blob: b065f427b06cba146282bbcf75bc6f4ff51a12da [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000020#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000021#include "llvm/Analysis/LoopInfo.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000022#include "llvm/Analysis/MemoryBuiltins.h"
Sanjay Patel54656ca2017-02-06 18:26:06 +000023#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000024#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000025#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000026#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000027#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
Matthias Braun50ec0b52017-05-19 22:37:09 +000029#include "llvm/IR/DerivedTypes.h"
Hal Finkel60db0582014-09-07 18:57:58 +000030#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000031#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000032#include "llvm/IR/GlobalAlias.h"
33#include "llvm/IR/GlobalVariable.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/IntrinsicInst.h"
36#include "llvm/IR/LLVMContext.h"
37#include "llvm/IR/Metadata.h"
38#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000039#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000040#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000041#include "llvm/Support/Debug.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000042#include "llvm/Support/KnownBits.h"
Chris Lattner965c7692008-06-02 01:18:21 +000043#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000044#include <algorithm>
45#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000046#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000047using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000048using namespace llvm::PatternMatch;
49
50const unsigned MaxDepth = 6;
51
Philip Reames1c292272015-03-10 22:43:20 +000052// Controls the number of uses of the value searched for possible
53// dominating comparisons.
54static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000055 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000056
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +000057// This optimization is known to cause performance regressions is some cases,
58// keep it under a temporary flag for now.
59static cl::opt<bool>
60DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
61 cl::Hidden, cl::init(true));
62
Craig Topper6b3940a2017-05-03 22:25:19 +000063/// Returns the bitwidth of the given scalar or pointer type. For vector types,
64/// returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000065static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000066 if (unsigned BitWidth = Ty->getScalarSizeInBits())
67 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000068
Mehdi Aminia28d91d2015-03-10 02:37:25 +000069 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000070}
Chris Lattner965c7692008-06-02 01:18:21 +000071
Benjamin Kramercfd8d902014-09-12 08:56:53 +000072namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000073// Simplifying using an assume can only be done in a particular control-flow
74// context (the context instruction provides that context). If an assume and
75// the context instruction are not in the same block then the DT helps in
76// figuring out if we can use it.
77struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000078 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +000079 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000080 const Instruction *CxtI;
81 const DominatorTree *DT;
Sanjay Patel54656ca2017-02-06 18:26:06 +000082 // Unlike the other analyses, this may be a nullptr because not all clients
83 // provide it currently.
84 OptimizationRemarkEmitter *ORE;
Hal Finkel60db0582014-09-07 18:57:58 +000085
Matthias Braun37e5d792016-01-28 06:29:33 +000086 /// Set of assumptions that should be excluded from further queries.
87 /// This is because of the potential for mutual recursion to cause
88 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
89 /// classic case of this is assume(x = y), which will attempt to determine
90 /// bits in x from bits in y, which will attempt to determine bits in y from
91 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
Craig Topper6e11a052017-05-08 16:22:48 +000092 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
93 /// (all of which can call computeKnownBits), and so on.
Li Huang755f75f2016-10-15 19:00:04 +000094 std::array<const Value *, MaxDepth> Excluded;
Matthias Braun37e5d792016-01-28 06:29:33 +000095 unsigned NumExcluded;
96
Daniel Jasperaec2fa32016-12-19 08:22:17 +000097 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +000098 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
99 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000100
101 Query(const Query &Q, const Value *NewExcl)
Sanjay Patel54656ca2017-02-06 18:26:06 +0000102 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
103 NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +0000104 Excluded = Q.Excluded;
105 Excluded[NumExcluded++] = NewExcl;
106 assert(NumExcluded <= Excluded.size());
107 }
108
109 bool isExcluded(const Value *Value) const {
110 if (NumExcluded == 0)
111 return false;
112 auto End = Excluded.begin() + NumExcluded;
113 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000114 }
115};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000116} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000117
Sanjay Patel547e9752014-11-04 16:09:50 +0000118// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000119// the preferred context instruction (if any).
120static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
121 // If we've been provided with a context instruction, then use that (provided
122 // it has been inserted).
123 if (CxtI && CxtI->getParent())
124 return CxtI;
125
126 // If the value is really an already-inserted instruction, then use that.
127 CxtI = dyn_cast<Instruction>(V);
128 if (CxtI && CxtI->getParent())
129 return CxtI;
130
131 return nullptr;
132}
133
Craig Topperb45eabc2017-04-26 16:39:58 +0000134static void computeKnownBits(const Value *V, KnownBits &Known,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000135 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000136
Craig Topperb45eabc2017-04-26 16:39:58 +0000137void llvm::computeKnownBits(const Value *V, KnownBits &Known,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000138 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000139 AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000140 const DominatorTree *DT,
141 OptimizationRemarkEmitter *ORE) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000142 ::computeKnownBits(V, Known, Depth,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000143 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Hal Finkel60db0582014-09-07 18:57:58 +0000144}
145
Craig Topper6e11a052017-05-08 16:22:48 +0000146static KnownBits computeKnownBits(const Value *V, unsigned Depth,
147 const Query &Q);
148
149KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
150 unsigned Depth, AssumptionCache *AC,
151 const Instruction *CxtI,
Craig Toppera2025ea2017-05-24 16:53:03 +0000152 const DominatorTree *DT,
153 OptimizationRemarkEmitter *ORE) {
154 return ::computeKnownBits(V, Depth,
155 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Craig Topper6e11a052017-05-08 16:22:48 +0000156}
157
Pete Cooper35b00d52016-08-13 01:05:32 +0000158bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
159 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000160 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000161 const DominatorTree *DT) {
162 assert(LHS->getType() == RHS->getType() &&
163 "LHS and RHS should have the same type");
164 assert(LHS->getType()->isIntOrIntVectorTy() &&
165 "LHS and RHS should be integers");
166 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
Craig Topperb45eabc2017-04-26 16:39:58 +0000167 KnownBits LHSKnown(IT->getBitWidth());
168 KnownBits RHSKnown(IT->getBitWidth());
169 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT);
170 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT);
171 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
Jingyue Wuca321902015-05-14 23:53:19 +0000172}
173
Hal Finkel60db0582014-09-07 18:57:58 +0000174
Zaara Syeda3a7578c2017-05-31 17:12:38 +0000175bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
176 for (const User *U : CxtI->users()) {
177 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
178 if (IC->isEquality())
179 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
180 if (C->isNullValue())
181 continue;
182 return false;
183 }
184 return true;
185}
186
Pete Cooper35b00d52016-08-13 01:05:32 +0000187static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000188 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000189
Pete Cooper35b00d52016-08-13 01:05:32 +0000190bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
191 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000192 unsigned Depth, AssumptionCache *AC,
193 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000194 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000195 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000196 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000197}
198
Pete Cooper35b00d52016-08-13 01:05:32 +0000199static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000200
Pete Cooper35b00d52016-08-13 01:05:32 +0000201bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000202 AssumptionCache *AC, const Instruction *CxtI,
203 const DominatorTree *DT) {
204 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000205}
206
Pete Cooper35b00d52016-08-13 01:05:32 +0000207bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000208 unsigned Depth,
209 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000210 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000211 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
212 return Known.isNonNegative();
Jingyue Wu10fcea52015-08-20 18:27:04 +0000213}
214
Pete Cooper35b00d52016-08-13 01:05:32 +0000215bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000216 AssumptionCache *AC, const Instruction *CxtI,
217 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000218 if (auto *CI = dyn_cast<ConstantInt>(V))
219 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000220
Philip Reames8f12eba2016-03-09 21:31:47 +0000221 // TODO: We'd doing two recursive queries here. We should factor this such
222 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000223 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
224 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000225}
226
Pete Cooper35b00d52016-08-13 01:05:32 +0000227bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000228 AssumptionCache *AC, const Instruction *CxtI,
229 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000230 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
231 return Known.isNegative();
Nick Lewycky762f8a82016-04-21 00:53:14 +0000232}
233
Pete Cooper35b00d52016-08-13 01:05:32 +0000234static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000235
Pete Cooper35b00d52016-08-13 01:05:32 +0000236bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000237 const DataLayout &DL,
238 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000239 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000240 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
241 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000242 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000243}
244
Pete Cooper35b00d52016-08-13 01:05:32 +0000245static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000246 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000247
Pete Cooper35b00d52016-08-13 01:05:32 +0000248bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
249 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000250 unsigned Depth, AssumptionCache *AC,
251 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000252 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000253 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000254}
255
Pete Cooper35b00d52016-08-13 01:05:32 +0000256static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
257 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000258
Pete Cooper35b00d52016-08-13 01:05:32 +0000259unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000260 unsigned Depth, AssumptionCache *AC,
261 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000262 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000263 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000264}
265
Craig Topper8fbb74b2017-03-24 22:12:10 +0000266static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
267 bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000268 KnownBits &KnownOut, KnownBits &Known2,
Craig Topper8fbb74b2017-03-24 22:12:10 +0000269 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000270 unsigned BitWidth = KnownOut.getBitWidth();
Craig Topper8fbb74b2017-03-24 22:12:10 +0000271
272 // If an initial sequence of bits in the result is not needed, the
273 // corresponding bits in the operands are not needed.
Craig Topperb45eabc2017-04-26 16:39:58 +0000274 KnownBits LHSKnown(BitWidth);
275 computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
276 computeKnownBits(Op1, Known2, Depth + 1, Q);
Craig Topper8fbb74b2017-03-24 22:12:10 +0000277
David Majnemer97ddca32014-08-22 00:40:43 +0000278 // Carry in a 1 for a subtract, rather than a 0.
Craig Topper059b98e2017-03-24 05:38:09 +0000279 uint64_t CarryIn = 0;
David Majnemer97ddca32014-08-22 00:40:43 +0000280 if (!Add) {
281 // Sum = LHS + ~RHS + 1
Craig Topperb45eabc2017-04-26 16:39:58 +0000282 std::swap(Known2.Zero, Known2.One);
Craig Topper059b98e2017-03-24 05:38:09 +0000283 CarryIn = 1;
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000284 }
285
Craig Topperb45eabc2017-04-26 16:39:58 +0000286 APInt PossibleSumZero = ~LHSKnown.Zero + ~Known2.Zero + CarryIn;
287 APInt PossibleSumOne = LHSKnown.One + Known2.One + CarryIn;
David Majnemer97ddca32014-08-22 00:40:43 +0000288
289 // Compute known bits of the carry.
Craig Topperb45eabc2017-04-26 16:39:58 +0000290 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnown.Zero ^ Known2.Zero);
291 APInt CarryKnownOne = PossibleSumOne ^ LHSKnown.One ^ Known2.One;
David Majnemer97ddca32014-08-22 00:40:43 +0000292
293 // Compute set of known bits (where all three relevant bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000294 APInt LHSKnownUnion = LHSKnown.Zero | LHSKnown.One;
295 APInt RHSKnownUnion = Known2.Zero | Known2.One;
296 APInt CarryKnownUnion = CarryKnownZero | CarryKnownOne;
297 APInt Known = LHSKnownUnion & RHSKnownUnion & CarryKnownUnion;
David Majnemer97ddca32014-08-22 00:40:43 +0000298
299 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
300 "known bits of sum differ");
301
302 // Compute known bits of the result.
Craig Topperb45eabc2017-04-26 16:39:58 +0000303 KnownOut.Zero = ~PossibleSumOne & Known;
304 KnownOut.One = PossibleSumOne & Known;
David Majnemer97ddca32014-08-22 00:40:43 +0000305
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000306 // Are we still trying to solve for the sign bit?
Craig Topperd23004c2017-04-17 16:38:20 +0000307 if (!Known.isSignBitSet()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000308 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000309 // Adding two non-negative numbers, or subtracting a negative number from
310 // a non-negative one, can't wrap into negative.
Craig Topperca48af32017-04-29 16:43:11 +0000311 if (LHSKnown.isNonNegative() && Known2.isNonNegative())
312 KnownOut.makeNonNegative();
David Majnemer97ddca32014-08-22 00:40:43 +0000313 // Adding two negative numbers, or subtracting a non-negative number from
314 // a negative one, can't wrap into non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000315 else if (LHSKnown.isNegative() && Known2.isNegative())
316 KnownOut.makeNegative();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000317 }
318 }
319}
320
Pete Cooper35b00d52016-08-13 01:05:32 +0000321static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000322 KnownBits &Known, KnownBits &Known2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000323 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000324 unsigned BitWidth = Known.getBitWidth();
325 computeKnownBits(Op1, Known, Depth + 1, Q);
326 computeKnownBits(Op0, Known2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000327
328 bool isKnownNegative = false;
329 bool isKnownNonNegative = false;
330 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000331 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000332 if (Op0 == Op1) {
333 // The product of a number with itself is non-negative.
334 isKnownNonNegative = true;
335 } else {
Craig Topperca48af32017-04-29 16:43:11 +0000336 bool isKnownNonNegativeOp1 = Known.isNonNegative();
337 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
338 bool isKnownNegativeOp1 = Known.isNegative();
339 bool isKnownNegativeOp0 = Known2.isNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000340 // The product of two numbers with the same sign is non-negative.
341 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
342 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
343 // The product of a negative number and a non-negative number is either
344 // negative or zero.
345 if (!isKnownNonNegative)
346 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000347 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000348 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000349 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000350 }
351 }
352
353 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000354 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000355 // More trickiness is possible, but this is sufficient for the
356 // interesting case of alignment computation.
Craig Topper8df66c62017-05-12 17:20:30 +0000357 unsigned TrailZ = Known.countMinTrailingZeros() +
358 Known2.countMinTrailingZeros();
359 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
360 Known2.countMinLeadingZeros(),
Nick Lewyckyfa306072012-03-18 23:28:48 +0000361 BitWidth) - BitWidth;
362
363 TrailZ = std::min(TrailZ, BitWidth);
364 LeadZ = std::min(LeadZ, BitWidth);
Craig Topperf0aeee02017-05-05 17:36:09 +0000365 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000366 Known.Zero.setLowBits(TrailZ);
367 Known.Zero.setHighBits(LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000368
369 // Only make use of no-wrap flags if we failed to compute the sign bit
370 // directly. This matters if the multiplication always overflows, in
371 // which case we prefer to follow the result of the direct computation,
372 // though as the program is invoking undefined behaviour we can choose
373 // whatever we like here.
Craig Topperca48af32017-04-29 16:43:11 +0000374 if (isKnownNonNegative && !Known.isNegative())
375 Known.makeNonNegative();
376 else if (isKnownNegative && !Known.isNonNegative())
377 Known.makeNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000378}
379
Jingyue Wu37fcb592014-06-19 16:50:16 +0000380void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Craig Topperf42b23f2017-04-28 06:28:56 +0000381 KnownBits &Known) {
382 unsigned BitWidth = Known.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000383 unsigned NumRanges = Ranges.getNumOperands() / 2;
384 assert(NumRanges >= 1);
385
Craig Topperf42b23f2017-04-28 06:28:56 +0000386 Known.Zero.setAllBits();
387 Known.One.setAllBits();
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000388
Rafael Espindola53190532012-03-30 15:52:11 +0000389 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000390 ConstantInt *Lower =
391 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
392 ConstantInt *Upper =
393 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000394 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000395
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000396 // The first CommonPrefixBits of all values in Range are equal.
397 unsigned CommonPrefixBits =
398 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
399
400 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
Craig Topperf42b23f2017-04-28 06:28:56 +0000401 Known.One &= Range.getUnsignedMax() & Mask;
402 Known.Zero &= ~Range.getUnsignedMax() & Mask;
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000403 }
Rafael Espindola53190532012-03-30 15:52:11 +0000404}
Jay Foad5a29c362014-05-15 12:12:55 +0000405
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000406static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000407 SmallVector<const Value *, 16> WorkSet(1, I);
408 SmallPtrSet<const Value *, 32> Visited;
409 SmallPtrSet<const Value *, 16> EphValues;
410
Hal Finkelf2199b22015-10-23 20:37:08 +0000411 // The instruction defining an assumption's condition itself is always
412 // considered ephemeral to that assumption (even if it has other
413 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000414 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000415 return true;
416
Hal Finkel60db0582014-09-07 18:57:58 +0000417 while (!WorkSet.empty()) {
418 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000419 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000420 continue;
421
422 // If all uses of this value are ephemeral, then so is this value.
David Majnemer0a16c222016-08-11 21:15:00 +0000423 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000424 if (V == E)
425 return true;
426
427 EphValues.insert(V);
428 if (const User *U = dyn_cast<User>(V))
429 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
430 J != JE; ++J) {
431 if (isSafeToSpeculativelyExecute(*J))
432 WorkSet.push_back(*J);
433 }
434 }
435 }
436
437 return false;
438}
439
440// Is this an intrinsic that cannot be speculated but also cannot trap?
441static bool isAssumeLikeIntrinsic(const Instruction *I) {
442 if (const CallInst *CI = dyn_cast<CallInst>(I))
443 if (Function *F = CI->getCalledFunction())
444 switch (F->getIntrinsicID()) {
445 default: break;
446 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
447 case Intrinsic::assume:
448 case Intrinsic::dbg_declare:
449 case Intrinsic::dbg_value:
450 case Intrinsic::invariant_start:
451 case Intrinsic::invariant_end:
452 case Intrinsic::lifetime_start:
453 case Intrinsic::lifetime_end:
454 case Intrinsic::objectsize:
455 case Intrinsic::ptr_annotation:
456 case Intrinsic::var_annotation:
457 return true;
458 }
459
460 return false;
461}
462
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000463bool llvm::isValidAssumeForContext(const Instruction *Inv,
464 const Instruction *CxtI,
465 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000466
467 // There are two restrictions on the use of an assume:
468 // 1. The assume must dominate the context (or the control flow must
469 // reach the assume whenever it reaches the context).
470 // 2. The context must not be in the assume's set of ephemeral values
471 // (otherwise we will use the assume to prove that the condition
472 // feeding the assume is trivially true, thus causing the removal of
473 // the assume).
474
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000475 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000476 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000477 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000478 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
479 // We don't have a DT, but this trivially dominates.
480 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000481 }
482
Pete Cooper54a02552016-08-12 01:00:15 +0000483 // With or without a DT, the only remaining case we will check is if the
484 // instructions are in the same BB. Give up if that is not the case.
485 if (Inv->getParent() != CxtI->getParent())
486 return false;
487
488 // If we have a dom tree, then we now know that the assume doens't dominate
489 // the other instruction. If we don't have a dom tree then we can check if
490 // the assume is first in the BB.
491 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000492 // Search forward from the assume until we reach the context (or the end
493 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000494 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000495 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000496 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000497 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000498 }
499
Pete Cooper54a02552016-08-12 01:00:15 +0000500 // The context comes first, but they're both in the same block. Make sure
501 // there is nothing in between that might interrupt the control flow.
502 for (BasicBlock::const_iterator I =
503 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
504 I != IE; ++I)
505 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
506 return false;
507
508 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000509}
510
Craig Topperb45eabc2017-04-26 16:39:58 +0000511static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
512 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000513 // Use of assumptions is context-sensitive. If we don't have a context, we
514 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000515 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000516 return;
517
Craig Topperb45eabc2017-04-26 16:39:58 +0000518 unsigned BitWidth = Known.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000519
Hal Finkel8a9a7832017-01-11 13:24:24 +0000520 // Note that the patterns below need to be kept in sync with the code
521 // in AssumptionCache::updateAffectedValues.
522
523 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000524 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000525 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000526 CallInst *I = cast<CallInst>(AssumeVH);
527 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
528 "Got assumption for the wrong function!");
529 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000530 continue;
531
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000532 // Warning: This loop can end up being somewhat performance sensetive.
533 // We're running this loop for once for each value queried resulting in a
534 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000535
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000536 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
537 "must be an assume intrinsic");
538
539 Value *Arg = I->getArgOperand(0);
540
541 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000542 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000543 Known.setAllOnes();
Hal Finkel60db0582014-09-07 18:57:58 +0000544 return;
545 }
Sanjay Patel96669962017-01-17 18:15:49 +0000546 if (match(Arg, m_Not(m_Specific(V))) &&
547 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
548 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000549 Known.setAllZero();
Sanjay Patel96669962017-01-17 18:15:49 +0000550 return;
551 }
Hal Finkel60db0582014-09-07 18:57:58 +0000552
David Majnemer9b609752014-12-12 23:59:29 +0000553 // The remaining tests are all recursive, so bail out if we hit the limit.
554 if (Depth == MaxDepth)
555 continue;
556
Hal Finkel60db0582014-09-07 18:57:58 +0000557 Value *A, *B;
558 auto m_V = m_CombineOr(m_Specific(V),
559 m_CombineOr(m_PtrToInt(m_Specific(V)),
560 m_BitCast(m_Specific(V))));
561
562 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000563 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000564 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000565 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000566 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000567 KnownBits RHSKnown(BitWidth);
568 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
569 Known.Zero |= RHSKnown.Zero;
570 Known.One |= RHSKnown.One;
Hal Finkel60db0582014-09-07 18:57:58 +0000571 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000572 } else if (match(Arg,
573 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000574 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000575 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000576 KnownBits RHSKnown(BitWidth);
577 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
578 KnownBits MaskKnown(BitWidth);
579 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000580
581 // For those bits in the mask that are known to be one, we can propagate
582 // known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000583 Known.Zero |= RHSKnown.Zero & MaskKnown.One;
584 Known.One |= RHSKnown.One & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000585 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000586 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
587 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000588 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000589 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000590 KnownBits RHSKnown(BitWidth);
591 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
592 KnownBits MaskKnown(BitWidth);
593 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000594
595 // For those bits in the mask that are known to be one, we can propagate
596 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000597 Known.Zero |= RHSKnown.One & MaskKnown.One;
598 Known.One |= RHSKnown.Zero & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000599 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000600 } else if (match(Arg,
601 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000602 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000603 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000604 KnownBits RHSKnown(BitWidth);
605 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
606 KnownBits BKnown(BitWidth);
607 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000608
609 // For those bits in B that are known to be zero, we can propagate known
610 // bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000611 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
612 Known.One |= RHSKnown.One & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000613 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000614 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
615 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000616 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000617 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000618 KnownBits RHSKnown(BitWidth);
619 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
620 KnownBits BKnown(BitWidth);
621 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000622
623 // For those bits in B that are known to be zero, we can propagate
624 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000625 Known.Zero |= RHSKnown.One & BKnown.Zero;
626 Known.One |= RHSKnown.Zero & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000627 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000628 } else if (match(Arg,
629 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000630 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000631 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000632 KnownBits RHSKnown(BitWidth);
633 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
634 KnownBits BKnown(BitWidth);
635 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000636
637 // For those bits in B that are known to be zero, we can propagate known
638 // bits from the RHS to V. For those bits in B that are known to be one,
639 // we can propagate inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000640 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
641 Known.One |= RHSKnown.One & BKnown.Zero;
642 Known.Zero |= RHSKnown.One & BKnown.One;
643 Known.One |= RHSKnown.Zero & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000644 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000645 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
646 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000647 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000648 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000649 KnownBits RHSKnown(BitWidth);
650 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
651 KnownBits BKnown(BitWidth);
652 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000653
654 // For those bits in B that are known to be zero, we can propagate
655 // inverted known bits from the RHS to V. For those bits in B that are
656 // known to be one, we can propagate known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000657 Known.Zero |= RHSKnown.One & BKnown.Zero;
658 Known.One |= RHSKnown.Zero & BKnown.Zero;
659 Known.Zero |= RHSKnown.Zero & BKnown.One;
660 Known.One |= RHSKnown.One & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000661 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000662 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
663 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000664 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000665 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000666 KnownBits RHSKnown(BitWidth);
667 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000668 // For those bits in RHS that are known, we can propagate them to known
669 // bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000670 RHSKnown.Zero.lshrInPlace(C->getZExtValue());
671 Known.Zero |= RHSKnown.Zero;
672 RHSKnown.One.lshrInPlace(C->getZExtValue());
673 Known.One |= RHSKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000674 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000675 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
676 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000677 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000678 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000679 KnownBits RHSKnown(BitWidth);
680 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000681 // For those bits in RHS that are known, we can propagate them inverted
682 // to known bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000683 RHSKnown.One.lshrInPlace(C->getZExtValue());
684 Known.Zero |= RHSKnown.One;
685 RHSKnown.Zero.lshrInPlace(C->getZExtValue());
686 Known.One |= RHSKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000687 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000688 } else if (match(Arg,
689 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000690 m_AShr(m_V, m_ConstantInt(C))),
691 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000692 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000693 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000694 KnownBits RHSKnown(BitWidth);
695 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000696 // For those bits in RHS that are known, we can propagate them to known
697 // bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000698 Known.Zero |= RHSKnown.Zero << C->getZExtValue();
699 Known.One |= RHSKnown.One << C->getZExtValue();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000700 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000701 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000702 m_LShr(m_V, m_ConstantInt(C)),
703 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000704 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000705 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000706 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000707 KnownBits RHSKnown(BitWidth);
708 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000709 // For those bits in RHS that are known, we can propagate them inverted
710 // to known bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000711 Known.Zero |= RHSKnown.One << C->getZExtValue();
712 Known.One |= RHSKnown.Zero << C->getZExtValue();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000713 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000714 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000715 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000716 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000717 KnownBits RHSKnown(BitWidth);
718 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000719
Craig Topperca48af32017-04-29 16:43:11 +0000720 if (RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000721 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000722 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000723 }
724 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000725 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000726 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000727 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000728 KnownBits RHSKnown(BitWidth);
729 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000730
Craig Topperf0aeee02017-05-05 17:36:09 +0000731 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000732 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000733 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000734 }
735 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000736 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000737 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000738 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000739 KnownBits RHSKnown(BitWidth);
740 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000741
Craig Topperca48af32017-04-29 16:43:11 +0000742 if (RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000743 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000744 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000745 }
746 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000747 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000748 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000749 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000750 KnownBits RHSKnown(BitWidth);
751 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000752
Craig Topperf0aeee02017-05-05 17:36:09 +0000753 if (RHSKnown.isZero() || RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000754 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000755 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000756 }
757 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000758 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000759 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000761 KnownBits RHSKnown(BitWidth);
762 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000763
764 // Whatever high bits in c are zero are known to be zero.
Craig Topper8df66c62017-05-12 17:20:30 +0000765 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
766 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000767 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000768 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000769 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000770 KnownBits RHSKnown(BitWidth);
771 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000772
773 // Whatever high bits in c are zero are known to be zero (if c is a power
774 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000775 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Craig Topper8df66c62017-05-12 17:20:30 +0000776 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000777 else
Craig Topper8df66c62017-05-12 17:20:30 +0000778 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
Hal Finkel60db0582014-09-07 18:57:58 +0000779 }
780 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000781
782 // If assumptions conflict with each other or previous known bits, then we
Sanjay Patel54656ca2017-02-06 18:26:06 +0000783 // have a logical fallacy. It's possible that the assumption is not reachable,
784 // so this isn't a real bug. On the other hand, the program may have undefined
785 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
786 // clear out the known bits, try to warn the user, and hope for the best.
Craig Topperb45eabc2017-04-26 16:39:58 +0000787 if (Known.Zero.intersects(Known.One)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000788 Known.resetAll();
Sanjay Patel54656ca2017-02-06 18:26:06 +0000789
790 if (Q.ORE) {
791 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
792 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI);
793 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may "
794 "have undefined behavior, or compiler may have "
795 "internal error.");
796 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000797 }
Hal Finkel60db0582014-09-07 18:57:58 +0000798}
799
Hal Finkelf2199b22015-10-23 20:37:08 +0000800// Compute known bits from a shift operator, including those with a
Craig Topperb45eabc2017-04-26 16:39:58 +0000801// non-constant shift amount. Known is the outputs of this function. Known2 is a
802// pre-allocated temporary with the/ same bit width as Known. KZF and KOF are
803// operator-specific functors that, given the known-zero or known-one bits
804// respectively, and a shift amount, compute the implied known-zero or known-one
805// bits of the shift operator's result respectively for that shift amount. The
806// results from calling KZF and KOF are conservatively combined for all
807// permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000808static void computeKnownBitsFromShiftOperator(
Craig Topperb45eabc2017-04-26 16:39:58 +0000809 const Operator *I, KnownBits &Known, KnownBits &Known2,
810 unsigned Depth, const Query &Q,
David Majnemer54690dc2016-08-23 20:52:00 +0000811 function_ref<APInt(const APInt &, unsigned)> KZF,
812 function_ref<APInt(const APInt &, unsigned)> KOF) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000813 unsigned BitWidth = Known.getBitWidth();
Hal Finkelf2199b22015-10-23 20:37:08 +0000814
815 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
816 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
817
Craig Topperb45eabc2017-04-26 16:39:58 +0000818 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
819 Known.Zero = KZF(Known.Zero, ShiftAmt);
820 Known.One = KOF(Known.One, ShiftAmt);
821 // If there is conflict between Known.Zero and Known.One, this must be an
822 // overflowing left shift, so the shift result is undefined. Clear Known
823 // bits so that other code could propagate this undef.
Craig Topperf0aeee02017-05-05 17:36:09 +0000824 if ((Known.Zero & Known.One) != 0)
825 Known.resetAll();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000826
Hal Finkelf2199b22015-10-23 20:37:08 +0000827 return;
828 }
829
Craig Topperb45eabc2017-04-26 16:39:58 +0000830 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000831
Oliver Stannard06204112017-03-14 10:13:17 +0000832 // If the shift amount could be greater than or equal to the bit-width of the LHS, the
833 // value could be undef, so we don't know anything about it.
Craig Topperb45eabc2017-04-26 16:39:58 +0000834 if ((~Known.Zero).uge(BitWidth)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000835 Known.resetAll();
Oliver Stannard06204112017-03-14 10:13:17 +0000836 return;
837 }
838
Craig Topperb45eabc2017-04-26 16:39:58 +0000839 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
Hal Finkelf2199b22015-10-23 20:37:08 +0000840 // BitWidth > 64 and any upper bits are known, we'll end up returning the
841 // limit value (which implies all bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000842 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
843 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
Hal Finkelf2199b22015-10-23 20:37:08 +0000844
845 // It would be more-clearly correct to use the two temporaries for this
846 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Craig Topperf0aeee02017-05-05 17:36:09 +0000847 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000848
James Molloy493e57d2015-10-26 14:10:46 +0000849 // If we know the shifter operand is nonzero, we can sometimes infer more
850 // known bits. However this is expensive to compute, so be lazy about it and
851 // only compute it when absolutely necessary.
852 Optional<bool> ShifterOperandIsNonZero;
853
Hal Finkelf2199b22015-10-23 20:37:08 +0000854 // Early exit if we can't constrain any well-defined shift amount.
Craig Topperf93b7b12017-06-14 17:04:59 +0000855 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
856 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
James Molloy493e57d2015-10-26 14:10:46 +0000857 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000858 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000859 if (!*ShifterOperandIsNonZero)
860 return;
861 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000862
Craig Topperb45eabc2017-04-26 16:39:58 +0000863 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000864
Craig Topperb45eabc2017-04-26 16:39:58 +0000865 Known.Zero.setAllBits();
866 Known.One.setAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000867 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
868 // Combine the shifted known input bits only for those shift amounts
869 // compatible with its known constraints.
870 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
871 continue;
872 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
873 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000874 // If we know the shifter is nonzero, we may be able to infer more known
875 // bits. This check is sunk down as far as possible to avoid the expensive
876 // call to isKnownNonZero if the cheaper checks above fail.
877 if (ShiftAmt == 0) {
878 if (!ShifterOperandIsNonZero.hasValue())
879 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000880 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000881 if (*ShifterOperandIsNonZero)
882 continue;
883 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000884
Craig Topperb45eabc2017-04-26 16:39:58 +0000885 Known.Zero &= KZF(Known2.Zero, ShiftAmt);
886 Known.One &= KOF(Known2.One, ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +0000887 }
888
889 // If there are no compatible shift amounts, then we've proven that the shift
890 // amount must be >= the BitWidth, and the result is undefined. We could
891 // return anything we'd like, but we need to make sure the sets of known bits
892 // stay disjoint (it should be better for some other code to actually
893 // propagate the undef than to pick a value here using known bits).
Craig Topperf0aeee02017-05-05 17:36:09 +0000894 if (Known.Zero.intersects(Known.One))
895 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000896}
897
Craig Topperb45eabc2017-04-26 16:39:58 +0000898static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
899 unsigned Depth, const Query &Q) {
900 unsigned BitWidth = Known.getBitWidth();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000901
Craig Topperb45eabc2017-04-26 16:39:58 +0000902 KnownBits Known2(Known);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000903 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000904 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000905 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000906 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +0000907 computeKnownBitsFromRangeMetadata(*MD, Known);
Jay Foad5a29c362014-05-15 12:12:55 +0000908 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000909 case Instruction::And: {
910 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000911 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
912 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000913
Chris Lattner965c7692008-06-02 01:18:21 +0000914 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000915 Known.One &= Known2.One;
Chris Lattner965c7692008-06-02 01:18:21 +0000916 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000917 Known.Zero |= Known2.Zero;
Philip Reames2d858742015-11-10 18:46:14 +0000918
919 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
920 // here we handle the more general case of adding any odd number by
921 // matching the form add(x, add(x, y)) where y is odd.
922 // TODO: This could be generalized to clearing any bit set in y where the
923 // following bit is known to be unset in y.
924 Value *Y = nullptr;
Craig Topperb45eabc2017-04-26 16:39:58 +0000925 if (!Known.Zero[0] && !Known.One[0] &&
Craig Toppera80f2042017-04-13 19:04:45 +0000926 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
927 m_Value(Y))) ||
928 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
929 m_Value(Y))))) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000930 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000931 computeKnownBits(Y, Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000932 if (Known2.countMinTrailingOnes() > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +0000933 Known.Zero.setBit(0);
Philip Reames2d858742015-11-10 18:46:14 +0000934 }
Jay Foad5a29c362014-05-15 12:12:55 +0000935 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000936 }
937 case Instruction::Or: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000938 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
939 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000940
Chris Lattner965c7692008-06-02 01:18:21 +0000941 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000942 Known.Zero &= Known2.Zero;
Chris Lattner965c7692008-06-02 01:18:21 +0000943 // Output known-1 are known to be set if set in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000944 Known.One |= Known2.One;
Jay Foad5a29c362014-05-15 12:12:55 +0000945 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000946 }
947 case Instruction::Xor: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000948 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
949 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000950
Chris Lattner965c7692008-06-02 01:18:21 +0000951 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000952 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
Chris Lattner965c7692008-06-02 01:18:21 +0000953 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000954 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
955 Known.Zero = std::move(KnownZeroOut);
Jay Foad5a29c362014-05-15 12:12:55 +0000956 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000957 }
958 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000959 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperb45eabc2017-04-26 16:39:58 +0000960 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
961 Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000962 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000963 }
964 case Instruction::UDiv: {
965 // For the purposes of computing leading zeros we can conservatively
966 // treat a udiv as a logical right shift by the power of 2 known to
967 // be less than the denominator.
Craig Topperb45eabc2017-04-26 16:39:58 +0000968 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000969 unsigned LeadZ = Known2.countMinLeadingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +0000970
Craig Topperf0aeee02017-05-05 17:36:09 +0000971 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000972 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000973 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
974 if (RHSMaxLeadingZeros != BitWidth)
975 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
Chris Lattner965c7692008-06-02 01:18:21 +0000976
Craig Topperb45eabc2017-04-26 16:39:58 +0000977 Known.Zero.setHighBits(LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000978 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000979 }
David Majnemera19d0f22016-08-06 08:16:00 +0000980 case Instruction::Select: {
Craig Toppere953dec2017-04-13 20:39:37 +0000981 const Value *LHS, *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000982 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
983 if (SelectPatternResult::isMinOrMax(SPF)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000984 computeKnownBits(RHS, Known, Depth + 1, Q);
985 computeKnownBits(LHS, Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000986 } else {
Craig Topperb45eabc2017-04-26 16:39:58 +0000987 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
988 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000989 }
990
991 unsigned MaxHighOnes = 0;
992 unsigned MaxHighZeros = 0;
993 if (SPF == SPF_SMAX) {
994 // If both sides are negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +0000995 if (Known.isNegative() && Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000996 // We can derive a lower bound on the result by taking the max of the
997 // leading one bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000998 MaxHighOnes =
999 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001000 // If either side is non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +00001001 else if (Known.isNonNegative() || Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001002 MaxHighZeros = 1;
1003 } else if (SPF == SPF_SMIN) {
1004 // If both sides are non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +00001005 if (Known.isNonNegative() && Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001006 // We can derive an upper bound on the result by taking the max of the
1007 // leading zero bits.
Craig Topper8df66c62017-05-12 17:20:30 +00001008 MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1009 Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001010 // If either side is negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +00001011 else if (Known.isNegative() || Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001012 MaxHighOnes = 1;
1013 } else if (SPF == SPF_UMAX) {
1014 // We can derive a lower bound on the result by taking the max of the
1015 // leading one bits.
1016 MaxHighOnes =
Craig Topper8df66c62017-05-12 17:20:30 +00001017 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001018 } else if (SPF == SPF_UMIN) {
1019 // We can derive an upper bound on the result by taking the max of the
1020 // leading zero bits.
1021 MaxHighZeros =
Craig Topper8df66c62017-05-12 17:20:30 +00001022 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001023 }
1024
Chris Lattner965c7692008-06-02 01:18:21 +00001025 // Only known if known in both the LHS and RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001026 Known.One &= Known2.One;
1027 Known.Zero &= Known2.Zero;
David Majnemera19d0f22016-08-06 08:16:00 +00001028 if (MaxHighOnes > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001029 Known.One.setHighBits(MaxHighOnes);
David Majnemera19d0f22016-08-06 08:16:00 +00001030 if (MaxHighZeros > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001031 Known.Zero.setHighBits(MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001032 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001033 }
Chris Lattner965c7692008-06-02 01:18:21 +00001034 case Instruction::FPTrunc:
1035 case Instruction::FPExt:
1036 case Instruction::FPToUI:
1037 case Instruction::FPToSI:
1038 case Instruction::SIToFP:
1039 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001040 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001041 case Instruction::PtrToInt:
1042 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001043 // Fall through and handle them the same as zext/trunc.
1044 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001045 case Instruction::ZExt:
1046 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001047 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001048
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001049 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001050 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1051 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001052 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001053
1054 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Craig Topperd938fd12017-05-03 22:07:25 +00001055 Known = Known.zextOrTrunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001056 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Craig Topperd938fd12017-05-03 22:07:25 +00001057 Known = Known.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001058 // Any top bits are known to be zero.
1059 if (BitWidth > SrcBitWidth)
Craig Topperb45eabc2017-04-26 16:39:58 +00001060 Known.Zero.setBitsFrom(SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001061 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001062 }
1063 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001064 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001065 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001066 // TODO: For now, not handling conversions like:
1067 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001068 !I->getType()->isVectorTy()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001069 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001070 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001071 }
1072 break;
1073 }
1074 case Instruction::SExt: {
1075 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001076 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001077
Craig Topperd938fd12017-05-03 22:07:25 +00001078 Known = Known.trunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001079 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001080 // If the sign bit of the input is known set or clear, then we know the
1081 // top bits of the result.
Craig Topperd938fd12017-05-03 22:07:25 +00001082 Known = Known.sext(BitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001083 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001084 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001085 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001086 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001087 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperd73c6b42017-03-23 07:06:39 +00001088 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1089 APInt KZResult = KnownZero << ShiftAmt;
1090 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001091 // If this shift has "nsw" keyword, then the result is either a poison
1092 // value or has the same sign bit as the first operand.
Craig Topperd23004c2017-04-17 16:38:20 +00001093 if (NSW && KnownZero.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001094 KZResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001095 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001096 };
1097
Craig Topperd73c6b42017-03-23 07:06:39 +00001098 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001099 APInt KOResult = KnownOne << ShiftAmt;
Craig Topperd23004c2017-04-17 16:38:20 +00001100 if (NSW && KnownOne.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001101 KOResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001102 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001103 };
1104
Craig Topperb45eabc2017-04-26 16:39:58 +00001105 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001106 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001107 }
1108 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001109 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Craig Topperfc947bc2017-04-18 17:14:21 +00001110 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1111 APInt KZResult = KnownZero.lshr(ShiftAmt);
1112 // High bits known zero.
1113 KZResult.setHighBits(ShiftAmt);
1114 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001115 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001116
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001117 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001118 return KnownOne.lshr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001119 };
1120
Craig Topperb45eabc2017-04-26 16:39:58 +00001121 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001122 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001123 }
1124 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001125 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001126 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001127 return KnownZero.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001128 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001129
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001130 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001131 return KnownOne.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001132 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001133
Craig Topperb45eabc2017-04-26 16:39:58 +00001134 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001135 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001136 }
Chris Lattner965c7692008-06-02 01:18:21 +00001137 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001138 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001139 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001140 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001141 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001142 }
Chris Lattner965c7692008-06-02 01:18:21 +00001143 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001144 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001145 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001146 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001147 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001148 }
1149 case Instruction::SRem:
1150 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001151 APInt RA = Rem->getValue().abs();
1152 if (RA.isPowerOf2()) {
1153 APInt LowBits = RA - 1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001154 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001155
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001156 // The low bits of the first operand are unchanged by the srem.
Craig Topperb45eabc2017-04-26 16:39:58 +00001157 Known.Zero = Known2.Zero & LowBits;
1158 Known.One = Known2.One & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001159
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001160 // If the first operand is non-negative or has all low bits zero, then
1161 // the upper bits are all zero.
Craig Topperca48af32017-04-29 16:43:11 +00001162 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
Craig Topperb45eabc2017-04-26 16:39:58 +00001163 Known.Zero |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001164
1165 // If the first operand is negative and not all low bits are zero, then
1166 // the upper bits are all one.
Craig Topperca48af32017-04-29 16:43:11 +00001167 if (Known2.isNegative() && LowBits.intersects(Known2.One))
Craig Topperb45eabc2017-04-26 16:39:58 +00001168 Known.One |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001169
Craig Topperb45eabc2017-04-26 16:39:58 +00001170 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +00001171 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001172 }
1173 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001174
1175 // The sign bit is the LHS's sign bit, except when the result of the
1176 // remainder is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +00001177 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topperda886c62017-04-16 21:46:12 +00001178 // If it's known zero, our sign bit is also zero.
Craig Topperca48af32017-04-29 16:43:11 +00001179 if (Known2.isNonNegative())
1180 Known.makeNonNegative();
Nick Lewyckye4679792011-03-07 01:50:10 +00001181
Chris Lattner965c7692008-06-02 01:18:21 +00001182 break;
1183 case Instruction::URem: {
1184 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001185 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001186 if (RA.isPowerOf2()) {
1187 APInt LowBits = (RA - 1);
Craig Topperb45eabc2017-04-26 16:39:58 +00001188 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1189 Known.Zero |= ~LowBits;
1190 Known.One &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001191 break;
1192 }
1193 }
1194
1195 // Since the result is less than or equal to either operand, any leading
1196 // zero bits in either operand must also exist in the result.
Craig Topperb45eabc2017-04-26 16:39:58 +00001197 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1198 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001199
Craig Topper8df66c62017-05-12 17:20:30 +00001200 unsigned Leaders =
1201 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Craig Topperf0aeee02017-05-05 17:36:09 +00001202 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001203 Known.Zero.setHighBits(Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001204 break;
1205 }
1206
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001207 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001208 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001209 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001210 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001211 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001212
Chris Lattner965c7692008-06-02 01:18:21 +00001213 if (Align > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001214 Known.Zero.setLowBits(countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001215 break;
1216 }
1217 case Instruction::GetElementPtr: {
1218 // Analyze all of the subscripts of this getelementptr instruction
1219 // to determine if we can prove known low zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001220 KnownBits LocalKnown(BitWidth);
1221 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001222 unsigned TrailZ = LocalKnown.countMinTrailingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001223
1224 gep_type_iterator GTI = gep_type_begin(I);
1225 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1226 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001227 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001228 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001229
1230 // Handle case when index is vector zeroinitializer
1231 Constant *CIndex = cast<Constant>(Index);
1232 if (CIndex->isZeroValue())
1233 continue;
1234
1235 if (CIndex->getType()->isVectorTy())
1236 Index = CIndex->getSplatValue();
1237
Chris Lattner965c7692008-06-02 01:18:21 +00001238 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001239 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001240 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001241 TrailZ = std::min<unsigned>(TrailZ,
1242 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001243 } else {
1244 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001245 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001246 if (!IndexedTy->isSized()) {
1247 TrailZ = 0;
1248 break;
1249 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001250 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001251 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Craig Topperb45eabc2017-04-26 16:39:58 +00001252 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1253 computeKnownBits(Index, LocalKnown, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001254 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001255 unsigned(countTrailingZeros(TypeSize) +
Craig Topper8df66c62017-05-12 17:20:30 +00001256 LocalKnown.countMinTrailingZeros()));
Chris Lattner965c7692008-06-02 01:18:21 +00001257 }
1258 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001259
Craig Topperb45eabc2017-04-26 16:39:58 +00001260 Known.Zero.setLowBits(TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001261 break;
1262 }
1263 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001264 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001265 // Handle the case of a simple two-predecessor recurrence PHI.
1266 // There's a lot more that could theoretically be done here, but
1267 // this is sufficient to catch some interesting cases.
1268 if (P->getNumIncomingValues() == 2) {
1269 for (unsigned i = 0; i != 2; ++i) {
1270 Value *L = P->getIncomingValue(i);
1271 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001272 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001273 if (!LU)
1274 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001275 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001276 // Check for operations that have the property that if
1277 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001278 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001279 if (Opcode == Instruction::Add ||
1280 Opcode == Instruction::Sub ||
1281 Opcode == Instruction::And ||
1282 Opcode == Instruction::Or ||
1283 Opcode == Instruction::Mul) {
1284 Value *LL = LU->getOperand(0);
1285 Value *LR = LU->getOperand(1);
1286 // Find a recurrence.
1287 if (LL == I)
1288 L = LR;
1289 else if (LR == I)
1290 L = LL;
1291 else
1292 break;
1293 // Ok, we have a PHI of the form L op= R. Check for low
1294 // zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001295 computeKnownBits(R, Known2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001296
1297 // We need to take the minimum number of known bits
Craig Topperb45eabc2017-04-26 16:39:58 +00001298 KnownBits Known3(Known);
1299 computeKnownBits(L, Known3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001300
Craig Topper8df66c62017-05-12 17:20:30 +00001301 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1302 Known3.countMinTrailingZeros()));
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001303
1304 if (DontImproveNonNegativePhiBits)
1305 break;
1306
1307 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1308 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1309 // If initial value of recurrence is nonnegative, and we are adding
1310 // a nonnegative number with nsw, the result can only be nonnegative
1311 // or poison value regardless of the number of times we execute the
1312 // add in phi recurrence. If initial value is negative and we are
1313 // adding a negative number with nsw, the result can only be
1314 // negative or poison value. Similar arguments apply to sub and mul.
1315 //
1316 // (add non-negative, non-negative) --> non-negative
1317 // (add negative, negative) --> negative
1318 if (Opcode == Instruction::Add) {
Craig Topperca48af32017-04-29 16:43:11 +00001319 if (Known2.isNonNegative() && Known3.isNonNegative())
1320 Known.makeNonNegative();
1321 else if (Known2.isNegative() && Known3.isNegative())
1322 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001323 }
1324
1325 // (sub nsw non-negative, negative) --> non-negative
1326 // (sub nsw negative, non-negative) --> negative
1327 else if (Opcode == Instruction::Sub && LL == I) {
Craig Topperca48af32017-04-29 16:43:11 +00001328 if (Known2.isNonNegative() && Known3.isNegative())
1329 Known.makeNonNegative();
1330 else if (Known2.isNegative() && Known3.isNonNegative())
1331 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001332 }
1333
1334 // (mul nsw non-negative, non-negative) --> non-negative
Craig Topperca48af32017-04-29 16:43:11 +00001335 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1336 Known3.isNonNegative())
1337 Known.makeNonNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001338 }
1339
Chris Lattner965c7692008-06-02 01:18:21 +00001340 break;
1341 }
1342 }
1343 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001344
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001345 // Unreachable blocks may have zero-operand PHI nodes.
1346 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001347 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001348
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001349 // Otherwise take the unions of the known bit sets of the operands,
1350 // taking conservative care to avoid excessive recursion.
Craig Topperb45eabc2017-04-26 16:39:58 +00001351 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001352 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001353 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001354 break;
1355
Craig Topperb45eabc2017-04-26 16:39:58 +00001356 Known.Zero.setAllBits();
1357 Known.One.setAllBits();
Pete Cooper833f34d2015-05-12 20:05:31 +00001358 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001359 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001360 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001361
Craig Topperb45eabc2017-04-26 16:39:58 +00001362 Known2 = KnownBits(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001363 // Recurse, but cap the recursion to one level, because we don't
1364 // want to waste time spinning around in loops.
Craig Topperb45eabc2017-04-26 16:39:58 +00001365 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1366 Known.Zero &= Known2.Zero;
1367 Known.One &= Known2.One;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001368 // If all bits have been ruled out, there's no need to check
1369 // more operands.
Craig Topperb45eabc2017-04-26 16:39:58 +00001370 if (!Known.Zero && !Known.One)
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001371 break;
1372 }
1373 }
Chris Lattner965c7692008-06-02 01:18:21 +00001374 break;
1375 }
1376 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001377 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001378 // If range metadata is attached to this call, set known bits from that,
1379 // and then intersect with known bits based on other properties of the
1380 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001381 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +00001382 computeKnownBitsFromRangeMetadata(*MD, Known);
Pete Cooper35b00d52016-08-13 01:05:32 +00001383 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001384 computeKnownBits(RV, Known2, Depth + 1, Q);
1385 Known.Zero |= Known2.Zero;
1386 Known.One |= Known2.One;
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001387 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001388 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001389 switch (II->getIntrinsicID()) {
1390 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001391 case Intrinsic::bitreverse:
Craig Topperb45eabc2017-04-26 16:39:58 +00001392 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1393 Known.Zero |= Known2.Zero.reverseBits();
1394 Known.One |= Known2.One.reverseBits();
Chad Rosier85204292017-01-17 17:23:51 +00001395 break;
Philip Reames675418e2015-10-06 20:20:45 +00001396 case Intrinsic::bswap:
Craig Topperb45eabc2017-04-26 16:39:58 +00001397 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1398 Known.Zero |= Known2.Zero.byteSwap();
1399 Known.One |= Known2.One.byteSwap();
Philip Reames675418e2015-10-06 20:20:45 +00001400 break;
Craig Topper868813f2017-05-08 17:22:34 +00001401 case Intrinsic::ctlz: {
1402 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1403 // If we have a known 1, its position is our upper bound.
1404 unsigned PossibleLZ = Known2.One.countLeadingZeros();
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001405 // If this call is undefined for 0, the result will be less than 2^n.
1406 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
Craig Topper868813f2017-05-08 17:22:34 +00001407 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1408 unsigned LowBits = Log2_32(PossibleLZ)+1;
1409 Known.Zero.setBitsFrom(LowBits);
1410 break;
1411 }
1412 case Intrinsic::cttz: {
1413 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1414 // If we have a known 1, its position is our upper bound.
1415 unsigned PossibleTZ = Known2.One.countTrailingZeros();
1416 // If this call is undefined for 0, the result will be less than 2^n.
1417 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1418 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1419 unsigned LowBits = Log2_32(PossibleTZ)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001420 Known.Zero.setBitsFrom(LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001421 break;
1422 }
1423 case Intrinsic::ctpop: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001424 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001425 // We can bound the space the count needs. Also, bits known to be zero
1426 // can't contribute to the population.
Craig Topper8df66c62017-05-12 17:20:30 +00001427 unsigned BitsPossiblySet = Known2.countMaxPopulation();
Craig Topper66df10f2017-04-14 06:43:34 +00001428 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001429 Known.Zero.setBitsFrom(LowBits);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001430 // TODO: we could bound KnownOne using the lower bound on the number
1431 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001432 break;
1433 }
Chad Rosierb3628842011-05-26 23:13:19 +00001434 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topperb45eabc2017-04-26 16:39:58 +00001435 Known.Zero.setBitsFrom(32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001436 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001437 }
1438 }
1439 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001440 case Instruction::ExtractElement:
1441 // Look through extract element. At the moment we keep this simple and skip
1442 // tracking the specific element. But at least we might find information
1443 // valid for all elements of the vector (for example if vector is sign
1444 // extended, shifted, etc).
Craig Topperb45eabc2017-04-26 16:39:58 +00001445 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Bjorn Pettersson39616032016-10-06 09:56:21 +00001446 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001447 case Instruction::ExtractValue:
1448 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001449 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001450 if (EVI->getNumIndices() != 1) break;
1451 if (EVI->getIndices()[0] == 0) {
1452 switch (II->getIntrinsicID()) {
1453 default: break;
1454 case Intrinsic::uadd_with_overflow:
1455 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001456 computeKnownBitsAddSub(true, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001457 II->getArgOperand(1), false, Known, Known2,
1458 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001459 break;
1460 case Intrinsic::usub_with_overflow:
1461 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001462 computeKnownBitsAddSub(false, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001463 II->getArgOperand(1), false, Known, Known2,
1464 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001465 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001466 case Intrinsic::umul_with_overflow:
1467 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001468 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Craig Topperb45eabc2017-04-26 16:39:58 +00001469 Known, Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001470 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001471 }
1472 }
1473 }
Chris Lattner965c7692008-06-02 01:18:21 +00001474 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001475}
1476
1477/// Determine which bits of V are known to be either zero or one and return
Craig Topper6e11a052017-05-08 16:22:48 +00001478/// them.
1479KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1480 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1481 computeKnownBits(V, Known, Depth, Q);
1482 return Known;
1483}
1484
1485/// Determine which bits of V are known to be either zero or one and return
Craig Topperb45eabc2017-04-26 16:39:58 +00001486/// them in the Known bit set.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001487///
1488/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1489/// we cannot optimize based on the assumption that it is zero without changing
1490/// it to be an explicit zero. If we don't change it to zero, other code could
1491/// optimized based on the contradictory assumption that it is non-zero.
1492/// Because instcombine aggressively folds operations with undef args anyway,
1493/// this won't lose us code quality.
1494///
1495/// This function is defined on values with integer type, values with pointer
1496/// type, and vectors of integers. In the case
1497/// where V is a vector, known zero, and known one values are the
1498/// same width as the vector element, and the bit is set only if it is true
1499/// for all of the elements in the vector.
Craig Topperb45eabc2017-04-26 16:39:58 +00001500void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1501 const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001502 assert(V && "No Value?");
1503 assert(Depth <= MaxDepth && "Limit Search Depth");
Craig Topperb45eabc2017-04-26 16:39:58 +00001504 unsigned BitWidth = Known.getBitWidth();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001505
1506 assert((V->getType()->isIntOrIntVectorTy() ||
1507 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001508 "Not integer or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001509 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001510 (!V->getType()->isIntOrIntVectorTy() ||
1511 V->getType()->getScalarSizeInBits() == BitWidth) &&
Craig Topperb45eabc2017-04-26 16:39:58 +00001512 "V and Known should have same BitWidth");
Craig Topperd73c6b42017-03-23 07:06:39 +00001513 (void)BitWidth;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001514
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001515 const APInt *C;
1516 if (match(V, m_APInt(C))) {
1517 // We know all of the bits for a scalar constant or a splat vector constant!
Craig Topperb45eabc2017-04-26 16:39:58 +00001518 Known.One = *C;
1519 Known.Zero = ~Known.One;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001520 return;
1521 }
1522 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001523 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001524 Known.setAllZero();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001525 return;
1526 }
1527 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001528 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001529 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001530 // We know that CDS must be a vector of integers. Take the intersection of
1531 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001532 Known.Zero.setAllBits(); Known.One.setAllBits();
Craig Topper9c932d32017-04-25 16:48:03 +00001533 APInt Elt(BitWidth, 0);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001534 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1535 Elt = CDS->getElementAsInteger(i);
Craig Topperb45eabc2017-04-26 16:39:58 +00001536 Known.Zero &= ~Elt;
1537 Known.One &= Elt;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001538 }
1539 return;
1540 }
1541
Pete Cooper35b00d52016-08-13 01:05:32 +00001542 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001543 // We know that CV must be a vector of integers. Take the intersection of
1544 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001545 Known.Zero.setAllBits(); Known.One.setAllBits();
1546 APInt Elt(BitWidth, 0);
David Majnemer3918cdd2016-05-04 06:13:33 +00001547 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1548 Constant *Element = CV->getAggregateElement(i);
1549 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1550 if (!ElementCI) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001551 Known.resetAll();
David Majnemer3918cdd2016-05-04 06:13:33 +00001552 return;
1553 }
1554 Elt = ElementCI->getValue();
Craig Topperb45eabc2017-04-26 16:39:58 +00001555 Known.Zero &= ~Elt;
1556 Known.One &= Elt;
David Majnemer3918cdd2016-05-04 06:13:33 +00001557 }
1558 return;
1559 }
1560
Jingyue Wu12b0c282015-06-15 05:46:29 +00001561 // Start out not knowing anything.
Craig Topperf0aeee02017-05-05 17:36:09 +00001562 Known.resetAll();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001563
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001564 // We can't imply anything about undefs.
1565 if (isa<UndefValue>(V))
1566 return;
1567
1568 // There's no point in looking through other users of ConstantData for
1569 // assumptions. Confirm that we've handled them all.
1570 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1571
Jingyue Wu12b0c282015-06-15 05:46:29 +00001572 // Limit search depth.
1573 // All recursive calls that increase depth must come after this.
1574 if (Depth == MaxDepth)
1575 return;
1576
1577 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1578 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001579 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001580 if (!GA->isInterposable())
Craig Topperb45eabc2017-04-26 16:39:58 +00001581 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001582 return;
1583 }
1584
Pete Cooper35b00d52016-08-13 01:05:32 +00001585 if (const Operator *I = dyn_cast<Operator>(V))
Craig Topperb45eabc2017-04-26 16:39:58 +00001586 computeKnownBitsFromOperator(I, Known, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001587
Craig Topperb45eabc2017-04-26 16:39:58 +00001588 // Aligned pointers have trailing zeros - refine Known.Zero set
Artur Pilipenko029d8532015-09-30 11:55:45 +00001589 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001590 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001591 if (Align)
Craig Topperb45eabc2017-04-26 16:39:58 +00001592 Known.Zero.setLowBits(countTrailingZeros(Align));
Artur Pilipenko029d8532015-09-30 11:55:45 +00001593 }
1594
Craig Topperb45eabc2017-04-26 16:39:58 +00001595 // computeKnownBitsFromAssume strictly refines Known.
1596 // Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001597
1598 // Check whether a nearby assume intrinsic can determine some known bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001599 computeKnownBitsFromAssume(V, Known, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001600
Craig Topperb45eabc2017-04-26 16:39:58 +00001601 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001602}
1603
Sanjay Patelaee84212014-11-04 16:27:42 +00001604/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001605/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001606/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001607/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001608bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001609 const Query &Q) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001610 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001611 if (C->isNullValue())
1612 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001613
1614 const APInt *ConstIntOrConstSplatInt;
1615 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1616 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001617 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001618
1619 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1620 // it is shifted off the end then the result is undefined.
1621 if (match(V, m_Shl(m_One(), m_Value())))
1622 return true;
1623
Craig Topperbcfd2d12017-04-20 16:56:25 +00001624 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1625 // the bottom. If it is shifted off the bottom then the result is undefined.
1626 if (match(V, m_LShr(m_SignMask(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001627 return true;
1628
1629 // The remaining tests are all recursive, so bail out if we hit the limit.
1630 if (Depth++ == MaxDepth)
1631 return false;
1632
Craig Topper9f008862014-04-15 04:59:12 +00001633 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001634 // A shift left or a logical shift right of a power of two is a power of two
1635 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001636 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001637 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001638 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001639
Pete Cooper35b00d52016-08-13 01:05:32 +00001640 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001641 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001642
Pete Cooper35b00d52016-08-13 01:05:32 +00001643 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001644 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1645 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001646
Duncan Sandsba286d72011-10-26 20:55:21 +00001647 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1648 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001649 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1650 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001651 return true;
1652 // X & (-X) is always a power of two or zero.
1653 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1654 return true;
1655 return false;
1656 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001657
David Majnemerb7d54092013-07-30 21:01:36 +00001658 // Adding a power-of-two or zero to the same power-of-two or zero yields
1659 // either the original power-of-two, a larger power-of-two or zero.
1660 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001661 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001662 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1663 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1664 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001665 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001666 return true;
1667 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1668 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001669 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001670 return true;
1671
1672 unsigned BitWidth = V->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00001673 KnownBits LHSBits(BitWidth);
1674 computeKnownBits(X, LHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001675
Craig Topperb45eabc2017-04-26 16:39:58 +00001676 KnownBits RHSBits(BitWidth);
1677 computeKnownBits(Y, RHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001678 // If i8 V is a power of two or zero:
1679 // ZeroBits: 1 1 1 0 1 1 1 1
1680 // ~ZeroBits: 0 0 0 1 0 0 0 0
Craig Topperb45eabc2017-04-26 16:39:58 +00001681 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
David Majnemerb7d54092013-07-30 21:01:36 +00001682 // If OrZero isn't set, we cannot give back a zero result.
1683 // Make sure either the LHS or RHS has a bit set.
Craig Topperb45eabc2017-04-26 16:39:58 +00001684 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
David Majnemerb7d54092013-07-30 21:01:36 +00001685 return true;
1686 }
1687 }
David Majnemerbeab5672013-05-18 19:30:37 +00001688
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001689 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001690 // is a power of two only if the first operand is a power of two and not
1691 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001692 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1693 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001694 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001695 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001696 }
1697
Duncan Sandsd3951082011-01-25 09:38:29 +00001698 return false;
1699}
1700
Chandler Carruth80d3e562012-12-07 02:08:58 +00001701/// \brief Test whether a GEP's result is known to be non-null.
1702///
1703/// Uses properties inherent in a GEP to try to determine whether it is known
1704/// to be non-null.
1705///
1706/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001707static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001708 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001709 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1710 return false;
1711
1712 // FIXME: Support vector-GEPs.
1713 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1714
1715 // If the base pointer is non-null, we cannot walk to a null address with an
1716 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001717 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001718 return true;
1719
Chandler Carruth80d3e562012-12-07 02:08:58 +00001720 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1721 // If so, then the GEP cannot produce a null pointer, as doing so would
1722 // inherently violate the inbounds contract within address space zero.
1723 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1724 GTI != GTE; ++GTI) {
1725 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001726 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001727 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1728 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001729 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001730 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1731 if (ElementOffset > 0)
1732 return true;
1733 continue;
1734 }
1735
1736 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001737 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001738 continue;
1739
1740 // Fast path the constant operand case both for efficiency and so we don't
1741 // increment Depth when just zipping down an all-constant GEP.
1742 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1743 if (!OpC->isZero())
1744 return true;
1745 continue;
1746 }
1747
1748 // We post-increment Depth here because while isKnownNonZero increments it
1749 // as well, when we pop back up that increment won't persist. We don't want
1750 // to recurse 10k times just because we have 10k GEP operands. We don't
1751 // bail completely out because we want to handle constant GEPs regardless
1752 // of depth.
1753 if (Depth++ >= MaxDepth)
1754 continue;
1755
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001756 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001757 return true;
1758 }
1759
1760 return false;
1761}
1762
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001763/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1764/// ensure that the value it's attached to is never Value? 'RangeType' is
1765/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001766static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001767 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1768 assert(NumRanges >= 1);
1769 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001770 ConstantInt *Lower =
1771 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1772 ConstantInt *Upper =
1773 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001774 ConstantRange Range(Lower->getValue(), Upper->getValue());
1775 if (Range.contains(Value))
1776 return false;
1777 }
1778 return true;
1779}
1780
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001781/// Return true if the given value is known to be non-zero when defined. For
1782/// vectors, return true if every element is known to be non-zero when
1783/// defined. For pointers, if the context instruction and dominator tree are
1784/// specified, perform context-sensitive analysis and return true if the
1785/// pointer couldn't possibly be null at the specified instruction.
1786/// Supports values with integer or pointer type and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001787bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001788 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001789 if (C->isNullValue())
1790 return false;
1791 if (isa<ConstantInt>(C))
1792 // Must be non-zero due to null test above.
1793 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001794
1795 // For constant vectors, check that all elements are undefined or known
1796 // non-zero to determine that the whole vector is known non-zero.
1797 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1798 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1799 Constant *Elt = C->getAggregateElement(i);
1800 if (!Elt || Elt->isNullValue())
1801 return false;
1802 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1803 return false;
1804 }
1805 return true;
1806 }
1807
Duncan Sandsd3951082011-01-25 09:38:29 +00001808 return false;
1809 }
1810
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001811 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001812 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001813 // If the possible ranges don't contain zero, then the value is
1814 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001815 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001816 const APInt ZeroValue(Ty->getBitWidth(), 0);
1817 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1818 return true;
1819 }
1820 }
1821 }
1822
Duncan Sandsd3951082011-01-25 09:38:29 +00001823 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001824 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001825 return false;
1826
Chandler Carruth80d3e562012-12-07 02:08:58 +00001827 // Check for pointer simplifications.
1828 if (V->getType()->isPointerTy()) {
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001829 if (isKnownNonNullAt(V, Q.CxtI, Q.DT))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001830 return true;
Pete Cooper35b00d52016-08-13 01:05:32 +00001831 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001832 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001833 return true;
1834 }
1835
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001836 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001837
1838 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001839 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001840 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001841 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001842
1843 // ext X != 0 if X != 0.
1844 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001845 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001846
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001847 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001848 // if the lowest bit is shifted off the end.
Craig Topper6b3940a2017-05-03 22:25:19 +00001849 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001850 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001851 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001852 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001853 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001854
Craig Topperb45eabc2017-04-26 16:39:58 +00001855 KnownBits Known(BitWidth);
1856 computeKnownBits(X, Known, Depth, Q);
1857 if (Known.One[0])
Duncan Sandsd3951082011-01-25 09:38:29 +00001858 return true;
1859 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001860 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001861 // defined if the sign bit is shifted off the end.
1862 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001863 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001864 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001865 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001866 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001867
Craig Topper6e11a052017-05-08 16:22:48 +00001868 KnownBits Known = computeKnownBits(X, Depth, Q);
1869 if (Known.isNegative())
Duncan Sandsd3951082011-01-25 09:38:29 +00001870 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001871
1872 // If the shifter operand is a constant, and all of the bits shifted
1873 // out are known to be zero, and X is known non-zero then at least one
1874 // non-zero bit must remain.
1875 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
James Molloyb6be1eb2015-09-24 16:06:32 +00001876 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1877 // Is there a known one in the portion not shifted out?
Craig Topper8df66c62017-05-12 17:20:30 +00001878 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
James Molloyb6be1eb2015-09-24 16:06:32 +00001879 return true;
1880 // Are all the bits to be shifted out known zero?
Craig Topper8df66c62017-05-12 17:20:30 +00001881 if (Known.countMinTrailingZeros() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001882 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001883 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001884 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001885 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001886 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001887 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001888 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001889 // X + Y.
1890 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Craig Topper6e11a052017-05-08 16:22:48 +00001891 KnownBits XKnown = computeKnownBits(X, Depth, Q);
1892 KnownBits YKnown = computeKnownBits(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001893
1894 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001895 // zero unless both X and Y are zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001896 if (XKnown.isNonNegative() && YKnown.isNonNegative())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001897 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001898 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001899
1900 // If X and Y are both negative (as signed values) then their sum is not
1901 // zero unless both X and Y equal INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001902 if (XKnown.isNegative() && YKnown.isNegative()) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001903 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1904 // The sign bit of X is set. If some other bit is set then X is not equal
1905 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001906 if (XKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001907 return true;
1908 // The sign bit of Y is set. If some other bit is set then Y is not equal
1909 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001910 if (YKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001911 return true;
1912 }
1913
1914 // The sum of a non-negative number and a power of two is not zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001915 if (XKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001916 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001917 return true;
Craig Topper6e11a052017-05-08 16:22:48 +00001918 if (YKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001919 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001920 return true;
1921 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001922 // X * Y.
1923 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001924 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001925 // If X and Y are non-zero then so is X * Y as long as the multiplication
1926 // does not overflow.
1927 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001928 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001929 return true;
1930 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001931 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001932 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001933 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1934 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001935 return true;
1936 }
James Molloy897048b2015-09-29 14:08:45 +00001937 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00001938 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00001939 // Try and detect a recurrence that monotonically increases from a
1940 // starting value, as these are common as induction variables.
1941 if (PN->getNumIncomingValues() == 2) {
1942 Value *Start = PN->getIncomingValue(0);
1943 Value *Induction = PN->getIncomingValue(1);
1944 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1945 std::swap(Start, Induction);
1946 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1947 if (!C->isZero() && !C->isNegative()) {
1948 ConstantInt *X;
1949 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1950 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1951 !X->isNegative())
1952 return true;
1953 }
1954 }
1955 }
Jun Bum Limca832662016-02-01 17:03:07 +00001956 // Check if all incoming values are non-zero constant.
1957 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1958 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1959 });
1960 if (AllNonZeroConstants)
1961 return true;
James Molloy897048b2015-09-29 14:08:45 +00001962 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001963
Craig Topperb45eabc2017-04-26 16:39:58 +00001964 KnownBits Known(BitWidth);
1965 computeKnownBits(V, Known, Depth, Q);
1966 return Known.One != 0;
Duncan Sandsd3951082011-01-25 09:38:29 +00001967}
1968
James Molloy1d88d6f2015-10-22 13:18:42 +00001969/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00001970static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
1971 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00001972 if (!BO || BO->getOpcode() != Instruction::Add)
1973 return false;
1974 Value *Op = nullptr;
1975 if (V2 == BO->getOperand(0))
1976 Op = BO->getOperand(1);
1977 else if (V2 == BO->getOperand(1))
1978 Op = BO->getOperand(0);
1979 else
1980 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001981 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001982}
1983
1984/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00001985static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
Craig Topper3002d5b2017-06-06 07:13:15 +00001986 if (V1 == V2)
James Molloy1d88d6f2015-10-22 13:18:42 +00001987 return false;
1988 if (V1->getType() != V2->getType())
1989 // We can't look through casts yet.
1990 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001991 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00001992 return true;
1993
Craig Topper3002d5b2017-06-06 07:13:15 +00001994 if (V1->getType()->isIntOrIntVectorTy()) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001995 // Are any known bits in V1 contradictory to known bits in V2? If V1
1996 // has a known zero where V2 has a known one, they must not be equal.
Craig Topper8e662f72017-06-06 07:13:11 +00001997 KnownBits Known1 = computeKnownBits(V1, 0, Q);
1998 KnownBits Known2 = computeKnownBits(V2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001999
Craig Topper8365df82017-06-06 07:13:09 +00002000 if (Known1.Zero.intersects(Known2.One) ||
2001 Known2.Zero.intersects(Known1.One))
James Molloy1d88d6f2015-10-22 13:18:42 +00002002 return true;
2003 }
2004 return false;
2005}
2006
Sanjay Patelaee84212014-11-04 16:27:42 +00002007/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2008/// simplify operations downstream. Mask is known to be zero for bits that V
2009/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002010///
2011/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002012/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002013/// where V is a vector, the mask, known zero, and known one values are the
2014/// same width as the vector element, and the bit is set only if it is true
2015/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002016bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002017 const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002018 KnownBits Known(Mask.getBitWidth());
2019 computeKnownBits(V, Known, Depth, Q);
2020 return Mask.isSubsetOf(Known.Zero);
Chris Lattner965c7692008-06-02 01:18:21 +00002021}
2022
Sanjay Patela06d9892016-06-22 19:20:59 +00002023/// For vector constants, loop over the elements and find the constant with the
2024/// minimum number of sign bits. Return 0 if the value is not a vector constant
2025/// or if any element was not analyzed; otherwise, return the count for the
2026/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002027static unsigned computeNumSignBitsVectorConstant(const Value *V,
2028 unsigned TyBits) {
2029 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002030 if (!CV || !CV->getType()->isVectorTy())
2031 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002032
Sanjay Patela06d9892016-06-22 19:20:59 +00002033 unsigned MinSignBits = TyBits;
2034 unsigned NumElts = CV->getType()->getVectorNumElements();
2035 for (unsigned i = 0; i != NumElts; ++i) {
2036 // If we find a non-ConstantInt, bail out.
2037 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2038 if (!Elt)
2039 return 0;
2040
2041 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2042 APInt EltVal = Elt->getValue();
2043 if (EltVal.isNegative())
2044 EltVal = ~EltVal;
2045 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2046 }
2047
2048 return MinSignBits;
2049}
Chris Lattner965c7692008-06-02 01:18:21 +00002050
Sanjoy Das39a684d2017-02-25 20:30:45 +00002051static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2052 const Query &Q);
2053
2054static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2055 const Query &Q) {
2056 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2057 assert(Result > 0 && "At least one sign bit needs to be present!");
2058 return Result;
2059}
2060
Sanjay Patelaee84212014-11-04 16:27:42 +00002061/// Return the number of times the sign bit of the register is replicated into
2062/// the other bits. We know that at least 1 bit is always equal to the sign bit
2063/// (itself), but other cases can give us information. For example, immediately
2064/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002065/// other, so we return 3. For vectors, return the number of sign bits for the
2066/// vector element with the mininum number of known sign bits.
Sanjoy Das39a684d2017-02-25 20:30:45 +00002067static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2068 const Query &Q) {
2069
2070 // We return the minimum number of sign bits that are guaranteed to be present
2071 // in V, so for undef we have to conservatively return 1. We don't have the
2072 // same behavior for poison though -- that's a FIXME today.
2073
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002074 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002075 unsigned Tmp, Tmp2;
2076 unsigned FirstAnswer = 1;
2077
Jay Foada0653a32014-05-14 21:14:37 +00002078 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002079 // below.
2080
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002081 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002082 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002083
Pete Cooper35b00d52016-08-13 01:05:32 +00002084 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002085 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002086 default: break;
2087 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002088 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002089 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002090
Nadav Rotemc99a3872015-03-06 00:23:58 +00002091 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002092 const APInt *Denominator;
2093 // sdiv X, C -> adds log(C) sign bits.
2094 if (match(U->getOperand(1), m_APInt(Denominator))) {
2095
2096 // Ignore non-positive denominator.
2097 if (!Denominator->isStrictlyPositive())
2098 break;
2099
2100 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002101 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002102
2103 // Add floor(log(C)) bits to the numerator bits.
2104 return std::min(TyBits, NumBits + Denominator->logBase2());
2105 }
2106 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002107 }
2108
2109 case Instruction::SRem: {
2110 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002111 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2112 // positive constant. This let us put a lower bound on the number of sign
2113 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002114 if (match(U->getOperand(1), m_APInt(Denominator))) {
2115
2116 // Ignore non-positive denominator.
2117 if (!Denominator->isStrictlyPositive())
2118 break;
2119
2120 // Calculate the incoming numerator bits. SRem by a positive constant
2121 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002122 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002123 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002124
2125 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002126 // denominator. Given that the denominator is positive, there are two
2127 // cases:
2128 //
2129 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2130 // (1 << ceilLogBase2(C)).
2131 //
2132 // 2. the numerator is negative. Then the result range is (-C,0] and
2133 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2134 //
2135 // Thus a lower bound on the number of sign bits is `TyBits -
2136 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002137
Sanjoy Dase561fee2015-03-25 22:33:53 +00002138 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002139 return std::max(NumrBits, ResBits);
2140 }
2141 break;
2142 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002143
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002144 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002145 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002146 // ashr X, C -> adds C sign bits. Vectors too.
2147 const APInt *ShAmt;
2148 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Sanjoy Das39a684d2017-02-25 20:30:45 +00002149 unsigned ShAmtLimited = ShAmt->getZExtValue();
2150 if (ShAmtLimited >= TyBits)
2151 break; // Bad shift.
2152 Tmp += ShAmtLimited;
Chris Lattner965c7692008-06-02 01:18:21 +00002153 if (Tmp > TyBits) Tmp = TyBits;
2154 }
2155 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002156 }
2157 case Instruction::Shl: {
2158 const APInt *ShAmt;
2159 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002160 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002161 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002162 Tmp2 = ShAmt->getZExtValue();
2163 if (Tmp2 >= TyBits || // Bad shift.
2164 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2165 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002166 }
2167 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002168 }
Chris Lattner965c7692008-06-02 01:18:21 +00002169 case Instruction::And:
2170 case Instruction::Or:
2171 case Instruction::Xor: // NOT is handled here.
2172 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002173 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002174 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002175 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002176 FirstAnswer = std::min(Tmp, Tmp2);
2177 // We computed what we know about the sign bits as our first
2178 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002179 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002180 }
2181 break;
2182
2183 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002184 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002185 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002186 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002187 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002188
Chris Lattner965c7692008-06-02 01:18:21 +00002189 case Instruction::Add:
2190 // Add can have at most one carry bit. Thus we know that the output
2191 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002192 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002193 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002194
Chris Lattner965c7692008-06-02 01:18:21 +00002195 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002196 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002197 if (CRHS->isAllOnesValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002198 KnownBits Known(TyBits);
2199 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002200
Chris Lattner965c7692008-06-02 01:18:21 +00002201 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2202 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002203 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002204 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002205
Chris Lattner965c7692008-06-02 01:18:21 +00002206 // If we are subtracting one from a positive number, there is no carry
2207 // out of the result.
Craig Topperca48af32017-04-29 16:43:11 +00002208 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002209 return Tmp;
2210 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002211
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002212 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002213 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002214 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002215
Chris Lattner965c7692008-06-02 01:18:21 +00002216 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002217 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002218 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002219
Chris Lattner965c7692008-06-02 01:18:21 +00002220 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002221 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002222 if (CLHS->isNullValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002223 KnownBits Known(TyBits);
2224 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002225 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2226 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002227 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002228 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002229
Chris Lattner965c7692008-06-02 01:18:21 +00002230 // If the input is known to be positive (the sign bit is known clear),
2231 // the output of the NEG has the same number of sign bits as the input.
Craig Topperca48af32017-04-29 16:43:11 +00002232 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002233 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002234
Chris Lattner965c7692008-06-02 01:18:21 +00002235 // Otherwise, we treat this like a SUB.
2236 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002237
Chris Lattner965c7692008-06-02 01:18:21 +00002238 // Sub can have at most one carry bit. Thus we know that the output
2239 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002240 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002241 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002242 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002243
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002244 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002245 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002246 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002247 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002248 if (NumIncomingValues > 4) break;
2249 // Unreachable blocks may have zero-operand PHI nodes.
2250 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002251
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002252 // Take the minimum of all incoming values. This can't infinitely loop
2253 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002254 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002255 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002256 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002257 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002258 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002259 }
2260 return Tmp;
2261 }
2262
Chris Lattner965c7692008-06-02 01:18:21 +00002263 case Instruction::Trunc:
2264 // FIXME: it's tricky to do anything useful for this, but it is an important
2265 // case for targets like X86.
2266 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002267
2268 case Instruction::ExtractElement:
2269 // Look through extract element. At the moment we keep this simple and skip
2270 // tracking the specific element. But at least we might find information
2271 // valid for all elements of the vector (for example if vector is sign
2272 // extended, shifted, etc).
2273 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002274 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002275
Chris Lattner965c7692008-06-02 01:18:21 +00002276 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2277 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002278
2279 // If we can examine all elements of a vector constant successfully, we're
2280 // done (we can't do any better than that). If not, keep trying.
2281 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2282 return VecSignBits;
2283
Craig Topperb45eabc2017-04-26 16:39:58 +00002284 KnownBits Known(TyBits);
2285 computeKnownBits(V, Known, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002286
Sanjay Patele0536212016-06-23 17:41:59 +00002287 // If we know that the sign bit is either zero or one, determine the number of
2288 // identical bits in the top of the input value.
Craig Topper8df66c62017-05-12 17:20:30 +00002289 return std::max(FirstAnswer, Known.countMinSignBits());
Chris Lattner965c7692008-06-02 01:18:21 +00002290}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002291
Sanjay Patelaee84212014-11-04 16:27:42 +00002292/// This function computes the integer multiple of Base that equals V.
2293/// If successful, it returns true and returns the multiple in
2294/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002295/// through SExt instructions only if LookThroughSExt is true.
2296bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002297 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002298 const unsigned MaxDepth = 6;
2299
Dan Gohman6a976bb2009-11-18 00:58:27 +00002300 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002301 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002302 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002303
Chris Lattner229907c2011-07-18 04:54:35 +00002304 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002305
Dan Gohman6a976bb2009-11-18 00:58:27 +00002306 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002307
2308 if (Base == 0)
2309 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002310
Victor Hernandez47444882009-11-10 08:28:35 +00002311 if (Base == 1) {
2312 Multiple = V;
2313 return true;
2314 }
2315
2316 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2317 Constant *BaseVal = ConstantInt::get(T, Base);
2318 if (CO && CO == BaseVal) {
2319 // Multiple is 1.
2320 Multiple = ConstantInt::get(T, 1);
2321 return true;
2322 }
2323
2324 if (CI && CI->getZExtValue() % Base == 0) {
2325 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002326 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002327 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002328
Victor Hernandez47444882009-11-10 08:28:35 +00002329 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002330
Victor Hernandez47444882009-11-10 08:28:35 +00002331 Operator *I = dyn_cast<Operator>(V);
2332 if (!I) return false;
2333
2334 switch (I->getOpcode()) {
2335 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002336 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002337 if (!LookThroughSExt) return false;
2338 // otherwise fall through to ZExt
Galina Kistanova244621f2017-05-31 22:16:24 +00002339 LLVM_FALLTHROUGH;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002340 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002341 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2342 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002343 case Instruction::Shl:
2344 case Instruction::Mul: {
2345 Value *Op0 = I->getOperand(0);
2346 Value *Op1 = I->getOperand(1);
2347
2348 if (I->getOpcode() == Instruction::Shl) {
2349 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2350 if (!Op1CI) return false;
2351 // Turn Op0 << Op1 into Op0 * 2^Op1
2352 APInt Op1Int = Op1CI->getValue();
2353 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002354 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002355 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002356 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002357 }
2358
Craig Topper9f008862014-04-15 04:59:12 +00002359 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002360 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2361 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2362 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002363 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002364 MulC->getType()->getPrimitiveSizeInBits())
2365 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002366 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002367 MulC->getType()->getPrimitiveSizeInBits())
2368 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002369
Chris Lattner72d283c2010-09-05 17:20:46 +00002370 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2371 Multiple = ConstantExpr::getMul(MulC, Op1C);
2372 return true;
2373 }
Victor Hernandez47444882009-11-10 08:28:35 +00002374
2375 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2376 if (Mul0CI->getValue() == 1) {
2377 // V == Base * Op1, so return Op1
2378 Multiple = Op1;
2379 return true;
2380 }
2381 }
2382
Craig Topper9f008862014-04-15 04:59:12 +00002383 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002384 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2385 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2386 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002387 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002388 MulC->getType()->getPrimitiveSizeInBits())
2389 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002390 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002391 MulC->getType()->getPrimitiveSizeInBits())
2392 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002393
Chris Lattner72d283c2010-09-05 17:20:46 +00002394 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2395 Multiple = ConstantExpr::getMul(MulC, Op0C);
2396 return true;
2397 }
Victor Hernandez47444882009-11-10 08:28:35 +00002398
2399 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2400 if (Mul1CI->getValue() == 1) {
2401 // V == Base * Op0, so return Op0
2402 Multiple = Op0;
2403 return true;
2404 }
2405 }
Victor Hernandez47444882009-11-10 08:28:35 +00002406 }
2407 }
2408
2409 // We could not determine if V is a multiple of Base.
2410 return false;
2411}
2412
David Majnemerb4b27232016-04-19 19:10:21 +00002413Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2414 const TargetLibraryInfo *TLI) {
2415 const Function *F = ICS.getCalledFunction();
2416 if (!F)
2417 return Intrinsic::not_intrinsic;
2418
2419 if (F->isIntrinsic())
2420 return F->getIntrinsicID();
2421
2422 if (!TLI)
2423 return Intrinsic::not_intrinsic;
2424
David L. Jonesd21529f2017-01-23 23:16:46 +00002425 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002426 // We're going to make assumptions on the semantics of the functions, check
2427 // that the target knows that it's available in this environment and it does
2428 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002429 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2430 return Intrinsic::not_intrinsic;
2431
2432 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002433 return Intrinsic::not_intrinsic;
2434
2435 // Otherwise check if we have a call to a function that can be turned into a
2436 // vector intrinsic.
2437 switch (Func) {
2438 default:
2439 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002440 case LibFunc_sin:
2441 case LibFunc_sinf:
2442 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002443 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002444 case LibFunc_cos:
2445 case LibFunc_cosf:
2446 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002447 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002448 case LibFunc_exp:
2449 case LibFunc_expf:
2450 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002451 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002452 case LibFunc_exp2:
2453 case LibFunc_exp2f:
2454 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002455 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002456 case LibFunc_log:
2457 case LibFunc_logf:
2458 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002459 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002460 case LibFunc_log10:
2461 case LibFunc_log10f:
2462 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002463 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002464 case LibFunc_log2:
2465 case LibFunc_log2f:
2466 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002467 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002468 case LibFunc_fabs:
2469 case LibFunc_fabsf:
2470 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002471 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002472 case LibFunc_fmin:
2473 case LibFunc_fminf:
2474 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002475 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002476 case LibFunc_fmax:
2477 case LibFunc_fmaxf:
2478 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002479 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002480 case LibFunc_copysign:
2481 case LibFunc_copysignf:
2482 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002483 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002484 case LibFunc_floor:
2485 case LibFunc_floorf:
2486 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002487 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002488 case LibFunc_ceil:
2489 case LibFunc_ceilf:
2490 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002491 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002492 case LibFunc_trunc:
2493 case LibFunc_truncf:
2494 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002495 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002496 case LibFunc_rint:
2497 case LibFunc_rintf:
2498 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002499 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002500 case LibFunc_nearbyint:
2501 case LibFunc_nearbyintf:
2502 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002503 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002504 case LibFunc_round:
2505 case LibFunc_roundf:
2506 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002507 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002508 case LibFunc_pow:
2509 case LibFunc_powf:
2510 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002511 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002512 case LibFunc_sqrt:
2513 case LibFunc_sqrtf:
2514 case LibFunc_sqrtl:
David Majnemerb4b27232016-04-19 19:10:21 +00002515 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002516 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002517 return Intrinsic::not_intrinsic;
2518 }
2519
2520 return Intrinsic::not_intrinsic;
2521}
2522
Sanjay Patelaee84212014-11-04 16:27:42 +00002523/// Return true if we can prove that the specified FP value is never equal to
2524/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002525///
2526/// NOTE: this function will need to be revisited when we support non-default
2527/// rounding modes!
2528///
David Majnemer3ee5f342016-04-13 06:55:52 +00002529bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2530 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002531 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2532 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002533
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002534 if (Depth == MaxDepth)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002535 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002536
Dan Gohman80ca01c2009-07-17 20:47:02 +00002537 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002538 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002539
2540 // Check if the nsz fast-math flag is set
2541 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2542 if (FPO->hasNoSignedZeros())
2543 return true;
2544
Chris Lattnera12a6de2008-06-02 01:29:46 +00002545 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002546 if (I->getOpcode() == Instruction::FAdd)
2547 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2548 if (CFP->isNullValue())
2549 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002550
Chris Lattnera12a6de2008-06-02 01:29:46 +00002551 // sitofp and uitofp turn into +0.0 for zero.
2552 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2553 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002554
David Majnemer3ee5f342016-04-13 06:55:52 +00002555 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002556 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002557 switch (IID) {
2558 default:
2559 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002560 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002561 case Intrinsic::sqrt:
2562 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2563 // fabs(x) != -0.0
2564 case Intrinsic::fabs:
2565 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002566 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002567 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002568
Chris Lattnera12a6de2008-06-02 01:29:46 +00002569 return false;
2570}
2571
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002572/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2573/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2574/// bit despite comparing equal.
2575static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2576 const TargetLibraryInfo *TLI,
2577 bool SignBitOnly,
2578 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002579 // TODO: This function does not do the right thing when SignBitOnly is true
2580 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2581 // which flips the sign bits of NaNs. See
2582 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2583
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002584 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2585 return !CFP->getValueAPF().isNegative() ||
2586 (!SignBitOnly && CFP->getValueAPF().isZero());
2587 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002588
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002589 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002590 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002591
2592 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002593 if (!I)
2594 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002595
2596 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002597 default:
2598 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002599 // Unsigned integers are always nonnegative.
2600 case Instruction::UIToFP:
2601 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002602 case Instruction::FMul:
2603 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002604 if (I->getOperand(0) == I->getOperand(1) &&
2605 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002606 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002607
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002608 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002609 case Instruction::FAdd:
2610 case Instruction::FDiv:
2611 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002612 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2613 Depth + 1) &&
2614 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2615 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002616 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002617 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2618 Depth + 1) &&
2619 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2620 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002621 case Instruction::FPExt:
2622 case Instruction::FPTrunc:
2623 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002624 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2625 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002626 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002627 const auto *CI = cast<CallInst>(I);
2628 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002629 switch (IID) {
2630 default:
2631 break;
2632 case Intrinsic::maxnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002633 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2634 Depth + 1) ||
2635 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2636 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002637 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002638 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2639 Depth + 1) &&
2640 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2641 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002642 case Intrinsic::exp:
2643 case Intrinsic::exp2:
2644 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002645 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002646
2647 case Intrinsic::sqrt:
2648 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2649 if (!SignBitOnly)
2650 return true;
2651 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2652 CannotBeNegativeZero(CI->getOperand(0), TLI));
2653
David Majnemer3ee5f342016-04-13 06:55:52 +00002654 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002655 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002656 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002657 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002658 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002659 }
Justin Lebar322c1272017-01-27 00:58:34 +00002660 // TODO: This is not correct. Given that exp is an integer, here are the
2661 // ways that pow can return a negative value:
2662 //
2663 // pow(x, exp) --> negative if exp is odd and x is negative.
2664 // pow(-0, exp) --> -inf if exp is negative odd.
2665 // pow(-0, exp) --> -0 if exp is positive odd.
2666 // pow(-inf, exp) --> -0 if exp is negative odd.
2667 // pow(-inf, exp) --> -inf if exp is positive odd.
2668 //
2669 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2670 // but we must return false if x == -0. Unfortunately we do not currently
2671 // have a way of expressing this constraint. See details in
2672 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002673 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2674 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00002675
David Majnemer3ee5f342016-04-13 06:55:52 +00002676 case Intrinsic::fma:
2677 case Intrinsic::fmuladd:
2678 // x*x+y is non-negative if y is non-negative.
2679 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002680 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2681 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2682 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002683 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002684 break;
2685 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002686 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002687}
2688
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002689bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2690 const TargetLibraryInfo *TLI) {
2691 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2692}
2693
2694bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2695 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2696}
2697
Sanjay Patelaee84212014-11-04 16:27:42 +00002698/// If the specified value can be set by repeating the same byte in memory,
2699/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002700/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2701/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2702/// byte store (e.g. i16 0x1234), return null.
2703Value *llvm::isBytewiseValue(Value *V) {
2704 // All byte-wide stores are splatable, even of arbitrary variables.
2705 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002706
2707 // Handle 'null' ConstantArrayZero etc.
2708 if (Constant *C = dyn_cast<Constant>(V))
2709 if (C->isNullValue())
2710 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002711
Chris Lattner9cb10352010-12-26 20:15:01 +00002712 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002713 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002714 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2715 if (CFP->getType()->isFloatTy())
2716 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2717 if (CFP->getType()->isDoubleTy())
2718 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2719 // Don't handle long double formats, which have strange constraints.
2720 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002721
Benjamin Kramer17d90152015-02-07 19:29:02 +00002722 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002723 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002724 if (CI->getBitWidth() % 8 == 0) {
2725 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002726
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002727 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002728 return nullptr;
2729 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002730 }
2731 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002732
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002733 // A ConstantDataArray/Vector is splatable if all its members are equal and
2734 // also splatable.
2735 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2736 Value *Elt = CA->getElementAsConstant(0);
2737 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002738 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002739 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002740
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002741 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2742 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002743 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002744
Chris Lattner9cb10352010-12-26 20:15:01 +00002745 return Val;
2746 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002747
Chris Lattner9cb10352010-12-26 20:15:01 +00002748 // Conceptually, we could handle things like:
2749 // %a = zext i8 %X to i16
2750 // %b = shl i16 %a, 8
2751 // %c = or i16 %a, %b
2752 // but until there is an example that actually needs this, it doesn't seem
2753 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002754 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002755}
2756
2757
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002758// This is the recursive version of BuildSubAggregate. It takes a few different
2759// arguments. Idxs is the index within the nested struct From that we are
2760// looking at now (which is of type IndexedType). IdxSkip is the number of
2761// indices from Idxs that should be left out when inserting into the resulting
2762// struct. To is the result struct built so far, new insertvalue instructions
2763// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002764static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002765 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002766 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002767 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002768 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002769 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002770 // Save the original To argument so we can modify it
2771 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002772 // General case, the type indexed by Idxs is a struct
2773 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2774 // Process each struct element recursively
2775 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002776 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002777 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002778 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002779 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002780 if (!To) {
2781 // Couldn't find any inserted value for this index? Cleanup
2782 while (PrevTo != OrigTo) {
2783 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2784 PrevTo = Del->getAggregateOperand();
2785 Del->eraseFromParent();
2786 }
2787 // Stop processing elements
2788 break;
2789 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002790 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002791 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002792 if (To)
2793 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002794 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002795 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2796 // the struct's elements had a value that was inserted directly. In the latter
2797 // case, perhaps we can't determine each of the subelements individually, but
2798 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002799
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002800 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002801 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002802
2803 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002804 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002805
2806 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002807 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002808 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002809}
2810
2811// This helper takes a nested struct and extracts a part of it (which is again a
2812// struct) into a new value. For example, given the struct:
2813// { a, { b, { c, d }, e } }
2814// and the indices "1, 1" this returns
2815// { c, d }.
2816//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002817// It does this by inserting an insertvalue for each element in the resulting
2818// struct, as opposed to just inserting a single struct. This will only work if
2819// each of the elements of the substruct are known (ie, inserted into From by an
2820// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002821//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002822// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002823static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002824 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002825 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002826 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002827 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002828 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002829 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002830 unsigned IdxSkip = Idxs.size();
2831
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002832 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002833}
2834
Sanjay Patelaee84212014-11-04 16:27:42 +00002835/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002836/// the scalar value indexed is already around as a register, for example if it
2837/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002838///
2839/// If InsertBefore is not null, this function will duplicate (modified)
2840/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002841Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2842 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002843 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002844 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002845 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002846 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002847 // We have indices, so V should have an indexable type.
2848 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2849 "Not looking at a struct or array?");
2850 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2851 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002852
Chris Lattner67058832012-01-25 06:48:06 +00002853 if (Constant *C = dyn_cast<Constant>(V)) {
2854 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002855 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002856 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2857 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002858
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002859 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002860 // Loop the indices for the insertvalue instruction in parallel with the
2861 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002862 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002863 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2864 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002865 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002866 // We can't handle this without inserting insertvalues
2867 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002868 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002869
2870 // The requested index identifies a part of a nested aggregate. Handle
2871 // this specially. For example,
2872 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2873 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2874 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2875 // This can be changed into
2876 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2877 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2878 // which allows the unused 0,0 element from the nested struct to be
2879 // removed.
2880 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2881 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002882 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002883
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002884 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002885 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002886 // looking for, then.
2887 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002888 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002889 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002890 }
2891 // If we end up here, the indices of the insertvalue match with those
2892 // requested (though possibly only partially). Now we recursively look at
2893 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002894 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002895 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002896 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002897 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002898
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002899 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002900 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002901 // something else, we can extract from that something else directly instead.
2902 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002903
2904 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002905 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002906 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002907 SmallVector<unsigned, 5> Idxs;
2908 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002909 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002910 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002911
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002912 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002913 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002914
Craig Topper1bef2c82012-12-22 19:15:35 +00002915 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002916 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002917
Jay Foad57aa6362011-07-13 10:26:04 +00002918 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002919 }
2920 // Otherwise, we don't know (such as, extracting from a function return value
2921 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002922 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002923}
Evan Chengda3db112008-06-30 07:31:25 +00002924
Sanjay Patelaee84212014-11-04 16:27:42 +00002925/// Analyze the specified pointer to see if it can be expressed as a base
2926/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002927Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002928 const DataLayout &DL) {
2929 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002930 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002931
2932 // We walk up the defs but use a visited set to handle unreachable code. In
2933 // that case, we stop after accumulating the cycle once (not that it
2934 // matters).
2935 SmallPtrSet<Value *, 16> Visited;
2936 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002937 if (Ptr->getType()->isVectorTy())
2938 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002939
Nuno Lopes368c4d02012-12-31 20:48:35 +00002940 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00002941 // If one of the values we have visited is an addrspacecast, then
2942 // the pointer type of this GEP may be different from the type
2943 // of the Ptr parameter which was passed to this function. This
2944 // means when we construct GEPOffset, we need to use the size
2945 // of GEP's pointer type rather than the size of the original
2946 // pointer type.
2947 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002948 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2949 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002950
Tom Stellard17eb3412016-10-07 14:23:29 +00002951 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002952
Nuno Lopes368c4d02012-12-31 20:48:35 +00002953 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00002954 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2955 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002956 Ptr = cast<Operator>(Ptr)->getOperand(0);
2957 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002958 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002959 break;
2960 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002961 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002962 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002963 }
2964 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002965 Offset = ByteOffset.getSExtValue();
2966 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002967}
2968
Matthias Braun50ec0b52017-05-19 22:37:09 +00002969bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
2970 unsigned CharSize) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002971 // Make sure the GEP has exactly three arguments.
2972 if (GEP->getNumOperands() != 3)
2973 return false;
2974
Matthias Braun50ec0b52017-05-19 22:37:09 +00002975 // Make sure the index-ee is a pointer to array of \p CharSize integers.
2976 // CharSize.
David L Kreitzer752c1442016-04-13 14:31:06 +00002977 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
Matthias Braun50ec0b52017-05-19 22:37:09 +00002978 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
David L Kreitzer752c1442016-04-13 14:31:06 +00002979 return false;
2980
2981 // Check to make sure that the first operand of the GEP is an integer and
2982 // has value 0 so that we are sure we're indexing into the initializer.
2983 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2984 if (!FirstIdx || !FirstIdx->isZero())
2985 return false;
2986
2987 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002988}
Chris Lattnere28618d2010-11-30 22:25:26 +00002989
Matthias Braun50ec0b52017-05-19 22:37:09 +00002990bool llvm::getConstantDataArrayInfo(const Value *V,
2991 ConstantDataArraySlice &Slice,
2992 unsigned ElementSize, uint64_t Offset) {
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002993 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002994
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002995 // Look through bitcast instructions and geps.
2996 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002997
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002998 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002999 // offset.
3000 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003001 // The GEP operator should be based on a pointer to string constant, and is
3002 // indexing into the string constant.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003003 if (!isGEPBasedOnPointerToString(GEP, ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003004 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003005
Evan Chengda3db112008-06-30 07:31:25 +00003006 // If the second index isn't a ConstantInt, then this is a variable index
3007 // into the array. If this occurs, we can't say anything meaningful about
3008 // the string.
3009 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003010 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003011 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003012 else
3013 return false;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003014 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3015 StartIdx + Offset);
Evan Chengda3db112008-06-30 07:31:25 +00003016 }
Nick Lewycky46209882011-10-20 00:34:35 +00003017
Evan Chengda3db112008-06-30 07:31:25 +00003018 // The GEP instruction, constant or instruction, must reference a global
3019 // variable that is a constant and is initialized. The referenced constant
3020 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003021 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003022 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003023 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003024
Matthias Braun50ec0b52017-05-19 22:37:09 +00003025 const ConstantDataArray *Array;
3026 ArrayType *ArrayTy;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003027 if (GV->getInitializer()->isNullValue()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003028 Type *GVTy = GV->getValueType();
3029 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
Sanjay Patel2ad88f82017-06-12 22:34:37 +00003030 // A zeroinitializer for the array; there is no ConstantDataArray.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003031 Array = nullptr;
3032 } else {
3033 const DataLayout &DL = GV->getParent()->getDataLayout();
3034 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3035 uint64_t Length = SizeInBytes / (ElementSize / 8);
3036 if (Length <= Offset)
3037 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003038
Matthias Braun50ec0b52017-05-19 22:37:09 +00003039 Slice.Array = nullptr;
3040 Slice.Offset = 0;
3041 Slice.Length = Length - Offset;
3042 return true;
3043 }
3044 } else {
3045 // This must be a ConstantDataArray.
3046 Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3047 if (!Array)
3048 return false;
3049 ArrayTy = Array->getType();
3050 }
3051 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003052 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003053
Matthias Braun50ec0b52017-05-19 22:37:09 +00003054 uint64_t NumElts = ArrayTy->getArrayNumElements();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003055 if (Offset > NumElts)
3056 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003057
Matthias Braun50ec0b52017-05-19 22:37:09 +00003058 Slice.Array = Array;
3059 Slice.Offset = Offset;
3060 Slice.Length = NumElts - Offset;
3061 return true;
3062}
3063
3064/// This function computes the length of a null-terminated C string pointed to
3065/// by V. If successful, it returns true and returns the string in Str.
3066/// If unsuccessful, it returns false.
3067bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3068 uint64_t Offset, bool TrimAtNul) {
3069 ConstantDataArraySlice Slice;
3070 if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3071 return false;
3072
3073 if (Slice.Array == nullptr) {
3074 if (TrimAtNul) {
3075 Str = StringRef();
3076 return true;
3077 }
3078 if (Slice.Length == 1) {
3079 Str = StringRef("", 1);
3080 return true;
3081 }
Sanjay Patelfef83e82017-06-09 14:21:18 +00003082 // We cannot instantiate a StringRef as we do not have an appropriate string
Matthias Braun50ec0b52017-05-19 22:37:09 +00003083 // of 0s at hand.
3084 return false;
3085 }
3086
3087 // Start out with the entire array in the StringRef.
3088 Str = Slice.Array->getAsString();
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003089 // Skip over 'offset' bytes.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003090 Str = Str.substr(Slice.Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003091
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003092 if (TrimAtNul) {
3093 // Trim off the \0 and anything after it. If the array is not nul
3094 // terminated, we just return the whole end of string. The client may know
3095 // some other way that the string is length-bound.
3096 Str = Str.substr(0, Str.find('\0'));
3097 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003098 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003099}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003100
3101// These next two are very similar to the above, but also look through PHI
3102// nodes.
3103// TODO: See if we can integrate these two together.
3104
Sanjay Patelaee84212014-11-04 16:27:42 +00003105/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003106/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003107static uint64_t GetStringLengthH(const Value *V,
Matthias Braun50ec0b52017-05-19 22:37:09 +00003108 SmallPtrSetImpl<const PHINode*> &PHIs,
3109 unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003110 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003111 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003112
3113 // If this is a PHI node, there are two cases: either we have already seen it
3114 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003115 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003116 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003117 return ~0ULL; // already in the set.
3118
3119 // If it was new, see if all the input strings are the same length.
3120 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003121 for (Value *IncValue : PN->incoming_values()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003122 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003123 if (Len == 0) return 0; // Unknown length -> unknown.
3124
3125 if (Len == ~0ULL) continue;
3126
3127 if (Len != LenSoFar && LenSoFar != ~0ULL)
3128 return 0; // Disagree -> unknown.
3129 LenSoFar = Len;
3130 }
3131
3132 // Success, all agree.
3133 return LenSoFar;
3134 }
3135
3136 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003137 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003138 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003139 if (Len1 == 0) return 0;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003140 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003141 if (Len2 == 0) return 0;
3142 if (Len1 == ~0ULL) return Len2;
3143 if (Len2 == ~0ULL) return Len1;
3144 if (Len1 != Len2) return 0;
3145 return Len1;
3146 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003147
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003148 // Otherwise, see if we can read the string.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003149 ConstantDataArraySlice Slice;
3150 if (!getConstantDataArrayInfo(V, Slice, CharSize))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003151 return 0;
3152
Matthias Braun50ec0b52017-05-19 22:37:09 +00003153 if (Slice.Array == nullptr)
3154 return 1;
3155
3156 // Search for nul characters
3157 unsigned NullIndex = 0;
3158 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3159 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3160 break;
3161 }
3162
3163 return NullIndex + 1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003164}
3165
Sanjay Patelaee84212014-11-04 16:27:42 +00003166/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003167/// the specified pointer, return 'len+1'. If we can't, return 0.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003168uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003169 if (!V->getType()->isPointerTy()) return 0;
3170
Pete Cooper35b00d52016-08-13 01:05:32 +00003171 SmallPtrSet<const PHINode*, 32> PHIs;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003172 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003173 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3174 // an empty string as a length.
3175 return Len == ~0ULL ? 1 : Len;
3176}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003177
Adam Nemete2b885c2015-04-23 20:09:20 +00003178/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3179/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003180static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3181 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003182 // Find the loop-defined value.
3183 Loop *L = LI->getLoopFor(PN->getParent());
3184 if (PN->getNumIncomingValues() != 2)
3185 return true;
3186
3187 // Find the value from previous iteration.
3188 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3189 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3190 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3191 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3192 return true;
3193
3194 // If a new pointer is loaded in the loop, the pointer references a different
3195 // object in every iteration. E.g.:
3196 // for (i)
3197 // int *p = a[i];
3198 // ...
3199 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3200 if (!L->isLoopInvariant(Load->getPointerOperand()))
3201 return false;
3202 return true;
3203}
3204
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003205Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3206 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003207 if (!V->getType()->isPointerTy())
3208 return V;
3209 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3210 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3211 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003212 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3213 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003214 V = cast<Operator>(V)->getOperand(0);
3215 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003216 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003217 return V;
3218 V = GA->getAliasee();
Craig Topper85482412017-04-12 22:29:23 +00003219 } else if (isa<AllocaInst>(V)) {
3220 // An alloca can't be further simplified.
3221 return V;
Dan Gohmana4fcd242010-12-15 20:02:24 +00003222 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003223 if (auto CS = CallSite(V))
3224 if (Value *RV = CS.getReturnedArgOperand()) {
3225 V = RV;
3226 continue;
3227 }
3228
Dan Gohman05b18f12010-12-15 20:49:55 +00003229 // See if InstructionSimplify knows any relevant tricks.
3230 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003231 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Daniel Berlin4d0fe642017-04-28 19:55:38 +00003232 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003233 V = Simplified;
3234 continue;
3235 }
3236
Dan Gohmana4fcd242010-12-15 20:02:24 +00003237 return V;
3238 }
3239 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3240 }
3241 return V;
3242}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003243
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003244void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003245 const DataLayout &DL, LoopInfo *LI,
3246 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003247 SmallPtrSet<Value *, 4> Visited;
3248 SmallVector<Value *, 4> Worklist;
3249 Worklist.push_back(V);
3250 do {
3251 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003252 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003253
David Blaikie70573dc2014-11-19 07:49:26 +00003254 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003255 continue;
3256
3257 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3258 Worklist.push_back(SI->getTrueValue());
3259 Worklist.push_back(SI->getFalseValue());
3260 continue;
3261 }
3262
3263 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003264 // If this PHI changes the underlying object in every iteration of the
3265 // loop, don't look through it. Consider:
3266 // int **A;
3267 // for (i) {
3268 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3269 // Curr = A[i];
3270 // *Prev, *Curr;
3271 //
3272 // Prev is tracking Curr one iteration behind so they refer to different
3273 // underlying objects.
3274 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3275 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003276 for (Value *IncValue : PN->incoming_values())
3277 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003278 continue;
3279 }
3280
3281 Objects.push_back(P);
3282 } while (!Worklist.empty());
3283}
3284
Sanjay Patelaee84212014-11-04 16:27:42 +00003285/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003286bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003287 for (const User *U : V->users()) {
3288 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003289 if (!II) return false;
3290
3291 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3292 II->getIntrinsicID() != Intrinsic::lifetime_end)
3293 return false;
3294 }
3295 return true;
3296}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003297
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003298bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3299 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003300 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003301 const Operator *Inst = dyn_cast<Operator>(V);
3302 if (!Inst)
3303 return false;
3304
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003305 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3306 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3307 if (C->canTrap())
3308 return false;
3309
3310 switch (Inst->getOpcode()) {
3311 default:
3312 return true;
3313 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003314 case Instruction::URem: {
3315 // x / y is undefined if y == 0.
3316 const APInt *V;
3317 if (match(Inst->getOperand(1), m_APInt(V)))
3318 return *V != 0;
3319 return false;
3320 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003321 case Instruction::SDiv:
3322 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003323 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003324 const APInt *Numerator, *Denominator;
3325 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3326 return false;
3327 // We cannot hoist this division if the denominator is 0.
3328 if (*Denominator == 0)
3329 return false;
3330 // It's safe to hoist if the denominator is not 0 or -1.
3331 if (*Denominator != -1)
3332 return true;
3333 // At this point we know that the denominator is -1. It is safe to hoist as
3334 // long we know that the numerator is not INT_MIN.
3335 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3336 return !Numerator->isMinSignedValue();
3337 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003338 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003339 }
3340 case Instruction::Load: {
3341 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003342 if (!LI->isUnordered() ||
3343 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003344 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003345 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003346 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003347 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003348 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003349 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3350 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003351 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003352 case Instruction::Call: {
Matt Arsenaultcf5e7fe2017-04-28 21:13:09 +00003353 auto *CI = cast<const CallInst>(Inst);
3354 const Function *Callee = CI->getCalledFunction();
David Majnemer0a92f862015-08-28 21:13:39 +00003355
Matt Arsenault6a288c12017-05-03 02:26:10 +00003356 // The called function could have undefined behavior or side-effects, even
3357 // if marked readnone nounwind.
3358 return Callee && Callee->isSpeculatable();
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003359 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003360 case Instruction::VAArg:
3361 case Instruction::Alloca:
3362 case Instruction::Invoke:
3363 case Instruction::PHI:
3364 case Instruction::Store:
3365 case Instruction::Ret:
3366 case Instruction::Br:
3367 case Instruction::IndirectBr:
3368 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003369 case Instruction::Unreachable:
3370 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003371 case Instruction::AtomicRMW:
3372 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003373 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003374 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003375 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003376 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003377 case Instruction::CatchRet:
3378 case Instruction::CleanupPad:
3379 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003380 return false; // Misc instructions which have effects
3381 }
3382}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003383
Quentin Colombet6443cce2015-08-06 18:44:34 +00003384bool llvm::mayBeMemoryDependent(const Instruction &I) {
3385 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3386}
3387
Sanjay Patelaee84212014-11-04 16:27:42 +00003388/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003389bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003390 assert(V->getType()->isPointerTy() && "V must be pointer type");
3391
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003392 // Alloca never returns null, malloc might.
3393 if (isa<AllocaInst>(V)) return true;
3394
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003395 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003396 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003397 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003398
Peter Collingbourne235c2752016-12-08 19:01:00 +00003399 // A global variable in address space 0 is non null unless extern weak
3400 // or an absolute symbol reference. Other address spaces may have null as a
3401 // valid address for a global, so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003402 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Peter Collingbourne235c2752016-12-08 19:01:00 +00003403 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
Pete Cooper6b716212015-08-27 03:16:29 +00003404 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003405
Sanjoy Das5056e192016-05-07 02:08:22 +00003406 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003407 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003408 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003409
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003410 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003411 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003412 return true;
3413
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003414 return false;
3415}
David Majnemer491331a2015-01-02 07:29:43 +00003416
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003417static bool isKnownNonNullFromDominatingCondition(const Value *V,
3418 const Instruction *CtxI,
3419 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003420 assert(V->getType()->isPointerTy() && "V must be pointer type");
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003421 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003422 assert(CtxI && "Context instruction required for analysis");
3423 assert(DT && "Dominator tree required for analysis");
Chen Li0d043b52015-09-14 18:10:43 +00003424
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003425 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003426 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003427 // Avoid massive lists
3428 if (NumUsesExplored >= DomConditionsMaxUses)
3429 break;
3430 NumUsesExplored++;
Sanjay Patel97e4b9872017-02-12 15:35:34 +00003431
3432 // If the value is used as an argument to a call or invoke, then argument
3433 // attributes may provide an answer about null-ness.
3434 if (auto CS = ImmutableCallSite(U))
3435 if (auto *CalledFunc = CS.getCalledFunction())
3436 for (const Argument &Arg : CalledFunc->args())
3437 if (CS.getArgOperand(Arg.getArgNo()) == V &&
3438 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
3439 return true;
3440
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003441 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003442 CmpInst::Predicate Pred;
3443 if (!match(const_cast<User *>(U),
3444 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3445 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003446 continue;
3447
Sanjoy Das987aaa12016-05-07 02:08:24 +00003448 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003449 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3450 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003451
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003452 BasicBlock *NonNullSuccessor =
3453 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3454 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3455 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3456 return true;
3457 } else if (Pred == ICmpInst::ICMP_NE &&
3458 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3459 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003460 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003461 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003462 }
3463 }
3464
3465 return false;
3466}
3467
3468bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003469 const DominatorTree *DT) {
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003470 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3471 return false;
3472
Sean Silva45835e72016-07-02 23:47:27 +00003473 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003474 return true;
3475
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003476 if (!CtxI || !DT)
3477 return false;
3478
3479 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003480}
3481
Pete Cooper35b00d52016-08-13 01:05:32 +00003482OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3483 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003484 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003485 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003486 const Instruction *CxtI,
3487 const DominatorTree *DT) {
3488 // Multiplying n * m significant bits yields a result of n + m significant
3489 // bits. If the total number of significant bits does not exceed the
3490 // result bit width (minus 1), there is no overflow.
3491 // This means if we have enough leading zero bits in the operands
3492 // we can guarantee that the result does not overflow.
3493 // Ref: "Hacker's Delight" by Henry Warren
3494 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00003495 KnownBits LHSKnown(BitWidth);
3496 KnownBits RHSKnown(BitWidth);
3497 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
3498 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer491331a2015-01-02 07:29:43 +00003499 // Note that underestimating the number of zero bits gives a more
3500 // conservative answer.
Craig Topper8df66c62017-05-12 17:20:30 +00003501 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3502 RHSKnown.countMinLeadingZeros();
David Majnemer491331a2015-01-02 07:29:43 +00003503 // First handle the easy case: if we have enough zero bits there's
3504 // definitely no overflow.
3505 if (ZeroBits >= BitWidth)
3506 return OverflowResult::NeverOverflows;
3507
3508 // Get the largest possible values for each operand.
Craig Topperb45eabc2017-04-26 16:39:58 +00003509 APInt LHSMax = ~LHSKnown.Zero;
3510 APInt RHSMax = ~RHSKnown.Zero;
David Majnemer491331a2015-01-02 07:29:43 +00003511
3512 // We know the multiply operation doesn't overflow if the maximum values for
3513 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003514 bool MaxOverflow;
Craig Topper9b71a402017-04-19 21:09:45 +00003515 (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003516 if (!MaxOverflow)
3517 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003518
David Majnemerc8a576b2015-01-02 07:29:47 +00003519 // We know it always overflows if multiplying the smallest possible values for
3520 // the operands also results in overflow.
3521 bool MinOverflow;
Craig Topperb45eabc2017-04-26 16:39:58 +00003522 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003523 if (MinOverflow)
3524 return OverflowResult::AlwaysOverflows;
3525
3526 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003527}
David Majnemer5310c1e2015-01-07 00:39:50 +00003528
Pete Cooper35b00d52016-08-13 01:05:32 +00003529OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3530 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003531 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003532 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003533 const Instruction *CxtI,
3534 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +00003535 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3536 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
3537 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003538
Craig Topper6e11a052017-05-08 16:22:48 +00003539 if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003540 // The sign bit is set in both cases: this MUST overflow.
3541 // Create a simple add instruction, and insert it into the struct.
3542 return OverflowResult::AlwaysOverflows;
3543 }
3544
Craig Topper6e11a052017-05-08 16:22:48 +00003545 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003546 // The sign bit is clear in both cases: this CANNOT overflow.
3547 // Create a simple add instruction, and insert it into the struct.
3548 return OverflowResult::NeverOverflows;
3549 }
3550 }
3551
3552 return OverflowResult::MayOverflow;
3553}
James Molloy71b91c22015-05-11 14:42:20 +00003554
Craig Topperbb973722017-05-15 02:44:08 +00003555/// \brief Return true if we can prove that adding the two values of the
3556/// knownbits will not overflow.
3557/// Otherwise return false.
3558static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
3559 const KnownBits &RHSKnown) {
3560 // Addition of two 2's complement numbers having opposite signs will never
3561 // overflow.
3562 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
3563 (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
3564 return true;
3565
3566 // If either of the values is known to be non-negative, adding them can only
3567 // overflow if the second is also non-negative, so we can assume that.
3568 // Two non-negative numbers will only overflow if there is a carry to the
3569 // sign bit, so we can check if even when the values are as big as possible
3570 // there is no overflow to the sign bit.
3571 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
3572 APInt MaxLHS = ~LHSKnown.Zero;
3573 MaxLHS.clearSignBit();
3574 APInt MaxRHS = ~RHSKnown.Zero;
3575 MaxRHS.clearSignBit();
3576 APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
3577 return Result.isSignBitClear();
3578 }
3579
3580 // If either of the values is known to be negative, adding them can only
3581 // overflow if the second is also negative, so we can assume that.
3582 // Two negative number will only overflow if there is no carry to the sign
3583 // bit, so we can check if even when the values are as small as possible
3584 // there is overflow to the sign bit.
3585 if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
3586 APInt MinLHS = LHSKnown.One;
3587 MinLHS.clearSignBit();
3588 APInt MinRHS = RHSKnown.One;
3589 MinRHS.clearSignBit();
3590 APInt Result = std::move(MinLHS) + std::move(MinRHS);
3591 return Result.isSignBitSet();
3592 }
3593
3594 // If we reached here it means that we know nothing about the sign bits.
3595 // In this case we can't know if there will be an overflow, since by
3596 // changing the sign bits any two values can be made to overflow.
3597 return false;
3598}
3599
Pete Cooper35b00d52016-08-13 01:05:32 +00003600static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3601 const Value *RHS,
3602 const AddOperator *Add,
3603 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003604 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003605 const Instruction *CxtI,
3606 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003607 if (Add && Add->hasNoSignedWrap()) {
3608 return OverflowResult::NeverOverflows;
3609 }
3610
Craig Topperbb973722017-05-15 02:44:08 +00003611 // If LHS and RHS each have at least two sign bits, the addition will look
3612 // like
3613 //
3614 // XX..... +
3615 // YY.....
3616 //
3617 // If the carry into the most significant position is 0, X and Y can't both
3618 // be 1 and therefore the carry out of the addition is also 0.
3619 //
3620 // If the carry into the most significant position is 1, X and Y can't both
3621 // be 0 and therefore the carry out of the addition is also 1.
3622 //
3623 // Since the carry into the most significant position is always equal to
3624 // the carry out of the addition, there is no signed overflow.
3625 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
3626 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
3627 return OverflowResult::NeverOverflows;
3628
Craig Topper6e11a052017-05-08 16:22:48 +00003629 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3630 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003631
Craig Topperbb973722017-05-15 02:44:08 +00003632 if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
Jingyue Wu10fcea52015-08-20 18:27:04 +00003633 return OverflowResult::NeverOverflows;
Jingyue Wu10fcea52015-08-20 18:27:04 +00003634
3635 // The remaining code needs Add to be available. Early returns if not so.
3636 if (!Add)
3637 return OverflowResult::MayOverflow;
3638
3639 // If the sign of Add is the same as at least one of the operands, this add
3640 // CANNOT overflow. This is particularly useful when the sum is
3641 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3642 // operands.
3643 bool LHSOrRHSKnownNonNegative =
Craig Topper6e11a052017-05-08 16:22:48 +00003644 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
Craig Topperbb973722017-05-15 02:44:08 +00003645 bool LHSOrRHSKnownNegative =
3646 (LHSKnown.isNegative() || RHSKnown.isNegative());
Jingyue Wu10fcea52015-08-20 18:27:04 +00003647 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
Craig Topper6e11a052017-05-08 16:22:48 +00003648 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
3649 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
3650 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003651 return OverflowResult::NeverOverflows;
3652 }
3653 }
3654
3655 return OverflowResult::MayOverflow;
3656}
3657
Pete Cooper35b00d52016-08-13 01:05:32 +00003658bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3659 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003660#ifndef NDEBUG
3661 auto IID = II->getIntrinsicID();
3662 assert((IID == Intrinsic::sadd_with_overflow ||
3663 IID == Intrinsic::uadd_with_overflow ||
3664 IID == Intrinsic::ssub_with_overflow ||
3665 IID == Intrinsic::usub_with_overflow ||
3666 IID == Intrinsic::smul_with_overflow ||
3667 IID == Intrinsic::umul_with_overflow) &&
3668 "Not an overflow intrinsic!");
3669#endif
3670
Pete Cooper35b00d52016-08-13 01:05:32 +00003671 SmallVector<const BranchInst *, 2> GuardingBranches;
3672 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003673
Pete Cooper35b00d52016-08-13 01:05:32 +00003674 for (const User *U : II->users()) {
3675 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003676 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3677
3678 if (EVI->getIndices()[0] == 0)
3679 Results.push_back(EVI);
3680 else {
3681 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3682
Pete Cooper35b00d52016-08-13 01:05:32 +00003683 for (const auto *U : EVI->users())
3684 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003685 assert(B->isConditional() && "How else is it using an i1?");
3686 GuardingBranches.push_back(B);
3687 }
3688 }
3689 } else {
3690 // We are using the aggregate directly in a way we don't want to analyze
3691 // here (storing it to a global, say).
3692 return false;
3693 }
3694 }
3695
Pete Cooper35b00d52016-08-13 01:05:32 +00003696 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003697 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3698 if (!NoWrapEdge.isSingleEdge())
3699 return false;
3700
3701 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003702 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003703 // If the extractvalue itself is not executed on overflow, the we don't
3704 // need to check each use separately, since domination is transitive.
3705 if (DT.dominates(NoWrapEdge, Result->getParent()))
3706 continue;
3707
3708 for (auto &RU : Result->uses())
3709 if (!DT.dominates(NoWrapEdge, RU))
3710 return false;
3711 }
3712
3713 return true;
3714 };
3715
3716 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3717}
3718
3719
Pete Cooper35b00d52016-08-13 01:05:32 +00003720OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003721 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003722 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003723 const Instruction *CxtI,
3724 const DominatorTree *DT) {
3725 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003726 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003727}
3728
Pete Cooper35b00d52016-08-13 01:05:32 +00003729OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3730 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003731 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003732 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003733 const Instruction *CxtI,
3734 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003735 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003736}
3737
Jingyue Wu42f1d672015-07-28 18:22:40 +00003738bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003739 // A memory operation returns normally if it isn't volatile. A volatile
3740 // operation is allowed to trap.
3741 //
3742 // An atomic operation isn't guaranteed to return in a reasonable amount of
3743 // time because it's possible for another thread to interfere with it for an
3744 // arbitrary length of time, but programs aren't allowed to rely on that.
3745 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3746 return !LI->isVolatile();
3747 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3748 return !SI->isVolatile();
3749 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3750 return !CXI->isVolatile();
3751 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3752 return !RMWI->isVolatile();
3753 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3754 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003755
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003756 // If there is no successor, then execution can't transfer to it.
3757 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3758 return !CRI->unwindsToCaller();
3759 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3760 return !CatchSwitch->unwindsToCaller();
3761 if (isa<ResumeInst>(I))
3762 return false;
3763 if (isa<ReturnInst>(I))
3764 return false;
Sebastian Pop4a4d2452017-03-08 01:54:50 +00003765 if (isa<UnreachableInst>(I))
3766 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003767
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003768 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00003769 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00003770 // Call sites that throw have implicit non-local control flow.
3771 if (!CS.doesNotThrow())
3772 return false;
3773
3774 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3775 // etc. and thus not return. However, LLVM already assumes that
3776 //
3777 // - Thread exiting actions are modeled as writes to memory invisible to
3778 // the program.
3779 //
3780 // - Loops that don't have side effects (side effects are volatile/atomic
3781 // stores and IO) always terminate (see http://llvm.org/PR965).
3782 // Furthermore IO itself is also modeled as writes to memory invisible to
3783 // the program.
3784 //
3785 // We rely on those assumptions here, and use the memory effects of the call
3786 // target as a proxy for checking that it always returns.
3787
3788 // FIXME: This isn't aggressive enough; a call which only writes to a global
3789 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003790 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3791 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003792 }
3793
3794 // Other instructions return normally.
3795 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003796}
3797
3798bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3799 const Loop *L) {
3800 // The loop header is guaranteed to be executed for every iteration.
3801 //
3802 // FIXME: Relax this constraint to cover all basic blocks that are
3803 // guaranteed to be executed at every iteration.
3804 if (I->getParent() != L->getHeader()) return false;
3805
3806 for (const Instruction &LI : *L->getHeader()) {
3807 if (&LI == I) return true;
3808 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3809 }
3810 llvm_unreachable("Instruction not contained in its own parent basic block.");
3811}
3812
3813bool llvm::propagatesFullPoison(const Instruction *I) {
3814 switch (I->getOpcode()) {
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003815 case Instruction::Add:
3816 case Instruction::Sub:
3817 case Instruction::Xor:
3818 case Instruction::Trunc:
3819 case Instruction::BitCast:
3820 case Instruction::AddrSpaceCast:
Sanjoy Das5cd6c5ca2017-02-22 06:52:32 +00003821 case Instruction::Mul:
3822 case Instruction::Shl:
3823 case Instruction::GetElementPtr:
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003824 // These operations all propagate poison unconditionally. Note that poison
3825 // is not any particular value, so xor or subtraction of poison with
3826 // itself still yields poison, not zero.
3827 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003828
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003829 case Instruction::AShr:
3830 case Instruction::SExt:
3831 // For these operations, one bit of the input is replicated across
3832 // multiple output bits. A replicated poison bit is still poison.
3833 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003834
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003835 case Instruction::ICmp:
3836 // Comparing poison with any value yields poison. This is why, for
3837 // instance, x s< (x +nsw 1) can be folded to true.
3838 return true;
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003839
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003840 default:
3841 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003842 }
3843}
3844
3845const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3846 switch (I->getOpcode()) {
3847 case Instruction::Store:
3848 return cast<StoreInst>(I)->getPointerOperand();
3849
3850 case Instruction::Load:
3851 return cast<LoadInst>(I)->getPointerOperand();
3852
3853 case Instruction::AtomicCmpXchg:
3854 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3855
3856 case Instruction::AtomicRMW:
3857 return cast<AtomicRMWInst>(I)->getPointerOperand();
3858
3859 case Instruction::UDiv:
3860 case Instruction::SDiv:
3861 case Instruction::URem:
3862 case Instruction::SRem:
3863 return I->getOperand(1);
3864
3865 default:
3866 return nullptr;
3867 }
3868}
3869
Sanjoy Das08989c72017-04-30 19:41:19 +00003870bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00003871 // We currently only look for uses of poison values within the same basic
3872 // block, as that makes it easier to guarantee that the uses will be
3873 // executed given that PoisonI is executed.
3874 //
3875 // FIXME: Expand this to consider uses beyond the same basic block. To do
3876 // this, look out for the distinction between post-dominance and strong
3877 // post-dominance.
3878 const BasicBlock *BB = PoisonI->getParent();
3879
3880 // Set of instructions that we have proved will yield poison if PoisonI
3881 // does.
3882 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003883 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003884 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003885 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003886
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003887 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003888
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003889 unsigned Iter = 0;
3890 while (Iter++ < MaxDepth) {
3891 for (auto &I : make_range(Begin, End)) {
3892 if (&I != PoisonI) {
3893 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3894 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3895 return true;
3896 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3897 return false;
3898 }
3899
3900 // Mark poison that propagates from I through uses of I.
3901 if (YieldsPoison.count(&I)) {
3902 for (const User *User : I.users()) {
3903 const Instruction *UserI = cast<Instruction>(User);
3904 if (propagatesFullPoison(UserI))
3905 YieldsPoison.insert(User);
3906 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003907 }
3908 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003909
3910 if (auto *NextBB = BB->getSingleSuccessor()) {
3911 if (Visited.insert(NextBB).second) {
3912 BB = NextBB;
3913 Begin = BB->getFirstNonPHI()->getIterator();
3914 End = BB->end();
3915 continue;
3916 }
3917 }
3918
3919 break;
3920 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003921 return false;
3922}
3923
Pete Cooper35b00d52016-08-13 01:05:32 +00003924static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00003925 if (FMF.noNaNs())
3926 return true;
3927
3928 if (auto *C = dyn_cast<ConstantFP>(V))
3929 return !C->isNaN();
3930 return false;
3931}
3932
Pete Cooper35b00d52016-08-13 01:05:32 +00003933static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00003934 if (auto *C = dyn_cast<ConstantFP>(V))
3935 return !C->isZero();
3936 return false;
3937}
3938
Sanjay Patel819f0962016-11-13 19:30:19 +00003939/// Match non-obvious integer minimum and maximum sequences.
3940static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
3941 Value *CmpLHS, Value *CmpRHS,
3942 Value *TrueVal, Value *FalseVal,
3943 Value *&LHS, Value *&RHS) {
Sanjay Patel24c6f882017-01-21 17:51:25 +00003944 // Assume success. If there's no match, callers should not use these anyway.
3945 LHS = TrueVal;
3946 RHS = FalseVal;
3947
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003948 // Recognize variations of:
3949 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
3950 const APInt *C1;
3951 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
3952 const APInt *C2;
3953
3954 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
3955 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003956 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003957 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003958
3959 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
3960 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003961 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003962 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003963
3964 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
3965 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003966 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003967 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003968
3969 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
3970 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003971 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003972 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003973 }
3974
Sanjay Patel819f0962016-11-13 19:30:19 +00003975 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
3976 return {SPF_UNKNOWN, SPNB_NA, false};
3977
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003978 // Z = X -nsw Y
3979 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
3980 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
3981 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003982 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003983 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003984
3985 // Z = X -nsw Y
3986 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
3987 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
3988 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003989 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003990 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003991
Sanjay Patel819f0962016-11-13 19:30:19 +00003992 if (!match(CmpRHS, m_APInt(C1)))
3993 return {SPF_UNKNOWN, SPNB_NA, false};
3994
3995 // An unsigned min/max can be written with a signed compare.
3996 const APInt *C2;
3997 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
3998 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
3999 // Is the sign bit set?
4000 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4001 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Sanjay Patel24c6f882017-01-21 17:51:25 +00004002 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004003 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004004
4005 // Is the sign bit clear?
4006 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4007 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4008 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004009 C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004010 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004011 }
4012
4013 // Look through 'not' ops to find disguised signed min/max.
4014 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4015 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4016 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004017 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00004018 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004019
4020 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4021 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4022 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004023 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00004024 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004025
4026 return {SPF_UNKNOWN, SPNB_NA, false};
4027}
4028
James Molloy134bec22015-08-11 09:12:57 +00004029static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4030 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00004031 Value *CmpLHS, Value *CmpRHS,
4032 Value *TrueVal, Value *FalseVal,
4033 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004034 LHS = CmpLHS;
4035 RHS = CmpRHS;
4036
James Molloy134bec22015-08-11 09:12:57 +00004037 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
4038 // return inconsistent results between implementations.
4039 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4040 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4041 // Therefore we behave conservatively and only proceed if at least one of the
4042 // operands is known to not be zero, or if we don't care about signed zeroes.
4043 switch (Pred) {
4044 default: break;
4045 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4046 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4047 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4048 !isKnownNonZero(CmpRHS))
4049 return {SPF_UNKNOWN, SPNB_NA, false};
4050 }
4051
4052 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4053 bool Ordered = false;
4054
4055 // When given one NaN and one non-NaN input:
4056 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4057 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4058 // ordered comparison fails), which could be NaN or non-NaN.
4059 // so here we discover exactly what NaN behavior is required/accepted.
4060 if (CmpInst::isFPPredicate(Pred)) {
4061 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4062 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4063
4064 if (LHSSafe && RHSSafe) {
4065 // Both operands are known non-NaN.
4066 NaNBehavior = SPNB_RETURNS_ANY;
4067 } else if (CmpInst::isOrdered(Pred)) {
4068 // An ordered comparison will return false when given a NaN, so it
4069 // returns the RHS.
4070 Ordered = true;
4071 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004072 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004073 NaNBehavior = SPNB_RETURNS_NAN;
4074 else if (RHSSafe)
4075 NaNBehavior = SPNB_RETURNS_OTHER;
4076 else
4077 // Completely unsafe.
4078 return {SPF_UNKNOWN, SPNB_NA, false};
4079 } else {
4080 Ordered = false;
4081 // An unordered comparison will return true when given a NaN, so it
4082 // returns the LHS.
4083 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004084 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004085 NaNBehavior = SPNB_RETURNS_OTHER;
4086 else if (RHSSafe)
4087 NaNBehavior = SPNB_RETURNS_NAN;
4088 else
4089 // Completely unsafe.
4090 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004091 }
4092 }
4093
James Molloy71b91c22015-05-11 14:42:20 +00004094 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004095 std::swap(CmpLHS, CmpRHS);
4096 Pred = CmpInst::getSwappedPredicate(Pred);
4097 if (NaNBehavior == SPNB_RETURNS_NAN)
4098 NaNBehavior = SPNB_RETURNS_OTHER;
4099 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4100 NaNBehavior = SPNB_RETURNS_NAN;
4101 Ordered = !Ordered;
4102 }
4103
4104 // ([if]cmp X, Y) ? X : Y
4105 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004106 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004107 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004108 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004109 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004110 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004111 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004112 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004113 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004114 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004115 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4116 case FCmpInst::FCMP_UGT:
4117 case FCmpInst::FCMP_UGE:
4118 case FCmpInst::FCMP_OGT:
4119 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4120 case FCmpInst::FCMP_ULT:
4121 case FCmpInst::FCMP_ULE:
4122 case FCmpInst::FCMP_OLT:
4123 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004124 }
4125 }
4126
Sanjay Patele372aec2016-10-27 15:26:10 +00004127 const APInt *C1;
4128 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004129 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4130 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4131
4132 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4133 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Sanjay Patele372aec2016-10-27 15:26:10 +00004134 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004135 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004136 }
4137
4138 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4139 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Sanjay Patele372aec2016-10-27 15:26:10 +00004140 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
James Molloy134bec22015-08-11 09:12:57 +00004141 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004142 }
4143 }
James Molloy71b91c22015-05-11 14:42:20 +00004144 }
4145
Sanjay Patel819f0962016-11-13 19:30:19 +00004146 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004147}
James Molloy270ef8c2015-05-15 16:04:50 +00004148
James Molloy569cea62015-09-02 17:25:25 +00004149static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4150 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004151 auto *Cast1 = dyn_cast<CastInst>(V1);
4152 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004153 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004154
Sanjay Patel14a4b812017-01-29 16:34:57 +00004155 *CastOp = Cast1->getOpcode();
4156 Type *SrcTy = Cast1->getSrcTy();
4157 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4158 // If V1 and V2 are both the same cast from the same type, look through V1.
4159 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4160 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004161 return nullptr;
4162 }
4163
Sanjay Patel14a4b812017-01-29 16:34:57 +00004164 auto *C = dyn_cast<Constant>(V2);
4165 if (!C)
4166 return nullptr;
4167
David Majnemerd2a074b2016-04-29 18:40:34 +00004168 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00004169 switch (*CastOp) {
4170 case Instruction::ZExt:
4171 if (CmpI->isUnsigned())
4172 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4173 break;
4174 case Instruction::SExt:
4175 if (CmpI->isSigned())
4176 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4177 break;
4178 case Instruction::Trunc:
4179 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4180 break;
4181 case Instruction::FPTrunc:
4182 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4183 break;
4184 case Instruction::FPExt:
4185 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4186 break;
4187 case Instruction::FPToUI:
4188 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4189 break;
4190 case Instruction::FPToSI:
4191 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4192 break;
4193 case Instruction::UIToFP:
4194 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4195 break;
4196 case Instruction::SIToFP:
4197 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4198 break;
4199 default:
4200 break;
4201 }
David Majnemerd2a074b2016-04-29 18:40:34 +00004202
4203 if (!CastedTo)
4204 return nullptr;
4205
David Majnemerd2a074b2016-04-29 18:40:34 +00004206 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00004207 Constant *CastedBack =
4208 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00004209 if (CastedBack != C)
4210 return nullptr;
4211
4212 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004213}
4214
Sanjay Patele8dc0902016-05-23 17:57:54 +00004215SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004216 Instruction::CastOps *CastOp) {
4217 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004218 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004219
James Molloy134bec22015-08-11 09:12:57 +00004220 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4221 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004222
James Molloy134bec22015-08-11 09:12:57 +00004223 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004224 Value *CmpLHS = CmpI->getOperand(0);
4225 Value *CmpRHS = CmpI->getOperand(1);
4226 Value *TrueVal = SI->getTrueValue();
4227 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004228 FastMathFlags FMF;
4229 if (isa<FPMathOperator>(CmpI))
4230 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004231
4232 // Bail out early.
4233 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004234 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004235
4236 // Deal with type mismatches.
4237 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004238 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004239 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004240 cast<CastInst>(TrueVal)->getOperand(0), C,
4241 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004242 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004243 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004244 C, cast<CastInst>(FalseVal)->getOperand(0),
4245 LHS, RHS);
4246 }
James Molloy134bec22015-08-11 09:12:57 +00004247 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004248 LHS, RHS);
4249}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004250
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004251/// Return true if "icmp Pred LHS RHS" is always true.
Pete Cooper35b00d52016-08-13 01:05:32 +00004252static bool isTruePredicate(CmpInst::Predicate Pred,
4253 const Value *LHS, const Value *RHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004254 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004255 AssumptionCache *AC, const Instruction *CxtI,
4256 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004257 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004258 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4259 return true;
4260
4261 switch (Pred) {
4262 default:
4263 return false;
4264
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004265 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004266 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004267
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004268 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004269 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004270 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004271 return false;
4272 }
4273
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004274 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004275 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004276
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004277 // LHS u<= LHS +_{nuw} C for any C
4278 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004279 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004280
4281 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004282 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4283 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004284 const APInt *&CA, const APInt *&CB) {
4285 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4286 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4287 return true;
4288
4289 // If X & C == 0 then (X | C) == X +_{nuw} C
4290 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4291 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
Craig Topperb45eabc2017-04-26 16:39:58 +00004292 KnownBits Known(CA->getBitWidth());
4293 computeKnownBits(X, Known, DL, Depth + 1, AC, CxtI, DT);
Sanjoy Das92568102015-11-10 23:56:20 +00004294
Craig Topperb45eabc2017-04-26 16:39:58 +00004295 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
Sanjoy Das92568102015-11-10 23:56:20 +00004296 return true;
4297 }
4298
4299 return false;
4300 };
4301
Pete Cooper35b00d52016-08-13 01:05:32 +00004302 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004303 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004304 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4305 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004306
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004307 return false;
4308 }
4309 }
4310}
4311
4312/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004313/// ALHS ARHS" is true. Otherwise, return None.
4314static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004315isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4316 const Value *ARHS, const Value *BLHS,
4317 const Value *BRHS, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004318 unsigned Depth, AssumptionCache *AC,
4319 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004320 switch (Pred) {
4321 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004322 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004323
4324 case CmpInst::ICMP_SLT:
4325 case CmpInst::ICMP_SLE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004326 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004327 DT) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004328 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004329 return true;
4330 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004331
4332 case CmpInst::ICMP_ULT:
4333 case CmpInst::ICMP_ULE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004334 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4335 DT) &&
4336 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004337 return true;
4338 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004339 }
4340}
4341
Chad Rosier226a7342016-05-05 17:41:19 +00004342/// Return true if the operands of the two compares match. IsSwappedOps is true
4343/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004344static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4345 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004346 bool &IsSwappedOps) {
4347
4348 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4349 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4350 return IsMatchingOps || IsSwappedOps;
4351}
4352
Chad Rosier41dd31f2016-04-20 19:15:26 +00004353/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4354/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4355/// BRHS" is false. Otherwise, return None if we can't infer anything.
4356static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004357 const Value *ALHS,
4358 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004359 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004360 const Value *BLHS,
4361 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004362 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004363 // Canonicalize the operands so they're matching.
4364 if (IsSwappedOps) {
4365 std::swap(BLHS, BRHS);
4366 BPred = ICmpInst::getSwappedPredicate(BPred);
4367 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004368 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004369 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004370 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004371 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004372
Chad Rosier41dd31f2016-04-20 19:15:26 +00004373 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004374}
4375
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004376/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4377/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4378/// C2" is false. Otherwise, return None if we can't infer anything.
4379static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004380isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4381 const ConstantInt *C1,
4382 CmpInst::Predicate BPred,
4383 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004384 assert(ALHS == BLHS && "LHS operands must match.");
4385 ConstantRange DomCR =
4386 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4387 ConstantRange CR =
4388 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4389 ConstantRange Intersection = DomCR.intersectWith(CR);
4390 ConstantRange Difference = DomCR.difference(CR);
4391 if (Intersection.isEmptySet())
4392 return false;
4393 if (Difference.isEmptySet())
4394 return true;
4395 return None;
4396}
4397
Pete Cooper35b00d52016-08-13 01:05:32 +00004398Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00004399 const DataLayout &DL, bool InvertAPred,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004400 unsigned Depth, AssumptionCache *AC,
4401 const Instruction *CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004402 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00004403 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4404 if (LHS->getType() != RHS->getType())
4405 return None;
4406
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004407 Type *OpTy = LHS->getType();
4408 assert(OpTy->getScalarType()->isIntegerTy(1));
4409
4410 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00004411 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004412 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004413
4414 if (OpTy->isVectorTy())
4415 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004416 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004417 assert(OpTy->isIntegerTy(1) && "implied by above");
4418
4419 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004420 Value *ALHS, *ARHS;
4421 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004422
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004423 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4424 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004425 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004426
Chad Rosiere2cbd132016-04-25 17:23:36 +00004427 if (InvertAPred)
4428 APred = CmpInst::getInversePredicate(APred);
4429
Chad Rosier226a7342016-05-05 17:41:19 +00004430 // Can we infer anything when the two compares have matching operands?
4431 bool IsSwappedOps;
4432 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4433 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4434 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004435 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004436 // No amount of additional analysis will infer the second condition, so
4437 // early exit.
4438 return None;
4439 }
4440
4441 // Can we infer anything when the LHS operands match and the RHS operands are
4442 // constants (not necessarily matching)?
4443 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4444 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4445 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4446 cast<ConstantInt>(BRHS)))
4447 return Implication;
4448 // No amount of additional analysis will infer the second condition, so
4449 // early exit.
4450 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004451 }
4452
Chad Rosier41dd31f2016-04-20 19:15:26 +00004453 if (APred == BPred)
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004454 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4455 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004456
Chad Rosier41dd31f2016-04-20 19:15:26 +00004457 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004458}