blob: 1fe72fd2b9ae5d16f4b5f1a501c445a80f10ace4 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chad Rosier618c1db2011-12-01 03:08:23 +000077#include "llvm/Target/TargetLibraryInfo.h"
Chris Lattner95255282006-06-28 23:17:24 +000078#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000079#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000080#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000081#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000082#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000083#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000084#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000085#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000086#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000087#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000088#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000089#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000090using namespace llvm;
91
Chris Lattner3b27d682006-12-19 22:30:33 +000092STATISTIC(NumArrayLenItCounts,
93 "Number of trip counts computed with array length");
94STATISTIC(NumTripCountsComputed,
95 "Number of loops with predictable loop counts");
96STATISTIC(NumTripCountsNotComputed,
97 "Number of loops without predictable loop counts");
98STATISTIC(NumBruteForceTripCountsComputed,
99 "Number of loops with trip counts computed by force");
100
Dan Gohman844731a2008-05-13 00:00:25 +0000101static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000102MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000104 "symbolically execute a constant "
105 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000106 cl::init(100));
107
Owen Anderson2ab36d32010-10-12 19:48:12 +0000108INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
109 "Scalar Evolution Analysis", false, true)
110INITIALIZE_PASS_DEPENDENCY(LoopInfo)
111INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Chad Rosier618c1db2011-12-01 03:08:23 +0000112INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000113INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000114 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000115char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000116
117//===----------------------------------------------------------------------===//
118// SCEV class definitions
119//===----------------------------------------------------------------------===//
120
121//===----------------------------------------------------------------------===//
122// Implementation of the SCEV class.
123//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000124
Chris Lattner53e677a2004-04-02 20:23:17 +0000125void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000126 print(dbgs());
127 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000128}
129
Dan Gohman4ce32db2010-11-17 22:27:42 +0000130void SCEV::print(raw_ostream &OS) const {
131 switch (getSCEVType()) {
132 case scConstant:
133 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
134 return;
135 case scTruncate: {
136 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
137 const SCEV *Op = Trunc->getOperand();
138 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
139 << *Trunc->getType() << ")";
140 return;
141 }
142 case scZeroExtend: {
143 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
144 const SCEV *Op = ZExt->getOperand();
145 OS << "(zext " << *Op->getType() << " " << *Op << " to "
146 << *ZExt->getType() << ")";
147 return;
148 }
149 case scSignExtend: {
150 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
151 const SCEV *Op = SExt->getOperand();
152 OS << "(sext " << *Op->getType() << " " << *Op << " to "
153 << *SExt->getType() << ")";
154 return;
155 }
156 case scAddRecExpr: {
157 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
158 OS << "{" << *AR->getOperand(0);
159 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
160 OS << ",+," << *AR->getOperand(i);
161 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000162 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000163 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000164 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000165 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000166 if (AR->getNoWrapFlags(FlagNW) &&
167 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
168 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000169 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
170 OS << ">";
171 return;
172 }
173 case scAddExpr:
174 case scMulExpr:
175 case scUMaxExpr:
176 case scSMaxExpr: {
177 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000178 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000179 switch (NAry->getSCEVType()) {
180 case scAddExpr: OpStr = " + "; break;
181 case scMulExpr: OpStr = " * "; break;
182 case scUMaxExpr: OpStr = " umax "; break;
183 case scSMaxExpr: OpStr = " smax "; break;
184 }
185 OS << "(";
186 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
187 I != E; ++I) {
188 OS << **I;
189 if (llvm::next(I) != E)
190 OS << OpStr;
191 }
192 OS << ")";
Andrew Trick121d78f2011-11-29 02:06:35 +0000193 switch (NAry->getSCEVType()) {
194 case scAddExpr:
195 case scMulExpr:
196 if (NAry->getNoWrapFlags(FlagNUW))
197 OS << "<nuw>";
198 if (NAry->getNoWrapFlags(FlagNSW))
199 OS << "<nsw>";
200 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000201 return;
202 }
203 case scUDivExpr: {
204 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
205 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
206 return;
207 }
208 case scUnknown: {
209 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000210 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000211 if (U->isSizeOf(AllocTy)) {
212 OS << "sizeof(" << *AllocTy << ")";
213 return;
214 }
215 if (U->isAlignOf(AllocTy)) {
216 OS << "alignof(" << *AllocTy << ")";
217 return;
218 }
Andrew Trick635f7182011-03-09 17:23:39 +0000219
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000220 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000221 Constant *FieldNo;
222 if (U->isOffsetOf(CTy, FieldNo)) {
223 OS << "offsetof(" << *CTy << ", ";
224 WriteAsOperand(OS, FieldNo, false);
225 OS << ")";
226 return;
227 }
Andrew Trick635f7182011-03-09 17:23:39 +0000228
Dan Gohman4ce32db2010-11-17 22:27:42 +0000229 // Otherwise just print it normally.
230 WriteAsOperand(OS, U->getValue(), false);
231 return;
232 }
233 case scCouldNotCompute:
234 OS << "***COULDNOTCOMPUTE***";
235 return;
236 default: break;
237 }
238 llvm_unreachable("Unknown SCEV kind!");
239}
240
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000241Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000242 switch (getSCEVType()) {
243 case scConstant:
244 return cast<SCEVConstant>(this)->getType();
245 case scTruncate:
246 case scZeroExtend:
247 case scSignExtend:
248 return cast<SCEVCastExpr>(this)->getType();
249 case scAddRecExpr:
250 case scMulExpr:
251 case scUMaxExpr:
252 case scSMaxExpr:
253 return cast<SCEVNAryExpr>(this)->getType();
254 case scAddExpr:
255 return cast<SCEVAddExpr>(this)->getType();
256 case scUDivExpr:
257 return cast<SCEVUDivExpr>(this)->getType();
258 case scUnknown:
259 return cast<SCEVUnknown>(this)->getType();
260 case scCouldNotCompute:
261 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
262 return 0;
263 default: break;
264 }
265 llvm_unreachable("Unknown SCEV kind!");
266 return 0;
267}
268
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000269bool SCEV::isZero() const {
270 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
271 return SC->getValue()->isZero();
272 return false;
273}
274
Dan Gohman70a1fe72009-05-18 15:22:39 +0000275bool SCEV::isOne() const {
276 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
277 return SC->getValue()->isOne();
278 return false;
279}
Chris Lattner53e677a2004-04-02 20:23:17 +0000280
Dan Gohman4d289bf2009-06-24 00:30:26 +0000281bool SCEV::isAllOnesValue() const {
282 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
283 return SC->getValue()->isAllOnesValue();
284 return false;
285}
286
Andrew Trickf8fd8412012-01-07 00:27:31 +0000287/// isNonConstantNegative - Return true if the specified scev is negated, but
288/// not a constant.
289bool SCEV::isNonConstantNegative() const {
290 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
291 if (!Mul) return false;
292
293 // If there is a constant factor, it will be first.
294 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
295 if (!SC) return false;
296
297 // Return true if the value is negative, this matches things like (-42 * V).
298 return SC->getValue()->getValue().isNegative();
299}
300
Owen Anderson753ad612009-06-22 21:57:23 +0000301SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000302 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000303
Chris Lattner53e677a2004-04-02 20:23:17 +0000304bool SCEVCouldNotCompute::classof(const SCEV *S) {
305 return S->getSCEVType() == scCouldNotCompute;
306}
307
Dan Gohman0bba49c2009-07-07 17:06:11 +0000308const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000309 FoldingSetNodeID ID;
310 ID.AddInteger(scConstant);
311 ID.AddPointer(V);
312 void *IP = 0;
313 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000314 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000315 UniqueSCEVs.InsertNode(S, IP);
316 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000317}
Chris Lattner53e677a2004-04-02 20:23:17 +0000318
Dan Gohman0bba49c2009-07-07 17:06:11 +0000319const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000320 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000321}
322
Dan Gohman0bba49c2009-07-07 17:06:11 +0000323const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000324ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
325 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000326 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000327}
328
Dan Gohman3bf63762010-06-18 19:54:20 +0000329SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000330 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000331 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000332
Dan Gohman3bf63762010-06-18 19:54:20 +0000333SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000334 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000335 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000336 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
337 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000339}
Chris Lattner53e677a2004-04-02 20:23:17 +0000340
Dan Gohman3bf63762010-06-18 19:54:20 +0000341SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000342 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000343 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000346 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000347}
348
Dan Gohman3bf63762010-06-18 19:54:20 +0000349SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000350 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000351 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000354 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000355}
356
Dan Gohmanab37f502010-08-02 23:49:30 +0000357void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000358 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000359 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000360
361 // Remove this SCEVUnknown from the uniquing map.
362 SE->UniqueSCEVs.RemoveNode(this);
363
364 // Release the value.
365 setValPtr(0);
366}
367
368void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000369 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000370 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000371
372 // Remove this SCEVUnknown from the uniquing map.
373 SE->UniqueSCEVs.RemoveNode(this);
374
375 // Update this SCEVUnknown to point to the new value. This is needed
376 // because there may still be outstanding SCEVs which still point to
377 // this SCEVUnknown.
378 setValPtr(New);
379}
380
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000381bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000382 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000383 if (VCE->getOpcode() == Instruction::PtrToInt)
384 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000385 if (CE->getOpcode() == Instruction::GetElementPtr &&
386 CE->getOperand(0)->isNullValue() &&
387 CE->getNumOperands() == 2)
388 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
389 if (CI->isOne()) {
390 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
391 ->getElementType();
392 return true;
393 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000394
395 return false;
396}
397
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000398bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000399 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000400 if (VCE->getOpcode() == Instruction::PtrToInt)
401 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000402 if (CE->getOpcode() == Instruction::GetElementPtr &&
403 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000404 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000405 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000406 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000407 if (!STy->isPacked() &&
408 CE->getNumOperands() == 3 &&
409 CE->getOperand(1)->isNullValue()) {
410 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
411 if (CI->isOne() &&
412 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000413 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000414 AllocTy = STy->getElementType(1);
415 return true;
416 }
417 }
418 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000419
420 return false;
421}
422
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000423bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000424 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000425 if (VCE->getOpcode() == Instruction::PtrToInt)
426 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
427 if (CE->getOpcode() == Instruction::GetElementPtr &&
428 CE->getNumOperands() == 3 &&
429 CE->getOperand(0)->isNullValue() &&
430 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000431 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000432 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
433 // Ignore vector types here so that ScalarEvolutionExpander doesn't
434 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000435 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000436 CTy = Ty;
437 FieldNo = CE->getOperand(2);
438 return true;
439 }
440 }
441
442 return false;
443}
444
Chris Lattner8d741b82004-06-20 06:23:15 +0000445//===----------------------------------------------------------------------===//
446// SCEV Utilities
447//===----------------------------------------------------------------------===//
448
449namespace {
450 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
451 /// than the complexity of the RHS. This comparator is used to canonicalize
452 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000453 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000454 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000455 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000456 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000457
Dan Gohman67ef74e2010-08-27 15:26:01 +0000458 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000459 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000460 return compare(LHS, RHS) < 0;
461 }
462
463 // Return negative, zero, or positive, if LHS is less than, equal to, or
464 // greater than RHS, respectively. A three-way result allows recursive
465 // comparisons to be more efficient.
466 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000467 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
468 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000469 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000470
Dan Gohman72861302009-05-07 14:39:04 +0000471 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000472 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
473 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000474 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000475
Dan Gohman3bf63762010-06-18 19:54:20 +0000476 // Aside from the getSCEVType() ordering, the particular ordering
477 // isn't very important except that it's beneficial to be consistent,
478 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000479 switch (LType) {
480 case scUnknown: {
481 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000482 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000483
484 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
485 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000486 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000487
488 // Order pointer values after integer values. This helps SCEVExpander
489 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000490 bool LIsPointer = LV->getType()->isPointerTy(),
491 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000492 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000493 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000494
495 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000496 unsigned LID = LV->getValueID(),
497 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000498 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000499 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000500
501 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000502 if (const Argument *LA = dyn_cast<Argument>(LV)) {
503 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000504 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
505 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000506 }
507
Dan Gohman67ef74e2010-08-27 15:26:01 +0000508 // For instructions, compare their loop depth, and their operand
509 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000510 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
511 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000512
513 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000514 const BasicBlock *LParent = LInst->getParent(),
515 *RParent = RInst->getParent();
516 if (LParent != RParent) {
517 unsigned LDepth = LI->getLoopDepth(LParent),
518 RDepth = LI->getLoopDepth(RParent);
519 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000520 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000521 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000522
523 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000524 unsigned LNumOps = LInst->getNumOperands(),
525 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000526 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000527 }
528
Dan Gohman67ef74e2010-08-27 15:26:01 +0000529 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000530 }
531
Dan Gohman67ef74e2010-08-27 15:26:01 +0000532 case scConstant: {
533 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000534 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000535
536 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000537 const APInt &LA = LC->getValue()->getValue();
538 const APInt &RA = RC->getValue()->getValue();
539 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000540 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000541 return (int)LBitWidth - (int)RBitWidth;
542 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000543 }
544
Dan Gohman67ef74e2010-08-27 15:26:01 +0000545 case scAddRecExpr: {
546 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000547 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000548
549 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000550 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
551 if (LLoop != RLoop) {
552 unsigned LDepth = LLoop->getLoopDepth(),
553 RDepth = RLoop->getLoopDepth();
554 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000555 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000556 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000557
558 // Addrec complexity grows with operand count.
559 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
560 if (LNumOps != RNumOps)
561 return (int)LNumOps - (int)RNumOps;
562
563 // Lexicographically compare.
564 for (unsigned i = 0; i != LNumOps; ++i) {
565 long X = compare(LA->getOperand(i), RA->getOperand(i));
566 if (X != 0)
567 return X;
568 }
569
570 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000571 }
572
Dan Gohman67ef74e2010-08-27 15:26:01 +0000573 case scAddExpr:
574 case scMulExpr:
575 case scSMaxExpr:
576 case scUMaxExpr: {
577 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000578 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000579
580 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000581 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
582 for (unsigned i = 0; i != LNumOps; ++i) {
583 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000584 return 1;
585 long X = compare(LC->getOperand(i), RC->getOperand(i));
586 if (X != 0)
587 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000588 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000589 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000590 }
591
Dan Gohman67ef74e2010-08-27 15:26:01 +0000592 case scUDivExpr: {
593 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000594 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000595
596 // Lexicographically compare udiv expressions.
597 long X = compare(LC->getLHS(), RC->getLHS());
598 if (X != 0)
599 return X;
600 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000601 }
602
Dan Gohman67ef74e2010-08-27 15:26:01 +0000603 case scTruncate:
604 case scZeroExtend:
605 case scSignExtend: {
606 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000607 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000608
609 // Compare cast expressions by operand.
610 return compare(LC->getOperand(), RC->getOperand());
611 }
612
613 default:
614 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000615 }
616
617 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000618 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000619 }
620 };
621}
622
623/// GroupByComplexity - Given a list of SCEV objects, order them by their
624/// complexity, and group objects of the same complexity together by value.
625/// When this routine is finished, we know that any duplicates in the vector are
626/// consecutive and that complexity is monotonically increasing.
627///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000628/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000629/// results from this routine. In other words, we don't want the results of
630/// this to depend on where the addresses of various SCEV objects happened to
631/// land in memory.
632///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000633static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000634 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000635 if (Ops.size() < 2) return; // Noop
636 if (Ops.size() == 2) {
637 // This is the common case, which also happens to be trivially simple.
638 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
640 if (SCEVComplexityCompare(LI)(RHS, LHS))
641 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000642 return;
643 }
644
Dan Gohman3bf63762010-06-18 19:54:20 +0000645 // Do the rough sort by complexity.
646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
647
648 // Now that we are sorted by complexity, group elements of the same
649 // complexity. Note that this is, at worst, N^2, but the vector is likely to
650 // be extremely short in practice. Note that we take this approach because we
651 // do not want to depend on the addresses of the objects we are grouping.
652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
653 const SCEV *S = Ops[i];
654 unsigned Complexity = S->getSCEVType();
655
656 // If there are any objects of the same complexity and same value as this
657 // one, group them.
658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
659 if (Ops[j] == S) { // Found a duplicate.
660 // Move it to immediately after i'th element.
661 std::swap(Ops[i+1], Ops[j]);
662 ++i; // no need to rescan it.
663 if (i == e-2) return; // Done!
664 }
665 }
666 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000667}
668
Chris Lattner53e677a2004-04-02 20:23:17 +0000669
Chris Lattner53e677a2004-04-02 20:23:17 +0000670
671//===----------------------------------------------------------------------===//
672// Simple SCEV method implementations
673//===----------------------------------------------------------------------===//
674
Eli Friedmanb42a6262008-08-04 23:49:06 +0000675/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000676/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000677static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000678 ScalarEvolution &SE,
Nick Lewycky8cfb2f82011-09-06 06:39:54 +0000679 Type *ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000680 // Handle the simplest case efficiently.
681 if (K == 1)
682 return SE.getTruncateOrZeroExtend(It, ResultTy);
683
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000684 // We are using the following formula for BC(It, K):
685 //
686 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
687 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000688 // Suppose, W is the bitwidth of the return value. We must be prepared for
689 // overflow. Hence, we must assure that the result of our computation is
690 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
691 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000692 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000693 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000694 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000695 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
696 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000697 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000698 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000699 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000700 // This formula is trivially equivalent to the previous formula. However,
701 // this formula can be implemented much more efficiently. The trick is that
702 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
703 // arithmetic. To do exact division in modular arithmetic, all we have
704 // to do is multiply by the inverse. Therefore, this step can be done at
705 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000706 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000707 // The next issue is how to safely do the division by 2^T. The way this
708 // is done is by doing the multiplication step at a width of at least W + T
709 // bits. This way, the bottom W+T bits of the product are accurate. Then,
710 // when we perform the division by 2^T (which is equivalent to a right shift
711 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
712 // truncated out after the division by 2^T.
713 //
714 // In comparison to just directly using the first formula, this technique
715 // is much more efficient; using the first formula requires W * K bits,
716 // but this formula less than W + K bits. Also, the first formula requires
717 // a division step, whereas this formula only requires multiplies and shifts.
718 //
719 // It doesn't matter whether the subtraction step is done in the calculation
720 // width or the input iteration count's width; if the subtraction overflows,
721 // the result must be zero anyway. We prefer here to do it in the width of
722 // the induction variable because it helps a lot for certain cases; CodeGen
723 // isn't smart enough to ignore the overflow, which leads to much less
724 // efficient code if the width of the subtraction is wider than the native
725 // register width.
726 //
727 // (It's possible to not widen at all by pulling out factors of 2 before
728 // the multiplication; for example, K=2 can be calculated as
729 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
730 // extra arithmetic, so it's not an obvious win, and it gets
731 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000732
Eli Friedmanb42a6262008-08-04 23:49:06 +0000733 // Protection from insane SCEVs; this bound is conservative,
734 // but it probably doesn't matter.
735 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000736 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000737
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000738 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000739
Eli Friedmanb42a6262008-08-04 23:49:06 +0000740 // Calculate K! / 2^T and T; we divide out the factors of two before
741 // multiplying for calculating K! / 2^T to avoid overflow.
742 // Other overflow doesn't matter because we only care about the bottom
743 // W bits of the result.
744 APInt OddFactorial(W, 1);
745 unsigned T = 1;
746 for (unsigned i = 3; i <= K; ++i) {
747 APInt Mult(W, i);
748 unsigned TwoFactors = Mult.countTrailingZeros();
749 T += TwoFactors;
750 Mult = Mult.lshr(TwoFactors);
751 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000752 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000753
Eli Friedmanb42a6262008-08-04 23:49:06 +0000754 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000755 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000756
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000757 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000758 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
759
760 // Calculate the multiplicative inverse of K! / 2^T;
761 // this multiplication factor will perform the exact division by
762 // K! / 2^T.
763 APInt Mod = APInt::getSignedMinValue(W+1);
764 APInt MultiplyFactor = OddFactorial.zext(W+1);
765 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
766 MultiplyFactor = MultiplyFactor.trunc(W);
767
768 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000769 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000770 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000771 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000772 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000773 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000774 Dividend = SE.getMulExpr(Dividend,
775 SE.getTruncateOrZeroExtend(S, CalculationTy));
776 }
777
778 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000779 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000780
781 // Truncate the result, and divide by K! / 2^T.
782
783 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
784 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000785}
786
Chris Lattner53e677a2004-04-02 20:23:17 +0000787/// evaluateAtIteration - Return the value of this chain of recurrences at
788/// the specified iteration number. We can evaluate this recurrence by
789/// multiplying each element in the chain by the binomial coefficient
790/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
791///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000792/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000793///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000794/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000795///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000796const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000797 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000798 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000799 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000800 // The computation is correct in the face of overflow provided that the
801 // multiplication is performed _after_ the evaluation of the binomial
802 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000803 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000804 if (isa<SCEVCouldNotCompute>(Coeff))
805 return Coeff;
806
807 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000808 }
809 return Result;
810}
811
Chris Lattner53e677a2004-04-02 20:23:17 +0000812//===----------------------------------------------------------------------===//
813// SCEV Expression folder implementations
814//===----------------------------------------------------------------------===//
815
Dan Gohman0bba49c2009-07-07 17:06:11 +0000816const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000817 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000818 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000819 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000820 assert(isSCEVable(Ty) &&
821 "This is not a conversion to a SCEVable type!");
822 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000823
Dan Gohmanc050fd92009-07-13 20:50:19 +0000824 FoldingSetNodeID ID;
825 ID.AddInteger(scTruncate);
826 ID.AddPointer(Op);
827 ID.AddPointer(Ty);
828 void *IP = 0;
829 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
830
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000831 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000832 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000833 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000834 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
835 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000836
Dan Gohman20900ca2009-04-22 16:20:48 +0000837 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000838 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000839 return getTruncateExpr(ST->getOperand(), Ty);
840
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000841 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000842 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000843 return getTruncateOrSignExtend(SS->getOperand(), Ty);
844
845 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000846 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000847 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
848
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000849 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
850 // eliminate all the truncates.
851 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
852 SmallVector<const SCEV *, 4> Operands;
853 bool hasTrunc = false;
854 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
855 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
856 hasTrunc = isa<SCEVTruncateExpr>(S);
857 Operands.push_back(S);
858 }
859 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000860 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000861 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000862 }
863
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000864 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
865 // eliminate all the truncates.
866 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
867 SmallVector<const SCEV *, 4> Operands;
868 bool hasTrunc = false;
869 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
870 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
871 hasTrunc = isa<SCEVTruncateExpr>(S);
872 Operands.push_back(S);
873 }
874 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000875 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000876 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000877 }
878
Dan Gohman6864db62009-06-18 16:24:47 +0000879 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000880 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000881 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000882 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000883 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000884 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000885 }
886
Dan Gohmanf53462d2010-07-15 20:02:11 +0000887 // As a special case, fold trunc(undef) to undef. We don't want to
888 // know too much about SCEVUnknowns, but this special case is handy
889 // and harmless.
890 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
891 if (isa<UndefValue>(U->getValue()))
892 return getSCEV(UndefValue::get(Ty));
893
Dan Gohman420ab912010-06-25 18:47:08 +0000894 // The cast wasn't folded; create an explicit cast node. We can reuse
895 // the existing insert position since if we get here, we won't have
896 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000897 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
898 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000899 UniqueSCEVs.InsertNode(S, IP);
900 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000901}
902
Dan Gohman0bba49c2009-07-07 17:06:11 +0000903const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000904 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000905 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000906 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000907 assert(isSCEVable(Ty) &&
908 "This is not a conversion to a SCEVable type!");
909 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000910
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000911 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000912 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
913 return getConstant(
914 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
915 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000916
Dan Gohman20900ca2009-04-22 16:20:48 +0000917 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000918 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000919 return getZeroExtendExpr(SZ->getOperand(), Ty);
920
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000921 // Before doing any expensive analysis, check to see if we've already
922 // computed a SCEV for this Op and Ty.
923 FoldingSetNodeID ID;
924 ID.AddInteger(scZeroExtend);
925 ID.AddPointer(Op);
926 ID.AddPointer(Ty);
927 void *IP = 0;
928 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
929
Nick Lewycky630d85a2011-01-23 06:20:19 +0000930 // zext(trunc(x)) --> zext(x) or x or trunc(x)
931 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
932 // It's possible the bits taken off by the truncate were all zero bits. If
933 // so, we should be able to simplify this further.
934 const SCEV *X = ST->getOperand();
935 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000936 unsigned TruncBits = getTypeSizeInBits(ST->getType());
937 unsigned NewBits = getTypeSizeInBits(Ty);
938 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000939 CR.zextOrTrunc(NewBits)))
940 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000941 }
942
Dan Gohman01ecca22009-04-27 20:16:15 +0000943 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000944 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000945 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000946 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000947 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000948 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000949 const SCEV *Start = AR->getStart();
950 const SCEV *Step = AR->getStepRecurrence(*this);
951 unsigned BitWidth = getTypeSizeInBits(AR->getType());
952 const Loop *L = AR->getLoop();
953
Dan Gohmaneb490a72009-07-25 01:22:26 +0000954 // If we have special knowledge that this addrec won't overflow,
955 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000956 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000957 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
958 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000959 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000960
Dan Gohman01ecca22009-04-27 20:16:15 +0000961 // Check whether the backedge-taken count is SCEVCouldNotCompute.
962 // Note that this serves two purposes: It filters out loops that are
963 // simply not analyzable, and it covers the case where this code is
964 // being called from within backedge-taken count analysis, such that
965 // attempting to ask for the backedge-taken count would likely result
966 // in infinite recursion. In the later case, the analysis code will
967 // cope with a conservative value, and it will take care to purge
968 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000969 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000970 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000971 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000972 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000973
974 // Check whether the backedge-taken count can be losslessly casted to
975 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000976 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000977 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000978 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000979 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
980 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000981 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000982 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000983 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000984 const SCEV *Add = getAddExpr(Start, ZMul);
985 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000986 getAddExpr(getZeroExtendExpr(Start, WideTy),
987 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
988 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +0000989 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
990 // Cache knowledge of AR NUW, which is propagated to this AddRec.
991 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000992 // Return the expression with the addrec on the outside.
993 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
994 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000995 L, AR->getNoWrapFlags());
996 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000997 // Similar to above, only this time treat the step value as signed.
998 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000999 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001000 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +00001001 OperandExtendedAdd =
1002 getAddExpr(getZeroExtendExpr(Start, WideTy),
1003 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1004 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001005 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1006 // Cache knowledge of AR NW, which is propagated to this AddRec.
1007 // Negative step causes unsigned wrap, but it still can't self-wrap.
1008 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001009 // Return the expression with the addrec on the outside.
1010 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1011 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001012 L, AR->getNoWrapFlags());
1013 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001014 }
1015
1016 // If the backedge is guarded by a comparison with the pre-inc value
1017 // the addrec is safe. Also, if the entry is guarded by a comparison
1018 // with the start value and the backedge is guarded by a comparison
1019 // with the post-inc value, the addrec is safe.
1020 if (isKnownPositive(Step)) {
1021 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1022 getUnsignedRange(Step).getUnsignedMax());
1023 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001024 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001025 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001026 AR->getPostIncExpr(*this), N))) {
1027 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1028 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001029 // Return the expression with the addrec on the outside.
1030 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1031 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001032 L, AR->getNoWrapFlags());
1033 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001034 } else if (isKnownNegative(Step)) {
1035 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1036 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001037 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1038 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001039 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001040 AR->getPostIncExpr(*this), N))) {
1041 // Cache knowledge of AR NW, which is propagated to this AddRec.
1042 // Negative step causes unsigned wrap, but it still can't self-wrap.
1043 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1044 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001045 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1046 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001047 L, AR->getNoWrapFlags());
1048 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001049 }
1050 }
1051 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001052
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001053 // The cast wasn't folded; create an explicit cast node.
1054 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001055 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001056 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1057 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001058 UniqueSCEVs.InsertNode(S, IP);
1059 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001060}
1061
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001062// Get the limit of a recurrence such that incrementing by Step cannot cause
1063// signed overflow as long as the value of the recurrence within the loop does
1064// not exceed this limit before incrementing.
1065static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1066 ICmpInst::Predicate *Pred,
1067 ScalarEvolution *SE) {
1068 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1069 if (SE->isKnownPositive(Step)) {
1070 *Pred = ICmpInst::ICMP_SLT;
1071 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1072 SE->getSignedRange(Step).getSignedMax());
1073 }
1074 if (SE->isKnownNegative(Step)) {
1075 *Pred = ICmpInst::ICMP_SGT;
1076 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1077 SE->getSignedRange(Step).getSignedMin());
1078 }
1079 return 0;
1080}
1081
1082// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1083// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1084// or postincrement sibling. This allows normalizing a sign extended AddRec as
1085// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1086// result, the expression "Step + sext(PreIncAR)" is congruent with
1087// "sext(PostIncAR)"
1088static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001089 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001090 ScalarEvolution *SE) {
1091 const Loop *L = AR->getLoop();
1092 const SCEV *Start = AR->getStart();
1093 const SCEV *Step = AR->getStepRecurrence(*SE);
1094
1095 // Check for a simple looking step prior to loop entry.
1096 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickf63ae212011-09-28 17:02:54 +00001097 if (!SA)
1098 return 0;
1099
1100 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1101 // subtraction is expensive. For this purpose, perform a quick and dirty
1102 // difference, by checking for Step in the operand list.
1103 SmallVector<const SCEV *, 4> DiffOps;
1104 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1105 I != E; ++I) {
1106 if (*I != Step)
1107 DiffOps.push_back(*I);
1108 }
1109 if (DiffOps.size() == SA->getNumOperands())
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001110 return 0;
1111
1112 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1113 // same three conditions that getSignExtendedExpr checks.
1114
1115 // 1. NSW flags on the step increment.
Andrew Trickf63ae212011-09-28 17:02:54 +00001116 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001117 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1118 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1119
Andrew Trickcf31f912011-06-01 19:14:56 +00001120 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001121 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001122
1123 // 2. Direct overflow check on the step operation's expression.
1124 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001125 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001126 const SCEV *OperandExtendedStart =
1127 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1128 SE->getSignExtendExpr(Step, WideTy));
1129 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1130 // Cache knowledge of PreAR NSW.
1131 if (PreAR)
1132 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1133 // FIXME: this optimization needs a unit test
1134 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1135 return PreStart;
1136 }
1137
1138 // 3. Loop precondition.
1139 ICmpInst::Predicate Pred;
1140 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1141
Andrew Trickcf31f912011-06-01 19:14:56 +00001142 if (OverflowLimit &&
1143 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001144 return PreStart;
1145 }
1146 return 0;
1147}
1148
1149// Get the normalized sign-extended expression for this AddRec's Start.
1150static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001151 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001152 ScalarEvolution *SE) {
1153 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1154 if (!PreStart)
1155 return SE->getSignExtendExpr(AR->getStart(), Ty);
1156
1157 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1158 SE->getSignExtendExpr(PreStart, Ty));
1159}
1160
Dan Gohman0bba49c2009-07-07 17:06:11 +00001161const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001162 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001163 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001164 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001165 assert(isSCEVable(Ty) &&
1166 "This is not a conversion to a SCEVable type!");
1167 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001168
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001169 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001170 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1171 return getConstant(
1172 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1173 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001174
Dan Gohman20900ca2009-04-22 16:20:48 +00001175 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001176 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001177 return getSignExtendExpr(SS->getOperand(), Ty);
1178
Nick Lewycky73f565e2011-01-19 15:56:12 +00001179 // sext(zext(x)) --> zext(x)
1180 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1181 return getZeroExtendExpr(SZ->getOperand(), Ty);
1182
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001183 // Before doing any expensive analysis, check to see if we've already
1184 // computed a SCEV for this Op and Ty.
1185 FoldingSetNodeID ID;
1186 ID.AddInteger(scSignExtend);
1187 ID.AddPointer(Op);
1188 ID.AddPointer(Ty);
1189 void *IP = 0;
1190 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1191
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001192 // If the input value is provably positive, build a zext instead.
1193 if (isKnownNonNegative(Op))
1194 return getZeroExtendExpr(Op, Ty);
1195
Nick Lewycky630d85a2011-01-23 06:20:19 +00001196 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1197 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1198 // It's possible the bits taken off by the truncate were all sign bits. If
1199 // so, we should be able to simplify this further.
1200 const SCEV *X = ST->getOperand();
1201 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001202 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1203 unsigned NewBits = getTypeSizeInBits(Ty);
1204 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001205 CR.sextOrTrunc(NewBits)))
1206 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001207 }
1208
Dan Gohman01ecca22009-04-27 20:16:15 +00001209 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001210 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001211 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001212 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001213 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001214 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001215 const SCEV *Start = AR->getStart();
1216 const SCEV *Step = AR->getStepRecurrence(*this);
1217 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1218 const Loop *L = AR->getLoop();
1219
Dan Gohmaneb490a72009-07-25 01:22:26 +00001220 // If we have special knowledge that this addrec won't overflow,
1221 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001222 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001223 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001224 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001225 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001226
Dan Gohman01ecca22009-04-27 20:16:15 +00001227 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1228 // Note that this serves two purposes: It filters out loops that are
1229 // simply not analyzable, and it covers the case where this code is
1230 // being called from within backedge-taken count analysis, such that
1231 // attempting to ask for the backedge-taken count would likely result
1232 // in infinite recursion. In the later case, the analysis code will
1233 // cope with a conservative value, and it will take care to purge
1234 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001235 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001236 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001237 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001238 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001239
1240 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001241 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001242 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001243 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001244 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001245 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1246 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001247 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001248 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001249 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001250 const SCEV *Add = getAddExpr(Start, SMul);
1251 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001252 getAddExpr(getSignExtendExpr(Start, WideTy),
1253 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1254 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001255 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1256 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1257 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001258 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001259 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001260 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001261 L, AR->getNoWrapFlags());
1262 }
Dan Gohman850f7912009-07-16 17:34:36 +00001263 // Similar to above, only this time treat the step value as unsigned.
1264 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001265 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001266 Add = getAddExpr(Start, UMul);
1267 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001268 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001269 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1270 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001271 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1272 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1273 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001274 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001275 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001276 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001277 L, AR->getNoWrapFlags());
1278 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001279 }
1280
1281 // If the backedge is guarded by a comparison with the pre-inc value
1282 // the addrec is safe. Also, if the entry is guarded by a comparison
1283 // with the start value and the backedge is guarded by a comparison
1284 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001285 ICmpInst::Predicate Pred;
1286 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1287 if (OverflowLimit &&
1288 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1289 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1290 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1291 OverflowLimit)))) {
1292 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1293 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1294 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1295 getSignExtendExpr(Step, Ty),
1296 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001297 }
1298 }
1299 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001300
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001301 // The cast wasn't folded; create an explicit cast node.
1302 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001303 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001304 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1305 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001306 UniqueSCEVs.InsertNode(S, IP);
1307 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001308}
1309
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001310/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1311/// unspecified bits out to the given type.
1312///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001313const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001314 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001315 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1316 "This is not an extending conversion!");
1317 assert(isSCEVable(Ty) &&
1318 "This is not a conversion to a SCEVable type!");
1319 Ty = getEffectiveSCEVType(Ty);
1320
1321 // Sign-extend negative constants.
1322 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1323 if (SC->getValue()->getValue().isNegative())
1324 return getSignExtendExpr(Op, Ty);
1325
1326 // Peel off a truncate cast.
1327 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001328 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001329 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1330 return getAnyExtendExpr(NewOp, Ty);
1331 return getTruncateOrNoop(NewOp, Ty);
1332 }
1333
1334 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001335 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001336 if (!isa<SCEVZeroExtendExpr>(ZExt))
1337 return ZExt;
1338
1339 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001340 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001341 if (!isa<SCEVSignExtendExpr>(SExt))
1342 return SExt;
1343
Dan Gohmana10756e2010-01-21 02:09:26 +00001344 // Force the cast to be folded into the operands of an addrec.
1345 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1346 SmallVector<const SCEV *, 4> Ops;
1347 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1348 I != E; ++I)
1349 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001350 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001351 }
1352
Dan Gohmanf53462d2010-07-15 20:02:11 +00001353 // As a special case, fold anyext(undef) to undef. We don't want to
1354 // know too much about SCEVUnknowns, but this special case is handy
1355 // and harmless.
1356 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1357 if (isa<UndefValue>(U->getValue()))
1358 return getSCEV(UndefValue::get(Ty));
1359
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001360 // If the expression is obviously signed, use the sext cast value.
1361 if (isa<SCEVSMaxExpr>(Op))
1362 return SExt;
1363
1364 // Absent any other information, use the zext cast value.
1365 return ZExt;
1366}
1367
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001368/// CollectAddOperandsWithScales - Process the given Ops list, which is
1369/// a list of operands to be added under the given scale, update the given
1370/// map. This is a helper function for getAddRecExpr. As an example of
1371/// what it does, given a sequence of operands that would form an add
1372/// expression like this:
1373///
1374/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1375///
1376/// where A and B are constants, update the map with these values:
1377///
1378/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1379///
1380/// and add 13 + A*B*29 to AccumulatedConstant.
1381/// This will allow getAddRecExpr to produce this:
1382///
1383/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1384///
1385/// This form often exposes folding opportunities that are hidden in
1386/// the original operand list.
1387///
1388/// Return true iff it appears that any interesting folding opportunities
1389/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1390/// the common case where no interesting opportunities are present, and
1391/// is also used as a check to avoid infinite recursion.
1392///
1393static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001394CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1395 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001396 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001397 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001398 const APInt &Scale,
1399 ScalarEvolution &SE) {
1400 bool Interesting = false;
1401
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001402 // Iterate over the add operands. They are sorted, with constants first.
1403 unsigned i = 0;
1404 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1405 ++i;
1406 // Pull a buried constant out to the outside.
1407 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1408 Interesting = true;
1409 AccumulatedConstant += Scale * C->getValue()->getValue();
1410 }
1411
1412 // Next comes everything else. We're especially interested in multiplies
1413 // here, but they're in the middle, so just visit the rest with one loop.
1414 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001415 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1416 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1417 APInt NewScale =
1418 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1419 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1420 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001421 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001422 Interesting |=
1423 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001424 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001425 NewScale, SE);
1426 } else {
1427 // A multiplication of a constant with some other value. Update
1428 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001429 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1430 const SCEV *Key = SE.getMulExpr(MulOps);
1431 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001432 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001433 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001434 NewOps.push_back(Pair.first->first);
1435 } else {
1436 Pair.first->second += NewScale;
1437 // The map already had an entry for this value, which may indicate
1438 // a folding opportunity.
1439 Interesting = true;
1440 }
1441 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001442 } else {
1443 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001444 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001445 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001446 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001447 NewOps.push_back(Pair.first->first);
1448 } else {
1449 Pair.first->second += Scale;
1450 // The map already had an entry for this value, which may indicate
1451 // a folding opportunity.
1452 Interesting = true;
1453 }
1454 }
1455 }
1456
1457 return Interesting;
1458}
1459
1460namespace {
1461 struct APIntCompare {
1462 bool operator()(const APInt &LHS, const APInt &RHS) const {
1463 return LHS.ult(RHS);
1464 }
1465 };
1466}
1467
Dan Gohman6c0866c2009-05-24 23:45:28 +00001468/// getAddExpr - Get a canonical add expression, or something simpler if
1469/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001470const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001471 SCEV::NoWrapFlags Flags) {
1472 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1473 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001474 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001475 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001476#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001477 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001478 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001479 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001480 "SCEVAddExpr operand types don't match!");
1481#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001482
Andrew Trick3228cc22011-03-14 16:50:06 +00001483 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001484 // And vice-versa.
1485 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1486 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1487 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001488 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001489 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1490 E = Ops.end(); I != E; ++I)
1491 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001492 All = false;
1493 break;
1494 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001495 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001496 }
1497
Chris Lattner53e677a2004-04-02 20:23:17 +00001498 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001499 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001500
1501 // If there are any constants, fold them together.
1502 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001503 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001504 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001505 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001506 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001507 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001508 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1509 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001510 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001511 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001512 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001513 }
1514
1515 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001516 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001517 Ops.erase(Ops.begin());
1518 --Idx;
1519 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001520
Dan Gohmanbca091d2010-04-12 23:08:18 +00001521 if (Ops.size() == 1) return Ops[0];
1522 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001523
Dan Gohman68ff7762010-08-27 21:39:59 +00001524 // Okay, check to see if the same value occurs in the operand list more than
1525 // once. If so, merge them together into an multiply expression. Since we
1526 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001527 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001528 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001529 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001530 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001531 // Scan ahead to count how many equal operands there are.
1532 unsigned Count = 2;
1533 while (i+Count != e && Ops[i+Count] == Ops[i])
1534 ++Count;
1535 // Merge the values into a multiply.
1536 const SCEV *Scale = getConstant(Ty, Count);
1537 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1538 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001539 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001540 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001541 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001542 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001543 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001544 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001545 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001546 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001547
Dan Gohman728c7f32009-05-08 21:03:19 +00001548 // Check for truncates. If all the operands are truncated from the same
1549 // type, see if factoring out the truncate would permit the result to be
1550 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1551 // if the contents of the resulting outer trunc fold to something simple.
1552 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1553 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001554 Type *DstType = Trunc->getType();
1555 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001556 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001557 bool Ok = true;
1558 // Check all the operands to see if they can be represented in the
1559 // source type of the truncate.
1560 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1561 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1562 if (T->getOperand()->getType() != SrcType) {
1563 Ok = false;
1564 break;
1565 }
1566 LargeOps.push_back(T->getOperand());
1567 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001568 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001569 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001570 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001571 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1572 if (const SCEVTruncateExpr *T =
1573 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1574 if (T->getOperand()->getType() != SrcType) {
1575 Ok = false;
1576 break;
1577 }
1578 LargeMulOps.push_back(T->getOperand());
1579 } else if (const SCEVConstant *C =
1580 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001581 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001582 } else {
1583 Ok = false;
1584 break;
1585 }
1586 }
1587 if (Ok)
1588 LargeOps.push_back(getMulExpr(LargeMulOps));
1589 } else {
1590 Ok = false;
1591 break;
1592 }
1593 }
1594 if (Ok) {
1595 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001596 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001597 // If it folds to something simple, use it. Otherwise, don't.
1598 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1599 return getTruncateExpr(Fold, DstType);
1600 }
1601 }
1602
1603 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001604 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1605 ++Idx;
1606
1607 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001608 if (Idx < Ops.size()) {
1609 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001610 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001611 // If we have an add, expand the add operands onto the end of the operands
1612 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001613 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001614 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001615 DeletedAdd = true;
1616 }
1617
1618 // If we deleted at least one add, we added operands to the end of the list,
1619 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001620 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001621 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001622 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001623 }
1624
1625 // Skip over the add expression until we get to a multiply.
1626 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1627 ++Idx;
1628
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001629 // Check to see if there are any folding opportunities present with
1630 // operands multiplied by constant values.
1631 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1632 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001633 DenseMap<const SCEV *, APInt> M;
1634 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001635 APInt AccumulatedConstant(BitWidth, 0);
1636 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001637 Ops.data(), Ops.size(),
1638 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001639 // Some interesting folding opportunity is present, so its worthwhile to
1640 // re-generate the operands list. Group the operands by constant scale,
1641 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001642 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001643 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001644 E = NewOps.end(); I != E; ++I)
1645 MulOpLists[M.find(*I)->second].push_back(*I);
1646 // Re-generate the operands list.
1647 Ops.clear();
1648 if (AccumulatedConstant != 0)
1649 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001650 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1651 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001652 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001653 Ops.push_back(getMulExpr(getConstant(I->first),
1654 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001655 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001656 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001657 if (Ops.size() == 1)
1658 return Ops[0];
1659 return getAddExpr(Ops);
1660 }
1661 }
1662
Chris Lattner53e677a2004-04-02 20:23:17 +00001663 // If we are adding something to a multiply expression, make sure the
1664 // something is not already an operand of the multiply. If so, merge it into
1665 // the multiply.
1666 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001667 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001668 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001669 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001670 if (isa<SCEVConstant>(MulOpSCEV))
1671 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001672 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001673 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001674 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001675 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001676 if (Mul->getNumOperands() != 2) {
1677 // If the multiply has more than two operands, we must get the
1678 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001679 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1680 Mul->op_begin()+MulOp);
1681 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001682 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001683 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001684 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001685 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001686 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001687 if (Ops.size() == 2) return OuterMul;
1688 if (AddOp < Idx) {
1689 Ops.erase(Ops.begin()+AddOp);
1690 Ops.erase(Ops.begin()+Idx-1);
1691 } else {
1692 Ops.erase(Ops.begin()+Idx);
1693 Ops.erase(Ops.begin()+AddOp-1);
1694 }
1695 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001696 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001697 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001698
Chris Lattner53e677a2004-04-02 20:23:17 +00001699 // Check this multiply against other multiplies being added together.
1700 for (unsigned OtherMulIdx = Idx+1;
1701 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1702 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001703 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001704 // If MulOp occurs in OtherMul, we can fold the two multiplies
1705 // together.
1706 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1707 OMulOp != e; ++OMulOp)
1708 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1709 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001710 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001711 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001712 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001713 Mul->op_begin()+MulOp);
1714 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001715 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001716 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001717 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001718 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001719 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001720 OtherMul->op_begin()+OMulOp);
1721 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001722 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001723 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001724 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1725 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001726 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001727 Ops.erase(Ops.begin()+Idx);
1728 Ops.erase(Ops.begin()+OtherMulIdx-1);
1729 Ops.push_back(OuterMul);
1730 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001731 }
1732 }
1733 }
1734 }
1735
1736 // If there are any add recurrences in the operands list, see if any other
1737 // added values are loop invariant. If so, we can fold them into the
1738 // recurrence.
1739 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1740 ++Idx;
1741
1742 // Scan over all recurrences, trying to fold loop invariants into them.
1743 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1744 // Scan all of the other operands to this add and add them to the vector if
1745 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001746 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001747 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001748 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001749 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001750 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001751 LIOps.push_back(Ops[i]);
1752 Ops.erase(Ops.begin()+i);
1753 --i; --e;
1754 }
1755
1756 // If we found some loop invariants, fold them into the recurrence.
1757 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001758 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001759 LIOps.push_back(AddRec->getStart());
1760
Dan Gohman0bba49c2009-07-07 17:06:11 +00001761 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001762 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001763 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001764
Dan Gohmanb9f96512010-06-30 07:16:37 +00001765 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001766 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001767 // Always propagate NW.
1768 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001769 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001770
Chris Lattner53e677a2004-04-02 20:23:17 +00001771 // If all of the other operands were loop invariant, we are done.
1772 if (Ops.size() == 1) return NewRec;
1773
Nick Lewycky980e9f32011-09-06 05:08:09 +00001774 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001775 for (unsigned i = 0;; ++i)
1776 if (Ops[i] == AddRec) {
1777 Ops[i] = NewRec;
1778 break;
1779 }
Dan Gohman246b2562007-10-22 18:31:58 +00001780 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001781 }
1782
1783 // Okay, if there weren't any loop invariants to be folded, check to see if
1784 // there are multiple AddRec's with the same loop induction variable being
1785 // added together. If so, we can fold them.
1786 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001787 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1788 ++OtherIdx)
1789 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1790 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1791 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1792 AddRec->op_end());
1793 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1794 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001795 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001796 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001797 if (OtherAddRec->getLoop() == AddRecLoop) {
1798 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1799 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001800 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001801 AddRecOps.append(OtherAddRec->op_begin()+i,
1802 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001803 break;
1804 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001805 AddRecOps[i] = getAddExpr(AddRecOps[i],
1806 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001807 }
1808 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001809 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001810 // Step size has changed, so we cannot guarantee no self-wraparound.
1811 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001812 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001813 }
1814
1815 // Otherwise couldn't fold anything into this recurrence. Move onto the
1816 // next one.
1817 }
1818
1819 // Okay, it looks like we really DO need an add expr. Check to see if we
1820 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001821 FoldingSetNodeID ID;
1822 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001823 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1824 ID.AddPointer(Ops[i]);
1825 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001826 SCEVAddExpr *S =
1827 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1828 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001829 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1830 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001831 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1832 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001833 UniqueSCEVs.InsertNode(S, IP);
1834 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001835 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001836 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001837}
1838
Nick Lewyckye97728e2011-10-04 06:51:26 +00001839static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1840 uint64_t k = i*j;
1841 if (j > 1 && k / j != i) Overflow = true;
1842 return k;
1843}
1844
1845/// Compute the result of "n choose k", the binomial coefficient. If an
1846/// intermediate computation overflows, Overflow will be set and the return will
1847/// be garbage. Overflow is not cleared on absense of overflow.
1848static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1849 // We use the multiplicative formula:
1850 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1851 // At each iteration, we take the n-th term of the numeral and divide by the
1852 // (k-n)th term of the denominator. This division will always produce an
1853 // integral result, and helps reduce the chance of overflow in the
1854 // intermediate computations. However, we can still overflow even when the
1855 // final result would fit.
1856
1857 if (n == 0 || n == k) return 1;
1858 if (k > n) return 0;
1859
1860 if (k > n/2)
1861 k = n-k;
1862
1863 uint64_t r = 1;
1864 for (uint64_t i = 1; i <= k; ++i) {
1865 r = umul_ov(r, n-(i-1), Overflow);
1866 r /= i;
1867 }
1868 return r;
1869}
1870
Dan Gohman6c0866c2009-05-24 23:45:28 +00001871/// getMulExpr - Get a canonical multiply expression, or something simpler if
1872/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001873const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001874 SCEV::NoWrapFlags Flags) {
1875 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1876 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001877 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001878 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001879#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001880 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001881 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001882 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001883 "SCEVMulExpr operand types don't match!");
1884#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001885
Andrew Trick3228cc22011-03-14 16:50:06 +00001886 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001887 // And vice-versa.
1888 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1889 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1890 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001891 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001892 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1893 E = Ops.end(); I != E; ++I)
1894 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001895 All = false;
1896 break;
1897 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001898 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001899 }
1900
Chris Lattner53e677a2004-04-02 20:23:17 +00001901 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001902 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001903
1904 // If there are any constants, fold them together.
1905 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001906 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001907
1908 // C1*(C2+V) -> C1*C2 + C1*V
1909 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001910 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001911 if (Add->getNumOperands() == 2 &&
1912 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001913 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1914 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001915
Chris Lattner53e677a2004-04-02 20:23:17 +00001916 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001917 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001918 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001919 ConstantInt *Fold = ConstantInt::get(getContext(),
1920 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001921 RHSC->getValue()->getValue());
1922 Ops[0] = getConstant(Fold);
1923 Ops.erase(Ops.begin()+1); // Erase the folded element
1924 if (Ops.size() == 1) return Ops[0];
1925 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001926 }
1927
1928 // If we are left with a constant one being multiplied, strip it off.
1929 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1930 Ops.erase(Ops.begin());
1931 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001932 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001933 // If we have a multiply of zero, it will always be zero.
1934 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001935 } else if (Ops[0]->isAllOnesValue()) {
1936 // If we have a mul by -1 of an add, try distributing the -1 among the
1937 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001938 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001939 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1940 SmallVector<const SCEV *, 4> NewOps;
1941 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001942 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1943 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001944 const SCEV *Mul = getMulExpr(Ops[0], *I);
1945 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1946 NewOps.push_back(Mul);
1947 }
1948 if (AnyFolded)
1949 return getAddExpr(NewOps);
1950 }
Andrew Tricka053b212011-03-14 17:38:54 +00001951 else if (const SCEVAddRecExpr *
1952 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1953 // Negation preserves a recurrence's no self-wrap property.
1954 SmallVector<const SCEV *, 4> Operands;
1955 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1956 E = AddRec->op_end(); I != E; ++I) {
1957 Operands.push_back(getMulExpr(Ops[0], *I));
1958 }
1959 return getAddRecExpr(Operands, AddRec->getLoop(),
1960 AddRec->getNoWrapFlags(SCEV::FlagNW));
1961 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001962 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001963 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001964
1965 if (Ops.size() == 1)
1966 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001967 }
1968
1969 // Skip over the add expression until we get to a multiply.
1970 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1971 ++Idx;
1972
Chris Lattner53e677a2004-04-02 20:23:17 +00001973 // If there are mul operands inline them all into this expression.
1974 if (Idx < Ops.size()) {
1975 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001976 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001977 // If we have an mul, expand the mul operands onto the end of the operands
1978 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001979 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001980 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001981 DeletedMul = true;
1982 }
1983
1984 // If we deleted at least one mul, we added operands to the end of the list,
1985 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001986 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001987 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001988 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001989 }
1990
1991 // If there are any add recurrences in the operands list, see if any other
1992 // added values are loop invariant. If so, we can fold them into the
1993 // recurrence.
1994 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1995 ++Idx;
1996
1997 // Scan over all recurrences, trying to fold loop invariants into them.
1998 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1999 // Scan all of the other operands to this mul and add them to the vector if
2000 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002001 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00002002 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00002003 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00002004 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002005 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002006 LIOps.push_back(Ops[i]);
2007 Ops.erase(Ops.begin()+i);
2008 --i; --e;
2009 }
2010
2011 // If we found some loop invariants, fold them into the recurrence.
2012 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00002013 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00002014 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00002015 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00002016 const SCEV *Scale = getMulExpr(LIOps);
2017 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2018 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00002019
Dan Gohmanb9f96512010-06-30 07:16:37 +00002020 // Build the new addrec. Propagate the NUW and NSW flags if both the
2021 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00002022 //
2023 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002024 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00002025 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2026 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002027
2028 // If all of the other operands were loop invariant, we are done.
2029 if (Ops.size() == 1) return NewRec;
2030
Nick Lewycky980e9f32011-09-06 05:08:09 +00002031 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00002032 for (unsigned i = 0;; ++i)
2033 if (Ops[i] == AddRec) {
2034 Ops[i] = NewRec;
2035 break;
2036 }
Dan Gohman246b2562007-10-22 18:31:58 +00002037 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002038 }
2039
2040 // Okay, if there weren't any loop invariants to be folded, check to see if
2041 // there are multiple AddRec's with the same loop induction variable being
2042 // multiplied together. If so, we can fold them.
2043 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002044 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002045 ++OtherIdx) {
Dan Gohman6a0c1252010-08-31 22:52:12 +00002046 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
Nick Lewyckye97728e2011-10-04 06:51:26 +00002047 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2048 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2049 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2050 // ]]],+,...up to x=2n}.
2051 // Note that the arguments to choose() are always integers with values
2052 // known at compile time, never SCEV objects.
Nick Lewycky28682ae2011-09-06 05:33:18 +00002053 //
Nick Lewyckye97728e2011-10-04 06:51:26 +00002054 // The implementation avoids pointless extra computations when the two
2055 // addrec's are of different length (mathematically, it's equivalent to
2056 // an infinite stream of zeros on the right).
2057 bool OpsModified = false;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002058 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2059 ++OtherIdx)
2060 if (const SCEVAddRecExpr *OtherAddRec =
2061 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2062 if (OtherAddRec->getLoop() == AddRecLoop) {
Nick Lewyckye97728e2011-10-04 06:51:26 +00002063 bool Overflow = false;
2064 Type *Ty = AddRec->getType();
2065 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2066 SmallVector<const SCEV*, 7> AddRecOps;
2067 for (int x = 0, xe = AddRec->getNumOperands() +
2068 OtherAddRec->getNumOperands() - 1;
2069 x != xe && !Overflow; ++x) {
2070 const SCEV *Term = getConstant(Ty, 0);
2071 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2072 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2073 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2074 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2075 z < ze && !Overflow; ++z) {
2076 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2077 uint64_t Coeff;
2078 if (LargerThan64Bits)
2079 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2080 else
2081 Coeff = Coeff1*Coeff2;
2082 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2083 const SCEV *Term1 = AddRec->getOperand(y-z);
2084 const SCEV *Term2 = OtherAddRec->getOperand(z);
2085 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2086 }
2087 }
2088 AddRecOps.push_back(Term);
2089 }
2090 if (!Overflow) {
Nick Lewyckyc103a082011-09-06 21:42:18 +00002091 const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
2092 AddRec->getLoop(),
2093 SCEV::FlagAnyWrap);
2094 if (Ops.size() == 2) return NewAddRec;
2095 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
2096 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Nick Lewyckye97728e2011-10-04 06:51:26 +00002097 OpsModified = true;
Nick Lewyckyc103a082011-09-06 21:42:18 +00002098 }
Dan Gohman6a0c1252010-08-31 22:52:12 +00002099 }
Nick Lewyckye97728e2011-10-04 06:51:26 +00002100 if (OpsModified)
Nick Lewyckyc103a082011-09-06 21:42:18 +00002101 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002102 }
Nick Lewyckyc103a082011-09-06 21:42:18 +00002103 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002104
2105 // Otherwise couldn't fold anything into this recurrence. Move onto the
2106 // next one.
2107 }
2108
2109 // Okay, it looks like we really DO need an mul expr. Check to see if we
2110 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002111 FoldingSetNodeID ID;
2112 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002113 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2114 ID.AddPointer(Ops[i]);
2115 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002116 SCEVMulExpr *S =
2117 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2118 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002119 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2120 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002121 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2122 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002123 UniqueSCEVs.InsertNode(S, IP);
2124 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002125 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002126 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002127}
2128
Andreas Bolka8a11c982009-08-07 22:55:26 +00002129/// getUDivExpr - Get a canonical unsigned division expression, or something
2130/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002131const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2132 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002133 assert(getEffectiveSCEVType(LHS->getType()) ==
2134 getEffectiveSCEVType(RHS->getType()) &&
2135 "SCEVUDivExpr operand types don't match!");
2136
Dan Gohman622ed672009-05-04 22:02:23 +00002137 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002138 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002139 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002140 // If the denominator is zero, the result of the udiv is undefined. Don't
2141 // try to analyze it, because the resolution chosen here may differ from
2142 // the resolution chosen in other parts of the compiler.
2143 if (!RHSC->getValue()->isZero()) {
2144 // Determine if the division can be folded into the operands of
2145 // its operands.
2146 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002147 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002148 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002149 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002150 // For non-power-of-two values, effectively round the value up to the
2151 // nearest power of two.
2152 if (!RHSC->getValue()->getValue().isPowerOf2())
2153 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002154 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002155 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002156 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2157 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002158 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2159 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2160 const APInt &StepInt = Step->getValue()->getValue();
2161 const APInt &DivInt = RHSC->getValue()->getValue();
2162 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002163 getZeroExtendExpr(AR, ExtTy) ==
2164 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2165 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002166 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002167 SmallVector<const SCEV *, 4> Operands;
2168 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2169 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002170 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002171 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002172 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002173 /// Get a canonical UDivExpr for a recurrence.
2174 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2175 // We can currently only fold X%N if X is constant.
2176 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2177 if (StartC && !DivInt.urem(StepInt) &&
2178 getZeroExtendExpr(AR, ExtTy) ==
2179 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2180 getZeroExtendExpr(Step, ExtTy),
2181 AR->getLoop(), SCEV::FlagAnyWrap)) {
2182 const APInt &StartInt = StartC->getValue()->getValue();
2183 const APInt &StartRem = StartInt.urem(StepInt);
2184 if (StartRem != 0)
2185 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2186 AR->getLoop(), SCEV::FlagNW);
2187 }
2188 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002189 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2190 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2191 SmallVector<const SCEV *, 4> Operands;
2192 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2193 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2194 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2195 // Find an operand that's safely divisible.
2196 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2197 const SCEV *Op = M->getOperand(i);
2198 const SCEV *Div = getUDivExpr(Op, RHSC);
2199 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2200 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2201 M->op_end());
2202 Operands[i] = Div;
2203 return getMulExpr(Operands);
2204 }
2205 }
Dan Gohman185cf032009-05-08 20:18:49 +00002206 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002207 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002208 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002209 SmallVector<const SCEV *, 4> Operands;
2210 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2211 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2212 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2213 Operands.clear();
2214 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2215 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2216 if (isa<SCEVUDivExpr>(Op) ||
2217 getMulExpr(Op, RHS) != A->getOperand(i))
2218 break;
2219 Operands.push_back(Op);
2220 }
2221 if (Operands.size() == A->getNumOperands())
2222 return getAddExpr(Operands);
2223 }
2224 }
Dan Gohman185cf032009-05-08 20:18:49 +00002225
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002226 // Fold if both operands are constant.
2227 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2228 Constant *LHSCV = LHSC->getValue();
2229 Constant *RHSCV = RHSC->getValue();
2230 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2231 RHSCV)));
2232 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002233 }
2234 }
2235
Dan Gohman1c343752009-06-27 21:21:31 +00002236 FoldingSetNodeID ID;
2237 ID.AddInteger(scUDivExpr);
2238 ID.AddPointer(LHS);
2239 ID.AddPointer(RHS);
2240 void *IP = 0;
2241 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002242 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2243 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002244 UniqueSCEVs.InsertNode(S, IP);
2245 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002246}
2247
2248
Dan Gohman6c0866c2009-05-24 23:45:28 +00002249/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2250/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002251const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2252 const Loop *L,
2253 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002254 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002255 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002256 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002257 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002258 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002259 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002260 }
2261
2262 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002263 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002264}
2265
Dan Gohman6c0866c2009-05-24 23:45:28 +00002266/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2267/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002268const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002269ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002270 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002271 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002272#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002273 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002274 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002275 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002276 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002277 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002278 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002279 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002280#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002281
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002282 if (Operands.back()->isZero()) {
2283 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002284 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002285 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002286
Dan Gohmanbc028532010-02-19 18:49:22 +00002287 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2288 // use that information to infer NUW and NSW flags. However, computing a
2289 // BE count requires calling getAddRecExpr, so we may not yet have a
2290 // meaningful BE count at this point (and if we don't, we'd be stuck
2291 // with a SCEVCouldNotCompute as the cached BE count).
2292
Andrew Trick3228cc22011-03-14 16:50:06 +00002293 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002294 // And vice-versa.
2295 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2296 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2297 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002298 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002299 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2300 E = Operands.end(); I != E; ++I)
2301 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002302 All = false;
2303 break;
2304 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002305 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002306 }
2307
Dan Gohmand9cc7492008-08-08 18:33:12 +00002308 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002309 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002310 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002311 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002312 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002313 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002314 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002315 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002316 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002317 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002318 // AddRecs require their operands be loop-invariant with respect to their
2319 // loops. Don't perform this transformation if it would break this
2320 // requirement.
2321 bool AllInvariant = true;
2322 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002323 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002324 AllInvariant = false;
2325 break;
2326 }
2327 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002328 // Create a recurrence for the outer loop with the same step size.
2329 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002330 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2331 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002332 SCEV::NoWrapFlags OuterFlags =
2333 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002334
2335 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002336 AllInvariant = true;
2337 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002338 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002339 AllInvariant = false;
2340 break;
2341 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002342 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002343 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002344 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002345 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2346 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002347 SCEV::NoWrapFlags InnerFlags =
2348 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002349 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2350 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002351 }
2352 // Reset Operands to its original state.
2353 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002354 }
2355 }
2356
Dan Gohman67847532010-01-19 22:27:22 +00002357 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2358 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002359 FoldingSetNodeID ID;
2360 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002361 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2362 ID.AddPointer(Operands[i]);
2363 ID.AddPointer(L);
2364 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002365 SCEVAddRecExpr *S =
2366 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2367 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002368 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2369 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002370 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2371 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002372 UniqueSCEVs.InsertNode(S, IP);
2373 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002374 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002375 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002376}
2377
Dan Gohman9311ef62009-06-24 14:49:00 +00002378const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2379 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002380 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002381 Ops.push_back(LHS);
2382 Ops.push_back(RHS);
2383 return getSMaxExpr(Ops);
2384}
2385
Dan Gohman0bba49c2009-07-07 17:06:11 +00002386const SCEV *
2387ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002388 assert(!Ops.empty() && "Cannot get empty smax!");
2389 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002390#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002391 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002392 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002393 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002394 "SCEVSMaxExpr operand types don't match!");
2395#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002396
2397 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002398 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002399
2400 // If there are any constants, fold them together.
2401 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002402 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002403 ++Idx;
2404 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002405 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002406 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002407 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002408 APIntOps::smax(LHSC->getValue()->getValue(),
2409 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002410 Ops[0] = getConstant(Fold);
2411 Ops.erase(Ops.begin()+1); // Erase the folded element
2412 if (Ops.size() == 1) return Ops[0];
2413 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002414 }
2415
Dan Gohmane5aceed2009-06-24 14:46:22 +00002416 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002417 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2418 Ops.erase(Ops.begin());
2419 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002420 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2421 // If we have an smax with a constant maximum-int, it will always be
2422 // maximum-int.
2423 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002424 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002425
Dan Gohman3ab13122010-04-13 16:49:23 +00002426 if (Ops.size() == 1) return Ops[0];
2427 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002428
2429 // Find the first SMax
2430 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2431 ++Idx;
2432
2433 // Check to see if one of the operands is an SMax. If so, expand its operands
2434 // onto our operand list, and recurse to simplify.
2435 if (Idx < Ops.size()) {
2436 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002437 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002438 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002439 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002440 DeletedSMax = true;
2441 }
2442
2443 if (DeletedSMax)
2444 return getSMaxExpr(Ops);
2445 }
2446
2447 // Okay, check to see if the same value occurs in the operand list twice. If
2448 // so, delete one. Since we sorted the list, these values are required to
2449 // be adjacent.
2450 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002451 // X smax Y smax Y --> X smax Y
2452 // X smax Y --> X, if X is always greater than Y
2453 if (Ops[i] == Ops[i+1] ||
2454 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2455 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2456 --i; --e;
2457 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002458 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2459 --i; --e;
2460 }
2461
2462 if (Ops.size() == 1) return Ops[0];
2463
2464 assert(!Ops.empty() && "Reduced smax down to nothing!");
2465
Nick Lewycky3e630762008-02-20 06:48:22 +00002466 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002467 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002468 FoldingSetNodeID ID;
2469 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002470 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2471 ID.AddPointer(Ops[i]);
2472 void *IP = 0;
2473 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002474 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2475 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002476 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2477 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002478 UniqueSCEVs.InsertNode(S, IP);
2479 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002480}
2481
Dan Gohman9311ef62009-06-24 14:49:00 +00002482const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2483 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002484 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002485 Ops.push_back(LHS);
2486 Ops.push_back(RHS);
2487 return getUMaxExpr(Ops);
2488}
2489
Dan Gohman0bba49c2009-07-07 17:06:11 +00002490const SCEV *
2491ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002492 assert(!Ops.empty() && "Cannot get empty umax!");
2493 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002494#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002495 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002496 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002497 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002498 "SCEVUMaxExpr operand types don't match!");
2499#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002500
2501 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002502 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002503
2504 // If there are any constants, fold them together.
2505 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002506 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002507 ++Idx;
2508 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002509 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002510 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002511 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002512 APIntOps::umax(LHSC->getValue()->getValue(),
2513 RHSC->getValue()->getValue()));
2514 Ops[0] = getConstant(Fold);
2515 Ops.erase(Ops.begin()+1); // Erase the folded element
2516 if (Ops.size() == 1) return Ops[0];
2517 LHSC = cast<SCEVConstant>(Ops[0]);
2518 }
2519
Dan Gohmane5aceed2009-06-24 14:46:22 +00002520 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002521 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2522 Ops.erase(Ops.begin());
2523 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002524 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2525 // If we have an umax with a constant maximum-int, it will always be
2526 // maximum-int.
2527 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002528 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002529
Dan Gohman3ab13122010-04-13 16:49:23 +00002530 if (Ops.size() == 1) return Ops[0];
2531 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002532
2533 // Find the first UMax
2534 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2535 ++Idx;
2536
2537 // Check to see if one of the operands is a UMax. If so, expand its operands
2538 // onto our operand list, and recurse to simplify.
2539 if (Idx < Ops.size()) {
2540 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002541 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002542 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002543 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002544 DeletedUMax = true;
2545 }
2546
2547 if (DeletedUMax)
2548 return getUMaxExpr(Ops);
2549 }
2550
2551 // Okay, check to see if the same value occurs in the operand list twice. If
2552 // so, delete one. Since we sorted the list, these values are required to
2553 // be adjacent.
2554 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002555 // X umax Y umax Y --> X umax Y
2556 // X umax Y --> X, if X is always greater than Y
2557 if (Ops[i] == Ops[i+1] ||
2558 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2559 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2560 --i; --e;
2561 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002562 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2563 --i; --e;
2564 }
2565
2566 if (Ops.size() == 1) return Ops[0];
2567
2568 assert(!Ops.empty() && "Reduced umax down to nothing!");
2569
2570 // Okay, it looks like we really DO need a umax expr. Check to see if we
2571 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002572 FoldingSetNodeID ID;
2573 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002574 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2575 ID.AddPointer(Ops[i]);
2576 void *IP = 0;
2577 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002578 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2579 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002580 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2581 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002582 UniqueSCEVs.InsertNode(S, IP);
2583 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002584}
2585
Dan Gohman9311ef62009-06-24 14:49:00 +00002586const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2587 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002588 // ~smax(~x, ~y) == smin(x, y).
2589 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2590}
2591
Dan Gohman9311ef62009-06-24 14:49:00 +00002592const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2593 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002594 // ~umax(~x, ~y) == umin(x, y)
2595 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2596}
2597
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002598const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002599 // If we have TargetData, we can bypass creating a target-independent
2600 // constant expression and then folding it back into a ConstantInt.
2601 // This is just a compile-time optimization.
2602 if (TD)
2603 return getConstant(TD->getIntPtrType(getContext()),
2604 TD->getTypeAllocSize(AllocTy));
2605
Dan Gohman4f8eea82010-02-01 18:27:38 +00002606 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2607 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002608 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002609 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002610 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002611 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2612}
2613
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002614const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002615 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2616 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002617 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002618 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002619 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002620 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2621}
2622
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002623const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002624 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002625 // If we have TargetData, we can bypass creating a target-independent
2626 // constant expression and then folding it back into a ConstantInt.
2627 // This is just a compile-time optimization.
2628 if (TD)
2629 return getConstant(TD->getIntPtrType(getContext()),
2630 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2631
Dan Gohman0f5efe52010-01-28 02:15:55 +00002632 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2633 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002634 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002635 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002636 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002637 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002638}
2639
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002640const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002641 Constant *FieldNo) {
2642 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002643 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002644 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002645 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002646 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002647 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002648}
2649
Dan Gohman0bba49c2009-07-07 17:06:11 +00002650const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002651 // Don't attempt to do anything other than create a SCEVUnknown object
2652 // here. createSCEV only calls getUnknown after checking for all other
2653 // interesting possibilities, and any other code that calls getUnknown
2654 // is doing so in order to hide a value from SCEV canonicalization.
2655
Dan Gohman1c343752009-06-27 21:21:31 +00002656 FoldingSetNodeID ID;
2657 ID.AddInteger(scUnknown);
2658 ID.AddPointer(V);
2659 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002660 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2661 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2662 "Stale SCEVUnknown in uniquing map!");
2663 return S;
2664 }
2665 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2666 FirstUnknown);
2667 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002668 UniqueSCEVs.InsertNode(S, IP);
2669 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002670}
2671
Chris Lattner53e677a2004-04-02 20:23:17 +00002672//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002673// Basic SCEV Analysis and PHI Idiom Recognition Code
2674//
2675
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002676/// isSCEVable - Test if values of the given type are analyzable within
2677/// the SCEV framework. This primarily includes integer types, and it
2678/// can optionally include pointer types if the ScalarEvolution class
2679/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002680bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002681 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002682 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002683}
2684
2685/// getTypeSizeInBits - Return the size in bits of the specified type,
2686/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002687uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002688 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2689
2690 // If we have a TargetData, use it!
2691 if (TD)
2692 return TD->getTypeSizeInBits(Ty);
2693
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002694 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002695 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002696 return Ty->getPrimitiveSizeInBits();
2697
2698 // The only other support type is pointer. Without TargetData, conservatively
2699 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002700 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002701 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002702}
2703
2704/// getEffectiveSCEVType - Return a type with the same bitwidth as
2705/// the given type and which represents how SCEV will treat the given
2706/// type, for which isSCEVable must return true. For pointer types,
2707/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002708Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002709 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2710
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002711 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002712 return Ty;
2713
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002714 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002715 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002716 if (TD) return TD->getIntPtrType(getContext());
2717
2718 // Without TargetData, conservatively assume pointers are 64-bit.
2719 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002720}
Chris Lattner53e677a2004-04-02 20:23:17 +00002721
Dan Gohman0bba49c2009-07-07 17:06:11 +00002722const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002723 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002724}
2725
Chris Lattner53e677a2004-04-02 20:23:17 +00002726/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2727/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002728const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002729 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002730
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002731 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2732 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002733 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002734
2735 // The process of creating a SCEV for V may have caused other SCEVs
2736 // to have been created, so it's necessary to insert the new entry
2737 // from scratch, rather than trying to remember the insert position
2738 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002739 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002740 return S;
2741}
2742
Dan Gohman2d1be872009-04-16 03:18:22 +00002743/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2744///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002745const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002746 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002747 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002748 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002749
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002750 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002751 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002752 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002753 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002754}
2755
2756/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002757const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002758 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002759 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002760 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002761
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002762 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002763 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002764 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002765 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002766 return getMinusSCEV(AllOnes, V);
2767}
2768
Andrew Trick3228cc22011-03-14 16:50:06 +00002769/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002770const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002771 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002772 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2773
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002774 // Fast path: X - X --> 0.
2775 if (LHS == RHS)
2776 return getConstant(LHS->getType(), 0);
2777
Dan Gohman2d1be872009-04-16 03:18:22 +00002778 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002779 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002780}
2781
2782/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2783/// input value to the specified type. If the type must be extended, it is zero
2784/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002785const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002786ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2787 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002788 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2789 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002790 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002791 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002792 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002793 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002794 return getTruncateExpr(V, Ty);
2795 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002796}
2797
2798/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2799/// input value to the specified type. If the type must be extended, it is sign
2800/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002801const SCEV *
2802ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002803 Type *Ty) {
2804 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002805 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2806 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002807 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002808 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002809 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002810 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002811 return getTruncateExpr(V, Ty);
2812 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002813}
2814
Dan Gohman467c4302009-05-13 03:46:30 +00002815/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2816/// input value to the specified type. If the type must be extended, it is zero
2817/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002818const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002819ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2820 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002821 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2822 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002823 "Cannot noop or zero extend with non-integer arguments!");
2824 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2825 "getNoopOrZeroExtend cannot truncate!");
2826 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2827 return V; // No conversion
2828 return getZeroExtendExpr(V, Ty);
2829}
2830
2831/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2832/// input value to the specified type. If the type must be extended, it is sign
2833/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002834const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002835ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2836 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002837 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2838 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002839 "Cannot noop or sign extend with non-integer arguments!");
2840 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2841 "getNoopOrSignExtend cannot truncate!");
2842 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2843 return V; // No conversion
2844 return getSignExtendExpr(V, Ty);
2845}
2846
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002847/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2848/// the input value to the specified type. If the type must be extended,
2849/// it is extended with unspecified bits. The conversion must not be
2850/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002851const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002852ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2853 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002854 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2855 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002856 "Cannot noop or any extend with non-integer arguments!");
2857 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2858 "getNoopOrAnyExtend cannot truncate!");
2859 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2860 return V; // No conversion
2861 return getAnyExtendExpr(V, Ty);
2862}
2863
Dan Gohman467c4302009-05-13 03:46:30 +00002864/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2865/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002866const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002867ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2868 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002869 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2870 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002871 "Cannot truncate or noop with non-integer arguments!");
2872 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2873 "getTruncateOrNoop cannot extend!");
2874 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2875 return V; // No conversion
2876 return getTruncateExpr(V, Ty);
2877}
2878
Dan Gohmana334aa72009-06-22 00:31:57 +00002879/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2880/// the types using zero-extension, and then perform a umax operation
2881/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002882const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2883 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002884 const SCEV *PromotedLHS = LHS;
2885 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002886
2887 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2888 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2889 else
2890 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2891
2892 return getUMaxExpr(PromotedLHS, PromotedRHS);
2893}
2894
Dan Gohmanc9759e82009-06-22 15:03:27 +00002895/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2896/// the types using zero-extension, and then perform a umin operation
2897/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002898const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2899 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002900 const SCEV *PromotedLHS = LHS;
2901 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002902
2903 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2904 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2905 else
2906 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2907
2908 return getUMinExpr(PromotedLHS, PromotedRHS);
2909}
2910
Andrew Trickb12a7542011-03-17 23:51:11 +00002911/// getPointerBase - Transitively follow the chain of pointer-type operands
2912/// until reaching a SCEV that does not have a single pointer operand. This
2913/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2914/// but corner cases do exist.
2915const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2916 // A pointer operand may evaluate to a nonpointer expression, such as null.
2917 if (!V->getType()->isPointerTy())
2918 return V;
2919
2920 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2921 return getPointerBase(Cast->getOperand());
2922 }
2923 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2924 const SCEV *PtrOp = 0;
2925 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2926 I != E; ++I) {
2927 if ((*I)->getType()->isPointerTy()) {
2928 // Cannot find the base of an expression with multiple pointer operands.
2929 if (PtrOp)
2930 return V;
2931 PtrOp = *I;
2932 }
2933 }
2934 if (!PtrOp)
2935 return V;
2936 return getPointerBase(PtrOp);
2937 }
2938 return V;
2939}
2940
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002941/// PushDefUseChildren - Push users of the given Instruction
2942/// onto the given Worklist.
2943static void
2944PushDefUseChildren(Instruction *I,
2945 SmallVectorImpl<Instruction *> &Worklist) {
2946 // Push the def-use children onto the Worklist stack.
2947 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2948 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002949 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002950}
2951
2952/// ForgetSymbolicValue - This looks up computed SCEV values for all
2953/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002954/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002955/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002956void
Dan Gohman85669632010-02-25 06:57:05 +00002957ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002958 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002959 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002960
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002961 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002962 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002963 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002964 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002965 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002966
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002967 ValueExprMapType::iterator It =
2968 ValueExprMap.find(static_cast<Value *>(I));
2969 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002970 const SCEV *Old = It->second;
2971
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002972 // Short-circuit the def-use traversal if the symbolic name
2973 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002974 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002975 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002976
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002977 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002978 // structure, it's a PHI that's in the progress of being computed
2979 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2980 // additional loop trip count information isn't going to change anything.
2981 // In the second case, createNodeForPHI will perform the necessary
2982 // updates on its own when it gets to that point. In the third, we do
2983 // want to forget the SCEVUnknown.
2984 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002985 !isa<SCEVUnknown>(Old) ||
2986 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002987 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002988 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002989 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002990 }
2991
2992 PushDefUseChildren(I, Worklist);
2993 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002994}
Chris Lattner53e677a2004-04-02 20:23:17 +00002995
2996/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2997/// a loop header, making it a potential recurrence, or it doesn't.
2998///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002999const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00003000 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3001 if (L->getHeader() == PN->getParent()) {
3002 // The loop may have multiple entrances or multiple exits; we can analyze
3003 // this phi as an addrec if it has a unique entry value and a unique
3004 // backedge value.
3005 Value *BEValueV = 0, *StartValueV = 0;
3006 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3007 Value *V = PN->getIncomingValue(i);
3008 if (L->contains(PN->getIncomingBlock(i))) {
3009 if (!BEValueV) {
3010 BEValueV = V;
3011 } else if (BEValueV != V) {
3012 BEValueV = 0;
3013 break;
3014 }
3015 } else if (!StartValueV) {
3016 StartValueV = V;
3017 } else if (StartValueV != V) {
3018 StartValueV = 0;
3019 break;
3020 }
3021 }
3022 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003023 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003024 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003025 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003026 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003027 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00003028
3029 // Using this symbolic name for the PHI, analyze the value coming around
3030 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003031 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00003032
3033 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3034 // has a special value for the first iteration of the loop.
3035
3036 // If the value coming around the backedge is an add with the symbolic
3037 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00003038 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003039 // If there is a single occurrence of the symbolic value, replace it
3040 // with a recurrence.
3041 unsigned FoundIndex = Add->getNumOperands();
3042 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3043 if (Add->getOperand(i) == SymbolicName)
3044 if (FoundIndex == e) {
3045 FoundIndex = i;
3046 break;
3047 }
3048
3049 if (FoundIndex != Add->getNumOperands()) {
3050 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003051 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00003052 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3053 if (i != FoundIndex)
3054 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00003055 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00003056
3057 // This is not a valid addrec if the step amount is varying each
3058 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003059 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00003060 (isa<SCEVAddRecExpr>(Accum) &&
3061 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003062 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00003063
3064 // If the increment doesn't overflow, then neither the addrec nor
3065 // the post-increment will overflow.
3066 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3067 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003068 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003069 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003070 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00003071 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00003072 dyn_cast<GEPOperator>(BEValueV)) {
3073 // If the increment is an inbounds GEP, then we know the address
3074 // space cannot be wrapped around. We cannot make any guarantee
3075 // about signed or unsigned overflow because pointers are
3076 // unsigned but we may have a negative index from the base
3077 // pointer.
3078 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00003079 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003080 }
3081
Dan Gohman27dead42010-04-12 07:49:36 +00003082 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00003083 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00003084
Dan Gohmana10756e2010-01-21 02:09:26 +00003085 // Since the no-wrap flags are on the increment, they apply to the
3086 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003087 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003088 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003089 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003090
3091 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003092 // to be symbolic. We now need to go back and purge all of the
3093 // entries for the scalars that use the symbolic expression.
3094 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003095 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003096 return PHISCEV;
3097 }
3098 }
Dan Gohman622ed672009-05-04 22:02:23 +00003099 } else if (const SCEVAddRecExpr *AddRec =
3100 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003101 // Otherwise, this could be a loop like this:
3102 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3103 // In this case, j = {1,+,1} and BEValue is j.
3104 // Because the other in-value of i (0) fits the evolution of BEValue
3105 // i really is an addrec evolution.
3106 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003107 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003108
3109 // If StartVal = j.start - j.stride, we can use StartVal as the
3110 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003111 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003112 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003113 // FIXME: For constant StartVal, we should be able to infer
3114 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003115 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003116 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3117 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003118
3119 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003120 // to be symbolic. We now need to go back and purge all of the
3121 // entries for the scalars that use the symbolic expression.
3122 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003123 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003124 return PHISCEV;
3125 }
3126 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003127 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003128 }
Dan Gohman27dead42010-04-12 07:49:36 +00003129 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003130
Dan Gohman85669632010-02-25 06:57:05 +00003131 // If the PHI has a single incoming value, follow that value, unless the
3132 // PHI's incoming blocks are in a different loop, in which case doing so
3133 // risks breaking LCSSA form. Instcombine would normally zap these, but
3134 // it doesn't have DominatorTree information, so it may miss cases.
Chad Rosier618c1db2011-12-01 03:08:23 +00003135 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003136 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003137 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003138
Chris Lattner53e677a2004-04-02 20:23:17 +00003139 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003140 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003141}
3142
Dan Gohman26466c02009-05-08 20:26:55 +00003143/// createNodeForGEP - Expand GEP instructions into add and multiply
3144/// operations. This allows them to be analyzed by regular SCEV code.
3145///
Dan Gohmand281ed22009-12-18 02:09:29 +00003146const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003147
Dan Gohmanb9f96512010-06-30 07:16:37 +00003148 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3149 // Add expression, because the Instruction may be guarded by control flow
3150 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003151 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003152 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003153
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003154 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003155 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003156 // Don't attempt to analyze GEPs over unsized objects.
3157 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3158 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003159 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003160 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003161 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003162 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003163 I != E; ++I) {
3164 Value *Index = *I;
3165 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003166 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003167 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003168 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00003169 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3170
Dan Gohmanb9f96512010-06-30 07:16:37 +00003171 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003172 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003173 } else {
3174 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003175 const SCEV *ElementSize = getSizeOfExpr(*GTI);
3176 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003177 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003178 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3179
Dan Gohmanb9f96512010-06-30 07:16:37 +00003180 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003181 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3182 isInBounds ? SCEV::FlagNSW :
3183 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003184
3185 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003186 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003187 }
3188 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003189
3190 // Get the SCEV for the GEP base.
3191 const SCEV *BaseS = getSCEV(Base);
3192
Dan Gohmanb9f96512010-06-30 07:16:37 +00003193 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003194 return getAddExpr(BaseS, TotalOffset,
3195 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003196}
3197
Nick Lewycky83bb0052007-11-22 07:59:40 +00003198/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3199/// guaranteed to end in (at every loop iteration). It is, at the same time,
3200/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3201/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003202uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003203ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003204 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003205 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003206
Dan Gohman622ed672009-05-04 22:02:23 +00003207 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003208 return std::min(GetMinTrailingZeros(T->getOperand()),
3209 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003210
Dan Gohman622ed672009-05-04 22:02:23 +00003211 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003212 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3213 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3214 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003215 }
3216
Dan Gohman622ed672009-05-04 22:02:23 +00003217 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003218 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3219 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3220 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003221 }
3222
Dan Gohman622ed672009-05-04 22:02:23 +00003223 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003224 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003225 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003226 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003227 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003228 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003229 }
3230
Dan Gohman622ed672009-05-04 22:02:23 +00003231 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003232 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003233 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3234 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003235 for (unsigned i = 1, e = M->getNumOperands();
3236 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003237 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003238 BitWidth);
3239 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003240 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003241
Dan Gohman622ed672009-05-04 22:02:23 +00003242 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003243 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003244 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003245 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003246 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003247 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003248 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003249
Dan Gohman622ed672009-05-04 22:02:23 +00003250 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003251 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003252 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003253 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003254 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003255 return MinOpRes;
3256 }
3257
Dan Gohman622ed672009-05-04 22:02:23 +00003258 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003259 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003260 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003261 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003262 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003263 return MinOpRes;
3264 }
3265
Dan Gohman2c364ad2009-06-19 23:29:04 +00003266 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3267 // For a SCEVUnknown, ask ValueTracking.
3268 unsigned BitWidth = getTypeSizeInBits(U->getType());
3269 APInt Mask = APInt::getAllOnesValue(BitWidth);
3270 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3271 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3272 return Zeros.countTrailingOnes();
3273 }
3274
3275 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003276 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003277}
Chris Lattner53e677a2004-04-02 20:23:17 +00003278
Dan Gohman85b05a22009-07-13 21:35:55 +00003279/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3280///
3281ConstantRange
3282ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003283 // See if we've computed this range already.
3284 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3285 if (I != UnsignedRanges.end())
3286 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003287
3288 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003289 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003290
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003291 unsigned BitWidth = getTypeSizeInBits(S->getType());
3292 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3293
3294 // If the value has known zeros, the maximum unsigned value will have those
3295 // known zeros as well.
3296 uint32_t TZ = GetMinTrailingZeros(S);
3297 if (TZ != 0)
3298 ConservativeResult =
3299 ConstantRange(APInt::getMinValue(BitWidth),
3300 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3301
Dan Gohman85b05a22009-07-13 21:35:55 +00003302 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3303 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3304 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3305 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003306 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003307 }
3308
3309 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3310 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3311 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3312 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003313 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003314 }
3315
3316 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3317 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3318 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3319 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003320 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003321 }
3322
3323 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3324 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3325 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3326 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003327 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003328 }
3329
3330 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3331 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3332 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003333 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003334 }
3335
3336 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3337 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003338 return setUnsignedRange(ZExt,
3339 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003340 }
3341
3342 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3343 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003344 return setUnsignedRange(SExt,
3345 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003346 }
3347
3348 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3349 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003350 return setUnsignedRange(Trunc,
3351 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003352 }
3353
Dan Gohman85b05a22009-07-13 21:35:55 +00003354 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003355 // If there's no unsigned wrap, the value will never be less than its
3356 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003357 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003358 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003359 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003360 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003361 ConservativeResult.intersectWith(
3362 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003363
3364 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003365 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003366 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003367 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003368 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3369 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003370 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3371
3372 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003373 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003374
3375 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003376 ConstantRange StepRange = getSignedRange(Step);
3377 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3378 ConstantRange EndRange =
3379 StartRange.add(MaxBECountRange.multiply(StepRange));
3380
3381 // Check for overflow. This must be done with ConstantRange arithmetic
3382 // because we could be called from within the ScalarEvolution overflow
3383 // checking code.
3384 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3385 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3386 ConstantRange ExtMaxBECountRange =
3387 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3388 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3389 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3390 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003391 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003392
Dan Gohman85b05a22009-07-13 21:35:55 +00003393 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3394 EndRange.getUnsignedMin());
3395 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3396 EndRange.getUnsignedMax());
3397 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003398 return setUnsignedRange(AddRec, ConservativeResult);
3399 return setUnsignedRange(AddRec,
3400 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003401 }
3402 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003403
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003404 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003405 }
3406
3407 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3408 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003409 APInt Mask = APInt::getAllOnesValue(BitWidth);
3410 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3411 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003412 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003413 return setUnsignedRange(U, ConservativeResult);
3414 return setUnsignedRange(U,
3415 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003416 }
3417
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003418 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003419}
3420
Dan Gohman85b05a22009-07-13 21:35:55 +00003421/// getSignedRange - Determine the signed range for a particular SCEV.
3422///
3423ConstantRange
3424ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003425 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003426 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3427 if (I != SignedRanges.end())
3428 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003429
Dan Gohman85b05a22009-07-13 21:35:55 +00003430 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003431 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003432
Dan Gohman52fddd32010-01-26 04:40:18 +00003433 unsigned BitWidth = getTypeSizeInBits(S->getType());
3434 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3435
3436 // If the value has known zeros, the maximum signed value will have those
3437 // known zeros as well.
3438 uint32_t TZ = GetMinTrailingZeros(S);
3439 if (TZ != 0)
3440 ConservativeResult =
3441 ConstantRange(APInt::getSignedMinValue(BitWidth),
3442 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3443
Dan Gohman85b05a22009-07-13 21:35:55 +00003444 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3445 ConstantRange X = getSignedRange(Add->getOperand(0));
3446 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3447 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003448 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003449 }
3450
Dan Gohman85b05a22009-07-13 21:35:55 +00003451 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3452 ConstantRange X = getSignedRange(Mul->getOperand(0));
3453 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3454 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003455 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003456 }
3457
Dan Gohman85b05a22009-07-13 21:35:55 +00003458 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3459 ConstantRange X = getSignedRange(SMax->getOperand(0));
3460 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3461 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003462 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003463 }
Dan Gohman62849c02009-06-24 01:05:09 +00003464
Dan Gohman85b05a22009-07-13 21:35:55 +00003465 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3466 ConstantRange X = getSignedRange(UMax->getOperand(0));
3467 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3468 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003469 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003470 }
Dan Gohman62849c02009-06-24 01:05:09 +00003471
Dan Gohman85b05a22009-07-13 21:35:55 +00003472 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3473 ConstantRange X = getSignedRange(UDiv->getLHS());
3474 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003475 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003476 }
Dan Gohman62849c02009-06-24 01:05:09 +00003477
Dan Gohman85b05a22009-07-13 21:35:55 +00003478 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3479 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003480 return setSignedRange(ZExt,
3481 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003482 }
3483
3484 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3485 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003486 return setSignedRange(SExt,
3487 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003488 }
3489
3490 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3491 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003492 return setSignedRange(Trunc,
3493 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003494 }
3495
Dan Gohman85b05a22009-07-13 21:35:55 +00003496 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003497 // If there's no signed wrap, and all the operands have the same sign or
3498 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003499 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003500 bool AllNonNeg = true;
3501 bool AllNonPos = true;
3502 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3503 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3504 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3505 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003506 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003507 ConservativeResult = ConservativeResult.intersectWith(
3508 ConstantRange(APInt(BitWidth, 0),
3509 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003510 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003511 ConservativeResult = ConservativeResult.intersectWith(
3512 ConstantRange(APInt::getSignedMinValue(BitWidth),
3513 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003514 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003515
3516 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003517 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003518 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003519 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003520 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3521 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003522 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3523
3524 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003525 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003526
3527 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003528 ConstantRange StepRange = getSignedRange(Step);
3529 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3530 ConstantRange EndRange =
3531 StartRange.add(MaxBECountRange.multiply(StepRange));
3532
3533 // Check for overflow. This must be done with ConstantRange arithmetic
3534 // because we could be called from within the ScalarEvolution overflow
3535 // checking code.
3536 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3537 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3538 ConstantRange ExtMaxBECountRange =
3539 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3540 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3541 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3542 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003543 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003544
Dan Gohman85b05a22009-07-13 21:35:55 +00003545 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3546 EndRange.getSignedMin());
3547 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3548 EndRange.getSignedMax());
3549 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003550 return setSignedRange(AddRec, ConservativeResult);
3551 return setSignedRange(AddRec,
3552 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003553 }
Dan Gohman62849c02009-06-24 01:05:09 +00003554 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003555
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003556 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003557 }
3558
Dan Gohman2c364ad2009-06-19 23:29:04 +00003559 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3560 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003561 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003562 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003563 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3564 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003565 return setSignedRange(U, ConservativeResult);
3566 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003567 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003568 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003569 }
3570
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003571 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003572}
3573
Chris Lattner53e677a2004-04-02 20:23:17 +00003574/// createSCEV - We know that there is no SCEV for the specified value.
3575/// Analyze the expression.
3576///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003577const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003578 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003579 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003580
Dan Gohman6c459a22008-06-22 19:56:46 +00003581 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003582 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003583 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003584
3585 // Don't attempt to analyze instructions in blocks that aren't
3586 // reachable. Such instructions don't matter, and they aren't required
3587 // to obey basic rules for definitions dominating uses which this
3588 // analysis depends on.
3589 if (!DT->isReachableFromEntry(I->getParent()))
3590 return getUnknown(V);
3591 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003592 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003593 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3594 return getConstant(CI);
3595 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003596 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003597 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3598 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003599 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003600 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003601
Dan Gohmanca178902009-07-17 20:47:02 +00003602 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003603 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003604 case Instruction::Add: {
3605 // The simple thing to do would be to just call getSCEV on both operands
3606 // and call getAddExpr with the result. However if we're looking at a
3607 // bunch of things all added together, this can be quite inefficient,
3608 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3609 // Instead, gather up all the operands and make a single getAddExpr call.
3610 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickecb35ec2011-11-29 02:16:38 +00003611 //
3612 // Don't apply this instruction's NSW or NUW flags to the new
3613 // expression. The instruction may be guarded by control flow that the
3614 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3615 // mapped to the same SCEV expression, and it would be incorrect to transfer
3616 // NSW/NUW semantics to those operations.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003617 SmallVector<const SCEV *, 4> AddOps;
3618 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003619 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3620 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3621 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3622 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003623 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003624 const SCEV *Op1 = getSCEV(U->getOperand(1));
3625 if (Opcode == Instruction::Sub)
3626 AddOps.push_back(getNegativeSCEV(Op1));
3627 else
3628 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003629 }
3630 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickecb35ec2011-11-29 02:16:38 +00003631 return getAddExpr(AddOps);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003632 }
3633 case Instruction::Mul: {
Andrew Trickecb35ec2011-11-29 02:16:38 +00003634 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003635 SmallVector<const SCEV *, 4> MulOps;
3636 MulOps.push_back(getSCEV(U->getOperand(1)));
3637 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003638 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003639 Op = U->getOperand(0)) {
3640 U = cast<Operator>(Op);
3641 MulOps.push_back(getSCEV(U->getOperand(1)));
3642 }
3643 MulOps.push_back(getSCEV(U->getOperand(0)));
3644 return getMulExpr(MulOps);
3645 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003646 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003647 return getUDivExpr(getSCEV(U->getOperand(0)),
3648 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003649 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003650 return getMinusSCEV(getSCEV(U->getOperand(0)),
3651 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003652 case Instruction::And:
3653 // For an expression like x&255 that merely masks off the high bits,
3654 // use zext(trunc(x)) as the SCEV expression.
3655 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003656 if (CI->isNullValue())
3657 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003658 if (CI->isAllOnesValue())
3659 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003660 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003661
3662 // Instcombine's ShrinkDemandedConstant may strip bits out of
3663 // constants, obscuring what would otherwise be a low-bits mask.
3664 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3665 // knew about to reconstruct a low-bits mask value.
3666 unsigned LZ = A.countLeadingZeros();
3667 unsigned BitWidth = A.getBitWidth();
3668 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3669 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3670 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3671
3672 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3673
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003674 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003675 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003676 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003677 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003678 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003679 }
3680 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003681
Dan Gohman6c459a22008-06-22 19:56:46 +00003682 case Instruction::Or:
3683 // If the RHS of the Or is a constant, we may have something like:
3684 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3685 // optimizations will transparently handle this case.
3686 //
3687 // In order for this transformation to be safe, the LHS must be of the
3688 // form X*(2^n) and the Or constant must be less than 2^n.
3689 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003690 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003691 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003692 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003693 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3694 // Build a plain add SCEV.
3695 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3696 // If the LHS of the add was an addrec and it has no-wrap flags,
3697 // transfer the no-wrap flags, since an or won't introduce a wrap.
3698 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3699 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003700 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3701 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003702 }
3703 return S;
3704 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003705 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003706 break;
3707 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003708 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003709 // If the RHS of the xor is a signbit, then this is just an add.
3710 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003711 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003712 return getAddExpr(getSCEV(U->getOperand(0)),
3713 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003714
3715 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003716 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003717 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003718
3719 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3720 // This is a variant of the check for xor with -1, and it handles
3721 // the case where instcombine has trimmed non-demanded bits out
3722 // of an xor with -1.
3723 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3724 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3725 if (BO->getOpcode() == Instruction::And &&
3726 LCI->getValue() == CI->getValue())
3727 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003728 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003729 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003730 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003731 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003732 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3733
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003734 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003735 // mask off the high bits. Complement the operand and
3736 // re-apply the zext.
3737 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3738 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3739
3740 // If C is a single bit, it may be in the sign-bit position
3741 // before the zero-extend. In this case, represent the xor
3742 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003743 APInt Trunc = CI->getValue().trunc(Z0TySize);
3744 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003745 Trunc.isSignBit())
3746 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3747 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003748 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003749 }
3750 break;
3751
3752 case Instruction::Shl:
3753 // Turn shift left of a constant amount into a multiply.
3754 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003755 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003756
3757 // If the shift count is not less than the bitwidth, the result of
3758 // the shift is undefined. Don't try to analyze it, because the
3759 // resolution chosen here may differ from the resolution chosen in
3760 // other parts of the compiler.
3761 if (SA->getValue().uge(BitWidth))
3762 break;
3763
Owen Andersoneed707b2009-07-24 23:12:02 +00003764 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003765 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003766 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003767 }
3768 break;
3769
Nick Lewycky01eaf802008-07-07 06:15:49 +00003770 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003771 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003772 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003773 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003774
3775 // If the shift count is not less than the bitwidth, the result of
3776 // the shift is undefined. Don't try to analyze it, because the
3777 // resolution chosen here may differ from the resolution chosen in
3778 // other parts of the compiler.
3779 if (SA->getValue().uge(BitWidth))
3780 break;
3781
Owen Andersoneed707b2009-07-24 23:12:02 +00003782 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003783 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003784 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003785 }
3786 break;
3787
Dan Gohman4ee29af2009-04-21 02:26:00 +00003788 case Instruction::AShr:
3789 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3790 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003791 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003792 if (L->getOpcode() == Instruction::Shl &&
3793 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003794 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3795
3796 // If the shift count is not less than the bitwidth, the result of
3797 // the shift is undefined. Don't try to analyze it, because the
3798 // resolution chosen here may differ from the resolution chosen in
3799 // other parts of the compiler.
3800 if (CI->getValue().uge(BitWidth))
3801 break;
3802
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003803 uint64_t Amt = BitWidth - CI->getZExtValue();
3804 if (Amt == BitWidth)
3805 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003806 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003807 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003808 IntegerType::get(getContext(),
3809 Amt)),
3810 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003811 }
3812 break;
3813
Dan Gohman6c459a22008-06-22 19:56:46 +00003814 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003815 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003816
3817 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003818 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003819
3820 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003821 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003822
3823 case Instruction::BitCast:
3824 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003825 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003826 return getSCEV(U->getOperand(0));
3827 break;
3828
Dan Gohman4f8eea82010-02-01 18:27:38 +00003829 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3830 // lead to pointer expressions which cannot safely be expanded to GEPs,
3831 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3832 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003833
Dan Gohman26466c02009-05-08 20:26:55 +00003834 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003835 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003836
Dan Gohman6c459a22008-06-22 19:56:46 +00003837 case Instruction::PHI:
3838 return createNodeForPHI(cast<PHINode>(U));
3839
3840 case Instruction::Select:
3841 // This could be a smax or umax that was lowered earlier.
3842 // Try to recover it.
3843 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3844 Value *LHS = ICI->getOperand(0);
3845 Value *RHS = ICI->getOperand(1);
3846 switch (ICI->getPredicate()) {
3847 case ICmpInst::ICMP_SLT:
3848 case ICmpInst::ICMP_SLE:
3849 std::swap(LHS, RHS);
3850 // fall through
3851 case ICmpInst::ICMP_SGT:
3852 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003853 // a >s b ? a+x : b+x -> smax(a, b)+x
3854 // a >s b ? b+x : a+x -> smin(a, b)+x
3855 if (LHS->getType() == U->getType()) {
3856 const SCEV *LS = getSCEV(LHS);
3857 const SCEV *RS = getSCEV(RHS);
3858 const SCEV *LA = getSCEV(U->getOperand(1));
3859 const SCEV *RA = getSCEV(U->getOperand(2));
3860 const SCEV *LDiff = getMinusSCEV(LA, LS);
3861 const SCEV *RDiff = getMinusSCEV(RA, RS);
3862 if (LDiff == RDiff)
3863 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3864 LDiff = getMinusSCEV(LA, RS);
3865 RDiff = getMinusSCEV(RA, LS);
3866 if (LDiff == RDiff)
3867 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3868 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003869 break;
3870 case ICmpInst::ICMP_ULT:
3871 case ICmpInst::ICMP_ULE:
3872 std::swap(LHS, RHS);
3873 // fall through
3874 case ICmpInst::ICMP_UGT:
3875 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003876 // a >u b ? a+x : b+x -> umax(a, b)+x
3877 // a >u b ? b+x : a+x -> umin(a, b)+x
3878 if (LHS->getType() == U->getType()) {
3879 const SCEV *LS = getSCEV(LHS);
3880 const SCEV *RS = getSCEV(RHS);
3881 const SCEV *LA = getSCEV(U->getOperand(1));
3882 const SCEV *RA = getSCEV(U->getOperand(2));
3883 const SCEV *LDiff = getMinusSCEV(LA, LS);
3884 const SCEV *RDiff = getMinusSCEV(RA, RS);
3885 if (LDiff == RDiff)
3886 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3887 LDiff = getMinusSCEV(LA, RS);
3888 RDiff = getMinusSCEV(RA, LS);
3889 if (LDiff == RDiff)
3890 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3891 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003892 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003893 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003894 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3895 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003896 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003897 cast<ConstantInt>(RHS)->isZero()) {
3898 const SCEV *One = getConstant(LHS->getType(), 1);
3899 const SCEV *LS = getSCEV(LHS);
3900 const SCEV *LA = getSCEV(U->getOperand(1));
3901 const SCEV *RA = getSCEV(U->getOperand(2));
3902 const SCEV *LDiff = getMinusSCEV(LA, LS);
3903 const SCEV *RDiff = getMinusSCEV(RA, One);
3904 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003905 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003906 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003907 break;
3908 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003909 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3910 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003911 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003912 cast<ConstantInt>(RHS)->isZero()) {
3913 const SCEV *One = getConstant(LHS->getType(), 1);
3914 const SCEV *LS = getSCEV(LHS);
3915 const SCEV *LA = getSCEV(U->getOperand(1));
3916 const SCEV *RA = getSCEV(U->getOperand(2));
3917 const SCEV *LDiff = getMinusSCEV(LA, One);
3918 const SCEV *RDiff = getMinusSCEV(RA, LS);
3919 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003920 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003921 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003922 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003923 default:
3924 break;
3925 }
3926 }
3927
3928 default: // We cannot analyze this expression.
3929 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003930 }
3931
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003932 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003933}
3934
3935
3936
3937//===----------------------------------------------------------------------===//
3938// Iteration Count Computation Code
3939//
3940
Andrew Trickb1831c62011-08-11 23:36:16 +00003941/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3942/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
3943/// or not constant. Will also return 0 if the maximum trip count is very large
3944/// (>= 2^32)
3945unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
3946 BasicBlock *ExitBlock) {
3947 const SCEVConstant *ExitCount =
3948 dyn_cast<SCEVConstant>(getExitCount(L, ExitBlock));
3949 if (!ExitCount)
3950 return 0;
3951
3952 ConstantInt *ExitConst = ExitCount->getValue();
3953
3954 // Guard against huge trip counts.
3955 if (ExitConst->getValue().getActiveBits() > 32)
3956 return 0;
3957
3958 // In case of integer overflow, this returns 0, which is correct.
3959 return ((unsigned)ExitConst->getZExtValue()) + 1;
3960}
3961
3962/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3963/// trip count of this loop as a normal unsigned value, if possible. This
3964/// means that the actual trip count is always a multiple of the returned
3965/// value (don't forget the trip count could very well be zero as well!).
3966///
3967/// Returns 1 if the trip count is unknown or not guaranteed to be the
3968/// multiple of a constant (which is also the case if the trip count is simply
3969/// constant, use getSmallConstantTripCount for that case), Will also return 1
3970/// if the trip count is very large (>= 2^32).
3971unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
3972 BasicBlock *ExitBlock) {
3973 const SCEV *ExitCount = getExitCount(L, ExitBlock);
3974 if (ExitCount == getCouldNotCompute())
3975 return 1;
3976
3977 // Get the trip count from the BE count by adding 1.
3978 const SCEV *TCMul = getAddExpr(ExitCount,
3979 getConstant(ExitCount->getType(), 1));
3980 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3981 // to factor simple cases.
3982 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3983 TCMul = Mul->getOperand(0);
3984
3985 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3986 if (!MulC)
3987 return 1;
3988
3989 ConstantInt *Result = MulC->getValue();
3990
3991 // Guard against huge trip counts.
3992 if (!Result || Result->getValue().getActiveBits() > 32)
3993 return 1;
3994
3995 return (unsigned)Result->getZExtValue();
3996}
3997
Andrew Trick5116ff62011-07-26 17:19:55 +00003998// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickfcb43562011-08-02 04:23:35 +00003999// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00004000// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00004001const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4002 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00004003}
4004
Dan Gohman46bdfb02009-02-24 18:55:53 +00004005/// getBackedgeTakenCount - If the specified loop has a predictable
4006/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4007/// object. The backedge-taken count is the number of times the loop header
4008/// will be branched to from within the loop. This is one less than the
4009/// trip count of the loop, since it doesn't count the first iteration,
4010/// when the header is branched to from outside the loop.
4011///
4012/// Note that it is not valid to call this method on a loop without a
4013/// loop-invariant backedge-taken count (see
4014/// hasLoopInvariantBackedgeTakenCount).
4015///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004016const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004017 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004018}
4019
4020/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4021/// return the least SCEV value that is known never to be less than the
4022/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004023const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004024 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004025}
4026
Dan Gohman59ae6b92009-07-08 19:23:34 +00004027/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4028/// onto the given Worklist.
4029static void
4030PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4031 BasicBlock *Header = L->getHeader();
4032
4033 // Push all Loop-header PHIs onto the Worklist stack.
4034 for (BasicBlock::iterator I = Header->begin();
4035 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4036 Worklist.push_back(PN);
4037}
4038
Dan Gohmana1af7572009-04-30 20:47:05 +00004039const ScalarEvolution::BackedgeTakenInfo &
4040ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004041 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004042 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00004043 // update the value. The temporary CouldNotCompute value tells SCEV
4044 // code elsewhere that it shouldn't attempt to request a new
4045 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004046 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00004047 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00004048 if (!Pair.second)
4049 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00004050
Andrew Trick5116ff62011-07-26 17:19:55 +00004051 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4052 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4053 // must be cleared in this scope.
4054 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4055
4056 if (Result.getExact(this) != getCouldNotCompute()) {
4057 assert(isLoopInvariant(Result.getExact(this), L) &&
4058 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00004059 "Computed backedge-taken count isn't loop invariant for loop!");
4060 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00004061 }
4062 else if (Result.getMax(this) == getCouldNotCompute() &&
4063 isa<PHINode>(L->getHeader()->begin())) {
4064 // Only count loops that have phi nodes as not being computable.
4065 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00004066 }
Dan Gohmana1af7572009-04-30 20:47:05 +00004067
Chris Lattnerf1859892011-01-09 02:16:18 +00004068 // Now that we know more about the trip count for this loop, forget any
4069 // existing SCEV values for PHI nodes in this loop since they are only
4070 // conservative estimates made without the benefit of trip count
4071 // information. This is similar to the code in forgetLoop, except that
4072 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00004073 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00004074 SmallVector<Instruction *, 16> Worklist;
4075 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004076
Chris Lattnerf1859892011-01-09 02:16:18 +00004077 SmallPtrSet<Instruction *, 8> Visited;
4078 while (!Worklist.empty()) {
4079 Instruction *I = Worklist.pop_back_val();
4080 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004081
Chris Lattnerf1859892011-01-09 02:16:18 +00004082 ValueExprMapType::iterator It =
4083 ValueExprMap.find(static_cast<Value *>(I));
4084 if (It != ValueExprMap.end()) {
4085 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00004086
Chris Lattnerf1859892011-01-09 02:16:18 +00004087 // SCEVUnknown for a PHI either means that it has an unrecognized
4088 // structure, or it's a PHI that's in the progress of being computed
4089 // by createNodeForPHI. In the former case, additional loop trip
4090 // count information isn't going to change anything. In the later
4091 // case, createNodeForPHI will perform the necessary updates on its
4092 // own when it gets to that point.
4093 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4094 forgetMemoizedResults(Old);
4095 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004096 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004097 if (PHINode *PN = dyn_cast<PHINode>(I))
4098 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004099 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004100
4101 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004102 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004103 }
Dan Gohman308bec32011-04-25 22:48:29 +00004104
4105 // Re-lookup the insert position, since the call to
4106 // ComputeBackedgeTakenCount above could result in a
4107 // recusive call to getBackedgeTakenInfo (on a different
4108 // loop), which would invalidate the iterator computed
4109 // earlier.
4110 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004111}
4112
Dan Gohman4c7279a2009-10-31 15:04:55 +00004113/// forgetLoop - This method should be called by the client when it has
4114/// changed a loop in a way that may effect ScalarEvolution's ability to
4115/// compute a trip count, or if the loop is deleted.
4116void ScalarEvolution::forgetLoop(const Loop *L) {
4117 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004118 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4119 BackedgeTakenCounts.find(L);
4120 if (BTCPos != BackedgeTakenCounts.end()) {
4121 BTCPos->second.clear();
4122 BackedgeTakenCounts.erase(BTCPos);
4123 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004124
Dan Gohman4c7279a2009-10-31 15:04:55 +00004125 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004126 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004127 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004128
Dan Gohman59ae6b92009-07-08 19:23:34 +00004129 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004130 while (!Worklist.empty()) {
4131 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004132 if (!Visited.insert(I)) continue;
4133
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004134 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4135 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004136 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004137 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004138 if (PHINode *PN = dyn_cast<PHINode>(I))
4139 ConstantEvolutionLoopExitValue.erase(PN);
4140 }
4141
4142 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004143 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004144
4145 // Forget all contained loops too, to avoid dangling entries in the
4146 // ValuesAtScopes map.
4147 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4148 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004149}
4150
Eric Christophere6cbfa62010-07-29 01:25:38 +00004151/// forgetValue - This method should be called by the client when it has
4152/// changed a value in a way that may effect its value, or which may
4153/// disconnect it from a def-use chain linking it to a loop.
4154void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004155 Instruction *I = dyn_cast<Instruction>(V);
4156 if (!I) return;
4157
4158 // Drop information about expressions based on loop-header PHIs.
4159 SmallVector<Instruction *, 16> Worklist;
4160 Worklist.push_back(I);
4161
4162 SmallPtrSet<Instruction *, 8> Visited;
4163 while (!Worklist.empty()) {
4164 I = Worklist.pop_back_val();
4165 if (!Visited.insert(I)) continue;
4166
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004167 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4168 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004169 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004170 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004171 if (PHINode *PN = dyn_cast<PHINode>(I))
4172 ConstantEvolutionLoopExitValue.erase(PN);
4173 }
4174
4175 PushDefUseChildren(I, Worklist);
4176 }
4177}
4178
Andrew Trick5116ff62011-07-26 17:19:55 +00004179/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004180/// exits. A computable result can only be return for loops with a single exit.
4181/// Returning the minimum taken count among all exits is incorrect because one
4182/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4183/// the limit of each loop test is never skipped. This is a valid assumption as
4184/// long as the loop exits via that test. For precise results, it is the
4185/// caller's responsibility to specify the relevant loop exit using
4186/// getExact(ExitingBlock, SE).
Andrew Trick5116ff62011-07-26 17:19:55 +00004187const SCEV *
4188ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4189 // If any exits were not computable, the loop is not computable.
4190 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4191
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004192 // We need exactly one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004193 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004194 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4195
4196 const SCEV *BECount = 0;
4197 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4198 ENT != 0; ENT = ENT->getNextExit()) {
4199
4200 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4201
4202 if (!BECount)
4203 BECount = ENT->ExactNotTaken;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004204 else if (BECount != ENT->ExactNotTaken)
4205 return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004206 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004207 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004208 return BECount;
4209}
4210
4211/// getExact - Get the exact not taken count for this loop exit.
4212const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004213ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004214 ScalarEvolution *SE) const {
4215 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4216 ENT != 0; ENT = ENT->getNextExit()) {
4217
Andrew Trickfcb43562011-08-02 04:23:35 +00004218 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004219 return ENT->ExactNotTaken;
4220 }
4221 return SE->getCouldNotCompute();
4222}
4223
4224/// getMax - Get the max backedge taken count for the loop.
4225const SCEV *
4226ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4227 return Max ? Max : SE->getCouldNotCompute();
4228}
4229
4230/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4231/// computable exit into a persistent ExitNotTakenInfo array.
4232ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4233 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4234 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4235
4236 if (!Complete)
4237 ExitNotTaken.setIncomplete();
4238
4239 unsigned NumExits = ExitCounts.size();
4240 if (NumExits == 0) return;
4241
Andrew Trickfcb43562011-08-02 04:23:35 +00004242 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004243 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4244 if (NumExits == 1) return;
4245
4246 // Handle the rare case of multiple computable exits.
4247 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4248
4249 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4250 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4251 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004252 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004253 ENT->ExactNotTaken = ExitCounts[i].second;
4254 }
4255}
4256
4257/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4258void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004259 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004260 ExitNotTaken.ExactNotTaken = 0;
4261 delete[] ExitNotTaken.getNextExit();
4262}
4263
Dan Gohman46bdfb02009-02-24 18:55:53 +00004264/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4265/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004266ScalarEvolution::BackedgeTakenInfo
4267ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004268 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004269 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004270
Dan Gohmana334aa72009-06-22 00:31:57 +00004271 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004272 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004273 bool CouldComputeBECount = true;
4274 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004275 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004276 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4277 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004278 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004279 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004280 CouldComputeBECount = false;
4281 else
4282 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4283
Dan Gohman1c343752009-06-27 21:21:31 +00004284 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004285 MaxBECount = EL.Max;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004286 else if (EL.Max != getCouldNotCompute()) {
4287 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4288 // skip some loop tests. Taking the max over the exits is sufficiently
4289 // conservative. TODO: We could do better taking into consideration
4290 // that (1) the loop has unit stride (2) the last loop test is
4291 // less-than/greater-than (3) any loop test is less-than/greater-than AND
4292 // falls-through some constant times less then the other tests.
4293 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4294 }
Dan Gohmana334aa72009-06-22 00:31:57 +00004295 }
4296
Andrew Trick5116ff62011-07-26 17:19:55 +00004297 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004298}
4299
Andrew Trick5116ff62011-07-26 17:19:55 +00004300/// ComputeExitLimit - Compute the number of times the backedge of the specified
4301/// loop will execute if it exits via the specified block.
4302ScalarEvolution::ExitLimit
4303ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004304
4305 // Okay, we've chosen an exiting block. See what condition causes us to
4306 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004307 //
4308 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004309 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004310 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004311 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004312
Chris Lattner8b0e3602007-01-07 02:24:26 +00004313 // At this point, we know we have a conditional branch that determines whether
4314 // the loop is exited. However, we don't know if the branch is executed each
4315 // time through the loop. If not, then the execution count of the branch will
4316 // not be equal to the trip count of the loop.
4317 //
4318 // Currently we check for this by checking to see if the Exit branch goes to
4319 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004320 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004321 // loop header. This is common for un-rotated loops.
4322 //
4323 // If both of those tests fail, walk up the unique predecessor chain to the
4324 // header, stopping if there is an edge that doesn't exit the loop. If the
4325 // header is reached, the execution count of the branch will be equal to the
4326 // trip count of the loop.
4327 //
4328 // More extensive analysis could be done to handle more cases here.
4329 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004330 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004331 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004332 ExitBr->getParent() != L->getHeader()) {
4333 // The simple checks failed, try climbing the unique predecessor chain
4334 // up to the header.
4335 bool Ok = false;
4336 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4337 BasicBlock *Pred = BB->getUniquePredecessor();
4338 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004339 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004340 TerminatorInst *PredTerm = Pred->getTerminator();
4341 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4342 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4343 if (PredSucc == BB)
4344 continue;
4345 // If the predecessor has a successor that isn't BB and isn't
4346 // outside the loop, assume the worst.
4347 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004348 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004349 }
4350 if (Pred == L->getHeader()) {
4351 Ok = true;
4352 break;
4353 }
4354 BB = Pred;
4355 }
4356 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004357 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004358 }
4359
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004360 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004361 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4362 ExitBr->getSuccessor(0),
4363 ExitBr->getSuccessor(1));
Dan Gohmana334aa72009-06-22 00:31:57 +00004364}
4365
Andrew Trick5116ff62011-07-26 17:19:55 +00004366/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004367/// backedge of the specified loop will execute if its exit condition
4368/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004369ScalarEvolution::ExitLimit
4370ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4371 Value *ExitCond,
4372 BasicBlock *TBB,
4373 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004374 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004375 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4376 if (BO->getOpcode() == Instruction::And) {
4377 // Recurse on the operands of the and.
Andrew Trick5116ff62011-07-26 17:19:55 +00004378 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4379 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004380 const SCEV *BECount = getCouldNotCompute();
4381 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004382 if (L->contains(TBB)) {
4383 // Both conditions must be true for the loop to continue executing.
4384 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004385 if (EL0.Exact == getCouldNotCompute() ||
4386 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004387 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004388 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004389 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4390 if (EL0.Max == getCouldNotCompute())
4391 MaxBECount = EL1.Max;
4392 else if (EL1.Max == getCouldNotCompute())
4393 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004394 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004395 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004396 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004397 // Both conditions must be true at the same time for the loop to exit.
4398 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004399 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004400 if (EL0.Max == EL1.Max)
4401 MaxBECount = EL0.Max;
4402 if (EL0.Exact == EL1.Exact)
4403 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004404 }
4405
Andrew Trick5116ff62011-07-26 17:19:55 +00004406 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004407 }
4408 if (BO->getOpcode() == Instruction::Or) {
4409 // Recurse on the operands of the or.
Andrew Trick5116ff62011-07-26 17:19:55 +00004410 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4411 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004412 const SCEV *BECount = getCouldNotCompute();
4413 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004414 if (L->contains(FBB)) {
4415 // Both conditions must be false for the loop to continue executing.
4416 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004417 if (EL0.Exact == getCouldNotCompute() ||
4418 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004419 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004420 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004421 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4422 if (EL0.Max == getCouldNotCompute())
4423 MaxBECount = EL1.Max;
4424 else if (EL1.Max == getCouldNotCompute())
4425 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004426 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004427 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004428 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004429 // Both conditions must be false at the same time for the loop to exit.
4430 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004431 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004432 if (EL0.Max == EL1.Max)
4433 MaxBECount = EL0.Max;
4434 if (EL0.Exact == EL1.Exact)
4435 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004436 }
4437
Andrew Trick5116ff62011-07-26 17:19:55 +00004438 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004439 }
4440 }
4441
4442 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004443 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004444 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5116ff62011-07-26 17:19:55 +00004445 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004446
Dan Gohman00cb5b72010-02-19 18:12:07 +00004447 // Check for a constant condition. These are normally stripped out by
4448 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4449 // preserve the CFG and is temporarily leaving constant conditions
4450 // in place.
4451 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4452 if (L->contains(FBB) == !CI->getZExtValue())
4453 // The backedge is always taken.
4454 return getCouldNotCompute();
4455 else
4456 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004457 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004458 }
4459
Eli Friedman361e54d2009-05-09 12:32:42 +00004460 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004461 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004462}
4463
Andrew Trick5116ff62011-07-26 17:19:55 +00004464/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004465/// backedge of the specified loop will execute if its exit condition
4466/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004467ScalarEvolution::ExitLimit
4468ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4469 ICmpInst *ExitCond,
4470 BasicBlock *TBB,
4471 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004472
Reid Spencere4d87aa2006-12-23 06:05:41 +00004473 // If the condition was exit on true, convert the condition to exit on false
4474 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004475 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004476 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004477 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004478 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004479
4480 // Handle common loops like: for (X = "string"; *X; ++X)
4481 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4482 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004483 ExitLimit ItCnt =
4484 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004485 if (ItCnt.hasAnyInfo())
4486 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004487 }
4488
Dan Gohman0bba49c2009-07-07 17:06:11 +00004489 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4490 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004491
4492 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004493 LHS = getSCEVAtScope(LHS, L);
4494 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004495
Dan Gohman64a845e2009-06-24 04:48:43 +00004496 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004497 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004498 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004499 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004500 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004501 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004502 }
4503
Dan Gohman03557dc2010-05-03 16:35:17 +00004504 // Simplify the operands before analyzing them.
4505 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4506
Chris Lattner53e677a2004-04-02 20:23:17 +00004507 // If we have a comparison of a chrec against a constant, try to use value
4508 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004509 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4510 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004511 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004512 // Form the constant range.
4513 ConstantRange CompRange(
4514 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004515
Dan Gohman0bba49c2009-07-07 17:06:11 +00004516 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004517 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004518 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004519
Chris Lattner53e677a2004-04-02 20:23:17 +00004520 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004521 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004522 // Convert to: while (X-Y != 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004523 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4524 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004525 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004526 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004527 case ICmpInst::ICMP_EQ: { // while (X == Y)
4528 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004529 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4530 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004531 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004532 }
4533 case ICmpInst::ICMP_SLT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004534 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4535 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004536 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004537 }
4538 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004539 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004540 getNotSCEV(RHS), L, true);
Andrew Trick5116ff62011-07-26 17:19:55 +00004541 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004542 break;
4543 }
4544 case ICmpInst::ICMP_ULT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004545 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4546 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004547 break;
4548 }
4549 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004550 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004551 getNotSCEV(RHS), L, false);
Andrew Trick5116ff62011-07-26 17:19:55 +00004552 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004553 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004554 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004555 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004556#if 0
David Greene25e0e872009-12-23 22:18:14 +00004557 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004558 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004559 dbgs() << "[unsigned] ";
4560 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004561 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004562 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004563#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004564 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004565 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004566 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004567}
4568
Chris Lattner673e02b2004-10-12 01:49:27 +00004569static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004570EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4571 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004572 const SCEV *InVal = SE.getConstant(C);
4573 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004574 assert(isa<SCEVConstant>(Val) &&
4575 "Evaluation of SCEV at constant didn't fold correctly?");
4576 return cast<SCEVConstant>(Val)->getValue();
4577}
4578
4579/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4580/// and a GEP expression (missing the pointer index) indexing into it, return
4581/// the addressed element of the initializer or null if the index expression is
4582/// invalid.
4583static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004584GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004585 const std::vector<ConstantInt*> &Indices) {
4586 Constant *Init = GV->getInitializer();
4587 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004588 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004589 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4590 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4591 Init = cast<Constant>(CS->getOperand(Idx));
4592 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4593 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4594 Init = cast<Constant>(CA->getOperand(Idx));
4595 } else if (isa<ConstantAggregateZero>(Init)) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004596 if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004597 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004598 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004599 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004600 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004601 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004602 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004603 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004604 }
4605 return 0;
4606 } else {
4607 return 0; // Unknown initializer type
4608 }
4609 }
4610 return Init;
4611}
4612
Andrew Trick5116ff62011-07-26 17:19:55 +00004613/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004614/// 'icmp op load X, cst', try to see if we can compute the backedge
4615/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004616ScalarEvolution::ExitLimit
4617ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4618 LoadInst *LI,
4619 Constant *RHS,
4620 const Loop *L,
4621 ICmpInst::Predicate predicate) {
4622
Dan Gohman1c343752009-06-27 21:21:31 +00004623 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004624
4625 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004626 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004627 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004628 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004629
4630 // Make sure that it is really a constant global we are gepping, with an
4631 // initializer, and make sure the first IDX is really 0.
4632 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004633 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004634 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4635 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004636 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004637
4638 // Okay, we allow one non-constant index into the GEP instruction.
4639 Value *VarIdx = 0;
4640 std::vector<ConstantInt*> Indexes;
4641 unsigned VarIdxNum = 0;
4642 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4643 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4644 Indexes.push_back(CI);
4645 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004646 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004647 VarIdx = GEP->getOperand(i);
4648 VarIdxNum = i-2;
4649 Indexes.push_back(0);
4650 }
4651
4652 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4653 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004654 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004655 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004656
4657 // We can only recognize very limited forms of loop index expressions, in
4658 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004659 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004660 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004661 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4662 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004663 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004664
4665 unsigned MaxSteps = MaxBruteForceIterations;
4666 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004667 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004668 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004669 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004670
4671 // Form the GEP offset.
4672 Indexes[VarIdxNum] = Val;
4673
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004674 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004675 if (Result == 0) break; // Cannot compute!
4676
4677 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004678 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004679 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004680 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004681#if 0
David Greene25e0e872009-12-23 22:18:14 +00004682 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004683 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4684 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004685#endif
4686 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004687 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004688 }
4689 }
Dan Gohman1c343752009-06-27 21:21:31 +00004690 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004691}
4692
4693
Chris Lattner3221ad02004-04-17 22:58:41 +00004694/// CanConstantFold - Return true if we can constant fold an instruction of the
4695/// specified type, assuming that all operands were constants.
4696static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004697 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewycky614fef62011-10-22 19:58:20 +00004698 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4699 isa<LoadInst>(I))
Chris Lattner3221ad02004-04-17 22:58:41 +00004700 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004701
Chris Lattner3221ad02004-04-17 22:58:41 +00004702 if (const CallInst *CI = dyn_cast<CallInst>(I))
4703 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004704 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004705 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004706}
4707
Andrew Trick13d31e02011-10-05 03:25:31 +00004708/// Determine whether this instruction can constant evolve within this loop
4709/// assuming its operands can all constant evolve.
4710static bool canConstantEvolve(Instruction *I, const Loop *L) {
4711 // An instruction outside of the loop can't be derived from a loop PHI.
4712 if (!L->contains(I)) return false;
4713
4714 if (isa<PHINode>(I)) {
4715 if (L->getHeader() == I->getParent())
4716 return true;
4717 else
4718 // We don't currently keep track of the control flow needed to evaluate
4719 // PHIs, so we cannot handle PHIs inside of loops.
4720 return false;
4721 }
4722
4723 // If we won't be able to constant fold this expression even if the operands
4724 // are constants, bail early.
4725 return CanConstantFold(I);
4726}
4727
4728/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4729/// recursing through each instruction operand until reaching a loop header phi.
4730static PHINode *
4731getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Trick28ab7db2011-10-05 05:58:49 +00004732 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004733
4734 // Otherwise, we can evaluate this instruction if all of its operands are
4735 // constant or derived from a PHI node themselves.
4736 PHINode *PHI = 0;
4737 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4738 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4739
4740 if (isa<Constant>(*OpI)) continue;
4741
4742 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4743 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4744
4745 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trickef8a4c22011-10-05 22:06:53 +00004746 if (!P)
4747 // If this operand is already visited, reuse the prior result.
4748 // We may have P != PHI if this is the deepest point at which the
4749 // inconsistent paths meet.
4750 P = PHIMap.lookup(OpInst);
4751 if (!P) {
4752 // Recurse and memoize the results, whether a phi is found or not.
4753 // This recursive call invalidates pointers into PHIMap.
4754 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4755 PHIMap[OpInst] = P;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004756 }
Andrew Trick28ab7db2011-10-05 05:58:49 +00004757 if (P == 0) return 0; // Not evolving from PHI
4758 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4759 PHI = P;
Andrew Trick13d31e02011-10-05 03:25:31 +00004760 }
4761 // This is a expression evolving from a constant PHI!
4762 return PHI;
4763}
4764
Chris Lattner3221ad02004-04-17 22:58:41 +00004765/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4766/// in the loop that V is derived from. We allow arbitrary operations along the
4767/// way, but the operands of an operation must either be constants or a value
4768/// derived from a constant PHI. If this expression does not fit with these
4769/// constraints, return null.
4770static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004771 Instruction *I = dyn_cast<Instruction>(V);
Andrew Trick13d31e02011-10-05 03:25:31 +00004772 if (I == 0 || !canConstantEvolve(I, L)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004773
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004774 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004775 return PN;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004776 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004777
Andrew Trick13d31e02011-10-05 03:25:31 +00004778 // Record non-constant instructions contained by the loop.
Andrew Trick28ab7db2011-10-05 05:58:49 +00004779 DenseMap<Instruction *, PHINode *> PHIMap;
4780 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattner3221ad02004-04-17 22:58:41 +00004781}
4782
4783/// EvaluateExpression - Given an expression that passes the
4784/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4785/// in the loop has the value PHIVal. If we can't fold this expression for some
4786/// reason, return null.
Andrew Trick13d31e02011-10-05 03:25:31 +00004787static Constant *EvaluateExpression(Value *V, const Loop *L,
4788 DenseMap<Instruction *, Constant *> &Vals,
Chad Rosier00737bd2011-12-01 21:29:16 +00004789 const TargetData *TD,
4790 const TargetLibraryInfo *TLI) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004791 // Convenient constant check, but redundant for recursive calls.
Reid Spencere8404342004-07-18 00:18:30 +00004792 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewycky614fef62011-10-22 19:58:20 +00004793 Instruction *I = dyn_cast<Instruction>(V);
4794 if (!I) return 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004795
Andrew Trick13d31e02011-10-05 03:25:31 +00004796 if (Constant *C = Vals.lookup(I)) return C;
4797
Nick Lewycky614fef62011-10-22 19:58:20 +00004798 // An instruction inside the loop depends on a value outside the loop that we
4799 // weren't given a mapping for, or a value such as a call inside the loop.
4800 if (!canConstantEvolve(I, L)) return 0;
4801
4802 // An unmapped PHI can be due to a branch or another loop inside this loop,
4803 // or due to this not being the initial iteration through a loop where we
4804 // couldn't compute the evolution of this particular PHI last time.
4805 if (isa<PHINode>(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004806
Dan Gohman9d4588f2010-06-22 13:15:46 +00004807 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004808
4809 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004810 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4811 if (!Operand) {
Nick Lewycky4c7f1ca2011-10-14 09:38:46 +00004812 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4813 if (!Operands[i]) return 0;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004814 continue;
4815 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004816 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
Andrew Trick28ab7db2011-10-05 05:58:49 +00004817 Vals[Operand] = C;
4818 if (!C) return 0;
4819 Operands[i] = C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004820 }
4821
Nick Lewycky614fef62011-10-22 19:58:20 +00004822 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004823 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chad Rosieraab8e282011-12-02 01:26:24 +00004824 Operands[1], TD, TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00004825 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4826 if (!LI->isVolatile())
4827 return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4828 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004829 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4830 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004831}
4832
4833/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4834/// in the header of its containing loop, we know the loop executes a
4835/// constant number of times, and the PHI node is just a recurrence
4836/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004837Constant *
4838ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004839 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004840 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004841 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004842 ConstantEvolutionLoopExitValue.find(PN);
4843 if (I != ConstantEvolutionLoopExitValue.end())
4844 return I->second;
4845
Dan Gohmane0567812010-04-08 23:03:40 +00004846 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004847 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4848
4849 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4850
Andrew Trick13d31e02011-10-05 03:25:31 +00004851 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewycky614fef62011-10-22 19:58:20 +00004852 BasicBlock *Header = L->getHeader();
4853 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick13d31e02011-10-05 03:25:31 +00004854
Chris Lattner3221ad02004-04-17 22:58:41 +00004855 // Since the loop is canonicalized, the PHI node must have two entries. One
4856 // entry must be a constant (coming in from outside of the loop), and the
4857 // second must be derived from the same PHI.
4858 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Nick Lewycky614fef62011-10-22 19:58:20 +00004859 PHINode *PHI = 0;
4860 for (BasicBlock::iterator I = Header->begin();
4861 (PHI = dyn_cast<PHINode>(I)); ++I) {
4862 Constant *StartCST =
4863 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4864 if (StartCST == 0) continue;
4865 CurrentIterVals[PHI] = StartCST;
4866 }
4867 if (!CurrentIterVals.count(PN))
4868 return RetVal = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004869
4870 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattner3221ad02004-04-17 22:58:41 +00004871
4872 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004873 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004874 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004875
Dan Gohman46bdfb02009-02-24 18:55:53 +00004876 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004877 unsigned IterationNum = 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004878 for (; ; ++IterationNum) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004879 if (IterationNum == NumIterations)
Andrew Trick13d31e02011-10-05 03:25:31 +00004880 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattner3221ad02004-04-17 22:58:41 +00004881
Nick Lewycky614fef62011-10-22 19:58:20 +00004882 // Compute the value of the PHIs for the next iteration.
Andrew Trick13d31e02011-10-05 03:25:31 +00004883 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewycky614fef62011-10-22 19:58:20 +00004884 DenseMap<Instruction *, Constant *> NextIterVals;
Chad Rosier00737bd2011-12-01 21:29:16 +00004885 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4886 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004887 if (NextPHI == 0)
4888 return 0; // Couldn't evaluate!
Andrew Trick13d31e02011-10-05 03:25:31 +00004889 NextIterVals[PN] = NextPHI;
Nick Lewycky614fef62011-10-22 19:58:20 +00004890
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004891 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4892
Nick Lewycky614fef62011-10-22 19:58:20 +00004893 // Also evaluate the other PHI nodes. However, we don't get to stop if we
4894 // cease to be able to evaluate one of them or if they stop evolving,
4895 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004896 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewycky614fef62011-10-22 19:58:20 +00004897 for (DenseMap<Instruction *, Constant *>::const_iterator
4898 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4899 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky5bef0eb2011-10-24 05:51:01 +00004900 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004901 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4902 }
4903 // We use two distinct loops because EvaluateExpression may invalidate any
4904 // iterators into CurrentIterVals.
4905 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4906 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4907 PHINode *PHI = I->first;
Nick Lewycky614fef62011-10-22 19:58:20 +00004908 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004909 if (!NextPHI) { // Not already computed.
4910 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004911 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004912 }
4913 if (NextPHI != I->second)
4914 StoppedEvolving = false;
Nick Lewycky614fef62011-10-22 19:58:20 +00004915 }
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004916
4917 // If all entries in CurrentIterVals == NextIterVals then we can stop
4918 // iterating, the loop can't continue to change.
4919 if (StoppedEvolving)
4920 return RetVal = CurrentIterVals[PN];
4921
Andrew Trick13d31e02011-10-05 03:25:31 +00004922 CurrentIterVals.swap(NextIterVals);
Chris Lattner3221ad02004-04-17 22:58:41 +00004923 }
4924}
4925
Andrew Trick5116ff62011-07-26 17:19:55 +00004926/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004927/// constant number of times (the condition evolves only from constants),
4928/// try to evaluate a few iterations of the loop until we get the exit
4929/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004930/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewycky614fef62011-10-22 19:58:20 +00004931const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4932 Value *Cond,
4933 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004934 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004935 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004936
Dan Gohmanb92654d2010-06-19 14:17:24 +00004937 // If the loop is canonicalized, the PHI will have exactly two entries.
4938 // That's the only form we support here.
4939 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4940
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004941 DenseMap<Instruction *, Constant *> CurrentIterVals;
4942 BasicBlock *Header = L->getHeader();
4943 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4944
Dan Gohmanb92654d2010-06-19 14:17:24 +00004945 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004946 // second must be derived from the same PHI.
4947 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004948 PHINode *PHI = 0;
4949 for (BasicBlock::iterator I = Header->begin();
4950 (PHI = dyn_cast<PHINode>(I)); ++I) {
4951 Constant *StartCST =
4952 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4953 if (StartCST == 0) continue;
4954 CurrentIterVals[PHI] = StartCST;
4955 }
4956 if (!CurrentIterVals.count(PN))
4957 return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004958
4959 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4960 // the loop symbolically to determine when the condition gets a value of
4961 // "ExitWhen".
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004962
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004963 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004964 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004965 ConstantInt *CondVal =
Chad Rosier00737bd2011-12-01 21:29:16 +00004966 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
4967 TD, TLI));
Chris Lattner3221ad02004-04-17 22:58:41 +00004968
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004969 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004970 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004971
Reid Spencere8019bb2007-03-01 07:25:48 +00004972 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004973 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004974 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004975 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004976
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004977 // Update all the PHI nodes for the next iteration.
4978 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004979
4980 // Create a list of which PHIs we need to compute. We want to do this before
4981 // calling EvaluateExpression on them because that may invalidate iterators
4982 // into CurrentIterVals.
4983 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004984 for (DenseMap<Instruction *, Constant *>::const_iterator
4985 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4986 PHINode *PHI = dyn_cast<PHINode>(I->first);
4987 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004988 PHIsToCompute.push_back(PHI);
4989 }
4990 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
4991 E = PHIsToCompute.end(); I != E; ++I) {
4992 PHINode *PHI = *I;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004993 Constant *&NextPHI = NextIterVals[PHI];
4994 if (NextPHI) continue; // Already computed!
4995
4996 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004997 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004998 }
4999 CurrentIterVals.swap(NextIterVals);
Chris Lattner7980fb92004-04-17 18:36:24 +00005000 }
5001
5002 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00005003 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005004}
5005
Dan Gohmane7125f42009-09-03 15:00:26 +00005006/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00005007/// at the specified scope in the program. The L value specifies a loop
5008/// nest to evaluate the expression at, where null is the top-level or a
5009/// specified loop is immediately inside of the loop.
5010///
5011/// This method can be used to compute the exit value for a variable defined
5012/// in a loop by querying what the value will hold in the parent loop.
5013///
Dan Gohmand594e6f2009-05-24 23:25:42 +00005014/// In the case that a relevant loop exit value cannot be computed, the
5015/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005016const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00005017 // Check to see if we've folded this expression at this loop before.
5018 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
5019 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
5020 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
5021 if (!Pair.second)
5022 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00005023
Dan Gohman42214892009-08-31 21:15:23 +00005024 // Otherwise compute it.
5025 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00005026 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00005027 return C;
5028}
5029
Nick Lewycky614fef62011-10-22 19:58:20 +00005030/// This builds up a Constant using the ConstantExpr interface. That way, we
5031/// will return Constants for objects which aren't represented by a
5032/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5033/// Returns NULL if the SCEV isn't representable as a Constant.
5034static Constant *BuildConstantFromSCEV(const SCEV *V) {
5035 switch (V->getSCEVType()) {
5036 default: // TODO: smax, umax.
5037 case scCouldNotCompute:
5038 case scAddRecExpr:
5039 break;
5040 case scConstant:
5041 return cast<SCEVConstant>(V)->getValue();
5042 case scUnknown:
5043 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5044 case scSignExtend: {
5045 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5046 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5047 return ConstantExpr::getSExt(CastOp, SS->getType());
5048 break;
5049 }
5050 case scZeroExtend: {
5051 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5052 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5053 return ConstantExpr::getZExt(CastOp, SZ->getType());
5054 break;
5055 }
5056 case scTruncate: {
5057 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5058 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5059 return ConstantExpr::getTrunc(CastOp, ST->getType());
5060 break;
5061 }
5062 case scAddExpr: {
5063 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5064 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5065 if (C->getType()->isPointerTy())
5066 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5067 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5068 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5069 if (!C2) return 0;
5070
5071 // First pointer!
5072 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5073 std::swap(C, C2);
5074 // The offsets have been converted to bytes. We can add bytes to an
5075 // i8* by GEP with the byte count in the first index.
5076 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5077 }
5078
5079 // Don't bother trying to sum two pointers. We probably can't
5080 // statically compute a load that results from it anyway.
5081 if (C2->getType()->isPointerTy())
5082 return 0;
5083
5084 if (C->getType()->isPointerTy()) {
5085 if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5086 C2 = ConstantExpr::getIntegerCast(
5087 C2, Type::getInt32Ty(C->getContext()), true);
5088 C = ConstantExpr::getGetElementPtr(C, C2);
5089 } else
5090 C = ConstantExpr::getAdd(C, C2);
5091 }
5092 return C;
5093 }
5094 break;
5095 }
5096 case scMulExpr: {
5097 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5098 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5099 // Don't bother with pointers at all.
5100 if (C->getType()->isPointerTy()) return 0;
5101 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5102 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5103 if (!C2 || C2->getType()->isPointerTy()) return 0;
5104 C = ConstantExpr::getMul(C, C2);
5105 }
5106 return C;
5107 }
5108 break;
5109 }
5110 case scUDivExpr: {
5111 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5112 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5113 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5114 if (LHS->getType() == RHS->getType())
5115 return ConstantExpr::getUDiv(LHS, RHS);
5116 break;
5117 }
5118 }
5119 return 0;
5120}
5121
Dan Gohman42214892009-08-31 21:15:23 +00005122const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005123 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005124
Nick Lewycky3e630762008-02-20 06:48:22 +00005125 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00005126 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00005127 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005128 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005129 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00005130 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5131 if (PHINode *PN = dyn_cast<PHINode>(I))
5132 if (PN->getParent() == LI->getHeader()) {
5133 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00005134 // to see if the loop that contains it has a known backedge-taken
5135 // count. If so, we may be able to force computation of the exit
5136 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005137 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00005138 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00005139 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005140 // Okay, we know how many times the containing loop executes. If
5141 // this is a constant evolving PHI node, get the final value at
5142 // the specified iteration number.
5143 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00005144 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00005145 LI);
Dan Gohman09987962009-06-29 21:31:18 +00005146 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00005147 }
5148 }
5149
Reid Spencer09906f32006-12-04 21:33:23 +00005150 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00005151 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00005152 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00005153 // result. This is particularly useful for computing loop exit values.
5154 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00005155 SmallVector<Constant *, 4> Operands;
5156 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00005157 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5158 Value *Op = I->getOperand(i);
5159 if (Constant *C = dyn_cast<Constant>(Op)) {
5160 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00005161 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00005162 }
Dan Gohman11046452010-06-29 23:43:06 +00005163
5164 // If any of the operands is non-constant and if they are
5165 // non-integer and non-pointer, don't even try to analyze them
5166 // with scev techniques.
5167 if (!isSCEVable(Op->getType()))
5168 return V;
5169
5170 const SCEV *OrigV = getSCEV(Op);
5171 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5172 MadeImprovement |= OrigV != OpV;
5173
Nick Lewycky614fef62011-10-22 19:58:20 +00005174 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohman11046452010-06-29 23:43:06 +00005175 if (!C) return V;
5176 if (C->getType() != Op->getType())
5177 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5178 Op->getType(),
5179 false),
5180 C, Op->getType());
5181 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00005182 }
Dan Gohman64a845e2009-06-24 04:48:43 +00005183
Dan Gohman11046452010-06-29 23:43:06 +00005184 // Check to see if getSCEVAtScope actually made an improvement.
5185 if (MadeImprovement) {
5186 Constant *C = 0;
5187 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5188 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Chad Rosieraab8e282011-12-02 01:26:24 +00005189 Operands[0], Operands[1], TD,
5190 TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00005191 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5192 if (!LI->isVolatile())
5193 C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5194 } else
Dan Gohman11046452010-06-29 23:43:06 +00005195 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Chad Rosier00737bd2011-12-01 21:29:16 +00005196 Operands, TD, TLI);
Dan Gohman11046452010-06-29 23:43:06 +00005197 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00005198 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00005199 }
Chris Lattner3221ad02004-04-17 22:58:41 +00005200 }
5201 }
5202
5203 // This is some other type of SCEVUnknown, just return it.
5204 return V;
5205 }
5206
Dan Gohman622ed672009-05-04 22:02:23 +00005207 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005208 // Avoid performing the look-up in the common case where the specified
5209 // expression has no loop-variant portions.
5210 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005211 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005212 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005213 // Okay, at least one of these operands is loop variant but might be
5214 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00005215 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5216 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00005217 NewOps.push_back(OpAtScope);
5218
5219 for (++i; i != e; ++i) {
5220 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005221 NewOps.push_back(OpAtScope);
5222 }
5223 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005224 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005225 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005226 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005227 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005228 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00005229 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005230 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00005231 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005232 }
5233 }
5234 // If we got here, all operands are loop invariant.
5235 return Comm;
5236 }
5237
Dan Gohman622ed672009-05-04 22:02:23 +00005238 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005239 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5240 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00005241 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5242 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005243 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00005244 }
5245
5246 // If this is a loop recurrence for a loop that does not contain L, then we
5247 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00005248 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00005249 // First, attempt to evaluate each operand.
5250 // Avoid performing the look-up in the common case where the specified
5251 // expression has no loop-variant portions.
5252 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5253 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5254 if (OpAtScope == AddRec->getOperand(i))
5255 continue;
5256
5257 // Okay, at least one of these operands is loop variant but might be
5258 // foldable. Build a new instance of the folded commutative expression.
5259 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5260 AddRec->op_begin()+i);
5261 NewOps.push_back(OpAtScope);
5262 for (++i; i != e; ++i)
5263 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5264
Andrew Trick3f95c882011-04-27 01:21:25 +00005265 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00005266 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00005267 AddRec->getNoWrapFlags(SCEV::FlagNW));
5268 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00005269 // The addrec may be folded to a nonrecurrence, for example, if the
5270 // induction variable is multiplied by zero after constant folding. Go
5271 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00005272 if (!AddRec)
5273 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00005274 break;
5275 }
5276
5277 // If the scope is outside the addrec's loop, evaluate it by using the
5278 // loop exit value of the addrec.
5279 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005280 // To evaluate this recurrence, we need to know how many times the AddRec
5281 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005282 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00005283 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005284
Eli Friedmanb42a6262008-08-04 23:49:06 +00005285 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005286 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005287 }
Dan Gohman11046452010-06-29 23:43:06 +00005288
Dan Gohmand594e6f2009-05-24 23:25:42 +00005289 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00005290 }
5291
Dan Gohman622ed672009-05-04 22:02:23 +00005292 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005293 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005294 if (Op == Cast->getOperand())
5295 return Cast; // must be loop invariant
5296 return getZeroExtendExpr(Op, Cast->getType());
5297 }
5298
Dan Gohman622ed672009-05-04 22:02:23 +00005299 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005300 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005301 if (Op == Cast->getOperand())
5302 return Cast; // must be loop invariant
5303 return getSignExtendExpr(Op, Cast->getType());
5304 }
5305
Dan Gohman622ed672009-05-04 22:02:23 +00005306 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005307 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005308 if (Op == Cast->getOperand())
5309 return Cast; // must be loop invariant
5310 return getTruncateExpr(Op, Cast->getType());
5311 }
5312
Torok Edwinc23197a2009-07-14 16:55:14 +00005313 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00005314 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00005315}
5316
Dan Gohman66a7e852009-05-08 20:38:54 +00005317/// getSCEVAtScope - This is a convenience function which does
5318/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00005319const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005320 return getSCEVAtScope(getSCEV(V), L);
5321}
5322
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005323/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5324/// following equation:
5325///
5326/// A * X = B (mod N)
5327///
5328/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5329/// A and B isn't important.
5330///
5331/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005332static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005333 ScalarEvolution &SE) {
5334 uint32_t BW = A.getBitWidth();
5335 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5336 assert(A != 0 && "A must be non-zero.");
5337
5338 // 1. D = gcd(A, N)
5339 //
5340 // The gcd of A and N may have only one prime factor: 2. The number of
5341 // trailing zeros in A is its multiplicity
5342 uint32_t Mult2 = A.countTrailingZeros();
5343 // D = 2^Mult2
5344
5345 // 2. Check if B is divisible by D.
5346 //
5347 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5348 // is not less than multiplicity of this prime factor for D.
5349 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005350 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005351
5352 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5353 // modulo (N / D).
5354 //
5355 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5356 // bit width during computations.
5357 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5358 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005359 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005360 APInt I = AD.multiplicativeInverse(Mod);
5361
5362 // 4. Compute the minimum unsigned root of the equation:
5363 // I * (B / D) mod (N / D)
5364 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5365
5366 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5367 // bits.
5368 return SE.getConstant(Result.trunc(BW));
5369}
Chris Lattner53e677a2004-04-02 20:23:17 +00005370
5371/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5372/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5373/// might be the same) or two SCEVCouldNotCompute objects.
5374///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005375static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005376SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005377 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005378 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5379 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5380 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005381
Chris Lattner53e677a2004-04-02 20:23:17 +00005382 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005383 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005384 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005385 return std::make_pair(CNC, CNC);
5386 }
5387
Reid Spencere8019bb2007-03-01 07:25:48 +00005388 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005389 const APInt &L = LC->getValue()->getValue();
5390 const APInt &M = MC->getValue()->getValue();
5391 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005392 APInt Two(BitWidth, 2);
5393 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005394
Dan Gohman64a845e2009-06-24 04:48:43 +00005395 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005396 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005397 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005398 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5399 // The B coefficient is M-N/2
5400 APInt B(M);
5401 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005402
Reid Spencere8019bb2007-03-01 07:25:48 +00005403 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005404 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005405
Reid Spencere8019bb2007-03-01 07:25:48 +00005406 // Compute the B^2-4ac term.
5407 APInt SqrtTerm(B);
5408 SqrtTerm *= B;
5409 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005410
Reid Spencere8019bb2007-03-01 07:25:48 +00005411 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5412 // integer value or else APInt::sqrt() will assert.
5413 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005414
Dan Gohman64a845e2009-06-24 04:48:43 +00005415 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005416 // The divisions must be performed as signed divisions.
5417 APInt NegB(-B);
Nick Lewycky1cbae182011-10-03 07:10:45 +00005418 APInt TwoA(A << 1);
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005419 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005420 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005421 return std::make_pair(CNC, CNC);
5422 }
5423
Owen Andersone922c022009-07-22 00:24:57 +00005424 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005425
5426 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005427 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005428 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005429 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005430
Dan Gohman64a845e2009-06-24 04:48:43 +00005431 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005432 SE.getConstant(Solution2));
Nick Lewycky1cbae182011-10-03 07:10:45 +00005433 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005434}
5435
5436/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005437/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005438///
5439/// This is only used for loops with a "x != y" exit test. The exit condition is
5440/// now expressed as a single expression, V = x-y. So the exit test is
5441/// effectively V != 0. We know and take advantage of the fact that this
5442/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005443ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005444ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005445 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005446 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005447 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005448 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005449 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005450 }
5451
Dan Gohman35738ac2009-05-04 22:30:44 +00005452 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005453 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005454 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005455
Chris Lattner7975e3e2011-01-09 22:39:48 +00005456 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5457 // the quadratic equation to solve it.
5458 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5459 std::pair<const SCEV *,const SCEV *> Roots =
5460 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005461 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5462 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005463 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005464#if 0
David Greene25e0e872009-12-23 22:18:14 +00005465 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005466 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005467#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005468 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005469 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005470 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5471 R1->getValue(),
5472 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005473 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005474 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005475
Chris Lattner53e677a2004-04-02 20:23:17 +00005476 // We can only use this value if the chrec ends up with an exact zero
5477 // value at this index. When solving for "X*X != 5", for example, we
5478 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005479 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005480 if (Val->isZero())
5481 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005482 }
5483 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005484 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005485 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005486
Chris Lattner7975e3e2011-01-09 22:39:48 +00005487 // Otherwise we can only handle this if it is affine.
5488 if (!AddRec->isAffine())
5489 return getCouldNotCompute();
5490
5491 // If this is an affine expression, the execution count of this branch is
5492 // the minimum unsigned root of the following equation:
5493 //
5494 // Start + Step*N = 0 (mod 2^BW)
5495 //
5496 // equivalent to:
5497 //
5498 // Step*N = -Start (mod 2^BW)
5499 //
5500 // where BW is the common bit width of Start and Step.
5501
5502 // Get the initial value for the loop.
5503 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5504 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5505
5506 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005507 //
5508 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5509 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5510 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5511 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005512 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5513 if (StepC == 0)
5514 return getCouldNotCompute();
5515
Andrew Trick3228cc22011-03-14 16:50:06 +00005516 // For positive steps (counting up until unsigned overflow):
5517 // N = -Start/Step (as unsigned)
5518 // For negative steps (counting down to zero):
5519 // N = Start/-Step
5520 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005521 bool CountDown = StepC->getValue()->getValue().isNegative();
5522 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005523
5524 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005525 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5526 // N = Distance (as unsigned)
Nick Lewycky1cbae182011-10-03 07:10:45 +00005527 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5528 ConstantRange CR = getUnsignedRange(Start);
5529 const SCEV *MaxBECount;
5530 if (!CountDown && CR.getUnsignedMin().isMinValue())
5531 // When counting up, the worst starting value is 1, not 0.
5532 MaxBECount = CR.getUnsignedMax().isMinValue()
5533 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5534 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5535 else
5536 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5537 : -CR.getUnsignedMin());
5538 return ExitLimit(Distance, MaxBECount);
5539 }
Andrew Trick635f7182011-03-09 17:23:39 +00005540
Andrew Trickdcfd4042011-03-14 17:28:02 +00005541 // If the recurrence is known not to wraparound, unsigned divide computes the
5542 // back edge count. We know that the value will either become zero (and thus
5543 // the loop terminates), that the loop will terminate through some other exit
5544 // condition first, or that the loop has undefined behavior. This means
5545 // we can't "miss" the exit value, even with nonunit stride.
5546 //
5547 // FIXME: Prove that loops always exhibits *acceptable* undefined
5548 // behavior. Loops must exhibit defined behavior until a wrapped value is
5549 // actually used. So the trip count computed by udiv could be smaller than the
5550 // number of well-defined iterations.
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005551 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
Andrew Trickdcfd4042011-03-14 17:28:02 +00005552 // FIXME: We really want an "isexact" bit for udiv.
5553 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005554 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005555 // Then, try to solve the above equation provided that Start is constant.
5556 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5557 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5558 -StartC->getValue()->getValue(),
5559 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005560 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005561}
5562
5563/// HowFarToNonZero - Return the number of times a backedge checking the
5564/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005565/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005566ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005567ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005568 // Loops that look like: while (X == 0) are very strange indeed. We don't
5569 // handle them yet except for the trivial case. This could be expanded in the
5570 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005571
Chris Lattner53e677a2004-04-02 20:23:17 +00005572 // If the value is a constant, check to see if it is known to be non-zero
5573 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005574 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005575 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005576 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005577 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005578 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005579
Chris Lattner53e677a2004-04-02 20:23:17 +00005580 // We could implement others, but I really doubt anyone writes loops like
5581 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005582 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005583}
5584
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005585/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5586/// (which may not be an immediate predecessor) which has exactly one
5587/// successor from which BB is reachable, or null if no such block is
5588/// found.
5589///
Dan Gohman005752b2010-04-15 16:19:08 +00005590std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005591ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005592 // If the block has a unique predecessor, then there is no path from the
5593 // predecessor to the block that does not go through the direct edge
5594 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005595 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005596 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005597
5598 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005599 // If the header has a unique predecessor outside the loop, it must be
5600 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005601 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005602 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005603
Dan Gohman005752b2010-04-15 16:19:08 +00005604 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005605}
5606
Dan Gohman763bad12009-06-20 00:35:32 +00005607/// HasSameValue - SCEV structural equivalence is usually sufficient for
5608/// testing whether two expressions are equal, however for the purposes of
5609/// looking for a condition guarding a loop, it can be useful to be a little
5610/// more general, since a front-end may have replicated the controlling
5611/// expression.
5612///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005613static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005614 // Quick check to see if they are the same SCEV.
5615 if (A == B) return true;
5616
5617 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5618 // two different instructions with the same value. Check for this case.
5619 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5620 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5621 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5622 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005623 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005624 return true;
5625
5626 // Otherwise assume they may have a different value.
5627 return false;
5628}
5629
Dan Gohmane9796502010-04-24 01:28:42 +00005630/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5631/// predicate Pred. Return true iff any changes were made.
5632///
5633bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5634 const SCEV *&LHS, const SCEV *&RHS) {
5635 bool Changed = false;
5636
5637 // Canonicalize a constant to the right side.
5638 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5639 // Check for both operands constant.
5640 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5641 if (ConstantExpr::getICmp(Pred,
5642 LHSC->getValue(),
5643 RHSC->getValue())->isNullValue())
5644 goto trivially_false;
5645 else
5646 goto trivially_true;
5647 }
5648 // Otherwise swap the operands to put the constant on the right.
5649 std::swap(LHS, RHS);
5650 Pred = ICmpInst::getSwappedPredicate(Pred);
5651 Changed = true;
5652 }
5653
5654 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005655 // addrec's loop, put the addrec on the left. Also make a dominance check,
5656 // as both operands could be addrecs loop-invariant in each other's loop.
5657 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5658 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005659 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005660 std::swap(LHS, RHS);
5661 Pred = ICmpInst::getSwappedPredicate(Pred);
5662 Changed = true;
5663 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005664 }
Dan Gohmane9796502010-04-24 01:28:42 +00005665
5666 // If there's a constant operand, canonicalize comparisons with boundary
5667 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5668 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5669 const APInt &RA = RC->getValue()->getValue();
5670 switch (Pred) {
5671 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5672 case ICmpInst::ICMP_EQ:
5673 case ICmpInst::ICMP_NE:
5674 break;
5675 case ICmpInst::ICMP_UGE:
5676 if ((RA - 1).isMinValue()) {
5677 Pred = ICmpInst::ICMP_NE;
5678 RHS = getConstant(RA - 1);
5679 Changed = true;
5680 break;
5681 }
5682 if (RA.isMaxValue()) {
5683 Pred = ICmpInst::ICMP_EQ;
5684 Changed = true;
5685 break;
5686 }
5687 if (RA.isMinValue()) goto trivially_true;
5688
5689 Pred = ICmpInst::ICMP_UGT;
5690 RHS = getConstant(RA - 1);
5691 Changed = true;
5692 break;
5693 case ICmpInst::ICMP_ULE:
5694 if ((RA + 1).isMaxValue()) {
5695 Pred = ICmpInst::ICMP_NE;
5696 RHS = getConstant(RA + 1);
5697 Changed = true;
5698 break;
5699 }
5700 if (RA.isMinValue()) {
5701 Pred = ICmpInst::ICMP_EQ;
5702 Changed = true;
5703 break;
5704 }
5705 if (RA.isMaxValue()) goto trivially_true;
5706
5707 Pred = ICmpInst::ICMP_ULT;
5708 RHS = getConstant(RA + 1);
5709 Changed = true;
5710 break;
5711 case ICmpInst::ICMP_SGE:
5712 if ((RA - 1).isMinSignedValue()) {
5713 Pred = ICmpInst::ICMP_NE;
5714 RHS = getConstant(RA - 1);
5715 Changed = true;
5716 break;
5717 }
5718 if (RA.isMaxSignedValue()) {
5719 Pred = ICmpInst::ICMP_EQ;
5720 Changed = true;
5721 break;
5722 }
5723 if (RA.isMinSignedValue()) goto trivially_true;
5724
5725 Pred = ICmpInst::ICMP_SGT;
5726 RHS = getConstant(RA - 1);
5727 Changed = true;
5728 break;
5729 case ICmpInst::ICMP_SLE:
5730 if ((RA + 1).isMaxSignedValue()) {
5731 Pred = ICmpInst::ICMP_NE;
5732 RHS = getConstant(RA + 1);
5733 Changed = true;
5734 break;
5735 }
5736 if (RA.isMinSignedValue()) {
5737 Pred = ICmpInst::ICMP_EQ;
5738 Changed = true;
5739 break;
5740 }
5741 if (RA.isMaxSignedValue()) goto trivially_true;
5742
5743 Pred = ICmpInst::ICMP_SLT;
5744 RHS = getConstant(RA + 1);
5745 Changed = true;
5746 break;
5747 case ICmpInst::ICMP_UGT:
5748 if (RA.isMinValue()) {
5749 Pred = ICmpInst::ICMP_NE;
5750 Changed = true;
5751 break;
5752 }
5753 if ((RA + 1).isMaxValue()) {
5754 Pred = ICmpInst::ICMP_EQ;
5755 RHS = getConstant(RA + 1);
5756 Changed = true;
5757 break;
5758 }
5759 if (RA.isMaxValue()) goto trivially_false;
5760 break;
5761 case ICmpInst::ICMP_ULT:
5762 if (RA.isMaxValue()) {
5763 Pred = ICmpInst::ICMP_NE;
5764 Changed = true;
5765 break;
5766 }
5767 if ((RA - 1).isMinValue()) {
5768 Pred = ICmpInst::ICMP_EQ;
5769 RHS = getConstant(RA - 1);
5770 Changed = true;
5771 break;
5772 }
5773 if (RA.isMinValue()) goto trivially_false;
5774 break;
5775 case ICmpInst::ICMP_SGT:
5776 if (RA.isMinSignedValue()) {
5777 Pred = ICmpInst::ICMP_NE;
5778 Changed = true;
5779 break;
5780 }
5781 if ((RA + 1).isMaxSignedValue()) {
5782 Pred = ICmpInst::ICMP_EQ;
5783 RHS = getConstant(RA + 1);
5784 Changed = true;
5785 break;
5786 }
5787 if (RA.isMaxSignedValue()) goto trivially_false;
5788 break;
5789 case ICmpInst::ICMP_SLT:
5790 if (RA.isMaxSignedValue()) {
5791 Pred = ICmpInst::ICMP_NE;
5792 Changed = true;
5793 break;
5794 }
5795 if ((RA - 1).isMinSignedValue()) {
5796 Pred = ICmpInst::ICMP_EQ;
5797 RHS = getConstant(RA - 1);
5798 Changed = true;
5799 break;
5800 }
5801 if (RA.isMinSignedValue()) goto trivially_false;
5802 break;
5803 }
5804 }
5805
5806 // Check for obvious equality.
5807 if (HasSameValue(LHS, RHS)) {
5808 if (ICmpInst::isTrueWhenEqual(Pred))
5809 goto trivially_true;
5810 if (ICmpInst::isFalseWhenEqual(Pred))
5811 goto trivially_false;
5812 }
5813
Dan Gohman03557dc2010-05-03 16:35:17 +00005814 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5815 // adding or subtracting 1 from one of the operands.
5816 switch (Pred) {
5817 case ICmpInst::ICMP_SLE:
5818 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5819 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005820 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005821 Pred = ICmpInst::ICMP_SLT;
5822 Changed = true;
5823 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005824 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005825 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005826 Pred = ICmpInst::ICMP_SLT;
5827 Changed = true;
5828 }
5829 break;
5830 case ICmpInst::ICMP_SGE:
5831 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005832 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005833 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005834 Pred = ICmpInst::ICMP_SGT;
5835 Changed = true;
5836 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5837 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005838 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005839 Pred = ICmpInst::ICMP_SGT;
5840 Changed = true;
5841 }
5842 break;
5843 case ICmpInst::ICMP_ULE:
5844 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005845 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005846 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005847 Pred = ICmpInst::ICMP_ULT;
5848 Changed = true;
5849 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005850 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005851 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005852 Pred = ICmpInst::ICMP_ULT;
5853 Changed = true;
5854 }
5855 break;
5856 case ICmpInst::ICMP_UGE:
5857 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005858 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005859 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005860 Pred = ICmpInst::ICMP_UGT;
5861 Changed = true;
5862 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005863 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005864 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005865 Pred = ICmpInst::ICMP_UGT;
5866 Changed = true;
5867 }
5868 break;
5869 default:
5870 break;
5871 }
5872
Dan Gohmane9796502010-04-24 01:28:42 +00005873 // TODO: More simplifications are possible here.
5874
5875 return Changed;
5876
5877trivially_true:
5878 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005879 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005880 Pred = ICmpInst::ICMP_EQ;
5881 return true;
5882
5883trivially_false:
5884 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005885 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005886 Pred = ICmpInst::ICMP_NE;
5887 return true;
5888}
5889
Dan Gohman85b05a22009-07-13 21:35:55 +00005890bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5891 return getSignedRange(S).getSignedMax().isNegative();
5892}
5893
5894bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5895 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5896}
5897
5898bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5899 return !getSignedRange(S).getSignedMin().isNegative();
5900}
5901
5902bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5903 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5904}
5905
5906bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5907 return isKnownNegative(S) || isKnownPositive(S);
5908}
5909
5910bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5911 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005912 // Canonicalize the inputs first.
5913 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5914
Dan Gohman53c66ea2010-04-11 22:16:48 +00005915 // If LHS or RHS is an addrec, check to see if the condition is true in
5916 // every iteration of the loop.
5917 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5918 if (isLoopEntryGuardedByCond(
5919 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5920 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005921 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005922 return true;
5923 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5924 if (isLoopEntryGuardedByCond(
5925 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5926 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005927 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005928 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005929
Dan Gohman53c66ea2010-04-11 22:16:48 +00005930 // Otherwise see what can be done with known constant ranges.
5931 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5932}
5933
5934bool
5935ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5936 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005937 if (HasSameValue(LHS, RHS))
5938 return ICmpInst::isTrueWhenEqual(Pred);
5939
Dan Gohman53c66ea2010-04-11 22:16:48 +00005940 // This code is split out from isKnownPredicate because it is called from
5941 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005942 switch (Pred) {
5943 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005944 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005945 break;
5946 case ICmpInst::ICMP_SGT:
5947 Pred = ICmpInst::ICMP_SLT;
5948 std::swap(LHS, RHS);
5949 case ICmpInst::ICMP_SLT: {
5950 ConstantRange LHSRange = getSignedRange(LHS);
5951 ConstantRange RHSRange = getSignedRange(RHS);
5952 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5953 return true;
5954 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5955 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005956 break;
5957 }
5958 case ICmpInst::ICMP_SGE:
5959 Pred = ICmpInst::ICMP_SLE;
5960 std::swap(LHS, RHS);
5961 case ICmpInst::ICMP_SLE: {
5962 ConstantRange LHSRange = getSignedRange(LHS);
5963 ConstantRange RHSRange = getSignedRange(RHS);
5964 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5965 return true;
5966 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5967 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005968 break;
5969 }
5970 case ICmpInst::ICMP_UGT:
5971 Pred = ICmpInst::ICMP_ULT;
5972 std::swap(LHS, RHS);
5973 case ICmpInst::ICMP_ULT: {
5974 ConstantRange LHSRange = getUnsignedRange(LHS);
5975 ConstantRange RHSRange = getUnsignedRange(RHS);
5976 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5977 return true;
5978 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5979 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005980 break;
5981 }
5982 case ICmpInst::ICMP_UGE:
5983 Pred = ICmpInst::ICMP_ULE;
5984 std::swap(LHS, RHS);
5985 case ICmpInst::ICMP_ULE: {
5986 ConstantRange LHSRange = getUnsignedRange(LHS);
5987 ConstantRange RHSRange = getUnsignedRange(RHS);
5988 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5989 return true;
5990 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5991 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005992 break;
5993 }
5994 case ICmpInst::ICMP_NE: {
5995 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5996 return true;
5997 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5998 return true;
5999
6000 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6001 if (isKnownNonZero(Diff))
6002 return true;
6003 break;
6004 }
6005 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00006006 // The check at the top of the function catches the case where
6007 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00006008 break;
6009 }
6010 return false;
6011}
6012
6013/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6014/// protected by a conditional between LHS and RHS. This is used to
6015/// to eliminate casts.
6016bool
6017ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6018 ICmpInst::Predicate Pred,
6019 const SCEV *LHS, const SCEV *RHS) {
6020 // Interpret a null as meaning no loop, where there is obviously no guard
6021 // (interprocedural conditions notwithstanding).
6022 if (!L) return true;
6023
6024 BasicBlock *Latch = L->getLoopLatch();
6025 if (!Latch)
6026 return false;
6027
6028 BranchInst *LoopContinuePredicate =
6029 dyn_cast<BranchInst>(Latch->getTerminator());
6030 if (!LoopContinuePredicate ||
6031 LoopContinuePredicate->isUnconditional())
6032 return false;
6033
Dan Gohmanaf08a362010-08-10 23:46:30 +00006034 return isImpliedCond(Pred, LHS, RHS,
6035 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00006036 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00006037}
6038
Dan Gohman3948d0b2010-04-11 19:27:13 +00006039/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00006040/// by a conditional between LHS and RHS. This is used to help avoid max
6041/// expressions in loop trip counts, and to eliminate casts.
6042bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00006043ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6044 ICmpInst::Predicate Pred,
6045 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00006046 // Interpret a null as meaning no loop, where there is obviously no guard
6047 // (interprocedural conditions notwithstanding).
6048 if (!L) return false;
6049
Dan Gohman859b4822009-05-18 15:36:09 +00006050 // Starting at the loop predecessor, climb up the predecessor chain, as long
6051 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00006052 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00006053 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00006054 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00006055 Pair.first;
6056 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00006057
6058 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00006059 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00006060 if (!LoopEntryPredicate ||
6061 LoopEntryPredicate->isUnconditional())
6062 continue;
6063
Dan Gohmanaf08a362010-08-10 23:46:30 +00006064 if (isImpliedCond(Pred, LHS, RHS,
6065 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00006066 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00006067 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00006068 }
6069
Dan Gohman38372182008-08-12 20:17:31 +00006070 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00006071}
6072
Dan Gohman0f4b2852009-07-21 23:03:19 +00006073/// isImpliedCond - Test whether the condition described by Pred, LHS,
6074/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006075bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006076 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00006077 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006078 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006079 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006080 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006081 if (BO->getOpcode() == Instruction::And) {
6082 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006083 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6084 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006085 } else if (BO->getOpcode() == Instruction::Or) {
6086 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006087 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6088 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006089 }
6090 }
6091
Dan Gohmanaf08a362010-08-10 23:46:30 +00006092 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006093 if (!ICI) return false;
6094
Dan Gohman85b05a22009-07-13 21:35:55 +00006095 // Bail if the ICmp's operands' types are wider than the needed type
6096 // before attempting to call getSCEV on them. This avoids infinite
6097 // recursion, since the analysis of widening casts can require loop
6098 // exit condition information for overflow checking, which would
6099 // lead back here.
6100 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00006101 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00006102 return false;
6103
Dan Gohman0f4b2852009-07-21 23:03:19 +00006104 // Now that we found a conditional branch that dominates the loop, check to
6105 // see if it is the comparison we are looking for.
6106 ICmpInst::Predicate FoundPred;
6107 if (Inverse)
6108 FoundPred = ICI->getInversePredicate();
6109 else
6110 FoundPred = ICI->getPredicate();
6111
6112 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6113 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00006114
6115 // Balance the types. The case where FoundLHS' type is wider than
6116 // LHS' type is checked for above.
6117 if (getTypeSizeInBits(LHS->getType()) >
6118 getTypeSizeInBits(FoundLHS->getType())) {
6119 if (CmpInst::isSigned(Pred)) {
6120 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6121 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6122 } else {
6123 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6124 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6125 }
6126 }
6127
Dan Gohman0f4b2852009-07-21 23:03:19 +00006128 // Canonicalize the query to match the way instcombine will have
6129 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00006130 if (SimplifyICmpOperands(Pred, LHS, RHS))
6131 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006132 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00006133 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6134 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006135 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00006136
6137 // Check to see if we can make the LHS or RHS match.
6138 if (LHS == FoundRHS || RHS == FoundLHS) {
6139 if (isa<SCEVConstant>(RHS)) {
6140 std::swap(FoundLHS, FoundRHS);
6141 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6142 } else {
6143 std::swap(LHS, RHS);
6144 Pred = ICmpInst::getSwappedPredicate(Pred);
6145 }
6146 }
6147
6148 // Check whether the found predicate is the same as the desired predicate.
6149 if (FoundPred == Pred)
6150 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6151
6152 // Check whether swapping the found predicate makes it the same as the
6153 // desired predicate.
6154 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6155 if (isa<SCEVConstant>(RHS))
6156 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6157 else
6158 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6159 RHS, LHS, FoundLHS, FoundRHS);
6160 }
6161
6162 // Check whether the actual condition is beyond sufficient.
6163 if (FoundPred == ICmpInst::ICMP_EQ)
6164 if (ICmpInst::isTrueWhenEqual(Pred))
6165 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6166 return true;
6167 if (Pred == ICmpInst::ICMP_NE)
6168 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6169 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6170 return true;
6171
6172 // Otherwise assume the worst.
6173 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006174}
6175
Dan Gohman0f4b2852009-07-21 23:03:19 +00006176/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006177/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006178/// and FoundRHS is true.
6179bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6180 const SCEV *LHS, const SCEV *RHS,
6181 const SCEV *FoundLHS,
6182 const SCEV *FoundRHS) {
6183 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6184 FoundLHS, FoundRHS) ||
6185 // ~x < ~y --> x > y
6186 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6187 getNotSCEV(FoundRHS),
6188 getNotSCEV(FoundLHS));
6189}
6190
6191/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006192/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006193/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00006194bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00006195ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6196 const SCEV *LHS, const SCEV *RHS,
6197 const SCEV *FoundLHS,
6198 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006199 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00006200 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6201 case ICmpInst::ICMP_EQ:
6202 case ICmpInst::ICMP_NE:
6203 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6204 return true;
6205 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00006206 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00006207 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006208 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6209 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006210 return true;
6211 break;
6212 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006213 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006214 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6215 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006216 return true;
6217 break;
6218 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00006219 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006220 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6221 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006222 return true;
6223 break;
6224 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006225 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006226 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6227 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006228 return true;
6229 break;
6230 }
6231
6232 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006233}
6234
Dan Gohman51f53b72009-06-21 23:46:38 +00006235/// getBECount - Subtract the end and start values and divide by the step,
6236/// rounding up, to get the number of times the backedge is executed. Return
6237/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006238const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00006239 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00006240 const SCEV *Step,
6241 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00006242 assert(!isKnownNegative(Step) &&
6243 "This code doesn't handle negative strides yet!");
6244
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006245 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00006246
6247 // When Start == End, we have an exact BECount == 0. Short-circuit this case
6248 // here because SCEV may not be able to determine that the unsigned division
6249 // after rounding is zero.
6250 if (Start == End)
6251 return getConstant(Ty, 0);
6252
Dan Gohmandeff6212010-05-03 22:09:21 +00006253 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00006254 const SCEV *Diff = getMinusSCEV(End, Start);
6255 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00006256
6257 // Add an adjustment to the difference between End and Start so that
6258 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006259 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00006260
Dan Gohman1f96e672009-09-17 18:05:20 +00006261 if (!NoWrap) {
6262 // Check Add for unsigned overflow.
6263 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006264 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00006265 getTypeSizeInBits(Ty) + 1);
6266 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6267 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6268 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6269 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6270 return getCouldNotCompute();
6271 }
Dan Gohman51f53b72009-06-21 23:46:38 +00006272
6273 return getUDivExpr(Add, Step);
6274}
6275
Chris Lattnerdb25de42005-08-15 23:33:51 +00006276/// HowManyLessThans - Return the number of times a backedge containing the
6277/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00006278/// CouldNotCompute.
Andrew Trick5116ff62011-07-26 17:19:55 +00006279ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00006280ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6281 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00006282 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00006283 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006284
Dan Gohman35738ac2009-05-04 22:30:44 +00006285 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006286 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00006287 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006288
Dan Gohman1f96e672009-09-17 18:05:20 +00006289 // Check to see if we have a flag which makes analysis easy.
Nick Lewycky89d093d2011-11-09 07:11:37 +00006290 bool NoWrap = isSigned ?
6291 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
6292 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
Dan Gohman1f96e672009-09-17 18:05:20 +00006293
Chris Lattnerdb25de42005-08-15 23:33:51 +00006294 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006295 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00006296 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00006297
Dan Gohman52fddd32010-01-26 04:40:18 +00006298 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00006299 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00006300 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006301 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00006302 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00006303 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00006304 // value and past the maximum value for its type in a single step.
6305 // Note that it's not sufficient to check NoWrap here, because even
6306 // though the value after a wrap is undefined, it's not undefined
6307 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00006308 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00006309 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00006310 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00006311 if (isSigned) {
6312 APInt Max = APInt::getSignedMaxValue(BitWidth);
6313 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6314 .slt(getSignedRange(RHS).getSignedMax()))
6315 return getCouldNotCompute();
6316 } else {
6317 APInt Max = APInt::getMaxValue(BitWidth);
6318 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6319 .ult(getUnsignedRange(RHS).getUnsignedMax()))
6320 return getCouldNotCompute();
6321 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006322 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00006323 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00006324 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006325
Dan Gohmana1af7572009-04-30 20:47:05 +00006326 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6327 // m. So, we count the number of iterations in which {n,+,s} < m is true.
6328 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00006329 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00006330
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006331 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00006332 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006333
Dan Gohmana1af7572009-04-30 20:47:05 +00006334 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006335 const SCEV *MinStart = getConstant(isSigned ?
6336 getSignedRange(Start).getSignedMin() :
6337 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006338
Dan Gohmana1af7572009-04-30 20:47:05 +00006339 // If we know that the condition is true in order to enter the loop,
6340 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006341 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6342 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006343 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006344 if (!isLoopEntryGuardedByCond(L,
6345 isSigned ? ICmpInst::ICMP_SLT :
6346 ICmpInst::ICMP_ULT,
6347 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006348 End = isSigned ? getSMaxExpr(RHS, Start)
6349 : getUMaxExpr(RHS, Start);
6350
6351 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006352 const SCEV *MaxEnd = getConstant(isSigned ?
6353 getSignedRange(End).getSignedMax() :
6354 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006355
Dan Gohman52fddd32010-01-26 04:40:18 +00006356 // If MaxEnd is within a step of the maximum integer value in its type,
6357 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006358 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006359 // compute the correct value.
6360 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006361 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006362 MaxEnd = isSigned ?
6363 getSMinExpr(MaxEnd,
6364 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6365 StepMinusOne)) :
6366 getUMinExpr(MaxEnd,
6367 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6368 StepMinusOne));
6369
Dan Gohmana1af7572009-04-30 20:47:05 +00006370 // Finally, we subtract these two values and divide, rounding up, to get
6371 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006372 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006373
6374 // The maximum backedge count is similar, except using the minimum start
6375 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006376 // If we already have an exact constant BECount, use it instead.
6377 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6378 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6379
6380 // If the stride is nonconstant, and NoWrap == true, then
6381 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6382 // exact BECount and invalid MaxBECount, which should be avoided to catch
6383 // more optimization opportunities.
6384 if (isa<SCEVCouldNotCompute>(MaxBECount))
6385 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006386
Andrew Trick5116ff62011-07-26 17:19:55 +00006387 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006388 }
6389
Dan Gohman1c343752009-06-27 21:21:31 +00006390 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006391}
6392
Chris Lattner53e677a2004-04-02 20:23:17 +00006393/// getNumIterationsInRange - Return the number of iterations of this loop that
6394/// produce values in the specified constant range. Another way of looking at
6395/// this is that it returns the first iteration number where the value is not in
6396/// the condition, thus computing the exit count. If the iteration count can't
6397/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006398const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006399 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006400 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006401 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006402
6403 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006404 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006405 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006406 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006407 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006408 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006409 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006410 if (const SCEVAddRecExpr *ShiftedAddRec =
6411 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006412 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006413 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006414 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006415 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006416 }
6417
6418 // The only time we can solve this is when we have all constant indices.
6419 // Otherwise, we cannot determine the overflow conditions.
6420 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6421 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006422 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006423
6424
6425 // Okay at this point we know that all elements of the chrec are constants and
6426 // that the start element is zero.
6427
6428 // First check to see if the range contains zero. If not, the first
6429 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006430 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006431 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006432 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006433
Chris Lattner53e677a2004-04-02 20:23:17 +00006434 if (isAffine()) {
6435 // If this is an affine expression then we have this situation:
6436 // Solve {0,+,A} in Range === Ax in Range
6437
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006438 // We know that zero is in the range. If A is positive then we know that
6439 // the upper value of the range must be the first possible exit value.
6440 // If A is negative then the lower of the range is the last possible loop
6441 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006442 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006443 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6444 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006445
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006446 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006447 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006448 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006449
6450 // Evaluate at the exit value. If we really did fall out of the valid
6451 // range, then we computed our trip count, otherwise wrap around or other
6452 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006453 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006454 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006455 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006456
6457 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006458 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006459 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006460 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006461 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006462 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006463 } else if (isQuadratic()) {
6464 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6465 // quadratic equation to solve it. To do this, we must frame our problem in
6466 // terms of figuring out when zero is crossed, instead of when
6467 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006468 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006469 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006470 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6471 // getNoWrapFlags(FlagNW)
6472 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006473
6474 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006475 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006476 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006477 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6478 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006479 if (R1) {
6480 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006481 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006482 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006483 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006484 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006485 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006486
Chris Lattner53e677a2004-04-02 20:23:17 +00006487 // Make sure the root is not off by one. The returned iteration should
6488 // not be in the range, but the previous one should be. When solving
6489 // for "X*X < 5", for example, we should not return a root of 2.
6490 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006491 R1->getValue(),
6492 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006493 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006494 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006495 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006496 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006497
Dan Gohman246b2562007-10-22 18:31:58 +00006498 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006499 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006500 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006501 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006502 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006503
Chris Lattner53e677a2004-04-02 20:23:17 +00006504 // If R1 was not in the range, then it is a good return value. Make
6505 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006506 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006507 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006508 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006509 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006510 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006511 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006512 }
6513 }
6514 }
6515
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006516 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006517}
6518
6519
6520
6521//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006522// SCEVCallbackVH Class Implementation
6523//===----------------------------------------------------------------------===//
6524
Dan Gohman1959b752009-05-19 19:22:47 +00006525void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006526 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006527 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6528 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006529 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006530 // this now dangles!
6531}
6532
Dan Gohman81f91212010-07-28 01:09:07 +00006533void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006534 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006535
Dan Gohman35738ac2009-05-04 22:30:44 +00006536 // Forget all the expressions associated with users of the old value,
6537 // so that future queries will recompute the expressions using the new
6538 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006539 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006540 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006541 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006542 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6543 UI != UE; ++UI)
6544 Worklist.push_back(*UI);
6545 while (!Worklist.empty()) {
6546 User *U = Worklist.pop_back_val();
6547 // Deleting the Old value will cause this to dangle. Postpone
6548 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006549 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006550 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006551 if (!Visited.insert(U))
6552 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006553 if (PHINode *PN = dyn_cast<PHINode>(U))
6554 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006555 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006556 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6557 UI != UE; ++UI)
6558 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006559 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006560 // Delete the Old value.
6561 if (PHINode *PN = dyn_cast<PHINode>(Old))
6562 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006563 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006564 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006565}
6566
Dan Gohman1959b752009-05-19 19:22:47 +00006567ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006568 : CallbackVH(V), SE(se) {}
6569
6570//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006571// ScalarEvolution Class Implementation
6572//===----------------------------------------------------------------------===//
6573
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006574ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006575 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006576 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006577}
6578
Chris Lattner53e677a2004-04-02 20:23:17 +00006579bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006580 this->F = &F;
6581 LI = &getAnalysis<LoopInfo>();
6582 TD = getAnalysisIfAvailable<TargetData>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006583 TLI = &getAnalysis<TargetLibraryInfo>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006584 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006585 return false;
6586}
6587
6588void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006589 // Iterate through all the SCEVUnknown instances and call their
6590 // destructors, so that they release their references to their values.
6591 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6592 U->~SCEVUnknown();
6593 FirstUnknown = 0;
6594
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006595 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006596
6597 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6598 // that a loop had multiple computable exits.
6599 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6600 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6601 I != E; ++I) {
6602 I->second.clear();
6603 }
6604
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006605 BackedgeTakenCounts.clear();
6606 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006607 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006608 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006609 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006610 UnsignedRanges.clear();
6611 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006612 UniqueSCEVs.clear();
6613 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006614}
6615
6616void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6617 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006618 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006619 AU.addRequiredTransitive<DominatorTree>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006620 AU.addRequired<TargetLibraryInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006621}
6622
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006623bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006624 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006625}
6626
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006627static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006628 const Loop *L) {
6629 // Print all inner loops first
6630 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6631 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006632
Dan Gohman30733292010-01-09 18:17:45 +00006633 OS << "Loop ";
6634 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6635 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006636
Dan Gohman5d984912009-12-18 01:14:11 +00006637 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006638 L->getExitBlocks(ExitBlocks);
6639 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006640 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006641
Dan Gohman46bdfb02009-02-24 18:55:53 +00006642 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6643 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006644 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006645 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006646 }
6647
Dan Gohman30733292010-01-09 18:17:45 +00006648 OS << "\n"
6649 "Loop ";
6650 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6651 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006652
6653 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6654 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6655 } else {
6656 OS << "Unpredictable max backedge-taken count. ";
6657 }
6658
6659 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006660}
6661
Dan Gohman5d984912009-12-18 01:14:11 +00006662void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006663 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006664 // out SCEV values of all instructions that are interesting. Doing
6665 // this potentially causes it to create new SCEV objects though,
6666 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006667 // observable from outside the class though, so casting away the
6668 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006669 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006670
Dan Gohman30733292010-01-09 18:17:45 +00006671 OS << "Classifying expressions for: ";
6672 WriteAsOperand(OS, F, /*PrintType=*/false);
6673 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006674 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006675 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006676 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006677 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006678 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006679 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006680
Dan Gohman0c689c52009-06-19 17:49:54 +00006681 const Loop *L = LI->getLoopFor((*I).getParent());
6682
Dan Gohman0bba49c2009-07-07 17:06:11 +00006683 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006684 if (AtUse != SV) {
6685 OS << " --> ";
6686 AtUse->print(OS);
6687 }
6688
6689 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006690 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006691 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006692 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006693 OS << "<<Unknown>>";
6694 } else {
6695 OS << *ExitValue;
6696 }
6697 }
6698
Chris Lattner53e677a2004-04-02 20:23:17 +00006699 OS << "\n";
6700 }
6701
Dan Gohman30733292010-01-09 18:17:45 +00006702 OS << "Determining loop execution counts for: ";
6703 WriteAsOperand(OS, F, /*PrintType=*/false);
6704 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006705 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6706 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006707}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006708
Dan Gohman714b5292010-11-17 23:21:44 +00006709ScalarEvolution::LoopDisposition
6710ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6711 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6712 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6713 Values.insert(std::make_pair(L, LoopVariant));
6714 if (!Pair.second)
6715 return Pair.first->second;
6716
6717 LoopDisposition D = computeLoopDisposition(S, L);
6718 return LoopDispositions[S][L] = D;
6719}
6720
6721ScalarEvolution::LoopDisposition
6722ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006723 switch (S->getSCEVType()) {
6724 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006725 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006726 case scTruncate:
6727 case scZeroExtend:
6728 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006729 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006730 case scAddRecExpr: {
6731 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6732
Dan Gohman714b5292010-11-17 23:21:44 +00006733 // If L is the addrec's loop, it's computable.
6734 if (AR->getLoop() == L)
6735 return LoopComputable;
6736
Dan Gohman17ead4f2010-11-17 21:23:15 +00006737 // Add recurrences are never invariant in the function-body (null loop).
6738 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006739 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006740
6741 // This recurrence is variant w.r.t. L if L contains AR's loop.
6742 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006743 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006744
6745 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6746 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006747 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006748
6749 // This recurrence is variant w.r.t. L if any of its operands
6750 // are variant.
6751 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6752 I != E; ++I)
6753 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006754 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006755
6756 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006757 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006758 }
6759 case scAddExpr:
6760 case scMulExpr:
6761 case scUMaxExpr:
6762 case scSMaxExpr: {
6763 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006764 bool HasVarying = false;
6765 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6766 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006767 LoopDisposition D = getLoopDisposition(*I, L);
6768 if (D == LoopVariant)
6769 return LoopVariant;
6770 if (D == LoopComputable)
6771 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006772 }
Dan Gohman714b5292010-11-17 23:21:44 +00006773 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006774 }
6775 case scUDivExpr: {
6776 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006777 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6778 if (LD == LoopVariant)
6779 return LoopVariant;
6780 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6781 if (RD == LoopVariant)
6782 return LoopVariant;
6783 return (LD == LoopInvariant && RD == LoopInvariant) ?
6784 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006785 }
6786 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006787 // All non-instruction values are loop invariant. All instructions are loop
6788 // invariant if they are not contained in the specified loop.
6789 // Instructions are never considered invariant in the function body
6790 // (null loop) because they are defined within the "loop".
6791 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6792 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6793 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006794 case scCouldNotCompute:
6795 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman714b5292010-11-17 23:21:44 +00006796 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006797 default: break;
6798 }
6799 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman714b5292010-11-17 23:21:44 +00006800 return LoopVariant;
6801}
6802
6803bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6804 return getLoopDisposition(S, L) == LoopInvariant;
6805}
6806
6807bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6808 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006809}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006810
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006811ScalarEvolution::BlockDisposition
6812ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6813 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6814 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6815 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6816 if (!Pair.second)
6817 return Pair.first->second;
6818
6819 BlockDisposition D = computeBlockDisposition(S, BB);
6820 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006821}
6822
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006823ScalarEvolution::BlockDisposition
6824ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006825 switch (S->getSCEVType()) {
6826 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006827 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006828 case scTruncate:
6829 case scZeroExtend:
6830 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006831 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006832 case scAddRecExpr: {
6833 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006834 // to test for proper dominance too, because the instruction which
6835 // produces the addrec's value is a PHI, and a PHI effectively properly
6836 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006837 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6838 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006839 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006840 }
6841 // FALL THROUGH into SCEVNAryExpr handling.
6842 case scAddExpr:
6843 case scMulExpr:
6844 case scUMaxExpr:
6845 case scSMaxExpr: {
6846 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006847 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006848 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006849 I != E; ++I) {
6850 BlockDisposition D = getBlockDisposition(*I, BB);
6851 if (D == DoesNotDominateBlock)
6852 return DoesNotDominateBlock;
6853 if (D == DominatesBlock)
6854 Proper = false;
6855 }
6856 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006857 }
6858 case scUDivExpr: {
6859 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006860 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6861 BlockDisposition LD = getBlockDisposition(LHS, BB);
6862 if (LD == DoesNotDominateBlock)
6863 return DoesNotDominateBlock;
6864 BlockDisposition RD = getBlockDisposition(RHS, BB);
6865 if (RD == DoesNotDominateBlock)
6866 return DoesNotDominateBlock;
6867 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6868 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006869 }
6870 case scUnknown:
6871 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006872 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6873 if (I->getParent() == BB)
6874 return DominatesBlock;
6875 if (DT->properlyDominates(I->getParent(), BB))
6876 return ProperlyDominatesBlock;
6877 return DoesNotDominateBlock;
6878 }
6879 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006880 case scCouldNotCompute:
6881 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006882 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006883 default: break;
6884 }
6885 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006886 return DoesNotDominateBlock;
6887}
6888
6889bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6890 return getBlockDisposition(S, BB) >= DominatesBlock;
6891}
6892
6893bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6894 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006895}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006896
6897bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6898 switch (S->getSCEVType()) {
6899 case scConstant:
6900 return false;
6901 case scTruncate:
6902 case scZeroExtend:
6903 case scSignExtend: {
6904 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6905 const SCEV *CastOp = Cast->getOperand();
6906 return Op == CastOp || hasOperand(CastOp, Op);
6907 }
6908 case scAddRecExpr:
6909 case scAddExpr:
6910 case scMulExpr:
6911 case scUMaxExpr:
6912 case scSMaxExpr: {
6913 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6914 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6915 I != E; ++I) {
6916 const SCEV *NAryOp = *I;
6917 if (NAryOp == Op || hasOperand(NAryOp, Op))
6918 return true;
6919 }
6920 return false;
6921 }
6922 case scUDivExpr: {
6923 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6924 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6925 return LHS == Op || hasOperand(LHS, Op) ||
6926 RHS == Op || hasOperand(RHS, Op);
6927 }
6928 case scUnknown:
6929 return false;
6930 case scCouldNotCompute:
6931 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6932 return false;
6933 default: break;
6934 }
6935 llvm_unreachable("Unknown SCEV kind!");
6936 return false;
6937}
Dan Gohman56a75682010-11-17 23:28:48 +00006938
6939void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6940 ValuesAtScopes.erase(S);
6941 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006942 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006943 UnsignedRanges.erase(S);
6944 SignedRanges.erase(S);
6945}