blob: b1662a026086e0d1bd9471fbadc22fe2a4a742af [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000124 print(dbgs());
125 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000126}
127
Dan Gohman4ce32db2010-11-17 22:27:42 +0000128void SCEV::print(raw_ostream &OS) const {
129 switch (getSCEVType()) {
130 case scConstant:
131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132 return;
133 case scTruncate: {
134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135 const SCEV *Op = Trunc->getOperand();
136 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137 << *Trunc->getType() << ")";
138 return;
139 }
140 case scZeroExtend: {
141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142 const SCEV *Op = ZExt->getOperand();
143 OS << "(zext " << *Op->getType() << " " << *Op << " to "
144 << *ZExt->getType() << ")";
145 return;
146 }
147 case scSignExtend: {
148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149 const SCEV *Op = SExt->getOperand();
150 OS << "(sext " << *Op->getType() << " " << *Op << " to "
151 << *SExt->getType() << ")";
152 return;
153 }
154 case scAddRecExpr: {
155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156 OS << "{" << *AR->getOperand(0);
157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158 OS << ",+," << *AR->getOperand(i);
159 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000160 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000161 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000162 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000163 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000164 if (AR->getNoWrapFlags(FlagNW) &&
165 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
166 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000167 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
168 OS << ">";
169 return;
170 }
171 case scAddExpr:
172 case scMulExpr:
173 case scUMaxExpr:
174 case scSMaxExpr: {
175 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000176 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000177 switch (NAry->getSCEVType()) {
178 case scAddExpr: OpStr = " + "; break;
179 case scMulExpr: OpStr = " * "; break;
180 case scUMaxExpr: OpStr = " umax "; break;
181 case scSMaxExpr: OpStr = " smax "; break;
182 }
183 OS << "(";
184 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
185 I != E; ++I) {
186 OS << **I;
187 if (llvm::next(I) != E)
188 OS << OpStr;
189 }
190 OS << ")";
191 return;
192 }
193 case scUDivExpr: {
194 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
195 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
196 return;
197 }
198 case scUnknown: {
199 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000200 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000201 if (U->isSizeOf(AllocTy)) {
202 OS << "sizeof(" << *AllocTy << ")";
203 return;
204 }
205 if (U->isAlignOf(AllocTy)) {
206 OS << "alignof(" << *AllocTy << ")";
207 return;
208 }
Andrew Trick635f7182011-03-09 17:23:39 +0000209
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000210 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000211 Constant *FieldNo;
212 if (U->isOffsetOf(CTy, FieldNo)) {
213 OS << "offsetof(" << *CTy << ", ";
214 WriteAsOperand(OS, FieldNo, false);
215 OS << ")";
216 return;
217 }
Andrew Trick635f7182011-03-09 17:23:39 +0000218
Dan Gohman4ce32db2010-11-17 22:27:42 +0000219 // Otherwise just print it normally.
220 WriteAsOperand(OS, U->getValue(), false);
221 return;
222 }
223 case scCouldNotCompute:
224 OS << "***COULDNOTCOMPUTE***";
225 return;
226 default: break;
227 }
228 llvm_unreachable("Unknown SCEV kind!");
229}
230
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000231Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000232 switch (getSCEVType()) {
233 case scConstant:
234 return cast<SCEVConstant>(this)->getType();
235 case scTruncate:
236 case scZeroExtend:
237 case scSignExtend:
238 return cast<SCEVCastExpr>(this)->getType();
239 case scAddRecExpr:
240 case scMulExpr:
241 case scUMaxExpr:
242 case scSMaxExpr:
243 return cast<SCEVNAryExpr>(this)->getType();
244 case scAddExpr:
245 return cast<SCEVAddExpr>(this)->getType();
246 case scUDivExpr:
247 return cast<SCEVUDivExpr>(this)->getType();
248 case scUnknown:
249 return cast<SCEVUnknown>(this)->getType();
250 case scCouldNotCompute:
251 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
252 return 0;
253 default: break;
254 }
255 llvm_unreachable("Unknown SCEV kind!");
256 return 0;
257}
258
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000259bool SCEV::isZero() const {
260 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
261 return SC->getValue()->isZero();
262 return false;
263}
264
Dan Gohman70a1fe72009-05-18 15:22:39 +0000265bool SCEV::isOne() const {
266 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
267 return SC->getValue()->isOne();
268 return false;
269}
Chris Lattner53e677a2004-04-02 20:23:17 +0000270
Dan Gohman4d289bf2009-06-24 00:30:26 +0000271bool SCEV::isAllOnesValue() const {
272 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
273 return SC->getValue()->isAllOnesValue();
274 return false;
275}
276
Owen Anderson753ad612009-06-22 21:57:23 +0000277SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000278 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000279
Chris Lattner53e677a2004-04-02 20:23:17 +0000280bool SCEVCouldNotCompute::classof(const SCEV *S) {
281 return S->getSCEVType() == scCouldNotCompute;
282}
283
Dan Gohman0bba49c2009-07-07 17:06:11 +0000284const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000285 FoldingSetNodeID ID;
286 ID.AddInteger(scConstant);
287 ID.AddPointer(V);
288 void *IP = 0;
289 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000290 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000291 UniqueSCEVs.InsertNode(S, IP);
292 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000293}
Chris Lattner53e677a2004-04-02 20:23:17 +0000294
Dan Gohman0bba49c2009-07-07 17:06:11 +0000295const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000296 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000297}
298
Dan Gohman0bba49c2009-07-07 17:06:11 +0000299const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000300ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
301 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000302 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000303}
304
Dan Gohman3bf63762010-06-18 19:54:20 +0000305SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000306 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000307 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000308
Dan Gohman3bf63762010-06-18 19:54:20 +0000309SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000310 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000311 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000312 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
313 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000314 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000315}
Chris Lattner53e677a2004-04-02 20:23:17 +0000316
Dan Gohman3bf63762010-06-18 19:54:20 +0000317SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000318 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000319 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000320 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
321 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000322 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000323}
324
Dan Gohman3bf63762010-06-18 19:54:20 +0000325SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000326 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000327 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000328 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
329 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000330 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000331}
332
Dan Gohmanab37f502010-08-02 23:49:30 +0000333void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000334 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000335 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000336
337 // Remove this SCEVUnknown from the uniquing map.
338 SE->UniqueSCEVs.RemoveNode(this);
339
340 // Release the value.
341 setValPtr(0);
342}
343
344void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000345 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000346 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000347
348 // Remove this SCEVUnknown from the uniquing map.
349 SE->UniqueSCEVs.RemoveNode(this);
350
351 // Update this SCEVUnknown to point to the new value. This is needed
352 // because there may still be outstanding SCEVs which still point to
353 // this SCEVUnknown.
354 setValPtr(New);
355}
356
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000357bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000358 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000359 if (VCE->getOpcode() == Instruction::PtrToInt)
360 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000361 if (CE->getOpcode() == Instruction::GetElementPtr &&
362 CE->getOperand(0)->isNullValue() &&
363 CE->getNumOperands() == 2)
364 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
365 if (CI->isOne()) {
366 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
367 ->getElementType();
368 return true;
369 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000370
371 return false;
372}
373
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000374bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000375 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000376 if (VCE->getOpcode() == Instruction::PtrToInt)
377 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000378 if (CE->getOpcode() == Instruction::GetElementPtr &&
379 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000380 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000381 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000382 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000383 if (!STy->isPacked() &&
384 CE->getNumOperands() == 3 &&
385 CE->getOperand(1)->isNullValue()) {
386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
387 if (CI->isOne() &&
388 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000389 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000390 AllocTy = STy->getElementType(1);
391 return true;
392 }
393 }
394 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000395
396 return false;
397}
398
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000399bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000400 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000401 if (VCE->getOpcode() == Instruction::PtrToInt)
402 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
403 if (CE->getOpcode() == Instruction::GetElementPtr &&
404 CE->getNumOperands() == 3 &&
405 CE->getOperand(0)->isNullValue() &&
406 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000407 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
409 // Ignore vector types here so that ScalarEvolutionExpander doesn't
410 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000411 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000412 CTy = Ty;
413 FieldNo = CE->getOperand(2);
414 return true;
415 }
416 }
417
418 return false;
419}
420
Chris Lattner8d741b82004-06-20 06:23:15 +0000421//===----------------------------------------------------------------------===//
422// SCEV Utilities
423//===----------------------------------------------------------------------===//
424
425namespace {
426 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
427 /// than the complexity of the RHS. This comparator is used to canonicalize
428 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000429 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000430 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000431 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000432 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000433
Dan Gohman67ef74e2010-08-27 15:26:01 +0000434 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000435 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000436 return compare(LHS, RHS) < 0;
437 }
438
439 // Return negative, zero, or positive, if LHS is less than, equal to, or
440 // greater than RHS, respectively. A three-way result allows recursive
441 // comparisons to be more efficient.
442 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000443 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
444 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000445 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000446
Dan Gohman72861302009-05-07 14:39:04 +0000447 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000448 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
449 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000450 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000451
Dan Gohman3bf63762010-06-18 19:54:20 +0000452 // Aside from the getSCEVType() ordering, the particular ordering
453 // isn't very important except that it's beneficial to be consistent,
454 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000455 switch (LType) {
456 case scUnknown: {
457 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000458 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000459
460 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
461 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000462 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000463
464 // Order pointer values after integer values. This helps SCEVExpander
465 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000466 bool LIsPointer = LV->getType()->isPointerTy(),
467 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000468 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000469 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000470
471 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000472 unsigned LID = LV->getValueID(),
473 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000474 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000475 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000476
477 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000478 if (const Argument *LA = dyn_cast<Argument>(LV)) {
479 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000480 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
481 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000482 }
483
Dan Gohman67ef74e2010-08-27 15:26:01 +0000484 // For instructions, compare their loop depth, and their operand
485 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000486 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
487 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000488
489 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000490 const BasicBlock *LParent = LInst->getParent(),
491 *RParent = RInst->getParent();
492 if (LParent != RParent) {
493 unsigned LDepth = LI->getLoopDepth(LParent),
494 RDepth = LI->getLoopDepth(RParent);
495 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000496 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000497 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000498
499 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000500 unsigned LNumOps = LInst->getNumOperands(),
501 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000503 }
504
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000506 }
507
Dan Gohman67ef74e2010-08-27 15:26:01 +0000508 case scConstant: {
509 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000510 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000511
512 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000513 const APInt &LA = LC->getValue()->getValue();
514 const APInt &RA = RC->getValue()->getValue();
515 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000516 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000517 return (int)LBitWidth - (int)RBitWidth;
518 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000519 }
520
Dan Gohman67ef74e2010-08-27 15:26:01 +0000521 case scAddRecExpr: {
522 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000523 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000524
525 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000526 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
527 if (LLoop != RLoop) {
528 unsigned LDepth = LLoop->getLoopDepth(),
529 RDepth = RLoop->getLoopDepth();
530 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000531 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000532 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000533
534 // Addrec complexity grows with operand count.
535 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
536 if (LNumOps != RNumOps)
537 return (int)LNumOps - (int)RNumOps;
538
539 // Lexicographically compare.
540 for (unsigned i = 0; i != LNumOps; ++i) {
541 long X = compare(LA->getOperand(i), RA->getOperand(i));
542 if (X != 0)
543 return X;
544 }
545
546 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000547 }
548
Dan Gohman67ef74e2010-08-27 15:26:01 +0000549 case scAddExpr:
550 case scMulExpr:
551 case scSMaxExpr:
552 case scUMaxExpr: {
553 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000554 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000555
556 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000557 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
558 for (unsigned i = 0; i != LNumOps; ++i) {
559 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000560 return 1;
561 long X = compare(LC->getOperand(i), RC->getOperand(i));
562 if (X != 0)
563 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000564 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000565 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000566 }
567
Dan Gohman67ef74e2010-08-27 15:26:01 +0000568 case scUDivExpr: {
569 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000570 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000571
572 // Lexicographically compare udiv expressions.
573 long X = compare(LC->getLHS(), RC->getLHS());
574 if (X != 0)
575 return X;
576 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000577 }
578
Dan Gohman67ef74e2010-08-27 15:26:01 +0000579 case scTruncate:
580 case scZeroExtend:
581 case scSignExtend: {
582 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000583 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000584
585 // Compare cast expressions by operand.
586 return compare(LC->getOperand(), RC->getOperand());
587 }
588
589 default:
590 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000591 }
592
593 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000594 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000595 }
596 };
597}
598
599/// GroupByComplexity - Given a list of SCEV objects, order them by their
600/// complexity, and group objects of the same complexity together by value.
601/// When this routine is finished, we know that any duplicates in the vector are
602/// consecutive and that complexity is monotonically increasing.
603///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000604/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000605/// results from this routine. In other words, we don't want the results of
606/// this to depend on where the addresses of various SCEV objects happened to
607/// land in memory.
608///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000609static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000610 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000611 if (Ops.size() < 2) return; // Noop
612 if (Ops.size() == 2) {
613 // This is the common case, which also happens to be trivially simple.
614 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000615 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
616 if (SCEVComplexityCompare(LI)(RHS, LHS))
617 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000618 return;
619 }
620
Dan Gohman3bf63762010-06-18 19:54:20 +0000621 // Do the rough sort by complexity.
622 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
623
624 // Now that we are sorted by complexity, group elements of the same
625 // complexity. Note that this is, at worst, N^2, but the vector is likely to
626 // be extremely short in practice. Note that we take this approach because we
627 // do not want to depend on the addresses of the objects we are grouping.
628 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
629 const SCEV *S = Ops[i];
630 unsigned Complexity = S->getSCEVType();
631
632 // If there are any objects of the same complexity and same value as this
633 // one, group them.
634 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
635 if (Ops[j] == S) { // Found a duplicate.
636 // Move it to immediately after i'th element.
637 std::swap(Ops[i+1], Ops[j]);
638 ++i; // no need to rescan it.
639 if (i == e-2) return; // Done!
640 }
641 }
642 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000643}
644
Chris Lattner53e677a2004-04-02 20:23:17 +0000645
Chris Lattner53e677a2004-04-02 20:23:17 +0000646
647//===----------------------------------------------------------------------===//
648// Simple SCEV method implementations
649//===----------------------------------------------------------------------===//
650
Eli Friedmanb42a6262008-08-04 23:49:06 +0000651/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000652/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000653static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000654 ScalarEvolution &SE,
Nick Lewycky8cfb2f82011-09-06 06:39:54 +0000655 Type *ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000656 // Handle the simplest case efficiently.
657 if (K == 1)
658 return SE.getTruncateOrZeroExtend(It, ResultTy);
659
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000660 // We are using the following formula for BC(It, K):
661 //
662 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
663 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000664 // Suppose, W is the bitwidth of the return value. We must be prepared for
665 // overflow. Hence, we must assure that the result of our computation is
666 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
667 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000668 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000669 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000670 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
672 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000673 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000674 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000675 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000676 // This formula is trivially equivalent to the previous formula. However,
677 // this formula can be implemented much more efficiently. The trick is that
678 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
679 // arithmetic. To do exact division in modular arithmetic, all we have
680 // to do is multiply by the inverse. Therefore, this step can be done at
681 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000682 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000683 // The next issue is how to safely do the division by 2^T. The way this
684 // is done is by doing the multiplication step at a width of at least W + T
685 // bits. This way, the bottom W+T bits of the product are accurate. Then,
686 // when we perform the division by 2^T (which is equivalent to a right shift
687 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
688 // truncated out after the division by 2^T.
689 //
690 // In comparison to just directly using the first formula, this technique
691 // is much more efficient; using the first formula requires W * K bits,
692 // but this formula less than W + K bits. Also, the first formula requires
693 // a division step, whereas this formula only requires multiplies and shifts.
694 //
695 // It doesn't matter whether the subtraction step is done in the calculation
696 // width or the input iteration count's width; if the subtraction overflows,
697 // the result must be zero anyway. We prefer here to do it in the width of
698 // the induction variable because it helps a lot for certain cases; CodeGen
699 // isn't smart enough to ignore the overflow, which leads to much less
700 // efficient code if the width of the subtraction is wider than the native
701 // register width.
702 //
703 // (It's possible to not widen at all by pulling out factors of 2 before
704 // the multiplication; for example, K=2 can be calculated as
705 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
706 // extra arithmetic, so it's not an obvious win, and it gets
707 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000708
Eli Friedmanb42a6262008-08-04 23:49:06 +0000709 // Protection from insane SCEVs; this bound is conservative,
710 // but it probably doesn't matter.
711 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000712 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000713
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000714 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000715
Eli Friedmanb42a6262008-08-04 23:49:06 +0000716 // Calculate K! / 2^T and T; we divide out the factors of two before
717 // multiplying for calculating K! / 2^T to avoid overflow.
718 // Other overflow doesn't matter because we only care about the bottom
719 // W bits of the result.
720 APInt OddFactorial(W, 1);
721 unsigned T = 1;
722 for (unsigned i = 3; i <= K; ++i) {
723 APInt Mult(W, i);
724 unsigned TwoFactors = Mult.countTrailingZeros();
725 T += TwoFactors;
726 Mult = Mult.lshr(TwoFactors);
727 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000728 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000729
Eli Friedmanb42a6262008-08-04 23:49:06 +0000730 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000731 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000732
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000733 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000734 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
735
736 // Calculate the multiplicative inverse of K! / 2^T;
737 // this multiplication factor will perform the exact division by
738 // K! / 2^T.
739 APInt Mod = APInt::getSignedMinValue(W+1);
740 APInt MultiplyFactor = OddFactorial.zext(W+1);
741 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
742 MultiplyFactor = MultiplyFactor.trunc(W);
743
744 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000745 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000746 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000747 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000748 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000749 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000750 Dividend = SE.getMulExpr(Dividend,
751 SE.getTruncateOrZeroExtend(S, CalculationTy));
752 }
753
754 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000755 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000756
757 // Truncate the result, and divide by K! / 2^T.
758
759 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
760 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000761}
762
Chris Lattner53e677a2004-04-02 20:23:17 +0000763/// evaluateAtIteration - Return the value of this chain of recurrences at
764/// the specified iteration number. We can evaluate this recurrence by
765/// multiplying each element in the chain by the binomial coefficient
766/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
767///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000768/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000769///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000770/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000771///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000772const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000773 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000774 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000775 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000776 // The computation is correct in the face of overflow provided that the
777 // multiplication is performed _after_ the evaluation of the binomial
778 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000779 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000780 if (isa<SCEVCouldNotCompute>(Coeff))
781 return Coeff;
782
783 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000784 }
785 return Result;
786}
787
Chris Lattner53e677a2004-04-02 20:23:17 +0000788//===----------------------------------------------------------------------===//
789// SCEV Expression folder implementations
790//===----------------------------------------------------------------------===//
791
Dan Gohman0bba49c2009-07-07 17:06:11 +0000792const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000793 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000794 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000795 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000796 assert(isSCEVable(Ty) &&
797 "This is not a conversion to a SCEVable type!");
798 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000799
Dan Gohmanc050fd92009-07-13 20:50:19 +0000800 FoldingSetNodeID ID;
801 ID.AddInteger(scTruncate);
802 ID.AddPointer(Op);
803 ID.AddPointer(Ty);
804 void *IP = 0;
805 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
806
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000807 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000808 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000809 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000810 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
811 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000812
Dan Gohman20900ca2009-04-22 16:20:48 +0000813 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000814 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000815 return getTruncateExpr(ST->getOperand(), Ty);
816
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000817 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000818 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000819 return getTruncateOrSignExtend(SS->getOperand(), Ty);
820
821 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000822 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000823 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
824
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000825 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
826 // eliminate all the truncates.
827 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
828 SmallVector<const SCEV *, 4> Operands;
829 bool hasTrunc = false;
830 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
831 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
832 hasTrunc = isa<SCEVTruncateExpr>(S);
833 Operands.push_back(S);
834 }
835 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000836 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000837 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000838 }
839
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000840 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
841 // eliminate all the truncates.
842 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
843 SmallVector<const SCEV *, 4> Operands;
844 bool hasTrunc = false;
845 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
846 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
847 hasTrunc = isa<SCEVTruncateExpr>(S);
848 Operands.push_back(S);
849 }
850 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000851 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000852 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000853 }
854
Dan Gohman6864db62009-06-18 16:24:47 +0000855 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000856 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000857 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000858 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000859 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000860 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000861 }
862
Dan Gohmanf53462d2010-07-15 20:02:11 +0000863 // As a special case, fold trunc(undef) to undef. We don't want to
864 // know too much about SCEVUnknowns, but this special case is handy
865 // and harmless.
866 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
867 if (isa<UndefValue>(U->getValue()))
868 return getSCEV(UndefValue::get(Ty));
869
Dan Gohman420ab912010-06-25 18:47:08 +0000870 // The cast wasn't folded; create an explicit cast node. We can reuse
871 // the existing insert position since if we get here, we won't have
872 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000873 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
874 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000875 UniqueSCEVs.InsertNode(S, IP);
876 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000877}
878
Dan Gohman0bba49c2009-07-07 17:06:11 +0000879const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000880 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000881 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000882 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000883 assert(isSCEVable(Ty) &&
884 "This is not a conversion to a SCEVable type!");
885 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000886
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000887 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000888 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
889 return getConstant(
890 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
891 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000892
Dan Gohman20900ca2009-04-22 16:20:48 +0000893 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000894 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000895 return getZeroExtendExpr(SZ->getOperand(), Ty);
896
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000897 // Before doing any expensive analysis, check to see if we've already
898 // computed a SCEV for this Op and Ty.
899 FoldingSetNodeID ID;
900 ID.AddInteger(scZeroExtend);
901 ID.AddPointer(Op);
902 ID.AddPointer(Ty);
903 void *IP = 0;
904 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
905
Nick Lewycky630d85a2011-01-23 06:20:19 +0000906 // zext(trunc(x)) --> zext(x) or x or trunc(x)
907 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
908 // It's possible the bits taken off by the truncate were all zero bits. If
909 // so, we should be able to simplify this further.
910 const SCEV *X = ST->getOperand();
911 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000912 unsigned TruncBits = getTypeSizeInBits(ST->getType());
913 unsigned NewBits = getTypeSizeInBits(Ty);
914 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000915 CR.zextOrTrunc(NewBits)))
916 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000917 }
918
Dan Gohman01ecca22009-04-27 20:16:15 +0000919 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000920 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000921 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000922 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000923 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000924 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000925 const SCEV *Start = AR->getStart();
926 const SCEV *Step = AR->getStepRecurrence(*this);
927 unsigned BitWidth = getTypeSizeInBits(AR->getType());
928 const Loop *L = AR->getLoop();
929
Dan Gohmaneb490a72009-07-25 01:22:26 +0000930 // If we have special knowledge that this addrec won't overflow,
931 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000932 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000933 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
934 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000935 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000936
Dan Gohman01ecca22009-04-27 20:16:15 +0000937 // Check whether the backedge-taken count is SCEVCouldNotCompute.
938 // Note that this serves two purposes: It filters out loops that are
939 // simply not analyzable, and it covers the case where this code is
940 // being called from within backedge-taken count analysis, such that
941 // attempting to ask for the backedge-taken count would likely result
942 // in infinite recursion. In the later case, the analysis code will
943 // cope with a conservative value, and it will take care to purge
944 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000945 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000946 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000947 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000948 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000949
950 // Check whether the backedge-taken count can be losslessly casted to
951 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000952 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000953 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000954 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000955 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
956 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000957 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000958 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000959 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000960 const SCEV *Add = getAddExpr(Start, ZMul);
961 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000962 getAddExpr(getZeroExtendExpr(Start, WideTy),
963 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
964 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +0000965 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
966 // Cache knowledge of AR NUW, which is propagated to this AddRec.
967 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000968 // Return the expression with the addrec on the outside.
969 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
970 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000971 L, AR->getNoWrapFlags());
972 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000973 // Similar to above, only this time treat the step value as signed.
974 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000975 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000976 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000977 OperandExtendedAdd =
978 getAddExpr(getZeroExtendExpr(Start, WideTy),
979 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
980 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +0000981 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
982 // Cache knowledge of AR NW, which is propagated to this AddRec.
983 // Negative step causes unsigned wrap, but it still can't self-wrap.
984 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000985 // Return the expression with the addrec on the outside.
986 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
987 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000988 L, AR->getNoWrapFlags());
989 }
Dan Gohman85b05a22009-07-13 21:35:55 +0000990 }
991
992 // If the backedge is guarded by a comparison with the pre-inc value
993 // the addrec is safe. Also, if the entry is guarded by a comparison
994 // with the start value and the backedge is guarded by a comparison
995 // with the post-inc value, the addrec is safe.
996 if (isKnownPositive(Step)) {
997 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
998 getUnsignedRange(Step).getUnsignedMax());
999 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001000 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001001 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001002 AR->getPostIncExpr(*this), N))) {
1003 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1004 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001005 // Return the expression with the addrec on the outside.
1006 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1007 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001008 L, AR->getNoWrapFlags());
1009 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001010 } else if (isKnownNegative(Step)) {
1011 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1012 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001013 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1014 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001015 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001016 AR->getPostIncExpr(*this), N))) {
1017 // Cache knowledge of AR NW, which is propagated to this AddRec.
1018 // Negative step causes unsigned wrap, but it still can't self-wrap.
1019 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1020 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001021 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1022 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001023 L, AR->getNoWrapFlags());
1024 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001025 }
1026 }
1027 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001028
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001029 // The cast wasn't folded; create an explicit cast node.
1030 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001031 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001032 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1033 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001034 UniqueSCEVs.InsertNode(S, IP);
1035 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001036}
1037
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001038// Get the limit of a recurrence such that incrementing by Step cannot cause
1039// signed overflow as long as the value of the recurrence within the loop does
1040// not exceed this limit before incrementing.
1041static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1042 ICmpInst::Predicate *Pred,
1043 ScalarEvolution *SE) {
1044 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1045 if (SE->isKnownPositive(Step)) {
1046 *Pred = ICmpInst::ICMP_SLT;
1047 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1048 SE->getSignedRange(Step).getSignedMax());
1049 }
1050 if (SE->isKnownNegative(Step)) {
1051 *Pred = ICmpInst::ICMP_SGT;
1052 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1053 SE->getSignedRange(Step).getSignedMin());
1054 }
1055 return 0;
1056}
1057
1058// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1059// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1060// or postincrement sibling. This allows normalizing a sign extended AddRec as
1061// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1062// result, the expression "Step + sext(PreIncAR)" is congruent with
1063// "sext(PostIncAR)"
1064static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001065 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001066 ScalarEvolution *SE) {
1067 const Loop *L = AR->getLoop();
1068 const SCEV *Start = AR->getStart();
1069 const SCEV *Step = AR->getStepRecurrence(*SE);
1070
1071 // Check for a simple looking step prior to loop entry.
1072 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1073 if (!SA || SA->getNumOperands() != 2 || SA->getOperand(0) != Step)
1074 return 0;
1075
1076 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1077 // same three conditions that getSignExtendedExpr checks.
1078
1079 // 1. NSW flags on the step increment.
1080 const SCEV *PreStart = SA->getOperand(1);
1081 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1082 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1083
Andrew Trickcf31f912011-06-01 19:14:56 +00001084 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001085 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001086
1087 // 2. Direct overflow check on the step operation's expression.
1088 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001089 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001090 const SCEV *OperandExtendedStart =
1091 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1092 SE->getSignExtendExpr(Step, WideTy));
1093 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1094 // Cache knowledge of PreAR NSW.
1095 if (PreAR)
1096 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1097 // FIXME: this optimization needs a unit test
1098 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1099 return PreStart;
1100 }
1101
1102 // 3. Loop precondition.
1103 ICmpInst::Predicate Pred;
1104 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1105
Andrew Trickcf31f912011-06-01 19:14:56 +00001106 if (OverflowLimit &&
1107 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001108 return PreStart;
1109 }
1110 return 0;
1111}
1112
1113// Get the normalized sign-extended expression for this AddRec's Start.
1114static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001115 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001116 ScalarEvolution *SE) {
1117 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1118 if (!PreStart)
1119 return SE->getSignExtendExpr(AR->getStart(), Ty);
1120
1121 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1122 SE->getSignExtendExpr(PreStart, Ty));
1123}
1124
Dan Gohman0bba49c2009-07-07 17:06:11 +00001125const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001126 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001127 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001128 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001129 assert(isSCEVable(Ty) &&
1130 "This is not a conversion to a SCEVable type!");
1131 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001132
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001133 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001134 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1135 return getConstant(
1136 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1137 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001138
Dan Gohman20900ca2009-04-22 16:20:48 +00001139 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001140 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001141 return getSignExtendExpr(SS->getOperand(), Ty);
1142
Nick Lewycky73f565e2011-01-19 15:56:12 +00001143 // sext(zext(x)) --> zext(x)
1144 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1145 return getZeroExtendExpr(SZ->getOperand(), Ty);
1146
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001147 // Before doing any expensive analysis, check to see if we've already
1148 // computed a SCEV for this Op and Ty.
1149 FoldingSetNodeID ID;
1150 ID.AddInteger(scSignExtend);
1151 ID.AddPointer(Op);
1152 ID.AddPointer(Ty);
1153 void *IP = 0;
1154 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1155
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001156 // If the input value is provably positive, build a zext instead.
1157 if (isKnownNonNegative(Op))
1158 return getZeroExtendExpr(Op, Ty);
1159
Nick Lewycky630d85a2011-01-23 06:20:19 +00001160 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1161 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1162 // It's possible the bits taken off by the truncate were all sign bits. If
1163 // so, we should be able to simplify this further.
1164 const SCEV *X = ST->getOperand();
1165 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001166 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1167 unsigned NewBits = getTypeSizeInBits(Ty);
1168 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001169 CR.sextOrTrunc(NewBits)))
1170 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001171 }
1172
Dan Gohman01ecca22009-04-27 20:16:15 +00001173 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001174 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001175 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001176 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001177 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001178 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001179 const SCEV *Start = AR->getStart();
1180 const SCEV *Step = AR->getStepRecurrence(*this);
1181 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1182 const Loop *L = AR->getLoop();
1183
Dan Gohmaneb490a72009-07-25 01:22:26 +00001184 // If we have special knowledge that this addrec won't overflow,
1185 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001186 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001187 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001188 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001189 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001190
Dan Gohman01ecca22009-04-27 20:16:15 +00001191 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1192 // Note that this serves two purposes: It filters out loops that are
1193 // simply not analyzable, and it covers the case where this code is
1194 // being called from within backedge-taken count analysis, such that
1195 // attempting to ask for the backedge-taken count would likely result
1196 // in infinite recursion. In the later case, the analysis code will
1197 // cope with a conservative value, and it will take care to purge
1198 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001199 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001200 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001201 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001202 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001203
1204 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001205 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001206 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001207 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001208 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001209 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1210 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001211 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001212 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001213 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001214 const SCEV *Add = getAddExpr(Start, SMul);
1215 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001216 getAddExpr(getSignExtendExpr(Start, WideTy),
1217 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1218 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001219 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1220 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1221 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001222 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001223 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001224 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001225 L, AR->getNoWrapFlags());
1226 }
Dan Gohman850f7912009-07-16 17:34:36 +00001227 // Similar to above, only this time treat the step value as unsigned.
1228 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001229 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001230 Add = getAddExpr(Start, UMul);
1231 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001232 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001233 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1234 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001235 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1236 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1237 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001238 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001239 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001240 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001241 L, AR->getNoWrapFlags());
1242 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001243 }
1244
1245 // If the backedge is guarded by a comparison with the pre-inc value
1246 // the addrec is safe. Also, if the entry is guarded by a comparison
1247 // with the start value and the backedge is guarded by a comparison
1248 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001249 ICmpInst::Predicate Pred;
1250 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1251 if (OverflowLimit &&
1252 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1253 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1254 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1255 OverflowLimit)))) {
1256 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1257 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1258 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1259 getSignExtendExpr(Step, Ty),
1260 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001261 }
1262 }
1263 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001264
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001265 // The cast wasn't folded; create an explicit cast node.
1266 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001267 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001268 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1269 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001270 UniqueSCEVs.InsertNode(S, IP);
1271 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001272}
1273
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001274/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1275/// unspecified bits out to the given type.
1276///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001277const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001278 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001279 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1280 "This is not an extending conversion!");
1281 assert(isSCEVable(Ty) &&
1282 "This is not a conversion to a SCEVable type!");
1283 Ty = getEffectiveSCEVType(Ty);
1284
1285 // Sign-extend negative constants.
1286 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1287 if (SC->getValue()->getValue().isNegative())
1288 return getSignExtendExpr(Op, Ty);
1289
1290 // Peel off a truncate cast.
1291 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001292 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001293 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1294 return getAnyExtendExpr(NewOp, Ty);
1295 return getTruncateOrNoop(NewOp, Ty);
1296 }
1297
1298 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001299 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001300 if (!isa<SCEVZeroExtendExpr>(ZExt))
1301 return ZExt;
1302
1303 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001304 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001305 if (!isa<SCEVSignExtendExpr>(SExt))
1306 return SExt;
1307
Dan Gohmana10756e2010-01-21 02:09:26 +00001308 // Force the cast to be folded into the operands of an addrec.
1309 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1310 SmallVector<const SCEV *, 4> Ops;
1311 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1312 I != E; ++I)
1313 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001314 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001315 }
1316
Dan Gohmanf53462d2010-07-15 20:02:11 +00001317 // As a special case, fold anyext(undef) to undef. We don't want to
1318 // know too much about SCEVUnknowns, but this special case is handy
1319 // and harmless.
1320 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1321 if (isa<UndefValue>(U->getValue()))
1322 return getSCEV(UndefValue::get(Ty));
1323
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001324 // If the expression is obviously signed, use the sext cast value.
1325 if (isa<SCEVSMaxExpr>(Op))
1326 return SExt;
1327
1328 // Absent any other information, use the zext cast value.
1329 return ZExt;
1330}
1331
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001332/// CollectAddOperandsWithScales - Process the given Ops list, which is
1333/// a list of operands to be added under the given scale, update the given
1334/// map. This is a helper function for getAddRecExpr. As an example of
1335/// what it does, given a sequence of operands that would form an add
1336/// expression like this:
1337///
1338/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1339///
1340/// where A and B are constants, update the map with these values:
1341///
1342/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1343///
1344/// and add 13 + A*B*29 to AccumulatedConstant.
1345/// This will allow getAddRecExpr to produce this:
1346///
1347/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1348///
1349/// This form often exposes folding opportunities that are hidden in
1350/// the original operand list.
1351///
1352/// Return true iff it appears that any interesting folding opportunities
1353/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1354/// the common case where no interesting opportunities are present, and
1355/// is also used as a check to avoid infinite recursion.
1356///
1357static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001358CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1359 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001360 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001361 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001362 const APInt &Scale,
1363 ScalarEvolution &SE) {
1364 bool Interesting = false;
1365
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001366 // Iterate over the add operands. They are sorted, with constants first.
1367 unsigned i = 0;
1368 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1369 ++i;
1370 // Pull a buried constant out to the outside.
1371 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1372 Interesting = true;
1373 AccumulatedConstant += Scale * C->getValue()->getValue();
1374 }
1375
1376 // Next comes everything else. We're especially interested in multiplies
1377 // here, but they're in the middle, so just visit the rest with one loop.
1378 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001379 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1380 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1381 APInt NewScale =
1382 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1383 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1384 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001385 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001386 Interesting |=
1387 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001388 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001389 NewScale, SE);
1390 } else {
1391 // A multiplication of a constant with some other value. Update
1392 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001393 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1394 const SCEV *Key = SE.getMulExpr(MulOps);
1395 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001396 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001397 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001398 NewOps.push_back(Pair.first->first);
1399 } else {
1400 Pair.first->second += NewScale;
1401 // The map already had an entry for this value, which may indicate
1402 // a folding opportunity.
1403 Interesting = true;
1404 }
1405 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001406 } else {
1407 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001408 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001409 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001410 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001411 NewOps.push_back(Pair.first->first);
1412 } else {
1413 Pair.first->second += Scale;
1414 // The map already had an entry for this value, which may indicate
1415 // a folding opportunity.
1416 Interesting = true;
1417 }
1418 }
1419 }
1420
1421 return Interesting;
1422}
1423
1424namespace {
1425 struct APIntCompare {
1426 bool operator()(const APInt &LHS, const APInt &RHS) const {
1427 return LHS.ult(RHS);
1428 }
1429 };
1430}
1431
Dan Gohman6c0866c2009-05-24 23:45:28 +00001432/// getAddExpr - Get a canonical add expression, or something simpler if
1433/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001434const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001435 SCEV::NoWrapFlags Flags) {
1436 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1437 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001438 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001439 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001440#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001441 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001442 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001443 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001444 "SCEVAddExpr operand types don't match!");
1445#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001446
Andrew Trick3228cc22011-03-14 16:50:06 +00001447 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001448 // And vice-versa.
1449 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1450 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1451 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001452 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001453 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1454 E = Ops.end(); I != E; ++I)
1455 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001456 All = false;
1457 break;
1458 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001459 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001460 }
1461
Chris Lattner53e677a2004-04-02 20:23:17 +00001462 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001463 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001464
1465 // If there are any constants, fold them together.
1466 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001467 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001468 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001469 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001470 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001471 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001472 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1473 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001474 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001475 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001476 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001477 }
1478
1479 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001480 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001481 Ops.erase(Ops.begin());
1482 --Idx;
1483 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001484
Dan Gohmanbca091d2010-04-12 23:08:18 +00001485 if (Ops.size() == 1) return Ops[0];
1486 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001487
Dan Gohman68ff7762010-08-27 21:39:59 +00001488 // Okay, check to see if the same value occurs in the operand list more than
1489 // once. If so, merge them together into an multiply expression. Since we
1490 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001491 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001492 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001493 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001494 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001495 // Scan ahead to count how many equal operands there are.
1496 unsigned Count = 2;
1497 while (i+Count != e && Ops[i+Count] == Ops[i])
1498 ++Count;
1499 // Merge the values into a multiply.
1500 const SCEV *Scale = getConstant(Ty, Count);
1501 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1502 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001503 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001504 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001505 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001506 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001507 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001509 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001510 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001511
Dan Gohman728c7f32009-05-08 21:03:19 +00001512 // Check for truncates. If all the operands are truncated from the same
1513 // type, see if factoring out the truncate would permit the result to be
1514 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1515 // if the contents of the resulting outer trunc fold to something simple.
1516 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1517 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001518 Type *DstType = Trunc->getType();
1519 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001520 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001521 bool Ok = true;
1522 // Check all the operands to see if they can be represented in the
1523 // source type of the truncate.
1524 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1525 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1526 if (T->getOperand()->getType() != SrcType) {
1527 Ok = false;
1528 break;
1529 }
1530 LargeOps.push_back(T->getOperand());
1531 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001532 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001533 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001534 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001535 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1536 if (const SCEVTruncateExpr *T =
1537 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1538 if (T->getOperand()->getType() != SrcType) {
1539 Ok = false;
1540 break;
1541 }
1542 LargeMulOps.push_back(T->getOperand());
1543 } else if (const SCEVConstant *C =
1544 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001545 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001546 } else {
1547 Ok = false;
1548 break;
1549 }
1550 }
1551 if (Ok)
1552 LargeOps.push_back(getMulExpr(LargeMulOps));
1553 } else {
1554 Ok = false;
1555 break;
1556 }
1557 }
1558 if (Ok) {
1559 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001560 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001561 // If it folds to something simple, use it. Otherwise, don't.
1562 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1563 return getTruncateExpr(Fold, DstType);
1564 }
1565 }
1566
1567 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001568 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1569 ++Idx;
1570
1571 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001572 if (Idx < Ops.size()) {
1573 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001574 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001575 // If we have an add, expand the add operands onto the end of the operands
1576 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001577 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001578 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001579 DeletedAdd = true;
1580 }
1581
1582 // If we deleted at least one add, we added operands to the end of the list,
1583 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001584 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001585 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001586 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001587 }
1588
1589 // Skip over the add expression until we get to a multiply.
1590 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1591 ++Idx;
1592
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001593 // Check to see if there are any folding opportunities present with
1594 // operands multiplied by constant values.
1595 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1596 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001597 DenseMap<const SCEV *, APInt> M;
1598 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001599 APInt AccumulatedConstant(BitWidth, 0);
1600 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001601 Ops.data(), Ops.size(),
1602 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001603 // Some interesting folding opportunity is present, so its worthwhile to
1604 // re-generate the operands list. Group the operands by constant scale,
1605 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001606 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001607 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001608 E = NewOps.end(); I != E; ++I)
1609 MulOpLists[M.find(*I)->second].push_back(*I);
1610 // Re-generate the operands list.
1611 Ops.clear();
1612 if (AccumulatedConstant != 0)
1613 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001614 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1615 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001616 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001617 Ops.push_back(getMulExpr(getConstant(I->first),
1618 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001619 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001620 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001621 if (Ops.size() == 1)
1622 return Ops[0];
1623 return getAddExpr(Ops);
1624 }
1625 }
1626
Chris Lattner53e677a2004-04-02 20:23:17 +00001627 // If we are adding something to a multiply expression, make sure the
1628 // something is not already an operand of the multiply. If so, merge it into
1629 // the multiply.
1630 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001631 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001632 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001633 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001634 if (isa<SCEVConstant>(MulOpSCEV))
1635 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001636 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001637 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001638 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001639 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001640 if (Mul->getNumOperands() != 2) {
1641 // If the multiply has more than two operands, we must get the
1642 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001643 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1644 Mul->op_begin()+MulOp);
1645 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001646 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001647 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001648 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001649 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001650 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001651 if (Ops.size() == 2) return OuterMul;
1652 if (AddOp < Idx) {
1653 Ops.erase(Ops.begin()+AddOp);
1654 Ops.erase(Ops.begin()+Idx-1);
1655 } else {
1656 Ops.erase(Ops.begin()+Idx);
1657 Ops.erase(Ops.begin()+AddOp-1);
1658 }
1659 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001660 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001661 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001662
Chris Lattner53e677a2004-04-02 20:23:17 +00001663 // Check this multiply against other multiplies being added together.
1664 for (unsigned OtherMulIdx = Idx+1;
1665 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1666 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001667 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001668 // If MulOp occurs in OtherMul, we can fold the two multiplies
1669 // together.
1670 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1671 OMulOp != e; ++OMulOp)
1672 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1673 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001674 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001675 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001676 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001677 Mul->op_begin()+MulOp);
1678 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001679 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001680 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001681 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001682 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001683 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001684 OtherMul->op_begin()+OMulOp);
1685 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001686 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001687 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001688 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1689 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001690 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001691 Ops.erase(Ops.begin()+Idx);
1692 Ops.erase(Ops.begin()+OtherMulIdx-1);
1693 Ops.push_back(OuterMul);
1694 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001695 }
1696 }
1697 }
1698 }
1699
1700 // If there are any add recurrences in the operands list, see if any other
1701 // added values are loop invariant. If so, we can fold them into the
1702 // recurrence.
1703 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1704 ++Idx;
1705
1706 // Scan over all recurrences, trying to fold loop invariants into them.
1707 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1708 // Scan all of the other operands to this add and add them to the vector if
1709 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001710 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001711 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001712 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001713 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001714 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001715 LIOps.push_back(Ops[i]);
1716 Ops.erase(Ops.begin()+i);
1717 --i; --e;
1718 }
1719
1720 // If we found some loop invariants, fold them into the recurrence.
1721 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001722 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001723 LIOps.push_back(AddRec->getStart());
1724
Dan Gohman0bba49c2009-07-07 17:06:11 +00001725 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001726 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001727 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001728
Dan Gohmanb9f96512010-06-30 07:16:37 +00001729 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001730 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001731 // Always propagate NW.
1732 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001733 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001734
Chris Lattner53e677a2004-04-02 20:23:17 +00001735 // If all of the other operands were loop invariant, we are done.
1736 if (Ops.size() == 1) return NewRec;
1737
Nick Lewycky980e9f32011-09-06 05:08:09 +00001738 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001739 for (unsigned i = 0;; ++i)
1740 if (Ops[i] == AddRec) {
1741 Ops[i] = NewRec;
1742 break;
1743 }
Dan Gohman246b2562007-10-22 18:31:58 +00001744 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001745 }
1746
1747 // Okay, if there weren't any loop invariants to be folded, check to see if
1748 // there are multiple AddRec's with the same loop induction variable being
1749 // added together. If so, we can fold them.
1750 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001751 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1752 ++OtherIdx)
1753 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1754 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1755 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1756 AddRec->op_end());
1757 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1758 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001759 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001760 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001761 if (OtherAddRec->getLoop() == AddRecLoop) {
1762 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1763 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001764 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001765 AddRecOps.append(OtherAddRec->op_begin()+i,
1766 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001767 break;
1768 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001769 AddRecOps[i] = getAddExpr(AddRecOps[i],
1770 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001771 }
1772 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001773 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001774 // Step size has changed, so we cannot guarantee no self-wraparound.
1775 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001776 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001777 }
1778
1779 // Otherwise couldn't fold anything into this recurrence. Move onto the
1780 // next one.
1781 }
1782
1783 // Okay, it looks like we really DO need an add expr. Check to see if we
1784 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001785 FoldingSetNodeID ID;
1786 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001787 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1788 ID.AddPointer(Ops[i]);
1789 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001790 SCEVAddExpr *S =
1791 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1792 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001793 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1794 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001795 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1796 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001797 UniqueSCEVs.InsertNode(S, IP);
1798 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001799 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001800 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001801}
1802
Dan Gohman6c0866c2009-05-24 23:45:28 +00001803/// getMulExpr - Get a canonical multiply expression, or something simpler if
1804/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001805const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001806 SCEV::NoWrapFlags Flags) {
1807 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1808 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001809 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001810 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001811#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001812 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001813 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001814 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001815 "SCEVMulExpr operand types don't match!");
1816#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001817
Andrew Trick3228cc22011-03-14 16:50:06 +00001818 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001819 // And vice-versa.
1820 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1821 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1822 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001823 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001824 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1825 E = Ops.end(); I != E; ++I)
1826 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001827 All = false;
1828 break;
1829 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001830 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001831 }
1832
Chris Lattner53e677a2004-04-02 20:23:17 +00001833 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001834 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001835
1836 // If there are any constants, fold them together.
1837 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001838 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001839
1840 // C1*(C2+V) -> C1*C2 + C1*V
1841 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001842 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001843 if (Add->getNumOperands() == 2 &&
1844 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001845 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1846 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001847
Chris Lattner53e677a2004-04-02 20:23:17 +00001848 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001849 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001850 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001851 ConstantInt *Fold = ConstantInt::get(getContext(),
1852 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001853 RHSC->getValue()->getValue());
1854 Ops[0] = getConstant(Fold);
1855 Ops.erase(Ops.begin()+1); // Erase the folded element
1856 if (Ops.size() == 1) return Ops[0];
1857 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001858 }
1859
1860 // If we are left with a constant one being multiplied, strip it off.
1861 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1862 Ops.erase(Ops.begin());
1863 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001864 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001865 // If we have a multiply of zero, it will always be zero.
1866 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001867 } else if (Ops[0]->isAllOnesValue()) {
1868 // If we have a mul by -1 of an add, try distributing the -1 among the
1869 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001870 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001871 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1872 SmallVector<const SCEV *, 4> NewOps;
1873 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001874 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1875 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001876 const SCEV *Mul = getMulExpr(Ops[0], *I);
1877 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1878 NewOps.push_back(Mul);
1879 }
1880 if (AnyFolded)
1881 return getAddExpr(NewOps);
1882 }
Andrew Tricka053b212011-03-14 17:38:54 +00001883 else if (const SCEVAddRecExpr *
1884 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1885 // Negation preserves a recurrence's no self-wrap property.
1886 SmallVector<const SCEV *, 4> Operands;
1887 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1888 E = AddRec->op_end(); I != E; ++I) {
1889 Operands.push_back(getMulExpr(Ops[0], *I));
1890 }
1891 return getAddRecExpr(Operands, AddRec->getLoop(),
1892 AddRec->getNoWrapFlags(SCEV::FlagNW));
1893 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001894 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001895 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001896
1897 if (Ops.size() == 1)
1898 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001899 }
1900
1901 // Skip over the add expression until we get to a multiply.
1902 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1903 ++Idx;
1904
Chris Lattner53e677a2004-04-02 20:23:17 +00001905 // If there are mul operands inline them all into this expression.
1906 if (Idx < Ops.size()) {
1907 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001908 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001909 // If we have an mul, expand the mul operands onto the end of the operands
1910 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001911 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001912 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001913 DeletedMul = true;
1914 }
1915
1916 // If we deleted at least one mul, we added operands to the end of the list,
1917 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001918 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001919 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001920 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001921 }
1922
1923 // If there are any add recurrences in the operands list, see if any other
1924 // added values are loop invariant. If so, we can fold them into the
1925 // recurrence.
1926 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1927 ++Idx;
1928
1929 // Scan over all recurrences, trying to fold loop invariants into them.
1930 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1931 // Scan all of the other operands to this mul and add them to the vector if
1932 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001933 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001934 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001935 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001936 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001937 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001938 LIOps.push_back(Ops[i]);
1939 Ops.erase(Ops.begin()+i);
1940 --i; --e;
1941 }
1942
1943 // If we found some loop invariants, fold them into the recurrence.
1944 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001945 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001946 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001947 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001948 const SCEV *Scale = getMulExpr(LIOps);
1949 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1950 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001951
Dan Gohmanb9f96512010-06-30 07:16:37 +00001952 // Build the new addrec. Propagate the NUW and NSW flags if both the
1953 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00001954 //
1955 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001956 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00001957 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
1958 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001959
1960 // If all of the other operands were loop invariant, we are done.
1961 if (Ops.size() == 1) return NewRec;
1962
Nick Lewycky980e9f32011-09-06 05:08:09 +00001963 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001964 for (unsigned i = 0;; ++i)
1965 if (Ops[i] == AddRec) {
1966 Ops[i] = NewRec;
1967 break;
1968 }
Dan Gohman246b2562007-10-22 18:31:58 +00001969 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001970 }
1971
1972 // Okay, if there weren't any loop invariants to be folded, check to see if
1973 // there are multiple AddRec's with the same loop induction variable being
1974 // multiplied together. If so, we can fold them.
1975 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001976 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckyc103a082011-09-06 21:42:18 +00001977 ++OtherIdx) {
1978 bool Retry = false;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001979 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
Nick Lewycky8cfb2f82011-09-06 06:39:54 +00001980 // {A,+,B}<L> * {C,+,D}<L> --> {A*C,+,A*D + B*C + B*D,+,2*B*D}<L>
Nick Lewycky28682ae2011-09-06 05:33:18 +00001981 //
Nick Lewycky8cfb2f82011-09-06 06:39:54 +00001982 // {A,+,B} * {C,+,D} = A+It*B * C+It*D = A*C + (A*D + B*C)*It + B*D*It^2
1983 // Given an equation of the form x + y*It + z*It^2 (above), we want to
1984 // express it in terms of {X,+,Y,+,Z}.
1985 // {X,+,Y,+,Z} = X + Y*It + Z*(It^2 - It)/2.
Nick Lewyckye6180992011-09-06 06:46:01 +00001986 // Rearranging, X = x, Y = y+z, Z = 2z.
Nick Lewycky28682ae2011-09-06 05:33:18 +00001987 //
Nick Lewycky8cfb2f82011-09-06 06:39:54 +00001988 // x = A*C, y = (A*D + B*C), z = B*D.
Nick Lewyckyc103a082011-09-06 21:42:18 +00001989 // Therefore X = A*C, Y = A*D + B*C + B*D and Z = 2*B*D.
Dan Gohman6a0c1252010-08-31 22:52:12 +00001990 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1991 ++OtherIdx)
1992 if (const SCEVAddRecExpr *OtherAddRec =
1993 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1994 if (OtherAddRec->getLoop() == AddRecLoop) {
Nick Lewyckyfa151a72011-09-06 05:05:14 +00001995 const SCEV *A = AddRec->getStart();
1996 const SCEV *B = AddRec->getStepRecurrence(*this);
1997 const SCEV *C = OtherAddRec->getStart();
1998 const SCEV *D = OtherAddRec->getStepRecurrence(*this);
1999 const SCEV *NewStart = getMulExpr(A, C);
2000 const SCEV *BD = getMulExpr(B, D);
2001 const SCEV *NewStep = getAddExpr(getMulExpr(A, D),
Nick Lewycky9115fba2011-09-06 06:56:00 +00002002 getMulExpr(B, C), BD);
Nick Lewyckyfa151a72011-09-06 05:05:14 +00002003 const SCEV *NewSecondOrderStep =
2004 getMulExpr(BD, getConstant(BD->getType(), 2));
2005
Nick Lewyckyc103a082011-09-06 21:42:18 +00002006 // This can happen when AddRec or OtherAddRec have >3 operands.
2007 // TODO: support these add-recs.
2008 if (isLoopInvariant(NewStart, AddRecLoop) &&
2009 isLoopInvariant(NewStep, AddRecLoop) &&
2010 isLoopInvariant(NewSecondOrderStep, AddRecLoop)) {
2011 SmallVector<const SCEV *, 3> AddRecOps;
2012 AddRecOps.push_back(NewStart);
2013 AddRecOps.push_back(NewStep);
2014 AddRecOps.push_back(NewSecondOrderStep);
2015 const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
2016 AddRec->getLoop(),
2017 SCEV::FlagAnyWrap);
2018 if (Ops.size() == 2) return NewAddRec;
2019 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
2020 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2021 Retry = true;
2022 }
Dan Gohman6a0c1252010-08-31 22:52:12 +00002023 }
Nick Lewyckyc103a082011-09-06 21:42:18 +00002024 if (Retry)
2025 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002026 }
Nick Lewyckyc103a082011-09-06 21:42:18 +00002027 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002028
2029 // Otherwise couldn't fold anything into this recurrence. Move onto the
2030 // next one.
2031 }
2032
2033 // Okay, it looks like we really DO need an mul expr. Check to see if we
2034 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002035 FoldingSetNodeID ID;
2036 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002037 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2038 ID.AddPointer(Ops[i]);
2039 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002040 SCEVMulExpr *S =
2041 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2042 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002043 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2044 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002045 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2046 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002047 UniqueSCEVs.InsertNode(S, IP);
2048 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002049 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002050 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002051}
2052
Andreas Bolka8a11c982009-08-07 22:55:26 +00002053/// getUDivExpr - Get a canonical unsigned division expression, or something
2054/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002055const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2056 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002057 assert(getEffectiveSCEVType(LHS->getType()) ==
2058 getEffectiveSCEVType(RHS->getType()) &&
2059 "SCEVUDivExpr operand types don't match!");
2060
Dan Gohman622ed672009-05-04 22:02:23 +00002061 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002062 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002063 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002064 // If the denominator is zero, the result of the udiv is undefined. Don't
2065 // try to analyze it, because the resolution chosen here may differ from
2066 // the resolution chosen in other parts of the compiler.
2067 if (!RHSC->getValue()->isZero()) {
2068 // Determine if the division can be folded into the operands of
2069 // its operands.
2070 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002071 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002072 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002073 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002074 // For non-power-of-two values, effectively round the value up to the
2075 // nearest power of two.
2076 if (!RHSC->getValue()->getValue().isPowerOf2())
2077 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002078 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002079 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002080 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2081 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002082 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2083 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2084 const APInt &StepInt = Step->getValue()->getValue();
2085 const APInt &DivInt = RHSC->getValue()->getValue();
2086 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002087 getZeroExtendExpr(AR, ExtTy) ==
2088 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2089 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002090 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002091 SmallVector<const SCEV *, 4> Operands;
2092 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2093 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002094 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002095 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002096 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002097 /// Get a canonical UDivExpr for a recurrence.
2098 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2099 // We can currently only fold X%N if X is constant.
2100 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2101 if (StartC && !DivInt.urem(StepInt) &&
2102 getZeroExtendExpr(AR, ExtTy) ==
2103 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2104 getZeroExtendExpr(Step, ExtTy),
2105 AR->getLoop(), SCEV::FlagAnyWrap)) {
2106 const APInt &StartInt = StartC->getValue()->getValue();
2107 const APInt &StartRem = StartInt.urem(StepInt);
2108 if (StartRem != 0)
2109 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2110 AR->getLoop(), SCEV::FlagNW);
2111 }
2112 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002113 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2114 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2115 SmallVector<const SCEV *, 4> Operands;
2116 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2117 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2118 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2119 // Find an operand that's safely divisible.
2120 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2121 const SCEV *Op = M->getOperand(i);
2122 const SCEV *Div = getUDivExpr(Op, RHSC);
2123 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2124 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2125 M->op_end());
2126 Operands[i] = Div;
2127 return getMulExpr(Operands);
2128 }
2129 }
Dan Gohman185cf032009-05-08 20:18:49 +00002130 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002131 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002132 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002133 SmallVector<const SCEV *, 4> Operands;
2134 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2135 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2136 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2137 Operands.clear();
2138 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2139 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2140 if (isa<SCEVUDivExpr>(Op) ||
2141 getMulExpr(Op, RHS) != A->getOperand(i))
2142 break;
2143 Operands.push_back(Op);
2144 }
2145 if (Operands.size() == A->getNumOperands())
2146 return getAddExpr(Operands);
2147 }
2148 }
Dan Gohman185cf032009-05-08 20:18:49 +00002149
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002150 // Fold if both operands are constant.
2151 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2152 Constant *LHSCV = LHSC->getValue();
2153 Constant *RHSCV = RHSC->getValue();
2154 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2155 RHSCV)));
2156 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002157 }
2158 }
2159
Dan Gohman1c343752009-06-27 21:21:31 +00002160 FoldingSetNodeID ID;
2161 ID.AddInteger(scUDivExpr);
2162 ID.AddPointer(LHS);
2163 ID.AddPointer(RHS);
2164 void *IP = 0;
2165 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002166 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2167 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002168 UniqueSCEVs.InsertNode(S, IP);
2169 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002170}
2171
2172
Dan Gohman6c0866c2009-05-24 23:45:28 +00002173/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2174/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002175const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2176 const Loop *L,
2177 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002178 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002179 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002180 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002181 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002182 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002183 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002184 }
2185
2186 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002187 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002188}
2189
Dan Gohman6c0866c2009-05-24 23:45:28 +00002190/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2191/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002192const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002193ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002194 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002195 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002196#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002197 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002198 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002199 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002200 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002201 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002202 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002203 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002204#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002205
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002206 if (Operands.back()->isZero()) {
2207 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002208 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002209 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002210
Dan Gohmanbc028532010-02-19 18:49:22 +00002211 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2212 // use that information to infer NUW and NSW flags. However, computing a
2213 // BE count requires calling getAddRecExpr, so we may not yet have a
2214 // meaningful BE count at this point (and if we don't, we'd be stuck
2215 // with a SCEVCouldNotCompute as the cached BE count).
2216
Andrew Trick3228cc22011-03-14 16:50:06 +00002217 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002218 // And vice-versa.
2219 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2220 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2221 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002222 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002223 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2224 E = Operands.end(); I != E; ++I)
2225 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002226 All = false;
2227 break;
2228 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002229 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002230 }
2231
Dan Gohmand9cc7492008-08-08 18:33:12 +00002232 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002233 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002234 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002235 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002236 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002237 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002238 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002239 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002240 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002241 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002242 // AddRecs require their operands be loop-invariant with respect to their
2243 // loops. Don't perform this transformation if it would break this
2244 // requirement.
2245 bool AllInvariant = true;
2246 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002247 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002248 AllInvariant = false;
2249 break;
2250 }
2251 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002252 // Create a recurrence for the outer loop with the same step size.
2253 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002254 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2255 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002256 SCEV::NoWrapFlags OuterFlags =
2257 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002258
2259 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002260 AllInvariant = true;
2261 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002262 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002263 AllInvariant = false;
2264 break;
2265 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002266 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002267 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002268 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002269 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2270 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002271 SCEV::NoWrapFlags InnerFlags =
2272 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002273 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2274 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002275 }
2276 // Reset Operands to its original state.
2277 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002278 }
2279 }
2280
Dan Gohman67847532010-01-19 22:27:22 +00002281 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2282 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002283 FoldingSetNodeID ID;
2284 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002285 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2286 ID.AddPointer(Operands[i]);
2287 ID.AddPointer(L);
2288 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002289 SCEVAddRecExpr *S =
2290 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2291 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002292 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2293 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002294 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2295 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002296 UniqueSCEVs.InsertNode(S, IP);
2297 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002298 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002299 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002300}
2301
Dan Gohman9311ef62009-06-24 14:49:00 +00002302const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2303 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002304 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002305 Ops.push_back(LHS);
2306 Ops.push_back(RHS);
2307 return getSMaxExpr(Ops);
2308}
2309
Dan Gohman0bba49c2009-07-07 17:06:11 +00002310const SCEV *
2311ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002312 assert(!Ops.empty() && "Cannot get empty smax!");
2313 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002314#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002315 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002316 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002317 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002318 "SCEVSMaxExpr operand types don't match!");
2319#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002320
2321 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002322 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002323
2324 // If there are any constants, fold them together.
2325 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002326 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002327 ++Idx;
2328 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002329 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002330 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002331 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002332 APIntOps::smax(LHSC->getValue()->getValue(),
2333 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002334 Ops[0] = getConstant(Fold);
2335 Ops.erase(Ops.begin()+1); // Erase the folded element
2336 if (Ops.size() == 1) return Ops[0];
2337 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002338 }
2339
Dan Gohmane5aceed2009-06-24 14:46:22 +00002340 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002341 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2342 Ops.erase(Ops.begin());
2343 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002344 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2345 // If we have an smax with a constant maximum-int, it will always be
2346 // maximum-int.
2347 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002348 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002349
Dan Gohman3ab13122010-04-13 16:49:23 +00002350 if (Ops.size() == 1) return Ops[0];
2351 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002352
2353 // Find the first SMax
2354 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2355 ++Idx;
2356
2357 // Check to see if one of the operands is an SMax. If so, expand its operands
2358 // onto our operand list, and recurse to simplify.
2359 if (Idx < Ops.size()) {
2360 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002361 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002362 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002363 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002364 DeletedSMax = true;
2365 }
2366
2367 if (DeletedSMax)
2368 return getSMaxExpr(Ops);
2369 }
2370
2371 // Okay, check to see if the same value occurs in the operand list twice. If
2372 // so, delete one. Since we sorted the list, these values are required to
2373 // be adjacent.
2374 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002375 // X smax Y smax Y --> X smax Y
2376 // X smax Y --> X, if X is always greater than Y
2377 if (Ops[i] == Ops[i+1] ||
2378 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2379 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2380 --i; --e;
2381 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002382 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2383 --i; --e;
2384 }
2385
2386 if (Ops.size() == 1) return Ops[0];
2387
2388 assert(!Ops.empty() && "Reduced smax down to nothing!");
2389
Nick Lewycky3e630762008-02-20 06:48:22 +00002390 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002391 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002392 FoldingSetNodeID ID;
2393 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002394 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2395 ID.AddPointer(Ops[i]);
2396 void *IP = 0;
2397 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002398 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2399 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002400 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2401 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002402 UniqueSCEVs.InsertNode(S, IP);
2403 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002404}
2405
Dan Gohman9311ef62009-06-24 14:49:00 +00002406const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2407 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002408 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002409 Ops.push_back(LHS);
2410 Ops.push_back(RHS);
2411 return getUMaxExpr(Ops);
2412}
2413
Dan Gohman0bba49c2009-07-07 17:06:11 +00002414const SCEV *
2415ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002416 assert(!Ops.empty() && "Cannot get empty umax!");
2417 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002418#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002419 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002420 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002421 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002422 "SCEVUMaxExpr operand types don't match!");
2423#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002424
2425 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002426 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002427
2428 // If there are any constants, fold them together.
2429 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002430 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002431 ++Idx;
2432 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002433 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002434 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002435 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002436 APIntOps::umax(LHSC->getValue()->getValue(),
2437 RHSC->getValue()->getValue()));
2438 Ops[0] = getConstant(Fold);
2439 Ops.erase(Ops.begin()+1); // Erase the folded element
2440 if (Ops.size() == 1) return Ops[0];
2441 LHSC = cast<SCEVConstant>(Ops[0]);
2442 }
2443
Dan Gohmane5aceed2009-06-24 14:46:22 +00002444 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002445 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2446 Ops.erase(Ops.begin());
2447 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002448 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2449 // If we have an umax with a constant maximum-int, it will always be
2450 // maximum-int.
2451 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002452 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002453
Dan Gohman3ab13122010-04-13 16:49:23 +00002454 if (Ops.size() == 1) return Ops[0];
2455 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002456
2457 // Find the first UMax
2458 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2459 ++Idx;
2460
2461 // Check to see if one of the operands is a UMax. If so, expand its operands
2462 // onto our operand list, and recurse to simplify.
2463 if (Idx < Ops.size()) {
2464 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002465 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002466 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002467 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002468 DeletedUMax = true;
2469 }
2470
2471 if (DeletedUMax)
2472 return getUMaxExpr(Ops);
2473 }
2474
2475 // Okay, check to see if the same value occurs in the operand list twice. If
2476 // so, delete one. Since we sorted the list, these values are required to
2477 // be adjacent.
2478 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002479 // X umax Y umax Y --> X umax Y
2480 // X umax Y --> X, if X is always greater than Y
2481 if (Ops[i] == Ops[i+1] ||
2482 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2483 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2484 --i; --e;
2485 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002486 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2487 --i; --e;
2488 }
2489
2490 if (Ops.size() == 1) return Ops[0];
2491
2492 assert(!Ops.empty() && "Reduced umax down to nothing!");
2493
2494 // Okay, it looks like we really DO need a umax expr. Check to see if we
2495 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002496 FoldingSetNodeID ID;
2497 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002498 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2499 ID.AddPointer(Ops[i]);
2500 void *IP = 0;
2501 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002502 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2503 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002504 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2505 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002506 UniqueSCEVs.InsertNode(S, IP);
2507 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002508}
2509
Dan Gohman9311ef62009-06-24 14:49:00 +00002510const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2511 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002512 // ~smax(~x, ~y) == smin(x, y).
2513 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2514}
2515
Dan Gohman9311ef62009-06-24 14:49:00 +00002516const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2517 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002518 // ~umax(~x, ~y) == umin(x, y)
2519 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2520}
2521
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002522const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002523 // If we have TargetData, we can bypass creating a target-independent
2524 // constant expression and then folding it back into a ConstantInt.
2525 // This is just a compile-time optimization.
2526 if (TD)
2527 return getConstant(TD->getIntPtrType(getContext()),
2528 TD->getTypeAllocSize(AllocTy));
2529
Dan Gohman4f8eea82010-02-01 18:27:38 +00002530 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2531 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002532 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2533 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002534 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002535 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2536}
2537
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002538const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002539 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2540 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002541 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2542 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002543 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002544 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2545}
2546
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002547const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002548 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002549 // If we have TargetData, we can bypass creating a target-independent
2550 // constant expression and then folding it back into a ConstantInt.
2551 // This is just a compile-time optimization.
2552 if (TD)
2553 return getConstant(TD->getIntPtrType(getContext()),
2554 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2555
Dan Gohman0f5efe52010-01-28 02:15:55 +00002556 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2557 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002558 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2559 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002560 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002561 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002562}
2563
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002564const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002565 Constant *FieldNo) {
2566 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002567 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002568 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2569 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002570 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002571 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002572}
2573
Dan Gohman0bba49c2009-07-07 17:06:11 +00002574const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002575 // Don't attempt to do anything other than create a SCEVUnknown object
2576 // here. createSCEV only calls getUnknown after checking for all other
2577 // interesting possibilities, and any other code that calls getUnknown
2578 // is doing so in order to hide a value from SCEV canonicalization.
2579
Dan Gohman1c343752009-06-27 21:21:31 +00002580 FoldingSetNodeID ID;
2581 ID.AddInteger(scUnknown);
2582 ID.AddPointer(V);
2583 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002584 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2585 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2586 "Stale SCEVUnknown in uniquing map!");
2587 return S;
2588 }
2589 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2590 FirstUnknown);
2591 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002592 UniqueSCEVs.InsertNode(S, IP);
2593 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002594}
2595
Chris Lattner53e677a2004-04-02 20:23:17 +00002596//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002597// Basic SCEV Analysis and PHI Idiom Recognition Code
2598//
2599
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002600/// isSCEVable - Test if values of the given type are analyzable within
2601/// the SCEV framework. This primarily includes integer types, and it
2602/// can optionally include pointer types if the ScalarEvolution class
2603/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002604bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002605 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002606 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002607}
2608
2609/// getTypeSizeInBits - Return the size in bits of the specified type,
2610/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002611uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002612 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2613
2614 // If we have a TargetData, use it!
2615 if (TD)
2616 return TD->getTypeSizeInBits(Ty);
2617
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002618 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002619 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002620 return Ty->getPrimitiveSizeInBits();
2621
2622 // The only other support type is pointer. Without TargetData, conservatively
2623 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002624 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002625 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002626}
2627
2628/// getEffectiveSCEVType - Return a type with the same bitwidth as
2629/// the given type and which represents how SCEV will treat the given
2630/// type, for which isSCEVable must return true. For pointer types,
2631/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002632Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002633 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2634
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002635 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002636 return Ty;
2637
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002638 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002639 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002640 if (TD) return TD->getIntPtrType(getContext());
2641
2642 // Without TargetData, conservatively assume pointers are 64-bit.
2643 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002644}
Chris Lattner53e677a2004-04-02 20:23:17 +00002645
Dan Gohman0bba49c2009-07-07 17:06:11 +00002646const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002647 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002648}
2649
Chris Lattner53e677a2004-04-02 20:23:17 +00002650/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2651/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002652const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002653 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002654
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002655 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2656 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002657 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002658
2659 // The process of creating a SCEV for V may have caused other SCEVs
2660 // to have been created, so it's necessary to insert the new entry
2661 // from scratch, rather than trying to remember the insert position
2662 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002663 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002664 return S;
2665}
2666
Dan Gohman2d1be872009-04-16 03:18:22 +00002667/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2668///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002669const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002670 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002671 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002672 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002673
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002674 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002675 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002676 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002677 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002678}
2679
2680/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002681const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002682 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002683 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002684 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002685
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002686 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002687 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002688 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002689 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002690 return getMinusSCEV(AllOnes, V);
2691}
2692
Andrew Trick3228cc22011-03-14 16:50:06 +00002693/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002694const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002695 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002696 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2697
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002698 // Fast path: X - X --> 0.
2699 if (LHS == RHS)
2700 return getConstant(LHS->getType(), 0);
2701
Dan Gohman2d1be872009-04-16 03:18:22 +00002702 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002703 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002704}
2705
2706/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2707/// input value to the specified type. If the type must be extended, it is zero
2708/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002709const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002710ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2711 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002712 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2713 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002714 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002715 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002716 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002717 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002718 return getTruncateExpr(V, Ty);
2719 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002720}
2721
2722/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2723/// input value to the specified type. If the type must be extended, it is sign
2724/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002725const SCEV *
2726ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002727 Type *Ty) {
2728 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002729 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2730 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002731 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002732 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002733 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002734 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002735 return getTruncateExpr(V, Ty);
2736 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002737}
2738
Dan Gohman467c4302009-05-13 03:46:30 +00002739/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2740/// input value to the specified type. If the type must be extended, it is zero
2741/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002742const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002743ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2744 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002745 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2746 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002747 "Cannot noop or zero extend with non-integer arguments!");
2748 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2749 "getNoopOrZeroExtend cannot truncate!");
2750 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2751 return V; // No conversion
2752 return getZeroExtendExpr(V, Ty);
2753}
2754
2755/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2756/// input value to the specified type. If the type must be extended, it is sign
2757/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002758const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002759ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2760 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002761 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2762 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002763 "Cannot noop or sign extend with non-integer arguments!");
2764 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2765 "getNoopOrSignExtend cannot truncate!");
2766 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2767 return V; // No conversion
2768 return getSignExtendExpr(V, Ty);
2769}
2770
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002771/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2772/// the input value to the specified type. If the type must be extended,
2773/// it is extended with unspecified bits. The conversion must not be
2774/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002775const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002776ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2777 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002778 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2779 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002780 "Cannot noop or any extend with non-integer arguments!");
2781 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2782 "getNoopOrAnyExtend cannot truncate!");
2783 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2784 return V; // No conversion
2785 return getAnyExtendExpr(V, Ty);
2786}
2787
Dan Gohman467c4302009-05-13 03:46:30 +00002788/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2789/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002790const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002791ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2792 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002793 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2794 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002795 "Cannot truncate or noop with non-integer arguments!");
2796 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2797 "getTruncateOrNoop cannot extend!");
2798 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2799 return V; // No conversion
2800 return getTruncateExpr(V, Ty);
2801}
2802
Dan Gohmana334aa72009-06-22 00:31:57 +00002803/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2804/// the types using zero-extension, and then perform a umax operation
2805/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002806const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2807 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002808 const SCEV *PromotedLHS = LHS;
2809 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002810
2811 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2812 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2813 else
2814 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2815
2816 return getUMaxExpr(PromotedLHS, PromotedRHS);
2817}
2818
Dan Gohmanc9759e82009-06-22 15:03:27 +00002819/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2820/// the types using zero-extension, and then perform a umin operation
2821/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002822const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2823 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002824 const SCEV *PromotedLHS = LHS;
2825 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002826
2827 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2828 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2829 else
2830 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2831
2832 return getUMinExpr(PromotedLHS, PromotedRHS);
2833}
2834
Andrew Trickb12a7542011-03-17 23:51:11 +00002835/// getPointerBase - Transitively follow the chain of pointer-type operands
2836/// until reaching a SCEV that does not have a single pointer operand. This
2837/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2838/// but corner cases do exist.
2839const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2840 // A pointer operand may evaluate to a nonpointer expression, such as null.
2841 if (!V->getType()->isPointerTy())
2842 return V;
2843
2844 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2845 return getPointerBase(Cast->getOperand());
2846 }
2847 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2848 const SCEV *PtrOp = 0;
2849 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2850 I != E; ++I) {
2851 if ((*I)->getType()->isPointerTy()) {
2852 // Cannot find the base of an expression with multiple pointer operands.
2853 if (PtrOp)
2854 return V;
2855 PtrOp = *I;
2856 }
2857 }
2858 if (!PtrOp)
2859 return V;
2860 return getPointerBase(PtrOp);
2861 }
2862 return V;
2863}
2864
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002865/// PushDefUseChildren - Push users of the given Instruction
2866/// onto the given Worklist.
2867static void
2868PushDefUseChildren(Instruction *I,
2869 SmallVectorImpl<Instruction *> &Worklist) {
2870 // Push the def-use children onto the Worklist stack.
2871 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2872 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002873 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002874}
2875
2876/// ForgetSymbolicValue - This looks up computed SCEV values for all
2877/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002878/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002879/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002880void
Dan Gohman85669632010-02-25 06:57:05 +00002881ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002882 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002883 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002884
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002885 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002886 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002887 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002888 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002889 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002890
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002891 ValueExprMapType::iterator It =
2892 ValueExprMap.find(static_cast<Value *>(I));
2893 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002894 const SCEV *Old = It->second;
2895
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002896 // Short-circuit the def-use traversal if the symbolic name
2897 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002898 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002899 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002900
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002901 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002902 // structure, it's a PHI that's in the progress of being computed
2903 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2904 // additional loop trip count information isn't going to change anything.
2905 // In the second case, createNodeForPHI will perform the necessary
2906 // updates on its own when it gets to that point. In the third, we do
2907 // want to forget the SCEVUnknown.
2908 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002909 !isa<SCEVUnknown>(Old) ||
2910 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002911 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002912 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002913 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002914 }
2915
2916 PushDefUseChildren(I, Worklist);
2917 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002918}
Chris Lattner53e677a2004-04-02 20:23:17 +00002919
2920/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2921/// a loop header, making it a potential recurrence, or it doesn't.
2922///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002923const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002924 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2925 if (L->getHeader() == PN->getParent()) {
2926 // The loop may have multiple entrances or multiple exits; we can analyze
2927 // this phi as an addrec if it has a unique entry value and a unique
2928 // backedge value.
2929 Value *BEValueV = 0, *StartValueV = 0;
2930 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2931 Value *V = PN->getIncomingValue(i);
2932 if (L->contains(PN->getIncomingBlock(i))) {
2933 if (!BEValueV) {
2934 BEValueV = V;
2935 } else if (BEValueV != V) {
2936 BEValueV = 0;
2937 break;
2938 }
2939 } else if (!StartValueV) {
2940 StartValueV = V;
2941 } else if (StartValueV != V) {
2942 StartValueV = 0;
2943 break;
2944 }
2945 }
2946 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002947 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002948 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002949 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002950 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002951 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002952
2953 // Using this symbolic name for the PHI, analyze the value coming around
2954 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002955 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002956
2957 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2958 // has a special value for the first iteration of the loop.
2959
2960 // If the value coming around the backedge is an add with the symbolic
2961 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002962 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002963 // If there is a single occurrence of the symbolic value, replace it
2964 // with a recurrence.
2965 unsigned FoundIndex = Add->getNumOperands();
2966 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2967 if (Add->getOperand(i) == SymbolicName)
2968 if (FoundIndex == e) {
2969 FoundIndex = i;
2970 break;
2971 }
2972
2973 if (FoundIndex != Add->getNumOperands()) {
2974 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002975 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002976 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2977 if (i != FoundIndex)
2978 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002979 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002980
2981 // This is not a valid addrec if the step amount is varying each
2982 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002983 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00002984 (isa<SCEVAddRecExpr>(Accum) &&
2985 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002986 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00002987
2988 // If the increment doesn't overflow, then neither the addrec nor
2989 // the post-increment will overflow.
2990 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2991 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00002992 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00002993 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00002994 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00002995 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00002996 dyn_cast<GEPOperator>(BEValueV)) {
2997 // If the increment is an inbounds GEP, then we know the address
2998 // space cannot be wrapped around. We cannot make any guarantee
2999 // about signed or unsigned overflow because pointers are
3000 // unsigned but we may have a negative index from the base
3001 // pointer.
3002 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00003003 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003004 }
3005
Dan Gohman27dead42010-04-12 07:49:36 +00003006 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00003007 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00003008
Dan Gohmana10756e2010-01-21 02:09:26 +00003009 // Since the no-wrap flags are on the increment, they apply to the
3010 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003011 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003012 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003013 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003014
3015 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003016 // to be symbolic. We now need to go back and purge all of the
3017 // entries for the scalars that use the symbolic expression.
3018 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003019 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003020 return PHISCEV;
3021 }
3022 }
Dan Gohman622ed672009-05-04 22:02:23 +00003023 } else if (const SCEVAddRecExpr *AddRec =
3024 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003025 // Otherwise, this could be a loop like this:
3026 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3027 // In this case, j = {1,+,1} and BEValue is j.
3028 // Because the other in-value of i (0) fits the evolution of BEValue
3029 // i really is an addrec evolution.
3030 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003031 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003032
3033 // If StartVal = j.start - j.stride, we can use StartVal as the
3034 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003035 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003036 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003037 // FIXME: For constant StartVal, we should be able to infer
3038 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003039 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003040 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3041 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003042
3043 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003044 // to be symbolic. We now need to go back and purge all of the
3045 // entries for the scalars that use the symbolic expression.
3046 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003047 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003048 return PHISCEV;
3049 }
3050 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003051 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003052 }
Dan Gohman27dead42010-04-12 07:49:36 +00003053 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003054
Dan Gohman85669632010-02-25 06:57:05 +00003055 // If the PHI has a single incoming value, follow that value, unless the
3056 // PHI's incoming blocks are in a different loop, in which case doing so
3057 // risks breaking LCSSA form. Instcombine would normally zap these, but
3058 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003059 if (Value *V = SimplifyInstruction(PN, TD, DT))
3060 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003061 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003062
Chris Lattner53e677a2004-04-02 20:23:17 +00003063 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003064 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003065}
3066
Dan Gohman26466c02009-05-08 20:26:55 +00003067/// createNodeForGEP - Expand GEP instructions into add and multiply
3068/// operations. This allows them to be analyzed by regular SCEV code.
3069///
Dan Gohmand281ed22009-12-18 02:09:29 +00003070const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003071
Dan Gohmanb9f96512010-06-30 07:16:37 +00003072 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3073 // Add expression, because the Instruction may be guarded by control flow
3074 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003075 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003076 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003077
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003078 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003079 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003080 // Don't attempt to analyze GEPs over unsized objects.
3081 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3082 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003083 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003084 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003085 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003086 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003087 I != E; ++I) {
3088 Value *Index = *I;
3089 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003090 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003091 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003092 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00003093 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3094
Dan Gohmanb9f96512010-06-30 07:16:37 +00003095 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003096 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003097 } else {
3098 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003099 const SCEV *ElementSize = getSizeOfExpr(*GTI);
3100 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003101 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003102 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3103
Dan Gohmanb9f96512010-06-30 07:16:37 +00003104 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003105 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3106 isInBounds ? SCEV::FlagNSW :
3107 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003108
3109 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003110 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003111 }
3112 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003113
3114 // Get the SCEV for the GEP base.
3115 const SCEV *BaseS = getSCEV(Base);
3116
Dan Gohmanb9f96512010-06-30 07:16:37 +00003117 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003118 return getAddExpr(BaseS, TotalOffset,
3119 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003120}
3121
Nick Lewycky83bb0052007-11-22 07:59:40 +00003122/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3123/// guaranteed to end in (at every loop iteration). It is, at the same time,
3124/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3125/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003126uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003127ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003128 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003129 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003130
Dan Gohman622ed672009-05-04 22:02:23 +00003131 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003132 return std::min(GetMinTrailingZeros(T->getOperand()),
3133 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003134
Dan Gohman622ed672009-05-04 22:02:23 +00003135 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003136 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3137 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3138 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003139 }
3140
Dan Gohman622ed672009-05-04 22:02:23 +00003141 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003142 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3143 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3144 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003145 }
3146
Dan Gohman622ed672009-05-04 22:02:23 +00003147 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003148 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003149 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003150 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003151 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003152 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003153 }
3154
Dan Gohman622ed672009-05-04 22:02:23 +00003155 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003156 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003157 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3158 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003159 for (unsigned i = 1, e = M->getNumOperands();
3160 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003161 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003162 BitWidth);
3163 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003164 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003165
Dan Gohman622ed672009-05-04 22:02:23 +00003166 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003167 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003168 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003169 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003170 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003171 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003172 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003173
Dan Gohman622ed672009-05-04 22:02:23 +00003174 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003175 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003176 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003177 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003178 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003179 return MinOpRes;
3180 }
3181
Dan Gohman622ed672009-05-04 22:02:23 +00003182 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003183 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003184 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003185 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003186 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003187 return MinOpRes;
3188 }
3189
Dan Gohman2c364ad2009-06-19 23:29:04 +00003190 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3191 // For a SCEVUnknown, ask ValueTracking.
3192 unsigned BitWidth = getTypeSizeInBits(U->getType());
3193 APInt Mask = APInt::getAllOnesValue(BitWidth);
3194 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3195 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3196 return Zeros.countTrailingOnes();
3197 }
3198
3199 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003200 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003201}
Chris Lattner53e677a2004-04-02 20:23:17 +00003202
Dan Gohman85b05a22009-07-13 21:35:55 +00003203/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3204///
3205ConstantRange
3206ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003207 // See if we've computed this range already.
3208 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3209 if (I != UnsignedRanges.end())
3210 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003211
3212 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003213 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003214
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003215 unsigned BitWidth = getTypeSizeInBits(S->getType());
3216 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3217
3218 // If the value has known zeros, the maximum unsigned value will have those
3219 // known zeros as well.
3220 uint32_t TZ = GetMinTrailingZeros(S);
3221 if (TZ != 0)
3222 ConservativeResult =
3223 ConstantRange(APInt::getMinValue(BitWidth),
3224 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3225
Dan Gohman85b05a22009-07-13 21:35:55 +00003226 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3227 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3228 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3229 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003230 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003231 }
3232
3233 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3234 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3235 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3236 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003237 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003238 }
3239
3240 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3241 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3242 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3243 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003244 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003245 }
3246
3247 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3248 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3249 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3250 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003251 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003252 }
3253
3254 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3255 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3256 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003257 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003258 }
3259
3260 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3261 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003262 return setUnsignedRange(ZExt,
3263 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003264 }
3265
3266 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3267 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003268 return setUnsignedRange(SExt,
3269 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003270 }
3271
3272 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3273 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003274 return setUnsignedRange(Trunc,
3275 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003276 }
3277
Dan Gohman85b05a22009-07-13 21:35:55 +00003278 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003279 // If there's no unsigned wrap, the value will never be less than its
3280 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003281 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003282 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003283 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003284 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003285 ConservativeResult.intersectWith(
3286 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003287
3288 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003289 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003290 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003291 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003292 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3293 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003294 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3295
3296 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003297 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003298
3299 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003300 ConstantRange StepRange = getSignedRange(Step);
3301 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3302 ConstantRange EndRange =
3303 StartRange.add(MaxBECountRange.multiply(StepRange));
3304
3305 // Check for overflow. This must be done with ConstantRange arithmetic
3306 // because we could be called from within the ScalarEvolution overflow
3307 // checking code.
3308 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3309 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3310 ConstantRange ExtMaxBECountRange =
3311 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3312 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3313 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3314 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003315 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003316
Dan Gohman85b05a22009-07-13 21:35:55 +00003317 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3318 EndRange.getUnsignedMin());
3319 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3320 EndRange.getUnsignedMax());
3321 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003322 return setUnsignedRange(AddRec, ConservativeResult);
3323 return setUnsignedRange(AddRec,
3324 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003325 }
3326 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003327
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003328 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003329 }
3330
3331 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3332 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003333 APInt Mask = APInt::getAllOnesValue(BitWidth);
3334 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3335 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003336 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003337 return setUnsignedRange(U, ConservativeResult);
3338 return setUnsignedRange(U,
3339 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003340 }
3341
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003342 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003343}
3344
Dan Gohman85b05a22009-07-13 21:35:55 +00003345/// getSignedRange - Determine the signed range for a particular SCEV.
3346///
3347ConstantRange
3348ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003349 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003350 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3351 if (I != SignedRanges.end())
3352 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003353
Dan Gohman85b05a22009-07-13 21:35:55 +00003354 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003355 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003356
Dan Gohman52fddd32010-01-26 04:40:18 +00003357 unsigned BitWidth = getTypeSizeInBits(S->getType());
3358 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3359
3360 // If the value has known zeros, the maximum signed value will have those
3361 // known zeros as well.
3362 uint32_t TZ = GetMinTrailingZeros(S);
3363 if (TZ != 0)
3364 ConservativeResult =
3365 ConstantRange(APInt::getSignedMinValue(BitWidth),
3366 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3367
Dan Gohman85b05a22009-07-13 21:35:55 +00003368 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3369 ConstantRange X = getSignedRange(Add->getOperand(0));
3370 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3371 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003372 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003373 }
3374
Dan Gohman85b05a22009-07-13 21:35:55 +00003375 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3376 ConstantRange X = getSignedRange(Mul->getOperand(0));
3377 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3378 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003379 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003380 }
3381
Dan Gohman85b05a22009-07-13 21:35:55 +00003382 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3383 ConstantRange X = getSignedRange(SMax->getOperand(0));
3384 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3385 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003386 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003387 }
Dan Gohman62849c02009-06-24 01:05:09 +00003388
Dan Gohman85b05a22009-07-13 21:35:55 +00003389 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3390 ConstantRange X = getSignedRange(UMax->getOperand(0));
3391 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3392 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003393 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003394 }
Dan Gohman62849c02009-06-24 01:05:09 +00003395
Dan Gohman85b05a22009-07-13 21:35:55 +00003396 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3397 ConstantRange X = getSignedRange(UDiv->getLHS());
3398 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003399 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003400 }
Dan Gohman62849c02009-06-24 01:05:09 +00003401
Dan Gohman85b05a22009-07-13 21:35:55 +00003402 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3403 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003404 return setSignedRange(ZExt,
3405 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003406 }
3407
3408 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3409 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003410 return setSignedRange(SExt,
3411 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003412 }
3413
3414 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3415 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003416 return setSignedRange(Trunc,
3417 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003418 }
3419
Dan Gohman85b05a22009-07-13 21:35:55 +00003420 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003421 // If there's no signed wrap, and all the operands have the same sign or
3422 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003423 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003424 bool AllNonNeg = true;
3425 bool AllNonPos = true;
3426 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3427 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3428 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3429 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003430 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003431 ConservativeResult = ConservativeResult.intersectWith(
3432 ConstantRange(APInt(BitWidth, 0),
3433 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003434 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003435 ConservativeResult = ConservativeResult.intersectWith(
3436 ConstantRange(APInt::getSignedMinValue(BitWidth),
3437 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003438 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003439
3440 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003441 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003442 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003443 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003444 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3445 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003446 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3447
3448 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003449 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003450
3451 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003452 ConstantRange StepRange = getSignedRange(Step);
3453 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3454 ConstantRange EndRange =
3455 StartRange.add(MaxBECountRange.multiply(StepRange));
3456
3457 // Check for overflow. This must be done with ConstantRange arithmetic
3458 // because we could be called from within the ScalarEvolution overflow
3459 // checking code.
3460 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3461 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3462 ConstantRange ExtMaxBECountRange =
3463 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3464 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3465 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3466 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003467 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003468
Dan Gohman85b05a22009-07-13 21:35:55 +00003469 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3470 EndRange.getSignedMin());
3471 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3472 EndRange.getSignedMax());
3473 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003474 return setSignedRange(AddRec, ConservativeResult);
3475 return setSignedRange(AddRec,
3476 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003477 }
Dan Gohman62849c02009-06-24 01:05:09 +00003478 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003479
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003480 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003481 }
3482
Dan Gohman2c364ad2009-06-19 23:29:04 +00003483 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3484 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003485 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003486 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003487 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3488 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003489 return setSignedRange(U, ConservativeResult);
3490 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003491 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003492 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003493 }
3494
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003495 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003496}
3497
Chris Lattner53e677a2004-04-02 20:23:17 +00003498/// createSCEV - We know that there is no SCEV for the specified value.
3499/// Analyze the expression.
3500///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003501const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003502 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003503 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003504
Dan Gohman6c459a22008-06-22 19:56:46 +00003505 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003506 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003507 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003508
3509 // Don't attempt to analyze instructions in blocks that aren't
3510 // reachable. Such instructions don't matter, and they aren't required
3511 // to obey basic rules for definitions dominating uses which this
3512 // analysis depends on.
3513 if (!DT->isReachableFromEntry(I->getParent()))
3514 return getUnknown(V);
3515 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003516 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003517 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3518 return getConstant(CI);
3519 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003520 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003521 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3522 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003523 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003524 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003525
Dan Gohmanca178902009-07-17 20:47:02 +00003526 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003527 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003528 case Instruction::Add: {
3529 // The simple thing to do would be to just call getSCEV on both operands
3530 // and call getAddExpr with the result. However if we're looking at a
3531 // bunch of things all added together, this can be quite inefficient,
3532 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3533 // Instead, gather up all the operands and make a single getAddExpr call.
3534 // LLVM IR canonical form means we need only traverse the left operands.
3535 SmallVector<const SCEV *, 4> AddOps;
3536 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003537 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3538 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3539 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3540 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003541 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003542 const SCEV *Op1 = getSCEV(U->getOperand(1));
3543 if (Opcode == Instruction::Sub)
3544 AddOps.push_back(getNegativeSCEV(Op1));
3545 else
3546 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003547 }
3548 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trick54337672011-09-10 01:09:50 +00003549 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3550 OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(V);
3551 if (OBO->hasNoSignedWrap())
3552 setFlags(Flags, SCEV::FlagNSW);
3553 if (OBO->hasNoUnsignedWrap())
3554 setFlags(Flags, SCEV::FlagNUW);
3555 return getAddExpr(AddOps, Flags);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003556 }
3557 case Instruction::Mul: {
3558 // See the Add code above.
3559 SmallVector<const SCEV *, 4> MulOps;
3560 MulOps.push_back(getSCEV(U->getOperand(1)));
3561 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003562 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003563 Op = U->getOperand(0)) {
3564 U = cast<Operator>(Op);
3565 MulOps.push_back(getSCEV(U->getOperand(1)));
3566 }
3567 MulOps.push_back(getSCEV(U->getOperand(0)));
3568 return getMulExpr(MulOps);
3569 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003570 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003571 return getUDivExpr(getSCEV(U->getOperand(0)),
3572 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003573 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003574 return getMinusSCEV(getSCEV(U->getOperand(0)),
3575 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003576 case Instruction::And:
3577 // For an expression like x&255 that merely masks off the high bits,
3578 // use zext(trunc(x)) as the SCEV expression.
3579 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003580 if (CI->isNullValue())
3581 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003582 if (CI->isAllOnesValue())
3583 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003584 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003585
3586 // Instcombine's ShrinkDemandedConstant may strip bits out of
3587 // constants, obscuring what would otherwise be a low-bits mask.
3588 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3589 // knew about to reconstruct a low-bits mask value.
3590 unsigned LZ = A.countLeadingZeros();
3591 unsigned BitWidth = A.getBitWidth();
3592 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3593 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3594 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3595
3596 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3597
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003598 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003599 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003600 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003601 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003602 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003603 }
3604 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003605
Dan Gohman6c459a22008-06-22 19:56:46 +00003606 case Instruction::Or:
3607 // If the RHS of the Or is a constant, we may have something like:
3608 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3609 // optimizations will transparently handle this case.
3610 //
3611 // In order for this transformation to be safe, the LHS must be of the
3612 // form X*(2^n) and the Or constant must be less than 2^n.
3613 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003614 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003615 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003616 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003617 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3618 // Build a plain add SCEV.
3619 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3620 // If the LHS of the add was an addrec and it has no-wrap flags,
3621 // transfer the no-wrap flags, since an or won't introduce a wrap.
3622 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3623 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003624 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3625 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003626 }
3627 return S;
3628 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003629 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003630 break;
3631 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003632 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003633 // If the RHS of the xor is a signbit, then this is just an add.
3634 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003635 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003636 return getAddExpr(getSCEV(U->getOperand(0)),
3637 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003638
3639 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003640 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003641 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003642
3643 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3644 // This is a variant of the check for xor with -1, and it handles
3645 // the case where instcombine has trimmed non-demanded bits out
3646 // of an xor with -1.
3647 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3648 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3649 if (BO->getOpcode() == Instruction::And &&
3650 LCI->getValue() == CI->getValue())
3651 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003652 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003653 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003654 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003655 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003656 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3657
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003658 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003659 // mask off the high bits. Complement the operand and
3660 // re-apply the zext.
3661 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3662 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3663
3664 // If C is a single bit, it may be in the sign-bit position
3665 // before the zero-extend. In this case, represent the xor
3666 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003667 APInt Trunc = CI->getValue().trunc(Z0TySize);
3668 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003669 Trunc.isSignBit())
3670 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3671 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003672 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003673 }
3674 break;
3675
3676 case Instruction::Shl:
3677 // Turn shift left of a constant amount into a multiply.
3678 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003679 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003680
3681 // If the shift count is not less than the bitwidth, the result of
3682 // the shift is undefined. Don't try to analyze it, because the
3683 // resolution chosen here may differ from the resolution chosen in
3684 // other parts of the compiler.
3685 if (SA->getValue().uge(BitWidth))
3686 break;
3687
Owen Andersoneed707b2009-07-24 23:12:02 +00003688 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003689 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003690 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003691 }
3692 break;
3693
Nick Lewycky01eaf802008-07-07 06:15:49 +00003694 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003695 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003696 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003697 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003698
3699 // If the shift count is not less than the bitwidth, the result of
3700 // the shift is undefined. Don't try to analyze it, because the
3701 // resolution chosen here may differ from the resolution chosen in
3702 // other parts of the compiler.
3703 if (SA->getValue().uge(BitWidth))
3704 break;
3705
Owen Andersoneed707b2009-07-24 23:12:02 +00003706 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003707 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003708 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003709 }
3710 break;
3711
Dan Gohman4ee29af2009-04-21 02:26:00 +00003712 case Instruction::AShr:
3713 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3714 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003715 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003716 if (L->getOpcode() == Instruction::Shl &&
3717 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003718 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3719
3720 // If the shift count is not less than the bitwidth, the result of
3721 // the shift is undefined. Don't try to analyze it, because the
3722 // resolution chosen here may differ from the resolution chosen in
3723 // other parts of the compiler.
3724 if (CI->getValue().uge(BitWidth))
3725 break;
3726
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003727 uint64_t Amt = BitWidth - CI->getZExtValue();
3728 if (Amt == BitWidth)
3729 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003730 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003731 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003732 IntegerType::get(getContext(),
3733 Amt)),
3734 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003735 }
3736 break;
3737
Dan Gohman6c459a22008-06-22 19:56:46 +00003738 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003739 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003740
3741 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003742 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003743
3744 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003745 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003746
3747 case Instruction::BitCast:
3748 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003749 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003750 return getSCEV(U->getOperand(0));
3751 break;
3752
Dan Gohman4f8eea82010-02-01 18:27:38 +00003753 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3754 // lead to pointer expressions which cannot safely be expanded to GEPs,
3755 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3756 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003757
Dan Gohman26466c02009-05-08 20:26:55 +00003758 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003759 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003760
Dan Gohman6c459a22008-06-22 19:56:46 +00003761 case Instruction::PHI:
3762 return createNodeForPHI(cast<PHINode>(U));
3763
3764 case Instruction::Select:
3765 // This could be a smax or umax that was lowered earlier.
3766 // Try to recover it.
3767 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3768 Value *LHS = ICI->getOperand(0);
3769 Value *RHS = ICI->getOperand(1);
3770 switch (ICI->getPredicate()) {
3771 case ICmpInst::ICMP_SLT:
3772 case ICmpInst::ICMP_SLE:
3773 std::swap(LHS, RHS);
3774 // fall through
3775 case ICmpInst::ICMP_SGT:
3776 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003777 // a >s b ? a+x : b+x -> smax(a, b)+x
3778 // a >s b ? b+x : a+x -> smin(a, b)+x
3779 if (LHS->getType() == U->getType()) {
3780 const SCEV *LS = getSCEV(LHS);
3781 const SCEV *RS = getSCEV(RHS);
3782 const SCEV *LA = getSCEV(U->getOperand(1));
3783 const SCEV *RA = getSCEV(U->getOperand(2));
3784 const SCEV *LDiff = getMinusSCEV(LA, LS);
3785 const SCEV *RDiff = getMinusSCEV(RA, RS);
3786 if (LDiff == RDiff)
3787 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3788 LDiff = getMinusSCEV(LA, RS);
3789 RDiff = getMinusSCEV(RA, LS);
3790 if (LDiff == RDiff)
3791 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3792 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003793 break;
3794 case ICmpInst::ICMP_ULT:
3795 case ICmpInst::ICMP_ULE:
3796 std::swap(LHS, RHS);
3797 // fall through
3798 case ICmpInst::ICMP_UGT:
3799 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003800 // a >u b ? a+x : b+x -> umax(a, b)+x
3801 // a >u b ? b+x : a+x -> umin(a, b)+x
3802 if (LHS->getType() == U->getType()) {
3803 const SCEV *LS = getSCEV(LHS);
3804 const SCEV *RS = getSCEV(RHS);
3805 const SCEV *LA = getSCEV(U->getOperand(1));
3806 const SCEV *RA = getSCEV(U->getOperand(2));
3807 const SCEV *LDiff = getMinusSCEV(LA, LS);
3808 const SCEV *RDiff = getMinusSCEV(RA, RS);
3809 if (LDiff == RDiff)
3810 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3811 LDiff = getMinusSCEV(LA, RS);
3812 RDiff = getMinusSCEV(RA, LS);
3813 if (LDiff == RDiff)
3814 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3815 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003816 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003817 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003818 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3819 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003820 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003821 cast<ConstantInt>(RHS)->isZero()) {
3822 const SCEV *One = getConstant(LHS->getType(), 1);
3823 const SCEV *LS = getSCEV(LHS);
3824 const SCEV *LA = getSCEV(U->getOperand(1));
3825 const SCEV *RA = getSCEV(U->getOperand(2));
3826 const SCEV *LDiff = getMinusSCEV(LA, LS);
3827 const SCEV *RDiff = getMinusSCEV(RA, One);
3828 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003829 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003830 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003831 break;
3832 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003833 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3834 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003835 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003836 cast<ConstantInt>(RHS)->isZero()) {
3837 const SCEV *One = getConstant(LHS->getType(), 1);
3838 const SCEV *LS = getSCEV(LHS);
3839 const SCEV *LA = getSCEV(U->getOperand(1));
3840 const SCEV *RA = getSCEV(U->getOperand(2));
3841 const SCEV *LDiff = getMinusSCEV(LA, One);
3842 const SCEV *RDiff = getMinusSCEV(RA, LS);
3843 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003844 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003845 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003846 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003847 default:
3848 break;
3849 }
3850 }
3851
3852 default: // We cannot analyze this expression.
3853 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003854 }
3855
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003856 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003857}
3858
3859
3860
3861//===----------------------------------------------------------------------===//
3862// Iteration Count Computation Code
3863//
3864
Andrew Trickb1831c62011-08-11 23:36:16 +00003865/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3866/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
3867/// or not constant. Will also return 0 if the maximum trip count is very large
3868/// (>= 2^32)
3869unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
3870 BasicBlock *ExitBlock) {
3871 const SCEVConstant *ExitCount =
3872 dyn_cast<SCEVConstant>(getExitCount(L, ExitBlock));
3873 if (!ExitCount)
3874 return 0;
3875
3876 ConstantInt *ExitConst = ExitCount->getValue();
3877
3878 // Guard against huge trip counts.
3879 if (ExitConst->getValue().getActiveBits() > 32)
3880 return 0;
3881
3882 // In case of integer overflow, this returns 0, which is correct.
3883 return ((unsigned)ExitConst->getZExtValue()) + 1;
3884}
3885
3886/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3887/// trip count of this loop as a normal unsigned value, if possible. This
3888/// means that the actual trip count is always a multiple of the returned
3889/// value (don't forget the trip count could very well be zero as well!).
3890///
3891/// Returns 1 if the trip count is unknown or not guaranteed to be the
3892/// multiple of a constant (which is also the case if the trip count is simply
3893/// constant, use getSmallConstantTripCount for that case), Will also return 1
3894/// if the trip count is very large (>= 2^32).
3895unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
3896 BasicBlock *ExitBlock) {
3897 const SCEV *ExitCount = getExitCount(L, ExitBlock);
3898 if (ExitCount == getCouldNotCompute())
3899 return 1;
3900
3901 // Get the trip count from the BE count by adding 1.
3902 const SCEV *TCMul = getAddExpr(ExitCount,
3903 getConstant(ExitCount->getType(), 1));
3904 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3905 // to factor simple cases.
3906 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3907 TCMul = Mul->getOperand(0);
3908
3909 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3910 if (!MulC)
3911 return 1;
3912
3913 ConstantInt *Result = MulC->getValue();
3914
3915 // Guard against huge trip counts.
3916 if (!Result || Result->getValue().getActiveBits() > 32)
3917 return 1;
3918
3919 return (unsigned)Result->getZExtValue();
3920}
3921
Andrew Trick5116ff62011-07-26 17:19:55 +00003922// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickfcb43562011-08-02 04:23:35 +00003923// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00003924// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00003925const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
3926 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00003927}
3928
Dan Gohman46bdfb02009-02-24 18:55:53 +00003929/// getBackedgeTakenCount - If the specified loop has a predictable
3930/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3931/// object. The backedge-taken count is the number of times the loop header
3932/// will be branched to from within the loop. This is one less than the
3933/// trip count of the loop, since it doesn't count the first iteration,
3934/// when the header is branched to from outside the loop.
3935///
3936/// Note that it is not valid to call this method on a loop without a
3937/// loop-invariant backedge-taken count (see
3938/// hasLoopInvariantBackedgeTakenCount).
3939///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003940const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00003941 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00003942}
3943
3944/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3945/// return the least SCEV value that is known never to be less than the
3946/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003947const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00003948 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00003949}
3950
Dan Gohman59ae6b92009-07-08 19:23:34 +00003951/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3952/// onto the given Worklist.
3953static void
3954PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3955 BasicBlock *Header = L->getHeader();
3956
3957 // Push all Loop-header PHIs onto the Worklist stack.
3958 for (BasicBlock::iterator I = Header->begin();
3959 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3960 Worklist.push_back(PN);
3961}
3962
Dan Gohmana1af7572009-04-30 20:47:05 +00003963const ScalarEvolution::BackedgeTakenInfo &
3964ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00003965 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003966 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003967 // update the value. The temporary CouldNotCompute value tells SCEV
3968 // code elsewhere that it shouldn't attempt to request a new
3969 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00003970 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00003971 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00003972 if (!Pair.second)
3973 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00003974
Andrew Trick5116ff62011-07-26 17:19:55 +00003975 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
3976 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
3977 // must be cleared in this scope.
3978 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
3979
3980 if (Result.getExact(this) != getCouldNotCompute()) {
3981 assert(isLoopInvariant(Result.getExact(this), L) &&
3982 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00003983 "Computed backedge-taken count isn't loop invariant for loop!");
3984 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00003985 }
3986 else if (Result.getMax(this) == getCouldNotCompute() &&
3987 isa<PHINode>(L->getHeader()->begin())) {
3988 // Only count loops that have phi nodes as not being computable.
3989 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00003990 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003991
Chris Lattnerf1859892011-01-09 02:16:18 +00003992 // Now that we know more about the trip count for this loop, forget any
3993 // existing SCEV values for PHI nodes in this loop since they are only
3994 // conservative estimates made without the benefit of trip count
3995 // information. This is similar to the code in forgetLoop, except that
3996 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00003997 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00003998 SmallVector<Instruction *, 16> Worklist;
3999 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004000
Chris Lattnerf1859892011-01-09 02:16:18 +00004001 SmallPtrSet<Instruction *, 8> Visited;
4002 while (!Worklist.empty()) {
4003 Instruction *I = Worklist.pop_back_val();
4004 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004005
Chris Lattnerf1859892011-01-09 02:16:18 +00004006 ValueExprMapType::iterator It =
4007 ValueExprMap.find(static_cast<Value *>(I));
4008 if (It != ValueExprMap.end()) {
4009 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00004010
Chris Lattnerf1859892011-01-09 02:16:18 +00004011 // SCEVUnknown for a PHI either means that it has an unrecognized
4012 // structure, or it's a PHI that's in the progress of being computed
4013 // by createNodeForPHI. In the former case, additional loop trip
4014 // count information isn't going to change anything. In the later
4015 // case, createNodeForPHI will perform the necessary updates on its
4016 // own when it gets to that point.
4017 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4018 forgetMemoizedResults(Old);
4019 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004020 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004021 if (PHINode *PN = dyn_cast<PHINode>(I))
4022 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004023 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004024
4025 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004026 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004027 }
Dan Gohman308bec32011-04-25 22:48:29 +00004028
4029 // Re-lookup the insert position, since the call to
4030 // ComputeBackedgeTakenCount above could result in a
4031 // recusive call to getBackedgeTakenInfo (on a different
4032 // loop), which would invalidate the iterator computed
4033 // earlier.
4034 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004035}
4036
Dan Gohman4c7279a2009-10-31 15:04:55 +00004037/// forgetLoop - This method should be called by the client when it has
4038/// changed a loop in a way that may effect ScalarEvolution's ability to
4039/// compute a trip count, or if the loop is deleted.
4040void ScalarEvolution::forgetLoop(const Loop *L) {
4041 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004042 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4043 BackedgeTakenCounts.find(L);
4044 if (BTCPos != BackedgeTakenCounts.end()) {
4045 BTCPos->second.clear();
4046 BackedgeTakenCounts.erase(BTCPos);
4047 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004048
Dan Gohman4c7279a2009-10-31 15:04:55 +00004049 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004050 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004051 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004052
Dan Gohman59ae6b92009-07-08 19:23:34 +00004053 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004054 while (!Worklist.empty()) {
4055 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004056 if (!Visited.insert(I)) continue;
4057
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004058 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4059 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004060 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004061 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004062 if (PHINode *PN = dyn_cast<PHINode>(I))
4063 ConstantEvolutionLoopExitValue.erase(PN);
4064 }
4065
4066 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004067 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004068
4069 // Forget all contained loops too, to avoid dangling entries in the
4070 // ValuesAtScopes map.
4071 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4072 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004073}
4074
Eric Christophere6cbfa62010-07-29 01:25:38 +00004075/// forgetValue - This method should be called by the client when it has
4076/// changed a value in a way that may effect its value, or which may
4077/// disconnect it from a def-use chain linking it to a loop.
4078void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004079 Instruction *I = dyn_cast<Instruction>(V);
4080 if (!I) return;
4081
4082 // Drop information about expressions based on loop-header PHIs.
4083 SmallVector<Instruction *, 16> Worklist;
4084 Worklist.push_back(I);
4085
4086 SmallPtrSet<Instruction *, 8> Visited;
4087 while (!Worklist.empty()) {
4088 I = Worklist.pop_back_val();
4089 if (!Visited.insert(I)) continue;
4090
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004091 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4092 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004093 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004094 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004095 if (PHINode *PN = dyn_cast<PHINode>(I))
4096 ConstantEvolutionLoopExitValue.erase(PN);
4097 }
4098
4099 PushDefUseChildren(I, Worklist);
4100 }
4101}
4102
Andrew Trick5116ff62011-07-26 17:19:55 +00004103/// getExact - Get the exact loop backedge taken count considering all loop
4104/// exits. If all exits are computable, this is the minimum computed count.
4105const SCEV *
4106ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4107 // If any exits were not computable, the loop is not computable.
4108 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4109
4110 // We need at least one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004111 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004112 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4113
4114 const SCEV *BECount = 0;
4115 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4116 ENT != 0; ENT = ENT->getNextExit()) {
4117
4118 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4119
4120 if (!BECount)
4121 BECount = ENT->ExactNotTaken;
4122 else
4123 BECount = SE->getUMinFromMismatchedTypes(BECount, ENT->ExactNotTaken);
4124 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004125 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004126 return BECount;
4127}
4128
4129/// getExact - Get the exact not taken count for this loop exit.
4130const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004131ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004132 ScalarEvolution *SE) const {
4133 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4134 ENT != 0; ENT = ENT->getNextExit()) {
4135
Andrew Trickfcb43562011-08-02 04:23:35 +00004136 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004137 return ENT->ExactNotTaken;
4138 }
4139 return SE->getCouldNotCompute();
4140}
4141
4142/// getMax - Get the max backedge taken count for the loop.
4143const SCEV *
4144ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4145 return Max ? Max : SE->getCouldNotCompute();
4146}
4147
4148/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4149/// computable exit into a persistent ExitNotTakenInfo array.
4150ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4151 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4152 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4153
4154 if (!Complete)
4155 ExitNotTaken.setIncomplete();
4156
4157 unsigned NumExits = ExitCounts.size();
4158 if (NumExits == 0) return;
4159
Andrew Trickfcb43562011-08-02 04:23:35 +00004160 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004161 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4162 if (NumExits == 1) return;
4163
4164 // Handle the rare case of multiple computable exits.
4165 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4166
4167 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4168 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4169 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004170 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004171 ENT->ExactNotTaken = ExitCounts[i].second;
4172 }
4173}
4174
4175/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4176void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004177 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004178 ExitNotTaken.ExactNotTaken = 0;
4179 delete[] ExitNotTaken.getNextExit();
4180}
4181
Dan Gohman46bdfb02009-02-24 18:55:53 +00004182/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4183/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004184ScalarEvolution::BackedgeTakenInfo
4185ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004186 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004187 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004188
Dan Gohmana334aa72009-06-22 00:31:57 +00004189 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004190 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004191 bool CouldComputeBECount = true;
4192 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004193 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004194 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4195 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004196 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004197 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004198 CouldComputeBECount = false;
4199 else
4200 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4201
Dan Gohman1c343752009-06-27 21:21:31 +00004202 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004203 MaxBECount = EL.Max;
4204 else if (EL.Max != getCouldNotCompute())
4205 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, EL.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004206 }
4207
Andrew Trick5116ff62011-07-26 17:19:55 +00004208 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004209}
4210
Andrew Trick5116ff62011-07-26 17:19:55 +00004211/// ComputeExitLimit - Compute the number of times the backedge of the specified
4212/// loop will execute if it exits via the specified block.
4213ScalarEvolution::ExitLimit
4214ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004215
4216 // Okay, we've chosen an exiting block. See what condition causes us to
4217 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004218 //
4219 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004220 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004221 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004222 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004223
Chris Lattner8b0e3602007-01-07 02:24:26 +00004224 // At this point, we know we have a conditional branch that determines whether
4225 // the loop is exited. However, we don't know if the branch is executed each
4226 // time through the loop. If not, then the execution count of the branch will
4227 // not be equal to the trip count of the loop.
4228 //
4229 // Currently we check for this by checking to see if the Exit branch goes to
4230 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004231 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004232 // loop header. This is common for un-rotated loops.
4233 //
4234 // If both of those tests fail, walk up the unique predecessor chain to the
4235 // header, stopping if there is an edge that doesn't exit the loop. If the
4236 // header is reached, the execution count of the branch will be equal to the
4237 // trip count of the loop.
4238 //
4239 // More extensive analysis could be done to handle more cases here.
4240 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004241 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004242 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004243 ExitBr->getParent() != L->getHeader()) {
4244 // The simple checks failed, try climbing the unique predecessor chain
4245 // up to the header.
4246 bool Ok = false;
4247 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4248 BasicBlock *Pred = BB->getUniquePredecessor();
4249 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004250 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004251 TerminatorInst *PredTerm = Pred->getTerminator();
4252 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4253 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4254 if (PredSucc == BB)
4255 continue;
4256 // If the predecessor has a successor that isn't BB and isn't
4257 // outside the loop, assume the worst.
4258 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004259 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004260 }
4261 if (Pred == L->getHeader()) {
4262 Ok = true;
4263 break;
4264 }
4265 BB = Pred;
4266 }
4267 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004268 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004269 }
4270
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004271 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004272 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4273 ExitBr->getSuccessor(0),
4274 ExitBr->getSuccessor(1));
Dan Gohmana334aa72009-06-22 00:31:57 +00004275}
4276
Andrew Trick5116ff62011-07-26 17:19:55 +00004277/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004278/// backedge of the specified loop will execute if its exit condition
4279/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004280ScalarEvolution::ExitLimit
4281ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4282 Value *ExitCond,
4283 BasicBlock *TBB,
4284 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004285 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004286 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4287 if (BO->getOpcode() == Instruction::And) {
4288 // Recurse on the operands of the and.
Andrew Trick5116ff62011-07-26 17:19:55 +00004289 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4290 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004291 const SCEV *BECount = getCouldNotCompute();
4292 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004293 if (L->contains(TBB)) {
4294 // Both conditions must be true for the loop to continue executing.
4295 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004296 if (EL0.Exact == getCouldNotCompute() ||
4297 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004298 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004299 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004300 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4301 if (EL0.Max == getCouldNotCompute())
4302 MaxBECount = EL1.Max;
4303 else if (EL1.Max == getCouldNotCompute())
4304 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004305 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004306 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004307 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004308 // Both conditions must be true at the same time for the loop to exit.
4309 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004310 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004311 if (EL0.Max == EL1.Max)
4312 MaxBECount = EL0.Max;
4313 if (EL0.Exact == EL1.Exact)
4314 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004315 }
4316
Andrew Trick5116ff62011-07-26 17:19:55 +00004317 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004318 }
4319 if (BO->getOpcode() == Instruction::Or) {
4320 // Recurse on the operands of the or.
Andrew Trick5116ff62011-07-26 17:19:55 +00004321 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4322 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004323 const SCEV *BECount = getCouldNotCompute();
4324 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004325 if (L->contains(FBB)) {
4326 // Both conditions must be false for the loop to continue executing.
4327 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004328 if (EL0.Exact == getCouldNotCompute() ||
4329 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004330 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004331 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004332 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4333 if (EL0.Max == getCouldNotCompute())
4334 MaxBECount = EL1.Max;
4335 else if (EL1.Max == getCouldNotCompute())
4336 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004337 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004338 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004339 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004340 // Both conditions must be false at the same time for the loop to exit.
4341 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004342 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004343 if (EL0.Max == EL1.Max)
4344 MaxBECount = EL0.Max;
4345 if (EL0.Exact == EL1.Exact)
4346 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004347 }
4348
Andrew Trick5116ff62011-07-26 17:19:55 +00004349 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004350 }
4351 }
4352
4353 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004354 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004355 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5116ff62011-07-26 17:19:55 +00004356 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004357
Dan Gohman00cb5b72010-02-19 18:12:07 +00004358 // Check for a constant condition. These are normally stripped out by
4359 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4360 // preserve the CFG and is temporarily leaving constant conditions
4361 // in place.
4362 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4363 if (L->contains(FBB) == !CI->getZExtValue())
4364 // The backedge is always taken.
4365 return getCouldNotCompute();
4366 else
4367 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004368 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004369 }
4370
Eli Friedman361e54d2009-05-09 12:32:42 +00004371 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004372 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004373}
4374
Andrew Trick5116ff62011-07-26 17:19:55 +00004375/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004376/// backedge of the specified loop will execute if its exit condition
4377/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004378ScalarEvolution::ExitLimit
4379ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4380 ICmpInst *ExitCond,
4381 BasicBlock *TBB,
4382 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004383
Reid Spencere4d87aa2006-12-23 06:05:41 +00004384 // If the condition was exit on true, convert the condition to exit on false
4385 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004386 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004387 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004388 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004389 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004390
4391 // Handle common loops like: for (X = "string"; *X; ++X)
4392 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4393 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004394 ExitLimit ItCnt =
4395 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004396 if (ItCnt.hasAnyInfo())
4397 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004398 }
4399
Dan Gohman0bba49c2009-07-07 17:06:11 +00004400 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4401 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004402
4403 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004404 LHS = getSCEVAtScope(LHS, L);
4405 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004406
Dan Gohman64a845e2009-06-24 04:48:43 +00004407 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004408 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004409 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004410 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004411 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004412 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004413 }
4414
Dan Gohman03557dc2010-05-03 16:35:17 +00004415 // Simplify the operands before analyzing them.
4416 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4417
Chris Lattner53e677a2004-04-02 20:23:17 +00004418 // If we have a comparison of a chrec against a constant, try to use value
4419 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004420 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4421 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004422 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004423 // Form the constant range.
4424 ConstantRange CompRange(
4425 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004426
Dan Gohman0bba49c2009-07-07 17:06:11 +00004427 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004428 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004429 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004430
Chris Lattner53e677a2004-04-02 20:23:17 +00004431 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004432 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004433 // Convert to: while (X-Y != 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004434 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4435 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004436 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004437 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004438 case ICmpInst::ICMP_EQ: { // while (X == Y)
4439 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004440 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4441 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004442 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004443 }
4444 case ICmpInst::ICMP_SLT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004445 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4446 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004447 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004448 }
4449 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004450 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004451 getNotSCEV(RHS), L, true);
Andrew Trick5116ff62011-07-26 17:19:55 +00004452 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004453 break;
4454 }
4455 case ICmpInst::ICMP_ULT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004456 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4457 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004458 break;
4459 }
4460 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004461 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004462 getNotSCEV(RHS), L, false);
Andrew Trick5116ff62011-07-26 17:19:55 +00004463 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004464 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004465 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004466 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004467#if 0
David Greene25e0e872009-12-23 22:18:14 +00004468 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004469 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004470 dbgs() << "[unsigned] ";
4471 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004472 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004473 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004474#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004475 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004476 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004477 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004478}
4479
Chris Lattner673e02b2004-10-12 01:49:27 +00004480static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004481EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4482 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004483 const SCEV *InVal = SE.getConstant(C);
4484 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004485 assert(isa<SCEVConstant>(Val) &&
4486 "Evaluation of SCEV at constant didn't fold correctly?");
4487 return cast<SCEVConstant>(Val)->getValue();
4488}
4489
4490/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4491/// and a GEP expression (missing the pointer index) indexing into it, return
4492/// the addressed element of the initializer or null if the index expression is
4493/// invalid.
4494static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004495GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004496 const std::vector<ConstantInt*> &Indices) {
4497 Constant *Init = GV->getInitializer();
4498 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004499 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004500 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4501 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4502 Init = cast<Constant>(CS->getOperand(Idx));
4503 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4504 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4505 Init = cast<Constant>(CA->getOperand(Idx));
4506 } else if (isa<ConstantAggregateZero>(Init)) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004507 if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004508 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004509 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004510 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004511 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004512 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004513 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004514 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004515 }
4516 return 0;
4517 } else {
4518 return 0; // Unknown initializer type
4519 }
4520 }
4521 return Init;
4522}
4523
Andrew Trick5116ff62011-07-26 17:19:55 +00004524/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004525/// 'icmp op load X, cst', try to see if we can compute the backedge
4526/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004527ScalarEvolution::ExitLimit
4528ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4529 LoadInst *LI,
4530 Constant *RHS,
4531 const Loop *L,
4532 ICmpInst::Predicate predicate) {
4533
Dan Gohman1c343752009-06-27 21:21:31 +00004534 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004535
4536 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004537 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004538 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004539 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004540
4541 // Make sure that it is really a constant global we are gepping, with an
4542 // initializer, and make sure the first IDX is really 0.
4543 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004544 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004545 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4546 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004547 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004548
4549 // Okay, we allow one non-constant index into the GEP instruction.
4550 Value *VarIdx = 0;
4551 std::vector<ConstantInt*> Indexes;
4552 unsigned VarIdxNum = 0;
4553 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4554 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4555 Indexes.push_back(CI);
4556 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004557 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004558 VarIdx = GEP->getOperand(i);
4559 VarIdxNum = i-2;
4560 Indexes.push_back(0);
4561 }
4562
4563 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4564 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004565 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004566 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004567
4568 // We can only recognize very limited forms of loop index expressions, in
4569 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004570 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004571 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004572 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4573 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004574 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004575
4576 unsigned MaxSteps = MaxBruteForceIterations;
4577 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004578 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004579 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004580 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004581
4582 // Form the GEP offset.
4583 Indexes[VarIdxNum] = Val;
4584
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004585 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004586 if (Result == 0) break; // Cannot compute!
4587
4588 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004589 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004590 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004591 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004592#if 0
David Greene25e0e872009-12-23 22:18:14 +00004593 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004594 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4595 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004596#endif
4597 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004598 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004599 }
4600 }
Dan Gohman1c343752009-06-27 21:21:31 +00004601 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004602}
4603
4604
Chris Lattner3221ad02004-04-17 22:58:41 +00004605/// CanConstantFold - Return true if we can constant fold an instruction of the
4606/// specified type, assuming that all operands were constants.
4607static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004608 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004609 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4610 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004611
Chris Lattner3221ad02004-04-17 22:58:41 +00004612 if (const CallInst *CI = dyn_cast<CallInst>(I))
4613 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004614 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004615 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004616}
4617
Chris Lattner3221ad02004-04-17 22:58:41 +00004618/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4619/// in the loop that V is derived from. We allow arbitrary operations along the
4620/// way, but the operands of an operation must either be constants or a value
4621/// derived from a constant PHI. If this expression does not fit with these
4622/// constraints, return null.
4623static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4624 // If this is not an instruction, or if this is an instruction outside of the
4625 // loop, it can't be derived from a loop PHI.
4626 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004627 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004628
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004629 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004630 if (L->getHeader() == I->getParent())
4631 return PN;
4632 else
4633 // We don't currently keep track of the control flow needed to evaluate
4634 // PHIs, so we cannot handle PHIs inside of loops.
4635 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004636 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004637
4638 // If we won't be able to constant fold this expression even if the operands
4639 // are constants, return early.
4640 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004641
Chris Lattner3221ad02004-04-17 22:58:41 +00004642 // Otherwise, we can evaluate this instruction if all of its operands are
4643 // constant or derived from a PHI node themselves.
4644 PHINode *PHI = 0;
4645 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004646 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004647 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4648 if (P == 0) return 0; // Not evolving from PHI
4649 if (PHI == 0)
4650 PHI = P;
4651 else if (PHI != P)
4652 return 0; // Evolving from multiple different PHIs.
4653 }
4654
4655 // This is a expression evolving from a constant PHI!
4656 return PHI;
4657}
4658
4659/// EvaluateExpression - Given an expression that passes the
4660/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4661/// in the loop has the value PHIVal. If we can't fold this expression for some
4662/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004663static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4664 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004665 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004666 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004667 Instruction *I = cast<Instruction>(V);
4668
Dan Gohman9d4588f2010-06-22 13:15:46 +00004669 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004670
4671 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004672 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004673 if (Operands[i] == 0) return 0;
4674 }
4675
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004676 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004677 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004678 Operands[1], TD);
Jay Foad1d2f5692011-07-19 13:32:40 +00004679 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004680}
4681
4682/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4683/// in the header of its containing loop, we know the loop executes a
4684/// constant number of times, and the PHI node is just a recurrence
4685/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004686Constant *
4687ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004688 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004689 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004690 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004691 ConstantEvolutionLoopExitValue.find(PN);
4692 if (I != ConstantEvolutionLoopExitValue.end())
4693 return I->second;
4694
Dan Gohmane0567812010-04-08 23:03:40 +00004695 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004696 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4697
4698 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4699
4700 // Since the loop is canonicalized, the PHI node must have two entries. One
4701 // entry must be a constant (coming in from outside of the loop), and the
4702 // second must be derived from the same PHI.
4703 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4704 Constant *StartCST =
4705 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4706 if (StartCST == 0)
4707 return RetVal = 0; // Must be a constant.
4708
4709 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004710 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4711 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004712 return RetVal = 0; // Not derived from same PHI.
4713
4714 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004715 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004716 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004717
Dan Gohman46bdfb02009-02-24 18:55:53 +00004718 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004719 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004720 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4721 if (IterationNum == NumIterations)
4722 return RetVal = PHIVal; // Got exit value!
4723
4724 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004725 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004726 if (NextPHI == PHIVal)
4727 return RetVal = NextPHI; // Stopped evolving!
4728 if (NextPHI == 0)
4729 return 0; // Couldn't evaluate!
4730 PHIVal = NextPHI;
4731 }
4732}
4733
Andrew Trick5116ff62011-07-26 17:19:55 +00004734/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004735/// constant number of times (the condition evolves only from constants),
4736/// try to evaluate a few iterations of the loop until we get the exit
4737/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004738/// evaluate the trip count of the loop, return getCouldNotCompute().
Andrew Trick5116ff62011-07-26 17:19:55 +00004739const SCEV * ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4740 Value *Cond,
4741 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004742 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004743 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004744
Dan Gohmanb92654d2010-06-19 14:17:24 +00004745 // If the loop is canonicalized, the PHI will have exactly two entries.
4746 // That's the only form we support here.
4747 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4748
4749 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004750 // second must be derived from the same PHI.
4751 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4752 Constant *StartCST =
4753 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004754 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004755
4756 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004757 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4758 !isa<Constant>(BEValue))
4759 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004760
4761 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4762 // the loop symbolically to determine when the condition gets a value of
4763 // "ExitWhen".
4764 unsigned IterationNum = 0;
4765 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4766 for (Constant *PHIVal = StartCST;
4767 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004768 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004769 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004770
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004771 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004772 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004773
Reid Spencere8019bb2007-03-01 07:25:48 +00004774 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004775 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004776 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004777 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004778
Chris Lattner3221ad02004-04-17 22:58:41 +00004779 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004780 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004781 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004782 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004783 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004784 }
4785
4786 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004787 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004788}
4789
Dan Gohmane7125f42009-09-03 15:00:26 +00004790/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004791/// at the specified scope in the program. The L value specifies a loop
4792/// nest to evaluate the expression at, where null is the top-level or a
4793/// specified loop is immediately inside of the loop.
4794///
4795/// This method can be used to compute the exit value for a variable defined
4796/// in a loop by querying what the value will hold in the parent loop.
4797///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004798/// In the case that a relevant loop exit value cannot be computed, the
4799/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004800const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004801 // Check to see if we've folded this expression at this loop before.
4802 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4803 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4804 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4805 if (!Pair.second)
4806 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004807
Dan Gohman42214892009-08-31 21:15:23 +00004808 // Otherwise compute it.
4809 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004810 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004811 return C;
4812}
4813
4814const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004815 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004816
Nick Lewycky3e630762008-02-20 06:48:22 +00004817 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004818 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004819 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004820 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004821 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004822 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4823 if (PHINode *PN = dyn_cast<PHINode>(I))
4824 if (PN->getParent() == LI->getHeader()) {
4825 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004826 // to see if the loop that contains it has a known backedge-taken
4827 // count. If so, we may be able to force computation of the exit
4828 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004829 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004830 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004831 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004832 // Okay, we know how many times the containing loop executes. If
4833 // this is a constant evolving PHI node, get the final value at
4834 // the specified iteration number.
4835 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004836 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004837 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004838 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004839 }
4840 }
4841
Reid Spencer09906f32006-12-04 21:33:23 +00004842 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004843 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004844 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004845 // result. This is particularly useful for computing loop exit values.
4846 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004847 SmallVector<Constant *, 4> Operands;
4848 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004849 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4850 Value *Op = I->getOperand(i);
4851 if (Constant *C = dyn_cast<Constant>(Op)) {
4852 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004853 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004854 }
Dan Gohman11046452010-06-29 23:43:06 +00004855
4856 // If any of the operands is non-constant and if they are
4857 // non-integer and non-pointer, don't even try to analyze them
4858 // with scev techniques.
4859 if (!isSCEVable(Op->getType()))
4860 return V;
4861
4862 const SCEV *OrigV = getSCEV(Op);
4863 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4864 MadeImprovement |= OrigV != OpV;
4865
4866 Constant *C = 0;
4867 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4868 C = SC->getValue();
4869 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4870 C = dyn_cast<Constant>(SU->getValue());
4871 if (!C) return V;
4872 if (C->getType() != Op->getType())
4873 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4874 Op->getType(),
4875 false),
4876 C, Op->getType());
4877 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004878 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004879
Dan Gohman11046452010-06-29 23:43:06 +00004880 // Check to see if getSCEVAtScope actually made an improvement.
4881 if (MadeImprovement) {
4882 Constant *C = 0;
4883 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4884 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4885 Operands[0], Operands[1], TD);
4886 else
4887 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Jay Foad1d2f5692011-07-19 13:32:40 +00004888 Operands, TD);
Dan Gohman11046452010-06-29 23:43:06 +00004889 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004890 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004891 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004892 }
4893 }
4894
4895 // This is some other type of SCEVUnknown, just return it.
4896 return V;
4897 }
4898
Dan Gohman622ed672009-05-04 22:02:23 +00004899 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004900 // Avoid performing the look-up in the common case where the specified
4901 // expression has no loop-variant portions.
4902 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004903 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004904 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004905 // Okay, at least one of these operands is loop variant but might be
4906 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004907 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4908 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004909 NewOps.push_back(OpAtScope);
4910
4911 for (++i; i != e; ++i) {
4912 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004913 NewOps.push_back(OpAtScope);
4914 }
4915 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004916 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004917 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004918 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004919 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004920 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004921 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004922 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004923 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004924 }
4925 }
4926 // If we got here, all operands are loop invariant.
4927 return Comm;
4928 }
4929
Dan Gohman622ed672009-05-04 22:02:23 +00004930 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004931 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4932 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004933 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4934 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004935 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004936 }
4937
4938 // If this is a loop recurrence for a loop that does not contain L, then we
4939 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004940 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004941 // First, attempt to evaluate each operand.
4942 // Avoid performing the look-up in the common case where the specified
4943 // expression has no loop-variant portions.
4944 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4945 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4946 if (OpAtScope == AddRec->getOperand(i))
4947 continue;
4948
4949 // Okay, at least one of these operands is loop variant but might be
4950 // foldable. Build a new instance of the folded commutative expression.
4951 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4952 AddRec->op_begin()+i);
4953 NewOps.push_back(OpAtScope);
4954 for (++i; i != e; ++i)
4955 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4956
Andrew Trick3f95c882011-04-27 01:21:25 +00004957 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00004958 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00004959 AddRec->getNoWrapFlags(SCEV::FlagNW));
4960 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00004961 // The addrec may be folded to a nonrecurrence, for example, if the
4962 // induction variable is multiplied by zero after constant folding. Go
4963 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00004964 if (!AddRec)
4965 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00004966 break;
4967 }
4968
4969 // If the scope is outside the addrec's loop, evaluate it by using the
4970 // loop exit value of the addrec.
4971 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004972 // To evaluate this recurrence, we need to know how many times the AddRec
4973 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004974 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004975 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004976
Eli Friedmanb42a6262008-08-04 23:49:06 +00004977 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004978 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004979 }
Dan Gohman11046452010-06-29 23:43:06 +00004980
Dan Gohmand594e6f2009-05-24 23:25:42 +00004981 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004982 }
4983
Dan Gohman622ed672009-05-04 22:02:23 +00004984 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004985 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004986 if (Op == Cast->getOperand())
4987 return Cast; // must be loop invariant
4988 return getZeroExtendExpr(Op, Cast->getType());
4989 }
4990
Dan Gohman622ed672009-05-04 22:02:23 +00004991 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004992 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004993 if (Op == Cast->getOperand())
4994 return Cast; // must be loop invariant
4995 return getSignExtendExpr(Op, Cast->getType());
4996 }
4997
Dan Gohman622ed672009-05-04 22:02:23 +00004998 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004999 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005000 if (Op == Cast->getOperand())
5001 return Cast; // must be loop invariant
5002 return getTruncateExpr(Op, Cast->getType());
5003 }
5004
Torok Edwinc23197a2009-07-14 16:55:14 +00005005 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00005006 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00005007}
5008
Dan Gohman66a7e852009-05-08 20:38:54 +00005009/// getSCEVAtScope - This is a convenience function which does
5010/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00005011const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005012 return getSCEVAtScope(getSCEV(V), L);
5013}
5014
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005015/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5016/// following equation:
5017///
5018/// A * X = B (mod N)
5019///
5020/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5021/// A and B isn't important.
5022///
5023/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005024static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005025 ScalarEvolution &SE) {
5026 uint32_t BW = A.getBitWidth();
5027 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5028 assert(A != 0 && "A must be non-zero.");
5029
5030 // 1. D = gcd(A, N)
5031 //
5032 // The gcd of A and N may have only one prime factor: 2. The number of
5033 // trailing zeros in A is its multiplicity
5034 uint32_t Mult2 = A.countTrailingZeros();
5035 // D = 2^Mult2
5036
5037 // 2. Check if B is divisible by D.
5038 //
5039 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5040 // is not less than multiplicity of this prime factor for D.
5041 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005042 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005043
5044 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5045 // modulo (N / D).
5046 //
5047 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5048 // bit width during computations.
5049 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5050 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005051 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005052 APInt I = AD.multiplicativeInverse(Mod);
5053
5054 // 4. Compute the minimum unsigned root of the equation:
5055 // I * (B / D) mod (N / D)
5056 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5057
5058 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5059 // bits.
5060 return SE.getConstant(Result.trunc(BW));
5061}
Chris Lattner53e677a2004-04-02 20:23:17 +00005062
5063/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5064/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5065/// might be the same) or two SCEVCouldNotCompute objects.
5066///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005067static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005068SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005069 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005070 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5071 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5072 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005073
Chris Lattner53e677a2004-04-02 20:23:17 +00005074 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005075 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005076 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005077 return std::make_pair(CNC, CNC);
5078 }
5079
Reid Spencere8019bb2007-03-01 07:25:48 +00005080 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005081 const APInt &L = LC->getValue()->getValue();
5082 const APInt &M = MC->getValue()->getValue();
5083 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005084 APInt Two(BitWidth, 2);
5085 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005086
Dan Gohman64a845e2009-06-24 04:48:43 +00005087 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005088 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005089 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005090 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5091 // The B coefficient is M-N/2
5092 APInt B(M);
5093 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005094
Reid Spencere8019bb2007-03-01 07:25:48 +00005095 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005096 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005097
Reid Spencere8019bb2007-03-01 07:25:48 +00005098 // Compute the B^2-4ac term.
5099 APInt SqrtTerm(B);
5100 SqrtTerm *= B;
5101 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005102
Reid Spencere8019bb2007-03-01 07:25:48 +00005103 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5104 // integer value or else APInt::sqrt() will assert.
5105 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005106
Dan Gohman64a845e2009-06-24 04:48:43 +00005107 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005108 // The divisions must be performed as signed divisions.
5109 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00005110 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005111 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005112 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005113 return std::make_pair(CNC, CNC);
5114 }
5115
Owen Andersone922c022009-07-22 00:24:57 +00005116 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005117
5118 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005119 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005120 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005121 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005122
Dan Gohman64a845e2009-06-24 04:48:43 +00005123 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005124 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00005125 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005126}
5127
5128/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005129/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005130///
5131/// This is only used for loops with a "x != y" exit test. The exit condition is
5132/// now expressed as a single expression, V = x-y. So the exit test is
5133/// effectively V != 0. We know and take advantage of the fact that this
5134/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005135ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005136ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005137 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005138 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005139 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005140 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005141 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005142 }
5143
Dan Gohman35738ac2009-05-04 22:30:44 +00005144 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005145 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005146 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005147
Chris Lattner7975e3e2011-01-09 22:39:48 +00005148 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5149 // the quadratic equation to solve it.
5150 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5151 std::pair<const SCEV *,const SCEV *> Roots =
5152 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005153 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5154 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005155 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005156#if 0
David Greene25e0e872009-12-23 22:18:14 +00005157 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005158 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005159#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005160 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005161 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005162 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5163 R1->getValue(),
5164 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005165 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005166 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005167
Chris Lattner53e677a2004-04-02 20:23:17 +00005168 // We can only use this value if the chrec ends up with an exact zero
5169 // value at this index. When solving for "X*X != 5", for example, we
5170 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005171 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005172 if (Val->isZero())
5173 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005174 }
5175 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005176 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005177 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005178
Chris Lattner7975e3e2011-01-09 22:39:48 +00005179 // Otherwise we can only handle this if it is affine.
5180 if (!AddRec->isAffine())
5181 return getCouldNotCompute();
5182
5183 // If this is an affine expression, the execution count of this branch is
5184 // the minimum unsigned root of the following equation:
5185 //
5186 // Start + Step*N = 0 (mod 2^BW)
5187 //
5188 // equivalent to:
5189 //
5190 // Step*N = -Start (mod 2^BW)
5191 //
5192 // where BW is the common bit width of Start and Step.
5193
5194 // Get the initial value for the loop.
5195 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5196 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5197
5198 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005199 //
5200 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5201 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5202 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5203 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005204 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5205 if (StepC == 0)
5206 return getCouldNotCompute();
5207
Andrew Trick3228cc22011-03-14 16:50:06 +00005208 // For positive steps (counting up until unsigned overflow):
5209 // N = -Start/Step (as unsigned)
5210 // For negative steps (counting down to zero):
5211 // N = Start/-Step
5212 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005213 bool CountDown = StepC->getValue()->getValue().isNegative();
5214 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005215
5216 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005217 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5218 // N = Distance (as unsigned)
Nick Lewyckyb2840fd2011-09-06 02:43:13 +00005219 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue())
5220 return Distance;
Andrew Trick635f7182011-03-09 17:23:39 +00005221
Andrew Trickdcfd4042011-03-14 17:28:02 +00005222 // If the recurrence is known not to wraparound, unsigned divide computes the
5223 // back edge count. We know that the value will either become zero (and thus
5224 // the loop terminates), that the loop will terminate through some other exit
5225 // condition first, or that the loop has undefined behavior. This means
5226 // we can't "miss" the exit value, even with nonunit stride.
5227 //
5228 // FIXME: Prove that loops always exhibits *acceptable* undefined
5229 // behavior. Loops must exhibit defined behavior until a wrapped value is
5230 // actually used. So the trip count computed by udiv could be smaller than the
5231 // number of well-defined iterations.
5232 if (AddRec->getNoWrapFlags(SCEV::FlagNW))
5233 // FIXME: We really want an "isexact" bit for udiv.
5234 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005235
5236 // Then, try to solve the above equation provided that Start is constant.
5237 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5238 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5239 -StartC->getValue()->getValue(),
5240 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005241 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005242}
5243
5244/// HowFarToNonZero - Return the number of times a backedge checking the
5245/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005246/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005247ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005248ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005249 // Loops that look like: while (X == 0) are very strange indeed. We don't
5250 // handle them yet except for the trivial case. This could be expanded in the
5251 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005252
Chris Lattner53e677a2004-04-02 20:23:17 +00005253 // If the value is a constant, check to see if it is known to be non-zero
5254 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005255 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005256 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005257 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005258 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005259 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005260
Chris Lattner53e677a2004-04-02 20:23:17 +00005261 // We could implement others, but I really doubt anyone writes loops like
5262 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005263 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005264}
5265
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005266/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5267/// (which may not be an immediate predecessor) which has exactly one
5268/// successor from which BB is reachable, or null if no such block is
5269/// found.
5270///
Dan Gohman005752b2010-04-15 16:19:08 +00005271std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005272ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005273 // If the block has a unique predecessor, then there is no path from the
5274 // predecessor to the block that does not go through the direct edge
5275 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005276 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005277 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005278
5279 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005280 // If the header has a unique predecessor outside the loop, it must be
5281 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005282 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005283 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005284
Dan Gohman005752b2010-04-15 16:19:08 +00005285 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005286}
5287
Dan Gohman763bad12009-06-20 00:35:32 +00005288/// HasSameValue - SCEV structural equivalence is usually sufficient for
5289/// testing whether two expressions are equal, however for the purposes of
5290/// looking for a condition guarding a loop, it can be useful to be a little
5291/// more general, since a front-end may have replicated the controlling
5292/// expression.
5293///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005294static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005295 // Quick check to see if they are the same SCEV.
5296 if (A == B) return true;
5297
5298 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5299 // two different instructions with the same value. Check for this case.
5300 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5301 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5302 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5303 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005304 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005305 return true;
5306
5307 // Otherwise assume they may have a different value.
5308 return false;
5309}
5310
Dan Gohmane9796502010-04-24 01:28:42 +00005311/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5312/// predicate Pred. Return true iff any changes were made.
5313///
5314bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5315 const SCEV *&LHS, const SCEV *&RHS) {
5316 bool Changed = false;
5317
5318 // Canonicalize a constant to the right side.
5319 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5320 // Check for both operands constant.
5321 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5322 if (ConstantExpr::getICmp(Pred,
5323 LHSC->getValue(),
5324 RHSC->getValue())->isNullValue())
5325 goto trivially_false;
5326 else
5327 goto trivially_true;
5328 }
5329 // Otherwise swap the operands to put the constant on the right.
5330 std::swap(LHS, RHS);
5331 Pred = ICmpInst::getSwappedPredicate(Pred);
5332 Changed = true;
5333 }
5334
5335 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005336 // addrec's loop, put the addrec on the left. Also make a dominance check,
5337 // as both operands could be addrecs loop-invariant in each other's loop.
5338 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5339 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005340 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005341 std::swap(LHS, RHS);
5342 Pred = ICmpInst::getSwappedPredicate(Pred);
5343 Changed = true;
5344 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005345 }
Dan Gohmane9796502010-04-24 01:28:42 +00005346
5347 // If there's a constant operand, canonicalize comparisons with boundary
5348 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5349 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5350 const APInt &RA = RC->getValue()->getValue();
5351 switch (Pred) {
5352 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5353 case ICmpInst::ICMP_EQ:
5354 case ICmpInst::ICMP_NE:
5355 break;
5356 case ICmpInst::ICMP_UGE:
5357 if ((RA - 1).isMinValue()) {
5358 Pred = ICmpInst::ICMP_NE;
5359 RHS = getConstant(RA - 1);
5360 Changed = true;
5361 break;
5362 }
5363 if (RA.isMaxValue()) {
5364 Pred = ICmpInst::ICMP_EQ;
5365 Changed = true;
5366 break;
5367 }
5368 if (RA.isMinValue()) goto trivially_true;
5369
5370 Pred = ICmpInst::ICMP_UGT;
5371 RHS = getConstant(RA - 1);
5372 Changed = true;
5373 break;
5374 case ICmpInst::ICMP_ULE:
5375 if ((RA + 1).isMaxValue()) {
5376 Pred = ICmpInst::ICMP_NE;
5377 RHS = getConstant(RA + 1);
5378 Changed = true;
5379 break;
5380 }
5381 if (RA.isMinValue()) {
5382 Pred = ICmpInst::ICMP_EQ;
5383 Changed = true;
5384 break;
5385 }
5386 if (RA.isMaxValue()) goto trivially_true;
5387
5388 Pred = ICmpInst::ICMP_ULT;
5389 RHS = getConstant(RA + 1);
5390 Changed = true;
5391 break;
5392 case ICmpInst::ICMP_SGE:
5393 if ((RA - 1).isMinSignedValue()) {
5394 Pred = ICmpInst::ICMP_NE;
5395 RHS = getConstant(RA - 1);
5396 Changed = true;
5397 break;
5398 }
5399 if (RA.isMaxSignedValue()) {
5400 Pred = ICmpInst::ICMP_EQ;
5401 Changed = true;
5402 break;
5403 }
5404 if (RA.isMinSignedValue()) goto trivially_true;
5405
5406 Pred = ICmpInst::ICMP_SGT;
5407 RHS = getConstant(RA - 1);
5408 Changed = true;
5409 break;
5410 case ICmpInst::ICMP_SLE:
5411 if ((RA + 1).isMaxSignedValue()) {
5412 Pred = ICmpInst::ICMP_NE;
5413 RHS = getConstant(RA + 1);
5414 Changed = true;
5415 break;
5416 }
5417 if (RA.isMinSignedValue()) {
5418 Pred = ICmpInst::ICMP_EQ;
5419 Changed = true;
5420 break;
5421 }
5422 if (RA.isMaxSignedValue()) goto trivially_true;
5423
5424 Pred = ICmpInst::ICMP_SLT;
5425 RHS = getConstant(RA + 1);
5426 Changed = true;
5427 break;
5428 case ICmpInst::ICMP_UGT:
5429 if (RA.isMinValue()) {
5430 Pred = ICmpInst::ICMP_NE;
5431 Changed = true;
5432 break;
5433 }
5434 if ((RA + 1).isMaxValue()) {
5435 Pred = ICmpInst::ICMP_EQ;
5436 RHS = getConstant(RA + 1);
5437 Changed = true;
5438 break;
5439 }
5440 if (RA.isMaxValue()) goto trivially_false;
5441 break;
5442 case ICmpInst::ICMP_ULT:
5443 if (RA.isMaxValue()) {
5444 Pred = ICmpInst::ICMP_NE;
5445 Changed = true;
5446 break;
5447 }
5448 if ((RA - 1).isMinValue()) {
5449 Pred = ICmpInst::ICMP_EQ;
5450 RHS = getConstant(RA - 1);
5451 Changed = true;
5452 break;
5453 }
5454 if (RA.isMinValue()) goto trivially_false;
5455 break;
5456 case ICmpInst::ICMP_SGT:
5457 if (RA.isMinSignedValue()) {
5458 Pred = ICmpInst::ICMP_NE;
5459 Changed = true;
5460 break;
5461 }
5462 if ((RA + 1).isMaxSignedValue()) {
5463 Pred = ICmpInst::ICMP_EQ;
5464 RHS = getConstant(RA + 1);
5465 Changed = true;
5466 break;
5467 }
5468 if (RA.isMaxSignedValue()) goto trivially_false;
5469 break;
5470 case ICmpInst::ICMP_SLT:
5471 if (RA.isMaxSignedValue()) {
5472 Pred = ICmpInst::ICMP_NE;
5473 Changed = true;
5474 break;
5475 }
5476 if ((RA - 1).isMinSignedValue()) {
5477 Pred = ICmpInst::ICMP_EQ;
5478 RHS = getConstant(RA - 1);
5479 Changed = true;
5480 break;
5481 }
5482 if (RA.isMinSignedValue()) goto trivially_false;
5483 break;
5484 }
5485 }
5486
5487 // Check for obvious equality.
5488 if (HasSameValue(LHS, RHS)) {
5489 if (ICmpInst::isTrueWhenEqual(Pred))
5490 goto trivially_true;
5491 if (ICmpInst::isFalseWhenEqual(Pred))
5492 goto trivially_false;
5493 }
5494
Dan Gohman03557dc2010-05-03 16:35:17 +00005495 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5496 // adding or subtracting 1 from one of the operands.
5497 switch (Pred) {
5498 case ICmpInst::ICMP_SLE:
5499 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5500 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005501 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005502 Pred = ICmpInst::ICMP_SLT;
5503 Changed = true;
5504 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005505 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005506 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005507 Pred = ICmpInst::ICMP_SLT;
5508 Changed = true;
5509 }
5510 break;
5511 case ICmpInst::ICMP_SGE:
5512 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005513 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005514 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005515 Pred = ICmpInst::ICMP_SGT;
5516 Changed = true;
5517 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5518 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005519 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005520 Pred = ICmpInst::ICMP_SGT;
5521 Changed = true;
5522 }
5523 break;
5524 case ICmpInst::ICMP_ULE:
5525 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005526 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005527 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005528 Pred = ICmpInst::ICMP_ULT;
5529 Changed = true;
5530 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005531 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005532 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005533 Pred = ICmpInst::ICMP_ULT;
5534 Changed = true;
5535 }
5536 break;
5537 case ICmpInst::ICMP_UGE:
5538 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005539 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005540 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005541 Pred = ICmpInst::ICMP_UGT;
5542 Changed = true;
5543 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005544 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005545 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005546 Pred = ICmpInst::ICMP_UGT;
5547 Changed = true;
5548 }
5549 break;
5550 default:
5551 break;
5552 }
5553
Dan Gohmane9796502010-04-24 01:28:42 +00005554 // TODO: More simplifications are possible here.
5555
5556 return Changed;
5557
5558trivially_true:
5559 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005560 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005561 Pred = ICmpInst::ICMP_EQ;
5562 return true;
5563
5564trivially_false:
5565 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005566 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005567 Pred = ICmpInst::ICMP_NE;
5568 return true;
5569}
5570
Dan Gohman85b05a22009-07-13 21:35:55 +00005571bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5572 return getSignedRange(S).getSignedMax().isNegative();
5573}
5574
5575bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5576 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5577}
5578
5579bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5580 return !getSignedRange(S).getSignedMin().isNegative();
5581}
5582
5583bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5584 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5585}
5586
5587bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5588 return isKnownNegative(S) || isKnownPositive(S);
5589}
5590
5591bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5592 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005593 // Canonicalize the inputs first.
5594 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5595
Dan Gohman53c66ea2010-04-11 22:16:48 +00005596 // If LHS or RHS is an addrec, check to see if the condition is true in
5597 // every iteration of the loop.
5598 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5599 if (isLoopEntryGuardedByCond(
5600 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5601 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005602 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005603 return true;
5604 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5605 if (isLoopEntryGuardedByCond(
5606 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5607 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005608 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005609 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005610
Dan Gohman53c66ea2010-04-11 22:16:48 +00005611 // Otherwise see what can be done with known constant ranges.
5612 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5613}
5614
5615bool
5616ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5617 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005618 if (HasSameValue(LHS, RHS))
5619 return ICmpInst::isTrueWhenEqual(Pred);
5620
Dan Gohman53c66ea2010-04-11 22:16:48 +00005621 // This code is split out from isKnownPredicate because it is called from
5622 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005623 switch (Pred) {
5624 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005625 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005626 break;
5627 case ICmpInst::ICMP_SGT:
5628 Pred = ICmpInst::ICMP_SLT;
5629 std::swap(LHS, RHS);
5630 case ICmpInst::ICMP_SLT: {
5631 ConstantRange LHSRange = getSignedRange(LHS);
5632 ConstantRange RHSRange = getSignedRange(RHS);
5633 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5634 return true;
5635 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5636 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005637 break;
5638 }
5639 case ICmpInst::ICMP_SGE:
5640 Pred = ICmpInst::ICMP_SLE;
5641 std::swap(LHS, RHS);
5642 case ICmpInst::ICMP_SLE: {
5643 ConstantRange LHSRange = getSignedRange(LHS);
5644 ConstantRange RHSRange = getSignedRange(RHS);
5645 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5646 return true;
5647 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5648 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005649 break;
5650 }
5651 case ICmpInst::ICMP_UGT:
5652 Pred = ICmpInst::ICMP_ULT;
5653 std::swap(LHS, RHS);
5654 case ICmpInst::ICMP_ULT: {
5655 ConstantRange LHSRange = getUnsignedRange(LHS);
5656 ConstantRange RHSRange = getUnsignedRange(RHS);
5657 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5658 return true;
5659 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5660 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005661 break;
5662 }
5663 case ICmpInst::ICMP_UGE:
5664 Pred = ICmpInst::ICMP_ULE;
5665 std::swap(LHS, RHS);
5666 case ICmpInst::ICMP_ULE: {
5667 ConstantRange LHSRange = getUnsignedRange(LHS);
5668 ConstantRange RHSRange = getUnsignedRange(RHS);
5669 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5670 return true;
5671 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5672 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005673 break;
5674 }
5675 case ICmpInst::ICMP_NE: {
5676 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5677 return true;
5678 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5679 return true;
5680
5681 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5682 if (isKnownNonZero(Diff))
5683 return true;
5684 break;
5685 }
5686 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005687 // The check at the top of the function catches the case where
5688 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005689 break;
5690 }
5691 return false;
5692}
5693
5694/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5695/// protected by a conditional between LHS and RHS. This is used to
5696/// to eliminate casts.
5697bool
5698ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5699 ICmpInst::Predicate Pred,
5700 const SCEV *LHS, const SCEV *RHS) {
5701 // Interpret a null as meaning no loop, where there is obviously no guard
5702 // (interprocedural conditions notwithstanding).
5703 if (!L) return true;
5704
5705 BasicBlock *Latch = L->getLoopLatch();
5706 if (!Latch)
5707 return false;
5708
5709 BranchInst *LoopContinuePredicate =
5710 dyn_cast<BranchInst>(Latch->getTerminator());
5711 if (!LoopContinuePredicate ||
5712 LoopContinuePredicate->isUnconditional())
5713 return false;
5714
Dan Gohmanaf08a362010-08-10 23:46:30 +00005715 return isImpliedCond(Pred, LHS, RHS,
5716 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005717 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005718}
5719
Dan Gohman3948d0b2010-04-11 19:27:13 +00005720/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005721/// by a conditional between LHS and RHS. This is used to help avoid max
5722/// expressions in loop trip counts, and to eliminate casts.
5723bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005724ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5725 ICmpInst::Predicate Pred,
5726 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005727 // Interpret a null as meaning no loop, where there is obviously no guard
5728 // (interprocedural conditions notwithstanding).
5729 if (!L) return false;
5730
Dan Gohman859b4822009-05-18 15:36:09 +00005731 // Starting at the loop predecessor, climb up the predecessor chain, as long
5732 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005733 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005734 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005735 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005736 Pair.first;
5737 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005738
5739 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005740 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005741 if (!LoopEntryPredicate ||
5742 LoopEntryPredicate->isUnconditional())
5743 continue;
5744
Dan Gohmanaf08a362010-08-10 23:46:30 +00005745 if (isImpliedCond(Pred, LHS, RHS,
5746 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005747 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005748 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005749 }
5750
Dan Gohman38372182008-08-12 20:17:31 +00005751 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005752}
5753
Dan Gohman0f4b2852009-07-21 23:03:19 +00005754/// isImpliedCond - Test whether the condition described by Pred, LHS,
5755/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005756bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005757 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005758 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005759 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005760 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005761 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005762 if (BO->getOpcode() == Instruction::And) {
5763 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005764 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5765 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005766 } else if (BO->getOpcode() == Instruction::Or) {
5767 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005768 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5769 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005770 }
5771 }
5772
Dan Gohmanaf08a362010-08-10 23:46:30 +00005773 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005774 if (!ICI) return false;
5775
Dan Gohman85b05a22009-07-13 21:35:55 +00005776 // Bail if the ICmp's operands' types are wider than the needed type
5777 // before attempting to call getSCEV on them. This avoids infinite
5778 // recursion, since the analysis of widening casts can require loop
5779 // exit condition information for overflow checking, which would
5780 // lead back here.
5781 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005782 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005783 return false;
5784
Dan Gohman0f4b2852009-07-21 23:03:19 +00005785 // Now that we found a conditional branch that dominates the loop, check to
5786 // see if it is the comparison we are looking for.
5787 ICmpInst::Predicate FoundPred;
5788 if (Inverse)
5789 FoundPred = ICI->getInversePredicate();
5790 else
5791 FoundPred = ICI->getPredicate();
5792
5793 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5794 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005795
5796 // Balance the types. The case where FoundLHS' type is wider than
5797 // LHS' type is checked for above.
5798 if (getTypeSizeInBits(LHS->getType()) >
5799 getTypeSizeInBits(FoundLHS->getType())) {
5800 if (CmpInst::isSigned(Pred)) {
5801 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5802 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5803 } else {
5804 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5805 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5806 }
5807 }
5808
Dan Gohman0f4b2852009-07-21 23:03:19 +00005809 // Canonicalize the query to match the way instcombine will have
5810 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005811 if (SimplifyICmpOperands(Pred, LHS, RHS))
5812 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005813 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005814 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5815 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005816 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005817
5818 // Check to see if we can make the LHS or RHS match.
5819 if (LHS == FoundRHS || RHS == FoundLHS) {
5820 if (isa<SCEVConstant>(RHS)) {
5821 std::swap(FoundLHS, FoundRHS);
5822 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5823 } else {
5824 std::swap(LHS, RHS);
5825 Pred = ICmpInst::getSwappedPredicate(Pred);
5826 }
5827 }
5828
5829 // Check whether the found predicate is the same as the desired predicate.
5830 if (FoundPred == Pred)
5831 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5832
5833 // Check whether swapping the found predicate makes it the same as the
5834 // desired predicate.
5835 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5836 if (isa<SCEVConstant>(RHS))
5837 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5838 else
5839 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5840 RHS, LHS, FoundLHS, FoundRHS);
5841 }
5842
5843 // Check whether the actual condition is beyond sufficient.
5844 if (FoundPred == ICmpInst::ICMP_EQ)
5845 if (ICmpInst::isTrueWhenEqual(Pred))
5846 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5847 return true;
5848 if (Pred == ICmpInst::ICMP_NE)
5849 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5850 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5851 return true;
5852
5853 // Otherwise assume the worst.
5854 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005855}
5856
Dan Gohman0f4b2852009-07-21 23:03:19 +00005857/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005858/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005859/// and FoundRHS is true.
5860bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5861 const SCEV *LHS, const SCEV *RHS,
5862 const SCEV *FoundLHS,
5863 const SCEV *FoundRHS) {
5864 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5865 FoundLHS, FoundRHS) ||
5866 // ~x < ~y --> x > y
5867 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5868 getNotSCEV(FoundRHS),
5869 getNotSCEV(FoundLHS));
5870}
5871
5872/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005873/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005874/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005875bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005876ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5877 const SCEV *LHS, const SCEV *RHS,
5878 const SCEV *FoundLHS,
5879 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005880 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005881 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5882 case ICmpInst::ICMP_EQ:
5883 case ICmpInst::ICMP_NE:
5884 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5885 return true;
5886 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005887 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005888 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005889 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5890 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005891 return true;
5892 break;
5893 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005894 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005895 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5896 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005897 return true;
5898 break;
5899 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005900 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005901 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5902 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005903 return true;
5904 break;
5905 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005906 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005907 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5908 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005909 return true;
5910 break;
5911 }
5912
5913 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005914}
5915
Dan Gohman51f53b72009-06-21 23:46:38 +00005916/// getBECount - Subtract the end and start values and divide by the step,
5917/// rounding up, to get the number of times the backedge is executed. Return
5918/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005919const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005920 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005921 const SCEV *Step,
5922 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005923 assert(!isKnownNegative(Step) &&
5924 "This code doesn't handle negative strides yet!");
5925
Chris Lattnerdb125cf2011-07-18 04:54:35 +00005926 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00005927
5928 // When Start == End, we have an exact BECount == 0. Short-circuit this case
5929 // here because SCEV may not be able to determine that the unsigned division
5930 // after rounding is zero.
5931 if (Start == End)
5932 return getConstant(Ty, 0);
5933
Dan Gohmandeff6212010-05-03 22:09:21 +00005934 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005935 const SCEV *Diff = getMinusSCEV(End, Start);
5936 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005937
5938 // Add an adjustment to the difference between End and Start so that
5939 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005940 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005941
Dan Gohman1f96e672009-09-17 18:05:20 +00005942 if (!NoWrap) {
5943 // Check Add for unsigned overflow.
5944 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00005945 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00005946 getTypeSizeInBits(Ty) + 1);
5947 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5948 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5949 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5950 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5951 return getCouldNotCompute();
5952 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005953
5954 return getUDivExpr(Add, Step);
5955}
5956
Chris Lattnerdb25de42005-08-15 23:33:51 +00005957/// HowManyLessThans - Return the number of times a backedge containing the
5958/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005959/// CouldNotCompute.
Andrew Trick5116ff62011-07-26 17:19:55 +00005960ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00005961ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5962 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005963 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00005964 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005965
Dan Gohman35738ac2009-05-04 22:30:44 +00005966 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005967 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005968 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005969
Dan Gohman1f96e672009-09-17 18:05:20 +00005970 // Check to see if we have a flag which makes analysis easy.
Andrew Trick3228cc22011-03-14 16:50:06 +00005971 bool NoWrap = isSigned ? AddRec->getNoWrapFlags(SCEV::FlagNSW) :
5972 AddRec->getNoWrapFlags(SCEV::FlagNUW);
Dan Gohman1f96e672009-09-17 18:05:20 +00005973
Chris Lattnerdb25de42005-08-15 23:33:51 +00005974 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005975 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005976 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005977
Dan Gohman52fddd32010-01-26 04:40:18 +00005978 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005979 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005980 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005981 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005982 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005983 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005984 // value and past the maximum value for its type in a single step.
5985 // Note that it's not sufficient to check NoWrap here, because even
5986 // though the value after a wrap is undefined, it's not undefined
5987 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005988 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005989 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005990 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005991 if (isSigned) {
5992 APInt Max = APInt::getSignedMaxValue(BitWidth);
5993 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5994 .slt(getSignedRange(RHS).getSignedMax()))
5995 return getCouldNotCompute();
5996 } else {
5997 APInt Max = APInt::getMaxValue(BitWidth);
5998 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5999 .ult(getUnsignedRange(RHS).getUnsignedMax()))
6000 return getCouldNotCompute();
6001 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006002 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00006003 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00006004 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006005
Dan Gohmana1af7572009-04-30 20:47:05 +00006006 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6007 // m. So, we count the number of iterations in which {n,+,s} < m is true.
6008 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00006009 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00006010
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006011 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00006012 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006013
Dan Gohmana1af7572009-04-30 20:47:05 +00006014 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006015 const SCEV *MinStart = getConstant(isSigned ?
6016 getSignedRange(Start).getSignedMin() :
6017 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006018
Dan Gohmana1af7572009-04-30 20:47:05 +00006019 // If we know that the condition is true in order to enter the loop,
6020 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006021 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6022 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006023 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006024 if (!isLoopEntryGuardedByCond(L,
6025 isSigned ? ICmpInst::ICMP_SLT :
6026 ICmpInst::ICMP_ULT,
6027 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006028 End = isSigned ? getSMaxExpr(RHS, Start)
6029 : getUMaxExpr(RHS, Start);
6030
6031 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006032 const SCEV *MaxEnd = getConstant(isSigned ?
6033 getSignedRange(End).getSignedMax() :
6034 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006035
Dan Gohman52fddd32010-01-26 04:40:18 +00006036 // If MaxEnd is within a step of the maximum integer value in its type,
6037 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006038 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006039 // compute the correct value.
6040 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006041 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006042 MaxEnd = isSigned ?
6043 getSMinExpr(MaxEnd,
6044 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6045 StepMinusOne)) :
6046 getUMinExpr(MaxEnd,
6047 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6048 StepMinusOne));
6049
Dan Gohmana1af7572009-04-30 20:47:05 +00006050 // Finally, we subtract these two values and divide, rounding up, to get
6051 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006052 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006053
6054 // The maximum backedge count is similar, except using the minimum start
6055 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006056 // If we already have an exact constant BECount, use it instead.
6057 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6058 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6059
6060 // If the stride is nonconstant, and NoWrap == true, then
6061 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6062 // exact BECount and invalid MaxBECount, which should be avoided to catch
6063 // more optimization opportunities.
6064 if (isa<SCEVCouldNotCompute>(MaxBECount))
6065 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006066
Andrew Trick5116ff62011-07-26 17:19:55 +00006067 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006068 }
6069
Dan Gohman1c343752009-06-27 21:21:31 +00006070 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006071}
6072
Chris Lattner53e677a2004-04-02 20:23:17 +00006073/// getNumIterationsInRange - Return the number of iterations of this loop that
6074/// produce values in the specified constant range. Another way of looking at
6075/// this is that it returns the first iteration number where the value is not in
6076/// the condition, thus computing the exit count. If the iteration count can't
6077/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006078const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006079 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006080 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006081 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006082
6083 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006084 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006085 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006086 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006087 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006088 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006089 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006090 if (const SCEVAddRecExpr *ShiftedAddRec =
6091 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006092 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006093 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006094 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006095 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006096 }
6097
6098 // The only time we can solve this is when we have all constant indices.
6099 // Otherwise, we cannot determine the overflow conditions.
6100 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6101 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006102 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006103
6104
6105 // Okay at this point we know that all elements of the chrec are constants and
6106 // that the start element is zero.
6107
6108 // First check to see if the range contains zero. If not, the first
6109 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006110 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006111 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006112 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006113
Chris Lattner53e677a2004-04-02 20:23:17 +00006114 if (isAffine()) {
6115 // If this is an affine expression then we have this situation:
6116 // Solve {0,+,A} in Range === Ax in Range
6117
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006118 // We know that zero is in the range. If A is positive then we know that
6119 // the upper value of the range must be the first possible exit value.
6120 // If A is negative then the lower of the range is the last possible loop
6121 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006122 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006123 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6124 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006125
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006126 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006127 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006128 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006129
6130 // Evaluate at the exit value. If we really did fall out of the valid
6131 // range, then we computed our trip count, otherwise wrap around or other
6132 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006133 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006134 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006135 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006136
6137 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006138 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006139 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006140 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006141 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006142 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006143 } else if (isQuadratic()) {
6144 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6145 // quadratic equation to solve it. To do this, we must frame our problem in
6146 // terms of figuring out when zero is crossed, instead of when
6147 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006148 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006149 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006150 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6151 // getNoWrapFlags(FlagNW)
6152 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006153
6154 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006155 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006156 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006157 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6158 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006159 if (R1) {
6160 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006161 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006162 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006163 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006164 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006165 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006166
Chris Lattner53e677a2004-04-02 20:23:17 +00006167 // Make sure the root is not off by one. The returned iteration should
6168 // not be in the range, but the previous one should be. When solving
6169 // for "X*X < 5", for example, we should not return a root of 2.
6170 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006171 R1->getValue(),
6172 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006173 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006174 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006175 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006176 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006177
Dan Gohman246b2562007-10-22 18:31:58 +00006178 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006179 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006180 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006181 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006182 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006183
Chris Lattner53e677a2004-04-02 20:23:17 +00006184 // If R1 was not in the range, then it is a good return value. Make
6185 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006186 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006187 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006188 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006189 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006190 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006191 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006192 }
6193 }
6194 }
6195
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006196 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006197}
6198
6199
6200
6201//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006202// SCEVCallbackVH Class Implementation
6203//===----------------------------------------------------------------------===//
6204
Dan Gohman1959b752009-05-19 19:22:47 +00006205void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006206 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006207 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6208 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006209 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006210 // this now dangles!
6211}
6212
Dan Gohman81f91212010-07-28 01:09:07 +00006213void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006214 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006215
Dan Gohman35738ac2009-05-04 22:30:44 +00006216 // Forget all the expressions associated with users of the old value,
6217 // so that future queries will recompute the expressions using the new
6218 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006219 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006220 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006221 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006222 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6223 UI != UE; ++UI)
6224 Worklist.push_back(*UI);
6225 while (!Worklist.empty()) {
6226 User *U = Worklist.pop_back_val();
6227 // Deleting the Old value will cause this to dangle. Postpone
6228 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006229 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006230 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006231 if (!Visited.insert(U))
6232 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006233 if (PHINode *PN = dyn_cast<PHINode>(U))
6234 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006235 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006236 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6237 UI != UE; ++UI)
6238 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006239 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006240 // Delete the Old value.
6241 if (PHINode *PN = dyn_cast<PHINode>(Old))
6242 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006243 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006244 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006245}
6246
Dan Gohman1959b752009-05-19 19:22:47 +00006247ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006248 : CallbackVH(V), SE(se) {}
6249
6250//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006251// ScalarEvolution Class Implementation
6252//===----------------------------------------------------------------------===//
6253
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006254ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006255 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006256 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006257}
6258
Chris Lattner53e677a2004-04-02 20:23:17 +00006259bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006260 this->F = &F;
6261 LI = &getAnalysis<LoopInfo>();
6262 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006263 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006264 return false;
6265}
6266
6267void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006268 // Iterate through all the SCEVUnknown instances and call their
6269 // destructors, so that they release their references to their values.
6270 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6271 U->~SCEVUnknown();
6272 FirstUnknown = 0;
6273
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006274 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006275
6276 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6277 // that a loop had multiple computable exits.
6278 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6279 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6280 I != E; ++I) {
6281 I->second.clear();
6282 }
6283
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006284 BackedgeTakenCounts.clear();
6285 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006286 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006287 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006288 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006289 UnsignedRanges.clear();
6290 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006291 UniqueSCEVs.clear();
6292 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006293}
6294
6295void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6296 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006297 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006298 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006299}
6300
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006301bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006302 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006303}
6304
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006305static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006306 const Loop *L) {
6307 // Print all inner loops first
6308 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6309 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006310
Dan Gohman30733292010-01-09 18:17:45 +00006311 OS << "Loop ";
6312 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6313 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006314
Dan Gohman5d984912009-12-18 01:14:11 +00006315 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006316 L->getExitBlocks(ExitBlocks);
6317 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006318 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006319
Dan Gohman46bdfb02009-02-24 18:55:53 +00006320 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6321 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006322 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006323 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006324 }
6325
Dan Gohman30733292010-01-09 18:17:45 +00006326 OS << "\n"
6327 "Loop ";
6328 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6329 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006330
6331 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6332 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6333 } else {
6334 OS << "Unpredictable max backedge-taken count. ";
6335 }
6336
6337 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006338}
6339
Dan Gohman5d984912009-12-18 01:14:11 +00006340void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006341 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006342 // out SCEV values of all instructions that are interesting. Doing
6343 // this potentially causes it to create new SCEV objects though,
6344 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006345 // observable from outside the class though, so casting away the
6346 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006347 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006348
Dan Gohman30733292010-01-09 18:17:45 +00006349 OS << "Classifying expressions for: ";
6350 WriteAsOperand(OS, F, /*PrintType=*/false);
6351 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006352 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006353 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006354 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006355 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006356 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006357 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006358
Dan Gohman0c689c52009-06-19 17:49:54 +00006359 const Loop *L = LI->getLoopFor((*I).getParent());
6360
Dan Gohman0bba49c2009-07-07 17:06:11 +00006361 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006362 if (AtUse != SV) {
6363 OS << " --> ";
6364 AtUse->print(OS);
6365 }
6366
6367 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006368 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006369 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006370 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006371 OS << "<<Unknown>>";
6372 } else {
6373 OS << *ExitValue;
6374 }
6375 }
6376
Chris Lattner53e677a2004-04-02 20:23:17 +00006377 OS << "\n";
6378 }
6379
Dan Gohman30733292010-01-09 18:17:45 +00006380 OS << "Determining loop execution counts for: ";
6381 WriteAsOperand(OS, F, /*PrintType=*/false);
6382 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006383 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6384 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006385}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006386
Dan Gohman714b5292010-11-17 23:21:44 +00006387ScalarEvolution::LoopDisposition
6388ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6389 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6390 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6391 Values.insert(std::make_pair(L, LoopVariant));
6392 if (!Pair.second)
6393 return Pair.first->second;
6394
6395 LoopDisposition D = computeLoopDisposition(S, L);
6396 return LoopDispositions[S][L] = D;
6397}
6398
6399ScalarEvolution::LoopDisposition
6400ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006401 switch (S->getSCEVType()) {
6402 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006403 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006404 case scTruncate:
6405 case scZeroExtend:
6406 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006407 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006408 case scAddRecExpr: {
6409 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6410
Dan Gohman714b5292010-11-17 23:21:44 +00006411 // If L is the addrec's loop, it's computable.
6412 if (AR->getLoop() == L)
6413 return LoopComputable;
6414
Dan Gohman17ead4f2010-11-17 21:23:15 +00006415 // Add recurrences are never invariant in the function-body (null loop).
6416 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006417 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006418
6419 // This recurrence is variant w.r.t. L if L contains AR's loop.
6420 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006421 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006422
6423 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6424 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006425 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006426
6427 // This recurrence is variant w.r.t. L if any of its operands
6428 // are variant.
6429 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6430 I != E; ++I)
6431 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006432 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006433
6434 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006435 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006436 }
6437 case scAddExpr:
6438 case scMulExpr:
6439 case scUMaxExpr:
6440 case scSMaxExpr: {
6441 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006442 bool HasVarying = false;
6443 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6444 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006445 LoopDisposition D = getLoopDisposition(*I, L);
6446 if (D == LoopVariant)
6447 return LoopVariant;
6448 if (D == LoopComputable)
6449 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006450 }
Dan Gohman714b5292010-11-17 23:21:44 +00006451 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006452 }
6453 case scUDivExpr: {
6454 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006455 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6456 if (LD == LoopVariant)
6457 return LoopVariant;
6458 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6459 if (RD == LoopVariant)
6460 return LoopVariant;
6461 return (LD == LoopInvariant && RD == LoopInvariant) ?
6462 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006463 }
6464 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006465 // All non-instruction values are loop invariant. All instructions are loop
6466 // invariant if they are not contained in the specified loop.
6467 // Instructions are never considered invariant in the function body
6468 // (null loop) because they are defined within the "loop".
6469 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6470 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6471 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006472 case scCouldNotCompute:
6473 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman714b5292010-11-17 23:21:44 +00006474 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006475 default: break;
6476 }
6477 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman714b5292010-11-17 23:21:44 +00006478 return LoopVariant;
6479}
6480
6481bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6482 return getLoopDisposition(S, L) == LoopInvariant;
6483}
6484
6485bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6486 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006487}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006488
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006489ScalarEvolution::BlockDisposition
6490ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6491 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6492 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6493 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6494 if (!Pair.second)
6495 return Pair.first->second;
6496
6497 BlockDisposition D = computeBlockDisposition(S, BB);
6498 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006499}
6500
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006501ScalarEvolution::BlockDisposition
6502ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006503 switch (S->getSCEVType()) {
6504 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006505 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006506 case scTruncate:
6507 case scZeroExtend:
6508 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006509 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006510 case scAddRecExpr: {
6511 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006512 // to test for proper dominance too, because the instruction which
6513 // produces the addrec's value is a PHI, and a PHI effectively properly
6514 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006515 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6516 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006517 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006518 }
6519 // FALL THROUGH into SCEVNAryExpr handling.
6520 case scAddExpr:
6521 case scMulExpr:
6522 case scUMaxExpr:
6523 case scSMaxExpr: {
6524 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006525 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006526 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006527 I != E; ++I) {
6528 BlockDisposition D = getBlockDisposition(*I, BB);
6529 if (D == DoesNotDominateBlock)
6530 return DoesNotDominateBlock;
6531 if (D == DominatesBlock)
6532 Proper = false;
6533 }
6534 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006535 }
6536 case scUDivExpr: {
6537 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006538 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6539 BlockDisposition LD = getBlockDisposition(LHS, BB);
6540 if (LD == DoesNotDominateBlock)
6541 return DoesNotDominateBlock;
6542 BlockDisposition RD = getBlockDisposition(RHS, BB);
6543 if (RD == DoesNotDominateBlock)
6544 return DoesNotDominateBlock;
6545 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6546 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006547 }
6548 case scUnknown:
6549 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006550 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6551 if (I->getParent() == BB)
6552 return DominatesBlock;
6553 if (DT->properlyDominates(I->getParent(), BB))
6554 return ProperlyDominatesBlock;
6555 return DoesNotDominateBlock;
6556 }
6557 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006558 case scCouldNotCompute:
6559 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006560 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006561 default: break;
6562 }
6563 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006564 return DoesNotDominateBlock;
6565}
6566
6567bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6568 return getBlockDisposition(S, BB) >= DominatesBlock;
6569}
6570
6571bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6572 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006573}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006574
6575bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6576 switch (S->getSCEVType()) {
6577 case scConstant:
6578 return false;
6579 case scTruncate:
6580 case scZeroExtend:
6581 case scSignExtend: {
6582 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6583 const SCEV *CastOp = Cast->getOperand();
6584 return Op == CastOp || hasOperand(CastOp, Op);
6585 }
6586 case scAddRecExpr:
6587 case scAddExpr:
6588 case scMulExpr:
6589 case scUMaxExpr:
6590 case scSMaxExpr: {
6591 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6592 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6593 I != E; ++I) {
6594 const SCEV *NAryOp = *I;
6595 if (NAryOp == Op || hasOperand(NAryOp, Op))
6596 return true;
6597 }
6598 return false;
6599 }
6600 case scUDivExpr: {
6601 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6602 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6603 return LHS == Op || hasOperand(LHS, Op) ||
6604 RHS == Op || hasOperand(RHS, Op);
6605 }
6606 case scUnknown:
6607 return false;
6608 case scCouldNotCompute:
6609 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6610 return false;
6611 default: break;
6612 }
6613 llvm_unreachable("Unknown SCEV kind!");
6614 return false;
6615}
Dan Gohman56a75682010-11-17 23:28:48 +00006616
6617void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6618 ValuesAtScopes.erase(S);
6619 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006620 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006621 UnsignedRanges.erase(S);
6622 SignedRanges.erase(S);
6623}