blob: 83bd667fac30e2f2356813300b73a9cd47dfaca2 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000027 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000029 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000030 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000031 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000032 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000033 </ol>
34 </li>
Chris Lattner00950542001-06-06 20:29:01 +000035 <li><a href="#typesystem">Type System</a>
36 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000038 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000039 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000040 <li><a href="#t_floating">Floating Point Types</a></li>
41 <li><a href="#t_void">Void Type</a></li>
42 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000043 </ol>
44 </li>
Chris Lattner00950542001-06-06 20:29:01 +000045 <li><a href="#t_derived">Derived Types</a>
46 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000047 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000048 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000049 <li><a href="#t_function">Function Type</a></li>
50 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000051 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000052 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000053 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000054 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000055 </ol>
56 </li>
57 </ol>
58 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000059 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000060 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000061 <li><a href="#simpleconstants">Simple Constants</a></li>
62 <li><a href="#aggregateconstants">Aggregate Constants</a></li>
63 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
64 <li><a href="#undefvalues">Undefined Values</a></li>
65 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000066 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000067 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000068 <li><a href="#othervalues">Other Values</a>
69 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000070 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000071 </ol>
72 </li>
Chris Lattner00950542001-06-06 20:29:01 +000073 <li><a href="#instref">Instruction Reference</a>
74 <ol>
75 <li><a href="#terminators">Terminator Instructions</a>
76 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000077 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
78 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000079 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
80 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000082 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000083 </ol>
84 </li>
Chris Lattner00950542001-06-06 20:29:01 +000085 <li><a href="#binaryops">Binary Operations</a>
86 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000087 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
88 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
89 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000090 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
91 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
92 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000093 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
94 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
95 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000096 </ol>
97 </li>
Chris Lattner00950542001-06-06 20:29:01 +000098 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
99 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000100 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
101 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
102 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000103 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000104 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000105 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000106 </ol>
107 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000108 <li><a href="#vectorops">Vector Operations</a>
109 <ol>
110 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
111 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
112 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000113 </ol>
114 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000115 <li><a href="#aggregateops">Aggregate Operations</a>
116 <ol>
117 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
118 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
119 </ol>
120 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000121 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000122 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000123 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
124 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
125 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000126 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
127 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
128 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000129 </ol>
130 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000131 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000132 <ol>
133 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
134 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000138 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
140 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
141 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000142 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
143 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000144 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000145 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000146 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000147 <li><a href="#otherops">Other Operations</a>
148 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000149 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
150 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000151 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
152 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000153 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000154 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000155 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000156 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000157 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000158 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000159 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000160 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000161 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000162 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000163 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
164 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000165 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
167 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000168 </ol>
169 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000170 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
171 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000172 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
174 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000175 </ol>
176 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000177 <li><a href="#int_codegen">Code Generator Intrinsics</a>
178 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000179 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
181 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
182 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
183 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
184 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
185 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000186 </ol>
187 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000188 <li><a href="#int_libc">Standard C Library Intrinsics</a>
189 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000190 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000195 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000198 </ol>
199 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000200 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000201 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000202 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000203 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
205 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000206 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000208 </ol>
209 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000210 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000211 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000212 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000213 <ol>
214 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000215 </ol>
216 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000217 <li><a href="#int_atomics">Atomic intrinsics</a>
218 <ol>
219 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
220 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
221 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
222 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
223 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
224 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
225 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
226 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
227 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
228 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
229 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
230 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
231 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
232 </ol>
233 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000234 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000235 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000236 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000237 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000238 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000239 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000240 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000241 '<tt>llvm.trap</tt>' Intrinsic</a></li>
242 <li><a href="#int_stackprotector">
243 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000244 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000245 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000246 </ol>
247 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000248</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000249
250<div class="doc_author">
251 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
252 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000253</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000254
Chris Lattner00950542001-06-06 20:29:01 +0000255<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000256<div class="doc_section"> <a name="abstract">Abstract </a></div>
257<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000258
Misha Brukman9d0919f2003-11-08 01:05:38 +0000259<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000260<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000261LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000262type safety, low-level operations, flexibility, and the capability of
263representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000264representation used throughout all phases of the LLVM compilation
265strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000266</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000267
Chris Lattner00950542001-06-06 20:29:01 +0000268<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000269<div class="doc_section"> <a name="introduction">Introduction</a> </div>
270<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
Misha Brukman9d0919f2003-11-08 01:05:38 +0000272<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000273
Chris Lattner261efe92003-11-25 01:02:51 +0000274<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000275different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000276representation (suitable for fast loading by a Just-In-Time compiler),
277and as a human readable assembly language representation. This allows
278LLVM to provide a powerful intermediate representation for efficient
279compiler transformations and analysis, while providing a natural means
280to debug and visualize the transformations. The three different forms
281of LLVM are all equivalent. This document describes the human readable
282representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000283
John Criswellc1f786c2005-05-13 22:25:59 +0000284<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000285while being expressive, typed, and extensible at the same time. It
286aims to be a "universal IR" of sorts, by being at a low enough level
287that high-level ideas may be cleanly mapped to it (similar to how
288microprocessors are "universal IR's", allowing many source languages to
289be mapped to them). By providing type information, LLVM can be used as
290the target of optimizations: for example, through pointer analysis, it
291can be proven that a C automatic variable is never accessed outside of
292the current function... allowing it to be promoted to a simple SSA
293value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000294
Misha Brukman9d0919f2003-11-08 01:05:38 +0000295</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000296
Chris Lattner00950542001-06-06 20:29:01 +0000297<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000298<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000299
Misha Brukman9d0919f2003-11-08 01:05:38 +0000300<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000301
Chris Lattner261efe92003-11-25 01:02:51 +0000302<p>It is important to note that this document describes 'well formed'
303LLVM assembly language. There is a difference between what the parser
304accepts and what is considered 'well formed'. For example, the
305following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000306
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000307<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000308<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000309%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000310</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000311</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000312
Chris Lattner261efe92003-11-25 01:02:51 +0000313<p>...because the definition of <tt>%x</tt> does not dominate all of
314its uses. The LLVM infrastructure provides a verification pass that may
315be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000316automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000317the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000318by the verifier pass indicate bugs in transformation passes or input to
319the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000320</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000321
Chris Lattnercc689392007-10-03 17:34:29 +0000322<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000323
Chris Lattner00950542001-06-06 20:29:01 +0000324<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000325<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000326<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000327
Misha Brukman9d0919f2003-11-08 01:05:38 +0000328<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000329
Reid Spencer2c452282007-08-07 14:34:28 +0000330 <p>LLVM identifiers come in two basic types: global and local. Global
331 identifiers (functions, global variables) begin with the @ character. Local
332 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohman0e451ce2008-10-14 16:51:45 +0000333 there are three different formats for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000334
Chris Lattner00950542001-06-06 20:29:01 +0000335<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000336 <li>Named values are represented as a string of characters with their prefix.
337 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
338 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000339 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar76dea952008-10-14 23:51:43 +0000340 with quotes. Special characters may be escaped using "\xx" where xx is the
341 ASCII code for the character in hexadecimal. In this way, any character can
342 be used in a name value, even quotes themselves.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000343
Reid Spencer2c452282007-08-07 14:34:28 +0000344 <li>Unnamed values are represented as an unsigned numeric value with their
345 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000346
Reid Spencercc16dc32004-12-09 18:02:53 +0000347 <li>Constants, which are described in a <a href="#constants">section about
348 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000349</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000350
Reid Spencer2c452282007-08-07 14:34:28 +0000351<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000352don't need to worry about name clashes with reserved words, and the set of
353reserved words may be expanded in the future without penalty. Additionally,
354unnamed identifiers allow a compiler to quickly come up with a temporary
355variable without having to avoid symbol table conflicts.</p>
356
Chris Lattner261efe92003-11-25 01:02:51 +0000357<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000358languages. There are keywords for different opcodes
359('<tt><a href="#i_add">add</a></tt>',
360 '<tt><a href="#i_bitcast">bitcast</a></tt>',
361 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000362href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000363and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000364none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000365
366<p>Here is an example of LLVM code to multiply the integer variable
367'<tt>%X</tt>' by 8:</p>
368
Misha Brukman9d0919f2003-11-08 01:05:38 +0000369<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000370
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000371<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000372<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000373%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000374</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000375</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000376
Misha Brukman9d0919f2003-11-08 01:05:38 +0000377<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000378
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000379<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000380<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000381%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000382</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000383</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000384
Misha Brukman9d0919f2003-11-08 01:05:38 +0000385<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000386
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000387<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000388<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000389<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
390<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
391%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000392</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000393</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000394
Chris Lattner261efe92003-11-25 01:02:51 +0000395<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
396important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000397
Chris Lattner00950542001-06-06 20:29:01 +0000398<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000399
400 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
401 line.</li>
402
403 <li>Unnamed temporaries are created when the result of a computation is not
404 assigned to a named value.</li>
405
Misha Brukman9d0919f2003-11-08 01:05:38 +0000406 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000407
Misha Brukman9d0919f2003-11-08 01:05:38 +0000408</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000409
John Criswelle4c57cc2005-05-12 16:52:32 +0000410<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000411demonstrating instructions, we will follow an instruction with a comment that
412defines the type and name of value produced. Comments are shown in italic
413text.</p>
414
Misha Brukman9d0919f2003-11-08 01:05:38 +0000415</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000416
417<!-- *********************************************************************** -->
418<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
419<!-- *********************************************************************** -->
420
421<!-- ======================================================================= -->
422<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
423</div>
424
425<div class="doc_text">
426
427<p>LLVM programs are composed of "Module"s, each of which is a
428translation unit of the input programs. Each module consists of
429functions, global variables, and symbol table entries. Modules may be
430combined together with the LLVM linker, which merges function (and
431global variable) definitions, resolves forward declarations, and merges
432symbol table entries. Here is an example of the "hello world" module:</p>
433
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000434<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000435<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000436<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
437 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000438
439<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000440<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000441
442<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000443define i32 @main() { <i>; i32()* </i>
Reid Spencerca86e162006-12-31 07:07:53 +0000444 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000445 %cast210 = <a
Chris Lattner6c0955b2007-06-12 17:01:15 +0000446 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000447
448 <i>; Call puts function to write out the string to stdout...</i>
449 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000450 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000451 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000452 href="#i_ret">ret</a> i32 0<br>}<br>
453</pre>
454</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000455
456<p>This example is made up of a <a href="#globalvars">global variable</a>
457named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
458function, and a <a href="#functionstructure">function definition</a>
459for "<tt>main</tt>".</p>
460
Chris Lattnere5d947b2004-12-09 16:36:40 +0000461<p>In general, a module is made up of a list of global values,
462where both functions and global variables are global values. Global values are
463represented by a pointer to a memory location (in this case, a pointer to an
464array of char, and a pointer to a function), and have one of the following <a
465href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000466
Chris Lattnere5d947b2004-12-09 16:36:40 +0000467</div>
468
469<!-- ======================================================================= -->
470<div class="doc_subsection">
471 <a name="linkage">Linkage Types</a>
472</div>
473
474<div class="doc_text">
475
476<p>
477All Global Variables and Functions have one of the following types of linkage:
478</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000479
480<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000481
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000482 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000483
484 <dd>Global values with internal linkage are only directly accessible by
485 objects in the current module. In particular, linking code into a module with
486 an internal global value may cause the internal to be renamed as necessary to
487 avoid collisions. Because the symbol is internal to the module, all
488 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000489 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000490 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000491
Chris Lattnerfa730212004-12-09 16:11:40 +0000492 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000493
Chris Lattner4887bd82007-01-14 06:51:48 +0000494 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
495 the same name when linkage occurs. This is typically used to implement
496 inline functions, templates, or other code which must be generated in each
497 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
498 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000499 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000500
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000501 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
502
503 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
504 linkage, except that unreferenced <tt>common</tt> globals may not be
505 discarded. This is used for globals that may be emitted in multiple
506 translation units, but that are not guaranteed to be emitted into every
507 translation unit that uses them. One example of this is tentative
508 definitions in C, such as "<tt>int X;</tt>" at global scope.
509 </dd>
510
Chris Lattnerfa730212004-12-09 16:11:40 +0000511 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000512
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000513 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
514 that some targets may choose to emit different assembly sequences for them
515 for target-dependent reasons. This is used for globals that are declared
516 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000517 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000518
Chris Lattnerfa730212004-12-09 16:11:40 +0000519 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000520
521 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
522 pointer to array type. When two global variables with appending linkage are
523 linked together, the two global arrays are appended together. This is the
524 LLVM, typesafe, equivalent of having the system linker append together
525 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000526 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000527
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000528 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000529 <dd>The semantics of this linkage follow the ELF object file model: the
530 symbol is weak until linked, if not linked, the symbol becomes null instead
531 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000532 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000533
Chris Lattnerfa730212004-12-09 16:11:40 +0000534 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000535
536 <dd>If none of the above identifiers are used, the global is externally
537 visible, meaning that it participates in linkage and can be used to resolve
538 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000539 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000540</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000541
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000542 <p>
543 The next two types of linkage are targeted for Microsoft Windows platform
544 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000545 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000546 </p>
547
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000548 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000549 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
550
551 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
552 or variable via a global pointer to a pointer that is set up by the DLL
553 exporting the symbol. On Microsoft Windows targets, the pointer name is
554 formed by combining <code>_imp__</code> and the function or variable name.
555 </dd>
556
557 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
558
559 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
560 pointer to a pointer in a DLL, so that it can be referenced with the
561 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
562 name is formed by combining <code>_imp__</code> and the function or variable
563 name.
564 </dd>
565
Chris Lattnerfa730212004-12-09 16:11:40 +0000566</dl>
567
Dan Gohmanf0032762008-11-24 17:18:39 +0000568<p>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000569variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
570variable and was linked with this one, one of the two would be renamed,
571preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
572external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000573outside of the current module.</p>
574<p>It is illegal for a function <i>declaration</i>
575to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000576or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000577<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000578linkages.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000579</div>
580
581<!-- ======================================================================= -->
582<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000583 <a name="callingconv">Calling Conventions</a>
584</div>
585
586<div class="doc_text">
587
588<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
589and <a href="#i_invoke">invokes</a> can all have an optional calling convention
590specified for the call. The calling convention of any pair of dynamic
591caller/callee must match, or the behavior of the program is undefined. The
592following calling conventions are supported by LLVM, and more may be added in
593the future:</p>
594
595<dl>
596 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
597
598 <dd>This calling convention (the default if no other calling convention is
599 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000600 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000601 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000602 </dd>
603
604 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
605
606 <dd>This calling convention attempts to make calls as fast as possible
607 (e.g. by passing things in registers). This calling convention allows the
608 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000609 without having to conform to an externally specified ABI (Application Binary
610 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000611 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
612 supported. This calling convention does not support varargs and requires the
613 prototype of all callees to exactly match the prototype of the function
614 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000615 </dd>
616
617 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
618
619 <dd>This calling convention attempts to make code in the caller as efficient
620 as possible under the assumption that the call is not commonly executed. As
621 such, these calls often preserve all registers so that the call does not break
622 any live ranges in the caller side. This calling convention does not support
623 varargs and requires the prototype of all callees to exactly match the
624 prototype of the function definition.
625 </dd>
626
Chris Lattnercfe6b372005-05-07 01:46:40 +0000627 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000628
629 <dd>Any calling convention may be specified by number, allowing
630 target-specific calling conventions to be used. Target specific calling
631 conventions start at 64.
632 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000633</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000634
635<p>More calling conventions can be added/defined on an as-needed basis, to
636support pascal conventions or any other well-known target-independent
637convention.</p>
638
639</div>
640
641<!-- ======================================================================= -->
642<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000643 <a name="visibility">Visibility Styles</a>
644</div>
645
646<div class="doc_text">
647
648<p>
649All Global Variables and Functions have one of the following visibility styles:
650</p>
651
652<dl>
653 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
654
Chris Lattnerd3eda892008-08-05 18:29:16 +0000655 <dd>On targets that use the ELF object file format, default visibility means
656 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000657 modules and, in shared libraries, means that the declared entity may be
658 overridden. On Darwin, default visibility means that the declaration is
659 visible to other modules. Default visibility corresponds to "external
660 linkage" in the language.
661 </dd>
662
663 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
664
665 <dd>Two declarations of an object with hidden visibility refer to the same
666 object if they are in the same shared object. Usually, hidden visibility
667 indicates that the symbol will not be placed into the dynamic symbol table,
668 so no other module (executable or shared library) can reference it
669 directly.
670 </dd>
671
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000672 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
673
674 <dd>On ELF, protected visibility indicates that the symbol will be placed in
675 the dynamic symbol table, but that references within the defining module will
676 bind to the local symbol. That is, the symbol cannot be overridden by another
677 module.
678 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000679</dl>
680
681</div>
682
683<!-- ======================================================================= -->
684<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000685 <a name="globalvars">Global Variables</a>
686</div>
687
688<div class="doc_text">
689
Chris Lattner3689a342005-02-12 19:30:21 +0000690<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000691instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000692an explicit section to be placed in, and may have an optional explicit alignment
693specified. A variable may be defined as "thread_local", which means that it
694will not be shared by threads (each thread will have a separated copy of the
695variable). A variable may be defined as a global "constant," which indicates
696that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000697optimization, allowing the global data to be placed in the read-only section of
698an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000699cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000700
701<p>
702LLVM explicitly allows <em>declarations</em> of global variables to be marked
703constant, even if the final definition of the global is not. This capability
704can be used to enable slightly better optimization of the program, but requires
705the language definition to guarantee that optimizations based on the
706'constantness' are valid for the translation units that do not include the
707definition.
708</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000709
710<p>As SSA values, global variables define pointer values that are in
711scope (i.e. they dominate) all basic blocks in the program. Global
712variables always define a pointer to their "content" type because they
713describe a region of memory, and all memory objects in LLVM are
714accessed through pointers.</p>
715
Christopher Lamb284d9922007-12-11 09:31:00 +0000716<p>A global variable may be declared to reside in a target-specifc numbered
717address space. For targets that support them, address spaces may affect how
718optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000719the variable. The default address space is zero. The address space qualifier
720must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000721
Chris Lattner88f6c462005-11-12 00:45:07 +0000722<p>LLVM allows an explicit section to be specified for globals. If the target
723supports it, it will emit globals to the section specified.</p>
724
Chris Lattner2cbdc452005-11-06 08:02:57 +0000725<p>An explicit alignment may be specified for a global. If not present, or if
726the alignment is set to zero, the alignment of the global is set by the target
727to whatever it feels convenient. If an explicit alignment is specified, the
728global is forced to have at least that much alignment. All alignments must be
729a power of 2.</p>
730
Christopher Lamb284d9922007-12-11 09:31:00 +0000731<p>For example, the following defines a global in a numbered address space with
732an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000733
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000734<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000735<pre>
Christopher Lamb284d9922007-12-11 09:31:00 +0000736@G = constant float 1.0 addrspace(5), section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000737</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000738</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000739
Chris Lattnerfa730212004-12-09 16:11:40 +0000740</div>
741
742
743<!-- ======================================================================= -->
744<div class="doc_subsection">
745 <a name="functionstructure">Functions</a>
746</div>
747
748<div class="doc_text">
749
Reid Spencerca86e162006-12-31 07:07:53 +0000750<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
751an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000752<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000753<a href="#callingconv">calling convention</a>, a return type, an optional
754<a href="#paramattrs">parameter attribute</a> for the return type, a function
755name, a (possibly empty) argument list (each with optional
Devang Patelf642f472008-10-06 18:50:38 +0000756<a href="#paramattrs">parameter attributes</a>), optional
757<a href="#fnattrs">function attributes</a>, an optional section,
758an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000759an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000760
761LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
762optional <a href="#linkage">linkage type</a>, an optional
763<a href="#visibility">visibility style</a>, an optional
764<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000765<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000766name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000767<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000768
Chris Lattnerd3eda892008-08-05 18:29:16 +0000769<p>A function definition contains a list of basic blocks, forming the CFG
770(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000771the function. Each basic block may optionally start with a label (giving the
772basic block a symbol table entry), contains a list of instructions, and ends
773with a <a href="#terminators">terminator</a> instruction (such as a branch or
774function return).</p>
775
Chris Lattner4a3c9012007-06-08 16:52:14 +0000776<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000777executed on entrance to the function, and it is not allowed to have predecessor
778basic blocks (i.e. there can not be any branches to the entry block of a
779function). Because the block can have no predecessors, it also cannot have any
780<a href="#i_phi">PHI nodes</a>.</p>
781
Chris Lattner88f6c462005-11-12 00:45:07 +0000782<p>LLVM allows an explicit section to be specified for functions. If the target
783supports it, it will emit functions to the section specified.</p>
784
Chris Lattner2cbdc452005-11-06 08:02:57 +0000785<p>An explicit alignment may be specified for a function. If not present, or if
786the alignment is set to zero, the alignment of the function is set by the target
787to whatever it feels convenient. If an explicit alignment is specified, the
788function is forced to have at least that much alignment. All alignments must be
789a power of 2.</p>
790
Devang Patel307e8ab2008-10-07 17:48:33 +0000791 <h5>Syntax:</h5>
792
793<div class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000794<tt>
795define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
796 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
797 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
798 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
799 [<a href="#gc">gc</a>] { ... }
800</tt>
Devang Patel307e8ab2008-10-07 17:48:33 +0000801</div>
802
Chris Lattnerfa730212004-12-09 16:11:40 +0000803</div>
804
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000805
806<!-- ======================================================================= -->
807<div class="doc_subsection">
808 <a name="aliasstructure">Aliases</a>
809</div>
810<div class="doc_text">
811 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000812 function, global variable, another alias or bitcast of global value). Aliases
813 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000814 optional <a href="#visibility">visibility style</a>.</p>
815
816 <h5>Syntax:</h5>
817
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000818<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000819<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000820@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000821</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000822</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000823
824</div>
825
826
827
Chris Lattner4e9aba72006-01-23 23:23:47 +0000828<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000829<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
830<div class="doc_text">
831 <p>The return type and each parameter of a function type may have a set of
832 <i>parameter attributes</i> associated with them. Parameter attributes are
833 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000834 a function. Parameter attributes are considered to be part of the function,
835 not of the function type, so functions with different parameter attributes
836 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000837
Reid Spencer950e9f82007-01-15 18:27:39 +0000838 <p>Parameter attributes are simple keywords that follow the type specified. If
839 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000840 example:</p>
841
842<div class="doc_code">
843<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000844declare i32 @printf(i8* noalias , ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000845declare i32 @atoi(i8 zeroext)
846declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000847</pre>
848</div>
849
Duncan Sandsdc024672007-11-27 13:23:08 +0000850 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
851 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000852
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000853 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000854 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000855 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000856 <dd>This indicates to the code generator that the parameter or return value
857 should be zero-extended to a 32-bit value by the caller (for a parameter)
858 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000859
Reid Spencer9445e9a2007-07-19 23:13:04 +0000860 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000861 <dd>This indicates to the code generator that the parameter or return value
862 should be sign-extended to a 32-bit value by the caller (for a parameter)
863 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000864
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000865 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000866 <dd>This indicates that this parameter or return value should be treated
867 in a special target-dependent fashion during while emitting code for a
868 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000869 to memory, though some targets use it to distinguish between two different
870 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000871
Duncan Sandsedb05df2008-10-06 08:14:18 +0000872 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000873 <dd>This indicates that the pointer parameter should really be passed by
874 value to the function. The attribute implies that a hidden copy of the
875 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000876 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000877 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sandsedb05df2008-10-06 08:14:18 +0000878 value, but is also valid on pointers to scalars. The copy is considered to
879 belong to the caller not the callee (for example,
880 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelf642f472008-10-06 18:50:38 +0000881 <tt>byval</tt> parameters). This is not a valid attribute for return
882 values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000883
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000884 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000885 <dd>This indicates that the pointer parameter specifies the address of a
886 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000887 This pointer must be guaranteed by the caller to be valid: loads and stores
888 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelf642f472008-10-06 18:50:38 +0000889 be applied to the first parameter. This is not a valid attribute for
890 return values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000891
Zhou Shengfebca342007-06-05 05:28:26 +0000892 <dt><tt>noalias</tt></dt>
Nick Lewycky02ff3082008-11-24 03:41:24 +0000893 <dd>This indicates that the pointer does not alias any global or any other
894 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyb2b32fd2008-11-24 05:00:44 +0000895 case. On a function return value, <tt>noalias</tt> additionally indicates
896 that the pointer does not alias any other pointers visible to the
Torok Edwin96826072008-11-24 08:02:24 +0000897 caller. Note that this applies only to pointers that can be used to actually
898 load/store a value: NULL, unique pointers from malloc(0), and freed pointers
899 are considered to not alias anything.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000900
Duncan Sands50f19f52007-07-27 19:57:41 +0000901 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000902 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelf642f472008-10-06 18:50:38 +0000903 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
904 attribute for return values.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000905 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000906
Reid Spencerca86e162006-12-31 07:07:53 +0000907</div>
908
909<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000910<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000911 <a name="gc">Garbage Collector Names</a>
912</div>
913
914<div class="doc_text">
915<p>Each function may specify a garbage collector name, which is simply a
916string.</p>
917
918<div class="doc_code"><pre
919>define void @f() gc "name" { ...</pre></div>
920
921<p>The compiler declares the supported values of <i>name</i>. Specifying a
922collector which will cause the compiler to alter its output in order to support
923the named garbage collection algorithm.</p>
924</div>
925
926<!-- ======================================================================= -->
927<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000928 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +0000929</div>
930
931<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000932
933<p>Function attributes are set to communicate additional information about
934 a function. Function attributes are considered to be part of the function,
935 not of the function type, so functions with different parameter attributes
936 can have the same function type.</p>
937
938 <p>Function attributes are simple keywords that follow the type specified. If
939 multiple attributes are needed, they are space separated. For
940 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +0000941
942<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000943<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000944define void @f() noinline { ... }
945define void @f() alwaysinline { ... }
946define void @f() alwaysinline optsize { ... }
947define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000948</pre>
Devang Patelf8b94812008-09-04 23:05:13 +0000949</div>
950
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000951<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000952<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000953<dd>This attribute indicates that the inliner should attempt to inline this
954function into callers whenever possible, ignoring any active inlining size
955threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000956
Devang Patel2c9c3e72008-09-26 23:51:19 +0000957<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000958<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner94b5f7d2008-10-05 17:14:59 +0000959in any situation. This attribute may not be used together with the
Chris Lattner88d4b592008-10-04 18:23:17 +0000960<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000961
Devang Patel2c9c3e72008-09-26 23:51:19 +0000962<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +0000963<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +0000964make choices that keep the code size of this function low, and otherwise do
965optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000966
Devang Patel2c9c3e72008-09-26 23:51:19 +0000967<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000968<dd>This function attribute indicates that the function never returns normally.
969This produces undefined behavior at runtime if the function ever does
970dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000971
972<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000973<dd>This function attribute indicates that the function never returns with an
974unwind or exceptional control flow. If the function does unwind, its runtime
975behavior is undefined.</dd>
976
977<dt><tt>readnone</tt></dt>
Duncan Sandsedb05df2008-10-06 08:14:18 +0000978<dd>This attribute indicates that the function computes its result (or the
979exception it throws) based strictly on its arguments, without dereferencing any
980pointer arguments or otherwise accessing any mutable state (e.g. memory, control
981registers, etc) visible to caller functions. It does not write through any
982pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
983never changes any state visible to callers.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000984
Duncan Sandsedb05df2008-10-06 08:14:18 +0000985<dt><tt><a name="readonly">readonly</a></tt></dt>
986<dd>This attribute indicates that the function does not write through any
987pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
988or otherwise modify any state (e.g. memory, control registers, etc) visible to
989caller functions. It may dereference pointer arguments and read state that may
990be set in the caller. A readonly function always returns the same value (or
991throws the same exception) when called with the same set of arguments and global
992state.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +0000993
994<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +0000995<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendling31359ba2008-11-13 01:02:51 +0000996protector. It is in the form of a "canary"&mdash;a random value placed on the
997stack before the local variables that's checked upon return from the function to
998see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendlingbaa39d82008-11-26 19:19:05 +0000999needs stack protectors or not.
Bill Wendling31359ba2008-11-13 01:02:51 +00001000
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001001<p>If a function that has an <tt>ssp</tt> attribute is inlined into a function
1002that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
1003have an <tt>ssp</tt> attribute.</p></dd>
1004
1005<dt><tt>sspreq</tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001006<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendling31359ba2008-11-13 01:02:51 +00001007stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001008function attribute.
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001009
1010<p>If a function that has an <tt>sspreq</tt> attribute is inlined into a
1011function that doesn't have an <tt>sspreq</tt> attribute or which has
1012an <tt>ssp</tt> attribute, then the resulting function will have
1013an <tt>sspreq</tt> attribute.</p></dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001014</dl>
1015
Devang Patelf8b94812008-09-04 23:05:13 +00001016</div>
1017
1018<!-- ======================================================================= -->
1019<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001020 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001021</div>
1022
1023<div class="doc_text">
1024<p>
1025Modules may contain "module-level inline asm" blocks, which corresponds to the
1026GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1027LLVM and treated as a single unit, but may be separated in the .ll file if
1028desired. The syntax is very simple:
1029</p>
1030
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001031<div class="doc_code">
1032<pre>
1033module asm "inline asm code goes here"
1034module asm "more can go here"
1035</pre>
1036</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001037
1038<p>The strings can contain any character by escaping non-printable characters.
1039 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1040 for the number.
1041</p>
1042
1043<p>
1044 The inline asm code is simply printed to the machine code .s file when
1045 assembly code is generated.
1046</p>
1047</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001048
Reid Spencerde151942007-02-19 23:54:10 +00001049<!-- ======================================================================= -->
1050<div class="doc_subsection">
1051 <a name="datalayout">Data Layout</a>
1052</div>
1053
1054<div class="doc_text">
1055<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001056data is to be laid out in memory. The syntax for the data layout is simply:</p>
1057<pre> target datalayout = "<i>layout specification</i>"</pre>
1058<p>The <i>layout specification</i> consists of a list of specifications
1059separated by the minus sign character ('-'). Each specification starts with a
1060letter and may include other information after the letter to define some
1061aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001062<dl>
1063 <dt><tt>E</tt></dt>
1064 <dd>Specifies that the target lays out data in big-endian form. That is, the
1065 bits with the most significance have the lowest address location.</dd>
1066 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001067 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001068 the bits with the least significance have the lowest address location.</dd>
1069 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1070 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1071 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1072 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1073 too.</dd>
1074 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1075 <dd>This specifies the alignment for an integer type of a given bit
1076 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1077 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1078 <dd>This specifies the alignment for a vector type of a given bit
1079 <i>size</i>.</dd>
1080 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1081 <dd>This specifies the alignment for a floating point type of a given bit
1082 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1083 (double).</dd>
1084 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1085 <dd>This specifies the alignment for an aggregate type of a given bit
1086 <i>size</i>.</dd>
1087</dl>
1088<p>When constructing the data layout for a given target, LLVM starts with a
1089default set of specifications which are then (possibly) overriden by the
1090specifications in the <tt>datalayout</tt> keyword. The default specifications
1091are given in this list:</p>
1092<ul>
1093 <li><tt>E</tt> - big endian</li>
1094 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1095 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1096 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1097 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1098 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001099 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001100 alignment of 64-bits</li>
1101 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1102 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1103 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1104 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1105 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1106</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001107<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohman0e451ce2008-10-14 16:51:45 +00001108following rules:</p>
Reid Spencerde151942007-02-19 23:54:10 +00001109<ol>
1110 <li>If the type sought is an exact match for one of the specifications, that
1111 specification is used.</li>
1112 <li>If no match is found, and the type sought is an integer type, then the
1113 smallest integer type that is larger than the bitwidth of the sought type is
1114 used. If none of the specifications are larger than the bitwidth then the the
1115 largest integer type is used. For example, given the default specifications
1116 above, the i7 type will use the alignment of i8 (next largest) while both
1117 i65 and i256 will use the alignment of i64 (largest specified).</li>
1118 <li>If no match is found, and the type sought is a vector type, then the
1119 largest vector type that is smaller than the sought vector type will be used
Dan Gohman0e451ce2008-10-14 16:51:45 +00001120 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1121 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001122</ol>
1123</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001124
Chris Lattner00950542001-06-06 20:29:01 +00001125<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001126<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1127<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001128
Misha Brukman9d0919f2003-11-08 01:05:38 +00001129<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001130
Misha Brukman9d0919f2003-11-08 01:05:38 +00001131<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001132intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001133optimizations to be performed on the intermediate representation directly,
1134without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001135extra analyses on the side before the transformation. A strong type
1136system makes it easier to read the generated code and enables novel
1137analyses and transformations that are not feasible to perform on normal
1138three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001139
1140</div>
1141
Chris Lattner00950542001-06-06 20:29:01 +00001142<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001143<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001144Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001145<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001146<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001147classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001148
1149<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001150 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001151 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001152 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001153 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001154 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001155 </tr>
1156 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001157 <td><a href="#t_floating">floating point</a></td>
1158 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001159 </tr>
1160 <tr>
1161 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001162 <td><a href="#t_integer">integer</a>,
1163 <a href="#t_floating">floating point</a>,
1164 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001165 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001166 <a href="#t_struct">structure</a>,
1167 <a href="#t_array">array</a>,
Dan Gohmanade5faa2008-05-23 22:50:26 +00001168 <a href="#t_label">label</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001169 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001170 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001171 <tr>
1172 <td><a href="#t_primitive">primitive</a></td>
1173 <td><a href="#t_label">label</a>,
1174 <a href="#t_void">void</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001175 <a href="#t_floating">floating point</a>.</td>
1176 </tr>
1177 <tr>
1178 <td><a href="#t_derived">derived</a></td>
1179 <td><a href="#t_integer">integer</a>,
1180 <a href="#t_array">array</a>,
1181 <a href="#t_function">function</a>,
1182 <a href="#t_pointer">pointer</a>,
1183 <a href="#t_struct">structure</a>,
1184 <a href="#t_pstruct">packed structure</a>,
1185 <a href="#t_vector">vector</a>,
1186 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001187 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001188 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001189 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001190</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001191
Chris Lattner261efe92003-11-25 01:02:51 +00001192<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1193most important. Values of these types are the only ones which can be
1194produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001195instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001196</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001197
Chris Lattner00950542001-06-06 20:29:01 +00001198<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001199<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001200
Chris Lattner4f69f462008-01-04 04:32:38 +00001201<div class="doc_text">
1202<p>The primitive types are the fundamental building blocks of the LLVM
1203system.</p>
1204
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001205</div>
1206
Chris Lattner4f69f462008-01-04 04:32:38 +00001207<!-- _______________________________________________________________________ -->
1208<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1209
1210<div class="doc_text">
1211 <table>
1212 <tbody>
1213 <tr><th>Type</th><th>Description</th></tr>
1214 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1215 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1216 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1217 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1218 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1219 </tbody>
1220 </table>
1221</div>
1222
1223<!-- _______________________________________________________________________ -->
1224<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1225
1226<div class="doc_text">
1227<h5>Overview:</h5>
1228<p>The void type does not represent any value and has no size.</p>
1229
1230<h5>Syntax:</h5>
1231
1232<pre>
1233 void
1234</pre>
1235</div>
1236
1237<!-- _______________________________________________________________________ -->
1238<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1239
1240<div class="doc_text">
1241<h5>Overview:</h5>
1242<p>The label type represents code labels.</p>
1243
1244<h5>Syntax:</h5>
1245
1246<pre>
1247 label
1248</pre>
1249</div>
1250
1251
1252<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001253<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001254
Misha Brukman9d0919f2003-11-08 01:05:38 +00001255<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001256
Chris Lattner261efe92003-11-25 01:02:51 +00001257<p>The real power in LLVM comes from the derived types in the system.
1258This is what allows a programmer to represent arrays, functions,
1259pointers, and other useful types. Note that these derived types may be
1260recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001261
Misha Brukman9d0919f2003-11-08 01:05:38 +00001262</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001263
Chris Lattner00950542001-06-06 20:29:01 +00001264<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001265<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1266
1267<div class="doc_text">
1268
1269<h5>Overview:</h5>
1270<p>The integer type is a very simple derived type that simply specifies an
1271arbitrary bit width for the integer type desired. Any bit width from 1 bit to
12722^23-1 (about 8 million) can be specified.</p>
1273
1274<h5>Syntax:</h5>
1275
1276<pre>
1277 iN
1278</pre>
1279
1280<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1281value.</p>
1282
1283<h5>Examples:</h5>
1284<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001285 <tbody>
1286 <tr>
1287 <td><tt>i1</tt></td>
1288 <td>a single-bit integer.</td>
1289 </tr><tr>
1290 <td><tt>i32</tt></td>
1291 <td>a 32-bit integer.</td>
1292 </tr><tr>
1293 <td><tt>i1942652</tt></td>
1294 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001295 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001296 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001297</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001298</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001299
1300<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001301<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001302
Misha Brukman9d0919f2003-11-08 01:05:38 +00001303<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001304
Chris Lattner00950542001-06-06 20:29:01 +00001305<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001306
Misha Brukman9d0919f2003-11-08 01:05:38 +00001307<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001308sequentially in memory. The array type requires a size (number of
1309elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001310
Chris Lattner7faa8832002-04-14 06:13:44 +00001311<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001312
1313<pre>
1314 [&lt;# elements&gt; x &lt;elementtype&gt;]
1315</pre>
1316
John Criswelle4c57cc2005-05-12 16:52:32 +00001317<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001318be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001319
Chris Lattner7faa8832002-04-14 06:13:44 +00001320<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001321<table class="layout">
1322 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001323 <td class="left"><tt>[40 x i32]</tt></td>
1324 <td class="left">Array of 40 32-bit integer values.</td>
1325 </tr>
1326 <tr class="layout">
1327 <td class="left"><tt>[41 x i32]</tt></td>
1328 <td class="left">Array of 41 32-bit integer values.</td>
1329 </tr>
1330 <tr class="layout">
1331 <td class="left"><tt>[4 x i8]</tt></td>
1332 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001333 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001334</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001335<p>Here are some examples of multidimensional arrays:</p>
1336<table class="layout">
1337 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001338 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1339 <td class="left">3x4 array of 32-bit integer values.</td>
1340 </tr>
1341 <tr class="layout">
1342 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1343 <td class="left">12x10 array of single precision floating point values.</td>
1344 </tr>
1345 <tr class="layout">
1346 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1347 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001348 </tr>
1349</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001350
John Criswell0ec250c2005-10-24 16:17:18 +00001351<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1352length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001353LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1354As a special case, however, zero length arrays are recognized to be variable
1355length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001356type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001357
Misha Brukman9d0919f2003-11-08 01:05:38 +00001358</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001359
Chris Lattner00950542001-06-06 20:29:01 +00001360<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001361<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001362<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001363
Chris Lattner00950542001-06-06 20:29:01 +00001364<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001365
Chris Lattner261efe92003-11-25 01:02:51 +00001366<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001367consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001368return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001369If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001370class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001371
Chris Lattner00950542001-06-06 20:29:01 +00001372<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001373
1374<pre>
1375 &lt;returntype list&gt; (&lt;parameter list&gt;)
1376</pre>
1377
John Criswell0ec250c2005-10-24 16:17:18 +00001378<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001379specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001380which indicates that the function takes a variable number of arguments.
1381Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001382 href="#int_varargs">variable argument handling intrinsic</a> functions.
1383'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1384<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001385
Chris Lattner00950542001-06-06 20:29:01 +00001386<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001387<table class="layout">
1388 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001389 <td class="left"><tt>i32 (i32)</tt></td>
1390 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001391 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001392 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001393 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001394 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001395 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1396 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001397 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001398 <tt>float</tt>.
1399 </td>
1400 </tr><tr class="layout">
1401 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1402 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001403 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001404 which returns an integer. This is the signature for <tt>printf</tt> in
1405 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001406 </td>
Devang Patela582f402008-03-24 05:35:41 +00001407 </tr><tr class="layout">
1408 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanb0a57aa2008-11-27 06:41:20 +00001409 <td class="left">A function taking an <tt>i32</tt>, returning two
1410 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001411 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001412 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001413</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001414
Misha Brukman9d0919f2003-11-08 01:05:38 +00001415</div>
Chris Lattner00950542001-06-06 20:29:01 +00001416<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001417<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001418<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001419<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001420<p>The structure type is used to represent a collection of data members
1421together in memory. The packing of the field types is defined to match
1422the ABI of the underlying processor. The elements of a structure may
1423be any type that has a size.</p>
1424<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1425and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1426field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1427instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001428<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001429<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001430<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001431<table class="layout">
1432 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001433 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1434 <td class="left">A triple of three <tt>i32</tt> values</td>
1435 </tr><tr class="layout">
1436 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1437 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1438 second element is a <a href="#t_pointer">pointer</a> to a
1439 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1440 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001441 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001442</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001443</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001444
Chris Lattner00950542001-06-06 20:29:01 +00001445<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001446<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1447</div>
1448<div class="doc_text">
1449<h5>Overview:</h5>
1450<p>The packed structure type is used to represent a collection of data members
1451together in memory. There is no padding between fields. Further, the alignment
1452of a packed structure is 1 byte. The elements of a packed structure may
1453be any type that has a size.</p>
1454<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1455and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1456field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1457instruction.</p>
1458<h5>Syntax:</h5>
1459<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1460<h5>Examples:</h5>
1461<table class="layout">
1462 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001463 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1464 <td class="left">A triple of three <tt>i32</tt> values</td>
1465 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001466 <td class="left">
1467<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001468 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1469 second element is a <a href="#t_pointer">pointer</a> to a
1470 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1471 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001472 </tr>
1473</table>
1474</div>
1475
1476<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001477<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001478<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001479<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001480<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001481reference to another object, which must live in memory. Pointer types may have
1482an optional address space attribute defining the target-specific numbered
1483address space where the pointed-to object resides. The default address space is
1484zero.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001485<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001486<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001487<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001488<table class="layout">
1489 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001490 <td class="left"><tt>[4x i32]*</tt></td>
1491 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1492 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1493 </tr>
1494 <tr class="layout">
1495 <td class="left"><tt>i32 (i32 *) *</tt></td>
1496 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001497 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001498 <tt>i32</tt>.</td>
1499 </tr>
1500 <tr class="layout">
1501 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1502 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1503 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001504 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001505</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001506</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001507
Chris Lattnera58561b2004-08-12 19:12:28 +00001508<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001509<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001510<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001511
Chris Lattnera58561b2004-08-12 19:12:28 +00001512<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001513
Reid Spencer485bad12007-02-15 03:07:05 +00001514<p>A vector type is a simple derived type that represents a vector
1515of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001516are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001517A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001518elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001519of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001520considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001521
Chris Lattnera58561b2004-08-12 19:12:28 +00001522<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001523
1524<pre>
1525 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1526</pre>
1527
John Criswellc1f786c2005-05-13 22:25:59 +00001528<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001529be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001530
Chris Lattnera58561b2004-08-12 19:12:28 +00001531<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001532
Reid Spencerd3f876c2004-11-01 08:19:36 +00001533<table class="layout">
1534 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001535 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1536 <td class="left">Vector of 4 32-bit integer values.</td>
1537 </tr>
1538 <tr class="layout">
1539 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1540 <td class="left">Vector of 8 32-bit floating-point values.</td>
1541 </tr>
1542 <tr class="layout">
1543 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1544 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001545 </tr>
1546</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001547</div>
1548
Chris Lattner69c11bb2005-04-25 17:34:15 +00001549<!-- _______________________________________________________________________ -->
1550<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1551<div class="doc_text">
1552
1553<h5>Overview:</h5>
1554
1555<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001556corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001557In LLVM, opaque types can eventually be resolved to any type (not just a
1558structure type).</p>
1559
1560<h5>Syntax:</h5>
1561
1562<pre>
1563 opaque
1564</pre>
1565
1566<h5>Examples:</h5>
1567
1568<table class="layout">
1569 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001570 <td class="left"><tt>opaque</tt></td>
1571 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001572 </tr>
1573</table>
1574</div>
1575
1576
Chris Lattnerc3f59762004-12-09 17:30:23 +00001577<!-- *********************************************************************** -->
1578<div class="doc_section"> <a name="constants">Constants</a> </div>
1579<!-- *********************************************************************** -->
1580
1581<div class="doc_text">
1582
1583<p>LLVM has several different basic types of constants. This section describes
1584them all and their syntax.</p>
1585
1586</div>
1587
1588<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001589<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001590
1591<div class="doc_text">
1592
1593<dl>
1594 <dt><b>Boolean constants</b></dt>
1595
1596 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001597 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001598 </dd>
1599
1600 <dt><b>Integer constants</b></dt>
1601
Reid Spencercc16dc32004-12-09 18:02:53 +00001602 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001603 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001604 integer types.
1605 </dd>
1606
1607 <dt><b>Floating point constants</b></dt>
1608
1609 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1610 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001611 notation (see below). The assembler requires the exact decimal value of
1612 a floating-point constant. For example, the assembler accepts 1.25 but
1613 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1614 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001615
1616 <dt><b>Null pointer constants</b></dt>
1617
John Criswell9e2485c2004-12-10 15:51:16 +00001618 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001619 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1620
1621</dl>
1622
John Criswell9e2485c2004-12-10 15:51:16 +00001623<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001624of floating point constants. For example, the form '<tt>double
16250x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
16264.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001627(and the only time that they are generated by the disassembler) is when a
1628floating point constant must be emitted but it cannot be represented as a
1629decimal floating point number. For example, NaN's, infinities, and other
1630special values are represented in their IEEE hexadecimal format so that
1631assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001632
1633</div>
1634
1635<!-- ======================================================================= -->
1636<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1637</div>
1638
1639<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001640<p>Aggregate constants arise from aggregation of simple constants
1641and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001642
1643<dl>
1644 <dt><b>Structure constants</b></dt>
1645
1646 <dd>Structure constants are represented with notation similar to structure
1647 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001648 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1649 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001650 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001651 types of elements must match those specified by the type.
1652 </dd>
1653
1654 <dt><b>Array constants</b></dt>
1655
1656 <dd>Array constants are represented with notation similar to array type
1657 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001658 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001659 constants must have <a href="#t_array">array type</a>, and the number and
1660 types of elements must match those specified by the type.
1661 </dd>
1662
Reid Spencer485bad12007-02-15 03:07:05 +00001663 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001664
Reid Spencer485bad12007-02-15 03:07:05 +00001665 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001666 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001667 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001668 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001669 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001670 match those specified by the type.
1671 </dd>
1672
1673 <dt><b>Zero initialization</b></dt>
1674
1675 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1676 value to zero of <em>any</em> type, including scalar and aggregate types.
1677 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001678 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001679 initializers.
1680 </dd>
1681</dl>
1682
1683</div>
1684
1685<!-- ======================================================================= -->
1686<div class="doc_subsection">
1687 <a name="globalconstants">Global Variable and Function Addresses</a>
1688</div>
1689
1690<div class="doc_text">
1691
1692<p>The addresses of <a href="#globalvars">global variables</a> and <a
1693href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001694constants. These constants are explicitly referenced when the <a
1695href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001696href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1697file:</p>
1698
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001699<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001700<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001701@X = global i32 17
1702@Y = global i32 42
1703@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001704</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001705</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001706
1707</div>
1708
1709<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001710<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001711<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001712 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001713 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001714 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001715
Reid Spencer2dc45b82004-12-09 18:13:12 +00001716 <p>Undefined values indicate to the compiler that the program is well defined
1717 no matter what value is used, giving the compiler more freedom to optimize.
1718 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001719</div>
1720
1721<!-- ======================================================================= -->
1722<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1723</div>
1724
1725<div class="doc_text">
1726
1727<p>Constant expressions are used to allow expressions involving other constants
1728to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001729href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001730that does not have side effects (e.g. load and call are not supported). The
1731following is the syntax for constant expressions:</p>
1732
1733<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001734 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1735 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001736 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001737
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001738 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1739 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001740 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001741
1742 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1743 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001744 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001745
1746 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1747 <dd>Truncate a floating point constant to another floating point type. The
1748 size of CST must be larger than the size of TYPE. Both types must be
1749 floating point.</dd>
1750
1751 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1752 <dd>Floating point extend a constant to another type. The size of CST must be
1753 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1754
Reid Spencer1539a1c2007-07-31 14:40:14 +00001755 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001756 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001757 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1758 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1759 of the same number of elements. If the value won't fit in the integer type,
1760 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001761
Reid Spencerd4448792006-11-09 23:03:26 +00001762 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001763 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001764 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1765 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1766 of the same number of elements. If the value won't fit in the integer type,
1767 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001768
Reid Spencerd4448792006-11-09 23:03:26 +00001769 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001770 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001771 constant. TYPE must be a scalar or vector floating point type. CST must be of
1772 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1773 of the same number of elements. If the value won't fit in the floating point
1774 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001775
Reid Spencerd4448792006-11-09 23:03:26 +00001776 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001777 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001778 constant. TYPE must be a scalar or vector floating point type. CST must be of
1779 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1780 of the same number of elements. If the value won't fit in the floating point
1781 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001782
Reid Spencer5c0ef472006-11-11 23:08:07 +00001783 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1784 <dd>Convert a pointer typed constant to the corresponding integer constant
1785 TYPE must be an integer type. CST must be of pointer type. The CST value is
1786 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1787
1788 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1789 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1790 pointer type. CST must be of integer type. The CST value is zero extended,
1791 truncated, or unchanged to make it fit in a pointer size. This one is
1792 <i>really</i> dangerous!</dd>
1793
1794 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001795 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1796 identical (same number of bits). The conversion is done as if the CST value
1797 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001798 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001799 vector types to any other type, as long as they have the same bit width. For
Dan Gohman500233a2008-09-08 16:45:59 +00001800 pointers it is only valid to cast to another pointer type. It is not valid
1801 to bitcast to or from an aggregate type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001802 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001803
1804 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1805
1806 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1807 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1808 instruction, the index list may have zero or more indexes, which are required
1809 to make sense for the type of "CSTPTR".</dd>
1810
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001811 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1812
1813 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001814 constants.</dd>
1815
1816 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1817 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1818
1819 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1820 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001821
Nate Begemanac80ade2008-05-12 19:01:56 +00001822 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1823 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1824
1825 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1826 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1827
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001828 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1829
1830 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohman0e451ce2008-10-14 16:51:45 +00001831 operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001832
Robert Bocchino05ccd702006-01-15 20:48:27 +00001833 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1834
1835 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001836 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001837
Chris Lattnerc1989542006-04-08 00:13:41 +00001838
1839 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1840
1841 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001842 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001843
Chris Lattnerc3f59762004-12-09 17:30:23 +00001844 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1845
Reid Spencer2dc45b82004-12-09 18:13:12 +00001846 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1847 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001848 binary</a> operations. The constraints on operands are the same as those for
1849 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001850 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001851</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001852</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001853
Chris Lattner00950542001-06-06 20:29:01 +00001854<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001855<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1856<!-- *********************************************************************** -->
1857
1858<!-- ======================================================================= -->
1859<div class="doc_subsection">
1860<a name="inlineasm">Inline Assembler Expressions</a>
1861</div>
1862
1863<div class="doc_text">
1864
1865<p>
1866LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1867Module-Level Inline Assembly</a>) through the use of a special value. This
1868value represents the inline assembler as a string (containing the instructions
1869to emit), a list of operand constraints (stored as a string), and a flag that
1870indicates whether or not the inline asm expression has side effects. An example
1871inline assembler expression is:
1872</p>
1873
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001874<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001875<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001876i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001877</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001878</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001879
1880<p>
1881Inline assembler expressions may <b>only</b> be used as the callee operand of
1882a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1883</p>
1884
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001885<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001886<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001887%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001888</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001889</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001890
1891<p>
1892Inline asms with side effects not visible in the constraint list must be marked
1893as having side effects. This is done through the use of the
1894'<tt>sideeffect</tt>' keyword, like so:
1895</p>
1896
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001897<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001898<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001899call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001900</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001901</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001902
1903<p>TODO: The format of the asm and constraints string still need to be
1904documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00001905need to be documented). This is probably best done by reference to another
1906document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00001907</p>
1908
1909</div>
1910
1911<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001912<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1913<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001914
Misha Brukman9d0919f2003-11-08 01:05:38 +00001915<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001916
Chris Lattner261efe92003-11-25 01:02:51 +00001917<p>The LLVM instruction set consists of several different
1918classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001919instructions</a>, <a href="#binaryops">binary instructions</a>,
1920<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001921 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1922instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001923
Misha Brukman9d0919f2003-11-08 01:05:38 +00001924</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001925
Chris Lattner00950542001-06-06 20:29:01 +00001926<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001927<div class="doc_subsection"> <a name="terminators">Terminator
1928Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001929
Misha Brukman9d0919f2003-11-08 01:05:38 +00001930<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001931
Chris Lattner261efe92003-11-25 01:02:51 +00001932<p>As mentioned <a href="#functionstructure">previously</a>, every
1933basic block in a program ends with a "Terminator" instruction, which
1934indicates which block should be executed after the current block is
1935finished. These terminator instructions typically yield a '<tt>void</tt>'
1936value: they produce control flow, not values (the one exception being
1937the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001938<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001939 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1940instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001941the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1942 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1943 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001944
Misha Brukman9d0919f2003-11-08 01:05:38 +00001945</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001946
Chris Lattner00950542001-06-06 20:29:01 +00001947<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001948<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1949Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001950<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001951<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001952<pre>
1953 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001954 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001955</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001956
Chris Lattner00950542001-06-06 20:29:01 +00001957<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001958
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001959<p>The '<tt>ret</tt>' instruction is used to return control flow (and
1960optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001961<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001962returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00001963control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001964
Chris Lattner00950542001-06-06 20:29:01 +00001965<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001966
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001967<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
1968the return value. The type of the return value must be a
1969'<a href="#t_firstclass">first class</a>' type.</p>
1970
1971<p>A function is not <a href="#wellformed">well formed</a> if
1972it it has a non-void return type and contains a '<tt>ret</tt>'
1973instruction with no return value or a return value with a type that
1974does not match its type, or if it has a void return type and contains
1975a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001976
Chris Lattner00950542001-06-06 20:29:01 +00001977<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001978
Chris Lattner261efe92003-11-25 01:02:51 +00001979<p>When the '<tt>ret</tt>' instruction is executed, control flow
1980returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001981 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001982the instruction after the call. If the caller was an "<a
1983 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001984at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001985returns a value, that value shall set the call or invoke instruction's
Dan Gohman0e451ce2008-10-14 16:51:45 +00001986return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001987
Chris Lattner00950542001-06-06 20:29:01 +00001988<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001989
1990<pre>
1991 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001992 ret void <i>; Return from a void function</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001993 ret { i32, i8 } { i32 4, i8 2 } <i>; Return an aggregate of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00001994</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001995</div>
Chris Lattner00950542001-06-06 20:29:01 +00001996<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001997<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001998<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001999<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002000<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002001</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002002<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002003<p>The '<tt>br</tt>' instruction is used to cause control flow to
2004transfer to a different basic block in the current function. There are
2005two forms of this instruction, corresponding to a conditional branch
2006and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002007<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002008<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00002009single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00002010unconditional form of the '<tt>br</tt>' instruction takes a single
2011'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002012<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002013<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002014argument is evaluated. If the value is <tt>true</tt>, control flows
2015to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2016control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002017<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002018<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00002019 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002020</div>
Chris Lattner00950542001-06-06 20:29:01 +00002021<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002022<div class="doc_subsubsection">
2023 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2024</div>
2025
Misha Brukman9d0919f2003-11-08 01:05:38 +00002026<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002027<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002028
2029<pre>
2030 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2031</pre>
2032
Chris Lattner00950542001-06-06 20:29:01 +00002033<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002034
2035<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2036several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00002037instruction, allowing a branch to occur to one of many possible
2038destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002039
2040
Chris Lattner00950542001-06-06 20:29:01 +00002041<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002042
2043<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2044comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2045an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2046table is not allowed to contain duplicate constant entries.</p>
2047
Chris Lattner00950542001-06-06 20:29:01 +00002048<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002049
Chris Lattner261efe92003-11-25 01:02:51 +00002050<p>The <tt>switch</tt> instruction specifies a table of values and
2051destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002052table is searched for the given value. If the value is found, control flow is
2053transfered to the corresponding destination; otherwise, control flow is
2054transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002055
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002056<h5>Implementation:</h5>
2057
2058<p>Depending on properties of the target machine and the particular
2059<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002060ways. For example, it could be generated as a series of chained conditional
2061branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002062
2063<h5>Example:</h5>
2064
2065<pre>
2066 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002067 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00002068 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002069
2070 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002071 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002072
2073 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002074 switch i32 %val, label %otherwise [ i32 0, label %onzero
2075 i32 1, label %onone
2076 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002077</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002078</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002079
Chris Lattner00950542001-06-06 20:29:01 +00002080<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002081<div class="doc_subsubsection">
2082 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2083</div>
2084
Misha Brukman9d0919f2003-11-08 01:05:38 +00002085<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002086
Chris Lattner00950542001-06-06 20:29:01 +00002087<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002088
2089<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002090 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002091 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002092</pre>
2093
Chris Lattner6536cfe2002-05-06 22:08:29 +00002094<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002095
2096<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2097function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002098'<tt>normal</tt>' label or the
2099'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002100"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2101"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002102href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohman0e451ce2008-10-14 16:51:45 +00002103continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002104
Chris Lattner00950542001-06-06 20:29:01 +00002105<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002106
Misha Brukman9d0919f2003-11-08 01:05:38 +00002107<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002108
Chris Lattner00950542001-06-06 20:29:01 +00002109<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002110 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002111 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002112 convention</a> the call should use. If none is specified, the call defaults
2113 to using C calling conventions.
2114 </li>
Devang Patelf642f472008-10-06 18:50:38 +00002115
2116 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2117 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2118 and '<tt>inreg</tt>' attributes are valid here.</li>
2119
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002120 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2121 function value being invoked. In most cases, this is a direct function
2122 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2123 an arbitrary pointer to function value.
2124 </li>
2125
2126 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2127 function to be invoked. </li>
2128
2129 <li>'<tt>function args</tt>': argument list whose types match the function
2130 signature argument types. If the function signature indicates the function
2131 accepts a variable number of arguments, the extra arguments can be
2132 specified. </li>
2133
2134 <li>'<tt>normal label</tt>': the label reached when the called function
2135 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2136
2137 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2138 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2139
Devang Patel307e8ab2008-10-07 17:48:33 +00002140 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00002141 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2142 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002143</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002144
Chris Lattner00950542001-06-06 20:29:01 +00002145<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002146
Misha Brukman9d0919f2003-11-08 01:05:38 +00002147<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002148href="#i_call">call</a></tt>' instruction in most regards. The primary
2149difference is that it establishes an association with a label, which is used by
2150the runtime library to unwind the stack.</p>
2151
2152<p>This instruction is used in languages with destructors to ensure that proper
2153cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2154exception. Additionally, this is important for implementation of
2155'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2156
Chris Lattner00950542001-06-06 20:29:01 +00002157<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002158<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002159 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002160 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002161 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002162 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002163</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002164</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002165
2166
Chris Lattner27f71f22003-09-03 00:41:47 +00002167<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002168
Chris Lattner261efe92003-11-25 01:02:51 +00002169<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2170Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002171
Misha Brukman9d0919f2003-11-08 01:05:38 +00002172<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002173
Chris Lattner27f71f22003-09-03 00:41:47 +00002174<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002175<pre>
2176 unwind
2177</pre>
2178
Chris Lattner27f71f22003-09-03 00:41:47 +00002179<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002180
2181<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2182at the first callee in the dynamic call stack which used an <a
2183href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2184primarily used to implement exception handling.</p>
2185
Chris Lattner27f71f22003-09-03 00:41:47 +00002186<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002187
Chris Lattner72ed2002008-04-19 21:01:16 +00002188<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002189immediately halt. The dynamic call stack is then searched for the first <a
2190href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2191execution continues at the "exceptional" destination block specified by the
2192<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2193dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002194</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002195
2196<!-- _______________________________________________________________________ -->
2197
2198<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2199Instruction</a> </div>
2200
2201<div class="doc_text">
2202
2203<h5>Syntax:</h5>
2204<pre>
2205 unreachable
2206</pre>
2207
2208<h5>Overview:</h5>
2209
2210<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2211instruction is used to inform the optimizer that a particular portion of the
2212code is not reachable. This can be used to indicate that the code after a
2213no-return function cannot be reached, and other facts.</p>
2214
2215<h5>Semantics:</h5>
2216
2217<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2218</div>
2219
2220
2221
Chris Lattner00950542001-06-06 20:29:01 +00002222<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002223<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002224<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002225<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002226program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002227produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002228multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002229The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002230<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002231</div>
Chris Lattner00950542001-06-06 20:29:01 +00002232<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002233<div class="doc_subsubsection">
2234 <a name="i_add">'<tt>add</tt>' Instruction</a>
2235</div>
2236
Misha Brukman9d0919f2003-11-08 01:05:38 +00002237<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002238
Chris Lattner00950542001-06-06 20:29:01 +00002239<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002240
2241<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002242 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002243</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002244
Chris Lattner00950542001-06-06 20:29:01 +00002245<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002246
Misha Brukman9d0919f2003-11-08 01:05:38 +00002247<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002248
Chris Lattner00950542001-06-06 20:29:01 +00002249<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002250
2251<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2252 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2253 <a href="#t_vector">vector</a> values. Both arguments must have identical
2254 types.</p>
2255
Chris Lattner00950542001-06-06 20:29:01 +00002256<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002257
Misha Brukman9d0919f2003-11-08 01:05:38 +00002258<p>The value produced is the integer or floating point sum of the two
2259operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002260
Chris Lattner5ec89832008-01-28 00:36:27 +00002261<p>If an integer sum has unsigned overflow, the result returned is the
2262mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2263the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002264
Chris Lattner5ec89832008-01-28 00:36:27 +00002265<p>Because LLVM integers use a two's complement representation, this
2266instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002267
Chris Lattner00950542001-06-06 20:29:01 +00002268<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002269
2270<pre>
2271 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002272</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002273</div>
Chris Lattner00950542001-06-06 20:29:01 +00002274<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002275<div class="doc_subsubsection">
2276 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2277</div>
2278
Misha Brukman9d0919f2003-11-08 01:05:38 +00002279<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002280
Chris Lattner00950542001-06-06 20:29:01 +00002281<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002282
2283<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002284 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002285</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002286
Chris Lattner00950542001-06-06 20:29:01 +00002287<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002288
Misha Brukman9d0919f2003-11-08 01:05:38 +00002289<p>The '<tt>sub</tt>' instruction returns the difference of its two
2290operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002291
2292<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2293'<tt>neg</tt>' instruction present in most other intermediate
2294representations.</p>
2295
Chris Lattner00950542001-06-06 20:29:01 +00002296<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002297
2298<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2299 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2300 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2301 types.</p>
2302
Chris Lattner00950542001-06-06 20:29:01 +00002303<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002304
Chris Lattner261efe92003-11-25 01:02:51 +00002305<p>The value produced is the integer or floating point difference of
2306the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002307
Chris Lattner5ec89832008-01-28 00:36:27 +00002308<p>If an integer difference has unsigned overflow, the result returned is the
2309mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2310the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002311
Chris Lattner5ec89832008-01-28 00:36:27 +00002312<p>Because LLVM integers use a two's complement representation, this
2313instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002314
Chris Lattner00950542001-06-06 20:29:01 +00002315<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002316<pre>
2317 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002318 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002319</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002320</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002321
Chris Lattner00950542001-06-06 20:29:01 +00002322<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002323<div class="doc_subsubsection">
2324 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2325</div>
2326
Misha Brukman9d0919f2003-11-08 01:05:38 +00002327<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002328
Chris Lattner00950542001-06-06 20:29:01 +00002329<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002330<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002331</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002332<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002333<p>The '<tt>mul</tt>' instruction returns the product of its two
2334operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002335
Chris Lattner00950542001-06-06 20:29:01 +00002336<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002337
2338<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2339href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2340or <a href="#t_vector">vector</a> values. Both arguments must have identical
2341types.</p>
2342
Chris Lattner00950542001-06-06 20:29:01 +00002343<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002344
Chris Lattner261efe92003-11-25 01:02:51 +00002345<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002346two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002347
Chris Lattner5ec89832008-01-28 00:36:27 +00002348<p>If the result of an integer multiplication has unsigned overflow,
2349the result returned is the mathematical result modulo
23502<sup>n</sup>, where n is the bit width of the result.</p>
2351<p>Because LLVM integers use a two's complement representation, and the
2352result is the same width as the operands, this instruction returns the
2353correct result for both signed and unsigned integers. If a full product
2354(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2355should be sign-extended or zero-extended as appropriate to the
2356width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002357<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002358<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002359</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002360</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002361
Chris Lattner00950542001-06-06 20:29:01 +00002362<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002363<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2364</a></div>
2365<div class="doc_text">
2366<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002367<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002368</pre>
2369<h5>Overview:</h5>
2370<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2371operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002372
Reid Spencer1628cec2006-10-26 06:15:43 +00002373<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002374
Reid Spencer1628cec2006-10-26 06:15:43 +00002375<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002376<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2377values. Both arguments must have identical types.</p>
2378
Reid Spencer1628cec2006-10-26 06:15:43 +00002379<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002380
Chris Lattner5ec89832008-01-28 00:36:27 +00002381<p>The value produced is the unsigned integer quotient of the two operands.</p>
2382<p>Note that unsigned integer division and signed integer division are distinct
2383operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2384<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002385<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002386<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002387</pre>
2388</div>
2389<!-- _______________________________________________________________________ -->
2390<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2391</a> </div>
2392<div class="doc_text">
2393<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002394<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002395 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002396</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002397
Reid Spencer1628cec2006-10-26 06:15:43 +00002398<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002399
Reid Spencer1628cec2006-10-26 06:15:43 +00002400<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2401operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002402
Reid Spencer1628cec2006-10-26 06:15:43 +00002403<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002404
2405<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2406<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2407values. Both arguments must have identical types.</p>
2408
Reid Spencer1628cec2006-10-26 06:15:43 +00002409<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002410<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002411<p>Note that signed integer division and unsigned integer division are distinct
2412operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2413<p>Division by zero leads to undefined behavior. Overflow also leads to
2414undefined behavior; this is a rare case, but can occur, for example,
2415by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002416<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002417<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002418</pre>
2419</div>
2420<!-- _______________________________________________________________________ -->
2421<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002422Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002423<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002424<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002425<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002426 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002427</pre>
2428<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002429
Reid Spencer1628cec2006-10-26 06:15:43 +00002430<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002431operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002432
Chris Lattner261efe92003-11-25 01:02:51 +00002433<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002434
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002435<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002436<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2437of floating point values. Both arguments must have identical types.</p>
2438
Chris Lattner261efe92003-11-25 01:02:51 +00002439<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002440
Reid Spencer1628cec2006-10-26 06:15:43 +00002441<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002442
Chris Lattner261efe92003-11-25 01:02:51 +00002443<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002444
2445<pre>
2446 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002447</pre>
2448</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002449
Chris Lattner261efe92003-11-25 01:02:51 +00002450<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002451<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2452</div>
2453<div class="doc_text">
2454<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002455<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002456</pre>
2457<h5>Overview:</h5>
2458<p>The '<tt>urem</tt>' instruction returns the remainder from the
2459unsigned division of its two arguments.</p>
2460<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002461<p>The two arguments to the '<tt>urem</tt>' instruction must be
2462<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2463values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002464<h5>Semantics:</h5>
2465<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002466This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002467<p>Note that unsigned integer remainder and signed integer remainder are
2468distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2469<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002470<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002471<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002472</pre>
2473
2474</div>
2475<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002476<div class="doc_subsubsection">
2477 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2478</div>
2479
Chris Lattner261efe92003-11-25 01:02:51 +00002480<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002481
Chris Lattner261efe92003-11-25 01:02:51 +00002482<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002483
2484<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002485 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002486</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002487
Chris Lattner261efe92003-11-25 01:02:51 +00002488<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002489
Reid Spencer0a783f72006-11-02 01:53:59 +00002490<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002491signed division of its two operands. This instruction can also take
2492<a href="#t_vector">vector</a> versions of the values in which case
2493the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002494
Chris Lattner261efe92003-11-25 01:02:51 +00002495<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002496
Reid Spencer0a783f72006-11-02 01:53:59 +00002497<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002498<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2499values. Both arguments must have identical types.</p>
2500
Chris Lattner261efe92003-11-25 01:02:51 +00002501<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002502
Reid Spencer0a783f72006-11-02 01:53:59 +00002503<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002504has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2505operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002506a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002507 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002508Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002509please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002510Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002511<p>Note that signed integer remainder and unsigned integer remainder are
2512distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2513<p>Taking the remainder of a division by zero leads to undefined behavior.
2514Overflow also leads to undefined behavior; this is a rare case, but can occur,
2515for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2516(The remainder doesn't actually overflow, but this rule lets srem be
2517implemented using instructions that return both the result of the division
2518and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002519<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002520<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002521</pre>
2522
2523</div>
2524<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002525<div class="doc_subsubsection">
2526 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2527
Reid Spencer0a783f72006-11-02 01:53:59 +00002528<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002529
Reid Spencer0a783f72006-11-02 01:53:59 +00002530<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002531<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002532</pre>
2533<h5>Overview:</h5>
2534<p>The '<tt>frem</tt>' instruction returns the remainder from the
2535division of its two operands.</p>
2536<h5>Arguments:</h5>
2537<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002538<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2539of floating point values. Both arguments must have identical types.</p>
2540
Reid Spencer0a783f72006-11-02 01:53:59 +00002541<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002542
Chris Lattnera73afe02008-04-01 18:45:27 +00002543<p>This instruction returns the <i>remainder</i> of a division.
2544The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002545
Reid Spencer0a783f72006-11-02 01:53:59 +00002546<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002547
2548<pre>
2549 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002550</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002551</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002552
Reid Spencer8e11bf82007-02-02 13:57:07 +00002553<!-- ======================================================================= -->
2554<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2555Operations</a> </div>
2556<div class="doc_text">
2557<p>Bitwise binary operators are used to do various forms of
2558bit-twiddling in a program. They are generally very efficient
2559instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002560instructions. They require two operands of the same type, execute an operation on them,
2561and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002562</div>
2563
Reid Spencer569f2fa2007-01-31 21:39:12 +00002564<!-- _______________________________________________________________________ -->
2565<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2566Instruction</a> </div>
2567<div class="doc_text">
2568<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002569<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002570</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002571
Reid Spencer569f2fa2007-01-31 21:39:12 +00002572<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002573
Reid Spencer569f2fa2007-01-31 21:39:12 +00002574<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2575the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002576
Reid Spencer569f2fa2007-01-31 21:39:12 +00002577<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002578
Reid Spencer569f2fa2007-01-31 21:39:12 +00002579<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002580 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002581type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002582
Reid Spencer569f2fa2007-01-31 21:39:12 +00002583<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002584
Gabor Greiffb224a22008-08-07 21:46:00 +00002585<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2586where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang01f8d092008-12-10 08:55:09 +00002587equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2588If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2589corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002590
Reid Spencer569f2fa2007-01-31 21:39:12 +00002591<h5>Example:</h5><pre>
2592 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2593 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2594 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002595 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002596 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002597</pre>
2598</div>
2599<!-- _______________________________________________________________________ -->
2600<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2601Instruction</a> </div>
2602<div class="doc_text">
2603<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002604<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002605</pre>
2606
2607<h5>Overview:</h5>
2608<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002609operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002610
2611<h5>Arguments:</h5>
2612<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002613<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002614type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002615
2616<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002617
Reid Spencer569f2fa2007-01-31 21:39:12 +00002618<p>This instruction always performs a logical shift right operation. The most
2619significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002620shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang01f8d092008-12-10 08:55:09 +00002621the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2622vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2623amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002624
2625<h5>Example:</h5>
2626<pre>
2627 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2628 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2629 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2630 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002631 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002632 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002633</pre>
2634</div>
2635
Reid Spencer8e11bf82007-02-02 13:57:07 +00002636<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002637<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2638Instruction</a> </div>
2639<div class="doc_text">
2640
2641<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002642<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002643</pre>
2644
2645<h5>Overview:</h5>
2646<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002647operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002648
2649<h5>Arguments:</h5>
2650<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002651<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002652type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002653
2654<h5>Semantics:</h5>
2655<p>This instruction always performs an arithmetic shift right operation,
2656The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00002657of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang01f8d092008-12-10 08:55:09 +00002658larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
2659arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2660corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002661
2662<h5>Example:</h5>
2663<pre>
2664 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2665 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2666 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2667 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002668 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002669 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002670</pre>
2671</div>
2672
Chris Lattner00950542001-06-06 20:29:01 +00002673<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002674<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2675Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002676
Misha Brukman9d0919f2003-11-08 01:05:38 +00002677<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002678
Chris Lattner00950542001-06-06 20:29:01 +00002679<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002680
2681<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002682 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002683</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002684
Chris Lattner00950542001-06-06 20:29:01 +00002685<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002686
Chris Lattner261efe92003-11-25 01:02:51 +00002687<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2688its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002689
Chris Lattner00950542001-06-06 20:29:01 +00002690<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002691
2692<p>The two arguments to the '<tt>and</tt>' instruction must be
2693<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2694values. Both arguments must have identical types.</p>
2695
Chris Lattner00950542001-06-06 20:29:01 +00002696<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002697<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002698<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002699<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002700<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002701 <tbody>
2702 <tr>
2703 <td>In0</td>
2704 <td>In1</td>
2705 <td>Out</td>
2706 </tr>
2707 <tr>
2708 <td>0</td>
2709 <td>0</td>
2710 <td>0</td>
2711 </tr>
2712 <tr>
2713 <td>0</td>
2714 <td>1</td>
2715 <td>0</td>
2716 </tr>
2717 <tr>
2718 <td>1</td>
2719 <td>0</td>
2720 <td>0</td>
2721 </tr>
2722 <tr>
2723 <td>1</td>
2724 <td>1</td>
2725 <td>1</td>
2726 </tr>
2727 </tbody>
2728</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002729</div>
Chris Lattner00950542001-06-06 20:29:01 +00002730<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002731<pre>
2732 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002733 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2734 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002735</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002736</div>
Chris Lattner00950542001-06-06 20:29:01 +00002737<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002738<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002739<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002740<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002741<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002742</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002743<h5>Overview:</h5>
2744<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2745or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002746<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002747
2748<p>The two arguments to the '<tt>or</tt>' instruction must be
2749<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2750values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002751<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002752<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002753<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002754<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002755<table border="1" cellspacing="0" cellpadding="4">
2756 <tbody>
2757 <tr>
2758 <td>In0</td>
2759 <td>In1</td>
2760 <td>Out</td>
2761 </tr>
2762 <tr>
2763 <td>0</td>
2764 <td>0</td>
2765 <td>0</td>
2766 </tr>
2767 <tr>
2768 <td>0</td>
2769 <td>1</td>
2770 <td>1</td>
2771 </tr>
2772 <tr>
2773 <td>1</td>
2774 <td>0</td>
2775 <td>1</td>
2776 </tr>
2777 <tr>
2778 <td>1</td>
2779 <td>1</td>
2780 <td>1</td>
2781 </tr>
2782 </tbody>
2783</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002784</div>
Chris Lattner00950542001-06-06 20:29:01 +00002785<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002786<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2787 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2788 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002789</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002790</div>
Chris Lattner00950542001-06-06 20:29:01 +00002791<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002792<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2793Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002794<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002795<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002796<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002797</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002798<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002799<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2800or of its two operands. The <tt>xor</tt> is used to implement the
2801"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002802<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002803<p>The two arguments to the '<tt>xor</tt>' instruction must be
2804<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2805values. Both arguments must have identical types.</p>
2806
Chris Lattner00950542001-06-06 20:29:01 +00002807<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002808
Misha Brukman9d0919f2003-11-08 01:05:38 +00002809<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002810<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002811<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002812<table border="1" cellspacing="0" cellpadding="4">
2813 <tbody>
2814 <tr>
2815 <td>In0</td>
2816 <td>In1</td>
2817 <td>Out</td>
2818 </tr>
2819 <tr>
2820 <td>0</td>
2821 <td>0</td>
2822 <td>0</td>
2823 </tr>
2824 <tr>
2825 <td>0</td>
2826 <td>1</td>
2827 <td>1</td>
2828 </tr>
2829 <tr>
2830 <td>1</td>
2831 <td>0</td>
2832 <td>1</td>
2833 </tr>
2834 <tr>
2835 <td>1</td>
2836 <td>1</td>
2837 <td>0</td>
2838 </tr>
2839 </tbody>
2840</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002841</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002842<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002843<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002844<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2845 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2846 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2847 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002848</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002849</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002850
Chris Lattner00950542001-06-06 20:29:01 +00002851<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002852<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002853 <a name="vectorops">Vector Operations</a>
2854</div>
2855
2856<div class="doc_text">
2857
2858<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002859target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002860vector-specific operations needed to process vectors effectively. While LLVM
2861does directly support these vector operations, many sophisticated algorithms
2862will want to use target-specific intrinsics to take full advantage of a specific
2863target.</p>
2864
2865</div>
2866
2867<!-- _______________________________________________________________________ -->
2868<div class="doc_subsubsection">
2869 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2870</div>
2871
2872<div class="doc_text">
2873
2874<h5>Syntax:</h5>
2875
2876<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002877 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002878</pre>
2879
2880<h5>Overview:</h5>
2881
2882<p>
2883The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002884element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002885</p>
2886
2887
2888<h5>Arguments:</h5>
2889
2890<p>
2891The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002892value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002893an index indicating the position from which to extract the element.
2894The index may be a variable.</p>
2895
2896<h5>Semantics:</h5>
2897
2898<p>
2899The result is a scalar of the same type as the element type of
2900<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2901<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2902results are undefined.
2903</p>
2904
2905<h5>Example:</h5>
2906
2907<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002908 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002909</pre>
2910</div>
2911
2912
2913<!-- _______________________________________________________________________ -->
2914<div class="doc_subsubsection">
2915 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2916</div>
2917
2918<div class="doc_text">
2919
2920<h5>Syntax:</h5>
2921
2922<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00002923 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002924</pre>
2925
2926<h5>Overview:</h5>
2927
2928<p>
2929The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002930element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002931</p>
2932
2933
2934<h5>Arguments:</h5>
2935
2936<p>
2937The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002938value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002939scalar value whose type must equal the element type of the first
2940operand. The third operand is an index indicating the position at
2941which to insert the value. The index may be a variable.</p>
2942
2943<h5>Semantics:</h5>
2944
2945<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002946The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002947element values are those of <tt>val</tt> except at position
2948<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2949exceeds the length of <tt>val</tt>, the results are undefined.
2950</p>
2951
2952<h5>Example:</h5>
2953
2954<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002955 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002956</pre>
2957</div>
2958
2959<!-- _______________________________________________________________________ -->
2960<div class="doc_subsubsection">
2961 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2962</div>
2963
2964<div class="doc_text">
2965
2966<h5>Syntax:</h5>
2967
2968<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00002969 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002970</pre>
2971
2972<h5>Overview:</h5>
2973
2974<p>
2975The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wangaeb06d22008-11-10 04:46:22 +00002976from two input vectors, returning a vector with the same element type as
2977the input and length that is the same as the shuffle mask.
Chris Lattner3df241e2006-04-08 23:07:04 +00002978</p>
2979
2980<h5>Arguments:</h5>
2981
2982<p>
Mon P Wangaeb06d22008-11-10 04:46:22 +00002983The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2984with types that match each other. The third argument is a shuffle mask whose
2985element type is always 'i32'. The result of the instruction is a vector whose
2986length is the same as the shuffle mask and whose element type is the same as
2987the element type of the first two operands.
Chris Lattner3df241e2006-04-08 23:07:04 +00002988</p>
2989
2990<p>
2991The shuffle mask operand is required to be a constant vector with either
2992constant integer or undef values.
2993</p>
2994
2995<h5>Semantics:</h5>
2996
2997<p>
2998The elements of the two input vectors are numbered from left to right across
2999both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wangaeb06d22008-11-10 04:46:22 +00003000the result vector, which element of the two input vectors the result element
Chris Lattner3df241e2006-04-08 23:07:04 +00003001gets. The element selector may be undef (meaning "don't care") and the second
3002operand may be undef if performing a shuffle from only one vector.
3003</p>
3004
3005<h5>Example:</h5>
3006
3007<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003008 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003009 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003010 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3011 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00003012 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3013 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3014 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3015 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003016</pre>
3017</div>
3018
Tanya Lattner09474292006-04-14 19:24:33 +00003019
Chris Lattner3df241e2006-04-08 23:07:04 +00003020<!-- ======================================================================= -->
3021<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003022 <a name="aggregateops">Aggregate Operations</a>
3023</div>
3024
3025<div class="doc_text">
3026
3027<p>LLVM supports several instructions for working with aggregate values.
3028</p>
3029
3030</div>
3031
3032<!-- _______________________________________________________________________ -->
3033<div class="doc_subsubsection">
3034 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3035</div>
3036
3037<div class="doc_text">
3038
3039<h5>Syntax:</h5>
3040
3041<pre>
3042 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3043</pre>
3044
3045<h5>Overview:</h5>
3046
3047<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003048The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3049or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003050</p>
3051
3052
3053<h5>Arguments:</h5>
3054
3055<p>
3056The first operand of an '<tt>extractvalue</tt>' instruction is a
3057value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003058type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003059in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003060'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3061</p>
3062
3063<h5>Semantics:</h5>
3064
3065<p>
3066The result is the value at the position in the aggregate specified by
3067the index operands.
3068</p>
3069
3070<h5>Example:</h5>
3071
3072<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003073 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003074</pre>
3075</div>
3076
3077
3078<!-- _______________________________________________________________________ -->
3079<div class="doc_subsubsection">
3080 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3081</div>
3082
3083<div class="doc_text">
3084
3085<h5>Syntax:</h5>
3086
3087<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003088 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003089</pre>
3090
3091<h5>Overview:</h5>
3092
3093<p>
3094The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003095into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003096</p>
3097
3098
3099<h5>Arguments:</h5>
3100
3101<p>
3102The first operand of an '<tt>insertvalue</tt>' instruction is a
3103value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3104The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003105The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003106indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003107indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003108'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3109The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003110by the indices.
Dan Gohman0e451ce2008-10-14 16:51:45 +00003111</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003112
3113<h5>Semantics:</h5>
3114
3115<p>
3116The result is an aggregate of the same type as <tt>val</tt>. Its
3117value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003118specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003119</p>
3120
3121<h5>Example:</h5>
3122
3123<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003124 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003125</pre>
3126</div>
3127
3128
3129<!-- ======================================================================= -->
3130<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003131 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003132</div>
3133
Misha Brukman9d0919f2003-11-08 01:05:38 +00003134<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003135
Chris Lattner261efe92003-11-25 01:02:51 +00003136<p>A key design point of an SSA-based representation is how it
3137represents memory. In LLVM, no memory locations are in SSA form, which
3138makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003139allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003140
Misha Brukman9d0919f2003-11-08 01:05:38 +00003141</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003142
Chris Lattner00950542001-06-06 20:29:01 +00003143<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003144<div class="doc_subsubsection">
3145 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3146</div>
3147
Misha Brukman9d0919f2003-11-08 01:05:38 +00003148<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003149
Chris Lattner00950542001-06-06 20:29:01 +00003150<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003151
3152<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003153 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003154</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003155
Chris Lattner00950542001-06-06 20:29:01 +00003156<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003157
Chris Lattner261efe92003-11-25 01:02:51 +00003158<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003159heap and returns a pointer to it. The object is always allocated in the generic
3160address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003161
Chris Lattner00950542001-06-06 20:29:01 +00003162<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003163
3164<p>The '<tt>malloc</tt>' instruction allocates
3165<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003166bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003167appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003168number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003169If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003170be aligned to at least that boundary. If not specified, or if zero, the target can
3171choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003172
Misha Brukman9d0919f2003-11-08 01:05:38 +00003173<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003174
Chris Lattner00950542001-06-06 20:29:01 +00003175<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003176
Chris Lattner261efe92003-11-25 01:02:51 +00003177<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewycky02ff3082008-11-24 03:41:24 +00003178a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattner72ed2002008-04-19 21:01:16 +00003179result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003180
Chris Lattner2cbdc452005-11-06 08:02:57 +00003181<h5>Example:</h5>
3182
3183<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003184 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003185
Bill Wendlingaac388b2007-05-29 09:42:13 +00003186 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3187 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3188 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3189 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3190 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003191</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003192</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003193
Chris Lattner00950542001-06-06 20:29:01 +00003194<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003195<div class="doc_subsubsection">
3196 <a name="i_free">'<tt>free</tt>' Instruction</a>
3197</div>
3198
Misha Brukman9d0919f2003-11-08 01:05:38 +00003199<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003200
Chris Lattner00950542001-06-06 20:29:01 +00003201<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003202
3203<pre>
3204 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003205</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003206
Chris Lattner00950542001-06-06 20:29:01 +00003207<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003208
Chris Lattner261efe92003-11-25 01:02:51 +00003209<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003210memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003211
Chris Lattner00950542001-06-06 20:29:01 +00003212<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003213
Chris Lattner261efe92003-11-25 01:02:51 +00003214<p>'<tt>value</tt>' shall be a pointer value that points to a value
3215that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3216instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003217
Chris Lattner00950542001-06-06 20:29:01 +00003218<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003219
John Criswell9e2485c2004-12-10 15:51:16 +00003220<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003221after this instruction executes. If the pointer is null, the operation
3222is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003223
Chris Lattner00950542001-06-06 20:29:01 +00003224<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003225
3226<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003227 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3228 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003229</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003230</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003231
Chris Lattner00950542001-06-06 20:29:01 +00003232<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003233<div class="doc_subsubsection">
3234 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3235</div>
3236
Misha Brukman9d0919f2003-11-08 01:05:38 +00003237<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003238
Chris Lattner00950542001-06-06 20:29:01 +00003239<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003240
3241<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003242 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003243</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003244
Chris Lattner00950542001-06-06 20:29:01 +00003245<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003246
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003247<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3248currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003249returns to its caller. The object is always allocated in the generic address
3250space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003251
Chris Lattner00950542001-06-06 20:29:01 +00003252<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003253
John Criswell9e2485c2004-12-10 15:51:16 +00003254<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003255bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003256appropriate type to the program. If "NumElements" is specified, it is the
3257number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003258If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003259to be aligned to at least that boundary. If not specified, or if zero, the target
3260can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003261
Misha Brukman9d0919f2003-11-08 01:05:38 +00003262<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003263
Chris Lattner00950542001-06-06 20:29:01 +00003264<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003265
Chris Lattner72ed2002008-04-19 21:01:16 +00003266<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3267there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003268memory is automatically released when the function returns. The '<tt>alloca</tt>'
3269instruction is commonly used to represent automatic variables that must
3270have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003271 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003272instructions), the memory is reclaimed. Allocating zero bytes
3273is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003274
Chris Lattner00950542001-06-06 20:29:01 +00003275<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003276
3277<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003278 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003279 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3280 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003281 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003282</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003283</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003284
Chris Lattner00950542001-06-06 20:29:01 +00003285<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003286<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3287Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003288<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003289<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003290<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003291<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003292<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003293<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003294<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003295address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003296 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003297marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003298the number or order of execution of this <tt>load</tt> with other
3299volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3300instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003301<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003302The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003303(that is, the alignment of the memory address). A value of 0 or an
3304omitted "align" argument means that the operation has the preferential
3305alignment for the target. It is the responsibility of the code emitter
3306to ensure that the alignment information is correct. Overestimating
3307the alignment results in an undefined behavior. Underestimating the
3308alignment may produce less efficient code. An alignment of 1 is always
3309safe.
3310</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003311<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003312<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003313<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003314<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003315 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003316 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3317 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003318</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003319</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003320<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003321<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3322Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003323<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003324<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003325<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3326 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003327</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003328<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003329<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003330<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003331<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003332to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003333operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3334of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003335operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003336optimizer is not allowed to modify the number or order of execution of
3337this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3338 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003339<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003340The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003341(that is, the alignment of the memory address). A value of 0 or an
3342omitted "align" argument means that the operation has the preferential
3343alignment for the target. It is the responsibility of the code emitter
3344to ensure that the alignment information is correct. Overestimating
3345the alignment results in an undefined behavior. Underestimating the
3346alignment may produce less efficient code. An alignment of 1 is always
3347safe.
3348</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003349<h5>Semantics:</h5>
3350<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3351at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003352<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003353<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003354 store i32 3, i32* %ptr <i>; yields {void}</i>
3355 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003356</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003357</div>
3358
Chris Lattner2b7d3202002-05-06 03:03:22 +00003359<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003360<div class="doc_subsubsection">
3361 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3362</div>
3363
Misha Brukman9d0919f2003-11-08 01:05:38 +00003364<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003365<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003366<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003367 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003368</pre>
3369
Chris Lattner7faa8832002-04-14 06:13:44 +00003370<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003371
3372<p>
3373The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003374subelement of an aggregate data structure. It performs address calculation only
3375and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003376
Chris Lattner7faa8832002-04-14 06:13:44 +00003377<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003378
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003379<p>The first argument is always a pointer, and forms the basis of the
3380calculation. The remaining arguments are indices, that indicate which of the
3381elements of the aggregate object are indexed. The interpretation of each index
3382is dependent on the type being indexed into. The first index always indexes the
3383pointer value given as the first argument, the second index indexes a value of
3384the type pointed to (not necessarily the value directly pointed to, since the
3385first index can be non-zero), etc. The first type indexed into must be a pointer
3386value, subsequent types can be arrays, vectors and structs. Note that subsequent
3387types being indexed into can never be pointers, since that would require loading
3388the pointer before continuing calculation.</p>
3389
3390<p>The type of each index argument depends on the type it is indexing into.
3391When indexing into a (packed) structure, only <tt>i32</tt> integer
3392<b>constants</b> are allowed. When indexing into an array, pointer or vector,
3393only integers of 32 or 64 bits are allowed (also non-constants). 32-bit values
3394will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003395
Chris Lattner261efe92003-11-25 01:02:51 +00003396<p>For example, let's consider a C code fragment and how it gets
3397compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003398
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003399<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003400<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003401struct RT {
3402 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003403 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003404 char C;
3405};
3406struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003407 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003408 double Y;
3409 struct RT Z;
3410};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003411
Chris Lattnercabc8462007-05-29 15:43:56 +00003412int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003413 return &amp;s[1].Z.B[5][13];
3414}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003415</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003416</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003417
Misha Brukman9d0919f2003-11-08 01:05:38 +00003418<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003419
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003420<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003421<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003422%RT = type { i8 , [10 x [20 x i32]], i8 }
3423%ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003424
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003425define i32* %foo(%ST* %s) {
3426entry:
3427 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3428 ret i32* %reg
3429}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003430</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003431</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003432
Chris Lattner7faa8832002-04-14 06:13:44 +00003433<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003434
Misha Brukman9d0919f2003-11-08 01:05:38 +00003435<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003436type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003437}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003438the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3439i8 }</tt>' type, another structure. The third index indexes into the second
3440element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003441array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003442'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3443to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003444
Chris Lattner261efe92003-11-25 01:02:51 +00003445<p>Note that it is perfectly legal to index partially through a
3446structure, returning a pointer to an inner element. Because of this,
3447the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003448
3449<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003450 define i32* %foo(%ST* %s) {
3451 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003452 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3453 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003454 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3455 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3456 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003457 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003458</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003459
3460<p>Note that it is undefined to access an array out of bounds: array and
3461pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003462The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003463defined to be accessible as variable length arrays, which requires access
3464beyond the zero'th element.</p>
3465
Chris Lattner884a9702006-08-15 00:45:58 +00003466<p>The getelementptr instruction is often confusing. For some more insight
3467into how it works, see <a href="GetElementPtr.html">the getelementptr
3468FAQ</a>.</p>
3469
Chris Lattner7faa8832002-04-14 06:13:44 +00003470<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003471
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003472<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003473 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003474 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3475 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003476 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003477 <i>; yields i8*:eptr</i>
3478 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003479</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003480</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003481
Chris Lattner00950542001-06-06 20:29:01 +00003482<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003483<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003484</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003485<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003486<p>The instructions in this category are the conversion instructions (casting)
3487which all take a single operand and a type. They perform various bit conversions
3488on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003489</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003490
Chris Lattner6536cfe2002-05-06 22:08:29 +00003491<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003492<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003493 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3494</div>
3495<div class="doc_text">
3496
3497<h5>Syntax:</h5>
3498<pre>
3499 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3500</pre>
3501
3502<h5>Overview:</h5>
3503<p>
3504The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3505</p>
3506
3507<h5>Arguments:</h5>
3508<p>
3509The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3510be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003511and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003512type. The bit size of <tt>value</tt> must be larger than the bit size of
3513<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003514
3515<h5>Semantics:</h5>
3516<p>
3517The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003518and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3519larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3520It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003521
3522<h5>Example:</h5>
3523<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003524 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003525 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3526 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003527</pre>
3528</div>
3529
3530<!-- _______________________________________________________________________ -->
3531<div class="doc_subsubsection">
3532 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3533</div>
3534<div class="doc_text">
3535
3536<h5>Syntax:</h5>
3537<pre>
3538 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3539</pre>
3540
3541<h5>Overview:</h5>
3542<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3543<tt>ty2</tt>.</p>
3544
3545
3546<h5>Arguments:</h5>
3547<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003548<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3549also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003550<tt>value</tt> must be smaller than the bit size of the destination type,
3551<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003552
3553<h5>Semantics:</h5>
3554<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003555bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003556
Reid Spencerb5929522007-01-12 15:46:11 +00003557<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003558
3559<h5>Example:</h5>
3560<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003561 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003562 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003563</pre>
3564</div>
3565
3566<!-- _______________________________________________________________________ -->
3567<div class="doc_subsubsection">
3568 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3569</div>
3570<div class="doc_text">
3571
3572<h5>Syntax:</h5>
3573<pre>
3574 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3575</pre>
3576
3577<h5>Overview:</h5>
3578<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3579
3580<h5>Arguments:</h5>
3581<p>
3582The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003583<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3584also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003585<tt>value</tt> must be smaller than the bit size of the destination type,
3586<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003587
3588<h5>Semantics:</h5>
3589<p>
3590The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3591bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003592the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003593
Reid Spencerc78f3372007-01-12 03:35:51 +00003594<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003595
3596<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003597<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003598 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003599 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003600</pre>
3601</div>
3602
3603<!-- _______________________________________________________________________ -->
3604<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003605 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3606</div>
3607
3608<div class="doc_text">
3609
3610<h5>Syntax:</h5>
3611
3612<pre>
3613 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3614</pre>
3615
3616<h5>Overview:</h5>
3617<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3618<tt>ty2</tt>.</p>
3619
3620
3621<h5>Arguments:</h5>
3622<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3623 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3624cast it to. The size of <tt>value</tt> must be larger than the size of
3625<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3626<i>no-op cast</i>.</p>
3627
3628<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003629<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3630<a href="#t_floating">floating point</a> type to a smaller
3631<a href="#t_floating">floating point</a> type. If the value cannot fit within
3632the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003633
3634<h5>Example:</h5>
3635<pre>
3636 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3637 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3638</pre>
3639</div>
3640
3641<!-- _______________________________________________________________________ -->
3642<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003643 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3644</div>
3645<div class="doc_text">
3646
3647<h5>Syntax:</h5>
3648<pre>
3649 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3650</pre>
3651
3652<h5>Overview:</h5>
3653<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3654floating point value.</p>
3655
3656<h5>Arguments:</h5>
3657<p>The '<tt>fpext</tt>' instruction takes a
3658<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003659and a <a href="#t_floating">floating point</a> type to cast it to. The source
3660type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003661
3662<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003663<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003664<a href="#t_floating">floating point</a> type to a larger
3665<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003666used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003667<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003668
3669<h5>Example:</h5>
3670<pre>
3671 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3672 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3673</pre>
3674</div>
3675
3676<!-- _______________________________________________________________________ -->
3677<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003678 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003679</div>
3680<div class="doc_text">
3681
3682<h5>Syntax:</h5>
3683<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003684 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003685</pre>
3686
3687<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003688<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003689unsigned integer equivalent of type <tt>ty2</tt>.
3690</p>
3691
3692<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003693<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003694scalar or vector <a href="#t_floating">floating point</a> value, and a type
3695to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3696type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3697vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003698
3699<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003700<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003701<a href="#t_floating">floating point</a> operand into the nearest (rounding
3702towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3703the results are undefined.</p>
3704
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003705<h5>Example:</h5>
3706<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003707 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003708 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003709 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003710</pre>
3711</div>
3712
3713<!-- _______________________________________________________________________ -->
3714<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003715 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003716</div>
3717<div class="doc_text">
3718
3719<h5>Syntax:</h5>
3720<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003721 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003722</pre>
3723
3724<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003725<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003726<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003727</p>
3728
Chris Lattner6536cfe2002-05-06 22:08:29 +00003729<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003730<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003731scalar or vector <a href="#t_floating">floating point</a> value, and a type
3732to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3733type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3734vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003735
Chris Lattner6536cfe2002-05-06 22:08:29 +00003736<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003737<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003738<a href="#t_floating">floating point</a> operand into the nearest (rounding
3739towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3740the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003741
Chris Lattner33ba0d92001-07-09 00:26:23 +00003742<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003743<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003744 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003745 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003746 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003747</pre>
3748</div>
3749
3750<!-- _______________________________________________________________________ -->
3751<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003752 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003753</div>
3754<div class="doc_text">
3755
3756<h5>Syntax:</h5>
3757<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003758 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003759</pre>
3760
3761<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003762<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003763integer and converts that value to the <tt>ty2</tt> type.</p>
3764
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003765<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003766<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3767scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3768to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3769type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3770floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003771
3772<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003773<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003774integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003775the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003776
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003777<h5>Example:</h5>
3778<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003779 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003780 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003781</pre>
3782</div>
3783
3784<!-- _______________________________________________________________________ -->
3785<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003786 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003787</div>
3788<div class="doc_text">
3789
3790<h5>Syntax:</h5>
3791<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003792 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003793</pre>
3794
3795<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003796<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003797integer and converts that value to the <tt>ty2</tt> type.</p>
3798
3799<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003800<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3801scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3802to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3803type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3804floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003805
3806<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003807<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003808integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003809the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003810
3811<h5>Example:</h5>
3812<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003813 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003814 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003815</pre>
3816</div>
3817
3818<!-- _______________________________________________________________________ -->
3819<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003820 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3821</div>
3822<div class="doc_text">
3823
3824<h5>Syntax:</h5>
3825<pre>
3826 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3827</pre>
3828
3829<h5>Overview:</h5>
3830<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3831the integer type <tt>ty2</tt>.</p>
3832
3833<h5>Arguments:</h5>
3834<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003835must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohman0e451ce2008-10-14 16:51:45 +00003836<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003837
3838<h5>Semantics:</h5>
3839<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3840<tt>ty2</tt> by interpreting the pointer value as an integer and either
3841truncating or zero extending that value to the size of the integer type. If
3842<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3843<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003844are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3845change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003846
3847<h5>Example:</h5>
3848<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003849 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3850 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003851</pre>
3852</div>
3853
3854<!-- _______________________________________________________________________ -->
3855<div class="doc_subsubsection">
3856 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3857</div>
3858<div class="doc_text">
3859
3860<h5>Syntax:</h5>
3861<pre>
3862 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3863</pre>
3864
3865<h5>Overview:</h5>
3866<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3867a pointer type, <tt>ty2</tt>.</p>
3868
3869<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003870<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003871value to cast, and a type to cast it to, which must be a
Dan Gohman0e451ce2008-10-14 16:51:45 +00003872<a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003873
3874<h5>Semantics:</h5>
3875<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3876<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3877the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3878size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3879the size of a pointer then a zero extension is done. If they are the same size,
3880nothing is done (<i>no-op cast</i>).</p>
3881
3882<h5>Example:</h5>
3883<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003884 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3885 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3886 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003887</pre>
3888</div>
3889
3890<!-- _______________________________________________________________________ -->
3891<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003892 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003893</div>
3894<div class="doc_text">
3895
3896<h5>Syntax:</h5>
3897<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003898 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003899</pre>
3900
3901<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003902
Reid Spencer5c0ef472006-11-11 23:08:07 +00003903<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003904<tt>ty2</tt> without changing any bits.</p>
3905
3906<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003907
Reid Spencer5c0ef472006-11-11 23:08:07 +00003908<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00003909a non-aggregate first class value, and a type to cast it to, which must also be
3910a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
3911<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003912and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00003913type is a pointer, the destination type must also be a pointer. This
3914instruction supports bitwise conversion of vectors to integers and to vectors
3915of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003916
3917<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003918<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003919<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3920this conversion. The conversion is done as if the <tt>value</tt> had been
3921stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3922converted to other pointer types with this instruction. To convert pointers to
3923other types, use the <a href="#i_inttoptr">inttoptr</a> or
3924<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003925
3926<h5>Example:</h5>
3927<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003928 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003929 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003930 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003931</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003932</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003933
Reid Spencer2fd21e62006-11-08 01:18:52 +00003934<!-- ======================================================================= -->
3935<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3936<div class="doc_text">
3937<p>The instructions in this category are the "miscellaneous"
3938instructions, which defy better classification.</p>
3939</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003940
3941<!-- _______________________________________________________________________ -->
3942<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3943</div>
3944<div class="doc_text">
3945<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003946<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003947</pre>
3948<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003949<p>The '<tt>icmp</tt>' instruction returns a boolean value or
3950a vector of boolean values based on comparison
3951of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003952<h5>Arguments:</h5>
3953<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003954the condition code indicating the kind of comparison to perform. It is not
3955a value, just a keyword. The possible condition code are:
Dan Gohman0e451ce2008-10-14 16:51:45 +00003956</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003957<ol>
3958 <li><tt>eq</tt>: equal</li>
3959 <li><tt>ne</tt>: not equal </li>
3960 <li><tt>ugt</tt>: unsigned greater than</li>
3961 <li><tt>uge</tt>: unsigned greater or equal</li>
3962 <li><tt>ult</tt>: unsigned less than</li>
3963 <li><tt>ule</tt>: unsigned less or equal</li>
3964 <li><tt>sgt</tt>: signed greater than</li>
3965 <li><tt>sge</tt>: signed greater or equal</li>
3966 <li><tt>slt</tt>: signed less than</li>
3967 <li><tt>sle</tt>: signed less or equal</li>
3968</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003969<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00003970<a href="#t_pointer">pointer</a>
3971or integer <a href="#t_vector">vector</a> typed.
3972They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003973<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003974<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00003975the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00003976yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohman0e451ce2008-10-14 16:51:45 +00003977</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003978<ol>
3979 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3980 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3981 </li>
3982 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohman0e451ce2008-10-14 16:51:45 +00003983 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003984 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003985 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003986 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003987 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003988 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003989 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003990 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003991 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003992 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003993 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003994 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003995 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003996 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003997 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003998 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003999 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004000</ol>
4001<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00004002values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004003<p>If the operands are integer vectors, then they are compared
4004element by element. The result is an <tt>i1</tt> vector with
4005the same number of elements as the values being compared.
4006Otherwise, the result is an <tt>i1</tt>.
4007</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004008
4009<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00004010<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4011 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4012 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4013 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4014 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4015 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004016</pre>
4017</div>
4018
4019<!-- _______________________________________________________________________ -->
4020<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4021</div>
4022<div class="doc_text">
4023<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004024<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004025</pre>
4026<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004027<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4028or vector of boolean values based on comparison
Dan Gohman0e451ce2008-10-14 16:51:45 +00004029of its operands.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004030<p>
4031If the operands are floating point scalars, then the result
4032type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4033</p>
4034<p>If the operands are floating point vectors, then the result type
4035is a vector of boolean with the same number of elements as the
4036operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004037<h5>Arguments:</h5>
4038<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004039the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004040a value, just a keyword. The possible condition code are:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004041<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004042 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004043 <li><tt>oeq</tt>: ordered and equal</li>
4044 <li><tt>ogt</tt>: ordered and greater than </li>
4045 <li><tt>oge</tt>: ordered and greater than or equal</li>
4046 <li><tt>olt</tt>: ordered and less than </li>
4047 <li><tt>ole</tt>: ordered and less than or equal</li>
4048 <li><tt>one</tt>: ordered and not equal</li>
4049 <li><tt>ord</tt>: ordered (no nans)</li>
4050 <li><tt>ueq</tt>: unordered or equal</li>
4051 <li><tt>ugt</tt>: unordered or greater than </li>
4052 <li><tt>uge</tt>: unordered or greater than or equal</li>
4053 <li><tt>ult</tt>: unordered or less than </li>
4054 <li><tt>ule</tt>: unordered or less than or equal</li>
4055 <li><tt>une</tt>: unordered or not equal</li>
4056 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004057 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004058</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004059<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00004060<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004061<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4062either a <a href="#t_floating">floating point</a> type
4063or a <a href="#t_vector">vector</a> of floating point type.
4064They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004065<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004066<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004067according to the condition code given as <tt>cond</tt>.
4068If the operands are vectors, then the vectors are compared
4069element by element.
4070Each comparison performed
Dan Gohman0e451ce2008-10-14 16:51:45 +00004071always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004072<ol>
4073 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004074 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004075 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004076 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004077 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004078 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004079 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004080 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004081 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004082 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004083 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004084 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004085 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004086 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4087 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004088 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004089 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004090 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004091 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004092 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004093 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004094 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004095 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004096 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004097 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004098 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004099 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004100 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4101</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004102
4103<h5>Example:</h5>
4104<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004105 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4106 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4107 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004108</pre>
4109</div>
4110
Reid Spencer2fd21e62006-11-08 01:18:52 +00004111<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004112<div class="doc_subsubsection">
4113 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4114</div>
4115<div class="doc_text">
4116<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004117<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004118</pre>
4119<h5>Overview:</h5>
4120<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4121element-wise comparison of its two integer vector operands.</p>
4122<h5>Arguments:</h5>
4123<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4124the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004125a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004126<ol>
4127 <li><tt>eq</tt>: equal</li>
4128 <li><tt>ne</tt>: not equal </li>
4129 <li><tt>ugt</tt>: unsigned greater than</li>
4130 <li><tt>uge</tt>: unsigned greater or equal</li>
4131 <li><tt>ult</tt>: unsigned less than</li>
4132 <li><tt>ule</tt>: unsigned less or equal</li>
4133 <li><tt>sgt</tt>: signed greater than</li>
4134 <li><tt>sge</tt>: signed greater or equal</li>
4135 <li><tt>slt</tt>: signed less than</li>
4136 <li><tt>sle</tt>: signed less or equal</li>
4137</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004138<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004139<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4140<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004141<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004142according to the condition code given as <tt>cond</tt>. The comparison yields a
4143<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4144identical type as the values being compared. The most significant bit in each
4145element is 1 if the element-wise comparison evaluates to true, and is 0
4146otherwise. All other bits of the result are undefined. The condition codes
4147are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohman0e451ce2008-10-14 16:51:45 +00004148instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004149
4150<h5>Example:</h5>
4151<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004152 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4153 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004154</pre>
4155</div>
4156
4157<!-- _______________________________________________________________________ -->
4158<div class="doc_subsubsection">
4159 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4160</div>
4161<div class="doc_text">
4162<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004163<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004164<h5>Overview:</h5>
4165<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4166element-wise comparison of its two floating point vector operands. The output
4167elements have the same width as the input elements.</p>
4168<h5>Arguments:</h5>
4169<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4170the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004171a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004172<ol>
4173 <li><tt>false</tt>: no comparison, always returns false</li>
4174 <li><tt>oeq</tt>: ordered and equal</li>
4175 <li><tt>ogt</tt>: ordered and greater than </li>
4176 <li><tt>oge</tt>: ordered and greater than or equal</li>
4177 <li><tt>olt</tt>: ordered and less than </li>
4178 <li><tt>ole</tt>: ordered and less than or equal</li>
4179 <li><tt>one</tt>: ordered and not equal</li>
4180 <li><tt>ord</tt>: ordered (no nans)</li>
4181 <li><tt>ueq</tt>: unordered or equal</li>
4182 <li><tt>ugt</tt>: unordered or greater than </li>
4183 <li><tt>uge</tt>: unordered or greater than or equal</li>
4184 <li><tt>ult</tt>: unordered or less than </li>
4185 <li><tt>ule</tt>: unordered or less than or equal</li>
4186 <li><tt>une</tt>: unordered or not equal</li>
4187 <li><tt>uno</tt>: unordered (either nans)</li>
4188 <li><tt>true</tt>: no comparison, always returns true</li>
4189</ol>
4190<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4191<a href="#t_floating">floating point</a> typed. They must also be identical
4192types.</p>
4193<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004194<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004195according to the condition code given as <tt>cond</tt>. The comparison yields a
4196<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4197an identical number of elements as the values being compared, and each element
4198having identical with to the width of the floating point elements. The most
4199significant bit in each element is 1 if the element-wise comparison evaluates to
4200true, and is 0 otherwise. All other bits of the result are undefined. The
4201condition codes are evaluated identically to the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004202<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004203
4204<h5>Example:</h5>
4205<pre>
Chris Lattner50ad45c2008-10-13 16:55:18 +00004206 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4207 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4208
4209 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4210 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemanac80ade2008-05-12 19:01:56 +00004211</pre>
4212</div>
4213
4214<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004215<div class="doc_subsubsection">
4216 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4217</div>
4218
Reid Spencer2fd21e62006-11-08 01:18:52 +00004219<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004220
Reid Spencer2fd21e62006-11-08 01:18:52 +00004221<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004222
Reid Spencer2fd21e62006-11-08 01:18:52 +00004223<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4224<h5>Overview:</h5>
4225<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4226the SSA graph representing the function.</p>
4227<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004228
Jeff Cohenb627eab2007-04-29 01:07:00 +00004229<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004230field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4231as arguments, with one pair for each predecessor basic block of the
4232current block. Only values of <a href="#t_firstclass">first class</a>
4233type may be used as the value arguments to the PHI node. Only labels
4234may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004235
Reid Spencer2fd21e62006-11-08 01:18:52 +00004236<p>There must be no non-phi instructions between the start of a basic
4237block and the PHI instructions: i.e. PHI instructions must be first in
4238a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004239
Reid Spencer2fd21e62006-11-08 01:18:52 +00004240<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004241
Jeff Cohenb627eab2007-04-29 01:07:00 +00004242<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4243specified by the pair corresponding to the predecessor basic block that executed
4244just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004245
Reid Spencer2fd21e62006-11-08 01:18:52 +00004246<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004247<pre>
4248Loop: ; Infinite loop that counts from 0 on up...
4249 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4250 %nextindvar = add i32 %indvar, 1
4251 br label %Loop
4252</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004253</div>
4254
Chris Lattnercc37aae2004-03-12 05:50:16 +00004255<!-- _______________________________________________________________________ -->
4256<div class="doc_subsubsection">
4257 <a name="i_select">'<tt>select</tt>' Instruction</a>
4258</div>
4259
4260<div class="doc_text">
4261
4262<h5>Syntax:</h5>
4263
4264<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004265 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4266
Dan Gohman0e451ce2008-10-14 16:51:45 +00004267 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004268</pre>
4269
4270<h5>Overview:</h5>
4271
4272<p>
4273The '<tt>select</tt>' instruction is used to choose one value based on a
4274condition, without branching.
4275</p>
4276
4277
4278<h5>Arguments:</h5>
4279
4280<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004281The '<tt>select</tt>' instruction requires an 'i1' value or
4282a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004283condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004284type. If the val1/val2 are vectors and
4285the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004286individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004287</p>
4288
4289<h5>Semantics:</h5>
4290
4291<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004292If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004293value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004294</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004295<p>
4296If the condition is a vector of i1, then the value arguments must
4297be vectors of the same size, and the selection is done element
4298by element.
4299</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004300
4301<h5>Example:</h5>
4302
4303<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004304 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004305</pre>
4306</div>
4307
Robert Bocchino05ccd702006-01-15 20:48:27 +00004308
4309<!-- _______________________________________________________________________ -->
4310<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004311 <a name="i_call">'<tt>call</tt>' Instruction</a>
4312</div>
4313
Misha Brukman9d0919f2003-11-08 01:05:38 +00004314<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004315
Chris Lattner00950542001-06-06 20:29:01 +00004316<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004317<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004318 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004319</pre>
4320
Chris Lattner00950542001-06-06 20:29:01 +00004321<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004322
Misha Brukman9d0919f2003-11-08 01:05:38 +00004323<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004324
Chris Lattner00950542001-06-06 20:29:01 +00004325<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004326
Misha Brukman9d0919f2003-11-08 01:05:38 +00004327<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004328
Chris Lattner6536cfe2002-05-06 22:08:29 +00004329<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004330 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004331 <p>The optional "tail" marker indicates whether the callee function accesses
4332 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004333 function call is eligible for tail call optimization. Note that calls may
4334 be marked "tail" even if they do not occur before a <a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004335 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004336 </li>
4337 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004338 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004339 convention</a> the call should use. If none is specified, the call defaults
Dan Gohman0e451ce2008-10-14 16:51:45 +00004340 to using C calling conventions.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004341 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004342
4343 <li>
4344 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4345 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4346 and '<tt>inreg</tt>' attributes are valid here.</p>
4347 </li>
4348
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004349 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004350 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4351 the type of the return value. Functions that return no value are marked
4352 <tt><a href="#t_void">void</a></tt>.</p>
4353 </li>
4354 <li>
4355 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4356 value being invoked. The argument types must match the types implied by
4357 this signature. This type can be omitted if the function is not varargs
4358 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004359 </li>
4360 <li>
4361 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4362 be invoked. In most cases, this is a direct function invocation, but
4363 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004364 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004365 </li>
4366 <li>
4367 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004368 function signature argument types. All arguments must be of
4369 <a href="#t_firstclass">first class</a> type. If the function signature
4370 indicates the function accepts a variable number of arguments, the extra
4371 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004372 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004373 <li>
Devang Patel307e8ab2008-10-07 17:48:33 +00004374 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00004375 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4376 '<tt>readnone</tt>' attributes are valid here.</p>
4377 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004378</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004379
Chris Lattner00950542001-06-06 20:29:01 +00004380<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004381
Chris Lattner261efe92003-11-25 01:02:51 +00004382<p>The '<tt>call</tt>' instruction is used to cause control flow to
4383transfer to a specified function, with its incoming arguments bound to
4384the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4385instruction in the called function, control flow continues with the
4386instruction after the function call, and the return value of the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004387function is bound to the result argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004388
Chris Lattner00950542001-06-06 20:29:01 +00004389<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004390
4391<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004392 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004393 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4394 %X = tail call i32 @foo() <i>; yields i32</i>
4395 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4396 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004397
4398 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004399 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004400 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4401 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00004402 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00004403 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004404</pre>
4405
Misha Brukman9d0919f2003-11-08 01:05:38 +00004406</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004407
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004408<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004409<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004410 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004411</div>
4412
Misha Brukman9d0919f2003-11-08 01:05:38 +00004413<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004414
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004415<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004416
4417<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004418 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004419</pre>
4420
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004421<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004422
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004423<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004424the "variable argument" area of a function call. It is used to implement the
4425<tt>va_arg</tt> macro in C.</p>
4426
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004427<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004428
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004429<p>This instruction takes a <tt>va_list*</tt> value and the type of
4430the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004431increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004432actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004433
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004434<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004435
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004436<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4437type from the specified <tt>va_list</tt> and causes the
4438<tt>va_list</tt> to point to the next argument. For more information,
4439see the variable argument handling <a href="#int_varargs">Intrinsic
4440Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004441
4442<p>It is legal for this instruction to be called in a function which does not
4443take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004444function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004445
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004446<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004447href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004448argument.</p>
4449
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004450<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004451
4452<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4453
Misha Brukman9d0919f2003-11-08 01:05:38 +00004454</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004455
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004456<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004457<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4458<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004459
Misha Brukman9d0919f2003-11-08 01:05:38 +00004460<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004461
4462<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004463well known names and semantics and are required to follow certain restrictions.
4464Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004465language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004466adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004467
John Criswellfc6b8952005-05-16 16:17:45 +00004468<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004469prefix is reserved in LLVM for intrinsic names; thus, function names may not
4470begin with this prefix. Intrinsic functions must always be external functions:
4471you cannot define the body of intrinsic functions. Intrinsic functions may
4472only be used in call or invoke instructions: it is illegal to take the address
4473of an intrinsic function. Additionally, because intrinsic functions are part
4474of the LLVM language, it is required if any are added that they be documented
4475here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004476
Chandler Carruth69940402007-08-04 01:51:18 +00004477<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4478a family of functions that perform the same operation but on different data
4479types. Because LLVM can represent over 8 million different integer types,
4480overloading is used commonly to allow an intrinsic function to operate on any
4481integer type. One or more of the argument types or the result type can be
4482overloaded to accept any integer type. Argument types may also be defined as
4483exactly matching a previous argument's type or the result type. This allows an
4484intrinsic function which accepts multiple arguments, but needs all of them to
4485be of the same type, to only be overloaded with respect to a single argument or
4486the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004487
Chandler Carruth69940402007-08-04 01:51:18 +00004488<p>Overloaded intrinsics will have the names of its overloaded argument types
4489encoded into its function name, each preceded by a period. Only those types
4490which are overloaded result in a name suffix. Arguments whose type is matched
4491against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4492take an integer of any width and returns an integer of exactly the same integer
4493width. This leads to a family of functions such as
4494<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4495Only one type, the return type, is overloaded, and only one type suffix is
4496required. Because the argument's type is matched against the return type, it
4497does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004498
4499<p>To learn how to add an intrinsic function, please see the
4500<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004501</p>
4502
Misha Brukman9d0919f2003-11-08 01:05:38 +00004503</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004504
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004505<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004506<div class="doc_subsection">
4507 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4508</div>
4509
Misha Brukman9d0919f2003-11-08 01:05:38 +00004510<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004511
Misha Brukman9d0919f2003-11-08 01:05:38 +00004512<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004513 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004514intrinsic functions. These functions are related to the similarly
4515named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004516
Chris Lattner261efe92003-11-25 01:02:51 +00004517<p>All of these functions operate on arguments that use a
4518target-specific value type "<tt>va_list</tt>". The LLVM assembly
4519language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004520transformations should be prepared to handle these functions regardless of
4521the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004522
Chris Lattner374ab302006-05-15 17:26:46 +00004523<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004524instruction and the variable argument handling intrinsic functions are
4525used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004526
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004527<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004528<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004529define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004530 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004531 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004532 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004533 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004534
4535 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004536 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004537
4538 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004539 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004540 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004541 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004542 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004543
4544 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004545 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004546 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004547}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004548
4549declare void @llvm.va_start(i8*)
4550declare void @llvm.va_copy(i8*, i8*)
4551declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004552</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004553</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004554
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004555</div>
4556
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004557<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004558<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004559 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004560</div>
4561
4562
Misha Brukman9d0919f2003-11-08 01:05:38 +00004563<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004564<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004565<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004566<h5>Overview:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004567<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004568<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4569href="#i_va_arg">va_arg</a></tt>.</p>
4570
4571<h5>Arguments:</h5>
4572
Dan Gohman0e451ce2008-10-14 16:51:45 +00004573<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004574
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004575<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004576
Dan Gohman0e451ce2008-10-14 16:51:45 +00004577<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004578macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004579<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004580<tt>va_arg</tt> will produce the first variable argument passed to the function.
4581Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004582last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004583
Misha Brukman9d0919f2003-11-08 01:05:38 +00004584</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004585
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004586<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004587<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004588 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004589</div>
4590
Misha Brukman9d0919f2003-11-08 01:05:38 +00004591<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004592<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004593<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004594<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004595
Jeff Cohenb627eab2007-04-29 01:07:00 +00004596<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004597which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004598or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004599
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004600<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004601
Jeff Cohenb627eab2007-04-29 01:07:00 +00004602<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004603
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004604<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004605
Misha Brukman9d0919f2003-11-08 01:05:38 +00004606<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004607macro available in C. In a target-dependent way, it destroys the
4608<tt>va_list</tt> element to which the argument points. Calls to <a
4609href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4610<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4611<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004612
Misha Brukman9d0919f2003-11-08 01:05:38 +00004613</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004614
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004615<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004616<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004617 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004618</div>
4619
Misha Brukman9d0919f2003-11-08 01:05:38 +00004620<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004621
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004622<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004623
4624<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004625 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004626</pre>
4627
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004628<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004629
Jeff Cohenb627eab2007-04-29 01:07:00 +00004630<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4631from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004632
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004633<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004634
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004635<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004636The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004637
Chris Lattnerd7923912004-05-23 21:06:01 +00004638
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004639<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004640
Jeff Cohenb627eab2007-04-29 01:07:00 +00004641<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4642macro available in C. In a target-dependent way, it copies the source
4643<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4644intrinsic is necessary because the <tt><a href="#int_va_start">
4645llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4646example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004647
Misha Brukman9d0919f2003-11-08 01:05:38 +00004648</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004649
Chris Lattner33aec9e2004-02-12 17:01:32 +00004650<!-- ======================================================================= -->
4651<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004652 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4653</div>
4654
4655<div class="doc_text">
4656
4657<p>
4658LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004659Collection</a> (GC) requires the implementation and generation of these
4660intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004661These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004662stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004663href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004664Front-ends for type-safe garbage collected languages should generate these
4665intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4666href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4667</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004668
4669<p>The garbage collection intrinsics only operate on objects in the generic
4670 address space (address space zero).</p>
4671
Chris Lattnerd7923912004-05-23 21:06:01 +00004672</div>
4673
4674<!-- _______________________________________________________________________ -->
4675<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004676 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004677</div>
4678
4679<div class="doc_text">
4680
4681<h5>Syntax:</h5>
4682
4683<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004684 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004685</pre>
4686
4687<h5>Overview:</h5>
4688
John Criswell9e2485c2004-12-10 15:51:16 +00004689<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004690the code generator, and allows some metadata to be associated with it.</p>
4691
4692<h5>Arguments:</h5>
4693
4694<p>The first argument specifies the address of a stack object that contains the
4695root pointer. The second pointer (which must be either a constant or a global
4696value address) contains the meta-data to be associated with the root.</p>
4697
4698<h5>Semantics:</h5>
4699
Chris Lattner05d67092008-04-24 05:59:56 +00004700<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004701location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004702the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4703intrinsic may only be used in a function which <a href="#gc">specifies a GC
4704algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004705
4706</div>
4707
4708
4709<!-- _______________________________________________________________________ -->
4710<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004711 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004712</div>
4713
4714<div class="doc_text">
4715
4716<h5>Syntax:</h5>
4717
4718<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004719 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004720</pre>
4721
4722<h5>Overview:</h5>
4723
4724<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4725locations, allowing garbage collector implementations that require read
4726barriers.</p>
4727
4728<h5>Arguments:</h5>
4729
Chris Lattner80626e92006-03-14 20:02:51 +00004730<p>The second argument is the address to read from, which should be an address
4731allocated from the garbage collector. The first object is a pointer to the
4732start of the referenced object, if needed by the language runtime (otherwise
4733null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004734
4735<h5>Semantics:</h5>
4736
4737<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4738instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004739garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4740may only be used in a function which <a href="#gc">specifies a GC
4741algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004742
4743</div>
4744
4745
4746<!-- _______________________________________________________________________ -->
4747<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004748 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004749</div>
4750
4751<div class="doc_text">
4752
4753<h5>Syntax:</h5>
4754
4755<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004756 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004757</pre>
4758
4759<h5>Overview:</h5>
4760
4761<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4762locations, allowing garbage collector implementations that require write
4763barriers (such as generational or reference counting collectors).</p>
4764
4765<h5>Arguments:</h5>
4766
Chris Lattner80626e92006-03-14 20:02:51 +00004767<p>The first argument is the reference to store, the second is the start of the
4768object to store it to, and the third is the address of the field of Obj to
4769store to. If the runtime does not require a pointer to the object, Obj may be
4770null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004771
4772<h5>Semantics:</h5>
4773
4774<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4775instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004776garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4777may only be used in a function which <a href="#gc">specifies a GC
4778algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004779
4780</div>
4781
4782
4783
4784<!-- ======================================================================= -->
4785<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004786 <a name="int_codegen">Code Generator Intrinsics</a>
4787</div>
4788
4789<div class="doc_text">
4790<p>
4791These intrinsics are provided by LLVM to expose special features that may only
4792be implemented with code generator support.
4793</p>
4794
4795</div>
4796
4797<!-- _______________________________________________________________________ -->
4798<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004799 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004800</div>
4801
4802<div class="doc_text">
4803
4804<h5>Syntax:</h5>
4805<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004806 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004807</pre>
4808
4809<h5>Overview:</h5>
4810
4811<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004812The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4813target-specific value indicating the return address of the current function
4814or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004815</p>
4816
4817<h5>Arguments:</h5>
4818
4819<p>
4820The argument to this intrinsic indicates which function to return the address
4821for. Zero indicates the calling function, one indicates its caller, etc. The
4822argument is <b>required</b> to be a constant integer value.
4823</p>
4824
4825<h5>Semantics:</h5>
4826
4827<p>
4828The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4829the return address of the specified call frame, or zero if it cannot be
4830identified. The value returned by this intrinsic is likely to be incorrect or 0
4831for arguments other than zero, so it should only be used for debugging purposes.
4832</p>
4833
4834<p>
4835Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004836aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004837source-language caller.
4838</p>
4839</div>
4840
4841
4842<!-- _______________________________________________________________________ -->
4843<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004844 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004845</div>
4846
4847<div class="doc_text">
4848
4849<h5>Syntax:</h5>
4850<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004851 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004852</pre>
4853
4854<h5>Overview:</h5>
4855
4856<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004857The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4858target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004859</p>
4860
4861<h5>Arguments:</h5>
4862
4863<p>
4864The argument to this intrinsic indicates which function to return the frame
4865pointer for. Zero indicates the calling function, one indicates its caller,
4866etc. The argument is <b>required</b> to be a constant integer value.
4867</p>
4868
4869<h5>Semantics:</h5>
4870
4871<p>
4872The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4873the frame address of the specified call frame, or zero if it cannot be
4874identified. The value returned by this intrinsic is likely to be incorrect or 0
4875for arguments other than zero, so it should only be used for debugging purposes.
4876</p>
4877
4878<p>
4879Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004880aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004881source-language caller.
4882</p>
4883</div>
4884
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004885<!-- _______________________________________________________________________ -->
4886<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004887 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004888</div>
4889
4890<div class="doc_text">
4891
4892<h5>Syntax:</h5>
4893<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004894 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004895</pre>
4896
4897<h5>Overview:</h5>
4898
4899<p>
4900The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004901the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004902<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4903features like scoped automatic variable sized arrays in C99.
4904</p>
4905
4906<h5>Semantics:</h5>
4907
4908<p>
4909This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004910href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004911<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4912<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4913state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4914practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4915that were allocated after the <tt>llvm.stacksave</tt> was executed.
4916</p>
4917
4918</div>
4919
4920<!-- _______________________________________________________________________ -->
4921<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004922 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004923</div>
4924
4925<div class="doc_text">
4926
4927<h5>Syntax:</h5>
4928<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004929 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004930</pre>
4931
4932<h5>Overview:</h5>
4933
4934<p>
4935The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4936the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004937href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004938useful for implementing language features like scoped automatic variable sized
4939arrays in C99.
4940</p>
4941
4942<h5>Semantics:</h5>
4943
4944<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004945See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004946</p>
4947
4948</div>
4949
4950
4951<!-- _______________________________________________________________________ -->
4952<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004953 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004954</div>
4955
4956<div class="doc_text">
4957
4958<h5>Syntax:</h5>
4959<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004960 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004961</pre>
4962
4963<h5>Overview:</h5>
4964
4965
4966<p>
4967The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004968a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4969no
4970effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004971characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004972</p>
4973
4974<h5>Arguments:</h5>
4975
4976<p>
4977<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4978determining if the fetch should be for a read (0) or write (1), and
4979<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004980locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004981<tt>locality</tt> arguments must be constant integers.
4982</p>
4983
4984<h5>Semantics:</h5>
4985
4986<p>
4987This intrinsic does not modify the behavior of the program. In particular,
4988prefetches cannot trap and do not produce a value. On targets that support this
4989intrinsic, the prefetch can provide hints to the processor cache for better
4990performance.
4991</p>
4992
4993</div>
4994
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004995<!-- _______________________________________________________________________ -->
4996<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004997 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004998</div>
4999
5000<div class="doc_text">
5001
5002<h5>Syntax:</h5>
5003<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005004 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005005</pre>
5006
5007<h5>Overview:</h5>
5008
5009
5010<p>
John Criswellfc6b8952005-05-16 16:17:45 +00005011The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00005012(PC) in a region of
5013code to simulators and other tools. The method is target specific, but it is
5014expected that the marker will use exported symbols to transmit the PC of the
5015marker.
5016The marker makes no guarantees that it will remain with any specific instruction
5017after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00005018optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00005019correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005020</p>
5021
5022<h5>Arguments:</h5>
5023
5024<p>
5025<tt>id</tt> is a numerical id identifying the marker.
5026</p>
5027
5028<h5>Semantics:</h5>
5029
5030<p>
5031This intrinsic does not modify the behavior of the program. Backends that do not
5032support this intrinisic may ignore it.
5033</p>
5034
5035</div>
5036
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005037<!-- _______________________________________________________________________ -->
5038<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005039 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005040</div>
5041
5042<div class="doc_text">
5043
5044<h5>Syntax:</h5>
5045<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005046 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005047</pre>
5048
5049<h5>Overview:</h5>
5050
5051
5052<p>
5053The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5054counter register (or similar low latency, high accuracy clocks) on those targets
5055that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5056As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5057should only be used for small timings.
5058</p>
5059
5060<h5>Semantics:</h5>
5061
5062<p>
5063When directly supported, reading the cycle counter should not modify any memory.
5064Implementations are allowed to either return a application specific value or a
5065system wide value. On backends without support, this is lowered to a constant 0.
5066</p>
5067
5068</div>
5069
Chris Lattner10610642004-02-14 04:08:35 +00005070<!-- ======================================================================= -->
5071<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005072 <a name="int_libc">Standard C Library Intrinsics</a>
5073</div>
5074
5075<div class="doc_text">
5076<p>
Chris Lattner10610642004-02-14 04:08:35 +00005077LLVM provides intrinsics for a few important standard C library functions.
5078These intrinsics allow source-language front-ends to pass information about the
5079alignment of the pointer arguments to the code generator, providing opportunity
5080for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005081</p>
5082
5083</div>
5084
5085<!-- _______________________________________________________________________ -->
5086<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005087 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005088</div>
5089
5090<div class="doc_text">
5091
5092<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005093<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5094width. Not all targets support all bit widths however.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005095<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005096 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5097 i8 &lt;len&gt;, i32 &lt;align&gt;)
5098 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5099 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005100 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005101 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005102 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005103 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005104</pre>
5105
5106<h5>Overview:</h5>
5107
5108<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005109The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005110location to the destination location.
5111</p>
5112
5113<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005114Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5115intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005116</p>
5117
5118<h5>Arguments:</h5>
5119
5120<p>
5121The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005122the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005123specifying the number of bytes to copy, and the fourth argument is the alignment
5124of the source and destination locations.
5125</p>
5126
Chris Lattner3301ced2004-02-12 21:18:15 +00005127<p>
5128If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005129the caller guarantees that both the source and destination pointers are aligned
5130to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005131</p>
5132
Chris Lattner33aec9e2004-02-12 17:01:32 +00005133<h5>Semantics:</h5>
5134
5135<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005136The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005137location to the destination location, which are not allowed to overlap. It
5138copies "len" bytes of memory over. If the argument is known to be aligned to
5139some boundary, this can be specified as the fourth argument, otherwise it should
5140be set to 0 or 1.
5141</p>
5142</div>
5143
5144
Chris Lattner0eb51b42004-02-12 18:10:10 +00005145<!-- _______________________________________________________________________ -->
5146<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005147 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005148</div>
5149
5150<div class="doc_text">
5151
5152<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005153<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5154width. Not all targets support all bit widths however.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005155<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005156 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5157 i8 &lt;len&gt;, i32 &lt;align&gt;)
5158 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5159 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005160 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005161 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005162 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005163 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005164</pre>
5165
5166<h5>Overview:</h5>
5167
5168<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005169The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5170location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005171'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005172</p>
5173
5174<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005175Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5176intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005177</p>
5178
5179<h5>Arguments:</h5>
5180
5181<p>
5182The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005183the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005184specifying the number of bytes to copy, and the fourth argument is the alignment
5185of the source and destination locations.
5186</p>
5187
Chris Lattner3301ced2004-02-12 21:18:15 +00005188<p>
5189If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005190the caller guarantees that the source and destination pointers are aligned to
5191that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005192</p>
5193
Chris Lattner0eb51b42004-02-12 18:10:10 +00005194<h5>Semantics:</h5>
5195
5196<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005197The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005198location to the destination location, which may overlap. It
5199copies "len" bytes of memory over. If the argument is known to be aligned to
5200some boundary, this can be specified as the fourth argument, otherwise it should
5201be set to 0 or 1.
5202</p>
5203</div>
5204
Chris Lattner8ff75902004-01-06 05:31:32 +00005205
Chris Lattner10610642004-02-14 04:08:35 +00005206<!-- _______________________________________________________________________ -->
5207<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005208 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005209</div>
5210
5211<div class="doc_text">
5212
5213<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005214<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5215width. Not all targets support all bit widths however.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005216<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005217 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5218 i8 &lt;len&gt;, i32 &lt;align&gt;)
5219 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5220 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005221 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005222 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005223 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005224 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005225</pre>
5226
5227<h5>Overview:</h5>
5228
5229<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005230The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005231byte value.
5232</p>
5233
5234<p>
5235Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5236does not return a value, and takes an extra alignment argument.
5237</p>
5238
5239<h5>Arguments:</h5>
5240
5241<p>
5242The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005243byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005244argument specifying the number of bytes to fill, and the fourth argument is the
5245known alignment of destination location.
5246</p>
5247
5248<p>
5249If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005250the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005251</p>
5252
5253<h5>Semantics:</h5>
5254
5255<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005256The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5257the
Chris Lattner10610642004-02-14 04:08:35 +00005258destination location. If the argument is known to be aligned to some boundary,
5259this can be specified as the fourth argument, otherwise it should be set to 0 or
52601.
5261</p>
5262</div>
5263
5264
Chris Lattner32006282004-06-11 02:28:03 +00005265<!-- _______________________________________________________________________ -->
5266<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005267 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005268</div>
5269
5270<div class="doc_text">
5271
5272<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005273<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005274floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005275types however.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005276<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005277 declare float @llvm.sqrt.f32(float %Val)
5278 declare double @llvm.sqrt.f64(double %Val)
5279 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5280 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5281 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005282</pre>
5283
5284<h5>Overview:</h5>
5285
5286<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005287The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005288returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005289<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005290negative numbers other than -0.0 (which allows for better optimization, because
5291there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5292defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005293</p>
5294
5295<h5>Arguments:</h5>
5296
5297<p>
5298The argument and return value are floating point numbers of the same type.
5299</p>
5300
5301<h5>Semantics:</h5>
5302
5303<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005304This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005305floating point number.
5306</p>
5307</div>
5308
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005309<!-- _______________________________________________________________________ -->
5310<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005311 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005312</div>
5313
5314<div class="doc_text">
5315
5316<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005317<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005318floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005319types however.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005320<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005321 declare float @llvm.powi.f32(float %Val, i32 %power)
5322 declare double @llvm.powi.f64(double %Val, i32 %power)
5323 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5324 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5325 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005326</pre>
5327
5328<h5>Overview:</h5>
5329
5330<p>
5331The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5332specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005333multiplications is not defined. When a vector of floating point type is
5334used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005335</p>
5336
5337<h5>Arguments:</h5>
5338
5339<p>
5340The second argument is an integer power, and the first is a value to raise to
5341that power.
5342</p>
5343
5344<h5>Semantics:</h5>
5345
5346<p>
5347This function returns the first value raised to the second power with an
5348unspecified sequence of rounding operations.</p>
5349</div>
5350
Dan Gohman91c284c2007-10-15 20:30:11 +00005351<!-- _______________________________________________________________________ -->
5352<div class="doc_subsubsection">
5353 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5354</div>
5355
5356<div class="doc_text">
5357
5358<h5>Syntax:</h5>
5359<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5360floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005361types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005362<pre>
5363 declare float @llvm.sin.f32(float %Val)
5364 declare double @llvm.sin.f64(double %Val)
5365 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5366 declare fp128 @llvm.sin.f128(fp128 %Val)
5367 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5368</pre>
5369
5370<h5>Overview:</h5>
5371
5372<p>
5373The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5374</p>
5375
5376<h5>Arguments:</h5>
5377
5378<p>
5379The argument and return value are floating point numbers of the same type.
5380</p>
5381
5382<h5>Semantics:</h5>
5383
5384<p>
5385This function returns the sine of the specified operand, returning the
5386same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005387conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005388</div>
5389
5390<!-- _______________________________________________________________________ -->
5391<div class="doc_subsubsection">
5392 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5393</div>
5394
5395<div class="doc_text">
5396
5397<h5>Syntax:</h5>
5398<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5399floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005400types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005401<pre>
5402 declare float @llvm.cos.f32(float %Val)
5403 declare double @llvm.cos.f64(double %Val)
5404 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5405 declare fp128 @llvm.cos.f128(fp128 %Val)
5406 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5407</pre>
5408
5409<h5>Overview:</h5>
5410
5411<p>
5412The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5413</p>
5414
5415<h5>Arguments:</h5>
5416
5417<p>
5418The argument and return value are floating point numbers of the same type.
5419</p>
5420
5421<h5>Semantics:</h5>
5422
5423<p>
5424This function returns the cosine of the specified operand, returning the
5425same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005426conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005427</div>
5428
5429<!-- _______________________________________________________________________ -->
5430<div class="doc_subsubsection">
5431 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5432</div>
5433
5434<div class="doc_text">
5435
5436<h5>Syntax:</h5>
5437<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5438floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005439types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005440<pre>
5441 declare float @llvm.pow.f32(float %Val, float %Power)
5442 declare double @llvm.pow.f64(double %Val, double %Power)
5443 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5444 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5445 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5446</pre>
5447
5448<h5>Overview:</h5>
5449
5450<p>
5451The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5452specified (positive or negative) power.
5453</p>
5454
5455<h5>Arguments:</h5>
5456
5457<p>
5458The second argument is a floating point power, and the first is a value to
5459raise to that power.
5460</p>
5461
5462<h5>Semantics:</h5>
5463
5464<p>
5465This function returns the first value raised to the second power,
5466returning the
5467same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005468conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005469</div>
5470
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005471
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005472<!-- ======================================================================= -->
5473<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005474 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005475</div>
5476
5477<div class="doc_text">
5478<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005479LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005480These allow efficient code generation for some algorithms.
5481</p>
5482
5483</div>
5484
5485<!-- _______________________________________________________________________ -->
5486<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005487 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005488</div>
5489
5490<div class="doc_text">
5491
5492<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005493<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohman0e451ce2008-10-14 16:51:45 +00005494type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005495<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005496 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5497 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5498 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005499</pre>
5500
5501<h5>Overview:</h5>
5502
5503<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005504The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005505values with an even number of bytes (positive multiple of 16 bits). These are
5506useful for performing operations on data that is not in the target's native
5507byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005508</p>
5509
5510<h5>Semantics:</h5>
5511
5512<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005513The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005514and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5515intrinsic returns an i32 value that has the four bytes of the input i32
5516swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005517i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5518<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005519additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005520</p>
5521
5522</div>
5523
5524<!-- _______________________________________________________________________ -->
5525<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005526 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005527</div>
5528
5529<div class="doc_text">
5530
5531<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005532<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohman0e451ce2008-10-14 16:51:45 +00005533width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005534<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005535 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5536 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005537 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005538 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5539 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005540</pre>
5541
5542<h5>Overview:</h5>
5543
5544<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005545The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5546value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005547</p>
5548
5549<h5>Arguments:</h5>
5550
5551<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005552The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005553integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005554</p>
5555
5556<h5>Semantics:</h5>
5557
5558<p>
5559The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5560</p>
5561</div>
5562
5563<!-- _______________________________________________________________________ -->
5564<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005565 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005566</div>
5567
5568<div class="doc_text">
5569
5570<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005571<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005572integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005573<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005574 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5575 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005576 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005577 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5578 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005579</pre>
5580
5581<h5>Overview:</h5>
5582
5583<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005584The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5585leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005586</p>
5587
5588<h5>Arguments:</h5>
5589
5590<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005591The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005592integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005593</p>
5594
5595<h5>Semantics:</h5>
5596
5597<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005598The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5599in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005600of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005601</p>
5602</div>
Chris Lattner32006282004-06-11 02:28:03 +00005603
5604
Chris Lattnereff29ab2005-05-15 19:39:26 +00005605
5606<!-- _______________________________________________________________________ -->
5607<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005608 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005609</div>
5610
5611<div class="doc_text">
5612
5613<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005614<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005615integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005616<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005617 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5618 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005619 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005620 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5621 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005622</pre>
5623
5624<h5>Overview:</h5>
5625
5626<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005627The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5628trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005629</p>
5630
5631<h5>Arguments:</h5>
5632
5633<p>
5634The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005635integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005636</p>
5637
5638<h5>Semantics:</h5>
5639
5640<p>
5641The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5642in a variable. If the src == 0 then the result is the size in bits of the type
5643of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5644</p>
5645</div>
5646
Reid Spencer497d93e2007-04-01 08:27:01 +00005647<!-- _______________________________________________________________________ -->
5648<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005649 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005650</div>
5651
5652<div class="doc_text">
5653
5654<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005655<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005656on any integer bit width.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005657<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005658 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5659 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005660</pre>
5661
5662<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005663<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005664range of bits from an integer value and returns them in the same bit width as
5665the original value.</p>
5666
5667<h5>Arguments:</h5>
5668<p>The first argument, <tt>%val</tt> and the result may be integer types of
5669any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005670arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005671
5672<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005673<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005674of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5675<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5676operates in forward mode.</p>
5677<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5678right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005679only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5680<ol>
5681 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5682 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5683 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5684 to determine the number of bits to retain.</li>
5685 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005686 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005687</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005688<p>In reverse mode, a similar computation is made except that the bits are
5689returned in the reverse order. So, for example, if <tt>X</tt> has the value
5690<tt>i16 0x0ACF (101011001111)</tt> and we apply
5691<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5692<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005693</div>
5694
Reid Spencerf86037f2007-04-11 23:23:49 +00005695<div class="doc_subsubsection">
5696 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5697</div>
5698
5699<div class="doc_text">
5700
5701<h5>Syntax:</h5>
5702<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005703on any integer bit width.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00005704<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005705 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5706 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005707</pre>
5708
5709<h5>Overview:</h5>
5710<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5711of bits in an integer value with another integer value. It returns the integer
5712with the replaced bits.</p>
5713
5714<h5>Arguments:</h5>
5715<p>The first argument, <tt>%val</tt> and the result may be integer types of
5716any bit width but they must have the same bit width. <tt>%val</tt> is the value
5717whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5718integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5719type since they specify only a bit index.</p>
5720
5721<h5>Semantics:</h5>
5722<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5723of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5724<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5725operates in forward mode.</p>
5726<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5727truncating it down to the size of the replacement area or zero extending it
5728up to that size.</p>
5729<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5730are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5731in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohman0e451ce2008-10-14 16:51:45 +00005732to the <tt>%hi</tt>th bit.</p>
Reid Spencerc6749c42007-05-14 16:50:20 +00005733<p>In reverse mode, a similar computation is made except that the bits are
5734reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohman0e451ce2008-10-14 16:51:45 +00005735<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00005736<h5>Examples:</h5>
5737<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005738 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005739 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5740 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5741 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005742 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005743</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00005744</div>
5745
Chris Lattner8ff75902004-01-06 05:31:32 +00005746<!-- ======================================================================= -->
5747<div class="doc_subsection">
5748 <a name="int_debugger">Debugger Intrinsics</a>
5749</div>
5750
5751<div class="doc_text">
5752<p>
5753The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5754are described in the <a
5755href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5756Debugging</a> document.
5757</p>
5758</div>
5759
5760
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005761<!-- ======================================================================= -->
5762<div class="doc_subsection">
5763 <a name="int_eh">Exception Handling Intrinsics</a>
5764</div>
5765
5766<div class="doc_text">
5767<p> The LLVM exception handling intrinsics (which all start with
5768<tt>llvm.eh.</tt> prefix), are described in the <a
5769href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5770Handling</a> document. </p>
5771</div>
5772
Tanya Lattner6d806e92007-06-15 20:50:54 +00005773<!-- ======================================================================= -->
5774<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005775 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005776</div>
5777
5778<div class="doc_text">
5779<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005780 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005781 the <tt>nest</tt> attribute, from a function. The result is a callable
5782 function pointer lacking the nest parameter - the caller does not need
5783 to provide a value for it. Instead, the value to use is stored in
5784 advance in a "trampoline", a block of memory usually allocated
5785 on the stack, which also contains code to splice the nest value into the
5786 argument list. This is used to implement the GCC nested function address
5787 extension.
5788</p>
5789<p>
5790 For example, if the function is
5791 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00005792 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005793<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005794 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5795 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5796 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5797 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005798</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00005799 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5800 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005801</div>
5802
5803<!-- _______________________________________________________________________ -->
5804<div class="doc_subsubsection">
5805 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5806</div>
5807<div class="doc_text">
5808<h5>Syntax:</h5>
5809<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005810declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005811</pre>
5812<h5>Overview:</h5>
5813<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005814 This fills the memory pointed to by <tt>tramp</tt> with code
5815 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005816</p>
5817<h5>Arguments:</h5>
5818<p>
5819 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5820 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5821 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005822 intrinsic. Note that the size and the alignment are target-specific - LLVM
5823 currently provides no portable way of determining them, so a front-end that
5824 generates this intrinsic needs to have some target-specific knowledge.
5825 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005826</p>
5827<h5>Semantics:</h5>
5828<p>
5829 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005830 dependent code, turning it into a function. A pointer to this function is
5831 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005832 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005833 before being called. The new function's signature is the same as that of
5834 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5835 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5836 of pointer type. Calling the new function is equivalent to calling
5837 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5838 missing <tt>nest</tt> argument. If, after calling
5839 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5840 modified, then the effect of any later call to the returned function pointer is
5841 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005842</p>
5843</div>
5844
5845<!-- ======================================================================= -->
5846<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005847 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5848</div>
5849
5850<div class="doc_text">
5851<p>
5852 These intrinsic functions expand the "universal IR" of LLVM to represent
5853 hardware constructs for atomic operations and memory synchronization. This
5854 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00005855 is aimed at a low enough level to allow any programming models or APIs
5856 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005857 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5858 hardware behavior. Just as hardware provides a "universal IR" for source
5859 languages, it also provides a starting point for developing a "universal"
5860 atomic operation and synchronization IR.
5861</p>
5862<p>
5863 These do <em>not</em> form an API such as high-level threading libraries,
5864 software transaction memory systems, atomic primitives, and intrinsic
5865 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5866 application libraries. The hardware interface provided by LLVM should allow
5867 a clean implementation of all of these APIs and parallel programming models.
5868 No one model or paradigm should be selected above others unless the hardware
5869 itself ubiquitously does so.
5870
5871</p>
5872</div>
5873
5874<!-- _______________________________________________________________________ -->
5875<div class="doc_subsubsection">
5876 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5877</div>
5878<div class="doc_text">
5879<h5>Syntax:</h5>
5880<pre>
5881declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5882i1 &lt;device&gt; )
5883
5884</pre>
5885<h5>Overview:</h5>
5886<p>
5887 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5888 specific pairs of memory access types.
5889</p>
5890<h5>Arguments:</h5>
5891<p>
5892 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5893 The first four arguments enables a specific barrier as listed below. The fith
5894 argument specifies that the barrier applies to io or device or uncached memory.
5895
5896</p>
5897 <ul>
5898 <li><tt>ll</tt>: load-load barrier</li>
5899 <li><tt>ls</tt>: load-store barrier</li>
5900 <li><tt>sl</tt>: store-load barrier</li>
5901 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005902 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005903 </ul>
5904<h5>Semantics:</h5>
5905<p>
5906 This intrinsic causes the system to enforce some ordering constraints upon
5907 the loads and stores of the program. This barrier does not indicate
5908 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5909 which they occur. For any of the specified pairs of load and store operations
5910 (f.ex. load-load, or store-load), all of the first operations preceding the
5911 barrier will complete before any of the second operations succeeding the
5912 barrier begin. Specifically the semantics for each pairing is as follows:
5913</p>
5914 <ul>
5915 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5916 after the barrier begins.</li>
5917
5918 <li><tt>ls</tt>: All loads before the barrier must complete before any
5919 store after the barrier begins.</li>
5920 <li><tt>ss</tt>: All stores before the barrier must complete before any
5921 store after the barrier begins.</li>
5922 <li><tt>sl</tt>: All stores before the barrier must complete before any
5923 load after the barrier begins.</li>
5924 </ul>
5925<p>
5926 These semantics are applied with a logical "and" behavior when more than one
5927 is enabled in a single memory barrier intrinsic.
5928</p>
5929<p>
5930 Backends may implement stronger barriers than those requested when they do not
5931 support as fine grained a barrier as requested. Some architectures do not
5932 need all types of barriers and on such architectures, these become noops.
5933</p>
5934<h5>Example:</h5>
5935<pre>
5936%ptr = malloc i32
5937 store i32 4, %ptr
5938
5939%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5940 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5941 <i>; guarantee the above finishes</i>
5942 store i32 8, %ptr <i>; before this begins</i>
5943</pre>
5944</div>
5945
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005946<!-- _______________________________________________________________________ -->
5947<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00005948 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005949</div>
5950<div class="doc_text">
5951<h5>Syntax:</h5>
5952<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00005953 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5954 any integer bit width and for different address spaces. Not all targets
5955 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005956
5957<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005958declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5959declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5960declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5961declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005962
5963</pre>
5964<h5>Overview:</h5>
5965<p>
5966 This loads a value in memory and compares it to a given value. If they are
5967 equal, it stores a new value into the memory.
5968</p>
5969<h5>Arguments:</h5>
5970<p>
Mon P Wang28873102008-06-25 08:15:39 +00005971 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005972 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5973 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5974 this integer type. While any bit width integer may be used, targets may only
5975 lower representations they support in hardware.
5976
5977</p>
5978<h5>Semantics:</h5>
5979<p>
5980 This entire intrinsic must be executed atomically. It first loads the value
5981 in memory pointed to by <tt>ptr</tt> and compares it with the value
5982 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5983 loaded value is yielded in all cases. This provides the equivalent of an
5984 atomic compare-and-swap operation within the SSA framework.
5985</p>
5986<h5>Examples:</h5>
5987
5988<pre>
5989%ptr = malloc i32
5990 store i32 4, %ptr
5991
5992%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00005993%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005994 <i>; yields {i32}:result1 = 4</i>
5995%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5996%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5997
5998%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00005999%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006000 <i>; yields {i32}:result2 = 8</i>
6001%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6002
6003%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6004</pre>
6005</div>
6006
6007<!-- _______________________________________________________________________ -->
6008<div class="doc_subsubsection">
6009 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6010</div>
6011<div class="doc_text">
6012<h5>Syntax:</h5>
6013
6014<p>
6015 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6016 integer bit width. Not all targets support all bit widths however.</p>
6017<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006018declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6019declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6020declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6021declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006022
6023</pre>
6024<h5>Overview:</h5>
6025<p>
6026 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6027 the value from memory. It then stores the value in <tt>val</tt> in the memory
6028 at <tt>ptr</tt>.
6029</p>
6030<h5>Arguments:</h5>
6031
6032<p>
Mon P Wang28873102008-06-25 08:15:39 +00006033 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006034 <tt>val</tt> argument and the result must be integers of the same bit width.
6035 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6036 integer type. The targets may only lower integer representations they
6037 support.
6038</p>
6039<h5>Semantics:</h5>
6040<p>
6041 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6042 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6043 equivalent of an atomic swap operation within the SSA framework.
6044
6045</p>
6046<h5>Examples:</h5>
6047<pre>
6048%ptr = malloc i32
6049 store i32 4, %ptr
6050
6051%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006052%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006053 <i>; yields {i32}:result1 = 4</i>
6054%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6055%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6056
6057%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006058%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006059 <i>; yields {i32}:result2 = 8</i>
6060
6061%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6062%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6063</pre>
6064</div>
6065
6066<!-- _______________________________________________________________________ -->
6067<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006068 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006069
6070</div>
6071<div class="doc_text">
6072<h5>Syntax:</h5>
6073<p>
Mon P Wang28873102008-06-25 08:15:39 +00006074 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006075 integer bit width. Not all targets support all bit widths however.</p>
6076<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006077declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6078declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6079declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6080declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006081
6082</pre>
6083<h5>Overview:</h5>
6084<p>
6085 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6086 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6087</p>
6088<h5>Arguments:</h5>
6089<p>
6090
6091 The intrinsic takes two arguments, the first a pointer to an integer value
6092 and the second an integer value. The result is also an integer value. These
6093 integer types can have any bit width, but they must all have the same bit
6094 width. The targets may only lower integer representations they support.
6095</p>
6096<h5>Semantics:</h5>
6097<p>
6098 This intrinsic does a series of operations atomically. It first loads the
6099 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6100 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6101</p>
6102
6103<h5>Examples:</h5>
6104<pre>
6105%ptr = malloc i32
6106 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006107%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006108 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006109%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006110 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006111%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006112 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006113%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006114</pre>
6115</div>
6116
Mon P Wang28873102008-06-25 08:15:39 +00006117<!-- _______________________________________________________________________ -->
6118<div class="doc_subsubsection">
6119 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6120
6121</div>
6122<div class="doc_text">
6123<h5>Syntax:</h5>
6124<p>
6125 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006126 any integer bit width and for different address spaces. Not all targets
6127 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006128<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006129declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6130declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6131declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6132declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006133
6134</pre>
6135<h5>Overview:</h5>
6136<p>
6137 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6138 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6139</p>
6140<h5>Arguments:</h5>
6141<p>
6142
6143 The intrinsic takes two arguments, the first a pointer to an integer value
6144 and the second an integer value. The result is also an integer value. These
6145 integer types can have any bit width, but they must all have the same bit
6146 width. The targets may only lower integer representations they support.
6147</p>
6148<h5>Semantics:</h5>
6149<p>
6150 This intrinsic does a series of operations atomically. It first loads the
6151 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6152 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6153</p>
6154
6155<h5>Examples:</h5>
6156<pre>
6157%ptr = malloc i32
6158 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006159%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006160 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006161%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006162 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006163%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006164 <i>; yields {i32}:result3 = 2</i>
6165%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6166</pre>
6167</div>
6168
6169<!-- _______________________________________________________________________ -->
6170<div class="doc_subsubsection">
6171 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6172 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6173 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6174 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6175
6176</div>
6177<div class="doc_text">
6178<h5>Syntax:</h5>
6179<p>
6180 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6181 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006182 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6183 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006184<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006185declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6186declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6187declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6188declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006189
6190</pre>
6191
6192<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006193declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6194declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6195declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6196declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006197
6198</pre>
6199
6200<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006201declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6202declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6203declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6204declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006205
6206</pre>
6207
6208<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006209declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6210declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6211declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6212declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006213
6214</pre>
6215<h5>Overview:</h5>
6216<p>
6217 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6218 the value stored in memory at <tt>ptr</tt>. It yields the original value
6219 at <tt>ptr</tt>.
6220</p>
6221<h5>Arguments:</h5>
6222<p>
6223
6224 These intrinsics take two arguments, the first a pointer to an integer value
6225 and the second an integer value. The result is also an integer value. These
6226 integer types can have any bit width, but they must all have the same bit
6227 width. The targets may only lower integer representations they support.
6228</p>
6229<h5>Semantics:</h5>
6230<p>
6231 These intrinsics does a series of operations atomically. They first load the
6232 value stored at <tt>ptr</tt>. They then do the bitwise operation
6233 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6234 value stored at <tt>ptr</tt>.
6235</p>
6236
6237<h5>Examples:</h5>
6238<pre>
6239%ptr = malloc i32
6240 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006241%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006242 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006243%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006244 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006245%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006246 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006247%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006248 <i>; yields {i32}:result3 = FF</i>
6249%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6250</pre>
6251</div>
6252
6253
6254<!-- _______________________________________________________________________ -->
6255<div class="doc_subsubsection">
6256 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6257 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6258 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6259 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6260
6261</div>
6262<div class="doc_text">
6263<h5>Syntax:</h5>
6264<p>
6265 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6266 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006267 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6268 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006269 support all bit widths however.</p>
6270<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006271declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6272declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6273declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6274declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006275
6276</pre>
6277
6278<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006279declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6280declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6281declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6282declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006283
6284</pre>
6285
6286<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006287declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6288declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6289declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6290declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006291
6292</pre>
6293
6294<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006295declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6296declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6297declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6298declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006299
6300</pre>
6301<h5>Overview:</h5>
6302<p>
6303 These intrinsics takes the signed or unsigned minimum or maximum of
6304 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6305 original value at <tt>ptr</tt>.
6306</p>
6307<h5>Arguments:</h5>
6308<p>
6309
6310 These intrinsics take two arguments, the first a pointer to an integer value
6311 and the second an integer value. The result is also an integer value. These
6312 integer types can have any bit width, but they must all have the same bit
6313 width. The targets may only lower integer representations they support.
6314</p>
6315<h5>Semantics:</h5>
6316<p>
6317 These intrinsics does a series of operations atomically. They first load the
6318 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6319 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6320 the original value stored at <tt>ptr</tt>.
6321</p>
6322
6323<h5>Examples:</h5>
6324<pre>
6325%ptr = malloc i32
6326 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006327%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006328 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006329%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006330 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006331%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006332 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006333%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006334 <i>; yields {i32}:result3 = 8</i>
6335%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6336</pre>
6337</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006338
6339<!-- ======================================================================= -->
6340<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006341 <a name="int_general">General Intrinsics</a>
6342</div>
6343
6344<div class="doc_text">
6345<p> This class of intrinsics is designed to be generic and has
6346no specific purpose. </p>
6347</div>
6348
6349<!-- _______________________________________________________________________ -->
6350<div class="doc_subsubsection">
6351 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6352</div>
6353
6354<div class="doc_text">
6355
6356<h5>Syntax:</h5>
6357<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006358 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006359</pre>
6360
6361<h5>Overview:</h5>
6362
6363<p>
6364The '<tt>llvm.var.annotation</tt>' intrinsic
6365</p>
6366
6367<h5>Arguments:</h5>
6368
6369<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006370The first argument is a pointer to a value, the second is a pointer to a
6371global string, the third is a pointer to a global string which is the source
6372file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006373</p>
6374
6375<h5>Semantics:</h5>
6376
6377<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006378This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006379This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006380annotations. These have no other defined use, they are ignored by code
6381generation and optimization.
6382</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006383</div>
6384
Tanya Lattnerb6367882007-09-21 22:59:12 +00006385<!-- _______________________________________________________________________ -->
6386<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006387 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006388</div>
6389
6390<div class="doc_text">
6391
6392<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006393<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6394any integer bit width.
6395</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006396<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006397 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6398 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6399 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6400 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6401 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006402</pre>
6403
6404<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006405
6406<p>
6407The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006408</p>
6409
6410<h5>Arguments:</h5>
6411
6412<p>
6413The first argument is an integer value (result of some expression),
6414the second is a pointer to a global string, the third is a pointer to a global
6415string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006416It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006417</p>
6418
6419<h5>Semantics:</h5>
6420
6421<p>
6422This intrinsic allows annotations to be put on arbitrary expressions
6423with arbitrary strings. This can be useful for special purpose optimizations
6424that want to look for these annotations. These have no other defined use, they
6425are ignored by code generation and optimization.
Dan Gohman0e451ce2008-10-14 16:51:45 +00006426</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006427</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006428
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006429<!-- _______________________________________________________________________ -->
6430<div class="doc_subsubsection">
6431 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6432</div>
6433
6434<div class="doc_text">
6435
6436<h5>Syntax:</h5>
6437<pre>
6438 declare void @llvm.trap()
6439</pre>
6440
6441<h5>Overview:</h5>
6442
6443<p>
6444The '<tt>llvm.trap</tt>' intrinsic
6445</p>
6446
6447<h5>Arguments:</h5>
6448
6449<p>
6450None
6451</p>
6452
6453<h5>Semantics:</h5>
6454
6455<p>
6456This intrinsics is lowered to the target dependent trap instruction. If the
6457target does not have a trap instruction, this intrinsic will be lowered to the
6458call of the abort() function.
6459</p>
6460</div>
6461
Bill Wendling69e4adb2008-11-19 05:56:17 +00006462<!-- _______________________________________________________________________ -->
6463<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00006464 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00006465</div>
6466<div class="doc_text">
6467<h5>Syntax:</h5>
6468<pre>
6469declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
6470
6471</pre>
6472<h5>Overview:</h5>
6473<p>
6474 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
6475 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
6476 it is placed on the stack before local variables.
6477</p>
6478<h5>Arguments:</h5>
6479<p>
6480 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
6481 first argument is the value loaded from the stack guard
6482 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
6483 has enough space to hold the value of the guard.
6484</p>
6485<h5>Semantics:</h5>
6486<p>
6487 This intrinsic causes the prologue/epilogue inserter to force the position of
6488 the <tt>AllocaInst</tt> stack slot to be before local variables on the
6489 stack. This is to ensure that if a local variable on the stack is overwritten,
6490 it will destroy the value of the guard. When the function exits, the guard on
6491 the stack is checked against the original guard. If they're different, then
6492 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
6493</p>
6494</div>
6495
Chris Lattner00950542001-06-06 20:29:01 +00006496<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00006497<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006498<address>
6499 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00006500 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006501 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00006502 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006503
6504 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00006505 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006506 Last modified: $Date$
6507</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006508
Misha Brukman9d0919f2003-11-08 01:05:38 +00006509</body>
6510</html>