href="#aggregateops">Aggregate Operations</a>
116 <ol>
117 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
118 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
119 </ol>
120 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000121 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000122 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000123 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
124 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
125 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000126 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
127 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
128 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000129 </ol>
130 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000131 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000132 <ol>
133 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
134 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000138 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
140 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
141 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000142 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
143 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000144 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000145 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000146 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000147 <li><a href="#otherops">Other Operations</a>
148 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000149 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
150 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000151 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
152 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000153 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000154 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000155 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000156 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000157 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000158 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000159 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000160 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000161 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000162 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000163 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
164 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000165 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
167 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000168 </ol>
169 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000170 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
171 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000172 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
174 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000175 </ol>
176 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000177 <li><a href="#int_codegen">Code Generator Intrinsics</a>
178 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000179 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
181 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
182 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
183 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
184 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
185 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000186 </ol>
187 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000188 <li><a href="#int_libc">Standard C Library Intrinsics</a>
189 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000190 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000195 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000198 </ol>
199 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000200 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000201 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000202 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000203 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
205 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000206 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000208 </ol>
209 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000210 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000211 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000212 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000213 <ol>
214 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000215 </ol>
216 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000217 <li><a href="#int_atomics">Atomic intrinsics</a>
218 <ol>
219 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
220 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
221 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
222 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
223 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
224 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
225 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
226 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
227 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
228 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
229 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
230 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
231 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
232 </ol>
233 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000234 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000235 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000236 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000237 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000238 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000239 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000240 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000241 '<tt>llvm.trap</tt>' Intrinsic</a></li>
242 <li><a href="#int_stackprotector">
243 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000244 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000245 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000246 </ol>
247 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000248</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000249
250<div class="doc_author">
251 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
252 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000253</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000254
Chris Lattner00950542001-06-06 20:29:01 +0000255<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000256<div class="doc_section"> <a name="abstract">Abstract </a></div>
257<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000258
Misha Brukman9d0919f2003-11-08 01:05:38 +0000259<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000260<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000261LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000262type safety, low-level operations, flexibility, and the capability of
263representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000264representation used throughout all phases of the LLVM compilation
265strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000266</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000267
Chris Lattner00950542001-06-06 20:29:01 +0000268<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000269<div class="doc_section"> <a name="introduction">Introduction</a> </div>
270<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
Misha Brukman9d0919f2003-11-08 01:05:38 +0000272<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000273
Chris Lattner261efe92003-11-25 01:02:51 +0000274<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000275different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000276representation (suitable for fast loading by a Just-In-Time compiler),
277and as a human readable assembly language representation. This allows
278LLVM to provide a powerful intermediate representation for efficient
279compiler transformations and analysis, while providing a natural means
280to debug and visualize the transformations. The three different forms
281of LLVM are all equivalent. This document describes the human readable
282representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000283
John Criswellc1f786c2005-05-13 22:25:59 +0000284<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000285while being expressive, typed, and extensible at the same time. It
286aims to be a "universal IR" of sorts, by being at a low enough level
287that high-level ideas may be cleanly mapped to it (similar to how
288microprocessors are "universal IR's", allowing many source languages to
289be mapped to them). By providing type information, LLVM can be used as
290the target of optimizations: for example, through pointer analysis, it
291can be proven that a C automatic variable is never accessed outside of
292the current function... allowing it to be promoted to a simple SSA
293value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000294
Misha Brukman9d0919f2003-11-08 01:05:38 +0000295</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000296
Chris Lattner00950542001-06-06 20:29:01 +0000297<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000298<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000299
Misha Brukman9d0919f2003-11-08 01:05:38 +0000300<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000301
Chris Lattner261efe92003-11-25 01:02:51 +0000302<p>It is important to note that this document describes 'well formed'
303LLVM assembly language. There is a difference between what the parser
304accepts and what is considered 'well formed'. For example, the
305following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000306
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000307<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000308<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000309%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000310</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000311</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000312
Chris Lattner261efe92003-11-25 01:02:51 +0000313<p>...because the definition of <tt>%x</tt> does not dominate all of
314its uses. The LLVM infrastructure provides a verification pass that may
315be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000316automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000317the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000318by the verifier pass indicate bugs in transformation passes or input to
319the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000320</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000321
Chris Lattnercc689392007-10-03 17:34:29 +0000322<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000323
Chris Lattner00950542001-06-06 20:29:01 +0000324<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000325<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000326<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000327
Misha Brukman9d0919f2003-11-08 01:05:38 +0000328<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000329
Reid Spencer2c452282007-08-07 14:34:28 +0000330 <p>LLVM identifiers come in two basic types: global and local. Global
331 identifiers (functions, global variables) begin with the @ character. Local
332 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohman0e451ce2008-10-14 16:51:45 +0000333 there are three different formats for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000334
Chris Lattner00950542001-06-06 20:29:01 +0000335<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000336 <li>Named values are represented as a string of characters with their prefix.
337 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
338 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000339 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar76dea952008-10-14 23:51:43 +0000340 with quotes. Special characters may be escaped using "\xx" where xx is the
341 ASCII code for the character in hexadecimal. In this way, any character can
342 be used in a name value, even quotes themselves.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000343
Reid Spencer2c452282007-08-07 14:34:28 +0000344 <li>Unnamed values are represented as an unsigned numeric value with their
345 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000346
Reid Spencercc16dc32004-12-09 18:02:53 +0000347 <li>Constants, which are described in a <a href="#constants">section about
348 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000349</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000350
Reid Spencer2c452282007-08-07 14:34:28 +0000351<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000352don't need to worry about name clashes with reserved words, and the set of
353reserved words may be expanded in the future without penalty. Additionally,
354unnamed identifiers allow a compiler to quickly come up with a temporary
355variable without having to avoid symbol table conflicts.</p>
356
Chris Lattner261efe92003-11-25 01:02:51 +0000357<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000358languages. There are keywords for different opcodes
359('<tt><a href="#i_add">add</a></tt>',
360 '<tt><a href="#i_bitcast">bitcast</a></tt>',
361 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000362href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000363and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000364none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000365
366<p>Here is an example of LLVM code to multiply the integer variable
367'<tt>%X</tt>' by 8:</p>
368
Misha Brukman9d0919f2003-11-08 01:05:38 +0000369<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000370
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000371<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000372<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000373%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000374</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000375</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000376
Misha Brukman9d0919f2003-11-08 01:05:38 +0000377<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000378
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000379<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000380<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000381%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000382</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000383</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000384
Misha Brukman9d0919f2003-11-08 01:05:38 +0000385<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000386
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000387<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000388<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000389<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
390<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
391%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000392</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000393</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000394
Chris Lattner261efe92003-11-25 01:02:51 +0000395<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
396important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000397
Chris Lattner00950542001-06-06 20:29:01 +0000398<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000399
400 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
401 line.</li>
402
403 <li>Unnamed temporaries are created when the result of a computation is not
404 assigned to a named value.</li>
405
Misha Brukman9d0919f2003-11-08 01:05:38 +0000406 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000407
Misha Brukman9d0919f2003-11-08 01:05:38 +0000408</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000409
John Criswelle4c57cc2005-05-12 16:52:32 +0000410<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000411demonstrating instructions, we will follow an instruction with a comment that
412defines the type and name of value produced. Comments are shown in italic
413text.</p>
414
Misha Brukman9d0919f2003-11-08 01:05:38 +0000415</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000416
417<!-- *********************************************************************** -->
418<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
419<!-- *********************************************************************** -->
420
421<!-- ======================================================================= -->
422<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
423</div>
424
425<div class="doc_text">
426
427<p>LLVM programs are composed of "Module"s, each of which is a
428translation unit of the input programs. Each module consists of
429functions, global variables, and symbol table entries. Modules may be
430combined together with the LLVM linker, which merges function (and
431global variable) definitions, resolves forward declarations, and merges
432symbol table entries. Here is an example of the "hello world" module:</p>
433
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000434<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000435<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000436<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
437 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000438
439<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000440<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000441
442<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000443define i32 @main() { <i>; i32()* </i>
Reid Spencerca86e162006-12-31 07:07:53 +0000444 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000445 %cast210 = <a
Chris Lattner6c0955b2007-06-12 17:01:15 +0000446 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000447
448 <i>; Call puts function to write out the string to stdout...</i>
449 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000450 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000451 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000452 href="#i_ret">ret</a> i32 0<br>}<br>
453</pre>
454</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000455
456<p>This example is made up of a <a href="#globalvars">global variable</a>
457named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
458function, and a <a href="#functionstructure">function definition</a>
459for "<tt>main</tt>".</p>
460
Chris Lattnere5d947b2004-12-09 16:36:40 +0000461<p>In general, a module is made up of a list of global values,
462where both functions and global variables are global values. Global values are
463represented by a pointer to a memory location (in this case, a pointer to an
464array of char, and a pointer to a function), and have one of the following <a
465href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000466
Chris Lattnere5d947b2004-12-09 16:36:40 +0000467</div>
468
469<!-- ======================================================================= -->
470<div class="doc_subsection">
471 <a name="linkage">Linkage Types</a>
472</div>
473
474<div class="doc_text">
475
476<p>
477All Global Variables and Functions have one of the following types of linkage:
478</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000479
480<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000481
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000482 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000483
484 <dd>Global values with internal linkage are only directly accessible by
485 objects in the current module. In particular, linking code into a module with
486 an internal global value may cause the internal to be renamed as necessary to
487 avoid collisions. Because the symbol is internal to the module, all
488 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000489 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000490 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000491
Chris Lattnerfa730212004-12-09 16:11:40 +0000492 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000493
Chris Lattner4887bd82007-01-14 06:51:48 +0000494 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
495 the same name when linkage occurs. This is typically used to implement
496 inline functions, templates, or other code which must be generated in each
497 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
498 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000499 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000500
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000501 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
502
503 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
504 linkage, except that unreferenced <tt>common</tt> globals may not be
505 discarded. This is used for globals that may be emitted in multiple
506 translation units, but that are not guaranteed to be emitted into every
507 translation unit that uses them. One example of this is tentative
508 definitions in C, such as "<tt>int X;</tt>" at global scope.
509 </dd>
510
Chris Lattnerfa730212004-12-09 16:11:40 +0000511 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000512
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000513 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
514 that some targets may choose to emit different assembly sequences for them
515 for target-dependent reasons. This is used for globals that are declared
516 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000517 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000518
Chris Lattnerfa730212004-12-09 16:11:40 +0000519 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000520
521 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
522 pointer to array type. When two global variables with appending linkage are
523 linked together, the two global arrays are appended together. This is the
524 LLVM, typesafe, equivalent of having the system linker append together
525 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000526 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000527
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000528 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000529 <dd>The semantics of this linkage follow the ELF object file model: the
530 symbol is weak until linked, if not linked, the symbol becomes null instead
531 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000532 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000533
Chris Lattnerfa730212004-12-09 16:11:40 +0000534 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000535
536 <dd>If none of the above identifiers are used, the global is externally
537 visible, meaning that it participates in linkage and can be used to resolve
538 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000539 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000540</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000541
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000542 <p>
543 The next two types of linkage are targeted for Microsoft Windows platform
544 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000545 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000546 </p>
547
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000548 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000549 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
550
551 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
552 or variable via a global pointer to a pointer that is set up by the DLL
553 exporting the symbol. On Microsoft Windows targets, the pointer name is
554 formed by combining <code>_imp__</code> and the function or variable name.
555 </dd>
556
557 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
558
559 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
560 pointer to a pointer in a DLL, so that it can be referenced with the
561 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
562 name is formed by combining <code>_imp__</code> and the function or variable
563 name.
564 </dd>
565
Chris Lattnerfa730212004-12-09 16:11:40 +0000566</dl>
567
Dan Gohmanf0032762008-11-24 17:18:39 +0000568<p>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000569variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
570variable and was linked with this one, one of the two would be renamed,
571preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
572external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000573outside of the current module.</p>
574<p>It is illegal for a function <i>declaration</i>
575to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000576or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000577<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000578linkages.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000579</div>
580
581<!-- ======================================================================= -->
582<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000583 <a name="callingconv">Calling Conventions</a>
584</div>
585
586<div class="doc_text">
587
588<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
589and <a href="#i_invoke">invokes</a> can all have an optional calling convention
590specified for the call. The calling convention of any pair of dynamic
591caller/callee must match, or the behavior of the program is undefined. The
592following calling conventions are supported by LLVM, and more may be added in
593the future:</p>
594
595<dl>
596 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
597
598 <dd>This calling convention (the default if no other calling convention is
599 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000600 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000601 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000602 </dd>
603
604 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
605
606 <dd>This calling convention attempts to make calls as fast as possible
607 (e.g. by passing things in registers). This calling convention allows the
608 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000609 without having to conform to an externally specified ABI (Application Binary
610 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000611 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
612 supported. This calling convention does not support varargs and requires the
613 prototype of all callees to exactly match the prototype of the function
614 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000615 </dd>
616
617 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
618
619 <dd>This calling convention attempts to make code in the caller as efficient
620 as possible under the assumption that the call is not commonly executed. As
621 such, these calls often preserve all registers so that the call does not break
622 any live ranges in the caller side. This calling convention does not support
623 varargs and requires the prototype of all callees to exactly match the
624 prototype of the function definition.
625 </dd>
626
Chris Lattnercfe6b372005-05-07 01:46:40 +0000627 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000628
629 <dd>Any calling convention may be specified by number, allowing
630 target-specific calling conventions to be used. Target specific calling
631 conventions start at 64.
632 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000633</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000634
635<p>More calling conventions can be added/defined on an as-needed basis, to
636support pascal conventions or any other well-known target-independent
637convention.</p>
638
639</div>
640
641<!-- ======================================================================= -->
642<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000643 <a name="visibility">Visibility Styles</a>
644</div>
645
646<div class="doc_text">
647
648<p>
649All Global Variables and Functions have one of the following visibility styles:
650</p>
651
652<dl>
653 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
654
Chris Lattnerd3eda892008-08-05 18:29:16 +0000655 <dd>On targets that use the ELF object file format, default visibility means
656 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000657 modules and, in shared libraries, means that the declared entity may be
658 overridden. On Darwin, default visibility means that the declaration is
659 visible to other modules. Default visibility corresponds to "external
660 linkage" in the language.
661 </dd>
662
663 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
664
665 <dd>Two declarations of an object with hidden visibility refer to the same
666 object if they are in the same shared object. Usually, hidden visibility
667 indicates that the symbol will not be placed into the dynamic symbol table,
668 so no other module (executable or shared library) can reference it
669 directly.
670 </dd>
671
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000672 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
673
674 <dd>On ELF, protected visibility indicates that the symbol will be placed in
675 the dynamic symbol table, but that references within the defining module will
676 bind to the local symbol. That is, the symbol cannot be overridden by another
677 module.
678 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000679</dl>
680
681</div>
682
683<!-- ======================================================================= -->
684<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000685 <a name="globalvars">Global Variables</a>
686</div>
687
688<div class="doc_text">
689
Chris Lattner3689a342005-02-12 19:30:21 +0000690<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000691instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000692an explicit section to be placed in, and may have an optional explicit alignment
693specified. A variable may be defined as "thread_local", which means that it
694will not be shared by threads (each thread will have a separated copy of the
695variable). A variable may be defined as a global "constant," which indicates
696that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000697optimization, allowing the global data to be placed in the read-only section of
698an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000699cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000700
701<p>
702LLVM explicitly allows <em>declarations</em> of global variables to be marked
703constant, even if the final definition of the global is not. This capability
704can be used to enable slightly better optimization of the program, but requires
705the language definition to guarantee that optimizations based on the
706'constantness' are valid for the translation units that do not include the
707definition.
708</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000709
710<p>As SSA values, global variables define pointer values that are in
711scope (i.e. they dominate) all basic blocks in the program. Global
712variables always define a pointer to their "content" type because they
713describe a region of memory, and all memory objects in LLVM are
714accessed through pointers.</p>
715
Christopher Lamb284d9922007-12-11 09:31:00 +0000716<p>A global variable may be declared to reside in a target-specifc numbered
717address space. For targets that support them, address spaces may affect how
718optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000719the variable. The default address space is zero. The address space qualifier
720must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000721
Chris Lattner88f6c462005-11-12 00:45:07 +0000722<p>LLVM allows an explicit section to be specified for globals. If the target
723supports it, it will emit globals to the section specified.</p>
724
Chris Lattner2cbdc452005-11-06 08:02:57 +0000725<p>An explicit alignment may be specified for a global. If not present, or if
726the alignment is set to zero, the alignment of the global is set by the target
727to whatever it feels convenient. If an explicit alignment is specified, the
728global is forced to have at least that much alignment. All alignments must be
729a power of 2.</p>
730
Christopher Lamb284d9922007-12-11 09:31:00 +0000731<p>For example, the following defines a global in a numbered address space with
732an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000733
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000734<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000735<pre>
Christopher Lamb284d9922007-12-11 09:31:00 +0000736@G = constant float 1.0 addrspace(5), section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000737</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000738</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000739
Chris Lattnerfa730212004-12-09 16:11:40 +0000740</div>
741
742
743<!-- ======================================================================= -->
744<div class="doc_subsection">
745 <a name="functionstructure">Functions</a>
746</div>
747
748<div class="doc_text">
749
Reid Spencerca86e162006-12-31 07:07:53 +0000750<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
751an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000752<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000753<a href="#callingconv">calling convention</a>, a return type, an optional
754<a href="#paramattrs">parameter attribute</a> for the return type, a function
755name, a (possibly empty) argument list (each with optional
Devang Patelf642f472008-10-06 18:50:38 +0000756<a href="#paramattrs">parameter attributes</a>), optional
757<a href="#fnattrs">function attributes</a>, an optional section,
758an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000759an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000760
761LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
762optional <a href="#linkage">linkage type</a>, an optional
763<a href="#visibility">visibility style</a>, an optional
764<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000765<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000766name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000767<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000768
Chris Lattnerd3eda892008-08-05 18:29:16 +0000769<p>A function definition contains a list of basic blocks, forming the CFG
770(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000771the function. Each basic block may optionally start with a label (giving the
772basic block a symbol table entry), contains a list of instructions, and ends
773with a <a href="#terminators">terminator</a> instruction (such as a branch or
774function return).</p>
775
Chris Lattner4a3c9012007-06-08 16:52:14 +0000776<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000777executed on entrance to the function, and it is not allowed to have predecessor
778basic blocks (i.e. there can not be any branches to the entry block of a
779function). Because the block can have no predecessors, it also cannot have any
780<a href="#i_phi">PHI nodes</a>.</p>
781
Chris Lattner88f6c462005-11-12 00:45:07 +0000782<p>LLVM allows an explicit section to be specified for functions. If the target
783supports it, it will emit functions to the section specified.</p>
784
Chris Lattner2cbdc452005-11-06 08:02:57 +0000785<p>An explicit alignment may be specified for a function. If not present, or if
786the alignment is set to zero, the alignment of the function is set by the target
787to whatever it feels convenient. If an explicit alignment is specified, the
788function is forced to have at least that much alignment. All alignments must be
789a power of 2.</p>
790
Devang Patel307e8ab2008-10-07 17:48:33 +0000791 <h5>Syntax:</h5>
792
793<div class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000794<tt>
795define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
796 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
797 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
798 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
799 [<a href="#gc">gc</a>] { ... }
800</tt>
Devang Patel307e8ab2008-10-07 17:48:33 +0000801</div>
802
Chris Lattnerfa730212004-12-09 16:11:40 +0000803</div>
804
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000805
806<!-- ======================================================================= -->
807<div class="doc_subsection">
808 <a name="aliasstructure">Aliases</a>
809</div>
810<div class="doc_text">
811 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000812 function, global variable, another alias or bitcast of global value). Aliases
813 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000814 optional <a href="#visibility">visibility style</a>.</p>
815
816 <h5>Syntax:</h5>
817
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000818<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000819<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000820@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000821</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000822</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000823
824</div>
825
826
827
Chris Lattner4e9aba72006-01-23 23:23:47 +0000828<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000829<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
830<div class="doc_text">
831 <p>The return type and each parameter of a function type may have a set of
832 <i>parameter attributes</i> associated with them. Parameter attributes are
833 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000834 a function. Parameter attributes are considered to be part of the function,
835 not of the function type, so functions with different parameter attributes
836 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000837
Reid Spencer950e9f82007-01-15 18:27:39 +0000838 <p>Parameter attributes are simple keywords that follow the type specified. If
839 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000840 example:</p>
841
842<div class="doc_code">
843<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000844declare i32 @printf(i8* noalias , ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000845declare i32 @atoi(i8 zeroext)
846declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000847</pre>
848</div>
849
Duncan Sandsdc024672007-11-27 13:23:08 +0000850 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
851 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000852
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000853 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000854 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000855 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000856 <dd>This indicates to the code generator that the parameter or return value
857 should be zero-extended to a 32-bit value by the caller (for a parameter)
858 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000859
Reid Spencer9445e9a2007-07-19 23:13:04 +0000860 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000861 <dd>This indicates to the code generator that the parameter or return value
862 should be sign-extended to a 32-bit value by the caller (for a parameter)
863 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000864
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000865 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000866 <dd>This indicates that this parameter or return value should be treated
867 in a special target-dependent fashion during while emitting code for a
868 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000869 to memory, though some targets use it to distinguish between two different
870 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000871
Duncan Sandsedb05df2008-10-06 08:14:18 +0000872 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000873 <dd>This indicates that the pointer parameter should really be passed by
874 value to the function. The attribute implies that a hidden copy of the
875 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000876 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000877 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sandsedb05df2008-10-06 08:14:18 +0000878 value, but is also valid on pointers to scalars. The copy is considered to
879 belong to the caller not the callee (for example,
880 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelf642f472008-10-06 18:50:38 +0000881 <tt>byval</tt> parameters). This is not a valid attribute for return
882 values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000883
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000884 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000885 <dd>This indicates that the pointer parameter specifies the address of a
886 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000887 This pointer must be guaranteed by the caller to be valid: loads and stores
888 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelf642f472008-10-06 18:50:38 +0000889 be applied to the first parameter. This is not a valid attribute for
890 return values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000891
Zhou Shengfebca342007-06-05 05:28:26 +0000892 <dt><tt>noalias</tt></dt>
Nick Lewycky02ff3082008-11-24 03:41:24 +0000893 <dd>This indicates that the pointer does not alias any global or any other
894 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyb2b32fd2008-11-24 05:00:44 +0000895 case. On a function return value, <tt>noalias</tt> additionally indicates
896 that the pointer does not alias any other pointers visible to the
Torok Edwin96826072008-11-24 08:02:24 +0000897 caller. Note that this applies only to pointers that can be used to actually
898 load/store a value: NULL, unique pointers from malloc(0), and freed pointers
899 are considered to not alias anything.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000900
Duncan Sands50f19f52007-07-27 19:57:41 +0000901 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000902 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelf642f472008-10-06 18:50:38 +0000903 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
904 attribute for return values.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000905 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000906
Reid Spencerca86e162006-12-31 07:07:53 +0000907</div>
908
909<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000910<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000911 <a name="gc">Garbage Collector Names</a>
912</div>
913
914<div class="doc_text">
915<p>Each function may specify a garbage collector name, which is simply a
916string.</p>
917
918<div class="doc_code"><pre
919>define void @f() gc "name" { ...</pre></div>
920
921<p>The compiler declares the supported values of <i>name</i>. Specifying a
922collector which will cause the compiler to alter its output in order to support
923the named garbage collection algorithm.</p>
924</div>
925
926<!-- ======================================================================= -->
927<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000928 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +0000929</div>
930
931<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000932
933<p>Function attributes are set to communicate additional information about
934 a function. Function attributes are considered to be part of the function,
935 not of the function type, so functions with different parameter attributes
936 can have the same function type.</p>
937
938 <p>Function attributes are simple keywords that follow the type specified. If
939 multiple attributes are needed, they are space separated. For
940 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +0000941
942<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000943<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000944define void @f() noinline { ... }
945define void @f() alwaysinline { ... }
946define void @f() alwaysinline optsize { ... }
947define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000948</pre>
Devang Patelf8b94812008-09-04 23:05:13 +0000949</div>
950
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000951<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000952<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000953<dd>This attribute indicates that the inliner should attempt to inline this
954function into callers whenever possible, ignoring any active inlining size
955threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000956
Devang Patel2c9c3e72008-09-26 23:51:19 +0000957<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000958<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner94b5f7d2008-10-05 17:14:59 +0000959in any situation. This attribute may not be used together with the
Chris Lattner88d4b592008-10-04 18:23:17 +0000960<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000961
Devang Patel2c9c3e72008-09-26 23:51:19 +0000962<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +0000963<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +0000964make choices that keep the code size of this function low, and otherwise do
965optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000966
Devang Patel2c9c3e72008-09-26 23:51:19 +0000967<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000968<dd>This function attribute indicates that the function never returns normally.
969This produces undefined behavior at runtime if the function ever does
970dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000971
972<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000973<dd>This function attribute indicates that the function never returns with an
974unwind or exceptional control flow. If the function does unwind, its runtime
975behavior is undefined.</dd>
976
977<dt><tt>readnone</tt></dt>
Duncan Sandsedb05df2008-10-06 08:14:18 +0000978<dd>This attribute indicates that the function computes its result (or the
979exception it throws) based strictly on its arguments, without dereferencing any
980pointer arguments or otherwise accessing any mutable state (e.g. memory, control
981registers, etc) visible to caller functions. It does not write through any
982pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
983never changes any state visible to callers.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000984
Duncan Sandsedb05df2008-10-06 08:14:18 +0000985<dt><tt><a name="readonly">readonly</a></tt></dt>
986<dd>This attribute indicates that the function does not write through any
987pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
988or otherwise modify any state (e.g. memory, control registers, etc) visible to
989caller functions. It may dereference pointer arguments and read state that may
990be set in the caller. A readonly function always returns the same value (or
991throws the same exception) when called with the same set of arguments and global
992state.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +0000993
994<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +0000995<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendling31359ba2008-11-13 01:02:51 +0000996protector. It is in the form of a "canary"&mdash;a random value placed on the
997stack before the local variables that's checked upon return from the function to
998see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendlingbaa39d82008-11-26 19:19:05 +0000999needs stack protectors or not.
Bill Wendling31359ba2008-11-13 01:02:51 +00001000
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001001<p>If a function that has an <tt>ssp</tt> attribute is inlined into a function
1002that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
1003have an <tt>ssp</tt> attribute.</p></dd>
1004
1005<dt><tt>sspreq</tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001006<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendling31359ba2008-11-13 01:02:51 +00001007stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001008function attribute.
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001009
1010<p>If a function that has an <tt>sspreq</tt> attribute is inlined into a
1011function that doesn't have an <tt>sspreq</tt> attribute or which has
1012an <tt>ssp</tt> attribute, then the resulting function will have
1013an <tt>sspreq</tt> attribute.</p></dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001014</dl>
1015
Devang Patelf8b94812008-09-04 23:05:13 +00001016</div>
1017
1018<!-- ======================================================================= -->
1019<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001020 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001021</div>
1022
1023<div class="doc_text">
1024<p>
1025Modules may contain "module-level inline asm" blocks, which corresponds to the
1026GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1027LLVM and treated as a single unit, but may be separated in the .ll file if
1028desired. The syntax is very simple:
1029</p>
1030
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001031<div class="doc_code">
1032<pre>
1033module asm "inline asm code goes here"
1034module asm "more can go here"
1035</pre>
1036</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001037
1038<p>The strings can contain any character by escaping non-printable characters.
1039 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1040 for the number.
1041</p>
1042
1043<p>
1044 The inline asm code is simply printed to the machine code .s file when
1045 assembly code is generated.
1046</p>
1047</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001048
Reid Spencerde151942007-02-19 23:54:10 +00001049<!-- ======================================================================= -->
1050<div class="doc_subsection">
1051 <a name="datalayout">Data Layout</a>
1052</div>
1053
1054<div class="doc_text">
1055<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001056data is to be laid out in memory. The syntax for the data layout is simply:</p>
1057<pre> target datalayout = "<i>layout specification</i>"</pre>
1058<p>The <i>layout specification</i> consists of a list of specifications
1059separated by the minus sign character ('-'). Each specification starts with a
1060letter and may include other information after the letter to define some
1061aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001062<dl>
1063 <dt><tt>E</tt></dt>
1064 <dd>Specifies that the target lays out data in big-endian form. That is, the
1065 bits with the most significance have the lowest address location.</dd>
1066 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001067 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001068 the bits with the least significance have the lowest address location.</dd>
1069 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1070 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1071 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1072 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1073 too.</dd>
1074 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1075 <dd>This specifies the alignment for an integer type of a given bit
1076 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1077 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1078 <dd>This specifies the alignment for a vector type of a given bit
1079 <i>size</i>.</dd>
1080 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1081 <dd>This specifies the alignment for a floating point type of a given bit
1082 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1083 (double).</dd>
1084 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1085 <dd>This specifies the alignment for an aggregate type of a given bit
1086 <i>size</i>.</dd>
1087</dl>
1088<p>When constructing the data layout for a given target, LLVM starts with a
1089default set of specifications which are then (possibly) overriden by the
1090specifications in the <tt>datalayout</tt> keyword. The default specifications
1091are given in this list:</p>
1092<ul>
1093 <li><tt>E</tt> - big endian</li>
1094 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1095 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1096 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1097 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1098 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001099 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001100 alignment of 64-bits</li>
1101 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1102 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1103 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1104 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1105 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1106</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001107<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohman0e451ce2008-10-14 16:51:45 +00001108following rules:</p>
Reid Spencerde151942007-02-19 23:54:10 +00001109<ol>
1110 <li>If the type sought is an exact match for one of the specifications, that
1111 specification is used.</li>
1112 <li>If no match is found, and the type sought is an integer type, then the
1113 smallest integer type that is larger than the bitwidth of the sought type is
1114 used. If none of the specifications are larger than the bitwidth then the the
1115 largest integer type is used. For example, given the default specifications
1116 above, the i7 type will use the alignment of i8 (next largest) while both
1117 i65 and i256 will use the alignment of i64 (largest specified).</li>
1118 <li>If no match is found, and the type sought is a vector type, then the
1119 largest vector type that is smaller than the sought vector type will be used
Dan Gohman0e451ce2008-10-14 16:51:45 +00001120 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1121 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001122</ol>
1123</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001124
Chris Lattner00950542001-06-06 20:29:01 +00001125<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001126<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1127<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001128
Misha Brukman9d0919f2003-11-08 01:05:38 +00001129<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001130
Misha Brukman9d0919f2003-11-08 01:05:38 +00001131<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001132intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001133optimizations to be performed on the intermediate representation directly,
1134without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001135extra analyses on the side before the transformation. A strong type
1136system makes it easier to read the generated code and enables novel
1137analyses and transformations that are not feasible to perform on normal
1138three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001139
1140</div>
1141
Chris Lattner00950542001-06-06 20:29:01 +00001142<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001143<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001144Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001145<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001146<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001147classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001148
1149<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001150 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001151 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001152 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001153 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001154 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001155 </tr>
1156 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001157 <td><a href="#t_floating">floating point</a></td>
1158 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001159 </tr>
1160 <tr>
1161 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001162 <td><a href="#t_integer">integer</a>,
1163 <a href="#t_floating">floating point</a>,
1164 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001165 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001166 <a href="#t_struct">structure</a>,
1167 <a href="#t_array">array</a>,
Dan Gohmanade5faa2008-05-23 22:50:26 +00001168 <a href="#t_label">label</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001169 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001170 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001171 <tr>
1172 <td><a href="#t_primitive">primitive</a></td>
1173 <td><a href="#t_label">label</a>,
1174 <a href="#t_void">void</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001175 <a href="#t_floating">floating point</a>.</td>
1176 </tr>
1177 <tr>
1178 <td><a href="#t_derived">derived</a></td>
1179 <td><a href="#t_integer">integer</a>,
1180 <a href="#t_array">array</a>,
1181 <a href="#t_function">function</a>,
1182 <a href="#t_pointer">pointer</a>,
1183 <a href="#t_struct">structure</a>,
1184 <a href="#t_pstruct">packed structure</a>,
1185 <a href="#t_vector">vector</a>,
1186 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001187 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001188 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001189 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001190</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001191
Chris Lattner261efe92003-11-25 01:02:51 +00001192<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1193most important. Values of these types are the only ones which can be
1194produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001195instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001196</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001197
Chris Lattner00950542001-06-06 20:29:01 +00001198<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001199<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001200
Chris Lattner4f69f462008-01-04 04:32:38 +00001201<div class="doc_text">
1202<p>The primitive types are the fundamental building blocks of the LLVM
1203system.</p>
1204
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001205</div>
1206
Chris Lattner4f69f462008-01-04 04:32:38 +00001207<!-- _______________________________________________________________________ -->
1208<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1209
1210<div class="doc_text">
1211 <table>
1212 <tbody>
1213 <tr><th>Type</th><th>Description</th></tr>
1214 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1215 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1216 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1217 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1218 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1219 </tbody>
1220 </table>
1221</div>
1222
1223<!-- _______________________________________________________________________ -->
1224<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1225
1226<div class="doc_text">
1227<h5>Overview:</h5>
1228<p>The void type does not represent any value and has no size.</p>
1229
1230<h5>Syntax:</h5>
1231
1232<pre>
1233 void
1234</pre>
1235</div>
1236
1237<!-- _______________________________________________________________________ -->
1238<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1239
1240<div class="doc_text">
1241<h5>Overview:</h5>
1242<p>The label type represents code labels.</p>
1243
1244<h5>Syntax:</h5>
1245
1246<pre>
1247 label
1248</pre>
1249</div>
1250
1251
1252<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001253<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001254
Misha Brukman9d0919f2003-11-08 01:05:38 +00001255<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001256
Chris Lattner261efe92003-11-25 01:02:51 +00001257<p>The real power in LLVM comes from the derived types in the system.
1258This is what allows a programmer to represent arrays, functions,
1259pointers, and other useful types. Note that these derived types may be
1260recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001261
Misha Brukman9d0919f2003-11-08 01:05:38 +00001262</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001263
Chris Lattner00950542001-06-06 20:29:01 +00001264<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001265<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1266
1267<div class="doc_text">
1268
1269<h5>Overview:</h5>
1270<p>The integer type is a very simple derived type that simply specifies an
1271arbitrary bit width for the integer type desired. Any bit width from 1 bit to
12722^23-1 (about 8 million) can be specified.</p>
1273
1274<h5>Syntax:</h5>
1275
1276<pre>
1277 iN
1278</pre>
1279
1280<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1281value.</p>
1282
1283<h5>Examples:</h5>
1284<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001285 <tbody>
1286 <tr>
1287 <td><tt>i1</tt></td>
1288 <td>a single-bit integer.</td>
1289 </tr><tr>
1290 <td><tt>i32</tt></td>
1291 <td>a 32-bit integer.</td>
1292 </tr><tr>
1293 <td><tt>i1942652</tt></td>
1294 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001295 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001296 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001297</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001298</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001299
1300<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001301<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001302
Misha Brukman9d0919f2003-11-08 01:05:38 +00001303<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001304
Chris Lattner00950542001-06-06 20:29:01 +00001305<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001306
Misha Brukman9d0919f2003-11-08 01:05:38 +00001307<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001308sequentially in memory. The array type requires a size (number of
1309elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001310
Chris Lattner7faa8832002-04-14 06:13:44 +00001311<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001312
1313<pre>
1314 [&lt;# elements&gt; x &lt;elementtype&gt;]
1315</pre>
1316
John Criswelle4c57cc2005-05-12 16:52:32 +00001317<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001318be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001319
Chris Lattner7faa8832002-04-14 06:13:44 +00001320<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001321<table class="layout">
1322 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001323 <td class="left"><tt>[40 x i32]</tt></td>
1324 <td class="left">Array of 40 32-bit integer values.</td>
1325 </tr>
1326 <tr class="layout">
1327 <td class="left"><tt>[41 x i32]</tt></td>
1328 <td class="left">Array of 41 32-bit integer values.</td>
1329 </tr>
1330 <tr class="layout">
1331 <td class="left"><tt>[4 x i8]</tt></td>
1332 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001333 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001334</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001335<p>Here are some examples of multidimensional arrays:</p>
1336<table class="layout">
1337 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001338 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1339 <td class="left">3x4 array of 32-bit integer values.</td>
1340 </tr>
1341 <tr class="layout">
1342 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1343 <td class="left">12x10 array of single precision floating point values.</td>
1344 </tr>
1345 <tr class="layout">
1346 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1347 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001348 </tr>
1349</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001350
John Criswell0ec250c2005-10-24 16:17:18 +00001351<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1352length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001353LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1354As a special case, however, zero length arrays are recognized to be variable
1355length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001356type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001357
Misha Brukman9d0919f2003-11-08 01:05:38 +00001358</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001359
Chris Lattner00950542001-06-06 20:29:01 +00001360<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001361<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001362<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001363
Chris Lattner00950542001-06-06 20:29:01 +00001364<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001365
Chris Lattner261efe92003-11-25 01:02:51 +00001366<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001367consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001368return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001369If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001370class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001371
Chris Lattner00950542001-06-06 20:29:01 +00001372<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001373
1374<pre>
1375 &lt;returntype list&gt; (&lt;parameter list&gt;)
1376</pre>
1377
John Criswell0ec250c2005-10-24 16:17:18 +00001378<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001379specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001380which indicates that the function takes a variable number of arguments.
1381Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001382 href="#int_varargs">variable argument handling intrinsic</a> functions.
1383'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1384<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001385
Chris Lattner00950542001-06-06 20:29:01 +00001386<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001387<table class="layout">
1388 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001389 <td class="left"><tt>i32 (i32)</tt></td>
1390 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001391 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001392 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001393 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001394 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001395 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1396 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001397 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001398 <tt>float</tt>.
1399 </td>
1400 </tr><tr class="layout">
1401 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1402 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001403 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001404 which returns an integer. This is the signature for <tt>printf</tt> in
1405 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001406 </td>
Devang Patela582f402008-03-24 05:35:41 +00001407 </tr><tr class="layout">
1408 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanb0a57aa2008-11-27 06:41:20 +00001409 <td class="left">A function taking an <tt>i32</tt>, returning two
1410 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001411 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001412 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001413</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001414
Misha Brukman9d0919f2003-11-08 01:05:38 +00001415</div>
Chris Lattner00950542001-06-06 20:29:01 +00001416<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001417<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001418<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001419<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001420<p>The structure type is used to represent a collection of data members
1421together in memory. The packing of the field types is defined to match
1422the ABI of the underlying processor. The elements of a structure may
1423be any type that has a size.</p>
1424<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1425and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1426field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1427instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001428<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001429<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001430<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001431<table class="layout">
1432 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001433 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1434 <td class="left">A triple of three <tt>i32</tt> values</td>
1435 </tr><tr class="layout">
1436 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1437 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1438 second element is a <a href="#t_pointer">pointer</a> to a
1439 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1440 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001441 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001442</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001443</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001444
Chris Lattner00950542001-06-06 20:29:01 +00001445<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001446<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1447</div>
1448<div class="doc_text">
1449<h5>Overview:</h5>
1450<p>The packed structure type is used to represent a collection of data members
1451together in memory. There is no padding between fields. Further, the alignment
1452of a packed structure is 1 byte. The elements of a packed structure may
1453be any type that has a size.</p>
1454<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1455and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1456field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1457instruction.</p>
1458<h5>Syntax:</h5>
1459<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1460<h5>Examples:</h5>
1461<table class="layout">
1462 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001463 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1464 <td class="left">A triple of three <tt>i32</tt> values</td>
1465 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001466 <td class="left">
1467<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001468 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1469 second element is a <a href="#t_pointer">pointer</a> to a
1470 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1471 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001472 </tr>
1473</table>
1474</div>
1475
1476<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001477<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001478<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001479<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001480<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001481reference to another object, which must live in memory. Pointer types may have
1482an optional address space attribute defining the target-specific numbered
1483address space where the pointed-to object resides. The default address space is
1484zero.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001485<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001486<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001487<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001488<table class="layout">
1489 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001490 <td class="left"><tt>[4x i32]*</tt></td>
1491 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1492 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1493 </tr>
1494 <tr class="layout">
1495 <td class="left"><tt>i32 (i32 *) *</tt></td>
1496 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001497 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001498 <tt>i32</tt>.</td>
1499 </tr>
1500 <tr class="layout">
1501 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1502 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1503 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001504 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001505</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001506</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001507
Chris Lattnera58561b2004-08-12 19:12:28 +00001508<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001509<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001510<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001511
Chris Lattnera58561b2004-08-12 19:12:28 +00001512<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001513
Reid Spencer485bad12007-02-15 03:07:05 +00001514<p>A vector type is a simple derived type that represents a vector
1515of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001516are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001517A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001518elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001519of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001520considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001521
Chris Lattnera58561b2004-08-12 19:12:28 +00001522<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001523
1524<pre>
1525 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1526</pre>
1527
John Criswellc1f786c2005-05-13 22:25:59 +00001528<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001529be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001530
Chris Lattnera58561b2004-08-12 19:12:28 +00001531<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001532
Reid Spencerd3f876c2004-11-01 08:19:36 +00001533<table class="layout">
1534 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001535 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1536 <td class="left">Vector of 4 32-bit integer values.</td>
1537 </tr>
1538 <tr class="layout">
1539 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1540 <td class="left">Vector of 8 32-bit floating-point values.</td>
1541 </tr>
1542 <tr class="layout">
1543 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1544 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001545 </tr>
1546</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001547</div>
1548
Chris Lattner69c11bb2005-04-25 17:34:15 +00001549<!-- _______________________________________________________________________ -->
1550<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1551<div class="doc_text">
1552
1553<h5>Overview:</h5>
1554
1555<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001556corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001557In LLVM, opaque types can eventually be resolved to any type (not just a
1558structure type).</p>
1559
1560<h5>Syntax:</h5>
1561
1562<pre>
1563 opaque
1564</pre>
1565
1566<h5>Examples:</h5>
1567
1568<table class="layout">
1569 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001570 <td class="left"><tt>opaque</tt></td>
1571 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001572 </tr>
1573</table>
1574</div>
1575
1576
Chris Lattnerc3f59762004-12-09 17:30:23 +00001577<!-- *********************************************************************** -->
1578<div class="doc_section"> <a name="constants">Constants</a> </div>
1579<!-- *********************************************************************** -->
1580
1581<div class="doc_text">
1582
1583<p>LLVM has several different basic types of constants. This section describes
1584them all and their syntax.</p>
1585
1586</div>
1587
1588<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001589<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001590
1591<div class="doc_text">
1592
1593<dl>
1594 <dt><b>Boolean constants</b></dt>
1595
1596 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001597 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001598 </dd>
1599
1600 <dt><b>Integer constants</b></dt>
1601
Reid Spencercc16dc32004-12-09 18:02:53 +00001602 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001603 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001604 integer types.
1605 </dd>
1606
1607 <dt><b>Floating point constants</b></dt>
1608
1609 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1610 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001611 notation (see below). The assembler requires the exact decimal value of
1612 a floating-point constant. For example, the assembler accepts 1.25 but
1613 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1614 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001615
1616 <dt><b>Null pointer constants</b></dt>
1617
John Criswell9e2485c2004-12-10 15:51:16 +00001618 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001619 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1620
1621</dl>
1622
John Criswell9e2485c2004-12-10 15:51:16 +00001623<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001624of floating point constants. For example, the form '<tt>double
16250x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
16264.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001627(and the only time that they are generated by the disassembler) is when a
1628floating point constant must be emitted but it cannot be represented as a
1629decimal floating point number. For example, NaN's, infinities, and other
1630special values are represented in their IEEE hexadecimal format so that
1631assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001632
1633</div>
1634
1635<!-- ======================================================================= -->
1636<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1637</div>
1638
1639<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001640<p>Aggregate constants arise from aggregation of simple constants
1641and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001642
1643<dl>
1644 <dt><b>Structure constants</b></dt>
1645
1646 <dd>Structure constants are represented with notation similar to structure
1647 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001648 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1649 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001650 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001651 types of elements must match those specified by the type.
1652 </dd>
1653
1654 <dt><b>Array constants</b></dt>
1655
1656 <dd>Array constants are represented with notation similar to array type
1657 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001658 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001659 constants must have <a href="#t_array">array type</a>, and the number and
1660 types of elements must match those specified by the type.
1661 </dd>
1662
Reid Spencer485bad12007-02-15 03:07:05 +00001663 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001664
Reid Spencer485bad12007-02-15 03:07:05 +00001665 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001666 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001667 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001668 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001669 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001670 match those specified by the type.
1671 </dd>
1672
1673 <dt><b>Zero initialization</b></dt>
1674
1675 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1676 value to zero of <em>any</em> type, including scalar and aggregate types.
1677 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001678 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001679 initializers.
1680 </dd>
1681</dl>
1682
1683</div>
1684
1685<!-- ======================================================================= -->
1686<div class="doc_subsection">
1687 <a name="globalconstants">Global Variable and Function Addresses</a>
1688</div>
1689
1690<div class="doc_text">
1691
1692<p>The addresses of <a href="#globalvars">global variables</a> and <a
1693href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001694constants. These constants are explicitly referenced when the <a
1695href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001696href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1697file:</p>
1698
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001699<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001700<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001701@X = global i32 17
1702@Y = global i32 42
1703@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001704</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001705</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001706
1707</div>
1708
1709<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001710<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001711<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001712 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001713 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001714 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001715
Reid Spencer2dc45b82004-12-09 18:13:12 +00001716 <p>Undefined values indicate to the compiler that the program is well defined
1717 no matter what value is used, giving the compiler more freedom to optimize.
1718 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001719</div>
1720
1721<!-- ======================================================================= -->
1722<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1723</div>
1724
1725<div class="doc_text">
1726
1727<p>Constant expressions are used to allow expressions involving other constants
1728to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001729href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001730that does not have side effects (e.g. load and call are not supported). The
1731following is the syntax for constant expressions:</p>
1732
1733<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001734 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1735 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001736 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001737
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001738 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1739 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001740 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001741
1742 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1743 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001744 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001745
1746 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1747 <dd>Truncate a floating point constant to another floating point type. The
1748 size of CST must be larger than the size of TYPE. Both types must be
1749 floating point.</dd>
1750
1751 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1752 <dd>Floating point extend a constant to another type. The size of CST must be
1753 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1754
Reid Spencer1539a1c2007-07-31 14:40:14 +00001755 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001756 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001757 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1758 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1759 of the same number of elements. If the value won't fit in the integer type,
1760 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001761
Reid Spencerd4448792006-11-09 23:03:26 +00001762 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001763 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001764 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1765 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1766 of the same number of elements. If the value won't fit in the integer type,
1767 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001768
Reid Spencerd4448792006-11-09 23:03:26 +00001769 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001770 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001771 constant. TYPE must be a scalar or vector floating point type. CST must be of
1772 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1773 of the same number of elements. If the value won't fit in the floating point
1774 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001775
Reid Spencerd4448792006-11-09 23:03:26 +00001776 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001777 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001778 constant. TYPE must be a scalar or vector floating point type. CST must be of
1779 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1780 of the same number of elements. If the value won't fit in the floating point
1781 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001782
Reid Spencer5c0ef472006-11-11 23:08:07 +00001783 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1784 <dd>Convert a pointer typed constant to the corresponding integer constant
1785 TYPE must be an integer type. CST must be of pointer type. The CST value is
1786 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1787
1788 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1789 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1790 pointer type. CST must be of integer type. The CST value is zero extended,
1791 truncated, or unchanged to make it fit in a pointer size. This one is
1792 <i>really</i> dangerous!</dd>
1793
1794 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001795 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1796 identical (same number of bits). The conversion is done as if the CST value
1797 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001798 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001799 vector types to any other type, as long as they have the same bit width. For
Dan Gohman500233a2008-09-08 16:45:59 +00001800 pointers it is only valid to cast to another pointer type. It is not valid
1801 to bitcast to or from an aggregate type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001802 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001803
1804 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1805
1806 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1807 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1808 instruction, the index list may have zero or more indexes, which are required
1809 to make sense for the type of "CSTPTR".</dd>
1810
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001811 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1812
1813 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001814 constants.</dd>
1815
1816 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1817 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1818
1819 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1820 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001821
Nate Begemanac80ade2008-05-12 19:01:56 +00001822 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1823 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1824
1825 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1826 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1827
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001828 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1829
1830 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohman0e451ce2008-10-14 16:51:45 +00001831 operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001832
Robert Bocchino05ccd702006-01-15 20:48:27 +00001833 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1834
1835 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001836 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001837
Chris Lattnerc1989542006-04-08 00:13:41 +00001838
1839 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1840
1841 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001842 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001843
Chris Lattnerc3f59762004-12-09 17:30:23 +00001844 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1845
Reid Spencer2dc45b82004-12-09 18:13:12 +00001846 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1847 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001848 binary</a> operations. The constraints on operands are the same as those for
1849 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001850 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001851</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001852</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001853
Chris Lattner00950542001-06-06 20:29:01 +00001854<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001855<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1856<!-- *********************************************************************** -->
1857
1858<!-- ======================================================================= -->
1859<div class="doc_subsection">
1860<a name="inlineasm">Inline Assembler Expressions</a>
1861</div>
1862
1863<div class="doc_text">
1864
1865<p>
1866LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1867Module-Level Inline Assembly</a>) through the use of a special value. This
1868value represents the inline assembler as a string (containing the instructions
1869to emit), a list of operand constraints (stored as a string), and a flag that
1870indicates whether or not the inline asm expression has side effects. An example
1871inline assembler expression is:
1872</p>
1873
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001874<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001875<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001876i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001877</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001878</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001879
1880<p>
1881Inline assembler expressions may <b>only</b> be used as the callee operand of
1882a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1883</p>
1884
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001885<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001886<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001887%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001888</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001889</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001890
1891<p>
1892Inline asms with side effects not visible in the constraint list must be marked
1893as having side effects. This is done through the use of the
1894'<tt>sideeffect</tt>' keyword, like so:
1895</p>
1896
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001897<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001898<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001899call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001900</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001901</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001902
1903<p>TODO: The format of the asm and constraints string still need to be
1904documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00001905need to be documented). This is probably best done by reference to another
1906document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00001907</p>
1908
1909</div>
1910
1911<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001912<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1913<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001914
Misha Brukman9d0919f2003-11-08 01:05:38 +00001915<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001916
Chris Lattner261efe92003-11-25 01:02:51 +00001917<p>The LLVM instruction set consists of several different
1918classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001919instructions</a>, <a href="#binaryops">binary instructions</a>,
1920<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001921 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1922instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001923
Misha Brukman9d0919f2003-11-08 01:05:38 +00001924</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001925
Chris Lattner00950542001-06-06 20:29:01 +00001926<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001927<div class="doc_subsection"> <a name="terminators">Terminator
1928Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001929
Misha Brukman9d0919f2003-11-08 01:05:38 +00001930<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001931
Chris Lattner261efe92003-11-25 01:02:51 +00001932<p>As mentioned <a href="#functionstructure">previously</a>, every
1933basic block in a program ends with a "Terminator" instruction, which
1934indicates which block should be executed after the current block is
1935finished. These terminator instructions typically yield a '<tt>void</tt>'
1936value: they produce control flow, not values (the one exception being
1937the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001938<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001939 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1940instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001941the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1942 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1943 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001944
Misha Brukman9d0919f2003-11-08 01:05:38 +00001945</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001946
Chris Lattner00950542001-06-06 20:29:01 +00001947<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001948<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1949Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001950<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001951<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001952<pre>
1953 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001954 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001955</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001956
Chris Lattner00950542001-06-06 20:29:01 +00001957<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001958
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001959<p>The '<tt>ret</tt>' instruction is used to return control flow (and
1960optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001961<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001962returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00001963control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001964
Chris Lattner00950542001-06-06 20:29:01 +00001965<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001966
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001967<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
1968the return value. The type of the return value must be a
1969'<a href="#t_firstclass">first class</a>' type.</p>
1970
1971<p>A function is not <a href="#wellformed">well formed</a> if
1972it it has a non-void return type and contains a '<tt>ret</tt>'
1973instruction with no return value or a return value with a type that
1974does not match its type, or if it has a void return type and contains
1975a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001976
Chris Lattner00950542001-06-06 20:29:01 +00001977<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001978
Chris Lattner261efe92003-11-25 01:02:51 +00001979<p>When the '<tt>ret</tt>' instruction is executed, control flow
1980returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001981 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001982the instruction after the call. If the caller was an "<a
1983 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001984at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001985returns a value, that value shall set the call or invoke instruction's
Dan Gohman0e451ce2008-10-14 16:51:45 +00001986return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001987
Chris Lattner00950542001-06-06 20:29:01 +00001988<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001989
1990<pre>
1991 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001992 ret void <i>; Return from a void function</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001993 ret { i32, i8 } { i32 4, i8 2 } <i>; Return an aggregate of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00001994</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001995</div>
Chris Lattner00950542001-06-06 20:29:01 +00001996<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001997<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001998<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001999<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002000<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002001</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002002<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002003<p>The '<tt>br</tt>' instruction is used to cause control flow to
2004transfer to a different basic block in the current function. There are
2005two forms of this instruction, corresponding to a conditional branch
2006and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002007<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002008<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00002009single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00002010unconditional form of the '<tt>br</tt>' instruction takes a single
2011'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002012<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002013<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002014argument is evaluated. If the value is <tt>true</tt>, control flows
2015to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2016control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002017<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002018<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00002019 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002020</div>
Chris Lattner00950542001-06-06 20:29:01 +00002021<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002022<div class="doc_subsubsection">
2023 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2024</div>
2025
Misha Brukman9d0919f2003-11-08 01:05:38 +00002026<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002027<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002028
2029<pre>
2030 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2031</pre>
2032
Chris Lattner00950542001-06-06 20:29:01 +00002033<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002034
2035<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2036several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00002037instruction, allowing a branch to occur to one of many possible
2038destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002039
2040
Chris Lattner00950542001-06-06 20:29:01 +00002041<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002042
2043<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2044comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2045an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2046table is not allowed to contain duplicate constant entries.</p>
2047
Chris Lattner00950542001-06-06 20:29:01 +00002048<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002049
Chris Lattner261efe92003-11-25 01:02:51 +00002050<p>The <tt>switch</tt> instruction specifies a table of values and
2051destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002052table is searched for the given value. If the value is found, control flow is
2053transfered to the corresponding destination; otherwise, control flow is
2054transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002055
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002056<h5>Implementation:</h5>
2057
2058<p>Depending on properties of the target machine and the particular
2059<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002060ways. For example, it could be generated as a series of chained conditional
2061branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002062
2063<h5>Example:</h5>
2064
2065<pre>
2066 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002067 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00002068 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002069
2070 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002071 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002072
2073 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002074 switch i32 %val, label %otherwise [ i32 0, label %onzero
2075 i32 1, label %onone
2076 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002077</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002078</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002079
Chris Lattner00950542001-06-06 20:29:01 +00002080<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002081<div class="doc_subsubsection">
2082 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2083</div>
2084
Misha Brukman9d0919f2003-11-08 01:05:38 +00002085<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002086
Chris Lattner00950542001-06-06 20:29:01 +00002087<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002088
2089<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002090 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002091 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002092</pre>
2093
Chris Lattner6536cfe2002-05-06 22:08:29 +00002094<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002095
2096<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2097function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002098'<tt>normal</tt>' label or the
2099'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002100"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2101"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002102href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohman0e451ce2008-10-14 16:51:45 +00002103continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002104
Chris Lattner00950542001-06-06 20:29:01 +00002105<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002106
Misha Brukman9d0919f2003-11-08 01:05:38 +00002107<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002108
Chris Lattner00950542001-06-06 20:29:01 +00002109<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002110 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002111 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002112 convention</a> the call should use. If none is specified, the call defaults
2113 to using C calling conventions.
2114 </li>
Devang Patelf642f472008-10-06 18:50:38 +00002115
2116 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2117 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2118 and '<tt>inreg</tt>' attributes are valid here.</li>
2119
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002120 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2121 function value being invoked. In most cases, this is a direct function
2122 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2123 an arbitrary pointer to function value.
2124 </li>
2125
2126 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2127 function to be invoked. </li>
2128
2129 <li>'<tt>function args</tt>': argument list whose types match the function
2130 signature argument types. If the function signature indicates the function
2131 accepts a variable number of arguments, the extra arguments can be
2132 specified. </li>
2133
2134 <li>'<tt>normal label</tt>': the label reached when the called function
2135 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2136
2137 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2138 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2139
Devang Patel307e8ab2008-10-07 17:48:33 +00002140 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00002141 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2142 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002143</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002144
Chris Lattner00950542001-06-06 20:29:01 +00002145<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002146
Misha Brukman9d0919f2003-11-08 01:05:38 +00002147<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002148href="#i_call">call</a></tt>' instruction in most regards. The primary
2149difference is that it establishes an association with a label, which is used by
2150the runtime library to unwind the stack.</p>
2151
2152<p>This instruction is used in languages with destructors to ensure that proper
2153cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2154exception. Additionally, this is important for implementation of
2155'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2156
Chris Lattner00950542001-06-06 20:29:01 +00002157<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002158<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002159 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002160 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002161 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002162 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002163</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002164</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002165
2166
Chris Lattner27f71f22003-09-03 00:41:47 +00002167<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002168
Chris Lattner261efe92003-11-25 01:02:51 +00002169<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2170Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002171
Misha Brukman9d0919f2003-11-08 01:05:38 +00002172<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002173
Chris Lattner27f71f22003-09-03 00:41:47 +00002174<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002175<pre>
2176 unwind
2177</pre>
2178
Chris Lattner27f71f22003-09-03 00:41:47 +00002179<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002180
2181<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2182at the first callee in the dynamic call stack which used an <a
2183href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2184primarily used to implement exception handling.</p>
2185
Chris Lattner27f71f22003-09-03 00:41:47 +00002186<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002187
Chris Lattner72ed2002008-04-19 21:01:16 +00002188<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002189immediately halt. The dynamic call stack is then searched for the first <a
2190href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2191execution continues at the "exceptional" destination block specified by the
2192<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2193dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002194</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002195
2196<!-- _______________________________________________________________________ -->
2197
2198<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2199Instruction</a> </div>
2200
2201<div class="doc_text">
2202
2203<h5>Syntax:</h5>
2204<pre>
2205 unreachable
2206</pre>
2207
2208<h5>Overview:</h5>
2209
2210<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2211instruction is used to inform the optimizer that a particular portion of the
2212code is not reachable. This can be used to indicate that the code after a
2213no-return function cannot be reached, and other facts.</p>
2214
2215<h5>Semantics:</h5>
2216
2217<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2218</div>
2219
2220
2221
Chris Lattner00950542001-06-06 20:29:01 +00002222<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002223<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002224<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002225<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002226program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002227produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002228multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002229The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002230<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002231</div>
Chris Lattner00950542001-06-06 20:29:01 +00002232<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002233<div class="doc_subsubsection">
2234 <a name="i_add">'<tt>add</tt>' Instruction</a>
2235</div>
2236
Misha Brukman9d0919f2003-11-08 01:05:38 +00002237<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002238
Chris Lattner00950542001-06-06 20:29:01 +00002239<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002240
2241<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002242 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002243</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002244
Chris Lattner00950542001-06-06 20:29:01 +00002245<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002246
Misha Brukman9d0919f2003-11-08 01:05:38 +00002247<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002248
Chris Lattner00950542001-06-06 20:29:01 +00002249<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002250
2251<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2252 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2253 <a href="#t_vector">vector</a> values. Both arguments must have identical
2254 types.</p>
2255
Chris Lattner00950542001-06-06 20:29:01 +00002256<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002257
Misha Brukman9d0919f2003-11-08 01:05:38 +00002258<p>The value produced is the integer or floating point sum of the two
2259operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002260
Chris Lattner5ec89832008-01-28 00:36:27 +00002261<p>If an integer sum has unsigned overflow, the result returned is the
2262mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2263the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002264
Chris Lattner5ec89832008-01-28 00:36:27 +00002265<p>Because LLVM integers use a two's complement representation, this
2266instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002267
Chris Lattner00950542001-06-06 20:29:01 +00002268<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002269
2270<pre>
2271 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002272</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002273</div>
Chris Lattner00950542001-06-06 20:29:01 +00002274<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002275<div class="doc_subsubsection">
2276 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2277</div>
2278
Misha Brukman9d0919f2003-11-08 01:05:38 +00002279<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002280
Chris Lattner00950542001-06-06 20:29:01 +00002281<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002282
2283<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002284 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002285</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002286
Chris Lattner00950542001-06-06 20:29:01 +00002287<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002288
Misha Brukman9d0919f2003-11-08 01:05:38 +00002289<p>The '<tt>sub</tt>' instruction returns the difference of its two
2290operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002291
2292<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2293'<tt>neg</tt>' instruction present in most other intermediate
2294representations.</p>
2295
Chris Lattner00950542001-06-06 20:29:01 +00002296<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002297
2298<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2299 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2300 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2301 types.</p>
2302
Chris Lattner00950542001-06-06 20:29:01 +00002303<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002304
Chris Lattner261efe92003-11-25 01:02:51 +00002305<p>The value produced is the integer or floating point difference of
2306the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002307
Chris Lattner5ec89832008-01-28 00:36:27 +00002308<p>If an integer difference has unsigned overflow, the result returned is the
2309mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2310the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002311
Chris Lattner5ec89832008-01-28 00:36:27 +00002312<p>Because LLVM integers use a two's complement representation, this
2313instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002314
Chris Lattner00950542001-06-06 20:29:01 +00002315<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002316<pre>
2317 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002318 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002319</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002320</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002321
Chris Lattner00950542001-06-06 20:29:01 +00002322<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002323<div class="doc_subsubsection">
2324 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2325</div>
2326
Misha Brukman9d0919f2003-11-08 01:05:38 +00002327<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002328
Chris Lattner00950542001-06-06 20:29:01 +00002329<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002330<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002331</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002332<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002333<p>The '<tt>mul</tt>' instruction returns the product of its two
2334operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002335
Chris Lattner00950542001-06-06 20:29:01 +00002336<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002337
2338<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2339href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2340or <a href="#t_vector">vector</a> values. Both arguments must have identical
2341types.</p>
2342
Chris Lattner00950542001-06-06 20:29:01 +00002343<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002344
Chris Lattner261efe92003-11-25 01:02:51 +00002345<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002346two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002347
Chris Lattner5ec89832008-01-28 00:36:27 +00002348<p>If the result of an integer multiplication has unsigned overflow,
2349the result returned is the mathematical result modulo
23502<sup>n</sup>, where n is the bit width of the result.</p>
2351<p>Because LLVM integers use a two's complement representation, and the
2352result is the same width as the operands, this instruction returns the
2353correct result for both signed and unsigned integers. If a full product
2354(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2355should be sign-extended or zero-extended as appropriate to the
2356width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002357<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002358<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002359</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002360</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002361
Chris Lattner00950542001-06-06 20:29:01 +00002362<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002363<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2364</a></div>
2365<div class="doc_text">
2366<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002367<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002368</pre>
2369<h5>Overview:</h5>
2370<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2371operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002372
Reid Spencer1628cec2006-10-26 06:15:43 +00002373<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002374
Reid Spencer1628cec2006-10-26 06:15:43 +00002375<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002376<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2377values. Both arguments must have identical types.</p>
2378
Reid Spencer1628cec2006-10-26 06:15:43 +00002379<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002380
Chris Lattner5ec89832008-01-28 00:36:27 +00002381<p>The value produced is the unsigned integer quotient of the two operands.</p>
2382<p>Note that unsigned integer division and signed integer division are distinct
2383operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2384<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002385<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002386<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002387</pre>
2388</div>
2389<!-- _______________________________________________________________________ -->
2390<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2391</a> </div>
2392<div class="doc_text">
2393<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002394<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002395 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002396</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002397
Reid Spencer1628cec2006-10-26 06:15:43 +00002398<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002399
Reid Spencer1628cec2006-10-26 06:15:43 +00002400<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2401operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002402
Reid Spencer1628cec2006-10-26 06:15:43 +00002403<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002404
2405<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2406<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2407values. Both arguments must have identical types.</p>
2408
Reid Spencer1628cec2006-10-26 06:15:43 +00002409<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002410<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002411<p>Note that signed integer division and unsigned integer division are distinct
2412operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2413<p>Division by zero leads to undefined behavior. Overflow also leads to
2414undefined behavior; this is a rare case, but can occur, for example,
2415by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002416<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002417<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002418</pre>
2419</div>
2420<!-- _______________________________________________________________________ -->
2421<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002422Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002423<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002424<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002425<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002426 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002427</pre>
2428<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002429
Reid Spencer1628cec2006-10-26 06:15:43 +00002430<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002431operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002432
Chris Lattner261efe92003-11-25 01:02:51 +00002433<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002434
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002435<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002436<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2437of floating point values. Both arguments must have identical types.</p>
2438
Chris Lattner261efe92003-11-25 01:02:51 +00002439<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002440
Reid Spencer1628cec2006-10-26 06:15:43 +00002441<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002442
Chris Lattner261efe92003-11-25 01:02:51 +00002443<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002444
2445<pre>
2446 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002447</pre>
2448</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002449
Chris Lattner261efe92003-11-25 01:02:51 +00002450<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002451<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2452</div>
2453<div class="doc_text">
2454<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002455<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002456</pre>
2457<h5>Overview:</h5>
2458<p>The '<tt>urem</tt>' instruction returns the remainder from the
2459unsigned division of its two arguments.</p>
2460<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002461<p>The two arguments to the '<tt>urem</tt>' instruction must be
2462<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2463values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002464<h5>Semantics:</h5>
2465<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002466This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002467<p>Note that unsigned integer remainder and signed integer remainder are
2468distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2469<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002470<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002471<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002472</pre>
2473
2474</div>
2475<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002476<div class="doc_subsubsection">
2477 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2478</div>
2479
Chris Lattner261efe92003-11-25 01:02:51 +00002480<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002481
Chris Lattner261efe92003-11-25 01:02:51 +00002482<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002483
2484<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002485 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002486</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002487
Chris Lattner261efe92003-11-25 01:02:51 +00002488<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002489
Reid Spencer0a783f72006-11-02 01:53:59 +00002490<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002491signed division of its two operands. This instruction can also take
2492<a href="#t_vector">vector</a> versions of the values in which case
2493the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002494
Chris Lattner261efe92003-11-25 01:02:51 +00002495<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002496
Reid Spencer0a783f72006-11-02 01:53:59 +00002497<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002498<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2499values. Both arguments must have identical types.</p>
2500
Chris Lattner261efe92003-11-25 01:02:51 +00002501<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002502
Reid Spencer0a783f72006-11-02 01:53:59 +00002503<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002504has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2505operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002506a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002507 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002508Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002509please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002510Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002511<p>Note that signed integer remainder and unsigned integer remainder are
2512distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2513<p>Taking the remainder of a division by zero leads to undefined behavior.
2514Overflow also leads to undefined behavior; this is a rare case, but can occur,
2515for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2516(The remainder doesn't actually overflow, but this rule lets srem be
2517implemented using instructions that return both the result of the division
2518and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002519<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002520<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002521</pre>
2522
2523</div>
2524<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002525<div class="doc_subsubsection">
2526 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2527
Reid Spencer0a783f72006-11-02 01:53:59 +00002528<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002529
Reid Spencer0a783f72006-11-02 01:53:59 +00002530<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002531<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002532</pre>
2533<h5>Overview:</h5>
2534<p>The '<tt>frem</tt>' instruction returns the remainder from the
2535division of its two operands.</p>
2536<h5>Arguments:</h5>
2537<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002538<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2539of floating point values. Both arguments must have identical types.</p>
2540
Reid Spencer0a783f72006-11-02 01:53:59 +00002541<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002542
Chris Lattnera73afe02008-04-01 18:45:27 +00002543<p>This instruction returns the <i>remainder</i> of a division.
2544The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002545
Reid Spencer0a783f72006-11-02 01:53:59 +00002546<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002547
2548<pre>
2549 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002550</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002551</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002552
Reid Spencer8e11bf82007-02-02 13:57:07 +00002553<!-- ======================================================================= -->
2554<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2555Operations</a> </div>
2556<div class="doc_text">
2557<p>Bitwise binary operators are used to do various forms of
2558bit-twiddling in a program. They are generally very efficient
2559instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002560instructions. They require two operands of the same type, execute an operation on them,
2561and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002562</div>
2563
Reid Spencer569f2fa2007-01-31 21:39:12 +00002564<!-- _______________________________________________________________________ -->
2565<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2566Instruction</a> </div>
2567<div class="doc_text">
2568<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002569<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002570</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002571
Reid Spencer569f2fa2007-01-31 21:39:12 +00002572<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002573
Reid Spencer569f2fa2007-01-31 21:39:12 +00002574<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2575the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002576
Reid Spencer569f2fa2007-01-31 21:39:12 +00002577<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002578
Reid Spencer569f2fa2007-01-31 21:39:12 +00002579<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002580 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002581type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002582
Reid Spencer569f2fa2007-01-31 21:39:12 +00002583<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002584
Gabor Greiffb224a22008-08-07 21:46:00 +00002585<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2586where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
2587equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002588
Reid Spencer569f2fa2007-01-31 21:39:12 +00002589<h5>Example:</h5><pre>
2590 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2591 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2592 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002593 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002594 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002595</pre>
2596</div>
2597<!-- _______________________________________________________________________ -->
2598<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2599Instruction</a> </div>
2600<div class="doc_text">
2601<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002602<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002603</pre>
2604
2605<h5>Overview:</h5>
2606<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002607operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002608
2609<h5>Arguments:</h5>
2610<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002611<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002612type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002613
2614<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002615
Reid Spencer569f2fa2007-01-31 21:39:12 +00002616<p>This instruction always performs a logical shift right operation. The most
2617significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002618shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
2619the number of bits in <tt>op1</tt>, the result is undefined.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002620
2621<h5>Example:</h5>
2622<pre>
2623 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2624 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2625 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2626 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002627 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002628 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002629</pre>
2630</div>
2631
Reid Spencer8e11bf82007-02-02 13:57:07 +00002632<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002633<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2634Instruction</a> </div>
2635<div class="doc_text">
2636
2637<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002638<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002639</pre>
2640
2641<h5>Overview:</h5>
2642<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002643operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002644
2645<h5>Arguments:</h5>
2646<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002647<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002648type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002649
2650<h5>Semantics:</h5>
2651<p>This instruction always performs an arithmetic shift right operation,
2652The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00002653of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
2654larger than the number of bits in <tt>op1</tt>, the result is undefined.
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002655</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002656
2657<h5>Example:</h5>
2658<pre>
2659 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2660 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2661 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2662 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002663 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002664 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002665</pre>
2666</div>
2667
Chris Lattner00950542001-06-06 20:29:01 +00002668<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002669<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2670Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002671
Misha Brukman9d0919f2003-11-08 01:05:38 +00002672<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002673
Chris Lattner00950542001-06-06 20:29:01 +00002674<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002675
2676<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002677 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002678</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002679
Chris Lattner00950542001-06-06 20:29:01 +00002680<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002681
Chris Lattner261efe92003-11-25 01:02:51 +00002682<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2683its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002684
Chris Lattner00950542001-06-06 20:29:01 +00002685<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002686
2687<p>The two arguments to the '<tt>and</tt>' instruction must be
2688<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2689values. Both arguments must have identical types.</p>
2690
Chris Lattner00950542001-06-06 20:29:01 +00002691<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002692<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002693<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002694<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002695<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002696 <tbody>
2697 <tr>
2698 <td>In0</td>
2699 <td>In1</td>
2700 <td>Out</td>
2701 </tr>
2702 <tr>
2703 <td>0</td>
2704 <td>0</td>
2705 <td>0</td>
2706 </tr>
2707 <tr>
2708 <td>0</td>
2709 <td>1</td>
2710 <td>0</td>
2711 </tr>
2712 <tr>
2713 <td>1</td>
2714 <td>0</td>
2715 <td>0</td>
2716 </tr>
2717 <tr>
2718 <td>1</td>
2719 <td>1</td>
2720 <td>1</td>
2721 </tr>
2722 </tbody>
2723</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002724</div>
Chris Lattner00950542001-06-06 20:29:01 +00002725<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002726<pre>
2727 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002728 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2729 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002730</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002731</div>
Chris Lattner00950542001-06-06 20:29:01 +00002732<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002733<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002734<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002735<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002736<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002737</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002738<h5>Overview:</h5>
2739<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2740or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002741<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002742
2743<p>The two arguments to the '<tt>or</tt>' instruction must be
2744<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2745values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002746<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002747<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002748<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002749<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002750<table border="1" cellspacing="0" cellpadding="4">
2751 <tbody>
2752 <tr>
2753 <td>In0</td>
2754 <td>In1</td>
2755 <td>Out</td>
2756 </tr>
2757 <tr>
2758 <td>0</td>
2759 <td>0</td>
2760 <td>0</td>
2761 </tr>
2762 <tr>
2763 <td>0</td>
2764 <td>1</td>
2765 <td>1</td>
2766 </tr>
2767 <tr>
2768 <td>1</td>
2769 <td>0</td>
2770 <td>1</td>
2771 </tr>
2772 <tr>
2773 <td>1</td>
2774 <td>1</td>
2775 <td>1</td>
2776 </tr>
2777 </tbody>
2778</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002779</div>
Chris Lattner00950542001-06-06 20:29:01 +00002780<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002781<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2782 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2783 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002784</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002785</div>
Chris Lattner00950542001-06-06 20:29:01 +00002786<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002787<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2788Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002789<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002790<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002791<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002792</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002793<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002794<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2795or of its two operands. The <tt>xor</tt> is used to implement the
2796"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002797<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002798<p>The two arguments to the '<tt>xor</tt>' instruction must be
2799<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2800values. Both arguments must have identical types.</p>
2801
Chris Lattner00950542001-06-06 20:29:01 +00002802<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002803
Misha Brukman9d0919f2003-11-08 01:05:38 +00002804<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002805<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002806<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002807<table border="1" cellspacing="0" cellpadding="4">
2808 <tbody>
2809 <tr>
2810 <td>In0</td>
2811 <td>In1</td>
2812 <td>Out</td>
2813 </tr>
2814 <tr>
2815 <td>0</td>
2816 <td>0</td>
2817 <td>0</td>
2818 </tr>
2819 <tr>
2820 <td>0</td>
2821 <td>1</td>
2822 <td>1</td>
2823 </tr>
2824 <tr>
2825 <td>1</td>
2826 <td>0</td>
2827 <td>1</td>
2828 </tr>
2829 <tr>
2830 <td>1</td>
2831 <td>1</td>
2832 <td>0</td>
2833 </tr>
2834 </tbody>
2835</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002836</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002837<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002838<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002839<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2840 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2841 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2842 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002843</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002844</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002845
Chris Lattner00950542001-06-06 20:29:01 +00002846<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002847<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002848 <a name="vectorops">Vector Operations</a>
2849</div>
2850
2851<div class="doc_text">
2852
2853<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002854target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002855vector-specific operations needed to process vectors effectively. While LLVM
2856does directly support these vector operations, many sophisticated algorithms
2857will want to use target-specific intrinsics to take full advantage of a specific
2858target.</p>
2859
2860</div>
2861
2862<!-- _______________________________________________________________________ -->
2863<div class="doc_subsubsection">
2864 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2865</div>
2866
2867<div class="doc_text">
2868
2869<h5>Syntax:</h5>
2870
2871<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002872 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002873</pre>
2874
2875<h5>Overview:</h5>
2876
2877<p>
2878The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002879element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002880</p>
2881
2882
2883<h5>Arguments:</h5>
2884
2885<p>
2886The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002887value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002888an index indicating the position from which to extract the element.
2889The index may be a variable.</p>
2890
2891<h5>Semantics:</h5>
2892
2893<p>
2894The result is a scalar of the same type as the element type of
2895<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2896<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2897results are undefined.
2898</p>
2899
2900<h5>Example:</h5>
2901
2902<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002903 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002904</pre>
2905</div>
2906
2907
2908<!-- _______________________________________________________________________ -->
2909<div class="doc_subsubsection">
2910 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2911</div>
2912
2913<div class="doc_text">
2914
2915<h5>Syntax:</h5>
2916
2917<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00002918 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002919</pre>
2920
2921<h5>Overview:</h5>
2922
2923<p>
2924The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002925element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002926</p>
2927
2928
2929<h5>Arguments:</h5>
2930
2931<p>
2932The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002933value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002934scalar value whose type must equal the element type of the first
2935operand. The third operand is an index indicating the position at
2936which to insert the value. The index may be a variable.</p>
2937
2938<h5>Semantics:</h5>
2939
2940<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002941The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002942element values are those of <tt>val</tt> except at position
2943<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2944exceeds the length of <tt>val</tt>, the results are undefined.
2945</p>
2946
2947<h5>Example:</h5>
2948
2949<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002950 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002951</pre>
2952</div>
2953
2954<!-- _______________________________________________________________________ -->
2955<div class="doc_subsubsection">
2956 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2957</div>
2958
2959<div class="doc_text">
2960
2961<h5>Syntax:</h5>
2962
2963<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00002964 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002965</pre>
2966
2967<h5>Overview:</h5>
2968
2969<p>
2970The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wangaeb06d22008-11-10 04:46:22 +00002971from two input vectors, returning a vector with the same element type as
2972the input and length that is the same as the shuffle mask.
Chris Lattner3df241e2006-04-08 23:07:04 +00002973</p>
2974
2975<h5>Arguments:</h5>
2976
2977<p>
Mon P Wangaeb06d22008-11-10 04:46:22 +00002978The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2979with types that match each other. The third argument is a shuffle mask whose
2980element type is always 'i32'. The result of the instruction is a vector whose
2981length is the same as the shuffle mask and whose element type is the same as
2982the element type of the first two operands.
Chris Lattner3df241e2006-04-08 23:07:04 +00002983</p>
2984
2985<p>
2986The shuffle mask operand is required to be a constant vector with either
2987constant integer or undef values.
2988</p>
2989
2990<h5>Semantics:</h5>
2991
2992<p>
2993The elements of the two input vectors are numbered from left to right across
2994both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wangaeb06d22008-11-10 04:46:22 +00002995the result vector, which element of the two input vectors the result element
Chris Lattner3df241e2006-04-08 23:07:04 +00002996gets. The element selector may be undef (meaning "don't care") and the second
2997operand may be undef if performing a shuffle from only one vector.
2998</p>
2999
3000<h5>Example:</h5>
3001
3002<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003003 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003004 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003005 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3006 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00003007 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3008 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3009 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3010 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003011</pre>
3012</div>
3013
Tanya Lattner09474292006-04-14 19:24:33 +00003014
Chris Lattner3df241e2006-04-08 23:07:04 +00003015<!-- ======================================================================= -->
3016<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003017 <a name="aggregateops">Aggregate Operations</a>
3018</div>
3019
3020<div class="doc_text">
3021
3022<p>LLVM supports several instructions for working with aggregate values.
3023</p>
3024
3025</div>
3026
3027<!-- _______________________________________________________________________ -->
3028<div class="doc_subsubsection">
3029 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3030</div>
3031
3032<div class="doc_text">
3033
3034<h5>Syntax:</h5>
3035
3036<pre>
3037 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3038</pre>
3039
3040<h5>Overview:</h5>
3041
3042<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003043The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3044or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003045</p>
3046
3047
3048<h5>Arguments:</h5>
3049
3050<p>
3051The first operand of an '<tt>extractvalue</tt>' instruction is a
3052value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003053type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003054in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003055'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3056</p>
3057
3058<h5>Semantics:</h5>
3059
3060<p>
3061The result is the value at the position in the aggregate specified by
3062the index operands.
3063</p>
3064
3065<h5>Example:</h5>
3066
3067<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003068 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003069</pre>
3070</div>
3071
3072
3073<!-- _______________________________________________________________________ -->
3074<div class="doc_subsubsection">
3075 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3076</div>
3077
3078<div class="doc_text">
3079
3080<h5>Syntax:</h5>
3081
3082<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003083 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003084</pre>
3085
3086<h5>Overview:</h5>
3087
3088<p>
3089The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003090into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003091</p>
3092
3093
3094<h5>Arguments:</h5>
3095
3096<p>
3097The first operand of an '<tt>insertvalue</tt>' instruction is a
3098value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3099The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003100The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003101indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003102indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003103'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3104The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003105by the indices.
Dan Gohman0e451ce2008-10-14 16:51:45 +00003106</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003107
3108<h5>Semantics:</h5>
3109
3110<p>
3111The result is an aggregate of the same type as <tt>val</tt>. Its
3112value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003113specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003114</p>
3115
3116<h5>Example:</h5>
3117
3118<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003119 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003120</pre>
3121</div>
3122
3123
3124<!-- ======================================================================= -->
3125<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003126 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003127</div>
3128
Misha Brukman9d0919f2003-11-08 01:05:38 +00003129<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003130
Chris Lattner261efe92003-11-25 01:02:51 +00003131<p>A key design point of an SSA-based representation is how it
3132represents memory. In LLVM, no memory locations are in SSA form, which
3133makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003134allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003135
Misha Brukman9d0919f2003-11-08 01:05:38 +00003136</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003137
Chris Lattner00950542001-06-06 20:29:01 +00003138<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003139<div class="doc_subsubsection">
3140 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3141</div>
3142
Misha Brukman9d0919f2003-11-08 01:05:38 +00003143<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003144
Chris Lattner00950542001-06-06 20:29:01 +00003145<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003146
3147<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003148 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003149</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003150
Chris Lattner00950542001-06-06 20:29:01 +00003151<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003152
Chris Lattner261efe92003-11-25 01:02:51 +00003153<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003154heap and returns a pointer to it. The object is always allocated in the generic
3155address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003156
Chris Lattner00950542001-06-06 20:29:01 +00003157<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003158
3159<p>The '<tt>malloc</tt>' instruction allocates
3160<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003161bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003162appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003163number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003164If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003165be aligned to at least that boundary. If not specified, or if zero, the target can
3166choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003167
Misha Brukman9d0919f2003-11-08 01:05:38 +00003168<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003169
Chris Lattner00950542001-06-06 20:29:01 +00003170<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003171
Chris Lattner261efe92003-11-25 01:02:51 +00003172<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewycky02ff3082008-11-24 03:41:24 +00003173a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattner72ed2002008-04-19 21:01:16 +00003174result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003175
Chris Lattner2cbdc452005-11-06 08:02:57 +00003176<h5>Example:</h5>
3177
3178<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003179 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003180
Bill Wendlingaac388b2007-05-29 09:42:13 +00003181 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3182 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3183 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3184 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3185 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003186</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003187</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003188
Chris Lattner00950542001-06-06 20:29:01 +00003189<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003190<div class="doc_subsubsection">
3191 <a name="i_free">'<tt>free</tt>' Instruction</a>
3192</div>
3193
Misha Brukman9d0919f2003-11-08 01:05:38 +00003194<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003195
Chris Lattner00950542001-06-06 20:29:01 +00003196<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003197
3198<pre>
3199 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003200</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003201
Chris Lattner00950542001-06-06 20:29:01 +00003202<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003203
Chris Lattner261efe92003-11-25 01:02:51 +00003204<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003205memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003206
Chris Lattner00950542001-06-06 20:29:01 +00003207<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003208
Chris Lattner261efe92003-11-25 01:02:51 +00003209<p>'<tt>value</tt>' shall be a pointer value that points to a value
3210that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3211instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003212
Chris Lattner00950542001-06-06 20:29:01 +00003213<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003214
John Criswell9e2485c2004-12-10 15:51:16 +00003215<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003216after this instruction executes. If the pointer is null, the operation
3217is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003218
Chris Lattner00950542001-06-06 20:29:01 +00003219<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003220
3221<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003222 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3223 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003224</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003225</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003226
Chris Lattner00950542001-06-06 20:29:01 +00003227<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003228<div class="doc_subsubsection">
3229 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3230</div>
3231
Misha Brukman9d0919f2003-11-08 01:05:38 +00003232<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003233
Chris Lattner00950542001-06-06 20:29:01 +00003234<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003235
3236<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003237 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003238</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003239
Chris Lattner00950542001-06-06 20:29:01 +00003240<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003241
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003242<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3243currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003244returns to its caller. The object is always allocated in the generic address
3245space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003246
Chris Lattner00950542001-06-06 20:29:01 +00003247<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003248
John Criswell9e2485c2004-12-10 15:51:16 +00003249<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003250bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003251appropriate type to the program. If "NumElements" is specified, it is the
3252number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003253If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003254to be aligned to at least that boundary. If not specified, or if zero, the target
3255can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003256
Misha Brukman9d0919f2003-11-08 01:05:38 +00003257<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003258
Chris Lattner00950542001-06-06 20:29:01 +00003259<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003260
Chris Lattner72ed2002008-04-19 21:01:16 +00003261<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3262there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003263memory is automatically released when the function returns. The '<tt>alloca</tt>'
3264instruction is commonly used to represent automatic variables that must
3265have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003266 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003267instructions), the memory is reclaimed. Allocating zero bytes
3268is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003269
Chris Lattner00950542001-06-06 20:29:01 +00003270<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003271
3272<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003273 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003274 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3275 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003276 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003277</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003278</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003279
Chris Lattner00950542001-06-06 20:29:01 +00003280<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003281<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3282Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003283<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003284<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003285<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003286<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003287<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003288<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003289<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003290address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003291 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003292marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003293the number or order of execution of this <tt>load</tt> with other
3294volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3295instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003296<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003297The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003298(that is, the alignment of the memory address). A value of 0 or an
3299omitted "align" argument means that the operation has the preferential
3300alignment for the target. It is the responsibility of the code emitter
3301to ensure that the alignment information is correct. Overestimating
3302the alignment results in an undefined behavior. Underestimating the
3303alignment may produce less efficient code. An alignment of 1 is always
3304safe.
3305</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003306<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003307<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003308<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003309<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003310 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003311 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3312 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003313</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003314</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003315<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003316<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3317Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003318<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003319<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003320<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3321 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003322</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003323<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003324<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003325<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003326<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003327to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003328operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3329of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003330operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003331optimizer is not allowed to modify the number or order of execution of
3332this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3333 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003334<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003335The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003336(that is, the alignment of the memory address). A value of 0 or an
3337omitted "align" argument means that the operation has the preferential
3338alignment for the target. It is the responsibility of the code emitter
3339to ensure that the alignment information is correct. Overestimating
3340the alignment results in an undefined behavior. Underestimating the
3341alignment may produce less efficient code. An alignment of 1 is always
3342safe.
3343</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003344<h5>Semantics:</h5>
3345<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3346at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003347<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003348<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003349 store i32 3, i32* %ptr <i>; yields {void}</i>
3350 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003351</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003352</div>
3353
Chris Lattner2b7d3202002-05-06 03:03:22 +00003354<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003355<div class="doc_subsubsection">
3356 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3357</div>
3358
Misha Brukman9d0919f2003-11-08 01:05:38 +00003359<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003360<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003361<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003362 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003363</pre>
3364
Chris Lattner7faa8832002-04-14 06:13:44 +00003365<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003366
3367<p>
3368The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003369subelement of an aggregate data structure. It performs address calculation only
3370and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003371
Chris Lattner7faa8832002-04-14 06:13:44 +00003372<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003373
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003374<p>The first argument is always a pointer, and forms the basis of the
3375calculation. The remaining arguments are indices, that indicate which of the
3376elements of the aggregate object are indexed. The interpretation of each index
3377is dependent on the type being indexed into. The first index always indexes the
3378pointer value given as the first argument, the second index indexes a value of
3379the type pointed to (not necessarily the value directly pointed to, since the
3380first index can be non-zero), etc. The first type indexed into must be a pointer
3381value, subsequent types can be arrays, vectors and structs. Note that subsequent
3382types being indexed into can never be pointers, since that would require loading
3383the pointer before continuing calculation.</p>
3384
3385<p>The type of each index argument depends on the type it is indexing into.
3386When indexing into a (packed) structure, only <tt>i32</tt> integer
3387<b>constants</b> are allowed. When indexing into an array, pointer or vector,
3388only integers of 32 or 64 bits are allowed (also non-constants). 32-bit values
3389will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003390
Chris Lattner261efe92003-11-25 01:02:51 +00003391<p>For example, let's consider a C code fragment and how it gets
3392compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003393
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003394<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003395<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003396struct RT {
3397 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003398 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003399 char C;
3400};
3401struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003402 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003403 double Y;
3404 struct RT Z;
3405};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003406
Chris Lattnercabc8462007-05-29 15:43:56 +00003407int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003408 return &amp;s[1].Z.B[5][13];
3409}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003410</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003411</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003412
Misha Brukman9d0919f2003-11-08 01:05:38 +00003413<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003414
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003415<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003416<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003417%RT = type { i8 , [10 x [20 x i32]], i8 }
3418%ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003419
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003420define i32* %foo(%ST* %s) {
3421entry:
3422 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3423 ret i32* %reg
3424}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003425</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003426</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003427
Chris Lattner7faa8832002-04-14 06:13:44 +00003428<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003429
Misha Brukman9d0919f2003-11-08 01:05:38 +00003430<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003431type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003432}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003433the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3434i8 }</tt>' type, another structure. The third index indexes into the second
3435element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003436array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003437'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3438to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003439
Chris Lattner261efe92003-11-25 01:02:51 +00003440<p>Note that it is perfectly legal to index partially through a
3441structure, returning a pointer to an inner element. Because of this,
3442the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003443
3444<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003445 define i32* %foo(%ST* %s) {
3446 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003447 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3448 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003449 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3450 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3451 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003452 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003453</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003454
3455<p>Note that it is undefined to access an array out of bounds: array and
3456pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003457The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003458defined to be accessible as variable length arrays, which requires access
3459beyond the zero'th element.</p>
3460
Chris Lattner884a9702006-08-15 00:45:58 +00003461<p>The getelementptr instruction is often confusing. For some more insight
3462into how it works, see <a href="GetElementPtr.html">the getelementptr
3463FAQ</a>.</p>
3464
Chris Lattner7faa8832002-04-14 06:13:44 +00003465<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003466
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003467<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003468 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003469 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3470 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003471 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003472 <i>; yields i8*:eptr</i>
3473 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003474</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003475</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003476
Chris Lattner00950542001-06-06 20:29:01 +00003477<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003478<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003479</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003480<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003481<p>The instructions in this category are the conversion instructions (casting)
3482which all take a single operand and a type. They perform various bit conversions
3483on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003484</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003485
Chris Lattner6536cfe2002-05-06 22:08:29 +00003486<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003487<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003488 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3489</div>
3490<div class="doc_text">
3491
3492<h5>Syntax:</h5>
3493<pre>
3494 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3495</pre>
3496
3497<h5>Overview:</h5>
3498<p>
3499The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3500</p>
3501
3502<h5>Arguments:</h5>
3503<p>
3504The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3505be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003506and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003507type. The bit size of <tt>value</tt> must be larger than the bit size of
3508<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003509
3510<h5>Semantics:</h5>
3511<p>
3512The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003513and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3514larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3515It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003516
3517<h5>Example:</h5>
3518<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003519 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003520 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3521 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003522</pre>
3523</div>
3524
3525<!-- _______________________________________________________________________ -->
3526<div class="doc_subsubsection">
3527 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3528</div>
3529<div class="doc_text">
3530
3531<h5>Syntax:</h5>
3532<pre>
3533 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3534</pre>
3535
3536<h5>Overview:</h5>
3537<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3538<tt>ty2</tt>.</p>
3539
3540
3541<h5>Arguments:</h5>
3542<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003543<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3544also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003545<tt>value</tt> must be smaller than the bit size of the destination type,
3546<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003547
3548<h5>Semantics:</h5>
3549<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003550bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003551
Reid Spencerb5929522007-01-12 15:46:11 +00003552<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003553
3554<h5>Example:</h5>
3555<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003556 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003557 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003558</pre>
3559</div>
3560
3561<!-- _______________________________________________________________________ -->
3562<div class="doc_subsubsection">
3563 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3564</div>
3565<div class="doc_text">
3566
3567<h5>Syntax:</h5>
3568<pre>
3569 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3570</pre>
3571
3572<h5>Overview:</h5>
3573<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3574
3575<h5>Arguments:</h5>
3576<p>
3577The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003578<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3579also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003580<tt>value</tt> must be smaller than the bit size of the destination type,
3581<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003582
3583<h5>Semantics:</h5>
3584<p>
3585The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3586bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003587the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003588
Reid Spencerc78f3372007-01-12 03:35:51 +00003589<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003590
3591<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003592<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003593 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003594 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003595</pre>
3596</div>
3597
3598<!-- _______________________________________________________________________ -->
3599<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003600 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3601</div>
3602
3603<div class="doc_text">
3604
3605<h5>Syntax:</h5>
3606
3607<pre>
3608 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3609</pre>
3610
3611<h5>Overview:</h5>
3612<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3613<tt>ty2</tt>.</p>
3614
3615
3616<h5>Arguments:</h5>
3617<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3618 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3619cast it to. The size of <tt>value</tt> must be larger than the size of
3620<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3621<i>no-op cast</i>.</p>
3622
3623<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003624<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3625<a href="#t_floating">floating point</a> type to a smaller
3626<a href="#t_floating">floating point</a> type. If the value cannot fit within
3627the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003628
3629<h5>Example:</h5>
3630<pre>
3631 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3632 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3633</pre>
3634</div>
3635
3636<!-- _______________________________________________________________________ -->
3637<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003638 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3639</div>
3640<div class="doc_text">
3641
3642<h5>Syntax:</h5>
3643<pre>
3644 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3645</pre>
3646
3647<h5>Overview:</h5>
3648<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3649floating point value.</p>
3650
3651<h5>Arguments:</h5>
3652<p>The '<tt>fpext</tt>' instruction takes a
3653<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003654and a <a href="#t_floating">floating point</a> type to cast it to. The source
3655type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003656
3657<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003658<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003659<a href="#t_floating">floating point</a> type to a larger
3660<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003661used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003662<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003663
3664<h5>Example:</h5>
3665<pre>
3666 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3667 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3668</pre>
3669</div>
3670
3671<!-- _______________________________________________________________________ -->
3672<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003673 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003674</div>
3675<div class="doc_text">
3676
3677<h5>Syntax:</h5>
3678<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003679 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003680</pre>
3681
3682<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003683<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003684unsigned integer equivalent of type <tt>ty2</tt>.
3685</p>
3686
3687<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003688<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003689scalar or vector <a href="#t_floating">floating point</a> value, and a type
3690to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3691type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3692vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003693
3694<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003695<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003696<a href="#t_floating">floating point</a> operand into the nearest (rounding
3697towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3698the results are undefined.</p>
3699
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003700<h5>Example:</h5>
3701<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003702 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003703 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003704 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003705</pre>
3706</div>
3707
3708<!-- _______________________________________________________________________ -->
3709<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003710 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003711</div>
3712<div class="doc_text">
3713
3714<h5>Syntax:</h5>
3715<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003716 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003717</pre>
3718
3719<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003720<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003721<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003722</p>
3723
Chris Lattner6536cfe2002-05-06 22:08:29 +00003724<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003725<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003726scalar or vector <a href="#t_floating">floating point</a> value, and a type
3727to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3728type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3729vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003730
Chris Lattner6536cfe2002-05-06 22:08:29 +00003731<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003732<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003733<a href="#t_floating">floating point</a> operand into the nearest (rounding
3734towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3735the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003736
Chris Lattner33ba0d92001-07-09 00:26:23 +00003737<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003738<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003739 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003740 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003741 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003742</pre>
3743</div>
3744
3745<!-- _______________________________________________________________________ -->
3746<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003747 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003748</div>
3749<div class="doc_text">
3750
3751<h5>Syntax:</h5>
3752<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003753 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003754</pre>
3755
3756<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003757<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003758integer and converts that value to the <tt>ty2</tt> type.</p>
3759
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003760<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003761<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3762scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3763to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3764type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3765floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003766
3767<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003768<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003769integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003770the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003771
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003772<h5>Example:</h5>
3773<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003774 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003775 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003776</pre>
3777</div>
3778
3779<!-- _______________________________________________________________________ -->
3780<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003781 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003782</div>
3783<div class="doc_text">
3784
3785<h5>Syntax:</h5>
3786<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003787 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003788</pre>
3789
3790<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003791<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003792integer and converts that value to the <tt>ty2</tt> type.</p>
3793
3794<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003795<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3796scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3797to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3798type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3799floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003800
3801<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003802<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003803integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003804the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003805
3806<h5>Example:</h5>
3807<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003808 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003809 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003810</pre>
3811</div>
3812
3813<!-- _______________________________________________________________________ -->
3814<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003815 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3816</div>
3817<div class="doc_text">
3818
3819<h5>Syntax:</h5>
3820<pre>
3821 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3822</pre>
3823
3824<h5>Overview:</h5>
3825<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3826the integer type <tt>ty2</tt>.</p>
3827
3828<h5>Arguments:</h5>
3829<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003830must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohman0e451ce2008-10-14 16:51:45 +00003831<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003832
3833<h5>Semantics:</h5>
3834<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3835<tt>ty2</tt> by interpreting the pointer value as an integer and either
3836truncating or zero extending that value to the size of the integer type. If
3837<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3838<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003839are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3840change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003841
3842<h5>Example:</h5>
3843<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003844 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3845 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003846</pre>
3847</div>
3848
3849<!-- _______________________________________________________________________ -->
3850<div class="doc_subsubsection">
3851 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3852</div>
3853<div class="doc_text">
3854
3855<h5>Syntax:</h5>
3856<pre>
3857 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3858</pre>
3859
3860<h5>Overview:</h5>
3861<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3862a pointer type, <tt>ty2</tt>.</p>
3863
3864<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003865<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003866value to cast, and a type to cast it to, which must be a
Dan Gohman0e451ce2008-10-14 16:51:45 +00003867<a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003868
3869<h5>Semantics:</h5>
3870<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3871<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3872the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3873size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3874the size of a pointer then a zero extension is done. If they are the same size,
3875nothing is done (<i>no-op cast</i>).</p>
3876
3877<h5>Example:</h5>
3878<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003879 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3880 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3881 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003882</pre>
3883</div>
3884
3885<!-- _______________________________________________________________________ -->
3886<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003887 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003888</div>
3889<div class="doc_text">
3890
3891<h5>Syntax:</h5>
3892<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003893 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003894</pre>
3895
3896<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003897
Reid Spencer5c0ef472006-11-11 23:08:07 +00003898<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003899<tt>ty2</tt> without changing any bits.</p>
3900
3901<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003902
Reid Spencer5c0ef472006-11-11 23:08:07 +00003903<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00003904a non-aggregate first class value, and a type to cast it to, which must also be
3905a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
3906<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003907and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00003908type is a pointer, the destination type must also be a pointer. This
3909instruction supports bitwise conversion of vectors to integers and to vectors
3910of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003911
3912<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003913<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003914<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3915this conversion. The conversion is done as if the <tt>value</tt> had been
3916stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3917converted to other pointer types with this instruction. To convert pointers to
3918other types, use the <a href="#i_inttoptr">inttoptr</a> or
3919<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003920
3921<h5>Example:</h5>
3922<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003923 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003924 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003925 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003926</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003927</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003928
Reid Spencer2fd21e62006-11-08 01:18:52 +00003929<!-- ======================================================================= -->
3930<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3931<div class="doc_text">
3932<p>The instructions in this category are the "miscellaneous"
3933instructions, which defy better classification.</p>
3934</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003935
3936<!-- _______________________________________________________________________ -->
3937<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3938</div>
3939<div class="doc_text">
3940<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003941<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003942</pre>
3943<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003944<p>The '<tt>icmp</tt>' instruction returns a boolean value or
3945a vector of boolean values based on comparison
3946of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003947<h5>Arguments:</h5>
3948<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003949the condition code indicating the kind of comparison to perform. It is not
3950a value, just a keyword. The possible condition code are:
Dan Gohman0e451ce2008-10-14 16:51:45 +00003951</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003952<ol>
3953 <li><tt>eq</tt>: equal</li>
3954 <li><tt>ne</tt>: not equal </li>
3955 <li><tt>ugt</tt>: unsigned greater than</li>
3956 <li><tt>uge</tt>: unsigned greater or equal</li>
3957 <li><tt>ult</tt>: unsigned less than</li>
3958 <li><tt>ule</tt>: unsigned less or equal</li>
3959 <li><tt>sgt</tt>: signed greater than</li>
3960 <li><tt>sge</tt>: signed greater or equal</li>
3961 <li><tt>slt</tt>: signed less than</li>
3962 <li><tt>sle</tt>: signed less or equal</li>
3963</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003964<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00003965<a href="#t_pointer">pointer</a>
3966or integer <a href="#t_vector">vector</a> typed.
3967They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003968<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003969<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00003970the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00003971yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohman0e451ce2008-10-14 16:51:45 +00003972</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003973<ol>
3974 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3975 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3976 </li>
3977 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohman0e451ce2008-10-14 16:51:45 +00003978 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003979 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003980 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003981 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003982 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003983 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003984 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003985 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003986 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003987 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003988 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003989 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003990 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003991 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003992 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003993 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003994 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003995</ol>
3996<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00003997values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003998<p>If the operands are integer vectors, then they are compared
3999element by element. The result is an <tt>i1</tt> vector with
4000the same number of elements as the values being compared.
4001Otherwise, the result is an <tt>i1</tt>.
4002</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004003
4004<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00004005<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4006 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4007 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4008 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4009 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4010 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004011</pre>
4012</div>
4013
4014<!-- _______________________________________________________________________ -->
4015<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4016</div>
4017<div class="doc_text">
4018<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004019<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004020</pre>
4021<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004022<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4023or vector of boolean values based on comparison
Dan Gohman0e451ce2008-10-14 16:51:45 +00004024of its operands.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004025<p>
4026If the operands are floating point scalars, then the result
4027type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4028</p>
4029<p>If the operands are floating point vectors, then the result type
4030is a vector of boolean with the same number of elements as the
4031operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004032<h5>Arguments:</h5>
4033<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004034the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004035a value, just a keyword. The possible condition code are:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004036<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004037 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004038 <li><tt>oeq</tt>: ordered and equal</li>
4039 <li><tt>ogt</tt>: ordered and greater than </li>
4040 <li><tt>oge</tt>: ordered and greater than or equal</li>
4041 <li><tt>olt</tt>: ordered and less than </li>
4042 <li><tt>ole</tt>: ordered and less than or equal</li>
4043 <li><tt>one</tt>: ordered and not equal</li>
4044 <li><tt>ord</tt>: ordered (no nans)</li>
4045 <li><tt>ueq</tt>: unordered or equal</li>
4046 <li><tt>ugt</tt>: unordered or greater than </li>
4047 <li><tt>uge</tt>: unordered or greater than or equal</li>
4048 <li><tt>ult</tt>: unordered or less than </li>
4049 <li><tt>ule</tt>: unordered or less than or equal</li>
4050 <li><tt>une</tt>: unordered or not equal</li>
4051 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004052 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004053</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004054<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00004055<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004056<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4057either a <a href="#t_floating">floating point</a> type
4058or a <a href="#t_vector">vector</a> of floating point type.
4059They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004060<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004061<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004062according to the condition code given as <tt>cond</tt>.
4063If the operands are vectors, then the vectors are compared
4064element by element.
4065Each comparison performed
Dan Gohman0e451ce2008-10-14 16:51:45 +00004066always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004067<ol>
4068 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004069 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004070 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004071 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004072 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004073 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004074 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004075 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004076 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004077 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004078 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004079 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004080 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004081 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4082 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004083 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004084 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004085 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004086 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004087 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004088 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004089 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004090 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004091 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004092 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004093 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004094 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004095 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4096</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004097
4098<h5>Example:</h5>
4099<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004100 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4101 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4102 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004103</pre>
4104</div>
4105
Reid Spencer2fd21e62006-11-08 01:18:52 +00004106<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004107<div class="doc_subsubsection">
4108 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4109</div>
4110<div class="doc_text">
4111<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004112<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004113</pre>
4114<h5>Overview:</h5>
4115<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4116element-wise comparison of its two integer vector operands.</p>
4117<h5>Arguments:</h5>
4118<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4119the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004120a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004121<ol>
4122 <li><tt>eq</tt>: equal</li>
4123 <li><tt>ne</tt>: not equal </li>
4124 <li><tt>ugt</tt>: unsigned greater than</li>
4125 <li><tt>uge</tt>: unsigned greater or equal</li>
4126 <li><tt>ult</tt>: unsigned less than</li>
4127 <li><tt>ule</tt>: unsigned less or equal</li>
4128 <li><tt>sgt</tt>: signed greater than</li>
4129 <li><tt>sge</tt>: signed greater or equal</li>
4130 <li><tt>slt</tt>: signed less than</li>
4131 <li><tt>sle</tt>: signed less or equal</li>
4132</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004133<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004134<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4135<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004136<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004137according to the condition code given as <tt>cond</tt>. The comparison yields a
4138<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4139identical type as the values being compared. The most significant bit in each
4140element is 1 if the element-wise comparison evaluates to true, and is 0
4141otherwise. All other bits of the result are undefined. The condition codes
4142are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohman0e451ce2008-10-14 16:51:45 +00004143instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004144
4145<h5>Example:</h5>
4146<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004147 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4148 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004149</pre>
4150</div>
4151
4152<!-- _______________________________________________________________________ -->
4153<div class="doc_subsubsection">
4154 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4155</div>
4156<div class="doc_text">
4157<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004158<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004159<h5>Overview:</h5>
4160<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4161element-wise comparison of its two floating point vector operands. The output
4162elements have the same width as the input elements.</p>
4163<h5>Arguments:</h5>
4164<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4165the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004166a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004167<ol>
4168 <li><tt>false</tt>: no comparison, always returns false</li>
4169 <li><tt>oeq</tt>: ordered and equal</li>
4170 <li><tt>ogt</tt>: ordered and greater than </li>
4171 <li><tt>oge</tt>: ordered and greater than or equal</li>
4172 <li><tt>olt</tt>: ordered and less than </li>
4173 <li><tt>ole</tt>: ordered and less than or equal</li>
4174 <li><tt>one</tt>: ordered and not equal</li>
4175 <li><tt>ord</tt>: ordered (no nans)</li>
4176 <li><tt>ueq</tt>: unordered or equal</li>
4177 <li><tt>ugt</tt>: unordered or greater than </li>
4178 <li><tt>uge</tt>: unordered or greater than or equal</li>
4179 <li><tt>ult</tt>: unordered or less than </li>
4180 <li><tt>ule</tt>: unordered or less than or equal</li>
4181 <li><tt>une</tt>: unordered or not equal</li>
4182 <li><tt>uno</tt>: unordered (either nans)</li>
4183 <li><tt>true</tt>: no comparison, always returns true</li>
4184</ol>
4185<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4186<a href="#t_floating">floating point</a> typed. They must also be identical
4187types.</p>
4188<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004189<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004190according to the condition code given as <tt>cond</tt>. The comparison yields a
4191<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4192an identical number of elements as the values being compared, and each element
4193having identical with to the width of the floating point elements. The most
4194significant bit in each element is 1 if the element-wise comparison evaluates to
4195true, and is 0 otherwise. All other bits of the result are undefined. The
4196condition codes are evaluated identically to the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004197<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004198
4199<h5>Example:</h5>
4200<pre>
Chris Lattner50ad45c2008-10-13 16:55:18 +00004201 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4202 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4203
4204 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4205 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemanac80ade2008-05-12 19:01:56 +00004206</pre>
4207</div>
4208
4209<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004210<div class="doc_subsubsection">
4211 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4212</div>
4213
Reid Spencer2fd21e62006-11-08 01:18:52 +00004214<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004215
Reid Spencer2fd21e62006-11-08 01:18:52 +00004216<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004217
Reid Spencer2fd21e62006-11-08 01:18:52 +00004218<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4219<h5>Overview:</h5>
4220<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4221the SSA graph representing the function.</p>
4222<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004223
Jeff Cohenb627eab2007-04-29 01:07:00 +00004224<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004225field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4226as arguments, with one pair for each predecessor basic block of the
4227current block. Only values of <a href="#t_firstclass">first class</a>
4228type may be used as the value arguments to the PHI node. Only labels
4229may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004230
Reid Spencer2fd21e62006-11-08 01:18:52 +00004231<p>There must be no non-phi instructions between the start of a basic
4232block and the PHI instructions: i.e. PHI instructions must be first in
4233a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004234
Reid Spencer2fd21e62006-11-08 01:18:52 +00004235<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004236
Jeff Cohenb627eab2007-04-29 01:07:00 +00004237<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4238specified by the pair corresponding to the predecessor basic block that executed
4239just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004240
Reid Spencer2fd21e62006-11-08 01:18:52 +00004241<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004242<pre>
4243Loop: ; Infinite loop that counts from 0 on up...
4244 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4245 %nextindvar = add i32 %indvar, 1
4246 br label %Loop
4247</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004248</div>
4249
Chris Lattnercc37aae2004-03-12 05:50:16 +00004250<!-- _______________________________________________________________________ -->
4251<div class="doc_subsubsection">
4252 <a name="i_select">'<tt>select</tt>' Instruction</a>
4253</div>
4254
4255<div class="doc_text">
4256
4257<h5>Syntax:</h5>
4258
4259<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004260 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4261
Dan Gohman0e451ce2008-10-14 16:51:45 +00004262 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004263</pre>
4264
4265<h5>Overview:</h5>
4266
4267<p>
4268The '<tt>select</tt>' instruction is used to choose one value based on a
4269condition, without branching.
4270</p>
4271
4272
4273<h5>Arguments:</h5>
4274
4275<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004276The '<tt>select</tt>' instruction requires an 'i1' value or
4277a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004278condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004279type. If the val1/val2 are vectors and
4280the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004281individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004282</p>
4283
4284<h5>Semantics:</h5>
4285
4286<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004287If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004288value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004289</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004290<p>
4291If the condition is a vector of i1, then the value arguments must
4292be vectors of the same size, and the selection is done element
4293by element.
4294</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004295
4296<h5>Example:</h5>
4297
4298<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004299 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004300</pre>
4301</div>
4302
Robert Bocchino05ccd702006-01-15 20:48:27 +00004303
4304<!-- _______________________________________________________________________ -->
4305<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004306 <a name="i_call">'<tt>call</tt>' Instruction</a>
4307</div>
4308
Misha Brukman9d0919f2003-11-08 01:05:38 +00004309<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004310
Chris Lattner00950542001-06-06 20:29:01 +00004311<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004312<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004313 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004314</pre>
4315
Chris Lattner00950542001-06-06 20:29:01 +00004316<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004317
Misha Brukman9d0919f2003-11-08 01:05:38 +00004318<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004319
Chris Lattner00950542001-06-06 20:29:01 +00004320<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004321
Misha Brukman9d0919f2003-11-08 01:05:38 +00004322<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004323
Chris Lattner6536cfe2002-05-06 22:08:29 +00004324<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004325 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004326 <p>The optional "tail" marker indicates whether the callee function accesses
4327 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004328 function call is eligible for tail call optimization. Note that calls may
4329 be marked "tail" even if they do not occur before a <a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004330 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004331 </li>
4332 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004333 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004334 convention</a> the call should use. If none is specified, the call defaults
Dan Gohman0e451ce2008-10-14 16:51:45 +00004335 to using C calling conventions.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004336 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004337
4338 <li>
4339 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4340 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4341 and '<tt>inreg</tt>' attributes are valid here.</p>
4342 </li>
4343
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004344 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004345 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4346 the type of the return value. Functions that return no value are marked
4347 <tt><a href="#t_void">void</a></tt>.</p>
4348 </li>
4349 <li>
4350 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4351 value being invoked. The argument types must match the types implied by
4352 this signature. This type can be omitted if the function is not varargs
4353 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004354 </li>
4355 <li>
4356 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4357 be invoked. In most cases, this is a direct function invocation, but
4358 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004359 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004360 </li>
4361 <li>
4362 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004363 function signature argument types. All arguments must be of
4364 <a href="#t_firstclass">first class</a> type. If the function signature
4365 indicates the function accepts a variable number of arguments, the extra
4366 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004367 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004368 <li>
Devang Patel307e8ab2008-10-07 17:48:33 +00004369 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00004370 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4371 '<tt>readnone</tt>' attributes are valid here.</p>
4372 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004373</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004374
Chris Lattner00950542001-06-06 20:29:01 +00004375<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004376
Chris Lattner261efe92003-11-25 01:02:51 +00004377<p>The '<tt>call</tt>' instruction is used to cause control flow to
4378transfer to a specified function, with its incoming arguments bound to
4379the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4380instruction in the called function, control flow continues with the
4381instruction after the function call, and the return value of the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004382function is bound to the result argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004383
Chris Lattner00950542001-06-06 20:29:01 +00004384<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004385
4386<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004387 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004388 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4389 %X = tail call i32 @foo() <i>; yields i32</i>
4390 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4391 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004392
4393 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004394 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004395 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4396 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00004397 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00004398 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004399</pre>
4400
Misha Brukman9d0919f2003-11-08 01:05:38 +00004401</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004402
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004403<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004404<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004405 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004406</div>
4407
Misha Brukman9d0919f2003-11-08 01:05:38 +00004408<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004409
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004410<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004411
4412<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004413 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004414</pre>
4415
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004416<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004417
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004418<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004419the "variable argument" area of a function call. It is used to implement the
4420<tt>va_arg</tt> macro in C.</p>
4421
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004422<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004423
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004424<p>This instruction takes a <tt>va_list*</tt> value and the type of
4425the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004426increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004427actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004428
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004429<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004430
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004431<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4432type from the specified <tt>va_list</tt> and causes the
4433<tt>va_list</tt> to point to the next argument. For more information,
4434see the variable argument handling <a href="#int_varargs">Intrinsic
4435Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004436
4437<p>It is legal for this instruction to be called in a function which does not
4438take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004439function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004440
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004441<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004442href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004443argument.</p>
4444
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004445<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004446
4447<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4448
Misha Brukman9d0919f2003-11-08 01:05:38 +00004449</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004450
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004451<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004452<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4453<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004454
Misha Brukman9d0919f2003-11-08 01:05:38 +00004455<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004456
4457<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004458well known names and semantics and are required to follow certain restrictions.
4459Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004460language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004461adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004462
John Criswellfc6b8952005-05-16 16:17:45 +00004463<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004464prefix is reserved in LLVM for intrinsic names; thus, function names may not
4465begin with this prefix. Intrinsic functions must always be external functions:
4466you cannot define the body of intrinsic functions. Intrinsic functions may
4467only be used in call or invoke instructions: it is illegal to take the address
4468of an intrinsic function. Additionally, because intrinsic functions are part
4469of the LLVM language, it is required if any are added that they be documented
4470here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004471
Chandler Carruth69940402007-08-04 01:51:18 +00004472<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4473a family of functions that perform the same operation but on different data
4474types. Because LLVM can represent over 8 million different integer types,
4475overloading is used commonly to allow an intrinsic function to operate on any
4476integer type. One or more of the argument types or the result type can be
4477overloaded to accept any integer type. Argument types may also be defined as
4478exactly matching a previous argument's type or the result type. This allows an
4479intrinsic function which accepts multiple arguments, but needs all of them to
4480be of the same type, to only be overloaded with respect to a single argument or
4481the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004482
Chandler Carruth69940402007-08-04 01:51:18 +00004483<p>Overloaded intrinsics will have the names of its overloaded argument types
4484encoded into its function name, each preceded by a period. Only those types
4485which are overloaded result in a name suffix. Arguments whose type is matched
4486against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4487take an integer of any width and returns an integer of exactly the same integer
4488width. This leads to a family of functions such as
4489<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4490Only one type, the return type, is overloaded, and only one type suffix is
4491required. Because the argument's type is matched against the return type, it
4492does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004493
4494<p>To learn how to add an intrinsic function, please see the
4495<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004496</p>
4497
Misha Brukman9d0919f2003-11-08 01:05:38 +00004498</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004499
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004500<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004501<div class="doc_subsection">
4502 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4503</div>
4504
Misha Brukman9d0919f2003-11-08 01:05:38 +00004505<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004506
Misha Brukman9d0919f2003-11-08 01:05:38 +00004507<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004508 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004509intrinsic functions. These functions are related to the similarly
4510named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004511
Chris Lattner261efe92003-11-25 01:02:51 +00004512<p>All of these functions operate on arguments that use a
4513target-specific value type "<tt>va_list</tt>". The LLVM assembly
4514language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004515transformations should be prepared to handle these functions regardless of
4516the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004517
Chris Lattner374ab302006-05-15 17:26:46 +00004518<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004519instruction and the variable argument handling intrinsic functions are
4520used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004521
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004522<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004523<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004524define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004525 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004526 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004527 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004528 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004529
4530 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004531 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004532
4533 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004534 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004535 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004536 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004537 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004538
4539 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004540 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004541 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004542}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004543
4544declare void @llvm.va_start(i8*)
4545declare void @llvm.va_copy(i8*, i8*)
4546declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004547</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004548</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004549
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004550</div>
4551
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004552<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004553<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004554 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004555</div>
4556
4557
Misha Brukman9d0919f2003-11-08 01:05:38 +00004558<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004559<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004560<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004561<h5>Overview:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004562<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004563<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4564href="#i_va_arg">va_arg</a></tt>.</p>
4565
4566<h5>Arguments:</h5>
4567
Dan Gohman0e451ce2008-10-14 16:51:45 +00004568<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004569
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004570<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004571
Dan Gohman0e451ce2008-10-14 16:51:45 +00004572<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004573macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004574<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004575<tt>va_arg</tt> will produce the first variable argument passed to the function.
4576Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004577last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004578
Misha Brukman9d0919f2003-11-08 01:05:38 +00004579</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004580
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004581<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004582<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004583 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004584</div>
4585
Misha Brukman9d0919f2003-11-08 01:05:38 +00004586<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004587<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004588<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004589<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004590
Jeff Cohenb627eab2007-04-29 01:07:00 +00004591<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004592which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004593or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004594
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004595<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004596
Jeff Cohenb627eab2007-04-29 01:07:00 +00004597<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004598
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004599<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004600
Misha Brukman9d0919f2003-11-08 01:05:38 +00004601<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004602macro available in C. In a target-dependent way, it destroys the
4603<tt>va_list</tt> element to which the argument points. Calls to <a
4604href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4605<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4606<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004607
Misha Brukman9d0919f2003-11-08 01:05:38 +00004608</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004609
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004610<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004611<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004612 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004613</div>
4614
Misha Brukman9d0919f2003-11-08 01:05:38 +00004615<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004616
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004617<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004618
4619<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004620 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004621</pre>
4622
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004623<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004624
Jeff Cohenb627eab2007-04-29 01:07:00 +00004625<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4626from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004627
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004628<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004629
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004630<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004631The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004632
Chris Lattnerd7923912004-05-23 21:06:01 +00004633
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004634<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004635
Jeff Cohenb627eab2007-04-29 01:07:00 +00004636<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4637macro available in C. In a target-dependent way, it copies the source
4638<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4639intrinsic is necessary because the <tt><a href="#int_va_start">
4640llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4641example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004642
Misha Brukman9d0919f2003-11-08 01:05:38 +00004643</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004644
Chris Lattner33aec9e2004-02-12 17:01:32 +00004645<!-- ======================================================================= -->
4646<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004647 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4648</div>
4649
4650<div class="doc_text">
4651
4652<p>
4653LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004654Collection</a> (GC) requires the implementation and generation of these
4655intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004656These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004657stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004658href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004659Front-ends for type-safe garbage collected languages should generate these
4660intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4661href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4662</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004663
4664<p>The garbage collection intrinsics only operate on objects in the generic
4665 address space (address space zero).</p>
4666
Chris Lattnerd7923912004-05-23 21:06:01 +00004667</div>
4668
4669<!-- _______________________________________________________________________ -->
4670<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004671 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004672</div>
4673
4674<div class="doc_text">
4675
4676<h5>Syntax:</h5>
4677
4678<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004679 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004680</pre>
4681
4682<h5>Overview:</h5>
4683
John Criswell9e2485c2004-12-10 15:51:16 +00004684<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004685the code generator, and allows some metadata to be associated with it.</p>
4686
4687<h5>Arguments:</h5>
4688
4689<p>The first argument specifies the address of a stack object that contains the
4690root pointer. The second pointer (which must be either a constant or a global
4691value address) contains the meta-data to be associated with the root.</p>
4692
4693<h5>Semantics:</h5>
4694
Chris Lattner05d67092008-04-24 05:59:56 +00004695<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004696location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004697the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4698intrinsic may only be used in a function which <a href="#gc">specifies a GC
4699algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004700
4701</div>
4702
4703
4704<!-- _______________________________________________________________________ -->
4705<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004706 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004707</div>
4708
4709<div class="doc_text">
4710
4711<h5>Syntax:</h5>
4712
4713<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004714 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004715</pre>
4716
4717<h5>Overview:</h5>
4718
4719<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4720locations, allowing garbage collector implementations that require read
4721barriers.</p>
4722
4723<h5>Arguments:</h5>
4724
Chris Lattner80626e92006-03-14 20:02:51 +00004725<p>The second argument is the address to read from, which should be an address
4726allocated from the garbage collector. The first object is a pointer to the
4727start of the referenced object, if needed by the language runtime (otherwise
4728null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004729
4730<h5>Semantics:</h5>
4731
4732<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4733instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004734garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4735may only be used in a function which <a href="#gc">specifies a GC
4736algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004737
4738</div>
4739
4740
4741<!-- _______________________________________________________________________ -->
4742<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004743 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004744</div>
4745
4746<div class="doc_text">
4747
4748<h5>Syntax:</h5>
4749
4750<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004751 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004752</pre>
4753
4754<h5>Overview:</h5>
4755
4756<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4757locations, allowing garbage collector implementations that require write
4758barriers (such as generational or reference counting collectors).</p>
4759
4760<h5>Arguments:</h5>
4761
Chris Lattner80626e92006-03-14 20:02:51 +00004762<p>The first argument is the reference to store, the second is the start of the
4763object to store it to, and the third is the address of the field of Obj to
4764store to. If the runtime does not require a pointer to the object, Obj may be
4765null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004766
4767<h5>Semantics:</h5>
4768
4769<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4770instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004771garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4772may only be used in a function which <a href="#gc">specifies a GC
4773algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004774
4775</div>
4776
4777
4778
4779<!-- ======================================================================= -->
4780<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004781 <a name="int_codegen">Code Generator Intrinsics</a>
4782</div>
4783
4784<div class="doc_text">
4785<p>
4786These intrinsics are provided by LLVM to expose special features that may only
4787be implemented with code generator support.
4788</p>
4789
4790</div>
4791
4792<!-- _______________________________________________________________________ -->
4793<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004794 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004795</div>
4796
4797<div class="doc_text">
4798
4799<h5>Syntax:</h5>
4800<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004801 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004802</pre>
4803
4804<h5>Overview:</h5>
4805
4806<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004807The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4808target-specific value indicating the return address of the current function
4809or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004810</p>
4811
4812<h5>Arguments:</h5>
4813
4814<p>
4815The argument to this intrinsic indicates which function to return the address
4816for. Zero indicates the calling function, one indicates its caller, etc. The
4817argument is <b>required</b> to be a constant integer value.
4818</p>
4819
4820<h5>Semantics:</h5>
4821
4822<p>
4823The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4824the return address of the specified call frame, or zero if it cannot be
4825identified. The value returned by this intrinsic is likely to be incorrect or 0
4826for arguments other than zero, so it should only be used for debugging purposes.
4827</p>
4828
4829<p>
4830Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004831aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004832source-language caller.
4833</p>
4834</div>
4835
4836
4837<!-- _______________________________________________________________________ -->
4838<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004839 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004840</div>
4841
4842<div class="doc_text">
4843
4844<h5>Syntax:</h5>
4845<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004846 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004847</pre>
4848
4849<h5>Overview:</h5>
4850
4851<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004852The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4853target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004854</p>
4855
4856<h5>Arguments:</h5>
4857
4858<p>
4859The argument to this intrinsic indicates which function to return the frame
4860pointer for. Zero indicates the calling function, one indicates its caller,
4861etc. The argument is <b>required</b> to be a constant integer value.
4862</p>
4863
4864<h5>Semantics:</h5>
4865
4866<p>
4867The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4868the frame address of the specified call frame, or zero if it cannot be
4869identified. The value returned by this intrinsic is likely to be incorrect or 0
4870for arguments other than zero, so it should only be used for debugging purposes.
4871</p>
4872
4873<p>
4874Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004875aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004876source-language caller.
4877</p>
4878</div>
4879
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004880<!-- _______________________________________________________________________ -->
4881<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004882 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004883</div>
4884
4885<div class="doc_text">
4886
4887<h5>Syntax:</h5>
4888<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004889 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004890</pre>
4891
4892<h5>Overview:</h5>
4893
4894<p>
4895The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004896the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004897<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4898features like scoped automatic variable sized arrays in C99.
4899</p>
4900
4901<h5>Semantics:</h5>
4902
4903<p>
4904This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004905href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004906<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4907<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4908state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4909practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4910that were allocated after the <tt>llvm.stacksave</tt> was executed.
4911</p>
4912
4913</div>
4914
4915<!-- _______________________________________________________________________ -->
4916<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004917 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004918</div>
4919
4920<div class="doc_text">
4921
4922<h5>Syntax:</h5>
4923<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004924 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004925</pre>
4926
4927<h5>Overview:</h5>
4928
4929<p>
4930The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4931the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004932href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004933useful for implementing language features like scoped automatic variable sized
4934arrays in C99.
4935</p>
4936
4937<h5>Semantics:</h5>
4938
4939<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004940See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004941</p>
4942
4943</div>
4944
4945
4946<!-- _______________________________________________________________________ -->
4947<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004948 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004949</div>
4950
4951<div class="doc_text">
4952
4953<h5>Syntax:</h5>
4954<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004955 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004956</pre>
4957
4958<h5>Overview:</h5>
4959
4960
4961<p>
4962The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004963a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4964no
4965effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004966characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004967</p>
4968
4969<h5>Arguments:</h5>
4970
4971<p>
4972<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4973determining if the fetch should be for a read (0) or write (1), and
4974<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004975locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004976<tt>locality</tt> arguments must be constant integers.
4977</p>
4978
4979<h5>Semantics:</h5>
4980
4981<p>
4982This intrinsic does not modify the behavior of the program. In particular,
4983prefetches cannot trap and do not produce a value. On targets that support this
4984intrinsic, the prefetch can provide hints to the processor cache for better
4985performance.
4986</p>
4987
4988</div>
4989
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004990<!-- _______________________________________________________________________ -->
4991<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004992 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004993</div>
4994
4995<div class="doc_text">
4996
4997<h5>Syntax:</h5>
4998<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004999 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005000</pre>
5001
5002<h5>Overview:</h5>
5003
5004
5005<p>
John Criswellfc6b8952005-05-16 16:17:45 +00005006The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00005007(PC) in a region of
5008code to simulators and other tools. The method is target specific, but it is
5009expected that the marker will use exported symbols to transmit the PC of the
5010marker.
5011The marker makes no guarantees that it will remain with any specific instruction
5012after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00005013optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00005014correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005015</p>
5016
5017<h5>Arguments:</h5>
5018
5019<p>
5020<tt>id</tt> is a numerical id identifying the marker.
5021</p>
5022
5023<h5>Semantics:</h5>
5024
5025<p>
5026This intrinsic does not modify the behavior of the program. Backends that do not
5027support this intrinisic may ignore it.
5028</p>
5029
5030</div>
5031
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005032<!-- _______________________________________________________________________ -->
5033<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005034 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005035</div>
5036
5037<div class="doc_text">
5038
5039<h5>Syntax:</h5>
5040<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005041 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005042</pre>
5043
5044<h5>Overview:</h5>
5045
5046
5047<p>
5048The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5049counter register (or similar low latency, high accuracy clocks) on those targets
5050that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5051As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5052should only be used for small timings.
5053</p>
5054
5055<h5>Semantics:</h5>
5056
5057<p>
5058When directly supported, reading the cycle counter should not modify any memory.
5059Implementations are allowed to either return a application specific value or a
5060system wide value. On backends without support, this is lowered to a constant 0.
5061</p>
5062
5063</div>
5064
Chris Lattner10610642004-02-14 04:08:35 +00005065<!-- ======================================================================= -->
5066<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005067 <a name="int_libc">Standard C Library Intrinsics</a>
5068</div>
5069
5070<div class="doc_text">
5071<p>
Chris Lattner10610642004-02-14 04:08:35 +00005072LLVM provides intrinsics for a few important standard C library functions.
5073These intrinsics allow source-language front-ends to pass information about the
5074alignment of the pointer arguments to the code generator, providing opportunity
5075for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005076</p>
5077
5078</div>
5079
5080<!-- _______________________________________________________________________ -->
5081<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005082 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005083</div>
5084
5085<div class="doc_text">
5086
5087<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005088<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5089width. Not all targets support all bit widths however.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005090<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005091 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5092 i8 &lt;len&gt;, i32 &lt;align&gt;)
5093 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5094 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005095 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005096 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005097 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005098 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005099</pre>
5100
5101<h5>Overview:</h5>
5102
5103<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005104The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005105location to the destination location.
5106</p>
5107
5108<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005109Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5110intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005111</p>
5112
5113<h5>Arguments:</h5>
5114
5115<p>
5116The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005117the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005118specifying the number of bytes to copy, and the fourth argument is the alignment
5119of the source and destination locations.
5120</p>
5121
Chris Lattner3301ced2004-02-12 21:18:15 +00005122<p>
5123If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005124the caller guarantees that both the source and destination pointers are aligned
5125to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005126</p>
5127
Chris Lattner33aec9e2004-02-12 17:01:32 +00005128<h5>Semantics:</h5>
5129
5130<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005131The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005132location to the destination location, which are not allowed to overlap. It
5133copies "len" bytes of memory over. If the argument is known to be aligned to
5134some boundary, this can be specified as the fourth argument, otherwise it should
5135be set to 0 or 1.
5136</p>
5137</div>
5138
5139
Chris Lattner0eb51b42004-02-12 18:10:10 +00005140<!-- _______________________________________________________________________ -->
5141<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005142 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005143</div>
5144
5145<div class="doc_text">
5146
5147<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005148<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5149width. Not all targets support all bit widths however.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005150<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005151 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5152 i8 &lt;len&gt;, i32 &lt;align&gt;)
5153 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5154 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005155 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005156 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005157 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005158 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005159</pre>
5160
5161<h5>Overview:</h5>
5162
5163<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005164The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5165location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005166'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005167</p>
5168
5169<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005170Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5171intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005172</p>
5173
5174<h5>Arguments:</h5>
5175
5176<p>
5177The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005178the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005179specifying the number of bytes to copy, and the fourth argument is the alignment
5180of the source and destination locations.
5181</p>
5182
Chris Lattner3301ced2004-02-12 21:18:15 +00005183<p>
5184If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005185the caller guarantees that the source and destination pointers are aligned to
5186that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005187</p>
5188
Chris Lattner0eb51b42004-02-12 18:10:10 +00005189<h5>Semantics:</h5>
5190
5191<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005192The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005193location to the destination location, which may overlap. It
5194copies "len" bytes of memory over. If the argument is known to be aligned to
5195some boundary, this can be specified as the fourth argument, otherwise it should
5196be set to 0 or 1.
5197</p>
5198</div>
5199
Chris Lattner8ff75902004-01-06 05:31:32 +00005200
Chris Lattner10610642004-02-14 04:08:35 +00005201<!-- _______________________________________________________________________ -->
5202<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005203 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005204</div>
5205
5206<div class="doc_text">
5207
5208<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005209<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5210width. Not all targets support all bit widths however.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005211<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005212 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5213 i8 &lt;len&gt;, i32 &lt;align&gt;)
5214 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5215 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005216 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005217 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005218 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005219 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005220</pre>
5221
5222<h5>Overview:</h5>
5223
5224<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005225The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005226byte value.
5227</p>
5228
5229<p>
5230Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5231does not return a value, and takes an extra alignment argument.
5232</p>
5233
5234<h5>Arguments:</h5>
5235
5236<p>
5237The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005238byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005239argument specifying the number of bytes to fill, and the fourth argument is the
5240known alignment of destination location.
5241</p>
5242
5243<p>
5244If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005245the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005246</p>
5247
5248<h5>Semantics:</h5>
5249
5250<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005251The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5252the
Chris Lattner10610642004-02-14 04:08:35 +00005253destination location. If the argument is known to be aligned to some boundary,
5254this can be specified as the fourth argument, otherwise it should be set to 0 or
52551.
5256</p>
5257</div>
5258
5259
Chris Lattner32006282004-06-11 02:28:03 +00005260<!-- _______________________________________________________________________ -->
5261<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005262 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005263</div>
5264
5265<div class="doc_text">
5266
5267<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005268<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005269floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005270types however.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005271<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005272 declare float @llvm.sqrt.f32(float %Val)
5273 declare double @llvm.sqrt.f64(double %Val)
5274 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5275 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5276 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005277</pre>
5278
5279<h5>Overview:</h5>
5280
5281<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005282The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005283returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005284<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005285negative numbers other than -0.0 (which allows for better optimization, because
5286there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5287defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005288</p>
5289
5290<h5>Arguments:</h5>
5291
5292<p>
5293The argument and return value are floating point numbers of the same type.
5294</p>
5295
5296<h5>Semantics:</h5>
5297
5298<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005299This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005300floating point number.
5301</p>
5302</div>
5303
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005304<!-- _______________________________________________________________________ -->
5305<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005306 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005307</div>
5308
5309<div class="doc_text">
5310
5311<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005312<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005313floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005314types however.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005315<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005316 declare float @llvm.powi.f32(float %Val, i32 %power)
5317 declare double @llvm.powi.f64(double %Val, i32 %power)
5318 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5319 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5320 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005321</pre>
5322
5323<h5>Overview:</h5>
5324
5325<p>
5326The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5327specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005328multiplications is not defined. When a vector of floating point type is
5329used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005330</p>
5331
5332<h5>Arguments:</h5>
5333
5334<p>
5335The second argument is an integer power, and the first is a value to raise to
5336that power.
5337</p>
5338
5339<h5>Semantics:</h5>
5340
5341<p>
5342This function returns the first value raised to the second power with an
5343unspecified sequence of rounding operations.</p>
5344</div>
5345
Dan Gohman91c284c2007-10-15 20:30:11 +00005346<!-- _______________________________________________________________________ -->
5347<div class="doc_subsubsection">
5348 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5349</div>
5350
5351<div class="doc_text">
5352
5353<h5>Syntax:</h5>
5354<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5355floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005356types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005357<pre>
5358 declare float @llvm.sin.f32(float %Val)
5359 declare double @llvm.sin.f64(double %Val)
5360 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5361 declare fp128 @llvm.sin.f128(fp128 %Val)
5362 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5363</pre>
5364
5365<h5>Overview:</h5>
5366
5367<p>
5368The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5369</p>
5370
5371<h5>Arguments:</h5>
5372
5373<p>
5374The argument and return value are floating point numbers of the same type.
5375</p>
5376
5377<h5>Semantics:</h5>
5378
5379<p>
5380This function returns the sine of the specified operand, returning the
5381same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005382conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005383</div>
5384
5385<!-- _______________________________________________________________________ -->
5386<div class="doc_subsubsection">
5387 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5388</div>
5389
5390<div class="doc_text">
5391
5392<h5>Syntax:</h5>
5393<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5394floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005395types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005396<pre>
5397 declare float @llvm.cos.f32(float %Val)
5398 declare double @llvm.cos.f64(double %Val)
5399 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5400 declare fp128 @llvm.cos.f128(fp128 %Val)
5401 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5402</pre>
5403
5404<h5>Overview:</h5>
5405
5406<p>
5407The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5408</p>
5409
5410<h5>Arguments:</h5>
5411
5412<p>
5413The argument and return value are floating point numbers of the same type.
5414</p>
5415
5416<h5>Semantics:</h5>
5417
5418<p>
5419This function returns the cosine of the specified operand, returning the
5420same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005421conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005422</div>
5423
5424<!-- _______________________________________________________________________ -->
5425<div class="doc_subsubsection">
5426 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5427</div>
5428
5429<div class="doc_text">
5430
5431<h5>Syntax:</h5>
5432<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5433floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005434types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005435<pre>
5436 declare float @llvm.pow.f32(float %Val, float %Power)
5437 declare double @llvm.pow.f64(double %Val, double %Power)
5438 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5439 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5440 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5441</pre>
5442
5443<h5>Overview:</h5>
5444
5445<p>
5446The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5447specified (positive or negative) power.
5448</p>
5449
5450<h5>Arguments:</h5>
5451
5452<p>
5453The second argument is a floating point power, and the first is a value to
5454raise to that power.
5455</p>
5456
5457<h5>Semantics:</h5>
5458
5459<p>
5460This function returns the first value raised to the second power,
5461returning the
5462same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005463conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005464</div>
5465
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005466
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005467<!-- ======================================================================= -->
5468<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005469 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005470</div>
5471
5472<div class="doc_text">
5473<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005474LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005475These allow efficient code generation for some algorithms.
5476</p>
5477
5478</div>
5479
5480<!-- _______________________________________________________________________ -->
5481<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005482 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005483</div>
5484
5485<div class="doc_text">
5486
5487<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005488<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohman0e451ce2008-10-14 16:51:45 +00005489type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005490<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005491 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5492 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5493 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005494</pre>
5495
5496<h5>Overview:</h5>
5497
5498<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005499The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005500values with an even number of bytes (positive multiple of 16 bits). These are
5501useful for performing operations on data that is not in the target's native
5502byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005503</p>
5504
5505<h5>Semantics:</h5>
5506
5507<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005508The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005509and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5510intrinsic returns an i32 value that has the four bytes of the input i32
5511swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005512i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5513<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005514additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005515</p>
5516
5517</div>
5518
5519<!-- _______________________________________________________________________ -->
5520<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005521 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005522</div>
5523
5524<div class="doc_text">
5525
5526<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005527<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohman0e451ce2008-10-14 16:51:45 +00005528width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005529<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005530 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5531 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005532 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005533 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5534 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005535</pre>
5536
5537<h5>Overview:</h5>
5538
5539<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005540The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5541value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005542</p>
5543
5544<h5>Arguments:</h5>
5545
5546<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005547The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005548integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005549</p>
5550
5551<h5>Semantics:</h5>
5552
5553<p>
5554The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5555</p>
5556</div>
5557
5558<!-- _______________________________________________________________________ -->
5559<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005560 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005561</div>
5562
5563<div class="doc_text">
5564
5565<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005566<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005567integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005568<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005569 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5570 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005571 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005572 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5573 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005574</pre>
5575
5576<h5>Overview:</h5>
5577
5578<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005579The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5580leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005581</p>
5582
5583<h5>Arguments:</h5>
5584
5585<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005586The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005587integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005588</p>
5589
5590<h5>Semantics:</h5>
5591
5592<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005593The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5594in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005595of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005596</p>
5597</div>
Chris Lattner32006282004-06-11 02:28:03 +00005598
5599
Chris Lattnereff29ab2005-05-15 19:39:26 +00005600
5601<!-- _______________________________________________________________________ -->
5602<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005603 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005604</div>
5605
5606<div class="doc_text">
5607
5608<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005609<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005610integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005611<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005612 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5613 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005614 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005615 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5616 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005617</pre>
5618
5619<h5>Overview:</h5>
5620
5621<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005622The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5623trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005624</p>
5625
5626<h5>Arguments:</h5>
5627
5628<p>
5629The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005630integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005631</p>
5632
5633<h5>Semantics:</h5>
5634
5635<p>
5636The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5637in a variable. If the src == 0 then the result is the size in bits of the type
5638of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5639</p>
5640</div>
5641
Reid Spencer497d93e2007-04-01 08:27:01 +00005642<!-- _______________________________________________________________________ -->
5643<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005644 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005645</div>
5646
5647<div class="doc_text">
5648
5649<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005650<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005651on any integer bit width.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005652<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005653 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5654 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005655</pre>
5656
5657<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005658<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005659range of bits from an integer value and returns them in the same bit width as
5660the original value.</p>
5661
5662<h5>Arguments:</h5>
5663<p>The first argument, <tt>%val</tt> and the result may be integer types of
5664any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005665arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005666
5667<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005668<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005669of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5670<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5671operates in forward mode.</p>
5672<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5673right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005674only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5675<ol>
5676 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5677 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5678 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5679 to determine the number of bits to retain.</li>
5680 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005681 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005682</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005683<p>In reverse mode, a similar computation is made except that the bits are
5684returned in the reverse order. So, for example, if <tt>X</tt> has the value
5685<tt>i16 0x0ACF (101011001111)</tt> and we apply
5686<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5687<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005688</div>
5689
Reid Spencerf86037f2007-04-11 23:23:49 +00005690<div class="doc_subsubsection">
5691 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5692</div>
5693
5694<div class="doc_text">
5695
5696<h5>Syntax:</h5>
5697<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005698on any integer bit width.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00005699<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005700 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5701 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005702</pre>
5703
5704<h5>Overview:</h5>
5705<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5706of bits in an integer value with another integer value. It returns the integer
5707with the replaced bits.</p>
5708
5709<h5>Arguments:</h5>
5710<p>The first argument, <tt>%val</tt> and the result may be integer types of
5711any bit width but they must have the same bit width. <tt>%val</tt> is the value
5712whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5713integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5714type since they specify only a bit index.</p>
5715
5716<h5>Semantics:</h5>
5717<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5718of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5719<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5720operates in forward mode.</p>
5721<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5722truncating it down to the size of the replacement area or zero extending it
5723up to that size.</p>
5724<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5725are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5726in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohman0e451ce2008-10-14 16:51:45 +00005727to the <tt>%hi</tt>th bit.</p>
Reid Spencerc6749c42007-05-14 16:50:20 +00005728<p>In reverse mode, a similar computation is made except that the bits are
5729reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohman0e451ce2008-10-14 16:51:45 +00005730<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00005731<h5>Examples:</h5>
5732<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005733 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005734 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5735 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5736 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005737 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005738</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00005739</div>
5740
Chris Lattner8ff75902004-01-06 05:31:32 +00005741<!-- ======================================================================= -->
5742<div class="doc_subsection">
5743 <a name="int_debugger">Debugger Intrinsics</a>
5744</div>
5745
5746<div class="doc_text">
5747<p>
5748The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5749are described in the <a
5750href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5751Debugging</a> document.
5752</p>
5753</div>
5754
5755
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005756<!-- ======================================================================= -->
5757<div class="doc_subsection">
5758 <a name="int_eh">Exception Handling Intrinsics</a>
5759</div>
5760
5761<div class="doc_text">
5762<p> The LLVM exception handling intrinsics (which all start with
5763<tt>llvm.eh.</tt> prefix), are described in the <a
5764href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5765Handling</a> document. </p>
5766</div>
5767
Tanya Lattner6d806e92007-06-15 20:50:54 +00005768<!-- ======================================================================= -->
5769<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005770 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005771</div>
5772
5773<div class="doc_text">
5774<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005775 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005776 the <tt>nest</tt> attribute, from a function. The result is a callable
5777 function pointer lacking the nest parameter - the caller does not need
5778 to provide a value for it. Instead, the value to use is stored in
5779 advance in a "trampoline", a block of memory usually allocated
5780 on the stack, which also contains code to splice the nest value into the
5781 argument list. This is used to implement the GCC nested function address
5782 extension.
5783</p>
5784<p>
5785 For example, if the function is
5786 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00005787 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005788<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005789 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5790 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5791 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5792 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005793</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00005794 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5795 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005796</div>
5797
5798<!-- _______________________________________________________________________ -->
5799<div class="doc_subsubsection">
5800 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5801</div>
5802<div class="doc_text">
5803<h5>Syntax:</h5>
5804<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005805declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005806</pre>
5807<h5>Overview:</h5>
5808<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005809 This fills the memory pointed to by <tt>tramp</tt> with code
5810 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005811</p>
5812<h5>Arguments:</h5>
5813<p>
5814 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5815 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5816 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005817 intrinsic. Note that the size and the alignment are target-specific - LLVM
5818 currently provides no portable way of determining them, so a front-end that
5819 generates this intrinsic needs to have some target-specific knowledge.
5820 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005821</p>
5822<h5>Semantics:</h5>
5823<p>
5824 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005825 dependent code, turning it into a function. A pointer to this function is
5826 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005827 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005828 before being called. The new function's signature is the same as that of
5829 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5830 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5831 of pointer type. Calling the new function is equivalent to calling
5832 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5833 missing <tt>nest</tt> argument. If, after calling
5834 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5835 modified, then the effect of any later call to the returned function pointer is
5836 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005837</p>
5838</div>
5839
5840<!-- ======================================================================= -->
5841<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005842 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5843</div>
5844
5845<div class="doc_text">
5846<p>
5847 These intrinsic functions expand the "universal IR" of LLVM to represent
5848 hardware constructs for atomic operations and memory synchronization. This
5849 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00005850 is aimed at a low enough level to allow any programming models or APIs
5851 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005852 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5853 hardware behavior. Just as hardware provides a "universal IR" for source
5854 languages, it also provides a starting point for developing a "universal"
5855 atomic operation and synchronization IR.
5856</p>
5857<p>
5858 These do <em>not</em> form an API such as high-level threading libraries,
5859 software transaction memory systems, atomic primitives, and intrinsic
5860 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5861 application libraries. The hardware interface provided by LLVM should allow
5862 a clean implementation of all of these APIs and parallel programming models.
5863 No one model or paradigm should be selected above others unless the hardware
5864 itself ubiquitously does so.
5865
5866</p>
5867</div>
5868
5869<!-- _______________________________________________________________________ -->
5870<div class="doc_subsubsection">
5871 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5872</div>
5873<div class="doc_text">
5874<h5>Syntax:</h5>
5875<pre>
5876declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5877i1 &lt;device&gt; )
5878
5879</pre>
5880<h5>Overview:</h5>
5881<p>
5882 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5883 specific pairs of memory access types.
5884</p>
5885<h5>Arguments:</h5>
5886<p>
5887 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5888 The first four arguments enables a specific barrier as listed below. The fith
5889 argument specifies that the barrier applies to io or device or uncached memory.
5890
5891</p>
5892 <ul>
5893 <li><tt>ll</tt>: load-load barrier</li>
5894 <li><tt>ls</tt>: load-store barrier</li>
5895 <li><tt>sl</tt>: store-load barrier</li>
5896 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005897 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005898 </ul>
5899<h5>Semantics:</h5>
5900<p>
5901 This intrinsic causes the system to enforce some ordering constraints upon
5902 the loads and stores of the program. This barrier does not indicate
5903 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5904 which they occur. For any of the specified pairs of load and store operations
5905 (f.ex. load-load, or store-load), all of the first operations preceding the
5906 barrier will complete before any of the second operations succeeding the
5907 barrier begin. Specifically the semantics for each pairing is as follows:
5908</p>
5909 <ul>
5910 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5911 after the barrier begins.</li>
5912
5913 <li><tt>ls</tt>: All loads before the barrier must complete before any
5914 store after the barrier begins.</li>
5915 <li><tt>ss</tt>: All stores before the barrier must complete before any
5916 store after the barrier begins.</li>
5917 <li><tt>sl</tt>: All stores before the barrier must complete before any
5918 load after the barrier begins.</li>
5919 </ul>
5920<p>
5921 These semantics are applied with a logical "and" behavior when more than one
5922 is enabled in a single memory barrier intrinsic.
5923</p>
5924<p>
5925 Backends may implement stronger barriers than those requested when they do not
5926 support as fine grained a barrier as requested. Some architectures do not
5927 need all types of barriers and on such architectures, these become noops.
5928</p>
5929<h5>Example:</h5>
5930<pre>
5931%ptr = malloc i32
5932 store i32 4, %ptr
5933
5934%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5935 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5936 <i>; guarantee the above finishes</i>
5937 store i32 8, %ptr <i>; before this begins</i>
5938</pre>
5939</div>
5940
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005941<!-- _______________________________________________________________________ -->
5942<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00005943 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005944</div>
5945<div class="doc_text">
5946<h5>Syntax:</h5>
5947<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00005948 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5949 any integer bit width and for different address spaces. Not all targets
5950 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005951
5952<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005953declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5954declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5955declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5956declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005957
5958</pre>
5959<h5>Overview:</h5>
5960<p>
5961 This loads a value in memory and compares it to a given value. If they are
5962 equal, it stores a new value into the memory.
5963</p>
5964<h5>Arguments:</h5>
5965<p>
Mon P Wang28873102008-06-25 08:15:39 +00005966 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005967 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5968 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5969 this integer type. While any bit width integer may be used, targets may only
5970 lower representations they support in hardware.
5971
5972</p>
5973<h5>Semantics:</h5>
5974<p>
5975 This entire intrinsic must be executed atomically. It first loads the value
5976 in memory pointed to by <tt>ptr</tt> and compares it with the value
5977 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5978 loaded value is yielded in all cases. This provides the equivalent of an
5979 atomic compare-and-swap operation within the SSA framework.
5980</p>
5981<h5>Examples:</h5>
5982
5983<pre>
5984%ptr = malloc i32
5985 store i32 4, %ptr
5986
5987%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00005988%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005989 <i>; yields {i32}:result1 = 4</i>
5990%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5991%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5992
5993%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00005994%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005995 <i>; yields {i32}:result2 = 8</i>
5996%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5997
5998%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5999</pre>
6000</div>
6001
6002<!-- _______________________________________________________________________ -->
6003<div class="doc_subsubsection">
6004 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6005</div>
6006<div class="doc_text">
6007<h5>Syntax:</h5>
6008
6009<p>
6010 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6011 integer bit width. Not all targets support all bit widths however.</p>
6012<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006013declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6014declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6015declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6016declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006017
6018</pre>
6019<h5>Overview:</h5>
6020<p>
6021 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6022 the value from memory. It then stores the value in <tt>val</tt> in the memory
6023 at <tt>ptr</tt>.
6024</p>
6025<h5>Arguments:</h5>
6026
6027<p>
Mon P Wang28873102008-06-25 08:15:39 +00006028 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006029 <tt>val</tt> argument and the result must be integers of the same bit width.
6030 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6031 integer type. The targets may only lower integer representations they
6032 support.
6033</p>
6034<h5>Semantics:</h5>
6035<p>
6036 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6037 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6038 equivalent of an atomic swap operation within the SSA framework.
6039
6040</p>
6041<h5>Examples:</h5>
6042<pre>
6043%ptr = malloc i32
6044 store i32 4, %ptr
6045
6046%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006047%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006048 <i>; yields {i32}:result1 = 4</i>
6049%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6050%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6051
6052%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006053%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006054 <i>; yields {i32}:result2 = 8</i>
6055
6056%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6057%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6058</pre>
6059</div>
6060
6061<!-- _______________________________________________________________________ -->
6062<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006063 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006064
6065</div>
6066<div class="doc_text">
6067<h5>Syntax:</h5>
6068<p>
Mon P Wang28873102008-06-25 08:15:39 +00006069 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006070 integer bit width. Not all targets support all bit widths however.</p>
6071<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006072declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6073declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6074declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6075declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006076
6077</pre>
6078<h5>Overview:</h5>
6079<p>
6080 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6081 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6082</p>
6083<h5>Arguments:</h5>
6084<p>
6085
6086 The intrinsic takes two arguments, the first a pointer to an integer value
6087 and the second an integer value. The result is also an integer value. These
6088 integer types can have any bit width, but they must all have the same bit
6089 width. The targets may only lower integer representations they support.
6090</p>
6091<h5>Semantics:</h5>
6092<p>
6093 This intrinsic does a series of operations atomically. It first loads the
6094 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6095 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6096</p>
6097
6098<h5>Examples:</h5>
6099<pre>
6100%ptr = malloc i32
6101 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006102%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006103 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006104%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006105 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006106%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006107 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006108%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006109</pre>
6110</div>
6111
Mon P Wang28873102008-06-25 08:15:39 +00006112<!-- _______________________________________________________________________ -->
6113<div class="doc_subsubsection">
6114 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6115
6116</div>
6117<div class="doc_text">
6118<h5>Syntax:</h5>
6119<p>
6120 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006121 any integer bit width and for different address spaces. Not all targets
6122 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006123<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006124declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6125declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6126declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6127declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006128
6129</pre>
6130<h5>Overview:</h5>
6131<p>
6132 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6133 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6134</p>
6135<h5>Arguments:</h5>
6136<p>
6137
6138 The intrinsic takes two arguments, the first a pointer to an integer value
6139 and the second an integer value. The result is also an integer value. These
6140 integer types can have any bit width, but they must all have the same bit
6141 width. The targets may only lower integer representations they support.
6142</p>
6143<h5>Semantics:</h5>
6144<p>
6145 This intrinsic does a series of operations atomically. It first loads the
6146 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6147 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6148</p>
6149
6150<h5>Examples:</h5>
6151<pre>
6152%ptr = malloc i32
6153 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006154%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006155 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006156%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006157 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006158%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006159 <i>; yields {i32}:result3 = 2</i>
6160%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6161</pre>
6162</div>
6163
6164<!-- _______________________________________________________________________ -->
6165<div class="doc_subsubsection">
6166 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6167 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6168 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6169 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6170
6171</div>
6172<div class="doc_text">
6173<h5>Syntax:</h5>
6174<p>
6175 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6176 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006177 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6178 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006179<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006180declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6181declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6182declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6183declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006184
6185</pre>
6186
6187<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006188declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6189declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6190declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6191declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006192
6193</pre>
6194
6195<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006196declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6197declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6198declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6199declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006200
6201</pre>
6202
6203<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006204declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6205declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6206declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6207declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006208
6209</pre>
6210<h5>Overview:</h5>
6211<p>
6212 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6213 the value stored in memory at <tt>ptr</tt>. It yields the original value
6214 at <tt>ptr</tt>.
6215</p>
6216<h5>Arguments:</h5>
6217<p>
6218
6219 These intrinsics take two arguments, the first a pointer to an integer value
6220 and the second an integer value. The result is also an integer value. These
6221 integer types can have any bit width, but they must all have the same bit
6222 width. The targets may only lower integer representations they support.
6223</p>
6224<h5>Semantics:</h5>
6225<p>
6226 These intrinsics does a series of operations atomically. They first load the
6227 value stored at <tt>ptr</tt>. They then do the bitwise operation
6228 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6229 value stored at <tt>ptr</tt>.
6230</p>
6231
6232<h5>Examples:</h5>
6233<pre>
6234%ptr = malloc i32
6235 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006236%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006237 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006238%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006239 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006240%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006241 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006242%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006243 <i>; yields {i32}:result3 = FF</i>
6244%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6245</pre>
6246</div>
6247
6248
6249<!-- _______________________________________________________________________ -->
6250<div class="doc_subsubsection">
6251 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6252 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6253 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6254 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6255
6256</div>
6257<div class="doc_text">
6258<h5>Syntax:</h5>
6259<p>
6260 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6261 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006262 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6263 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006264 support all bit widths however.</p>
6265<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006266declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6267declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6268declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6269declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006270
6271</pre>
6272
6273<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006274declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6275declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6276declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6277declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006278
6279</pre>
6280
6281<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006282declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6283declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6284declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6285declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006286
6287</pre>
6288
6289<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006290declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6291declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6292declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6293declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006294
6295</pre>
6296<h5>Overview:</h5>
6297<p>
6298 These intrinsics takes the signed or unsigned minimum or maximum of
6299 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6300 original value at <tt>ptr</tt>.
6301</p>
6302<h5>Arguments:</h5>
6303<p>
6304
6305 These intrinsics take two arguments, the first a pointer to an integer value
6306 and the second an integer value. The result is also an integer value. These
6307 integer types can have any bit width, but they must all have the same bit
6308 width. The targets may only lower integer representations they support.
6309</p>
6310<h5>Semantics:</h5>
6311<p>
6312 These intrinsics does a series of operations atomically. They first load the
6313 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6314 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6315 the original value stored at <tt>ptr</tt>.
6316</p>
6317
6318<h5>Examples:</h5>
6319<pre>
6320%ptr = malloc i32
6321 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006322%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006323 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006324%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006325 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006326%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006327 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006328%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006329 <i>; yields {i32}:result3 = 8</i>
6330%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6331</pre>
6332</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006333
6334<!-- ======================================================================= -->
6335<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006336 <a name="int_general">General Intrinsics</a>
6337</div>
6338
6339<div class="doc_text">
6340<p> This class of intrinsics is designed to be generic and has
6341no specific purpose. </p>
6342</div>
6343
6344<!-- _______________________________________________________________________ -->
6345<div class="doc_subsubsection">
6346 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6347</div>
6348
6349<div class="doc_text">
6350
6351<h5>Syntax:</h5>
6352<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006353 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006354</pre>
6355
6356<h5>Overview:</h5>
6357
6358<p>
6359The '<tt>llvm.var.annotation</tt>' intrinsic
6360</p>
6361
6362<h5>Arguments:</h5>
6363
6364<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006365The first argument is a pointer to a value, the second is a pointer to a
6366global string, the third is a pointer to a global string which is the source
6367file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006368</p>
6369
6370<h5>Semantics:</h5>
6371
6372<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006373This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006374This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006375annotations. These have no other defined use, they are ignored by code
6376generation and optimization.
6377</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006378</div>
6379
Tanya Lattnerb6367882007-09-21 22:59:12 +00006380<!-- _______________________________________________________________________ -->
6381<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006382 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006383</div>
6384
6385<div class="doc_text">
6386
6387<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006388<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6389any integer bit width.
6390</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006391<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006392 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6393 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6394 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6395 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6396 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006397</pre>
6398
6399<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006400
6401<p>
6402The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006403</p>
6404
6405<h5>Arguments:</h5>
6406
6407<p>
6408The first argument is an integer value (result of some expression),
6409the second is a pointer to a global string, the third is a pointer to a global
6410string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006411It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006412</p>
6413
6414<h5>Semantics:</h5>
6415
6416<p>
6417This intrinsic allows annotations to be put on arbitrary expressions
6418with arbitrary strings. This can be useful for special purpose optimizations
6419that want to look for these annotations. These have no other defined use, they
6420are ignored by code generation and optimization.
Dan Gohman0e451ce2008-10-14 16:51:45 +00006421</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006422</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006423
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006424<!-- _______________________________________________________________________ -->
6425<div class="doc_subsubsection">
6426 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6427</div>
6428
6429<div class="doc_text">
6430
6431<h5>Syntax:</h5>
6432<pre>
6433 declare void @llvm.trap()
6434</pre>
6435
6436<h5>Overview:</h5>
6437
6438<p>
6439The '<tt>llvm.trap</tt>' intrinsic
6440</p>
6441
6442<h5>Arguments:</h5>
6443
6444<p>
6445None
6446</p>
6447
6448<h5>Semantics:</h5>
6449
6450<p>
6451This intrinsics is lowered to the target dependent trap instruction. If the
6452target does not have a trap instruction, this intrinsic will be lowered to the
6453call of the abort() function.
6454</p>
6455</div>
6456
Bill Wendling69e4adb2008-11-19 05:56:17 +00006457<!-- _______________________________________________________________________ -->
6458<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00006459 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00006460</div>
6461<div class="doc_text">
6462<h5>Syntax:</h5>
6463<pre>
6464declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
6465
6466</pre>
6467<h5>Overview:</h5>
6468<p>
6469 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
6470 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
6471 it is placed on the stack before local variables.
6472</p>
6473<h5>Arguments:</h5>
6474<p>
6475 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
6476 first argument is the value loaded from the stack guard
6477 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
6478 has enough space to hold the value of the guard.
6479</p>
6480<h5>Semantics:</h5>
6481<p>
6482 This intrinsic causes the prologue/epilogue inserter to force the position of
6483 the <tt>AllocaInst</tt> stack slot to be before local variables on the
6484 stack. This is to ensure that if a local variable on the stack is overwritten,
6485 it will destroy the value of the guard. When the function exits, the guard on
6486 the stack is checked against the original guard. If they're different, then
6487 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
6488</p>
6489</div>
6490
Chris Lattner00950542001-06-06 20:29:01 +00006491<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00006492<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006493<address>
6494 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6495 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6496 <a href="http://validator.w3.org/check/referer"><img
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006497 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006498
6499 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00006500 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006501 Last modified: $Date$
6502</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006503
Misha Brukman9d0919f2003-11-08 01:05:38 +00006504</body>
6505</html>