blob: bcaefd0a4ff95b321e6635191132393855192a41 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chad Rosier618c1db2011-12-01 03:08:23 +000077#include "llvm/Target/TargetLibraryInfo.h"
Chris Lattner95255282006-06-28 23:17:24 +000078#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000079#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000080#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000081#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000082#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000083#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000084#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000085#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000086#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000087#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000088#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000089#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000090using namespace llvm;
91
Chris Lattner3b27d682006-12-19 22:30:33 +000092STATISTIC(NumArrayLenItCounts,
93 "Number of trip counts computed with array length");
94STATISTIC(NumTripCountsComputed,
95 "Number of loops with predictable loop counts");
96STATISTIC(NumTripCountsNotComputed,
97 "Number of loops without predictable loop counts");
98STATISTIC(NumBruteForceTripCountsComputed,
99 "Number of loops with trip counts computed by force");
100
Dan Gohman844731a2008-05-13 00:00:25 +0000101static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000102MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000104 "symbolically execute a constant "
105 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000106 cl::init(100));
107
Owen Anderson2ab36d32010-10-12 19:48:12 +0000108INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
109 "Scalar Evolution Analysis", false, true)
110INITIALIZE_PASS_DEPENDENCY(LoopInfo)
111INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Chad Rosier618c1db2011-12-01 03:08:23 +0000112INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000113INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000114 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000115char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000116
117//===----------------------------------------------------------------------===//
118// SCEV class definitions
119//===----------------------------------------------------------------------===//
120
121//===----------------------------------------------------------------------===//
122// Implementation of the SCEV class.
123//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000124
Chris Lattner53e677a2004-04-02 20:23:17 +0000125void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000126 print(dbgs());
127 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000128}
129
Dan Gohman4ce32db2010-11-17 22:27:42 +0000130void SCEV::print(raw_ostream &OS) const {
131 switch (getSCEVType()) {
132 case scConstant:
133 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
134 return;
135 case scTruncate: {
136 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
137 const SCEV *Op = Trunc->getOperand();
138 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
139 << *Trunc->getType() << ")";
140 return;
141 }
142 case scZeroExtend: {
143 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
144 const SCEV *Op = ZExt->getOperand();
145 OS << "(zext " << *Op->getType() << " " << *Op << " to "
146 << *ZExt->getType() << ")";
147 return;
148 }
149 case scSignExtend: {
150 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
151 const SCEV *Op = SExt->getOperand();
152 OS << "(sext " << *Op->getType() << " " << *Op << " to "
153 << *SExt->getType() << ")";
154 return;
155 }
156 case scAddRecExpr: {
157 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
158 OS << "{" << *AR->getOperand(0);
159 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
160 OS << ",+," << *AR->getOperand(i);
161 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000162 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000163 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000164 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000165 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000166 if (AR->getNoWrapFlags(FlagNW) &&
167 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
168 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000169 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
170 OS << ">";
171 return;
172 }
173 case scAddExpr:
174 case scMulExpr:
175 case scUMaxExpr:
176 case scSMaxExpr: {
177 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000178 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000179 switch (NAry->getSCEVType()) {
180 case scAddExpr: OpStr = " + "; break;
181 case scMulExpr: OpStr = " * "; break;
182 case scUMaxExpr: OpStr = " umax "; break;
183 case scSMaxExpr: OpStr = " smax "; break;
184 }
185 OS << "(";
186 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
187 I != E; ++I) {
188 OS << **I;
189 if (llvm::next(I) != E)
190 OS << OpStr;
191 }
192 OS << ")";
Andrew Trick121d78f2011-11-29 02:06:35 +0000193 switch (NAry->getSCEVType()) {
194 case scAddExpr:
195 case scMulExpr:
196 if (NAry->getNoWrapFlags(FlagNUW))
197 OS << "<nuw>";
198 if (NAry->getNoWrapFlags(FlagNSW))
199 OS << "<nsw>";
200 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000201 return;
202 }
203 case scUDivExpr: {
204 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
205 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
206 return;
207 }
208 case scUnknown: {
209 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000210 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000211 if (U->isSizeOf(AllocTy)) {
212 OS << "sizeof(" << *AllocTy << ")";
213 return;
214 }
215 if (U->isAlignOf(AllocTy)) {
216 OS << "alignof(" << *AllocTy << ")";
217 return;
218 }
Andrew Trick635f7182011-03-09 17:23:39 +0000219
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000220 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000221 Constant *FieldNo;
222 if (U->isOffsetOf(CTy, FieldNo)) {
223 OS << "offsetof(" << *CTy << ", ";
224 WriteAsOperand(OS, FieldNo, false);
225 OS << ")";
226 return;
227 }
Andrew Trick635f7182011-03-09 17:23:39 +0000228
Dan Gohman4ce32db2010-11-17 22:27:42 +0000229 // Otherwise just print it normally.
230 WriteAsOperand(OS, U->getValue(), false);
231 return;
232 }
233 case scCouldNotCompute:
234 OS << "***COULDNOTCOMPUTE***";
235 return;
236 default: break;
237 }
238 llvm_unreachable("Unknown SCEV kind!");
239}
240
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000241Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000242 switch (getSCEVType()) {
243 case scConstant:
244 return cast<SCEVConstant>(this)->getType();
245 case scTruncate:
246 case scZeroExtend:
247 case scSignExtend:
248 return cast<SCEVCastExpr>(this)->getType();
249 case scAddRecExpr:
250 case scMulExpr:
251 case scUMaxExpr:
252 case scSMaxExpr:
253 return cast<SCEVNAryExpr>(this)->getType();
254 case scAddExpr:
255 return cast<SCEVAddExpr>(this)->getType();
256 case scUDivExpr:
257 return cast<SCEVUDivExpr>(this)->getType();
258 case scUnknown:
259 return cast<SCEVUnknown>(this)->getType();
260 case scCouldNotCompute:
261 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
262 return 0;
263 default: break;
264 }
265 llvm_unreachable("Unknown SCEV kind!");
266 return 0;
267}
268
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000269bool SCEV::isZero() const {
270 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
271 return SC->getValue()->isZero();
272 return false;
273}
274
Dan Gohman70a1fe72009-05-18 15:22:39 +0000275bool SCEV::isOne() const {
276 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
277 return SC->getValue()->isOne();
278 return false;
279}
Chris Lattner53e677a2004-04-02 20:23:17 +0000280
Dan Gohman4d289bf2009-06-24 00:30:26 +0000281bool SCEV::isAllOnesValue() const {
282 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
283 return SC->getValue()->isAllOnesValue();
284 return false;
285}
286
Owen Anderson753ad612009-06-22 21:57:23 +0000287SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000288 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000289
Chris Lattner53e677a2004-04-02 20:23:17 +0000290bool SCEVCouldNotCompute::classof(const SCEV *S) {
291 return S->getSCEVType() == scCouldNotCompute;
292}
293
Dan Gohman0bba49c2009-07-07 17:06:11 +0000294const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000295 FoldingSetNodeID ID;
296 ID.AddInteger(scConstant);
297 ID.AddPointer(V);
298 void *IP = 0;
299 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000300 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000301 UniqueSCEVs.InsertNode(S, IP);
302 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000303}
Chris Lattner53e677a2004-04-02 20:23:17 +0000304
Dan Gohman0bba49c2009-07-07 17:06:11 +0000305const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000306 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000307}
308
Dan Gohman0bba49c2009-07-07 17:06:11 +0000309const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000310ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
311 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000312 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000313}
314
Dan Gohman3bf63762010-06-18 19:54:20 +0000315SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000316 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000317 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000318
Dan Gohman3bf63762010-06-18 19:54:20 +0000319SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000320 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000321 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000322 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
323 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000324 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000325}
Chris Lattner53e677a2004-04-02 20:23:17 +0000326
Dan Gohman3bf63762010-06-18 19:54:20 +0000327SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000328 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000329 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000330 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
331 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000332 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000333}
334
Dan Gohman3bf63762010-06-18 19:54:20 +0000335SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000336 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000337 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000338 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
339 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000340 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000341}
342
Dan Gohmanab37f502010-08-02 23:49:30 +0000343void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000344 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000345 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000346
347 // Remove this SCEVUnknown from the uniquing map.
348 SE->UniqueSCEVs.RemoveNode(this);
349
350 // Release the value.
351 setValPtr(0);
352}
353
354void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000355 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000356 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000357
358 // Remove this SCEVUnknown from the uniquing map.
359 SE->UniqueSCEVs.RemoveNode(this);
360
361 // Update this SCEVUnknown to point to the new value. This is needed
362 // because there may still be outstanding SCEVs which still point to
363 // this SCEVUnknown.
364 setValPtr(New);
365}
366
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000367bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000368 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000369 if (VCE->getOpcode() == Instruction::PtrToInt)
370 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000371 if (CE->getOpcode() == Instruction::GetElementPtr &&
372 CE->getOperand(0)->isNullValue() &&
373 CE->getNumOperands() == 2)
374 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
375 if (CI->isOne()) {
376 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
377 ->getElementType();
378 return true;
379 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000380
381 return false;
382}
383
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000384bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000385 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000386 if (VCE->getOpcode() == Instruction::PtrToInt)
387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000388 if (CE->getOpcode() == Instruction::GetElementPtr &&
389 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000390 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000391 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000392 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000393 if (!STy->isPacked() &&
394 CE->getNumOperands() == 3 &&
395 CE->getOperand(1)->isNullValue()) {
396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
397 if (CI->isOne() &&
398 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000399 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000400 AllocTy = STy->getElementType(1);
401 return true;
402 }
403 }
404 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000405
406 return false;
407}
408
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000409bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000410 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000411 if (VCE->getOpcode() == Instruction::PtrToInt)
412 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
413 if (CE->getOpcode() == Instruction::GetElementPtr &&
414 CE->getNumOperands() == 3 &&
415 CE->getOperand(0)->isNullValue() &&
416 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000417 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000418 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
419 // Ignore vector types here so that ScalarEvolutionExpander doesn't
420 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000421 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000422 CTy = Ty;
423 FieldNo = CE->getOperand(2);
424 return true;
425 }
426 }
427
428 return false;
429}
430
Chris Lattner8d741b82004-06-20 06:23:15 +0000431//===----------------------------------------------------------------------===//
432// SCEV Utilities
433//===----------------------------------------------------------------------===//
434
435namespace {
436 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
437 /// than the complexity of the RHS. This comparator is used to canonicalize
438 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000439 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000440 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000441 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000442 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000443
Dan Gohman67ef74e2010-08-27 15:26:01 +0000444 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000445 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000446 return compare(LHS, RHS) < 0;
447 }
448
449 // Return negative, zero, or positive, if LHS is less than, equal to, or
450 // greater than RHS, respectively. A three-way result allows recursive
451 // comparisons to be more efficient.
452 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000453 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
454 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000455 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000456
Dan Gohman72861302009-05-07 14:39:04 +0000457 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000458 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
459 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000460 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000461
Dan Gohman3bf63762010-06-18 19:54:20 +0000462 // Aside from the getSCEVType() ordering, the particular ordering
463 // isn't very important except that it's beneficial to be consistent,
464 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000465 switch (LType) {
466 case scUnknown: {
467 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000468 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000469
470 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
471 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000472 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000473
474 // Order pointer values after integer values. This helps SCEVExpander
475 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000476 bool LIsPointer = LV->getType()->isPointerTy(),
477 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000478 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000479 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000480
481 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000482 unsigned LID = LV->getValueID(),
483 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000484 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000485 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000486
487 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000488 if (const Argument *LA = dyn_cast<Argument>(LV)) {
489 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000490 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
491 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000492 }
493
Dan Gohman67ef74e2010-08-27 15:26:01 +0000494 // For instructions, compare their loop depth, and their operand
495 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000496 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
497 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000498
499 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000500 const BasicBlock *LParent = LInst->getParent(),
501 *RParent = RInst->getParent();
502 if (LParent != RParent) {
503 unsigned LDepth = LI->getLoopDepth(LParent),
504 RDepth = LI->getLoopDepth(RParent);
505 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000506 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000507 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000508
509 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000510 unsigned LNumOps = LInst->getNumOperands(),
511 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000512 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000513 }
514
Dan Gohman67ef74e2010-08-27 15:26:01 +0000515 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000516 }
517
Dan Gohman67ef74e2010-08-27 15:26:01 +0000518 case scConstant: {
519 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000520 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000521
522 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000523 const APInt &LA = LC->getValue()->getValue();
524 const APInt &RA = RC->getValue()->getValue();
525 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000526 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000527 return (int)LBitWidth - (int)RBitWidth;
528 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000529 }
530
Dan Gohman67ef74e2010-08-27 15:26:01 +0000531 case scAddRecExpr: {
532 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000533 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000534
535 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000536 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
537 if (LLoop != RLoop) {
538 unsigned LDepth = LLoop->getLoopDepth(),
539 RDepth = RLoop->getLoopDepth();
540 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000541 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000542 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000543
544 // Addrec complexity grows with operand count.
545 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
546 if (LNumOps != RNumOps)
547 return (int)LNumOps - (int)RNumOps;
548
549 // Lexicographically compare.
550 for (unsigned i = 0; i != LNumOps; ++i) {
551 long X = compare(LA->getOperand(i), RA->getOperand(i));
552 if (X != 0)
553 return X;
554 }
555
556 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000557 }
558
Dan Gohman67ef74e2010-08-27 15:26:01 +0000559 case scAddExpr:
560 case scMulExpr:
561 case scSMaxExpr:
562 case scUMaxExpr: {
563 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000564 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000565
566 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000567 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
568 for (unsigned i = 0; i != LNumOps; ++i) {
569 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000570 return 1;
571 long X = compare(LC->getOperand(i), RC->getOperand(i));
572 if (X != 0)
573 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000574 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000575 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000576 }
577
Dan Gohman67ef74e2010-08-27 15:26:01 +0000578 case scUDivExpr: {
579 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000580 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000581
582 // Lexicographically compare udiv expressions.
583 long X = compare(LC->getLHS(), RC->getLHS());
584 if (X != 0)
585 return X;
586 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000587 }
588
Dan Gohman67ef74e2010-08-27 15:26:01 +0000589 case scTruncate:
590 case scZeroExtend:
591 case scSignExtend: {
592 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000593 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000594
595 // Compare cast expressions by operand.
596 return compare(LC->getOperand(), RC->getOperand());
597 }
598
599 default:
600 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000601 }
602
603 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000604 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000605 }
606 };
607}
608
609/// GroupByComplexity - Given a list of SCEV objects, order them by their
610/// complexity, and group objects of the same complexity together by value.
611/// When this routine is finished, we know that any duplicates in the vector are
612/// consecutive and that complexity is monotonically increasing.
613///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000614/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000615/// results from this routine. In other words, we don't want the results of
616/// this to depend on where the addresses of various SCEV objects happened to
617/// land in memory.
618///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000619static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000620 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000621 if (Ops.size() < 2) return; // Noop
622 if (Ops.size() == 2) {
623 // This is the common case, which also happens to be trivially simple.
624 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000625 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
626 if (SCEVComplexityCompare(LI)(RHS, LHS))
627 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000628 return;
629 }
630
Dan Gohman3bf63762010-06-18 19:54:20 +0000631 // Do the rough sort by complexity.
632 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
633
634 // Now that we are sorted by complexity, group elements of the same
635 // complexity. Note that this is, at worst, N^2, but the vector is likely to
636 // be extremely short in practice. Note that we take this approach because we
637 // do not want to depend on the addresses of the objects we are grouping.
638 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
639 const SCEV *S = Ops[i];
640 unsigned Complexity = S->getSCEVType();
641
642 // If there are any objects of the same complexity and same value as this
643 // one, group them.
644 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
645 if (Ops[j] == S) { // Found a duplicate.
646 // Move it to immediately after i'th element.
647 std::swap(Ops[i+1], Ops[j]);
648 ++i; // no need to rescan it.
649 if (i == e-2) return; // Done!
650 }
651 }
652 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000653}
654
Chris Lattner53e677a2004-04-02 20:23:17 +0000655
Chris Lattner53e677a2004-04-02 20:23:17 +0000656
657//===----------------------------------------------------------------------===//
658// Simple SCEV method implementations
659//===----------------------------------------------------------------------===//
660
Eli Friedmanb42a6262008-08-04 23:49:06 +0000661/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000662/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000663static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000664 ScalarEvolution &SE,
Nick Lewycky8cfb2f82011-09-06 06:39:54 +0000665 Type *ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000666 // Handle the simplest case efficiently.
667 if (K == 1)
668 return SE.getTruncateOrZeroExtend(It, ResultTy);
669
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000670 // We are using the following formula for BC(It, K):
671 //
672 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
673 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000674 // Suppose, W is the bitwidth of the return value. We must be prepared for
675 // overflow. Hence, we must assure that the result of our computation is
676 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
677 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000678 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000679 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000680 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000681 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
682 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000683 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000684 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000685 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000686 // This formula is trivially equivalent to the previous formula. However,
687 // this formula can be implemented much more efficiently. The trick is that
688 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
689 // arithmetic. To do exact division in modular arithmetic, all we have
690 // to do is multiply by the inverse. Therefore, this step can be done at
691 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000692 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000693 // The next issue is how to safely do the division by 2^T. The way this
694 // is done is by doing the multiplication step at a width of at least W + T
695 // bits. This way, the bottom W+T bits of the product are accurate. Then,
696 // when we perform the division by 2^T (which is equivalent to a right shift
697 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
698 // truncated out after the division by 2^T.
699 //
700 // In comparison to just directly using the first formula, this technique
701 // is much more efficient; using the first formula requires W * K bits,
702 // but this formula less than W + K bits. Also, the first formula requires
703 // a division step, whereas this formula only requires multiplies and shifts.
704 //
705 // It doesn't matter whether the subtraction step is done in the calculation
706 // width or the input iteration count's width; if the subtraction overflows,
707 // the result must be zero anyway. We prefer here to do it in the width of
708 // the induction variable because it helps a lot for certain cases; CodeGen
709 // isn't smart enough to ignore the overflow, which leads to much less
710 // efficient code if the width of the subtraction is wider than the native
711 // register width.
712 //
713 // (It's possible to not widen at all by pulling out factors of 2 before
714 // the multiplication; for example, K=2 can be calculated as
715 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
716 // extra arithmetic, so it's not an obvious win, and it gets
717 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000718
Eli Friedmanb42a6262008-08-04 23:49:06 +0000719 // Protection from insane SCEVs; this bound is conservative,
720 // but it probably doesn't matter.
721 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000722 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000723
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000724 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000725
Eli Friedmanb42a6262008-08-04 23:49:06 +0000726 // Calculate K! / 2^T and T; we divide out the factors of two before
727 // multiplying for calculating K! / 2^T to avoid overflow.
728 // Other overflow doesn't matter because we only care about the bottom
729 // W bits of the result.
730 APInt OddFactorial(W, 1);
731 unsigned T = 1;
732 for (unsigned i = 3; i <= K; ++i) {
733 APInt Mult(W, i);
734 unsigned TwoFactors = Mult.countTrailingZeros();
735 T += TwoFactors;
736 Mult = Mult.lshr(TwoFactors);
737 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000738 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000739
Eli Friedmanb42a6262008-08-04 23:49:06 +0000740 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000741 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000742
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000743 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000744 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
745
746 // Calculate the multiplicative inverse of K! / 2^T;
747 // this multiplication factor will perform the exact division by
748 // K! / 2^T.
749 APInt Mod = APInt::getSignedMinValue(W+1);
750 APInt MultiplyFactor = OddFactorial.zext(W+1);
751 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
752 MultiplyFactor = MultiplyFactor.trunc(W);
753
754 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000755 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000756 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000757 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000758 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000759 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000760 Dividend = SE.getMulExpr(Dividend,
761 SE.getTruncateOrZeroExtend(S, CalculationTy));
762 }
763
764 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000765 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000766
767 // Truncate the result, and divide by K! / 2^T.
768
769 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
770 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000771}
772
Chris Lattner53e677a2004-04-02 20:23:17 +0000773/// evaluateAtIteration - Return the value of this chain of recurrences at
774/// the specified iteration number. We can evaluate this recurrence by
775/// multiplying each element in the chain by the binomial coefficient
776/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
777///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000778/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000779///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000780/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000781///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000782const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000783 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000784 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000785 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000786 // The computation is correct in the face of overflow provided that the
787 // multiplication is performed _after_ the evaluation of the binomial
788 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000789 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000790 if (isa<SCEVCouldNotCompute>(Coeff))
791 return Coeff;
792
793 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000794 }
795 return Result;
796}
797
Chris Lattner53e677a2004-04-02 20:23:17 +0000798//===----------------------------------------------------------------------===//
799// SCEV Expression folder implementations
800//===----------------------------------------------------------------------===//
801
Dan Gohman0bba49c2009-07-07 17:06:11 +0000802const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000803 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000804 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000805 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000806 assert(isSCEVable(Ty) &&
807 "This is not a conversion to a SCEVable type!");
808 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000809
Dan Gohmanc050fd92009-07-13 20:50:19 +0000810 FoldingSetNodeID ID;
811 ID.AddInteger(scTruncate);
812 ID.AddPointer(Op);
813 ID.AddPointer(Ty);
814 void *IP = 0;
815 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
816
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000817 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000818 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000819 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000820 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
821 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000822
Dan Gohman20900ca2009-04-22 16:20:48 +0000823 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000824 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000825 return getTruncateExpr(ST->getOperand(), Ty);
826
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000827 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000828 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000829 return getTruncateOrSignExtend(SS->getOperand(), Ty);
830
831 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000832 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000833 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
834
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000835 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
836 // eliminate all the truncates.
837 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
838 SmallVector<const SCEV *, 4> Operands;
839 bool hasTrunc = false;
840 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
841 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
842 hasTrunc = isa<SCEVTruncateExpr>(S);
843 Operands.push_back(S);
844 }
845 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000846 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000847 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000848 }
849
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000850 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
851 // eliminate all the truncates.
852 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
853 SmallVector<const SCEV *, 4> Operands;
854 bool hasTrunc = false;
855 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
856 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
857 hasTrunc = isa<SCEVTruncateExpr>(S);
858 Operands.push_back(S);
859 }
860 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000861 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000862 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000863 }
864
Dan Gohman6864db62009-06-18 16:24:47 +0000865 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000866 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000867 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000868 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000869 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000870 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000871 }
872
Dan Gohmanf53462d2010-07-15 20:02:11 +0000873 // As a special case, fold trunc(undef) to undef. We don't want to
874 // know too much about SCEVUnknowns, but this special case is handy
875 // and harmless.
876 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
877 if (isa<UndefValue>(U->getValue()))
878 return getSCEV(UndefValue::get(Ty));
879
Dan Gohman420ab912010-06-25 18:47:08 +0000880 // The cast wasn't folded; create an explicit cast node. We can reuse
881 // the existing insert position since if we get here, we won't have
882 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000883 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
884 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000885 UniqueSCEVs.InsertNode(S, IP);
886 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000887}
888
Dan Gohman0bba49c2009-07-07 17:06:11 +0000889const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000890 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000891 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000892 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000893 assert(isSCEVable(Ty) &&
894 "This is not a conversion to a SCEVable type!");
895 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000896
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000897 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000898 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
899 return getConstant(
900 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
901 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000902
Dan Gohman20900ca2009-04-22 16:20:48 +0000903 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000904 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000905 return getZeroExtendExpr(SZ->getOperand(), Ty);
906
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000907 // Before doing any expensive analysis, check to see if we've already
908 // computed a SCEV for this Op and Ty.
909 FoldingSetNodeID ID;
910 ID.AddInteger(scZeroExtend);
911 ID.AddPointer(Op);
912 ID.AddPointer(Ty);
913 void *IP = 0;
914 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
915
Nick Lewycky630d85a2011-01-23 06:20:19 +0000916 // zext(trunc(x)) --> zext(x) or x or trunc(x)
917 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
918 // It's possible the bits taken off by the truncate were all zero bits. If
919 // so, we should be able to simplify this further.
920 const SCEV *X = ST->getOperand();
921 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000922 unsigned TruncBits = getTypeSizeInBits(ST->getType());
923 unsigned NewBits = getTypeSizeInBits(Ty);
924 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000925 CR.zextOrTrunc(NewBits)))
926 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000927 }
928
Dan Gohman01ecca22009-04-27 20:16:15 +0000929 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000930 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000931 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000932 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000933 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000934 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000935 const SCEV *Start = AR->getStart();
936 const SCEV *Step = AR->getStepRecurrence(*this);
937 unsigned BitWidth = getTypeSizeInBits(AR->getType());
938 const Loop *L = AR->getLoop();
939
Dan Gohmaneb490a72009-07-25 01:22:26 +0000940 // If we have special knowledge that this addrec won't overflow,
941 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000942 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000943 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
944 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000945 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000946
Dan Gohman01ecca22009-04-27 20:16:15 +0000947 // Check whether the backedge-taken count is SCEVCouldNotCompute.
948 // Note that this serves two purposes: It filters out loops that are
949 // simply not analyzable, and it covers the case where this code is
950 // being called from within backedge-taken count analysis, such that
951 // attempting to ask for the backedge-taken count would likely result
952 // in infinite recursion. In the later case, the analysis code will
953 // cope with a conservative value, and it will take care to purge
954 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000955 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000956 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000957 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000958 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000959
960 // Check whether the backedge-taken count can be losslessly casted to
961 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000962 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000963 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000964 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000965 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
966 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000967 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000968 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000969 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000970 const SCEV *Add = getAddExpr(Start, ZMul);
971 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000972 getAddExpr(getZeroExtendExpr(Start, WideTy),
973 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
974 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +0000975 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
976 // Cache knowledge of AR NUW, which is propagated to this AddRec.
977 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000978 // Return the expression with the addrec on the outside.
979 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
980 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000981 L, AR->getNoWrapFlags());
982 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000983 // Similar to above, only this time treat the step value as signed.
984 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000985 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000986 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000987 OperandExtendedAdd =
988 getAddExpr(getZeroExtendExpr(Start, WideTy),
989 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
990 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +0000991 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
992 // Cache knowledge of AR NW, which is propagated to this AddRec.
993 // Negative step causes unsigned wrap, but it still can't self-wrap.
994 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000995 // Return the expression with the addrec on the outside.
996 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
997 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000998 L, AR->getNoWrapFlags());
999 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001000 }
1001
1002 // If the backedge is guarded by a comparison with the pre-inc value
1003 // the addrec is safe. Also, if the entry is guarded by a comparison
1004 // with the start value and the backedge is guarded by a comparison
1005 // with the post-inc value, the addrec is safe.
1006 if (isKnownPositive(Step)) {
1007 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1008 getUnsignedRange(Step).getUnsignedMax());
1009 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001010 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001011 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001012 AR->getPostIncExpr(*this), N))) {
1013 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1014 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001015 // Return the expression with the addrec on the outside.
1016 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1017 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001018 L, AR->getNoWrapFlags());
1019 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001020 } else if (isKnownNegative(Step)) {
1021 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1022 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001023 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1024 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001025 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001026 AR->getPostIncExpr(*this), N))) {
1027 // Cache knowledge of AR NW, which is propagated to this AddRec.
1028 // Negative step causes unsigned wrap, but it still can't self-wrap.
1029 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1030 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001031 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1032 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001033 L, AR->getNoWrapFlags());
1034 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001035 }
1036 }
1037 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001038
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001039 // The cast wasn't folded; create an explicit cast node.
1040 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001041 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001042 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1043 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001044 UniqueSCEVs.InsertNode(S, IP);
1045 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001046}
1047
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001048// Get the limit of a recurrence such that incrementing by Step cannot cause
1049// signed overflow as long as the value of the recurrence within the loop does
1050// not exceed this limit before incrementing.
1051static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1052 ICmpInst::Predicate *Pred,
1053 ScalarEvolution *SE) {
1054 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1055 if (SE->isKnownPositive(Step)) {
1056 *Pred = ICmpInst::ICMP_SLT;
1057 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1058 SE->getSignedRange(Step).getSignedMax());
1059 }
1060 if (SE->isKnownNegative(Step)) {
1061 *Pred = ICmpInst::ICMP_SGT;
1062 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1063 SE->getSignedRange(Step).getSignedMin());
1064 }
1065 return 0;
1066}
1067
1068// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1069// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1070// or postincrement sibling. This allows normalizing a sign extended AddRec as
1071// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1072// result, the expression "Step + sext(PreIncAR)" is congruent with
1073// "sext(PostIncAR)"
1074static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001075 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001076 ScalarEvolution *SE) {
1077 const Loop *L = AR->getLoop();
1078 const SCEV *Start = AR->getStart();
1079 const SCEV *Step = AR->getStepRecurrence(*SE);
1080
1081 // Check for a simple looking step prior to loop entry.
1082 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickf63ae212011-09-28 17:02:54 +00001083 if (!SA)
1084 return 0;
1085
1086 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1087 // subtraction is expensive. For this purpose, perform a quick and dirty
1088 // difference, by checking for Step in the operand list.
1089 SmallVector<const SCEV *, 4> DiffOps;
1090 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1091 I != E; ++I) {
1092 if (*I != Step)
1093 DiffOps.push_back(*I);
1094 }
1095 if (DiffOps.size() == SA->getNumOperands())
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001096 return 0;
1097
1098 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1099 // same three conditions that getSignExtendedExpr checks.
1100
1101 // 1. NSW flags on the step increment.
Andrew Trickf63ae212011-09-28 17:02:54 +00001102 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001103 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1104 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1105
Andrew Trickcf31f912011-06-01 19:14:56 +00001106 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001107 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001108
1109 // 2. Direct overflow check on the step operation's expression.
1110 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001111 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001112 const SCEV *OperandExtendedStart =
1113 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1114 SE->getSignExtendExpr(Step, WideTy));
1115 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1116 // Cache knowledge of PreAR NSW.
1117 if (PreAR)
1118 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1119 // FIXME: this optimization needs a unit test
1120 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1121 return PreStart;
1122 }
1123
1124 // 3. Loop precondition.
1125 ICmpInst::Predicate Pred;
1126 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1127
Andrew Trickcf31f912011-06-01 19:14:56 +00001128 if (OverflowLimit &&
1129 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001130 return PreStart;
1131 }
1132 return 0;
1133}
1134
1135// Get the normalized sign-extended expression for this AddRec's Start.
1136static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001137 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001138 ScalarEvolution *SE) {
1139 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1140 if (!PreStart)
1141 return SE->getSignExtendExpr(AR->getStart(), Ty);
1142
1143 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1144 SE->getSignExtendExpr(PreStart, Ty));
1145}
1146
Dan Gohman0bba49c2009-07-07 17:06:11 +00001147const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001148 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001149 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001150 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001151 assert(isSCEVable(Ty) &&
1152 "This is not a conversion to a SCEVable type!");
1153 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001154
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001155 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001156 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1157 return getConstant(
1158 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1159 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001160
Dan Gohman20900ca2009-04-22 16:20:48 +00001161 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001162 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001163 return getSignExtendExpr(SS->getOperand(), Ty);
1164
Nick Lewycky73f565e2011-01-19 15:56:12 +00001165 // sext(zext(x)) --> zext(x)
1166 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1167 return getZeroExtendExpr(SZ->getOperand(), Ty);
1168
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001169 // Before doing any expensive analysis, check to see if we've already
1170 // computed a SCEV for this Op and Ty.
1171 FoldingSetNodeID ID;
1172 ID.AddInteger(scSignExtend);
1173 ID.AddPointer(Op);
1174 ID.AddPointer(Ty);
1175 void *IP = 0;
1176 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1177
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001178 // If the input value is provably positive, build a zext instead.
1179 if (isKnownNonNegative(Op))
1180 return getZeroExtendExpr(Op, Ty);
1181
Nick Lewycky630d85a2011-01-23 06:20:19 +00001182 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1183 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1184 // It's possible the bits taken off by the truncate were all sign bits. If
1185 // so, we should be able to simplify this further.
1186 const SCEV *X = ST->getOperand();
1187 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001188 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1189 unsigned NewBits = getTypeSizeInBits(Ty);
1190 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001191 CR.sextOrTrunc(NewBits)))
1192 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001193 }
1194
Dan Gohman01ecca22009-04-27 20:16:15 +00001195 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001196 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001197 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001198 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001199 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001200 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001201 const SCEV *Start = AR->getStart();
1202 const SCEV *Step = AR->getStepRecurrence(*this);
1203 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1204 const Loop *L = AR->getLoop();
1205
Dan Gohmaneb490a72009-07-25 01:22:26 +00001206 // If we have special knowledge that this addrec won't overflow,
1207 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001208 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001209 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001210 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001211 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001212
Dan Gohman01ecca22009-04-27 20:16:15 +00001213 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1214 // Note that this serves two purposes: It filters out loops that are
1215 // simply not analyzable, and it covers the case where this code is
1216 // being called from within backedge-taken count analysis, such that
1217 // attempting to ask for the backedge-taken count would likely result
1218 // in infinite recursion. In the later case, the analysis code will
1219 // cope with a conservative value, and it will take care to purge
1220 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001221 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001222 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001223 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001224 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001225
1226 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001227 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001228 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001229 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001230 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001231 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1232 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001233 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001234 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001235 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001236 const SCEV *Add = getAddExpr(Start, SMul);
1237 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001238 getAddExpr(getSignExtendExpr(Start, WideTy),
1239 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1240 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001241 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1242 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1243 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001244 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001245 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001246 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001247 L, AR->getNoWrapFlags());
1248 }
Dan Gohman850f7912009-07-16 17:34:36 +00001249 // Similar to above, only this time treat the step value as unsigned.
1250 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001251 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001252 Add = getAddExpr(Start, UMul);
1253 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001254 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001255 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1256 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001257 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1258 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1259 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001260 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001261 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001262 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001263 L, AR->getNoWrapFlags());
1264 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001265 }
1266
1267 // If the backedge is guarded by a comparison with the pre-inc value
1268 // the addrec is safe. Also, if the entry is guarded by a comparison
1269 // with the start value and the backedge is guarded by a comparison
1270 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001271 ICmpInst::Predicate Pred;
1272 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1273 if (OverflowLimit &&
1274 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1275 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1276 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1277 OverflowLimit)))) {
1278 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1279 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1280 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1281 getSignExtendExpr(Step, Ty),
1282 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001283 }
1284 }
1285 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001286
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001287 // The cast wasn't folded; create an explicit cast node.
1288 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001289 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001290 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1291 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001292 UniqueSCEVs.InsertNode(S, IP);
1293 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001294}
1295
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001296/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1297/// unspecified bits out to the given type.
1298///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001299const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001300 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001301 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1302 "This is not an extending conversion!");
1303 assert(isSCEVable(Ty) &&
1304 "This is not a conversion to a SCEVable type!");
1305 Ty = getEffectiveSCEVType(Ty);
1306
1307 // Sign-extend negative constants.
1308 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1309 if (SC->getValue()->getValue().isNegative())
1310 return getSignExtendExpr(Op, Ty);
1311
1312 // Peel off a truncate cast.
1313 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001314 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001315 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1316 return getAnyExtendExpr(NewOp, Ty);
1317 return getTruncateOrNoop(NewOp, Ty);
1318 }
1319
1320 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001321 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001322 if (!isa<SCEVZeroExtendExpr>(ZExt))
1323 return ZExt;
1324
1325 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001326 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001327 if (!isa<SCEVSignExtendExpr>(SExt))
1328 return SExt;
1329
Dan Gohmana10756e2010-01-21 02:09:26 +00001330 // Force the cast to be folded into the operands of an addrec.
1331 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1332 SmallVector<const SCEV *, 4> Ops;
1333 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1334 I != E; ++I)
1335 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001336 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001337 }
1338
Dan Gohmanf53462d2010-07-15 20:02:11 +00001339 // As a special case, fold anyext(undef) to undef. We don't want to
1340 // know too much about SCEVUnknowns, but this special case is handy
1341 // and harmless.
1342 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1343 if (isa<UndefValue>(U->getValue()))
1344 return getSCEV(UndefValue::get(Ty));
1345
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001346 // If the expression is obviously signed, use the sext cast value.
1347 if (isa<SCEVSMaxExpr>(Op))
1348 return SExt;
1349
1350 // Absent any other information, use the zext cast value.
1351 return ZExt;
1352}
1353
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001354/// CollectAddOperandsWithScales - Process the given Ops list, which is
1355/// a list of operands to be added under the given scale, update the given
1356/// map. This is a helper function for getAddRecExpr. As an example of
1357/// what it does, given a sequence of operands that would form an add
1358/// expression like this:
1359///
1360/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1361///
1362/// where A and B are constants, update the map with these values:
1363///
1364/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1365///
1366/// and add 13 + A*B*29 to AccumulatedConstant.
1367/// This will allow getAddRecExpr to produce this:
1368///
1369/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1370///
1371/// This form often exposes folding opportunities that are hidden in
1372/// the original operand list.
1373///
1374/// Return true iff it appears that any interesting folding opportunities
1375/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1376/// the common case where no interesting opportunities are present, and
1377/// is also used as a check to avoid infinite recursion.
1378///
1379static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001380CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1381 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001382 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001383 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001384 const APInt &Scale,
1385 ScalarEvolution &SE) {
1386 bool Interesting = false;
1387
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001388 // Iterate over the add operands. They are sorted, with constants first.
1389 unsigned i = 0;
1390 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1391 ++i;
1392 // Pull a buried constant out to the outside.
1393 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1394 Interesting = true;
1395 AccumulatedConstant += Scale * C->getValue()->getValue();
1396 }
1397
1398 // Next comes everything else. We're especially interested in multiplies
1399 // here, but they're in the middle, so just visit the rest with one loop.
1400 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001401 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1402 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1403 APInt NewScale =
1404 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1405 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1406 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001407 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001408 Interesting |=
1409 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001410 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001411 NewScale, SE);
1412 } else {
1413 // A multiplication of a constant with some other value. Update
1414 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001415 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1416 const SCEV *Key = SE.getMulExpr(MulOps);
1417 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001418 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001419 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001420 NewOps.push_back(Pair.first->first);
1421 } else {
1422 Pair.first->second += NewScale;
1423 // The map already had an entry for this value, which may indicate
1424 // a folding opportunity.
1425 Interesting = true;
1426 }
1427 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001428 } else {
1429 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001430 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001431 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001432 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001433 NewOps.push_back(Pair.first->first);
1434 } else {
1435 Pair.first->second += Scale;
1436 // The map already had an entry for this value, which may indicate
1437 // a folding opportunity.
1438 Interesting = true;
1439 }
1440 }
1441 }
1442
1443 return Interesting;
1444}
1445
1446namespace {
1447 struct APIntCompare {
1448 bool operator()(const APInt &LHS, const APInt &RHS) const {
1449 return LHS.ult(RHS);
1450 }
1451 };
1452}
1453
Dan Gohman6c0866c2009-05-24 23:45:28 +00001454/// getAddExpr - Get a canonical add expression, or something simpler if
1455/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001456const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001457 SCEV::NoWrapFlags Flags) {
1458 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1459 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001460 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001461 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001462#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001463 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001464 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001465 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001466 "SCEVAddExpr operand types don't match!");
1467#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001468
Andrew Trick3228cc22011-03-14 16:50:06 +00001469 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001470 // And vice-versa.
1471 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1472 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1473 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001474 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001475 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1476 E = Ops.end(); I != E; ++I)
1477 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001478 All = false;
1479 break;
1480 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001481 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001482 }
1483
Chris Lattner53e677a2004-04-02 20:23:17 +00001484 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001485 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001486
1487 // If there are any constants, fold them together.
1488 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001489 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001490 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001491 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001492 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001493 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001494 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1495 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001496 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001497 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001498 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001499 }
1500
1501 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001502 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001503 Ops.erase(Ops.begin());
1504 --Idx;
1505 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001506
Dan Gohmanbca091d2010-04-12 23:08:18 +00001507 if (Ops.size() == 1) return Ops[0];
1508 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001509
Dan Gohman68ff7762010-08-27 21:39:59 +00001510 // Okay, check to see if the same value occurs in the operand list more than
1511 // once. If so, merge them together into an multiply expression. Since we
1512 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001513 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001514 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001515 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001516 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001517 // Scan ahead to count how many equal operands there are.
1518 unsigned Count = 2;
1519 while (i+Count != e && Ops[i+Count] == Ops[i])
1520 ++Count;
1521 // Merge the values into a multiply.
1522 const SCEV *Scale = getConstant(Ty, Count);
1523 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1524 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001525 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001526 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001527 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001528 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001529 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001530 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001531 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001532 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001533
Dan Gohman728c7f32009-05-08 21:03:19 +00001534 // Check for truncates. If all the operands are truncated from the same
1535 // type, see if factoring out the truncate would permit the result to be
1536 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1537 // if the contents of the resulting outer trunc fold to something simple.
1538 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1539 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001540 Type *DstType = Trunc->getType();
1541 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001542 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001543 bool Ok = true;
1544 // Check all the operands to see if they can be represented in the
1545 // source type of the truncate.
1546 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1547 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1548 if (T->getOperand()->getType() != SrcType) {
1549 Ok = false;
1550 break;
1551 }
1552 LargeOps.push_back(T->getOperand());
1553 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001554 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001555 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001556 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001557 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1558 if (const SCEVTruncateExpr *T =
1559 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1560 if (T->getOperand()->getType() != SrcType) {
1561 Ok = false;
1562 break;
1563 }
1564 LargeMulOps.push_back(T->getOperand());
1565 } else if (const SCEVConstant *C =
1566 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001567 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001568 } else {
1569 Ok = false;
1570 break;
1571 }
1572 }
1573 if (Ok)
1574 LargeOps.push_back(getMulExpr(LargeMulOps));
1575 } else {
1576 Ok = false;
1577 break;
1578 }
1579 }
1580 if (Ok) {
1581 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001582 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001583 // If it folds to something simple, use it. Otherwise, don't.
1584 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1585 return getTruncateExpr(Fold, DstType);
1586 }
1587 }
1588
1589 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001590 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1591 ++Idx;
1592
1593 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001594 if (Idx < Ops.size()) {
1595 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001596 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001597 // If we have an add, expand the add operands onto the end of the operands
1598 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001599 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001600 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001601 DeletedAdd = true;
1602 }
1603
1604 // If we deleted at least one add, we added operands to the end of the list,
1605 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001606 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001607 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001608 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001609 }
1610
1611 // Skip over the add expression until we get to a multiply.
1612 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1613 ++Idx;
1614
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001615 // Check to see if there are any folding opportunities present with
1616 // operands multiplied by constant values.
1617 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1618 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001619 DenseMap<const SCEV *, APInt> M;
1620 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001621 APInt AccumulatedConstant(BitWidth, 0);
1622 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001623 Ops.data(), Ops.size(),
1624 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001625 // Some interesting folding opportunity is present, so its worthwhile to
1626 // re-generate the operands list. Group the operands by constant scale,
1627 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001628 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001629 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001630 E = NewOps.end(); I != E; ++I)
1631 MulOpLists[M.find(*I)->second].push_back(*I);
1632 // Re-generate the operands list.
1633 Ops.clear();
1634 if (AccumulatedConstant != 0)
1635 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001636 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1637 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001638 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001639 Ops.push_back(getMulExpr(getConstant(I->first),
1640 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001641 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001642 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001643 if (Ops.size() == 1)
1644 return Ops[0];
1645 return getAddExpr(Ops);
1646 }
1647 }
1648
Chris Lattner53e677a2004-04-02 20:23:17 +00001649 // If we are adding something to a multiply expression, make sure the
1650 // something is not already an operand of the multiply. If so, merge it into
1651 // the multiply.
1652 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001653 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001654 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001655 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001656 if (isa<SCEVConstant>(MulOpSCEV))
1657 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001658 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001659 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001660 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001661 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001662 if (Mul->getNumOperands() != 2) {
1663 // If the multiply has more than two operands, we must get the
1664 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001665 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1666 Mul->op_begin()+MulOp);
1667 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001668 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001669 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001670 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001671 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001672 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001673 if (Ops.size() == 2) return OuterMul;
1674 if (AddOp < Idx) {
1675 Ops.erase(Ops.begin()+AddOp);
1676 Ops.erase(Ops.begin()+Idx-1);
1677 } else {
1678 Ops.erase(Ops.begin()+Idx);
1679 Ops.erase(Ops.begin()+AddOp-1);
1680 }
1681 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001682 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001683 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001684
Chris Lattner53e677a2004-04-02 20:23:17 +00001685 // Check this multiply against other multiplies being added together.
1686 for (unsigned OtherMulIdx = Idx+1;
1687 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1688 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001689 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001690 // If MulOp occurs in OtherMul, we can fold the two multiplies
1691 // together.
1692 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1693 OMulOp != e; ++OMulOp)
1694 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1695 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001696 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001697 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001698 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001699 Mul->op_begin()+MulOp);
1700 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001701 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001702 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001703 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001704 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001705 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001706 OtherMul->op_begin()+OMulOp);
1707 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001708 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001709 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001710 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1711 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001712 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001713 Ops.erase(Ops.begin()+Idx);
1714 Ops.erase(Ops.begin()+OtherMulIdx-1);
1715 Ops.push_back(OuterMul);
1716 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001717 }
1718 }
1719 }
1720 }
1721
1722 // If there are any add recurrences in the operands list, see if any other
1723 // added values are loop invariant. If so, we can fold them into the
1724 // recurrence.
1725 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1726 ++Idx;
1727
1728 // Scan over all recurrences, trying to fold loop invariants into them.
1729 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1730 // Scan all of the other operands to this add and add them to the vector if
1731 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001732 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001733 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001734 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001735 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001736 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001737 LIOps.push_back(Ops[i]);
1738 Ops.erase(Ops.begin()+i);
1739 --i; --e;
1740 }
1741
1742 // If we found some loop invariants, fold them into the recurrence.
1743 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001744 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001745 LIOps.push_back(AddRec->getStart());
1746
Dan Gohman0bba49c2009-07-07 17:06:11 +00001747 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001748 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001749 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001750
Dan Gohmanb9f96512010-06-30 07:16:37 +00001751 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001752 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001753 // Always propagate NW.
1754 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001755 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001756
Chris Lattner53e677a2004-04-02 20:23:17 +00001757 // If all of the other operands were loop invariant, we are done.
1758 if (Ops.size() == 1) return NewRec;
1759
Nick Lewycky980e9f32011-09-06 05:08:09 +00001760 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001761 for (unsigned i = 0;; ++i)
1762 if (Ops[i] == AddRec) {
1763 Ops[i] = NewRec;
1764 break;
1765 }
Dan Gohman246b2562007-10-22 18:31:58 +00001766 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001767 }
1768
1769 // Okay, if there weren't any loop invariants to be folded, check to see if
1770 // there are multiple AddRec's with the same loop induction variable being
1771 // added together. If so, we can fold them.
1772 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001773 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1774 ++OtherIdx)
1775 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1776 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1777 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1778 AddRec->op_end());
1779 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1780 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001781 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001782 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001783 if (OtherAddRec->getLoop() == AddRecLoop) {
1784 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1785 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001786 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001787 AddRecOps.append(OtherAddRec->op_begin()+i,
1788 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001789 break;
1790 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001791 AddRecOps[i] = getAddExpr(AddRecOps[i],
1792 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001793 }
1794 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001795 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001796 // Step size has changed, so we cannot guarantee no self-wraparound.
1797 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001798 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001799 }
1800
1801 // Otherwise couldn't fold anything into this recurrence. Move onto the
1802 // next one.
1803 }
1804
1805 // Okay, it looks like we really DO need an add expr. Check to see if we
1806 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001807 FoldingSetNodeID ID;
1808 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001809 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1810 ID.AddPointer(Ops[i]);
1811 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001812 SCEVAddExpr *S =
1813 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1814 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001815 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1816 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001817 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1818 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001819 UniqueSCEVs.InsertNode(S, IP);
1820 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001821 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001822 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001823}
1824
Nick Lewyckye97728e2011-10-04 06:51:26 +00001825static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1826 uint64_t k = i*j;
1827 if (j > 1 && k / j != i) Overflow = true;
1828 return k;
1829}
1830
1831/// Compute the result of "n choose k", the binomial coefficient. If an
1832/// intermediate computation overflows, Overflow will be set and the return will
1833/// be garbage. Overflow is not cleared on absense of overflow.
1834static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1835 // We use the multiplicative formula:
1836 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1837 // At each iteration, we take the n-th term of the numeral and divide by the
1838 // (k-n)th term of the denominator. This division will always produce an
1839 // integral result, and helps reduce the chance of overflow in the
1840 // intermediate computations. However, we can still overflow even when the
1841 // final result would fit.
1842
1843 if (n == 0 || n == k) return 1;
1844 if (k > n) return 0;
1845
1846 if (k > n/2)
1847 k = n-k;
1848
1849 uint64_t r = 1;
1850 for (uint64_t i = 1; i <= k; ++i) {
1851 r = umul_ov(r, n-(i-1), Overflow);
1852 r /= i;
1853 }
1854 return r;
1855}
1856
Dan Gohman6c0866c2009-05-24 23:45:28 +00001857/// getMulExpr - Get a canonical multiply expression, or something simpler if
1858/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001859const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001860 SCEV::NoWrapFlags Flags) {
1861 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1862 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001863 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001864 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001865#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001866 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001867 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001868 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001869 "SCEVMulExpr operand types don't match!");
1870#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001871
Andrew Trick3228cc22011-03-14 16:50:06 +00001872 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001873 // And vice-versa.
1874 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1875 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1876 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001877 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001878 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1879 E = Ops.end(); I != E; ++I)
1880 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001881 All = false;
1882 break;
1883 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001884 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001885 }
1886
Chris Lattner53e677a2004-04-02 20:23:17 +00001887 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001888 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001889
1890 // If there are any constants, fold them together.
1891 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001892 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001893
1894 // C1*(C2+V) -> C1*C2 + C1*V
1895 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001896 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001897 if (Add->getNumOperands() == 2 &&
1898 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001899 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1900 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001901
Chris Lattner53e677a2004-04-02 20:23:17 +00001902 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001903 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001904 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001905 ConstantInt *Fold = ConstantInt::get(getContext(),
1906 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001907 RHSC->getValue()->getValue());
1908 Ops[0] = getConstant(Fold);
1909 Ops.erase(Ops.begin()+1); // Erase the folded element
1910 if (Ops.size() == 1) return Ops[0];
1911 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001912 }
1913
1914 // If we are left with a constant one being multiplied, strip it off.
1915 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1916 Ops.erase(Ops.begin());
1917 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001918 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001919 // If we have a multiply of zero, it will always be zero.
1920 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001921 } else if (Ops[0]->isAllOnesValue()) {
1922 // If we have a mul by -1 of an add, try distributing the -1 among the
1923 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001924 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001925 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1926 SmallVector<const SCEV *, 4> NewOps;
1927 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001928 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1929 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001930 const SCEV *Mul = getMulExpr(Ops[0], *I);
1931 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1932 NewOps.push_back(Mul);
1933 }
1934 if (AnyFolded)
1935 return getAddExpr(NewOps);
1936 }
Andrew Tricka053b212011-03-14 17:38:54 +00001937 else if (const SCEVAddRecExpr *
1938 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1939 // Negation preserves a recurrence's no self-wrap property.
1940 SmallVector<const SCEV *, 4> Operands;
1941 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1942 E = AddRec->op_end(); I != E; ++I) {
1943 Operands.push_back(getMulExpr(Ops[0], *I));
1944 }
1945 return getAddRecExpr(Operands, AddRec->getLoop(),
1946 AddRec->getNoWrapFlags(SCEV::FlagNW));
1947 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001948 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001949 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001950
1951 if (Ops.size() == 1)
1952 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001953 }
1954
1955 // Skip over the add expression until we get to a multiply.
1956 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1957 ++Idx;
1958
Chris Lattner53e677a2004-04-02 20:23:17 +00001959 // If there are mul operands inline them all into this expression.
1960 if (Idx < Ops.size()) {
1961 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001962 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001963 // If we have an mul, expand the mul operands onto the end of the operands
1964 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001965 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001966 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001967 DeletedMul = true;
1968 }
1969
1970 // If we deleted at least one mul, we added operands to the end of the list,
1971 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001972 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001973 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001974 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001975 }
1976
1977 // If there are any add recurrences in the operands list, see if any other
1978 // added values are loop invariant. If so, we can fold them into the
1979 // recurrence.
1980 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1981 ++Idx;
1982
1983 // Scan over all recurrences, trying to fold loop invariants into them.
1984 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1985 // Scan all of the other operands to this mul and add them to the vector if
1986 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001987 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001988 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001989 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001990 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001991 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001992 LIOps.push_back(Ops[i]);
1993 Ops.erase(Ops.begin()+i);
1994 --i; --e;
1995 }
1996
1997 // If we found some loop invariants, fold them into the recurrence.
1998 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001999 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00002000 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00002001 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00002002 const SCEV *Scale = getMulExpr(LIOps);
2003 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2004 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00002005
Dan Gohmanb9f96512010-06-30 07:16:37 +00002006 // Build the new addrec. Propagate the NUW and NSW flags if both the
2007 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00002008 //
2009 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002010 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00002011 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2012 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002013
2014 // If all of the other operands were loop invariant, we are done.
2015 if (Ops.size() == 1) return NewRec;
2016
Nick Lewycky980e9f32011-09-06 05:08:09 +00002017 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00002018 for (unsigned i = 0;; ++i)
2019 if (Ops[i] == AddRec) {
2020 Ops[i] = NewRec;
2021 break;
2022 }
Dan Gohman246b2562007-10-22 18:31:58 +00002023 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002024 }
2025
2026 // Okay, if there weren't any loop invariants to be folded, check to see if
2027 // there are multiple AddRec's with the same loop induction variable being
2028 // multiplied together. If so, we can fold them.
2029 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002030 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002031 ++OtherIdx) {
Dan Gohman6a0c1252010-08-31 22:52:12 +00002032 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
Nick Lewyckye97728e2011-10-04 06:51:26 +00002033 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2034 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2035 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2036 // ]]],+,...up to x=2n}.
2037 // Note that the arguments to choose() are always integers with values
2038 // known at compile time, never SCEV objects.
Nick Lewycky28682ae2011-09-06 05:33:18 +00002039 //
Nick Lewyckye97728e2011-10-04 06:51:26 +00002040 // The implementation avoids pointless extra computations when the two
2041 // addrec's are of different length (mathematically, it's equivalent to
2042 // an infinite stream of zeros on the right).
2043 bool OpsModified = false;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002044 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2045 ++OtherIdx)
2046 if (const SCEVAddRecExpr *OtherAddRec =
2047 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2048 if (OtherAddRec->getLoop() == AddRecLoop) {
Nick Lewyckye97728e2011-10-04 06:51:26 +00002049 bool Overflow = false;
2050 Type *Ty = AddRec->getType();
2051 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2052 SmallVector<const SCEV*, 7> AddRecOps;
2053 for (int x = 0, xe = AddRec->getNumOperands() +
2054 OtherAddRec->getNumOperands() - 1;
2055 x != xe && !Overflow; ++x) {
2056 const SCEV *Term = getConstant(Ty, 0);
2057 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2058 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2059 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2060 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2061 z < ze && !Overflow; ++z) {
2062 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2063 uint64_t Coeff;
2064 if (LargerThan64Bits)
2065 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2066 else
2067 Coeff = Coeff1*Coeff2;
2068 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2069 const SCEV *Term1 = AddRec->getOperand(y-z);
2070 const SCEV *Term2 = OtherAddRec->getOperand(z);
2071 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2072 }
2073 }
2074 AddRecOps.push_back(Term);
2075 }
2076 if (!Overflow) {
Nick Lewyckyc103a082011-09-06 21:42:18 +00002077 const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
2078 AddRec->getLoop(),
2079 SCEV::FlagAnyWrap);
2080 if (Ops.size() == 2) return NewAddRec;
2081 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
2082 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Nick Lewyckye97728e2011-10-04 06:51:26 +00002083 OpsModified = true;
Nick Lewyckyc103a082011-09-06 21:42:18 +00002084 }
Dan Gohman6a0c1252010-08-31 22:52:12 +00002085 }
Nick Lewyckye97728e2011-10-04 06:51:26 +00002086 if (OpsModified)
Nick Lewyckyc103a082011-09-06 21:42:18 +00002087 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002088 }
Nick Lewyckyc103a082011-09-06 21:42:18 +00002089 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002090
2091 // Otherwise couldn't fold anything into this recurrence. Move onto the
2092 // next one.
2093 }
2094
2095 // Okay, it looks like we really DO need an mul expr. Check to see if we
2096 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002097 FoldingSetNodeID ID;
2098 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002099 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2100 ID.AddPointer(Ops[i]);
2101 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002102 SCEVMulExpr *S =
2103 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2104 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002105 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2106 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002107 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2108 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002109 UniqueSCEVs.InsertNode(S, IP);
2110 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002111 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002112 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002113}
2114
Andreas Bolka8a11c982009-08-07 22:55:26 +00002115/// getUDivExpr - Get a canonical unsigned division expression, or something
2116/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002117const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2118 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002119 assert(getEffectiveSCEVType(LHS->getType()) ==
2120 getEffectiveSCEVType(RHS->getType()) &&
2121 "SCEVUDivExpr operand types don't match!");
2122
Dan Gohman622ed672009-05-04 22:02:23 +00002123 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002124 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002125 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002126 // If the denominator is zero, the result of the udiv is undefined. Don't
2127 // try to analyze it, because the resolution chosen here may differ from
2128 // the resolution chosen in other parts of the compiler.
2129 if (!RHSC->getValue()->isZero()) {
2130 // Determine if the division can be folded into the operands of
2131 // its operands.
2132 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002133 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002134 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002135 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002136 // For non-power-of-two values, effectively round the value up to the
2137 // nearest power of two.
2138 if (!RHSC->getValue()->getValue().isPowerOf2())
2139 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002140 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002141 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002142 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2143 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002144 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2145 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2146 const APInt &StepInt = Step->getValue()->getValue();
2147 const APInt &DivInt = RHSC->getValue()->getValue();
2148 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002149 getZeroExtendExpr(AR, ExtTy) ==
2150 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2151 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002152 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002153 SmallVector<const SCEV *, 4> Operands;
2154 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2155 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002156 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002157 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002158 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002159 /// Get a canonical UDivExpr for a recurrence.
2160 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2161 // We can currently only fold X%N if X is constant.
2162 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2163 if (StartC && !DivInt.urem(StepInt) &&
2164 getZeroExtendExpr(AR, ExtTy) ==
2165 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2166 getZeroExtendExpr(Step, ExtTy),
2167 AR->getLoop(), SCEV::FlagAnyWrap)) {
2168 const APInt &StartInt = StartC->getValue()->getValue();
2169 const APInt &StartRem = StartInt.urem(StepInt);
2170 if (StartRem != 0)
2171 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2172 AR->getLoop(), SCEV::FlagNW);
2173 }
2174 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002175 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2176 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2177 SmallVector<const SCEV *, 4> Operands;
2178 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2179 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2180 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2181 // Find an operand that's safely divisible.
2182 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2183 const SCEV *Op = M->getOperand(i);
2184 const SCEV *Div = getUDivExpr(Op, RHSC);
2185 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2186 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2187 M->op_end());
2188 Operands[i] = Div;
2189 return getMulExpr(Operands);
2190 }
2191 }
Dan Gohman185cf032009-05-08 20:18:49 +00002192 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002193 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002194 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002195 SmallVector<const SCEV *, 4> Operands;
2196 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2197 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2198 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2199 Operands.clear();
2200 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2201 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2202 if (isa<SCEVUDivExpr>(Op) ||
2203 getMulExpr(Op, RHS) != A->getOperand(i))
2204 break;
2205 Operands.push_back(Op);
2206 }
2207 if (Operands.size() == A->getNumOperands())
2208 return getAddExpr(Operands);
2209 }
2210 }
Dan Gohman185cf032009-05-08 20:18:49 +00002211
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002212 // Fold if both operands are constant.
2213 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2214 Constant *LHSCV = LHSC->getValue();
2215 Constant *RHSCV = RHSC->getValue();
2216 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2217 RHSCV)));
2218 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002219 }
2220 }
2221
Dan Gohman1c343752009-06-27 21:21:31 +00002222 FoldingSetNodeID ID;
2223 ID.AddInteger(scUDivExpr);
2224 ID.AddPointer(LHS);
2225 ID.AddPointer(RHS);
2226 void *IP = 0;
2227 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002228 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2229 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002230 UniqueSCEVs.InsertNode(S, IP);
2231 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002232}
2233
2234
Dan Gohman6c0866c2009-05-24 23:45:28 +00002235/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2236/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002237const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2238 const Loop *L,
2239 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002240 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002241 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002242 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002243 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002244 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002245 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002246 }
2247
2248 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002249 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002250}
2251
Dan Gohman6c0866c2009-05-24 23:45:28 +00002252/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2253/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002254const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002255ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002256 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002257 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002258#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002259 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002260 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002261 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002262 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002263 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002264 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002265 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002266#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002267
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002268 if (Operands.back()->isZero()) {
2269 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002270 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002271 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002272
Dan Gohmanbc028532010-02-19 18:49:22 +00002273 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2274 // use that information to infer NUW and NSW flags. However, computing a
2275 // BE count requires calling getAddRecExpr, so we may not yet have a
2276 // meaningful BE count at this point (and if we don't, we'd be stuck
2277 // with a SCEVCouldNotCompute as the cached BE count).
2278
Andrew Trick3228cc22011-03-14 16:50:06 +00002279 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002280 // And vice-versa.
2281 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2282 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2283 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002284 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002285 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2286 E = Operands.end(); I != E; ++I)
2287 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002288 All = false;
2289 break;
2290 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002291 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002292 }
2293
Dan Gohmand9cc7492008-08-08 18:33:12 +00002294 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002295 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002296 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002297 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002298 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002299 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002300 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002301 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002302 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002303 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002304 // AddRecs require their operands be loop-invariant with respect to their
2305 // loops. Don't perform this transformation if it would break this
2306 // requirement.
2307 bool AllInvariant = true;
2308 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002309 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002310 AllInvariant = false;
2311 break;
2312 }
2313 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002314 // Create a recurrence for the outer loop with the same step size.
2315 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002316 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2317 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002318 SCEV::NoWrapFlags OuterFlags =
2319 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002320
2321 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002322 AllInvariant = true;
2323 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002324 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002325 AllInvariant = false;
2326 break;
2327 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002328 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002329 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002330 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002331 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2332 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002333 SCEV::NoWrapFlags InnerFlags =
2334 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002335 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2336 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002337 }
2338 // Reset Operands to its original state.
2339 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002340 }
2341 }
2342
Dan Gohman67847532010-01-19 22:27:22 +00002343 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2344 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002345 FoldingSetNodeID ID;
2346 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002347 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2348 ID.AddPointer(Operands[i]);
2349 ID.AddPointer(L);
2350 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002351 SCEVAddRecExpr *S =
2352 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2353 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002354 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2355 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002356 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2357 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002358 UniqueSCEVs.InsertNode(S, IP);
2359 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002360 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002361 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002362}
2363
Dan Gohman9311ef62009-06-24 14:49:00 +00002364const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2365 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002366 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002367 Ops.push_back(LHS);
2368 Ops.push_back(RHS);
2369 return getSMaxExpr(Ops);
2370}
2371
Dan Gohman0bba49c2009-07-07 17:06:11 +00002372const SCEV *
2373ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002374 assert(!Ops.empty() && "Cannot get empty smax!");
2375 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002376#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002377 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002378 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002379 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002380 "SCEVSMaxExpr operand types don't match!");
2381#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002382
2383 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002384 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002385
2386 // If there are any constants, fold them together.
2387 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002388 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002389 ++Idx;
2390 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002391 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002392 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002393 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002394 APIntOps::smax(LHSC->getValue()->getValue(),
2395 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002396 Ops[0] = getConstant(Fold);
2397 Ops.erase(Ops.begin()+1); // Erase the folded element
2398 if (Ops.size() == 1) return Ops[0];
2399 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002400 }
2401
Dan Gohmane5aceed2009-06-24 14:46:22 +00002402 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002403 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2404 Ops.erase(Ops.begin());
2405 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002406 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2407 // If we have an smax with a constant maximum-int, it will always be
2408 // maximum-int.
2409 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002410 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002411
Dan Gohman3ab13122010-04-13 16:49:23 +00002412 if (Ops.size() == 1) return Ops[0];
2413 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002414
2415 // Find the first SMax
2416 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2417 ++Idx;
2418
2419 // Check to see if one of the operands is an SMax. If so, expand its operands
2420 // onto our operand list, and recurse to simplify.
2421 if (Idx < Ops.size()) {
2422 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002423 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002424 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002425 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002426 DeletedSMax = true;
2427 }
2428
2429 if (DeletedSMax)
2430 return getSMaxExpr(Ops);
2431 }
2432
2433 // Okay, check to see if the same value occurs in the operand list twice. If
2434 // so, delete one. Since we sorted the list, these values are required to
2435 // be adjacent.
2436 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002437 // X smax Y smax Y --> X smax Y
2438 // X smax Y --> X, if X is always greater than Y
2439 if (Ops[i] == Ops[i+1] ||
2440 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2441 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2442 --i; --e;
2443 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002444 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2445 --i; --e;
2446 }
2447
2448 if (Ops.size() == 1) return Ops[0];
2449
2450 assert(!Ops.empty() && "Reduced smax down to nothing!");
2451
Nick Lewycky3e630762008-02-20 06:48:22 +00002452 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002453 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002454 FoldingSetNodeID ID;
2455 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002456 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2457 ID.AddPointer(Ops[i]);
2458 void *IP = 0;
2459 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002460 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2461 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002462 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2463 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002464 UniqueSCEVs.InsertNode(S, IP);
2465 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002466}
2467
Dan Gohman9311ef62009-06-24 14:49:00 +00002468const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2469 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002470 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002471 Ops.push_back(LHS);
2472 Ops.push_back(RHS);
2473 return getUMaxExpr(Ops);
2474}
2475
Dan Gohman0bba49c2009-07-07 17:06:11 +00002476const SCEV *
2477ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002478 assert(!Ops.empty() && "Cannot get empty umax!");
2479 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002480#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002481 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002482 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002483 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002484 "SCEVUMaxExpr operand types don't match!");
2485#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002486
2487 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002488 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002489
2490 // If there are any constants, fold them together.
2491 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002492 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002493 ++Idx;
2494 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002495 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002496 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002497 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002498 APIntOps::umax(LHSC->getValue()->getValue(),
2499 RHSC->getValue()->getValue()));
2500 Ops[0] = getConstant(Fold);
2501 Ops.erase(Ops.begin()+1); // Erase the folded element
2502 if (Ops.size() == 1) return Ops[0];
2503 LHSC = cast<SCEVConstant>(Ops[0]);
2504 }
2505
Dan Gohmane5aceed2009-06-24 14:46:22 +00002506 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002507 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2508 Ops.erase(Ops.begin());
2509 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002510 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2511 // If we have an umax with a constant maximum-int, it will always be
2512 // maximum-int.
2513 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002514 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002515
Dan Gohman3ab13122010-04-13 16:49:23 +00002516 if (Ops.size() == 1) return Ops[0];
2517 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002518
2519 // Find the first UMax
2520 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2521 ++Idx;
2522
2523 // Check to see if one of the operands is a UMax. If so, expand its operands
2524 // onto our operand list, and recurse to simplify.
2525 if (Idx < Ops.size()) {
2526 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002527 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002528 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002529 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002530 DeletedUMax = true;
2531 }
2532
2533 if (DeletedUMax)
2534 return getUMaxExpr(Ops);
2535 }
2536
2537 // Okay, check to see if the same value occurs in the operand list twice. If
2538 // so, delete one. Since we sorted the list, these values are required to
2539 // be adjacent.
2540 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002541 // X umax Y umax Y --> X umax Y
2542 // X umax Y --> X, if X is always greater than Y
2543 if (Ops[i] == Ops[i+1] ||
2544 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2545 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2546 --i; --e;
2547 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002548 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2549 --i; --e;
2550 }
2551
2552 if (Ops.size() == 1) return Ops[0];
2553
2554 assert(!Ops.empty() && "Reduced umax down to nothing!");
2555
2556 // Okay, it looks like we really DO need a umax expr. Check to see if we
2557 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002558 FoldingSetNodeID ID;
2559 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002560 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2561 ID.AddPointer(Ops[i]);
2562 void *IP = 0;
2563 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002564 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2565 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002566 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2567 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002568 UniqueSCEVs.InsertNode(S, IP);
2569 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002570}
2571
Dan Gohman9311ef62009-06-24 14:49:00 +00002572const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2573 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002574 // ~smax(~x, ~y) == smin(x, y).
2575 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2576}
2577
Dan Gohman9311ef62009-06-24 14:49:00 +00002578const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2579 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002580 // ~umax(~x, ~y) == umin(x, y)
2581 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2582}
2583
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002584const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002585 // If we have TargetData, we can bypass creating a target-independent
2586 // constant expression and then folding it back into a ConstantInt.
2587 // This is just a compile-time optimization.
2588 if (TD)
2589 return getConstant(TD->getIntPtrType(getContext()),
2590 TD->getTypeAllocSize(AllocTy));
2591
Dan Gohman4f8eea82010-02-01 18:27:38 +00002592 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2593 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002594 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2595 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002596 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002597 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2598}
2599
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002600const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002601 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2602 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002603 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2604 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002605 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002606 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2607}
2608
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002609const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002610 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002611 // If we have TargetData, we can bypass creating a target-independent
2612 // constant expression and then folding it back into a ConstantInt.
2613 // This is just a compile-time optimization.
2614 if (TD)
2615 return getConstant(TD->getIntPtrType(getContext()),
2616 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2617
Dan Gohman0f5efe52010-01-28 02:15:55 +00002618 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2619 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002620 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2621 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002622 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002623 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002624}
2625
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002626const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002627 Constant *FieldNo) {
2628 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002629 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002630 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2631 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002632 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002633 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002634}
2635
Dan Gohman0bba49c2009-07-07 17:06:11 +00002636const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002637 // Don't attempt to do anything other than create a SCEVUnknown object
2638 // here. createSCEV only calls getUnknown after checking for all other
2639 // interesting possibilities, and any other code that calls getUnknown
2640 // is doing so in order to hide a value from SCEV canonicalization.
2641
Dan Gohman1c343752009-06-27 21:21:31 +00002642 FoldingSetNodeID ID;
2643 ID.AddInteger(scUnknown);
2644 ID.AddPointer(V);
2645 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002646 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2647 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2648 "Stale SCEVUnknown in uniquing map!");
2649 return S;
2650 }
2651 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2652 FirstUnknown);
2653 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002654 UniqueSCEVs.InsertNode(S, IP);
2655 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002656}
2657
Chris Lattner53e677a2004-04-02 20:23:17 +00002658//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002659// Basic SCEV Analysis and PHI Idiom Recognition Code
2660//
2661
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002662/// isSCEVable - Test if values of the given type are analyzable within
2663/// the SCEV framework. This primarily includes integer types, and it
2664/// can optionally include pointer types if the ScalarEvolution class
2665/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002666bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002667 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002668 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002669}
2670
2671/// getTypeSizeInBits - Return the size in bits of the specified type,
2672/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002673uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002674 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2675
2676 // If we have a TargetData, use it!
2677 if (TD)
2678 return TD->getTypeSizeInBits(Ty);
2679
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002680 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002681 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002682 return Ty->getPrimitiveSizeInBits();
2683
2684 // The only other support type is pointer. Without TargetData, conservatively
2685 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002686 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002687 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002688}
2689
2690/// getEffectiveSCEVType - Return a type with the same bitwidth as
2691/// the given type and which represents how SCEV will treat the given
2692/// type, for which isSCEVable must return true. For pointer types,
2693/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002694Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002695 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2696
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002697 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002698 return Ty;
2699
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002700 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002701 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002702 if (TD) return TD->getIntPtrType(getContext());
2703
2704 // Without TargetData, conservatively assume pointers are 64-bit.
2705 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002706}
Chris Lattner53e677a2004-04-02 20:23:17 +00002707
Dan Gohman0bba49c2009-07-07 17:06:11 +00002708const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002709 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002710}
2711
Chris Lattner53e677a2004-04-02 20:23:17 +00002712/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2713/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002714const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002715 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002716
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002717 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2718 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002719 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002720
2721 // The process of creating a SCEV for V may have caused other SCEVs
2722 // to have been created, so it's necessary to insert the new entry
2723 // from scratch, rather than trying to remember the insert position
2724 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002725 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002726 return S;
2727}
2728
Dan Gohman2d1be872009-04-16 03:18:22 +00002729/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2730///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002731const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002732 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002733 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002734 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002735
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002736 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002737 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002738 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002739 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002740}
2741
2742/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002743const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002744 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002745 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002746 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002747
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002748 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002749 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002750 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002751 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002752 return getMinusSCEV(AllOnes, V);
2753}
2754
Andrew Trick3228cc22011-03-14 16:50:06 +00002755/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002756const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002757 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002758 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2759
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002760 // Fast path: X - X --> 0.
2761 if (LHS == RHS)
2762 return getConstant(LHS->getType(), 0);
2763
Dan Gohman2d1be872009-04-16 03:18:22 +00002764 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002765 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002766}
2767
2768/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2769/// input value to the specified type. If the type must be extended, it is zero
2770/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002771const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002772ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2773 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002774 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2775 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002776 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002777 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002778 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002779 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002780 return getTruncateExpr(V, Ty);
2781 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002782}
2783
2784/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2785/// input value to the specified type. If the type must be extended, it is sign
2786/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002787const SCEV *
2788ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002789 Type *Ty) {
2790 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002791 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2792 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002793 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002794 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002795 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002796 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002797 return getTruncateExpr(V, Ty);
2798 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002799}
2800
Dan Gohman467c4302009-05-13 03:46:30 +00002801/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2802/// input value to the specified type. If the type must be extended, it is zero
2803/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002804const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002805ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2806 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002807 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2808 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002809 "Cannot noop or zero extend with non-integer arguments!");
2810 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2811 "getNoopOrZeroExtend cannot truncate!");
2812 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2813 return V; // No conversion
2814 return getZeroExtendExpr(V, Ty);
2815}
2816
2817/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2818/// input value to the specified type. If the type must be extended, it is sign
2819/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002820const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002821ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2822 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002823 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2824 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002825 "Cannot noop or sign extend with non-integer arguments!");
2826 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2827 "getNoopOrSignExtend cannot truncate!");
2828 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2829 return V; // No conversion
2830 return getSignExtendExpr(V, Ty);
2831}
2832
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002833/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2834/// the input value to the specified type. If the type must be extended,
2835/// it is extended with unspecified bits. The conversion must not be
2836/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002837const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002838ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2839 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002840 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2841 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002842 "Cannot noop or any extend with non-integer arguments!");
2843 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2844 "getNoopOrAnyExtend cannot truncate!");
2845 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2846 return V; // No conversion
2847 return getAnyExtendExpr(V, Ty);
2848}
2849
Dan Gohman467c4302009-05-13 03:46:30 +00002850/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2851/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002852const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002853ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2854 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002855 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2856 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002857 "Cannot truncate or noop with non-integer arguments!");
2858 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2859 "getTruncateOrNoop cannot extend!");
2860 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2861 return V; // No conversion
2862 return getTruncateExpr(V, Ty);
2863}
2864
Dan Gohmana334aa72009-06-22 00:31:57 +00002865/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2866/// the types using zero-extension, and then perform a umax operation
2867/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002868const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2869 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002870 const SCEV *PromotedLHS = LHS;
2871 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002872
2873 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2874 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2875 else
2876 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2877
2878 return getUMaxExpr(PromotedLHS, PromotedRHS);
2879}
2880
Dan Gohmanc9759e82009-06-22 15:03:27 +00002881/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2882/// the types using zero-extension, and then perform a umin operation
2883/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002884const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2885 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002886 const SCEV *PromotedLHS = LHS;
2887 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002888
2889 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2890 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2891 else
2892 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2893
2894 return getUMinExpr(PromotedLHS, PromotedRHS);
2895}
2896
Andrew Trickb12a7542011-03-17 23:51:11 +00002897/// getPointerBase - Transitively follow the chain of pointer-type operands
2898/// until reaching a SCEV that does not have a single pointer operand. This
2899/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2900/// but corner cases do exist.
2901const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2902 // A pointer operand may evaluate to a nonpointer expression, such as null.
2903 if (!V->getType()->isPointerTy())
2904 return V;
2905
2906 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2907 return getPointerBase(Cast->getOperand());
2908 }
2909 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2910 const SCEV *PtrOp = 0;
2911 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2912 I != E; ++I) {
2913 if ((*I)->getType()->isPointerTy()) {
2914 // Cannot find the base of an expression with multiple pointer operands.
2915 if (PtrOp)
2916 return V;
2917 PtrOp = *I;
2918 }
2919 }
2920 if (!PtrOp)
2921 return V;
2922 return getPointerBase(PtrOp);
2923 }
2924 return V;
2925}
2926
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002927/// PushDefUseChildren - Push users of the given Instruction
2928/// onto the given Worklist.
2929static void
2930PushDefUseChildren(Instruction *I,
2931 SmallVectorImpl<Instruction *> &Worklist) {
2932 // Push the def-use children onto the Worklist stack.
2933 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2934 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002935 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002936}
2937
2938/// ForgetSymbolicValue - This looks up computed SCEV values for all
2939/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002940/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002941/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002942void
Dan Gohman85669632010-02-25 06:57:05 +00002943ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002944 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002945 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002946
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002947 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002948 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002949 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002950 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002951 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002952
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002953 ValueExprMapType::iterator It =
2954 ValueExprMap.find(static_cast<Value *>(I));
2955 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002956 const SCEV *Old = It->second;
2957
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002958 // Short-circuit the def-use traversal if the symbolic name
2959 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002960 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002961 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002962
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002963 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002964 // structure, it's a PHI that's in the progress of being computed
2965 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2966 // additional loop trip count information isn't going to change anything.
2967 // In the second case, createNodeForPHI will perform the necessary
2968 // updates on its own when it gets to that point. In the third, we do
2969 // want to forget the SCEVUnknown.
2970 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002971 !isa<SCEVUnknown>(Old) ||
2972 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002973 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002974 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002975 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002976 }
2977
2978 PushDefUseChildren(I, Worklist);
2979 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002980}
Chris Lattner53e677a2004-04-02 20:23:17 +00002981
2982/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2983/// a loop header, making it a potential recurrence, or it doesn't.
2984///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002985const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002986 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2987 if (L->getHeader() == PN->getParent()) {
2988 // The loop may have multiple entrances or multiple exits; we can analyze
2989 // this phi as an addrec if it has a unique entry value and a unique
2990 // backedge value.
2991 Value *BEValueV = 0, *StartValueV = 0;
2992 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2993 Value *V = PN->getIncomingValue(i);
2994 if (L->contains(PN->getIncomingBlock(i))) {
2995 if (!BEValueV) {
2996 BEValueV = V;
2997 } else if (BEValueV != V) {
2998 BEValueV = 0;
2999 break;
3000 }
3001 } else if (!StartValueV) {
3002 StartValueV = V;
3003 } else if (StartValueV != V) {
3004 StartValueV = 0;
3005 break;
3006 }
3007 }
3008 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003009 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003010 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003011 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003012 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003013 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00003014
3015 // Using this symbolic name for the PHI, analyze the value coming around
3016 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003017 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00003018
3019 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3020 // has a special value for the first iteration of the loop.
3021
3022 // If the value coming around the backedge is an add with the symbolic
3023 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00003024 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003025 // If there is a single occurrence of the symbolic value, replace it
3026 // with a recurrence.
3027 unsigned FoundIndex = Add->getNumOperands();
3028 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3029 if (Add->getOperand(i) == SymbolicName)
3030 if (FoundIndex == e) {
3031 FoundIndex = i;
3032 break;
3033 }
3034
3035 if (FoundIndex != Add->getNumOperands()) {
3036 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003037 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00003038 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3039 if (i != FoundIndex)
3040 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00003041 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00003042
3043 // This is not a valid addrec if the step amount is varying each
3044 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003045 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00003046 (isa<SCEVAddRecExpr>(Accum) &&
3047 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003048 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00003049
3050 // If the increment doesn't overflow, then neither the addrec nor
3051 // the post-increment will overflow.
3052 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3053 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003054 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003055 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003056 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00003057 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00003058 dyn_cast<GEPOperator>(BEValueV)) {
3059 // If the increment is an inbounds GEP, then we know the address
3060 // space cannot be wrapped around. We cannot make any guarantee
3061 // about signed or unsigned overflow because pointers are
3062 // unsigned but we may have a negative index from the base
3063 // pointer.
3064 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00003065 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003066 }
3067
Dan Gohman27dead42010-04-12 07:49:36 +00003068 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00003069 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00003070
Dan Gohmana10756e2010-01-21 02:09:26 +00003071 // Since the no-wrap flags are on the increment, they apply to the
3072 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003073 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003074 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003075 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003076
3077 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003078 // to be symbolic. We now need to go back and purge all of the
3079 // entries for the scalars that use the symbolic expression.
3080 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003081 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003082 return PHISCEV;
3083 }
3084 }
Dan Gohman622ed672009-05-04 22:02:23 +00003085 } else if (const SCEVAddRecExpr *AddRec =
3086 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003087 // Otherwise, this could be a loop like this:
3088 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3089 // In this case, j = {1,+,1} and BEValue is j.
3090 // Because the other in-value of i (0) fits the evolution of BEValue
3091 // i really is an addrec evolution.
3092 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003093 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003094
3095 // If StartVal = j.start - j.stride, we can use StartVal as the
3096 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003097 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003098 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003099 // FIXME: For constant StartVal, we should be able to infer
3100 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003101 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003102 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3103 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003104
3105 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003106 // to be symbolic. We now need to go back and purge all of the
3107 // entries for the scalars that use the symbolic expression.
3108 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003109 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003110 return PHISCEV;
3111 }
3112 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003113 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003114 }
Dan Gohman27dead42010-04-12 07:49:36 +00003115 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003116
Dan Gohman85669632010-02-25 06:57:05 +00003117 // If the PHI has a single incoming value, follow that value, unless the
3118 // PHI's incoming blocks are in a different loop, in which case doing so
3119 // risks breaking LCSSA form. Instcombine would normally zap these, but
3120 // it doesn't have DominatorTree information, so it may miss cases.
Chad Rosier618c1db2011-12-01 03:08:23 +00003121 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003122 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003123 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003124
Chris Lattner53e677a2004-04-02 20:23:17 +00003125 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003126 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003127}
3128
Dan Gohman26466c02009-05-08 20:26:55 +00003129/// createNodeForGEP - Expand GEP instructions into add and multiply
3130/// operations. This allows them to be analyzed by regular SCEV code.
3131///
Dan Gohmand281ed22009-12-18 02:09:29 +00003132const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003133
Dan Gohmanb9f96512010-06-30 07:16:37 +00003134 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3135 // Add expression, because the Instruction may be guarded by control flow
3136 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003137 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003138 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003139
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003140 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003141 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003142 // Don't attempt to analyze GEPs over unsized objects.
3143 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3144 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003145 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003146 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003147 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003148 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003149 I != E; ++I) {
3150 Value *Index = *I;
3151 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003152 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003153 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003154 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00003155 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3156
Dan Gohmanb9f96512010-06-30 07:16:37 +00003157 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003158 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003159 } else {
3160 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003161 const SCEV *ElementSize = getSizeOfExpr(*GTI);
3162 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003163 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003164 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3165
Dan Gohmanb9f96512010-06-30 07:16:37 +00003166 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003167 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3168 isInBounds ? SCEV::FlagNSW :
3169 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003170
3171 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003172 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003173 }
3174 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003175
3176 // Get the SCEV for the GEP base.
3177 const SCEV *BaseS = getSCEV(Base);
3178
Dan Gohmanb9f96512010-06-30 07:16:37 +00003179 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003180 return getAddExpr(BaseS, TotalOffset,
3181 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003182}
3183
Nick Lewycky83bb0052007-11-22 07:59:40 +00003184/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3185/// guaranteed to end in (at every loop iteration). It is, at the same time,
3186/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3187/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003188uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003189ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003190 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003191 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003192
Dan Gohman622ed672009-05-04 22:02:23 +00003193 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003194 return std::min(GetMinTrailingZeros(T->getOperand()),
3195 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003196
Dan Gohman622ed672009-05-04 22:02:23 +00003197 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003198 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3199 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3200 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003201 }
3202
Dan Gohman622ed672009-05-04 22:02:23 +00003203 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003204 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3205 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3206 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003207 }
3208
Dan Gohman622ed672009-05-04 22:02:23 +00003209 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003210 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003211 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003212 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003213 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003214 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003215 }
3216
Dan Gohman622ed672009-05-04 22:02:23 +00003217 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003218 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003219 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3220 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003221 for (unsigned i = 1, e = M->getNumOperands();
3222 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003223 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003224 BitWidth);
3225 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003226 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003227
Dan Gohman622ed672009-05-04 22:02:23 +00003228 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003229 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003230 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003231 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003232 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003233 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003234 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003235
Dan Gohman622ed672009-05-04 22:02:23 +00003236 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003237 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003238 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003239 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003240 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003241 return MinOpRes;
3242 }
3243
Dan Gohman622ed672009-05-04 22:02:23 +00003244 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003245 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003246 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003247 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003248 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003249 return MinOpRes;
3250 }
3251
Dan Gohman2c364ad2009-06-19 23:29:04 +00003252 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3253 // For a SCEVUnknown, ask ValueTracking.
3254 unsigned BitWidth = getTypeSizeInBits(U->getType());
3255 APInt Mask = APInt::getAllOnesValue(BitWidth);
3256 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3257 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3258 return Zeros.countTrailingOnes();
3259 }
3260
3261 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003262 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003263}
Chris Lattner53e677a2004-04-02 20:23:17 +00003264
Dan Gohman85b05a22009-07-13 21:35:55 +00003265/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3266///
3267ConstantRange
3268ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003269 // See if we've computed this range already.
3270 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3271 if (I != UnsignedRanges.end())
3272 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003273
3274 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003275 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003276
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003277 unsigned BitWidth = getTypeSizeInBits(S->getType());
3278 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3279
3280 // If the value has known zeros, the maximum unsigned value will have those
3281 // known zeros as well.
3282 uint32_t TZ = GetMinTrailingZeros(S);
3283 if (TZ != 0)
3284 ConservativeResult =
3285 ConstantRange(APInt::getMinValue(BitWidth),
3286 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3287
Dan Gohman85b05a22009-07-13 21:35:55 +00003288 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3289 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3290 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3291 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003292 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003293 }
3294
3295 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3296 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3297 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3298 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003299 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003300 }
3301
3302 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3303 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3304 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3305 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003306 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003307 }
3308
3309 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3310 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3311 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3312 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003313 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003314 }
3315
3316 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3317 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3318 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003319 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003320 }
3321
3322 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3323 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003324 return setUnsignedRange(ZExt,
3325 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003326 }
3327
3328 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3329 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003330 return setUnsignedRange(SExt,
3331 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003332 }
3333
3334 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3335 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003336 return setUnsignedRange(Trunc,
3337 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003338 }
3339
Dan Gohman85b05a22009-07-13 21:35:55 +00003340 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003341 // If there's no unsigned wrap, the value will never be less than its
3342 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003343 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003344 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003345 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003346 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003347 ConservativeResult.intersectWith(
3348 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003349
3350 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003351 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003352 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003353 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003354 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3355 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003356 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3357
3358 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003359 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003360
3361 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003362 ConstantRange StepRange = getSignedRange(Step);
3363 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3364 ConstantRange EndRange =
3365 StartRange.add(MaxBECountRange.multiply(StepRange));
3366
3367 // Check for overflow. This must be done with ConstantRange arithmetic
3368 // because we could be called from within the ScalarEvolution overflow
3369 // checking code.
3370 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3371 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3372 ConstantRange ExtMaxBECountRange =
3373 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3374 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3375 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3376 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003377 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003378
Dan Gohman85b05a22009-07-13 21:35:55 +00003379 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3380 EndRange.getUnsignedMin());
3381 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3382 EndRange.getUnsignedMax());
3383 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003384 return setUnsignedRange(AddRec, ConservativeResult);
3385 return setUnsignedRange(AddRec,
3386 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003387 }
3388 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003389
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003390 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003391 }
3392
3393 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3394 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003395 APInt Mask = APInt::getAllOnesValue(BitWidth);
3396 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3397 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003398 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003399 return setUnsignedRange(U, ConservativeResult);
3400 return setUnsignedRange(U,
3401 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003402 }
3403
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003404 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003405}
3406
Dan Gohman85b05a22009-07-13 21:35:55 +00003407/// getSignedRange - Determine the signed range for a particular SCEV.
3408///
3409ConstantRange
3410ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003411 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003412 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3413 if (I != SignedRanges.end())
3414 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003415
Dan Gohman85b05a22009-07-13 21:35:55 +00003416 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003417 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003418
Dan Gohman52fddd32010-01-26 04:40:18 +00003419 unsigned BitWidth = getTypeSizeInBits(S->getType());
3420 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3421
3422 // If the value has known zeros, the maximum signed value will have those
3423 // known zeros as well.
3424 uint32_t TZ = GetMinTrailingZeros(S);
3425 if (TZ != 0)
3426 ConservativeResult =
3427 ConstantRange(APInt::getSignedMinValue(BitWidth),
3428 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3429
Dan Gohman85b05a22009-07-13 21:35:55 +00003430 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3431 ConstantRange X = getSignedRange(Add->getOperand(0));
3432 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3433 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003434 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003435 }
3436
Dan Gohman85b05a22009-07-13 21:35:55 +00003437 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3438 ConstantRange X = getSignedRange(Mul->getOperand(0));
3439 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3440 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003441 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003442 }
3443
Dan Gohman85b05a22009-07-13 21:35:55 +00003444 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3445 ConstantRange X = getSignedRange(SMax->getOperand(0));
3446 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3447 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003448 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003449 }
Dan Gohman62849c02009-06-24 01:05:09 +00003450
Dan Gohman85b05a22009-07-13 21:35:55 +00003451 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3452 ConstantRange X = getSignedRange(UMax->getOperand(0));
3453 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3454 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003455 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003456 }
Dan Gohman62849c02009-06-24 01:05:09 +00003457
Dan Gohman85b05a22009-07-13 21:35:55 +00003458 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3459 ConstantRange X = getSignedRange(UDiv->getLHS());
3460 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003461 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003462 }
Dan Gohman62849c02009-06-24 01:05:09 +00003463
Dan Gohman85b05a22009-07-13 21:35:55 +00003464 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3465 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003466 return setSignedRange(ZExt,
3467 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003468 }
3469
3470 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3471 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003472 return setSignedRange(SExt,
3473 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003474 }
3475
3476 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3477 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003478 return setSignedRange(Trunc,
3479 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003480 }
3481
Dan Gohman85b05a22009-07-13 21:35:55 +00003482 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003483 // If there's no signed wrap, and all the operands have the same sign or
3484 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003485 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003486 bool AllNonNeg = true;
3487 bool AllNonPos = true;
3488 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3489 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3490 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3491 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003492 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003493 ConservativeResult = ConservativeResult.intersectWith(
3494 ConstantRange(APInt(BitWidth, 0),
3495 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003496 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003497 ConservativeResult = ConservativeResult.intersectWith(
3498 ConstantRange(APInt::getSignedMinValue(BitWidth),
3499 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003500 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003501
3502 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003503 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003504 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003505 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003506 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3507 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003508 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3509
3510 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003511 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003512
3513 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003514 ConstantRange StepRange = getSignedRange(Step);
3515 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3516 ConstantRange EndRange =
3517 StartRange.add(MaxBECountRange.multiply(StepRange));
3518
3519 // Check for overflow. This must be done with ConstantRange arithmetic
3520 // because we could be called from within the ScalarEvolution overflow
3521 // checking code.
3522 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3523 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3524 ConstantRange ExtMaxBECountRange =
3525 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3526 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3527 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3528 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003529 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003530
Dan Gohman85b05a22009-07-13 21:35:55 +00003531 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3532 EndRange.getSignedMin());
3533 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3534 EndRange.getSignedMax());
3535 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003536 return setSignedRange(AddRec, ConservativeResult);
3537 return setSignedRange(AddRec,
3538 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003539 }
Dan Gohman62849c02009-06-24 01:05:09 +00003540 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003541
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003542 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003543 }
3544
Dan Gohman2c364ad2009-06-19 23:29:04 +00003545 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3546 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003547 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003548 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003549 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3550 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003551 return setSignedRange(U, ConservativeResult);
3552 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003553 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003554 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003555 }
3556
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003557 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003558}
3559
Chris Lattner53e677a2004-04-02 20:23:17 +00003560/// createSCEV - We know that there is no SCEV for the specified value.
3561/// Analyze the expression.
3562///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003563const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003564 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003565 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003566
Dan Gohman6c459a22008-06-22 19:56:46 +00003567 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003568 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003569 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003570
3571 // Don't attempt to analyze instructions in blocks that aren't
3572 // reachable. Such instructions don't matter, and they aren't required
3573 // to obey basic rules for definitions dominating uses which this
3574 // analysis depends on.
3575 if (!DT->isReachableFromEntry(I->getParent()))
3576 return getUnknown(V);
3577 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003578 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003579 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3580 return getConstant(CI);
3581 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003582 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003583 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3584 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003585 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003586 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003587
Dan Gohmanca178902009-07-17 20:47:02 +00003588 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003589 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003590 case Instruction::Add: {
3591 // The simple thing to do would be to just call getSCEV on both operands
3592 // and call getAddExpr with the result. However if we're looking at a
3593 // bunch of things all added together, this can be quite inefficient,
3594 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3595 // Instead, gather up all the operands and make a single getAddExpr call.
3596 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickecb35ec2011-11-29 02:16:38 +00003597 //
3598 // Don't apply this instruction's NSW or NUW flags to the new
3599 // expression. The instruction may be guarded by control flow that the
3600 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3601 // mapped to the same SCEV expression, and it would be incorrect to transfer
3602 // NSW/NUW semantics to those operations.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003603 SmallVector<const SCEV *, 4> AddOps;
3604 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003605 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3606 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3607 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3608 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003609 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003610 const SCEV *Op1 = getSCEV(U->getOperand(1));
3611 if (Opcode == Instruction::Sub)
3612 AddOps.push_back(getNegativeSCEV(Op1));
3613 else
3614 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003615 }
3616 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickecb35ec2011-11-29 02:16:38 +00003617 return getAddExpr(AddOps);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003618 }
3619 case Instruction::Mul: {
Andrew Trickecb35ec2011-11-29 02:16:38 +00003620 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003621 SmallVector<const SCEV *, 4> MulOps;
3622 MulOps.push_back(getSCEV(U->getOperand(1)));
3623 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003624 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003625 Op = U->getOperand(0)) {
3626 U = cast<Operator>(Op);
3627 MulOps.push_back(getSCEV(U->getOperand(1)));
3628 }
3629 MulOps.push_back(getSCEV(U->getOperand(0)));
3630 return getMulExpr(MulOps);
3631 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003632 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003633 return getUDivExpr(getSCEV(U->getOperand(0)),
3634 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003635 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003636 return getMinusSCEV(getSCEV(U->getOperand(0)),
3637 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003638 case Instruction::And:
3639 // For an expression like x&255 that merely masks off the high bits,
3640 // use zext(trunc(x)) as the SCEV expression.
3641 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003642 if (CI->isNullValue())
3643 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003644 if (CI->isAllOnesValue())
3645 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003646 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003647
3648 // Instcombine's ShrinkDemandedConstant may strip bits out of
3649 // constants, obscuring what would otherwise be a low-bits mask.
3650 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3651 // knew about to reconstruct a low-bits mask value.
3652 unsigned LZ = A.countLeadingZeros();
3653 unsigned BitWidth = A.getBitWidth();
3654 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3655 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3656 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3657
3658 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3659
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003660 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003661 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003662 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003663 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003664 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003665 }
3666 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003667
Dan Gohman6c459a22008-06-22 19:56:46 +00003668 case Instruction::Or:
3669 // If the RHS of the Or is a constant, we may have something like:
3670 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3671 // optimizations will transparently handle this case.
3672 //
3673 // In order for this transformation to be safe, the LHS must be of the
3674 // form X*(2^n) and the Or constant must be less than 2^n.
3675 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003676 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003677 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003678 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003679 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3680 // Build a plain add SCEV.
3681 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3682 // If the LHS of the add was an addrec and it has no-wrap flags,
3683 // transfer the no-wrap flags, since an or won't introduce a wrap.
3684 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3685 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003686 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3687 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003688 }
3689 return S;
3690 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003691 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003692 break;
3693 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003694 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003695 // If the RHS of the xor is a signbit, then this is just an add.
3696 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003697 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003698 return getAddExpr(getSCEV(U->getOperand(0)),
3699 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003700
3701 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003702 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003703 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003704
3705 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3706 // This is a variant of the check for xor with -1, and it handles
3707 // the case where instcombine has trimmed non-demanded bits out
3708 // of an xor with -1.
3709 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3710 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3711 if (BO->getOpcode() == Instruction::And &&
3712 LCI->getValue() == CI->getValue())
3713 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003714 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003715 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003716 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003717 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003718 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3719
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003720 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003721 // mask off the high bits. Complement the operand and
3722 // re-apply the zext.
3723 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3724 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3725
3726 // If C is a single bit, it may be in the sign-bit position
3727 // before the zero-extend. In this case, represent the xor
3728 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003729 APInt Trunc = CI->getValue().trunc(Z0TySize);
3730 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003731 Trunc.isSignBit())
3732 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3733 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003734 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003735 }
3736 break;
3737
3738 case Instruction::Shl:
3739 // Turn shift left of a constant amount into a multiply.
3740 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003741 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003742
3743 // If the shift count is not less than the bitwidth, the result of
3744 // the shift is undefined. Don't try to analyze it, because the
3745 // resolution chosen here may differ from the resolution chosen in
3746 // other parts of the compiler.
3747 if (SA->getValue().uge(BitWidth))
3748 break;
3749
Owen Andersoneed707b2009-07-24 23:12:02 +00003750 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003751 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003752 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003753 }
3754 break;
3755
Nick Lewycky01eaf802008-07-07 06:15:49 +00003756 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003757 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003758 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003759 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003760
3761 // If the shift count is not less than the bitwidth, the result of
3762 // the shift is undefined. Don't try to analyze it, because the
3763 // resolution chosen here may differ from the resolution chosen in
3764 // other parts of the compiler.
3765 if (SA->getValue().uge(BitWidth))
3766 break;
3767
Owen Andersoneed707b2009-07-24 23:12:02 +00003768 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003769 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003770 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003771 }
3772 break;
3773
Dan Gohman4ee29af2009-04-21 02:26:00 +00003774 case Instruction::AShr:
3775 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3776 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003777 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003778 if (L->getOpcode() == Instruction::Shl &&
3779 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003780 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3781
3782 // If the shift count is not less than the bitwidth, the result of
3783 // the shift is undefined. Don't try to analyze it, because the
3784 // resolution chosen here may differ from the resolution chosen in
3785 // other parts of the compiler.
3786 if (CI->getValue().uge(BitWidth))
3787 break;
3788
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003789 uint64_t Amt = BitWidth - CI->getZExtValue();
3790 if (Amt == BitWidth)
3791 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003792 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003793 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003794 IntegerType::get(getContext(),
3795 Amt)),
3796 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003797 }
3798 break;
3799
Dan Gohman6c459a22008-06-22 19:56:46 +00003800 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003801 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003802
3803 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003804 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003805
3806 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003807 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003808
3809 case Instruction::BitCast:
3810 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003811 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003812 return getSCEV(U->getOperand(0));
3813 break;
3814
Dan Gohman4f8eea82010-02-01 18:27:38 +00003815 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3816 // lead to pointer expressions which cannot safely be expanded to GEPs,
3817 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3818 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003819
Dan Gohman26466c02009-05-08 20:26:55 +00003820 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003821 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003822
Dan Gohman6c459a22008-06-22 19:56:46 +00003823 case Instruction::PHI:
3824 return createNodeForPHI(cast<PHINode>(U));
3825
3826 case Instruction::Select:
3827 // This could be a smax or umax that was lowered earlier.
3828 // Try to recover it.
3829 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3830 Value *LHS = ICI->getOperand(0);
3831 Value *RHS = ICI->getOperand(1);
3832 switch (ICI->getPredicate()) {
3833 case ICmpInst::ICMP_SLT:
3834 case ICmpInst::ICMP_SLE:
3835 std::swap(LHS, RHS);
3836 // fall through
3837 case ICmpInst::ICMP_SGT:
3838 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003839 // a >s b ? a+x : b+x -> smax(a, b)+x
3840 // a >s b ? b+x : a+x -> smin(a, b)+x
3841 if (LHS->getType() == U->getType()) {
3842 const SCEV *LS = getSCEV(LHS);
3843 const SCEV *RS = getSCEV(RHS);
3844 const SCEV *LA = getSCEV(U->getOperand(1));
3845 const SCEV *RA = getSCEV(U->getOperand(2));
3846 const SCEV *LDiff = getMinusSCEV(LA, LS);
3847 const SCEV *RDiff = getMinusSCEV(RA, RS);
3848 if (LDiff == RDiff)
3849 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3850 LDiff = getMinusSCEV(LA, RS);
3851 RDiff = getMinusSCEV(RA, LS);
3852 if (LDiff == RDiff)
3853 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3854 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003855 break;
3856 case ICmpInst::ICMP_ULT:
3857 case ICmpInst::ICMP_ULE:
3858 std::swap(LHS, RHS);
3859 // fall through
3860 case ICmpInst::ICMP_UGT:
3861 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003862 // a >u b ? a+x : b+x -> umax(a, b)+x
3863 // a >u b ? b+x : a+x -> umin(a, b)+x
3864 if (LHS->getType() == U->getType()) {
3865 const SCEV *LS = getSCEV(LHS);
3866 const SCEV *RS = getSCEV(RHS);
3867 const SCEV *LA = getSCEV(U->getOperand(1));
3868 const SCEV *RA = getSCEV(U->getOperand(2));
3869 const SCEV *LDiff = getMinusSCEV(LA, LS);
3870 const SCEV *RDiff = getMinusSCEV(RA, RS);
3871 if (LDiff == RDiff)
3872 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3873 LDiff = getMinusSCEV(LA, RS);
3874 RDiff = getMinusSCEV(RA, LS);
3875 if (LDiff == RDiff)
3876 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3877 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003878 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003879 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003880 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3881 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003882 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003883 cast<ConstantInt>(RHS)->isZero()) {
3884 const SCEV *One = getConstant(LHS->getType(), 1);
3885 const SCEV *LS = getSCEV(LHS);
3886 const SCEV *LA = getSCEV(U->getOperand(1));
3887 const SCEV *RA = getSCEV(U->getOperand(2));
3888 const SCEV *LDiff = getMinusSCEV(LA, LS);
3889 const SCEV *RDiff = getMinusSCEV(RA, One);
3890 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003891 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003892 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003893 break;
3894 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003895 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3896 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003897 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003898 cast<ConstantInt>(RHS)->isZero()) {
3899 const SCEV *One = getConstant(LHS->getType(), 1);
3900 const SCEV *LS = getSCEV(LHS);
3901 const SCEV *LA = getSCEV(U->getOperand(1));
3902 const SCEV *RA = getSCEV(U->getOperand(2));
3903 const SCEV *LDiff = getMinusSCEV(LA, One);
3904 const SCEV *RDiff = getMinusSCEV(RA, LS);
3905 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003906 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003907 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003908 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003909 default:
3910 break;
3911 }
3912 }
3913
3914 default: // We cannot analyze this expression.
3915 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003916 }
3917
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003918 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003919}
3920
3921
3922
3923//===----------------------------------------------------------------------===//
3924// Iteration Count Computation Code
3925//
3926
Andrew Trickb1831c62011-08-11 23:36:16 +00003927/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3928/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
3929/// or not constant. Will also return 0 if the maximum trip count is very large
3930/// (>= 2^32)
3931unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
3932 BasicBlock *ExitBlock) {
3933 const SCEVConstant *ExitCount =
3934 dyn_cast<SCEVConstant>(getExitCount(L, ExitBlock));
3935 if (!ExitCount)
3936 return 0;
3937
3938 ConstantInt *ExitConst = ExitCount->getValue();
3939
3940 // Guard against huge trip counts.
3941 if (ExitConst->getValue().getActiveBits() > 32)
3942 return 0;
3943
3944 // In case of integer overflow, this returns 0, which is correct.
3945 return ((unsigned)ExitConst->getZExtValue()) + 1;
3946}
3947
3948/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3949/// trip count of this loop as a normal unsigned value, if possible. This
3950/// means that the actual trip count is always a multiple of the returned
3951/// value (don't forget the trip count could very well be zero as well!).
3952///
3953/// Returns 1 if the trip count is unknown or not guaranteed to be the
3954/// multiple of a constant (which is also the case if the trip count is simply
3955/// constant, use getSmallConstantTripCount for that case), Will also return 1
3956/// if the trip count is very large (>= 2^32).
3957unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
3958 BasicBlock *ExitBlock) {
3959 const SCEV *ExitCount = getExitCount(L, ExitBlock);
3960 if (ExitCount == getCouldNotCompute())
3961 return 1;
3962
3963 // Get the trip count from the BE count by adding 1.
3964 const SCEV *TCMul = getAddExpr(ExitCount,
3965 getConstant(ExitCount->getType(), 1));
3966 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3967 // to factor simple cases.
3968 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3969 TCMul = Mul->getOperand(0);
3970
3971 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3972 if (!MulC)
3973 return 1;
3974
3975 ConstantInt *Result = MulC->getValue();
3976
3977 // Guard against huge trip counts.
3978 if (!Result || Result->getValue().getActiveBits() > 32)
3979 return 1;
3980
3981 return (unsigned)Result->getZExtValue();
3982}
3983
Andrew Trick5116ff62011-07-26 17:19:55 +00003984// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickfcb43562011-08-02 04:23:35 +00003985// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00003986// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00003987const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
3988 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00003989}
3990
Dan Gohman46bdfb02009-02-24 18:55:53 +00003991/// getBackedgeTakenCount - If the specified loop has a predictable
3992/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3993/// object. The backedge-taken count is the number of times the loop header
3994/// will be branched to from within the loop. This is one less than the
3995/// trip count of the loop, since it doesn't count the first iteration,
3996/// when the header is branched to from outside the loop.
3997///
3998/// Note that it is not valid to call this method on a loop without a
3999/// loop-invariant backedge-taken count (see
4000/// hasLoopInvariantBackedgeTakenCount).
4001///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004002const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004003 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004004}
4005
4006/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4007/// return the least SCEV value that is known never to be less than the
4008/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004009const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004010 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004011}
4012
Dan Gohman59ae6b92009-07-08 19:23:34 +00004013/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4014/// onto the given Worklist.
4015static void
4016PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4017 BasicBlock *Header = L->getHeader();
4018
4019 // Push all Loop-header PHIs onto the Worklist stack.
4020 for (BasicBlock::iterator I = Header->begin();
4021 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4022 Worklist.push_back(PN);
4023}
4024
Dan Gohmana1af7572009-04-30 20:47:05 +00004025const ScalarEvolution::BackedgeTakenInfo &
4026ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004027 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004028 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00004029 // update the value. The temporary CouldNotCompute value tells SCEV
4030 // code elsewhere that it shouldn't attempt to request a new
4031 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004032 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00004033 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00004034 if (!Pair.second)
4035 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00004036
Andrew Trick5116ff62011-07-26 17:19:55 +00004037 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4038 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4039 // must be cleared in this scope.
4040 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4041
4042 if (Result.getExact(this) != getCouldNotCompute()) {
4043 assert(isLoopInvariant(Result.getExact(this), L) &&
4044 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00004045 "Computed backedge-taken count isn't loop invariant for loop!");
4046 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00004047 }
4048 else if (Result.getMax(this) == getCouldNotCompute() &&
4049 isa<PHINode>(L->getHeader()->begin())) {
4050 // Only count loops that have phi nodes as not being computable.
4051 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00004052 }
Dan Gohmana1af7572009-04-30 20:47:05 +00004053
Chris Lattnerf1859892011-01-09 02:16:18 +00004054 // Now that we know more about the trip count for this loop, forget any
4055 // existing SCEV values for PHI nodes in this loop since they are only
4056 // conservative estimates made without the benefit of trip count
4057 // information. This is similar to the code in forgetLoop, except that
4058 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00004059 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00004060 SmallVector<Instruction *, 16> Worklist;
4061 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004062
Chris Lattnerf1859892011-01-09 02:16:18 +00004063 SmallPtrSet<Instruction *, 8> Visited;
4064 while (!Worklist.empty()) {
4065 Instruction *I = Worklist.pop_back_val();
4066 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004067
Chris Lattnerf1859892011-01-09 02:16:18 +00004068 ValueExprMapType::iterator It =
4069 ValueExprMap.find(static_cast<Value *>(I));
4070 if (It != ValueExprMap.end()) {
4071 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00004072
Chris Lattnerf1859892011-01-09 02:16:18 +00004073 // SCEVUnknown for a PHI either means that it has an unrecognized
4074 // structure, or it's a PHI that's in the progress of being computed
4075 // by createNodeForPHI. In the former case, additional loop trip
4076 // count information isn't going to change anything. In the later
4077 // case, createNodeForPHI will perform the necessary updates on its
4078 // own when it gets to that point.
4079 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4080 forgetMemoizedResults(Old);
4081 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004082 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004083 if (PHINode *PN = dyn_cast<PHINode>(I))
4084 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004085 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004086
4087 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004088 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004089 }
Dan Gohman308bec32011-04-25 22:48:29 +00004090
4091 // Re-lookup the insert position, since the call to
4092 // ComputeBackedgeTakenCount above could result in a
4093 // recusive call to getBackedgeTakenInfo (on a different
4094 // loop), which would invalidate the iterator computed
4095 // earlier.
4096 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004097}
4098
Dan Gohman4c7279a2009-10-31 15:04:55 +00004099/// forgetLoop - This method should be called by the client when it has
4100/// changed a loop in a way that may effect ScalarEvolution's ability to
4101/// compute a trip count, or if the loop is deleted.
4102void ScalarEvolution::forgetLoop(const Loop *L) {
4103 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004104 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4105 BackedgeTakenCounts.find(L);
4106 if (BTCPos != BackedgeTakenCounts.end()) {
4107 BTCPos->second.clear();
4108 BackedgeTakenCounts.erase(BTCPos);
4109 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004110
Dan Gohman4c7279a2009-10-31 15:04:55 +00004111 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004112 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004113 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004114
Dan Gohman59ae6b92009-07-08 19:23:34 +00004115 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004116 while (!Worklist.empty()) {
4117 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004118 if (!Visited.insert(I)) continue;
4119
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004120 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4121 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004122 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004123 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004124 if (PHINode *PN = dyn_cast<PHINode>(I))
4125 ConstantEvolutionLoopExitValue.erase(PN);
4126 }
4127
4128 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004129 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004130
4131 // Forget all contained loops too, to avoid dangling entries in the
4132 // ValuesAtScopes map.
4133 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4134 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004135}
4136
Eric Christophere6cbfa62010-07-29 01:25:38 +00004137/// forgetValue - This method should be called by the client when it has
4138/// changed a value in a way that may effect its value, or which may
4139/// disconnect it from a def-use chain linking it to a loop.
4140void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004141 Instruction *I = dyn_cast<Instruction>(V);
4142 if (!I) return;
4143
4144 // Drop information about expressions based on loop-header PHIs.
4145 SmallVector<Instruction *, 16> Worklist;
4146 Worklist.push_back(I);
4147
4148 SmallPtrSet<Instruction *, 8> Visited;
4149 while (!Worklist.empty()) {
4150 I = Worklist.pop_back_val();
4151 if (!Visited.insert(I)) continue;
4152
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004153 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4154 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004155 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004156 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004157 if (PHINode *PN = dyn_cast<PHINode>(I))
4158 ConstantEvolutionLoopExitValue.erase(PN);
4159 }
4160
4161 PushDefUseChildren(I, Worklist);
4162 }
4163}
4164
Andrew Trick5116ff62011-07-26 17:19:55 +00004165/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004166/// exits. A computable result can only be return for loops with a single exit.
4167/// Returning the minimum taken count among all exits is incorrect because one
4168/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4169/// the limit of each loop test is never skipped. This is a valid assumption as
4170/// long as the loop exits via that test. For precise results, it is the
4171/// caller's responsibility to specify the relevant loop exit using
4172/// getExact(ExitingBlock, SE).
Andrew Trick5116ff62011-07-26 17:19:55 +00004173const SCEV *
4174ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4175 // If any exits were not computable, the loop is not computable.
4176 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4177
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004178 // We need exactly one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004179 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004180 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4181
4182 const SCEV *BECount = 0;
4183 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4184 ENT != 0; ENT = ENT->getNextExit()) {
4185
4186 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4187
4188 if (!BECount)
4189 BECount = ENT->ExactNotTaken;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004190 else if (BECount != ENT->ExactNotTaken)
4191 return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004192 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004193 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004194 return BECount;
4195}
4196
4197/// getExact - Get the exact not taken count for this loop exit.
4198const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004199ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004200 ScalarEvolution *SE) const {
4201 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4202 ENT != 0; ENT = ENT->getNextExit()) {
4203
Andrew Trickfcb43562011-08-02 04:23:35 +00004204 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004205 return ENT->ExactNotTaken;
4206 }
4207 return SE->getCouldNotCompute();
4208}
4209
4210/// getMax - Get the max backedge taken count for the loop.
4211const SCEV *
4212ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4213 return Max ? Max : SE->getCouldNotCompute();
4214}
4215
4216/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4217/// computable exit into a persistent ExitNotTakenInfo array.
4218ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4219 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4220 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4221
4222 if (!Complete)
4223 ExitNotTaken.setIncomplete();
4224
4225 unsigned NumExits = ExitCounts.size();
4226 if (NumExits == 0) return;
4227
Andrew Trickfcb43562011-08-02 04:23:35 +00004228 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004229 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4230 if (NumExits == 1) return;
4231
4232 // Handle the rare case of multiple computable exits.
4233 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4234
4235 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4236 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4237 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004238 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004239 ENT->ExactNotTaken = ExitCounts[i].second;
4240 }
4241}
4242
4243/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4244void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004245 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004246 ExitNotTaken.ExactNotTaken = 0;
4247 delete[] ExitNotTaken.getNextExit();
4248}
4249
Dan Gohman46bdfb02009-02-24 18:55:53 +00004250/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4251/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004252ScalarEvolution::BackedgeTakenInfo
4253ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004254 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004255 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004256
Dan Gohmana334aa72009-06-22 00:31:57 +00004257 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004258 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004259 bool CouldComputeBECount = true;
4260 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004261 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004262 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4263 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004264 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004265 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004266 CouldComputeBECount = false;
4267 else
4268 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4269
Dan Gohman1c343752009-06-27 21:21:31 +00004270 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004271 MaxBECount = EL.Max;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004272 else if (EL.Max != getCouldNotCompute()) {
4273 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4274 // skip some loop tests. Taking the max over the exits is sufficiently
4275 // conservative. TODO: We could do better taking into consideration
4276 // that (1) the loop has unit stride (2) the last loop test is
4277 // less-than/greater-than (3) any loop test is less-than/greater-than AND
4278 // falls-through some constant times less then the other tests.
4279 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4280 }
Dan Gohmana334aa72009-06-22 00:31:57 +00004281 }
4282
Andrew Trick5116ff62011-07-26 17:19:55 +00004283 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004284}
4285
Andrew Trick5116ff62011-07-26 17:19:55 +00004286/// ComputeExitLimit - Compute the number of times the backedge of the specified
4287/// loop will execute if it exits via the specified block.
4288ScalarEvolution::ExitLimit
4289ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004290
4291 // Okay, we've chosen an exiting block. See what condition causes us to
4292 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004293 //
4294 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004295 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004296 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004297 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004298
Chris Lattner8b0e3602007-01-07 02:24:26 +00004299 // At this point, we know we have a conditional branch that determines whether
4300 // the loop is exited. However, we don't know if the branch is executed each
4301 // time through the loop. If not, then the execution count of the branch will
4302 // not be equal to the trip count of the loop.
4303 //
4304 // Currently we check for this by checking to see if the Exit branch goes to
4305 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004306 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004307 // loop header. This is common for un-rotated loops.
4308 //
4309 // If both of those tests fail, walk up the unique predecessor chain to the
4310 // header, stopping if there is an edge that doesn't exit the loop. If the
4311 // header is reached, the execution count of the branch will be equal to the
4312 // trip count of the loop.
4313 //
4314 // More extensive analysis could be done to handle more cases here.
4315 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004316 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004317 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004318 ExitBr->getParent() != L->getHeader()) {
4319 // The simple checks failed, try climbing the unique predecessor chain
4320 // up to the header.
4321 bool Ok = false;
4322 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4323 BasicBlock *Pred = BB->getUniquePredecessor();
4324 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004325 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004326 TerminatorInst *PredTerm = Pred->getTerminator();
4327 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4328 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4329 if (PredSucc == BB)
4330 continue;
4331 // If the predecessor has a successor that isn't BB and isn't
4332 // outside the loop, assume the worst.
4333 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004334 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004335 }
4336 if (Pred == L->getHeader()) {
4337 Ok = true;
4338 break;
4339 }
4340 BB = Pred;
4341 }
4342 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004343 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004344 }
4345
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004346 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004347 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4348 ExitBr->getSuccessor(0),
4349 ExitBr->getSuccessor(1));
Dan Gohmana334aa72009-06-22 00:31:57 +00004350}
4351
Andrew Trick5116ff62011-07-26 17:19:55 +00004352/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004353/// backedge of the specified loop will execute if its exit condition
4354/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004355ScalarEvolution::ExitLimit
4356ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4357 Value *ExitCond,
4358 BasicBlock *TBB,
4359 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004360 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004361 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4362 if (BO->getOpcode() == Instruction::And) {
4363 // Recurse on the operands of the and.
Andrew Trick5116ff62011-07-26 17:19:55 +00004364 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4365 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004366 const SCEV *BECount = getCouldNotCompute();
4367 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004368 if (L->contains(TBB)) {
4369 // Both conditions must be true for the loop to continue executing.
4370 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004371 if (EL0.Exact == getCouldNotCompute() ||
4372 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004373 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004374 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004375 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4376 if (EL0.Max == getCouldNotCompute())
4377 MaxBECount = EL1.Max;
4378 else if (EL1.Max == getCouldNotCompute())
4379 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004380 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004381 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004382 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004383 // Both conditions must be true at the same time for the loop to exit.
4384 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004385 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004386 if (EL0.Max == EL1.Max)
4387 MaxBECount = EL0.Max;
4388 if (EL0.Exact == EL1.Exact)
4389 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004390 }
4391
Andrew Trick5116ff62011-07-26 17:19:55 +00004392 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004393 }
4394 if (BO->getOpcode() == Instruction::Or) {
4395 // Recurse on the operands of the or.
Andrew Trick5116ff62011-07-26 17:19:55 +00004396 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4397 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004398 const SCEV *BECount = getCouldNotCompute();
4399 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004400 if (L->contains(FBB)) {
4401 // Both conditions must be false for the loop to continue executing.
4402 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004403 if (EL0.Exact == getCouldNotCompute() ||
4404 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004405 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004406 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004407 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4408 if (EL0.Max == getCouldNotCompute())
4409 MaxBECount = EL1.Max;
4410 else if (EL1.Max == getCouldNotCompute())
4411 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004412 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004413 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004414 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004415 // Both conditions must be false at the same time for the loop to exit.
4416 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004417 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004418 if (EL0.Max == EL1.Max)
4419 MaxBECount = EL0.Max;
4420 if (EL0.Exact == EL1.Exact)
4421 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004422 }
4423
Andrew Trick5116ff62011-07-26 17:19:55 +00004424 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004425 }
4426 }
4427
4428 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004429 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004430 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5116ff62011-07-26 17:19:55 +00004431 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004432
Dan Gohman00cb5b72010-02-19 18:12:07 +00004433 // Check for a constant condition. These are normally stripped out by
4434 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4435 // preserve the CFG and is temporarily leaving constant conditions
4436 // in place.
4437 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4438 if (L->contains(FBB) == !CI->getZExtValue())
4439 // The backedge is always taken.
4440 return getCouldNotCompute();
4441 else
4442 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004443 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004444 }
4445
Eli Friedman361e54d2009-05-09 12:32:42 +00004446 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004447 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004448}
4449
Andrew Trick5116ff62011-07-26 17:19:55 +00004450/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004451/// backedge of the specified loop will execute if its exit condition
4452/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004453ScalarEvolution::ExitLimit
4454ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4455 ICmpInst *ExitCond,
4456 BasicBlock *TBB,
4457 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004458
Reid Spencere4d87aa2006-12-23 06:05:41 +00004459 // If the condition was exit on true, convert the condition to exit on false
4460 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004461 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004462 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004463 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004464 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004465
4466 // Handle common loops like: for (X = "string"; *X; ++X)
4467 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4468 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004469 ExitLimit ItCnt =
4470 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004471 if (ItCnt.hasAnyInfo())
4472 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004473 }
4474
Dan Gohman0bba49c2009-07-07 17:06:11 +00004475 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4476 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004477
4478 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004479 LHS = getSCEVAtScope(LHS, L);
4480 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004481
Dan Gohman64a845e2009-06-24 04:48:43 +00004482 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004483 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004484 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004485 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004486 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004487 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004488 }
4489
Dan Gohman03557dc2010-05-03 16:35:17 +00004490 // Simplify the operands before analyzing them.
4491 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4492
Chris Lattner53e677a2004-04-02 20:23:17 +00004493 // If we have a comparison of a chrec against a constant, try to use value
4494 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004495 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4496 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004497 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004498 // Form the constant range.
4499 ConstantRange CompRange(
4500 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004501
Dan Gohman0bba49c2009-07-07 17:06:11 +00004502 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004503 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004504 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004505
Chris Lattner53e677a2004-04-02 20:23:17 +00004506 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004507 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004508 // Convert to: while (X-Y != 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004509 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4510 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004511 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004512 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004513 case ICmpInst::ICMP_EQ: { // while (X == Y)
4514 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004515 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4516 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004517 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004518 }
4519 case ICmpInst::ICMP_SLT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004520 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4521 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004522 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004523 }
4524 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004525 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004526 getNotSCEV(RHS), L, true);
Andrew Trick5116ff62011-07-26 17:19:55 +00004527 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004528 break;
4529 }
4530 case ICmpInst::ICMP_ULT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004531 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4532 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004533 break;
4534 }
4535 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004536 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004537 getNotSCEV(RHS), L, false);
Andrew Trick5116ff62011-07-26 17:19:55 +00004538 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004539 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004540 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004541 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004542#if 0
David Greene25e0e872009-12-23 22:18:14 +00004543 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004544 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004545 dbgs() << "[unsigned] ";
4546 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004547 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004548 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004549#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004550 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004551 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004552 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004553}
4554
Chris Lattner673e02b2004-10-12 01:49:27 +00004555static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004556EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4557 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004558 const SCEV *InVal = SE.getConstant(C);
4559 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004560 assert(isa<SCEVConstant>(Val) &&
4561 "Evaluation of SCEV at constant didn't fold correctly?");
4562 return cast<SCEVConstant>(Val)->getValue();
4563}
4564
4565/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4566/// and a GEP expression (missing the pointer index) indexing into it, return
4567/// the addressed element of the initializer or null if the index expression is
4568/// invalid.
4569static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004570GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004571 const std::vector<ConstantInt*> &Indices) {
4572 Constant *Init = GV->getInitializer();
4573 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004574 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004575 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4576 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4577 Init = cast<Constant>(CS->getOperand(Idx));
4578 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4579 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4580 Init = cast<Constant>(CA->getOperand(Idx));
4581 } else if (isa<ConstantAggregateZero>(Init)) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004582 if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004583 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004584 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004585 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004586 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004587 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004588 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004589 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004590 }
4591 return 0;
4592 } else {
4593 return 0; // Unknown initializer type
4594 }
4595 }
4596 return Init;
4597}
4598
Andrew Trick5116ff62011-07-26 17:19:55 +00004599/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004600/// 'icmp op load X, cst', try to see if we can compute the backedge
4601/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004602ScalarEvolution::ExitLimit
4603ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4604 LoadInst *LI,
4605 Constant *RHS,
4606 const Loop *L,
4607 ICmpInst::Predicate predicate) {
4608
Dan Gohman1c343752009-06-27 21:21:31 +00004609 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004610
4611 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004612 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004613 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004614 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004615
4616 // Make sure that it is really a constant global we are gepping, with an
4617 // initializer, and make sure the first IDX is really 0.
4618 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004619 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004620 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4621 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004622 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004623
4624 // Okay, we allow one non-constant index into the GEP instruction.
4625 Value *VarIdx = 0;
4626 std::vector<ConstantInt*> Indexes;
4627 unsigned VarIdxNum = 0;
4628 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4629 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4630 Indexes.push_back(CI);
4631 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004632 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004633 VarIdx = GEP->getOperand(i);
4634 VarIdxNum = i-2;
4635 Indexes.push_back(0);
4636 }
4637
4638 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4639 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004640 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004641 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004642
4643 // We can only recognize very limited forms of loop index expressions, in
4644 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004645 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004646 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004647 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4648 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004649 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004650
4651 unsigned MaxSteps = MaxBruteForceIterations;
4652 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004653 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004654 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004655 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004656
4657 // Form the GEP offset.
4658 Indexes[VarIdxNum] = Val;
4659
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004660 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004661 if (Result == 0) break; // Cannot compute!
4662
4663 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004664 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004665 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004666 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004667#if 0
David Greene25e0e872009-12-23 22:18:14 +00004668 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004669 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4670 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004671#endif
4672 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004673 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004674 }
4675 }
Dan Gohman1c343752009-06-27 21:21:31 +00004676 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004677}
4678
4679
Chris Lattner3221ad02004-04-17 22:58:41 +00004680/// CanConstantFold - Return true if we can constant fold an instruction of the
4681/// specified type, assuming that all operands were constants.
4682static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004683 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewycky614fef62011-10-22 19:58:20 +00004684 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4685 isa<LoadInst>(I))
Chris Lattner3221ad02004-04-17 22:58:41 +00004686 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004687
Chris Lattner3221ad02004-04-17 22:58:41 +00004688 if (const CallInst *CI = dyn_cast<CallInst>(I))
4689 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004690 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004691 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004692}
4693
Andrew Trick13d31e02011-10-05 03:25:31 +00004694/// Determine whether this instruction can constant evolve within this loop
4695/// assuming its operands can all constant evolve.
4696static bool canConstantEvolve(Instruction *I, const Loop *L) {
4697 // An instruction outside of the loop can't be derived from a loop PHI.
4698 if (!L->contains(I)) return false;
4699
4700 if (isa<PHINode>(I)) {
4701 if (L->getHeader() == I->getParent())
4702 return true;
4703 else
4704 // We don't currently keep track of the control flow needed to evaluate
4705 // PHIs, so we cannot handle PHIs inside of loops.
4706 return false;
4707 }
4708
4709 // If we won't be able to constant fold this expression even if the operands
4710 // are constants, bail early.
4711 return CanConstantFold(I);
4712}
4713
4714/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4715/// recursing through each instruction operand until reaching a loop header phi.
4716static PHINode *
4717getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Trick28ab7db2011-10-05 05:58:49 +00004718 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004719
4720 // Otherwise, we can evaluate this instruction if all of its operands are
4721 // constant or derived from a PHI node themselves.
4722 PHINode *PHI = 0;
4723 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4724 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4725
4726 if (isa<Constant>(*OpI)) continue;
4727
4728 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4729 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4730
4731 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trickef8a4c22011-10-05 22:06:53 +00004732 if (!P)
4733 // If this operand is already visited, reuse the prior result.
4734 // We may have P != PHI if this is the deepest point at which the
4735 // inconsistent paths meet.
4736 P = PHIMap.lookup(OpInst);
4737 if (!P) {
4738 // Recurse and memoize the results, whether a phi is found or not.
4739 // This recursive call invalidates pointers into PHIMap.
4740 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4741 PHIMap[OpInst] = P;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004742 }
Andrew Trick28ab7db2011-10-05 05:58:49 +00004743 if (P == 0) return 0; // Not evolving from PHI
4744 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4745 PHI = P;
Andrew Trick13d31e02011-10-05 03:25:31 +00004746 }
4747 // This is a expression evolving from a constant PHI!
4748 return PHI;
4749}
4750
Chris Lattner3221ad02004-04-17 22:58:41 +00004751/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4752/// in the loop that V is derived from. We allow arbitrary operations along the
4753/// way, but the operands of an operation must either be constants or a value
4754/// derived from a constant PHI. If this expression does not fit with these
4755/// constraints, return null.
4756static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004757 Instruction *I = dyn_cast<Instruction>(V);
Andrew Trick13d31e02011-10-05 03:25:31 +00004758 if (I == 0 || !canConstantEvolve(I, L)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004759
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004760 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004761 return PN;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004762 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004763
Andrew Trick13d31e02011-10-05 03:25:31 +00004764 // Record non-constant instructions contained by the loop.
Andrew Trick28ab7db2011-10-05 05:58:49 +00004765 DenseMap<Instruction *, PHINode *> PHIMap;
4766 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattner3221ad02004-04-17 22:58:41 +00004767}
4768
4769/// EvaluateExpression - Given an expression that passes the
4770/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4771/// in the loop has the value PHIVal. If we can't fold this expression for some
4772/// reason, return null.
Andrew Trick13d31e02011-10-05 03:25:31 +00004773static Constant *EvaluateExpression(Value *V, const Loop *L,
4774 DenseMap<Instruction *, Constant *> &Vals,
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004775 const TargetData *TD) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004776 // Convenient constant check, but redundant for recursive calls.
Reid Spencere8404342004-07-18 00:18:30 +00004777 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewycky614fef62011-10-22 19:58:20 +00004778 Instruction *I = dyn_cast<Instruction>(V);
4779 if (!I) return 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004780
Andrew Trick13d31e02011-10-05 03:25:31 +00004781 if (Constant *C = Vals.lookup(I)) return C;
4782
Nick Lewycky614fef62011-10-22 19:58:20 +00004783 // An instruction inside the loop depends on a value outside the loop that we
4784 // weren't given a mapping for, or a value such as a call inside the loop.
4785 if (!canConstantEvolve(I, L)) return 0;
4786
4787 // An unmapped PHI can be due to a branch or another loop inside this loop,
4788 // or due to this not being the initial iteration through a loop where we
4789 // couldn't compute the evolution of this particular PHI last time.
4790 if (isa<PHINode>(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004791
Dan Gohman9d4588f2010-06-22 13:15:46 +00004792 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004793
4794 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004795 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4796 if (!Operand) {
Nick Lewycky4c7f1ca2011-10-14 09:38:46 +00004797 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4798 if (!Operands[i]) return 0;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004799 continue;
4800 }
4801 Constant *C = EvaluateExpression(Operand, L, Vals, TD);
4802 Vals[Operand] = C;
4803 if (!C) return 0;
4804 Operands[i] = C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004805 }
4806
Nick Lewycky614fef62011-10-22 19:58:20 +00004807 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004808 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004809 Operands[1], TD);
Nick Lewycky614fef62011-10-22 19:58:20 +00004810 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4811 if (!LI->isVolatile())
4812 return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4813 }
Jay Foad1d2f5692011-07-19 13:32:40 +00004814 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004815}
4816
4817/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4818/// in the header of its containing loop, we know the loop executes a
4819/// constant number of times, and the PHI node is just a recurrence
4820/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004821Constant *
4822ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004823 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004824 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004825 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004826 ConstantEvolutionLoopExitValue.find(PN);
4827 if (I != ConstantEvolutionLoopExitValue.end())
4828 return I->second;
4829
Dan Gohmane0567812010-04-08 23:03:40 +00004830 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004831 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4832
4833 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4834
Andrew Trick13d31e02011-10-05 03:25:31 +00004835 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewycky614fef62011-10-22 19:58:20 +00004836 BasicBlock *Header = L->getHeader();
4837 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick13d31e02011-10-05 03:25:31 +00004838
Chris Lattner3221ad02004-04-17 22:58:41 +00004839 // Since the loop is canonicalized, the PHI node must have two entries. One
4840 // entry must be a constant (coming in from outside of the loop), and the
4841 // second must be derived from the same PHI.
4842 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Nick Lewycky614fef62011-10-22 19:58:20 +00004843 PHINode *PHI = 0;
4844 for (BasicBlock::iterator I = Header->begin();
4845 (PHI = dyn_cast<PHINode>(I)); ++I) {
4846 Constant *StartCST =
4847 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4848 if (StartCST == 0) continue;
4849 CurrentIterVals[PHI] = StartCST;
4850 }
4851 if (!CurrentIterVals.count(PN))
4852 return RetVal = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004853
4854 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattner3221ad02004-04-17 22:58:41 +00004855
4856 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004857 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004858 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004859
Dan Gohman46bdfb02009-02-24 18:55:53 +00004860 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004861 unsigned IterationNum = 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004862 for (; ; ++IterationNum) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004863 if (IterationNum == NumIterations)
Andrew Trick13d31e02011-10-05 03:25:31 +00004864 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattner3221ad02004-04-17 22:58:41 +00004865
Nick Lewycky614fef62011-10-22 19:58:20 +00004866 // Compute the value of the PHIs for the next iteration.
Andrew Trick13d31e02011-10-05 03:25:31 +00004867 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewycky614fef62011-10-22 19:58:20 +00004868 DenseMap<Instruction *, Constant *> NextIterVals;
Andrew Trick13d31e02011-10-05 03:25:31 +00004869 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004870 if (NextPHI == 0)
4871 return 0; // Couldn't evaluate!
Andrew Trick13d31e02011-10-05 03:25:31 +00004872 NextIterVals[PN] = NextPHI;
Nick Lewycky614fef62011-10-22 19:58:20 +00004873
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004874 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4875
Nick Lewycky614fef62011-10-22 19:58:20 +00004876 // Also evaluate the other PHI nodes. However, we don't get to stop if we
4877 // cease to be able to evaluate one of them or if they stop evolving,
4878 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004879 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewycky614fef62011-10-22 19:58:20 +00004880 for (DenseMap<Instruction *, Constant *>::const_iterator
4881 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4882 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky5bef0eb2011-10-24 05:51:01 +00004883 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004884 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4885 }
4886 // We use two distinct loops because EvaluateExpression may invalidate any
4887 // iterators into CurrentIterVals.
4888 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4889 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4890 PHINode *PHI = I->first;
Nick Lewycky614fef62011-10-22 19:58:20 +00004891 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004892 if (!NextPHI) { // Not already computed.
4893 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
4894 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD);
4895 }
4896 if (NextPHI != I->second)
4897 StoppedEvolving = false;
Nick Lewycky614fef62011-10-22 19:58:20 +00004898 }
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004899
4900 // If all entries in CurrentIterVals == NextIterVals then we can stop
4901 // iterating, the loop can't continue to change.
4902 if (StoppedEvolving)
4903 return RetVal = CurrentIterVals[PN];
4904
Andrew Trick13d31e02011-10-05 03:25:31 +00004905 CurrentIterVals.swap(NextIterVals);
Chris Lattner3221ad02004-04-17 22:58:41 +00004906 }
4907}
4908
Andrew Trick5116ff62011-07-26 17:19:55 +00004909/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004910/// constant number of times (the condition evolves only from constants),
4911/// try to evaluate a few iterations of the loop until we get the exit
4912/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004913/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewycky614fef62011-10-22 19:58:20 +00004914const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4915 Value *Cond,
4916 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004917 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004918 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004919
Dan Gohmanb92654d2010-06-19 14:17:24 +00004920 // If the loop is canonicalized, the PHI will have exactly two entries.
4921 // That's the only form we support here.
4922 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4923
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004924 DenseMap<Instruction *, Constant *> CurrentIterVals;
4925 BasicBlock *Header = L->getHeader();
4926 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4927
Dan Gohmanb92654d2010-06-19 14:17:24 +00004928 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004929 // second must be derived from the same PHI.
4930 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004931 PHINode *PHI = 0;
4932 for (BasicBlock::iterator I = Header->begin();
4933 (PHI = dyn_cast<PHINode>(I)); ++I) {
4934 Constant *StartCST =
4935 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4936 if (StartCST == 0) continue;
4937 CurrentIterVals[PHI] = StartCST;
4938 }
4939 if (!CurrentIterVals.count(PN))
4940 return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004941
4942 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4943 // the loop symbolically to determine when the condition gets a value of
4944 // "ExitWhen".
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004945
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004946 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004947 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004948 ConstantInt *CondVal =
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004949 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L,
4950 CurrentIterVals, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004951
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004952 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004953 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004954
Reid Spencere8019bb2007-03-01 07:25:48 +00004955 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004956 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004957 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004958 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004959
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004960 // Update all the PHI nodes for the next iteration.
4961 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004962
4963 // Create a list of which PHIs we need to compute. We want to do this before
4964 // calling EvaluateExpression on them because that may invalidate iterators
4965 // into CurrentIterVals.
4966 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004967 for (DenseMap<Instruction *, Constant *>::const_iterator
4968 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4969 PHINode *PHI = dyn_cast<PHINode>(I->first);
4970 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004971 PHIsToCompute.push_back(PHI);
4972 }
4973 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
4974 E = PHIsToCompute.end(); I != E; ++I) {
4975 PHINode *PHI = *I;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004976 Constant *&NextPHI = NextIterVals[PHI];
4977 if (NextPHI) continue; // Already computed!
4978
4979 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
4980 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD);
4981 }
4982 CurrentIterVals.swap(NextIterVals);
Chris Lattner7980fb92004-04-17 18:36:24 +00004983 }
4984
4985 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004986 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004987}
4988
Dan Gohmane7125f42009-09-03 15:00:26 +00004989/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004990/// at the specified scope in the program. The L value specifies a loop
4991/// nest to evaluate the expression at, where null is the top-level or a
4992/// specified loop is immediately inside of the loop.
4993///
4994/// This method can be used to compute the exit value for a variable defined
4995/// in a loop by querying what the value will hold in the parent loop.
4996///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004997/// In the case that a relevant loop exit value cannot be computed, the
4998/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004999const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00005000 // Check to see if we've folded this expression at this loop before.
5001 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
5002 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
5003 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
5004 if (!Pair.second)
5005 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00005006
Dan Gohman42214892009-08-31 21:15:23 +00005007 // Otherwise compute it.
5008 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00005009 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00005010 return C;
5011}
5012
Nick Lewycky614fef62011-10-22 19:58:20 +00005013/// This builds up a Constant using the ConstantExpr interface. That way, we
5014/// will return Constants for objects which aren't represented by a
5015/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5016/// Returns NULL if the SCEV isn't representable as a Constant.
5017static Constant *BuildConstantFromSCEV(const SCEV *V) {
5018 switch (V->getSCEVType()) {
5019 default: // TODO: smax, umax.
5020 case scCouldNotCompute:
5021 case scAddRecExpr:
5022 break;
5023 case scConstant:
5024 return cast<SCEVConstant>(V)->getValue();
5025 case scUnknown:
5026 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5027 case scSignExtend: {
5028 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5029 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5030 return ConstantExpr::getSExt(CastOp, SS->getType());
5031 break;
5032 }
5033 case scZeroExtend: {
5034 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5035 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5036 return ConstantExpr::getZExt(CastOp, SZ->getType());
5037 break;
5038 }
5039 case scTruncate: {
5040 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5041 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5042 return ConstantExpr::getTrunc(CastOp, ST->getType());
5043 break;
5044 }
5045 case scAddExpr: {
5046 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5047 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5048 if (C->getType()->isPointerTy())
5049 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5050 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5051 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5052 if (!C2) return 0;
5053
5054 // First pointer!
5055 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5056 std::swap(C, C2);
5057 // The offsets have been converted to bytes. We can add bytes to an
5058 // i8* by GEP with the byte count in the first index.
5059 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5060 }
5061
5062 // Don't bother trying to sum two pointers. We probably can't
5063 // statically compute a load that results from it anyway.
5064 if (C2->getType()->isPointerTy())
5065 return 0;
5066
5067 if (C->getType()->isPointerTy()) {
5068 if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5069 C2 = ConstantExpr::getIntegerCast(
5070 C2, Type::getInt32Ty(C->getContext()), true);
5071 C = ConstantExpr::getGetElementPtr(C, C2);
5072 } else
5073 C = ConstantExpr::getAdd(C, C2);
5074 }
5075 return C;
5076 }
5077 break;
5078 }
5079 case scMulExpr: {
5080 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5081 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5082 // Don't bother with pointers at all.
5083 if (C->getType()->isPointerTy()) return 0;
5084 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5085 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5086 if (!C2 || C2->getType()->isPointerTy()) return 0;
5087 C = ConstantExpr::getMul(C, C2);
5088 }
5089 return C;
5090 }
5091 break;
5092 }
5093 case scUDivExpr: {
5094 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5095 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5096 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5097 if (LHS->getType() == RHS->getType())
5098 return ConstantExpr::getUDiv(LHS, RHS);
5099 break;
5100 }
5101 }
5102 return 0;
5103}
5104
Dan Gohman42214892009-08-31 21:15:23 +00005105const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005106 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005107
Nick Lewycky3e630762008-02-20 06:48:22 +00005108 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00005109 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00005110 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005111 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005112 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00005113 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5114 if (PHINode *PN = dyn_cast<PHINode>(I))
5115 if (PN->getParent() == LI->getHeader()) {
5116 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00005117 // to see if the loop that contains it has a known backedge-taken
5118 // count. If so, we may be able to force computation of the exit
5119 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005120 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00005121 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00005122 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005123 // Okay, we know how many times the containing loop executes. If
5124 // this is a constant evolving PHI node, get the final value at
5125 // the specified iteration number.
5126 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00005127 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00005128 LI);
Dan Gohman09987962009-06-29 21:31:18 +00005129 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00005130 }
5131 }
5132
Reid Spencer09906f32006-12-04 21:33:23 +00005133 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00005134 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00005135 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00005136 // result. This is particularly useful for computing loop exit values.
5137 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00005138 SmallVector<Constant *, 4> Operands;
5139 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00005140 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5141 Value *Op = I->getOperand(i);
5142 if (Constant *C = dyn_cast<Constant>(Op)) {
5143 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00005144 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00005145 }
Dan Gohman11046452010-06-29 23:43:06 +00005146
5147 // If any of the operands is non-constant and if they are
5148 // non-integer and non-pointer, don't even try to analyze them
5149 // with scev techniques.
5150 if (!isSCEVable(Op->getType()))
5151 return V;
5152
5153 const SCEV *OrigV = getSCEV(Op);
5154 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5155 MadeImprovement |= OrigV != OpV;
5156
Nick Lewycky614fef62011-10-22 19:58:20 +00005157 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohman11046452010-06-29 23:43:06 +00005158 if (!C) return V;
5159 if (C->getType() != Op->getType())
5160 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5161 Op->getType(),
5162 false),
5163 C, Op->getType());
5164 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00005165 }
Dan Gohman64a845e2009-06-24 04:48:43 +00005166
Dan Gohman11046452010-06-29 23:43:06 +00005167 // Check to see if getSCEVAtScope actually made an improvement.
5168 if (MadeImprovement) {
5169 Constant *C = 0;
5170 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5171 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
5172 Operands[0], Operands[1], TD);
Nick Lewycky614fef62011-10-22 19:58:20 +00005173 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5174 if (!LI->isVolatile())
5175 C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5176 } else
Dan Gohman11046452010-06-29 23:43:06 +00005177 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Jay Foad1d2f5692011-07-19 13:32:40 +00005178 Operands, TD);
Dan Gohman11046452010-06-29 23:43:06 +00005179 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00005180 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00005181 }
Chris Lattner3221ad02004-04-17 22:58:41 +00005182 }
5183 }
5184
5185 // This is some other type of SCEVUnknown, just return it.
5186 return V;
5187 }
5188
Dan Gohman622ed672009-05-04 22:02:23 +00005189 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005190 // Avoid performing the look-up in the common case where the specified
5191 // expression has no loop-variant portions.
5192 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005193 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005194 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005195 // Okay, at least one of these operands is loop variant but might be
5196 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00005197 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5198 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00005199 NewOps.push_back(OpAtScope);
5200
5201 for (++i; i != e; ++i) {
5202 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005203 NewOps.push_back(OpAtScope);
5204 }
5205 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005206 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005207 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005208 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005209 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005210 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00005211 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005212 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00005213 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005214 }
5215 }
5216 // If we got here, all operands are loop invariant.
5217 return Comm;
5218 }
5219
Dan Gohman622ed672009-05-04 22:02:23 +00005220 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005221 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5222 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00005223 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5224 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005225 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00005226 }
5227
5228 // If this is a loop recurrence for a loop that does not contain L, then we
5229 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00005230 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00005231 // First, attempt to evaluate each operand.
5232 // Avoid performing the look-up in the common case where the specified
5233 // expression has no loop-variant portions.
5234 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5235 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5236 if (OpAtScope == AddRec->getOperand(i))
5237 continue;
5238
5239 // Okay, at least one of these operands is loop variant but might be
5240 // foldable. Build a new instance of the folded commutative expression.
5241 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5242 AddRec->op_begin()+i);
5243 NewOps.push_back(OpAtScope);
5244 for (++i; i != e; ++i)
5245 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5246
Andrew Trick3f95c882011-04-27 01:21:25 +00005247 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00005248 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00005249 AddRec->getNoWrapFlags(SCEV::FlagNW));
5250 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00005251 // The addrec may be folded to a nonrecurrence, for example, if the
5252 // induction variable is multiplied by zero after constant folding. Go
5253 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00005254 if (!AddRec)
5255 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00005256 break;
5257 }
5258
5259 // If the scope is outside the addrec's loop, evaluate it by using the
5260 // loop exit value of the addrec.
5261 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005262 // To evaluate this recurrence, we need to know how many times the AddRec
5263 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005264 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00005265 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005266
Eli Friedmanb42a6262008-08-04 23:49:06 +00005267 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005268 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005269 }
Dan Gohman11046452010-06-29 23:43:06 +00005270
Dan Gohmand594e6f2009-05-24 23:25:42 +00005271 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00005272 }
5273
Dan Gohman622ed672009-05-04 22:02:23 +00005274 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005275 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005276 if (Op == Cast->getOperand())
5277 return Cast; // must be loop invariant
5278 return getZeroExtendExpr(Op, Cast->getType());
5279 }
5280
Dan Gohman622ed672009-05-04 22:02:23 +00005281 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005282 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005283 if (Op == Cast->getOperand())
5284 return Cast; // must be loop invariant
5285 return getSignExtendExpr(Op, Cast->getType());
5286 }
5287
Dan Gohman622ed672009-05-04 22:02:23 +00005288 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005289 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005290 if (Op == Cast->getOperand())
5291 return Cast; // must be loop invariant
5292 return getTruncateExpr(Op, Cast->getType());
5293 }
5294
Torok Edwinc23197a2009-07-14 16:55:14 +00005295 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00005296 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00005297}
5298
Dan Gohman66a7e852009-05-08 20:38:54 +00005299/// getSCEVAtScope - This is a convenience function which does
5300/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00005301const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005302 return getSCEVAtScope(getSCEV(V), L);
5303}
5304
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005305/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5306/// following equation:
5307///
5308/// A * X = B (mod N)
5309///
5310/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5311/// A and B isn't important.
5312///
5313/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005314static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005315 ScalarEvolution &SE) {
5316 uint32_t BW = A.getBitWidth();
5317 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5318 assert(A != 0 && "A must be non-zero.");
5319
5320 // 1. D = gcd(A, N)
5321 //
5322 // The gcd of A and N may have only one prime factor: 2. The number of
5323 // trailing zeros in A is its multiplicity
5324 uint32_t Mult2 = A.countTrailingZeros();
5325 // D = 2^Mult2
5326
5327 // 2. Check if B is divisible by D.
5328 //
5329 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5330 // is not less than multiplicity of this prime factor for D.
5331 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005332 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005333
5334 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5335 // modulo (N / D).
5336 //
5337 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5338 // bit width during computations.
5339 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5340 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005341 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005342 APInt I = AD.multiplicativeInverse(Mod);
5343
5344 // 4. Compute the minimum unsigned root of the equation:
5345 // I * (B / D) mod (N / D)
5346 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5347
5348 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5349 // bits.
5350 return SE.getConstant(Result.trunc(BW));
5351}
Chris Lattner53e677a2004-04-02 20:23:17 +00005352
5353/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5354/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5355/// might be the same) or two SCEVCouldNotCompute objects.
5356///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005357static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005358SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005359 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005360 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5361 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5362 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005363
Chris Lattner53e677a2004-04-02 20:23:17 +00005364 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005365 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005366 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005367 return std::make_pair(CNC, CNC);
5368 }
5369
Reid Spencere8019bb2007-03-01 07:25:48 +00005370 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005371 const APInt &L = LC->getValue()->getValue();
5372 const APInt &M = MC->getValue()->getValue();
5373 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005374 APInt Two(BitWidth, 2);
5375 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005376
Dan Gohman64a845e2009-06-24 04:48:43 +00005377 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005378 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005379 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005380 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5381 // The B coefficient is M-N/2
5382 APInt B(M);
5383 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005384
Reid Spencere8019bb2007-03-01 07:25:48 +00005385 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005386 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005387
Reid Spencere8019bb2007-03-01 07:25:48 +00005388 // Compute the B^2-4ac term.
5389 APInt SqrtTerm(B);
5390 SqrtTerm *= B;
5391 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005392
Reid Spencere8019bb2007-03-01 07:25:48 +00005393 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5394 // integer value or else APInt::sqrt() will assert.
5395 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005396
Dan Gohman64a845e2009-06-24 04:48:43 +00005397 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005398 // The divisions must be performed as signed divisions.
5399 APInt NegB(-B);
Nick Lewycky1cbae182011-10-03 07:10:45 +00005400 APInt TwoA(A << 1);
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005401 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005402 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005403 return std::make_pair(CNC, CNC);
5404 }
5405
Owen Andersone922c022009-07-22 00:24:57 +00005406 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005407
5408 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005409 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005410 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005411 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005412
Dan Gohman64a845e2009-06-24 04:48:43 +00005413 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005414 SE.getConstant(Solution2));
Nick Lewycky1cbae182011-10-03 07:10:45 +00005415 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005416}
5417
5418/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005419/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005420///
5421/// This is only used for loops with a "x != y" exit test. The exit condition is
5422/// now expressed as a single expression, V = x-y. So the exit test is
5423/// effectively V != 0. We know and take advantage of the fact that this
5424/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005425ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005426ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005427 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005428 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005429 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005430 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005431 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005432 }
5433
Dan Gohman35738ac2009-05-04 22:30:44 +00005434 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005435 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005436 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005437
Chris Lattner7975e3e2011-01-09 22:39:48 +00005438 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5439 // the quadratic equation to solve it.
5440 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5441 std::pair<const SCEV *,const SCEV *> Roots =
5442 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005443 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5444 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005445 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005446#if 0
David Greene25e0e872009-12-23 22:18:14 +00005447 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005448 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005449#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005450 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005451 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005452 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5453 R1->getValue(),
5454 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005455 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005456 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005457
Chris Lattner53e677a2004-04-02 20:23:17 +00005458 // We can only use this value if the chrec ends up with an exact zero
5459 // value at this index. When solving for "X*X != 5", for example, we
5460 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005461 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005462 if (Val->isZero())
5463 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005464 }
5465 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005466 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005467 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005468
Chris Lattner7975e3e2011-01-09 22:39:48 +00005469 // Otherwise we can only handle this if it is affine.
5470 if (!AddRec->isAffine())
5471 return getCouldNotCompute();
5472
5473 // If this is an affine expression, the execution count of this branch is
5474 // the minimum unsigned root of the following equation:
5475 //
5476 // Start + Step*N = 0 (mod 2^BW)
5477 //
5478 // equivalent to:
5479 //
5480 // Step*N = -Start (mod 2^BW)
5481 //
5482 // where BW is the common bit width of Start and Step.
5483
5484 // Get the initial value for the loop.
5485 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5486 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5487
5488 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005489 //
5490 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5491 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5492 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5493 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005494 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5495 if (StepC == 0)
5496 return getCouldNotCompute();
5497
Andrew Trick3228cc22011-03-14 16:50:06 +00005498 // For positive steps (counting up until unsigned overflow):
5499 // N = -Start/Step (as unsigned)
5500 // For negative steps (counting down to zero):
5501 // N = Start/-Step
5502 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005503 bool CountDown = StepC->getValue()->getValue().isNegative();
5504 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005505
5506 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005507 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5508 // N = Distance (as unsigned)
Nick Lewycky1cbae182011-10-03 07:10:45 +00005509 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5510 ConstantRange CR = getUnsignedRange(Start);
5511 const SCEV *MaxBECount;
5512 if (!CountDown && CR.getUnsignedMin().isMinValue())
5513 // When counting up, the worst starting value is 1, not 0.
5514 MaxBECount = CR.getUnsignedMax().isMinValue()
5515 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5516 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5517 else
5518 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5519 : -CR.getUnsignedMin());
5520 return ExitLimit(Distance, MaxBECount);
5521 }
Andrew Trick635f7182011-03-09 17:23:39 +00005522
Andrew Trickdcfd4042011-03-14 17:28:02 +00005523 // If the recurrence is known not to wraparound, unsigned divide computes the
5524 // back edge count. We know that the value will either become zero (and thus
5525 // the loop terminates), that the loop will terminate through some other exit
5526 // condition first, or that the loop has undefined behavior. This means
5527 // we can't "miss" the exit value, even with nonunit stride.
5528 //
5529 // FIXME: Prove that loops always exhibits *acceptable* undefined
5530 // behavior. Loops must exhibit defined behavior until a wrapped value is
5531 // actually used. So the trip count computed by udiv could be smaller than the
5532 // number of well-defined iterations.
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005533 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
Andrew Trickdcfd4042011-03-14 17:28:02 +00005534 // FIXME: We really want an "isexact" bit for udiv.
5535 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005536 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005537 // Then, try to solve the above equation provided that Start is constant.
5538 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5539 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5540 -StartC->getValue()->getValue(),
5541 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005542 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005543}
5544
5545/// HowFarToNonZero - Return the number of times a backedge checking the
5546/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005547/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005548ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005549ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005550 // Loops that look like: while (X == 0) are very strange indeed. We don't
5551 // handle them yet except for the trivial case. This could be expanded in the
5552 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005553
Chris Lattner53e677a2004-04-02 20:23:17 +00005554 // If the value is a constant, check to see if it is known to be non-zero
5555 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005556 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005557 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005558 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005559 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005560 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005561
Chris Lattner53e677a2004-04-02 20:23:17 +00005562 // We could implement others, but I really doubt anyone writes loops like
5563 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005564 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005565}
5566
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005567/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5568/// (which may not be an immediate predecessor) which has exactly one
5569/// successor from which BB is reachable, or null if no such block is
5570/// found.
5571///
Dan Gohman005752b2010-04-15 16:19:08 +00005572std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005573ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005574 // If the block has a unique predecessor, then there is no path from the
5575 // predecessor to the block that does not go through the direct edge
5576 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005577 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005578 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005579
5580 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005581 // If the header has a unique predecessor outside the loop, it must be
5582 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005583 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005584 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005585
Dan Gohman005752b2010-04-15 16:19:08 +00005586 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005587}
5588
Dan Gohman763bad12009-06-20 00:35:32 +00005589/// HasSameValue - SCEV structural equivalence is usually sufficient for
5590/// testing whether two expressions are equal, however for the purposes of
5591/// looking for a condition guarding a loop, it can be useful to be a little
5592/// more general, since a front-end may have replicated the controlling
5593/// expression.
5594///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005595static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005596 // Quick check to see if they are the same SCEV.
5597 if (A == B) return true;
5598
5599 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5600 // two different instructions with the same value. Check for this case.
5601 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5602 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5603 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5604 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005605 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005606 return true;
5607
5608 // Otherwise assume they may have a different value.
5609 return false;
5610}
5611
Dan Gohmane9796502010-04-24 01:28:42 +00005612/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5613/// predicate Pred. Return true iff any changes were made.
5614///
5615bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5616 const SCEV *&LHS, const SCEV *&RHS) {
5617 bool Changed = false;
5618
5619 // Canonicalize a constant to the right side.
5620 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5621 // Check for both operands constant.
5622 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5623 if (ConstantExpr::getICmp(Pred,
5624 LHSC->getValue(),
5625 RHSC->getValue())->isNullValue())
5626 goto trivially_false;
5627 else
5628 goto trivially_true;
5629 }
5630 // Otherwise swap the operands to put the constant on the right.
5631 std::swap(LHS, RHS);
5632 Pred = ICmpInst::getSwappedPredicate(Pred);
5633 Changed = true;
5634 }
5635
5636 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005637 // addrec's loop, put the addrec on the left. Also make a dominance check,
5638 // as both operands could be addrecs loop-invariant in each other's loop.
5639 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5640 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005641 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005642 std::swap(LHS, RHS);
5643 Pred = ICmpInst::getSwappedPredicate(Pred);
5644 Changed = true;
5645 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005646 }
Dan Gohmane9796502010-04-24 01:28:42 +00005647
5648 // If there's a constant operand, canonicalize comparisons with boundary
5649 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5650 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5651 const APInt &RA = RC->getValue()->getValue();
5652 switch (Pred) {
5653 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5654 case ICmpInst::ICMP_EQ:
5655 case ICmpInst::ICMP_NE:
5656 break;
5657 case ICmpInst::ICMP_UGE:
5658 if ((RA - 1).isMinValue()) {
5659 Pred = ICmpInst::ICMP_NE;
5660 RHS = getConstant(RA - 1);
5661 Changed = true;
5662 break;
5663 }
5664 if (RA.isMaxValue()) {
5665 Pred = ICmpInst::ICMP_EQ;
5666 Changed = true;
5667 break;
5668 }
5669 if (RA.isMinValue()) goto trivially_true;
5670
5671 Pred = ICmpInst::ICMP_UGT;
5672 RHS = getConstant(RA - 1);
5673 Changed = true;
5674 break;
5675 case ICmpInst::ICMP_ULE:
5676 if ((RA + 1).isMaxValue()) {
5677 Pred = ICmpInst::ICMP_NE;
5678 RHS = getConstant(RA + 1);
5679 Changed = true;
5680 break;
5681 }
5682 if (RA.isMinValue()) {
5683 Pred = ICmpInst::ICMP_EQ;
5684 Changed = true;
5685 break;
5686 }
5687 if (RA.isMaxValue()) goto trivially_true;
5688
5689 Pred = ICmpInst::ICMP_ULT;
5690 RHS = getConstant(RA + 1);
5691 Changed = true;
5692 break;
5693 case ICmpInst::ICMP_SGE:
5694 if ((RA - 1).isMinSignedValue()) {
5695 Pred = ICmpInst::ICMP_NE;
5696 RHS = getConstant(RA - 1);
5697 Changed = true;
5698 break;
5699 }
5700 if (RA.isMaxSignedValue()) {
5701 Pred = ICmpInst::ICMP_EQ;
5702 Changed = true;
5703 break;
5704 }
5705 if (RA.isMinSignedValue()) goto trivially_true;
5706
5707 Pred = ICmpInst::ICMP_SGT;
5708 RHS = getConstant(RA - 1);
5709 Changed = true;
5710 break;
5711 case ICmpInst::ICMP_SLE:
5712 if ((RA + 1).isMaxSignedValue()) {
5713 Pred = ICmpInst::ICMP_NE;
5714 RHS = getConstant(RA + 1);
5715 Changed = true;
5716 break;
5717 }
5718 if (RA.isMinSignedValue()) {
5719 Pred = ICmpInst::ICMP_EQ;
5720 Changed = true;
5721 break;
5722 }
5723 if (RA.isMaxSignedValue()) goto trivially_true;
5724
5725 Pred = ICmpInst::ICMP_SLT;
5726 RHS = getConstant(RA + 1);
5727 Changed = true;
5728 break;
5729 case ICmpInst::ICMP_UGT:
5730 if (RA.isMinValue()) {
5731 Pred = ICmpInst::ICMP_NE;
5732 Changed = true;
5733 break;
5734 }
5735 if ((RA + 1).isMaxValue()) {
5736 Pred = ICmpInst::ICMP_EQ;
5737 RHS = getConstant(RA + 1);
5738 Changed = true;
5739 break;
5740 }
5741 if (RA.isMaxValue()) goto trivially_false;
5742 break;
5743 case ICmpInst::ICMP_ULT:
5744 if (RA.isMaxValue()) {
5745 Pred = ICmpInst::ICMP_NE;
5746 Changed = true;
5747 break;
5748 }
5749 if ((RA - 1).isMinValue()) {
5750 Pred = ICmpInst::ICMP_EQ;
5751 RHS = getConstant(RA - 1);
5752 Changed = true;
5753 break;
5754 }
5755 if (RA.isMinValue()) goto trivially_false;
5756 break;
5757 case ICmpInst::ICMP_SGT:
5758 if (RA.isMinSignedValue()) {
5759 Pred = ICmpInst::ICMP_NE;
5760 Changed = true;
5761 break;
5762 }
5763 if ((RA + 1).isMaxSignedValue()) {
5764 Pred = ICmpInst::ICMP_EQ;
5765 RHS = getConstant(RA + 1);
5766 Changed = true;
5767 break;
5768 }
5769 if (RA.isMaxSignedValue()) goto trivially_false;
5770 break;
5771 case ICmpInst::ICMP_SLT:
5772 if (RA.isMaxSignedValue()) {
5773 Pred = ICmpInst::ICMP_NE;
5774 Changed = true;
5775 break;
5776 }
5777 if ((RA - 1).isMinSignedValue()) {
5778 Pred = ICmpInst::ICMP_EQ;
5779 RHS = getConstant(RA - 1);
5780 Changed = true;
5781 break;
5782 }
5783 if (RA.isMinSignedValue()) goto trivially_false;
5784 break;
5785 }
5786 }
5787
5788 // Check for obvious equality.
5789 if (HasSameValue(LHS, RHS)) {
5790 if (ICmpInst::isTrueWhenEqual(Pred))
5791 goto trivially_true;
5792 if (ICmpInst::isFalseWhenEqual(Pred))
5793 goto trivially_false;
5794 }
5795
Dan Gohman03557dc2010-05-03 16:35:17 +00005796 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5797 // adding or subtracting 1 from one of the operands.
5798 switch (Pred) {
5799 case ICmpInst::ICMP_SLE:
5800 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5801 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005802 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005803 Pred = ICmpInst::ICMP_SLT;
5804 Changed = true;
5805 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005806 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005807 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005808 Pred = ICmpInst::ICMP_SLT;
5809 Changed = true;
5810 }
5811 break;
5812 case ICmpInst::ICMP_SGE:
5813 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005814 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005815 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005816 Pred = ICmpInst::ICMP_SGT;
5817 Changed = true;
5818 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5819 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005820 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005821 Pred = ICmpInst::ICMP_SGT;
5822 Changed = true;
5823 }
5824 break;
5825 case ICmpInst::ICMP_ULE:
5826 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005827 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005828 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005829 Pred = ICmpInst::ICMP_ULT;
5830 Changed = true;
5831 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005832 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005833 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005834 Pred = ICmpInst::ICMP_ULT;
5835 Changed = true;
5836 }
5837 break;
5838 case ICmpInst::ICMP_UGE:
5839 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005840 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005841 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005842 Pred = ICmpInst::ICMP_UGT;
5843 Changed = true;
5844 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005845 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005846 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005847 Pred = ICmpInst::ICMP_UGT;
5848 Changed = true;
5849 }
5850 break;
5851 default:
5852 break;
5853 }
5854
Dan Gohmane9796502010-04-24 01:28:42 +00005855 // TODO: More simplifications are possible here.
5856
5857 return Changed;
5858
5859trivially_true:
5860 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005861 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005862 Pred = ICmpInst::ICMP_EQ;
5863 return true;
5864
5865trivially_false:
5866 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005867 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005868 Pred = ICmpInst::ICMP_NE;
5869 return true;
5870}
5871
Dan Gohman85b05a22009-07-13 21:35:55 +00005872bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5873 return getSignedRange(S).getSignedMax().isNegative();
5874}
5875
5876bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5877 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5878}
5879
5880bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5881 return !getSignedRange(S).getSignedMin().isNegative();
5882}
5883
5884bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5885 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5886}
5887
5888bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5889 return isKnownNegative(S) || isKnownPositive(S);
5890}
5891
5892bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5893 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005894 // Canonicalize the inputs first.
5895 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5896
Dan Gohman53c66ea2010-04-11 22:16:48 +00005897 // If LHS or RHS is an addrec, check to see if the condition is true in
5898 // every iteration of the loop.
5899 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5900 if (isLoopEntryGuardedByCond(
5901 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5902 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005903 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005904 return true;
5905 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5906 if (isLoopEntryGuardedByCond(
5907 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5908 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005909 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005910 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005911
Dan Gohman53c66ea2010-04-11 22:16:48 +00005912 // Otherwise see what can be done with known constant ranges.
5913 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5914}
5915
5916bool
5917ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5918 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005919 if (HasSameValue(LHS, RHS))
5920 return ICmpInst::isTrueWhenEqual(Pred);
5921
Dan Gohman53c66ea2010-04-11 22:16:48 +00005922 // This code is split out from isKnownPredicate because it is called from
5923 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005924 switch (Pred) {
5925 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005926 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005927 break;
5928 case ICmpInst::ICMP_SGT:
5929 Pred = ICmpInst::ICMP_SLT;
5930 std::swap(LHS, RHS);
5931 case ICmpInst::ICMP_SLT: {
5932 ConstantRange LHSRange = getSignedRange(LHS);
5933 ConstantRange RHSRange = getSignedRange(RHS);
5934 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5935 return true;
5936 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5937 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005938 break;
5939 }
5940 case ICmpInst::ICMP_SGE:
5941 Pred = ICmpInst::ICMP_SLE;
5942 std::swap(LHS, RHS);
5943 case ICmpInst::ICMP_SLE: {
5944 ConstantRange LHSRange = getSignedRange(LHS);
5945 ConstantRange RHSRange = getSignedRange(RHS);
5946 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5947 return true;
5948 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5949 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005950 break;
5951 }
5952 case ICmpInst::ICMP_UGT:
5953 Pred = ICmpInst::ICMP_ULT;
5954 std::swap(LHS, RHS);
5955 case ICmpInst::ICMP_ULT: {
5956 ConstantRange LHSRange = getUnsignedRange(LHS);
5957 ConstantRange RHSRange = getUnsignedRange(RHS);
5958 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5959 return true;
5960 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5961 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005962 break;
5963 }
5964 case ICmpInst::ICMP_UGE:
5965 Pred = ICmpInst::ICMP_ULE;
5966 std::swap(LHS, RHS);
5967 case ICmpInst::ICMP_ULE: {
5968 ConstantRange LHSRange = getUnsignedRange(LHS);
5969 ConstantRange RHSRange = getUnsignedRange(RHS);
5970 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5971 return true;
5972 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5973 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005974 break;
5975 }
5976 case ICmpInst::ICMP_NE: {
5977 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5978 return true;
5979 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5980 return true;
5981
5982 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5983 if (isKnownNonZero(Diff))
5984 return true;
5985 break;
5986 }
5987 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005988 // The check at the top of the function catches the case where
5989 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005990 break;
5991 }
5992 return false;
5993}
5994
5995/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5996/// protected by a conditional between LHS and RHS. This is used to
5997/// to eliminate casts.
5998bool
5999ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6000 ICmpInst::Predicate Pred,
6001 const SCEV *LHS, const SCEV *RHS) {
6002 // Interpret a null as meaning no loop, where there is obviously no guard
6003 // (interprocedural conditions notwithstanding).
6004 if (!L) return true;
6005
6006 BasicBlock *Latch = L->getLoopLatch();
6007 if (!Latch)
6008 return false;
6009
6010 BranchInst *LoopContinuePredicate =
6011 dyn_cast<BranchInst>(Latch->getTerminator());
6012 if (!LoopContinuePredicate ||
6013 LoopContinuePredicate->isUnconditional())
6014 return false;
6015
Dan Gohmanaf08a362010-08-10 23:46:30 +00006016 return isImpliedCond(Pred, LHS, RHS,
6017 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00006018 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00006019}
6020
Dan Gohman3948d0b2010-04-11 19:27:13 +00006021/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00006022/// by a conditional between LHS and RHS. This is used to help avoid max
6023/// expressions in loop trip counts, and to eliminate casts.
6024bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00006025ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6026 ICmpInst::Predicate Pred,
6027 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00006028 // Interpret a null as meaning no loop, where there is obviously no guard
6029 // (interprocedural conditions notwithstanding).
6030 if (!L) return false;
6031
Dan Gohman859b4822009-05-18 15:36:09 +00006032 // Starting at the loop predecessor, climb up the predecessor chain, as long
6033 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00006034 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00006035 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00006036 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00006037 Pair.first;
6038 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00006039
6040 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00006041 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00006042 if (!LoopEntryPredicate ||
6043 LoopEntryPredicate->isUnconditional())
6044 continue;
6045
Dan Gohmanaf08a362010-08-10 23:46:30 +00006046 if (isImpliedCond(Pred, LHS, RHS,
6047 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00006048 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00006049 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00006050 }
6051
Dan Gohman38372182008-08-12 20:17:31 +00006052 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00006053}
6054
Dan Gohman0f4b2852009-07-21 23:03:19 +00006055/// isImpliedCond - Test whether the condition described by Pred, LHS,
6056/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006057bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006058 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00006059 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006060 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006061 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006062 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006063 if (BO->getOpcode() == Instruction::And) {
6064 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006065 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6066 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006067 } else if (BO->getOpcode() == Instruction::Or) {
6068 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006069 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6070 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006071 }
6072 }
6073
Dan Gohmanaf08a362010-08-10 23:46:30 +00006074 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006075 if (!ICI) return false;
6076
Dan Gohman85b05a22009-07-13 21:35:55 +00006077 // Bail if the ICmp's operands' types are wider than the needed type
6078 // before attempting to call getSCEV on them. This avoids infinite
6079 // recursion, since the analysis of widening casts can require loop
6080 // exit condition information for overflow checking, which would
6081 // lead back here.
6082 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00006083 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00006084 return false;
6085
Dan Gohman0f4b2852009-07-21 23:03:19 +00006086 // Now that we found a conditional branch that dominates the loop, check to
6087 // see if it is the comparison we are looking for.
6088 ICmpInst::Predicate FoundPred;
6089 if (Inverse)
6090 FoundPred = ICI->getInversePredicate();
6091 else
6092 FoundPred = ICI->getPredicate();
6093
6094 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6095 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00006096
6097 // Balance the types. The case where FoundLHS' type is wider than
6098 // LHS' type is checked for above.
6099 if (getTypeSizeInBits(LHS->getType()) >
6100 getTypeSizeInBits(FoundLHS->getType())) {
6101 if (CmpInst::isSigned(Pred)) {
6102 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6103 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6104 } else {
6105 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6106 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6107 }
6108 }
6109
Dan Gohman0f4b2852009-07-21 23:03:19 +00006110 // Canonicalize the query to match the way instcombine will have
6111 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00006112 if (SimplifyICmpOperands(Pred, LHS, RHS))
6113 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006114 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00006115 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6116 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006117 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00006118
6119 // Check to see if we can make the LHS or RHS match.
6120 if (LHS == FoundRHS || RHS == FoundLHS) {
6121 if (isa<SCEVConstant>(RHS)) {
6122 std::swap(FoundLHS, FoundRHS);
6123 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6124 } else {
6125 std::swap(LHS, RHS);
6126 Pred = ICmpInst::getSwappedPredicate(Pred);
6127 }
6128 }
6129
6130 // Check whether the found predicate is the same as the desired predicate.
6131 if (FoundPred == Pred)
6132 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6133
6134 // Check whether swapping the found predicate makes it the same as the
6135 // desired predicate.
6136 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6137 if (isa<SCEVConstant>(RHS))
6138 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6139 else
6140 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6141 RHS, LHS, FoundLHS, FoundRHS);
6142 }
6143
6144 // Check whether the actual condition is beyond sufficient.
6145 if (FoundPred == ICmpInst::ICMP_EQ)
6146 if (ICmpInst::isTrueWhenEqual(Pred))
6147 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6148 return true;
6149 if (Pred == ICmpInst::ICMP_NE)
6150 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6151 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6152 return true;
6153
6154 // Otherwise assume the worst.
6155 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006156}
6157
Dan Gohman0f4b2852009-07-21 23:03:19 +00006158/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006159/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006160/// and FoundRHS is true.
6161bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6162 const SCEV *LHS, const SCEV *RHS,
6163 const SCEV *FoundLHS,
6164 const SCEV *FoundRHS) {
6165 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6166 FoundLHS, FoundRHS) ||
6167 // ~x < ~y --> x > y
6168 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6169 getNotSCEV(FoundRHS),
6170 getNotSCEV(FoundLHS));
6171}
6172
6173/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006174/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006175/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00006176bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00006177ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6178 const SCEV *LHS, const SCEV *RHS,
6179 const SCEV *FoundLHS,
6180 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006181 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00006182 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6183 case ICmpInst::ICMP_EQ:
6184 case ICmpInst::ICMP_NE:
6185 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6186 return true;
6187 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00006188 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00006189 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006190 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6191 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006192 return true;
6193 break;
6194 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006195 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006196 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6197 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006198 return true;
6199 break;
6200 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00006201 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006202 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6203 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006204 return true;
6205 break;
6206 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006207 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006208 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6209 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006210 return true;
6211 break;
6212 }
6213
6214 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006215}
6216
Dan Gohman51f53b72009-06-21 23:46:38 +00006217/// getBECount - Subtract the end and start values and divide by the step,
6218/// rounding up, to get the number of times the backedge is executed. Return
6219/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006220const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00006221 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00006222 const SCEV *Step,
6223 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00006224 assert(!isKnownNegative(Step) &&
6225 "This code doesn't handle negative strides yet!");
6226
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006227 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00006228
6229 // When Start == End, we have an exact BECount == 0. Short-circuit this case
6230 // here because SCEV may not be able to determine that the unsigned division
6231 // after rounding is zero.
6232 if (Start == End)
6233 return getConstant(Ty, 0);
6234
Dan Gohmandeff6212010-05-03 22:09:21 +00006235 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00006236 const SCEV *Diff = getMinusSCEV(End, Start);
6237 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00006238
6239 // Add an adjustment to the difference between End and Start so that
6240 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006241 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00006242
Dan Gohman1f96e672009-09-17 18:05:20 +00006243 if (!NoWrap) {
6244 // Check Add for unsigned overflow.
6245 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006246 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00006247 getTypeSizeInBits(Ty) + 1);
6248 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6249 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6250 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6251 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6252 return getCouldNotCompute();
6253 }
Dan Gohman51f53b72009-06-21 23:46:38 +00006254
6255 return getUDivExpr(Add, Step);
6256}
6257
Chris Lattnerdb25de42005-08-15 23:33:51 +00006258/// HowManyLessThans - Return the number of times a backedge containing the
6259/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00006260/// CouldNotCompute.
Andrew Trick5116ff62011-07-26 17:19:55 +00006261ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00006262ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6263 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00006264 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00006265 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006266
Dan Gohman35738ac2009-05-04 22:30:44 +00006267 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006268 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00006269 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006270
Dan Gohman1f96e672009-09-17 18:05:20 +00006271 // Check to see if we have a flag which makes analysis easy.
Nick Lewycky89d093d2011-11-09 07:11:37 +00006272 bool NoWrap = isSigned ?
6273 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
6274 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
Dan Gohman1f96e672009-09-17 18:05:20 +00006275
Chris Lattnerdb25de42005-08-15 23:33:51 +00006276 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006277 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00006278 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00006279
Dan Gohman52fddd32010-01-26 04:40:18 +00006280 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00006281 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00006282 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006283 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00006284 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00006285 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00006286 // value and past the maximum value for its type in a single step.
6287 // Note that it's not sufficient to check NoWrap here, because even
6288 // though the value after a wrap is undefined, it's not undefined
6289 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00006290 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00006291 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00006292 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00006293 if (isSigned) {
6294 APInt Max = APInt::getSignedMaxValue(BitWidth);
6295 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6296 .slt(getSignedRange(RHS).getSignedMax()))
6297 return getCouldNotCompute();
6298 } else {
6299 APInt Max = APInt::getMaxValue(BitWidth);
6300 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6301 .ult(getUnsignedRange(RHS).getUnsignedMax()))
6302 return getCouldNotCompute();
6303 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006304 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00006305 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00006306 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006307
Dan Gohmana1af7572009-04-30 20:47:05 +00006308 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6309 // m. So, we count the number of iterations in which {n,+,s} < m is true.
6310 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00006311 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00006312
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006313 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00006314 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006315
Dan Gohmana1af7572009-04-30 20:47:05 +00006316 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006317 const SCEV *MinStart = getConstant(isSigned ?
6318 getSignedRange(Start).getSignedMin() :
6319 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006320
Dan Gohmana1af7572009-04-30 20:47:05 +00006321 // If we know that the condition is true in order to enter the loop,
6322 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006323 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6324 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006325 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006326 if (!isLoopEntryGuardedByCond(L,
6327 isSigned ? ICmpInst::ICMP_SLT :
6328 ICmpInst::ICMP_ULT,
6329 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006330 End = isSigned ? getSMaxExpr(RHS, Start)
6331 : getUMaxExpr(RHS, Start);
6332
6333 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006334 const SCEV *MaxEnd = getConstant(isSigned ?
6335 getSignedRange(End).getSignedMax() :
6336 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006337
Dan Gohman52fddd32010-01-26 04:40:18 +00006338 // If MaxEnd is within a step of the maximum integer value in its type,
6339 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006340 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006341 // compute the correct value.
6342 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006343 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006344 MaxEnd = isSigned ?
6345 getSMinExpr(MaxEnd,
6346 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6347 StepMinusOne)) :
6348 getUMinExpr(MaxEnd,
6349 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6350 StepMinusOne));
6351
Dan Gohmana1af7572009-04-30 20:47:05 +00006352 // Finally, we subtract these two values and divide, rounding up, to get
6353 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006354 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006355
6356 // The maximum backedge count is similar, except using the minimum start
6357 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006358 // If we already have an exact constant BECount, use it instead.
6359 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6360 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6361
6362 // If the stride is nonconstant, and NoWrap == true, then
6363 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6364 // exact BECount and invalid MaxBECount, which should be avoided to catch
6365 // more optimization opportunities.
6366 if (isa<SCEVCouldNotCompute>(MaxBECount))
6367 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006368
Andrew Trick5116ff62011-07-26 17:19:55 +00006369 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006370 }
6371
Dan Gohman1c343752009-06-27 21:21:31 +00006372 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006373}
6374
Chris Lattner53e677a2004-04-02 20:23:17 +00006375/// getNumIterationsInRange - Return the number of iterations of this loop that
6376/// produce values in the specified constant range. Another way of looking at
6377/// this is that it returns the first iteration number where the value is not in
6378/// the condition, thus computing the exit count. If the iteration count can't
6379/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006380const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006381 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006382 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006383 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006384
6385 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006386 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006387 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006388 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006389 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006390 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006391 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006392 if (const SCEVAddRecExpr *ShiftedAddRec =
6393 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006394 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006395 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006396 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006397 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006398 }
6399
6400 // The only time we can solve this is when we have all constant indices.
6401 // Otherwise, we cannot determine the overflow conditions.
6402 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6403 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006404 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006405
6406
6407 // Okay at this point we know that all elements of the chrec are constants and
6408 // that the start element is zero.
6409
6410 // First check to see if the range contains zero. If not, the first
6411 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006412 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006413 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006414 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006415
Chris Lattner53e677a2004-04-02 20:23:17 +00006416 if (isAffine()) {
6417 // If this is an affine expression then we have this situation:
6418 // Solve {0,+,A} in Range === Ax in Range
6419
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006420 // We know that zero is in the range. If A is positive then we know that
6421 // the upper value of the range must be the first possible exit value.
6422 // If A is negative then the lower of the range is the last possible loop
6423 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006424 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006425 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6426 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006427
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006428 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006429 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006430 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006431
6432 // Evaluate at the exit value. If we really did fall out of the valid
6433 // range, then we computed our trip count, otherwise wrap around or other
6434 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006435 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006436 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006437 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006438
6439 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006440 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006441 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006442 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006443 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006444 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006445 } else if (isQuadratic()) {
6446 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6447 // quadratic equation to solve it. To do this, we must frame our problem in
6448 // terms of figuring out when zero is crossed, instead of when
6449 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006450 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006451 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006452 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6453 // getNoWrapFlags(FlagNW)
6454 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006455
6456 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006457 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006458 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006459 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6460 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006461 if (R1) {
6462 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006463 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006464 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006465 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006466 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006467 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006468
Chris Lattner53e677a2004-04-02 20:23:17 +00006469 // Make sure the root is not off by one. The returned iteration should
6470 // not be in the range, but the previous one should be. When solving
6471 // for "X*X < 5", for example, we should not return a root of 2.
6472 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006473 R1->getValue(),
6474 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006475 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006476 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006477 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006478 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006479
Dan Gohman246b2562007-10-22 18:31:58 +00006480 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006481 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006482 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006483 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006484 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006485
Chris Lattner53e677a2004-04-02 20:23:17 +00006486 // If R1 was not in the range, then it is a good return value. Make
6487 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006488 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006489 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006490 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006491 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006492 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006493 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006494 }
6495 }
6496 }
6497
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006498 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006499}
6500
6501
6502
6503//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006504// SCEVCallbackVH Class Implementation
6505//===----------------------------------------------------------------------===//
6506
Dan Gohman1959b752009-05-19 19:22:47 +00006507void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006508 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006509 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6510 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006511 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006512 // this now dangles!
6513}
6514
Dan Gohman81f91212010-07-28 01:09:07 +00006515void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006516 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006517
Dan Gohman35738ac2009-05-04 22:30:44 +00006518 // Forget all the expressions associated with users of the old value,
6519 // so that future queries will recompute the expressions using the new
6520 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006521 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006522 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006523 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006524 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6525 UI != UE; ++UI)
6526 Worklist.push_back(*UI);
6527 while (!Worklist.empty()) {
6528 User *U = Worklist.pop_back_val();
6529 // Deleting the Old value will cause this to dangle. Postpone
6530 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006531 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006532 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006533 if (!Visited.insert(U))
6534 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006535 if (PHINode *PN = dyn_cast<PHINode>(U))
6536 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006537 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006538 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6539 UI != UE; ++UI)
6540 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006541 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006542 // Delete the Old value.
6543 if (PHINode *PN = dyn_cast<PHINode>(Old))
6544 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006545 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006546 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006547}
6548
Dan Gohman1959b752009-05-19 19:22:47 +00006549ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006550 : CallbackVH(V), SE(se) {}
6551
6552//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006553// ScalarEvolution Class Implementation
6554//===----------------------------------------------------------------------===//
6555
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006556ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006557 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006558 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006559}
6560
Chris Lattner53e677a2004-04-02 20:23:17 +00006561bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006562 this->F = &F;
6563 LI = &getAnalysis<LoopInfo>();
6564 TD = getAnalysisIfAvailable<TargetData>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006565 TLI = &getAnalysis<TargetLibraryInfo>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006566 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006567 return false;
6568}
6569
6570void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006571 // Iterate through all the SCEVUnknown instances and call their
6572 // destructors, so that they release their references to their values.
6573 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6574 U->~SCEVUnknown();
6575 FirstUnknown = 0;
6576
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006577 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006578
6579 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6580 // that a loop had multiple computable exits.
6581 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6582 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6583 I != E; ++I) {
6584 I->second.clear();
6585 }
6586
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006587 BackedgeTakenCounts.clear();
6588 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006589 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006590 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006591 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006592 UnsignedRanges.clear();
6593 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006594 UniqueSCEVs.clear();
6595 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006596}
6597
6598void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6599 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006600 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006601 AU.addRequiredTransitive<DominatorTree>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006602 AU.addRequired<TargetLibraryInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006603}
6604
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006605bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006606 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006607}
6608
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006609static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006610 const Loop *L) {
6611 // Print all inner loops first
6612 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6613 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006614
Dan Gohman30733292010-01-09 18:17:45 +00006615 OS << "Loop ";
6616 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6617 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006618
Dan Gohman5d984912009-12-18 01:14:11 +00006619 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006620 L->getExitBlocks(ExitBlocks);
6621 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006622 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006623
Dan Gohman46bdfb02009-02-24 18:55:53 +00006624 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6625 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006626 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006627 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006628 }
6629
Dan Gohman30733292010-01-09 18:17:45 +00006630 OS << "\n"
6631 "Loop ";
6632 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6633 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006634
6635 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6636 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6637 } else {
6638 OS << "Unpredictable max backedge-taken count. ";
6639 }
6640
6641 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006642}
6643
Dan Gohman5d984912009-12-18 01:14:11 +00006644void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006645 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006646 // out SCEV values of all instructions that are interesting. Doing
6647 // this potentially causes it to create new SCEV objects though,
6648 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006649 // observable from outside the class though, so casting away the
6650 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006651 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006652
Dan Gohman30733292010-01-09 18:17:45 +00006653 OS << "Classifying expressions for: ";
6654 WriteAsOperand(OS, F, /*PrintType=*/false);
6655 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006656 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006657 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006658 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006659 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006660 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006661 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006662
Dan Gohman0c689c52009-06-19 17:49:54 +00006663 const Loop *L = LI->getLoopFor((*I).getParent());
6664
Dan Gohman0bba49c2009-07-07 17:06:11 +00006665 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006666 if (AtUse != SV) {
6667 OS << " --> ";
6668 AtUse->print(OS);
6669 }
6670
6671 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006672 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006673 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006674 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006675 OS << "<<Unknown>>";
6676 } else {
6677 OS << *ExitValue;
6678 }
6679 }
6680
Chris Lattner53e677a2004-04-02 20:23:17 +00006681 OS << "\n";
6682 }
6683
Dan Gohman30733292010-01-09 18:17:45 +00006684 OS << "Determining loop execution counts for: ";
6685 WriteAsOperand(OS, F, /*PrintType=*/false);
6686 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006687 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6688 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006689}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006690
Dan Gohman714b5292010-11-17 23:21:44 +00006691ScalarEvolution::LoopDisposition
6692ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6693 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6694 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6695 Values.insert(std::make_pair(L, LoopVariant));
6696 if (!Pair.second)
6697 return Pair.first->second;
6698
6699 LoopDisposition D = computeLoopDisposition(S, L);
6700 return LoopDispositions[S][L] = D;
6701}
6702
6703ScalarEvolution::LoopDisposition
6704ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006705 switch (S->getSCEVType()) {
6706 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006707 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006708 case scTruncate:
6709 case scZeroExtend:
6710 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006711 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006712 case scAddRecExpr: {
6713 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6714
Dan Gohman714b5292010-11-17 23:21:44 +00006715 // If L is the addrec's loop, it's computable.
6716 if (AR->getLoop() == L)
6717 return LoopComputable;
6718
Dan Gohman17ead4f2010-11-17 21:23:15 +00006719 // Add recurrences are never invariant in the function-body (null loop).
6720 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006721 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006722
6723 // This recurrence is variant w.r.t. L if L contains AR's loop.
6724 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006725 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006726
6727 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6728 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006729 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006730
6731 // This recurrence is variant w.r.t. L if any of its operands
6732 // are variant.
6733 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6734 I != E; ++I)
6735 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006736 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006737
6738 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006739 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006740 }
6741 case scAddExpr:
6742 case scMulExpr:
6743 case scUMaxExpr:
6744 case scSMaxExpr: {
6745 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006746 bool HasVarying = false;
6747 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6748 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006749 LoopDisposition D = getLoopDisposition(*I, L);
6750 if (D == LoopVariant)
6751 return LoopVariant;
6752 if (D == LoopComputable)
6753 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006754 }
Dan Gohman714b5292010-11-17 23:21:44 +00006755 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006756 }
6757 case scUDivExpr: {
6758 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006759 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6760 if (LD == LoopVariant)
6761 return LoopVariant;
6762 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6763 if (RD == LoopVariant)
6764 return LoopVariant;
6765 return (LD == LoopInvariant && RD == LoopInvariant) ?
6766 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006767 }
6768 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006769 // All non-instruction values are loop invariant. All instructions are loop
6770 // invariant if they are not contained in the specified loop.
6771 // Instructions are never considered invariant in the function body
6772 // (null loop) because they are defined within the "loop".
6773 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6774 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6775 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006776 case scCouldNotCompute:
6777 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman714b5292010-11-17 23:21:44 +00006778 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006779 default: break;
6780 }
6781 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman714b5292010-11-17 23:21:44 +00006782 return LoopVariant;
6783}
6784
6785bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6786 return getLoopDisposition(S, L) == LoopInvariant;
6787}
6788
6789bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6790 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006791}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006792
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006793ScalarEvolution::BlockDisposition
6794ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6795 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6796 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6797 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6798 if (!Pair.second)
6799 return Pair.first->second;
6800
6801 BlockDisposition D = computeBlockDisposition(S, BB);
6802 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006803}
6804
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006805ScalarEvolution::BlockDisposition
6806ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006807 switch (S->getSCEVType()) {
6808 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006809 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006810 case scTruncate:
6811 case scZeroExtend:
6812 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006813 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006814 case scAddRecExpr: {
6815 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006816 // to test for proper dominance too, because the instruction which
6817 // produces the addrec's value is a PHI, and a PHI effectively properly
6818 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006819 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6820 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006821 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006822 }
6823 // FALL THROUGH into SCEVNAryExpr handling.
6824 case scAddExpr:
6825 case scMulExpr:
6826 case scUMaxExpr:
6827 case scSMaxExpr: {
6828 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006829 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006830 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006831 I != E; ++I) {
6832 BlockDisposition D = getBlockDisposition(*I, BB);
6833 if (D == DoesNotDominateBlock)
6834 return DoesNotDominateBlock;
6835 if (D == DominatesBlock)
6836 Proper = false;
6837 }
6838 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006839 }
6840 case scUDivExpr: {
6841 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006842 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6843 BlockDisposition LD = getBlockDisposition(LHS, BB);
6844 if (LD == DoesNotDominateBlock)
6845 return DoesNotDominateBlock;
6846 BlockDisposition RD = getBlockDisposition(RHS, BB);
6847 if (RD == DoesNotDominateBlock)
6848 return DoesNotDominateBlock;
6849 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6850 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006851 }
6852 case scUnknown:
6853 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006854 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6855 if (I->getParent() == BB)
6856 return DominatesBlock;
6857 if (DT->properlyDominates(I->getParent(), BB))
6858 return ProperlyDominatesBlock;
6859 return DoesNotDominateBlock;
6860 }
6861 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006862 case scCouldNotCompute:
6863 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006864 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006865 default: break;
6866 }
6867 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006868 return DoesNotDominateBlock;
6869}
6870
6871bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6872 return getBlockDisposition(S, BB) >= DominatesBlock;
6873}
6874
6875bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6876 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006877}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006878
6879bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6880 switch (S->getSCEVType()) {
6881 case scConstant:
6882 return false;
6883 case scTruncate:
6884 case scZeroExtend:
6885 case scSignExtend: {
6886 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6887 const SCEV *CastOp = Cast->getOperand();
6888 return Op == CastOp || hasOperand(CastOp, Op);
6889 }
6890 case scAddRecExpr:
6891 case scAddExpr:
6892 case scMulExpr:
6893 case scUMaxExpr:
6894 case scSMaxExpr: {
6895 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6896 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6897 I != E; ++I) {
6898 const SCEV *NAryOp = *I;
6899 if (NAryOp == Op || hasOperand(NAryOp, Op))
6900 return true;
6901 }
6902 return false;
6903 }
6904 case scUDivExpr: {
6905 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6906 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6907 return LHS == Op || hasOperand(LHS, Op) ||
6908 RHS == Op || hasOperand(RHS, Op);
6909 }
6910 case scUnknown:
6911 return false;
6912 case scCouldNotCompute:
6913 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6914 return false;
6915 default: break;
6916 }
6917 llvm_unreachable("Unknown SCEV kind!");
6918 return false;
6919}
Dan Gohman56a75682010-11-17 23:28:48 +00006920
6921void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6922 ValuesAtScopes.erase(S);
6923 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006924 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006925 UnsignedRanges.erase(S);
6926 SignedRanges.erase(S);
6927}