blob: ff85906a5e740f9e744663942d6e7afc7904d859 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000124 print(dbgs());
125 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000126}
127
Dan Gohman4ce32db2010-11-17 22:27:42 +0000128void SCEV::print(raw_ostream &OS) const {
129 switch (getSCEVType()) {
130 case scConstant:
131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132 return;
133 case scTruncate: {
134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135 const SCEV *Op = Trunc->getOperand();
136 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137 << *Trunc->getType() << ")";
138 return;
139 }
140 case scZeroExtend: {
141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142 const SCEV *Op = ZExt->getOperand();
143 OS << "(zext " << *Op->getType() << " " << *Op << " to "
144 << *ZExt->getType() << ")";
145 return;
146 }
147 case scSignExtend: {
148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149 const SCEV *Op = SExt->getOperand();
150 OS << "(sext " << *Op->getType() << " " << *Op << " to "
151 << *SExt->getType() << ")";
152 return;
153 }
154 case scAddRecExpr: {
155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156 OS << "{" << *AR->getOperand(0);
157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158 OS << ",+," << *AR->getOperand(i);
159 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000160 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000161 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000162 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000163 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000164 if (AR->getNoWrapFlags(FlagNW) &&
165 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
166 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000167 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
168 OS << ">";
169 return;
170 }
171 case scAddExpr:
172 case scMulExpr:
173 case scUMaxExpr:
174 case scSMaxExpr: {
175 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000176 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000177 switch (NAry->getSCEVType()) {
178 case scAddExpr: OpStr = " + "; break;
179 case scMulExpr: OpStr = " * "; break;
180 case scUMaxExpr: OpStr = " umax "; break;
181 case scSMaxExpr: OpStr = " smax "; break;
182 }
183 OS << "(";
184 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
185 I != E; ++I) {
186 OS << **I;
187 if (llvm::next(I) != E)
188 OS << OpStr;
189 }
190 OS << ")";
Andrew Trick121d78f2011-11-29 02:06:35 +0000191 switch (NAry->getSCEVType()) {
192 case scAddExpr:
193 case scMulExpr:
194 if (NAry->getNoWrapFlags(FlagNUW))
195 OS << "<nuw>";
196 if (NAry->getNoWrapFlags(FlagNSW))
197 OS << "<nsw>";
198 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000199 return;
200 }
201 case scUDivExpr: {
202 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
203 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
204 return;
205 }
206 case scUnknown: {
207 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000208 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000209 if (U->isSizeOf(AllocTy)) {
210 OS << "sizeof(" << *AllocTy << ")";
211 return;
212 }
213 if (U->isAlignOf(AllocTy)) {
214 OS << "alignof(" << *AllocTy << ")";
215 return;
216 }
Andrew Trick635f7182011-03-09 17:23:39 +0000217
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000218 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000219 Constant *FieldNo;
220 if (U->isOffsetOf(CTy, FieldNo)) {
221 OS << "offsetof(" << *CTy << ", ";
222 WriteAsOperand(OS, FieldNo, false);
223 OS << ")";
224 return;
225 }
Andrew Trick635f7182011-03-09 17:23:39 +0000226
Dan Gohman4ce32db2010-11-17 22:27:42 +0000227 // Otherwise just print it normally.
228 WriteAsOperand(OS, U->getValue(), false);
229 return;
230 }
231 case scCouldNotCompute:
232 OS << "***COULDNOTCOMPUTE***";
233 return;
234 default: break;
235 }
236 llvm_unreachable("Unknown SCEV kind!");
237}
238
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000239Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000240 switch (getSCEVType()) {
241 case scConstant:
242 return cast<SCEVConstant>(this)->getType();
243 case scTruncate:
244 case scZeroExtend:
245 case scSignExtend:
246 return cast<SCEVCastExpr>(this)->getType();
247 case scAddRecExpr:
248 case scMulExpr:
249 case scUMaxExpr:
250 case scSMaxExpr:
251 return cast<SCEVNAryExpr>(this)->getType();
252 case scAddExpr:
253 return cast<SCEVAddExpr>(this)->getType();
254 case scUDivExpr:
255 return cast<SCEVUDivExpr>(this)->getType();
256 case scUnknown:
257 return cast<SCEVUnknown>(this)->getType();
258 case scCouldNotCompute:
259 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
260 return 0;
261 default: break;
262 }
263 llvm_unreachable("Unknown SCEV kind!");
264 return 0;
265}
266
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000267bool SCEV::isZero() const {
268 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
269 return SC->getValue()->isZero();
270 return false;
271}
272
Dan Gohman70a1fe72009-05-18 15:22:39 +0000273bool SCEV::isOne() const {
274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
275 return SC->getValue()->isOne();
276 return false;
277}
Chris Lattner53e677a2004-04-02 20:23:17 +0000278
Dan Gohman4d289bf2009-06-24 00:30:26 +0000279bool SCEV::isAllOnesValue() const {
280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
281 return SC->getValue()->isAllOnesValue();
282 return false;
283}
284
Owen Anderson753ad612009-06-22 21:57:23 +0000285SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000286 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000287
Chris Lattner53e677a2004-04-02 20:23:17 +0000288bool SCEVCouldNotCompute::classof(const SCEV *S) {
289 return S->getSCEVType() == scCouldNotCompute;
290}
291
Dan Gohman0bba49c2009-07-07 17:06:11 +0000292const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000293 FoldingSetNodeID ID;
294 ID.AddInteger(scConstant);
295 ID.AddPointer(V);
296 void *IP = 0;
297 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000298 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000299 UniqueSCEVs.InsertNode(S, IP);
300 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000301}
Chris Lattner53e677a2004-04-02 20:23:17 +0000302
Dan Gohman0bba49c2009-07-07 17:06:11 +0000303const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000304 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000305}
306
Dan Gohman0bba49c2009-07-07 17:06:11 +0000307const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000308ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
309 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000310 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000311}
312
Dan Gohman3bf63762010-06-18 19:54:20 +0000313SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000314 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000315 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000316
Dan Gohman3bf63762010-06-18 19:54:20 +0000317SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000318 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000319 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000320 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
321 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000322 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000323}
Chris Lattner53e677a2004-04-02 20:23:17 +0000324
Dan Gohman3bf63762010-06-18 19:54:20 +0000325SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000326 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000327 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000328 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
329 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000330 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000331}
332
Dan Gohman3bf63762010-06-18 19:54:20 +0000333SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000334 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000335 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000336 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
337 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000338 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000339}
340
Dan Gohmanab37f502010-08-02 23:49:30 +0000341void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000342 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000343 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000344
345 // Remove this SCEVUnknown from the uniquing map.
346 SE->UniqueSCEVs.RemoveNode(this);
347
348 // Release the value.
349 setValPtr(0);
350}
351
352void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000353 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000354 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000355
356 // Remove this SCEVUnknown from the uniquing map.
357 SE->UniqueSCEVs.RemoveNode(this);
358
359 // Update this SCEVUnknown to point to the new value. This is needed
360 // because there may still be outstanding SCEVs which still point to
361 // this SCEVUnknown.
362 setValPtr(New);
363}
364
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000365bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000366 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000367 if (VCE->getOpcode() == Instruction::PtrToInt)
368 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000369 if (CE->getOpcode() == Instruction::GetElementPtr &&
370 CE->getOperand(0)->isNullValue() &&
371 CE->getNumOperands() == 2)
372 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
373 if (CI->isOne()) {
374 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
375 ->getElementType();
376 return true;
377 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000378
379 return false;
380}
381
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000382bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000383 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000384 if (VCE->getOpcode() == Instruction::PtrToInt)
385 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000386 if (CE->getOpcode() == Instruction::GetElementPtr &&
387 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000388 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000389 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000390 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000391 if (!STy->isPacked() &&
392 CE->getNumOperands() == 3 &&
393 CE->getOperand(1)->isNullValue()) {
394 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
395 if (CI->isOne() &&
396 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000397 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000398 AllocTy = STy->getElementType(1);
399 return true;
400 }
401 }
402 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000403
404 return false;
405}
406
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000407bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000408 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000409 if (VCE->getOpcode() == Instruction::PtrToInt)
410 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
411 if (CE->getOpcode() == Instruction::GetElementPtr &&
412 CE->getNumOperands() == 3 &&
413 CE->getOperand(0)->isNullValue() &&
414 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000415 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000416 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
417 // Ignore vector types here so that ScalarEvolutionExpander doesn't
418 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000419 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000420 CTy = Ty;
421 FieldNo = CE->getOperand(2);
422 return true;
423 }
424 }
425
426 return false;
427}
428
Chris Lattner8d741b82004-06-20 06:23:15 +0000429//===----------------------------------------------------------------------===//
430// SCEV Utilities
431//===----------------------------------------------------------------------===//
432
433namespace {
434 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
435 /// than the complexity of the RHS. This comparator is used to canonicalize
436 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000437 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000438 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000439 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000440 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000441
Dan Gohman67ef74e2010-08-27 15:26:01 +0000442 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000443 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000444 return compare(LHS, RHS) < 0;
445 }
446
447 // Return negative, zero, or positive, if LHS is less than, equal to, or
448 // greater than RHS, respectively. A three-way result allows recursive
449 // comparisons to be more efficient.
450 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000451 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
452 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000453 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000454
Dan Gohman72861302009-05-07 14:39:04 +0000455 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000456 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
457 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000458 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000459
Dan Gohman3bf63762010-06-18 19:54:20 +0000460 // Aside from the getSCEVType() ordering, the particular ordering
461 // isn't very important except that it's beneficial to be consistent,
462 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000463 switch (LType) {
464 case scUnknown: {
465 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000466 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000467
468 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
469 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000470 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000471
472 // Order pointer values after integer values. This helps SCEVExpander
473 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000474 bool LIsPointer = LV->getType()->isPointerTy(),
475 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000476 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000477 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000478
479 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000480 unsigned LID = LV->getValueID(),
481 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000482 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000483 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000484
485 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000486 if (const Argument *LA = dyn_cast<Argument>(LV)) {
487 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000488 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
489 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000490 }
491
Dan Gohman67ef74e2010-08-27 15:26:01 +0000492 // For instructions, compare their loop depth, and their operand
493 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000494 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
495 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000496
497 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000498 const BasicBlock *LParent = LInst->getParent(),
499 *RParent = RInst->getParent();
500 if (LParent != RParent) {
501 unsigned LDepth = LI->getLoopDepth(LParent),
502 RDepth = LI->getLoopDepth(RParent);
503 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000504 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000505 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000506
507 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000508 unsigned LNumOps = LInst->getNumOperands(),
509 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000510 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000511 }
512
Dan Gohman67ef74e2010-08-27 15:26:01 +0000513 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000514 }
515
Dan Gohman67ef74e2010-08-27 15:26:01 +0000516 case scConstant: {
517 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000518 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000519
520 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000521 const APInt &LA = LC->getValue()->getValue();
522 const APInt &RA = RC->getValue()->getValue();
523 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000524 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000525 return (int)LBitWidth - (int)RBitWidth;
526 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000527 }
528
Dan Gohman67ef74e2010-08-27 15:26:01 +0000529 case scAddRecExpr: {
530 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000531 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000532
533 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000534 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
535 if (LLoop != RLoop) {
536 unsigned LDepth = LLoop->getLoopDepth(),
537 RDepth = RLoop->getLoopDepth();
538 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000539 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000540 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000541
542 // Addrec complexity grows with operand count.
543 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
544 if (LNumOps != RNumOps)
545 return (int)LNumOps - (int)RNumOps;
546
547 // Lexicographically compare.
548 for (unsigned i = 0; i != LNumOps; ++i) {
549 long X = compare(LA->getOperand(i), RA->getOperand(i));
550 if (X != 0)
551 return X;
552 }
553
554 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000555 }
556
Dan Gohman67ef74e2010-08-27 15:26:01 +0000557 case scAddExpr:
558 case scMulExpr:
559 case scSMaxExpr:
560 case scUMaxExpr: {
561 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000562 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000563
564 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000565 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
566 for (unsigned i = 0; i != LNumOps; ++i) {
567 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000568 return 1;
569 long X = compare(LC->getOperand(i), RC->getOperand(i));
570 if (X != 0)
571 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000572 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000573 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000574 }
575
Dan Gohman67ef74e2010-08-27 15:26:01 +0000576 case scUDivExpr: {
577 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000578 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000579
580 // Lexicographically compare udiv expressions.
581 long X = compare(LC->getLHS(), RC->getLHS());
582 if (X != 0)
583 return X;
584 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000585 }
586
Dan Gohman67ef74e2010-08-27 15:26:01 +0000587 case scTruncate:
588 case scZeroExtend:
589 case scSignExtend: {
590 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000591 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000592
593 // Compare cast expressions by operand.
594 return compare(LC->getOperand(), RC->getOperand());
595 }
596
597 default:
598 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000599 }
600
601 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000602 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000603 }
604 };
605}
606
607/// GroupByComplexity - Given a list of SCEV objects, order them by their
608/// complexity, and group objects of the same complexity together by value.
609/// When this routine is finished, we know that any duplicates in the vector are
610/// consecutive and that complexity is monotonically increasing.
611///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000612/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000613/// results from this routine. In other words, we don't want the results of
614/// this to depend on where the addresses of various SCEV objects happened to
615/// land in memory.
616///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000617static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000618 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000619 if (Ops.size() < 2) return; // Noop
620 if (Ops.size() == 2) {
621 // This is the common case, which also happens to be trivially simple.
622 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000623 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
624 if (SCEVComplexityCompare(LI)(RHS, LHS))
625 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000626 return;
627 }
628
Dan Gohman3bf63762010-06-18 19:54:20 +0000629 // Do the rough sort by complexity.
630 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
631
632 // Now that we are sorted by complexity, group elements of the same
633 // complexity. Note that this is, at worst, N^2, but the vector is likely to
634 // be extremely short in practice. Note that we take this approach because we
635 // do not want to depend on the addresses of the objects we are grouping.
636 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
637 const SCEV *S = Ops[i];
638 unsigned Complexity = S->getSCEVType();
639
640 // If there are any objects of the same complexity and same value as this
641 // one, group them.
642 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
643 if (Ops[j] == S) { // Found a duplicate.
644 // Move it to immediately after i'th element.
645 std::swap(Ops[i+1], Ops[j]);
646 ++i; // no need to rescan it.
647 if (i == e-2) return; // Done!
648 }
649 }
650 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000651}
652
Chris Lattner53e677a2004-04-02 20:23:17 +0000653
Chris Lattner53e677a2004-04-02 20:23:17 +0000654
655//===----------------------------------------------------------------------===//
656// Simple SCEV method implementations
657//===----------------------------------------------------------------------===//
658
Eli Friedmanb42a6262008-08-04 23:49:06 +0000659/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000660/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000661static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000662 ScalarEvolution &SE,
Nick Lewycky8cfb2f82011-09-06 06:39:54 +0000663 Type *ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000664 // Handle the simplest case efficiently.
665 if (K == 1)
666 return SE.getTruncateOrZeroExtend(It, ResultTy);
667
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000668 // We are using the following formula for BC(It, K):
669 //
670 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
671 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000672 // Suppose, W is the bitwidth of the return value. We must be prepared for
673 // overflow. Hence, we must assure that the result of our computation is
674 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
675 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000676 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000677 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000678 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000679 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
680 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000681 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000682 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000683 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000684 // This formula is trivially equivalent to the previous formula. However,
685 // this formula can be implemented much more efficiently. The trick is that
686 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
687 // arithmetic. To do exact division in modular arithmetic, all we have
688 // to do is multiply by the inverse. Therefore, this step can be done at
689 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000690 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000691 // The next issue is how to safely do the division by 2^T. The way this
692 // is done is by doing the multiplication step at a width of at least W + T
693 // bits. This way, the bottom W+T bits of the product are accurate. Then,
694 // when we perform the division by 2^T (which is equivalent to a right shift
695 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
696 // truncated out after the division by 2^T.
697 //
698 // In comparison to just directly using the first formula, this technique
699 // is much more efficient; using the first formula requires W * K bits,
700 // but this formula less than W + K bits. Also, the first formula requires
701 // a division step, whereas this formula only requires multiplies and shifts.
702 //
703 // It doesn't matter whether the subtraction step is done in the calculation
704 // width or the input iteration count's width; if the subtraction overflows,
705 // the result must be zero anyway. We prefer here to do it in the width of
706 // the induction variable because it helps a lot for certain cases; CodeGen
707 // isn't smart enough to ignore the overflow, which leads to much less
708 // efficient code if the width of the subtraction is wider than the native
709 // register width.
710 //
711 // (It's possible to not widen at all by pulling out factors of 2 before
712 // the multiplication; for example, K=2 can be calculated as
713 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
714 // extra arithmetic, so it's not an obvious win, and it gets
715 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000716
Eli Friedmanb42a6262008-08-04 23:49:06 +0000717 // Protection from insane SCEVs; this bound is conservative,
718 // but it probably doesn't matter.
719 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000720 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000721
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000722 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000723
Eli Friedmanb42a6262008-08-04 23:49:06 +0000724 // Calculate K! / 2^T and T; we divide out the factors of two before
725 // multiplying for calculating K! / 2^T to avoid overflow.
726 // Other overflow doesn't matter because we only care about the bottom
727 // W bits of the result.
728 APInt OddFactorial(W, 1);
729 unsigned T = 1;
730 for (unsigned i = 3; i <= K; ++i) {
731 APInt Mult(W, i);
732 unsigned TwoFactors = Mult.countTrailingZeros();
733 T += TwoFactors;
734 Mult = Mult.lshr(TwoFactors);
735 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000736 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000737
Eli Friedmanb42a6262008-08-04 23:49:06 +0000738 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000739 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000740
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000741 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000742 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
743
744 // Calculate the multiplicative inverse of K! / 2^T;
745 // this multiplication factor will perform the exact division by
746 // K! / 2^T.
747 APInt Mod = APInt::getSignedMinValue(W+1);
748 APInt MultiplyFactor = OddFactorial.zext(W+1);
749 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
750 MultiplyFactor = MultiplyFactor.trunc(W);
751
752 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000753 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000754 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000755 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000756 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000757 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000758 Dividend = SE.getMulExpr(Dividend,
759 SE.getTruncateOrZeroExtend(S, CalculationTy));
760 }
761
762 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000763 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000764
765 // Truncate the result, and divide by K! / 2^T.
766
767 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
768 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000769}
770
Chris Lattner53e677a2004-04-02 20:23:17 +0000771/// evaluateAtIteration - Return the value of this chain of recurrences at
772/// the specified iteration number. We can evaluate this recurrence by
773/// multiplying each element in the chain by the binomial coefficient
774/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
775///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000776/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000777///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000778/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000779///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000780const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000781 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000782 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000783 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000784 // The computation is correct in the face of overflow provided that the
785 // multiplication is performed _after_ the evaluation of the binomial
786 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000787 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000788 if (isa<SCEVCouldNotCompute>(Coeff))
789 return Coeff;
790
791 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000792 }
793 return Result;
794}
795
Chris Lattner53e677a2004-04-02 20:23:17 +0000796//===----------------------------------------------------------------------===//
797// SCEV Expression folder implementations
798//===----------------------------------------------------------------------===//
799
Dan Gohman0bba49c2009-07-07 17:06:11 +0000800const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000801 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000802 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000803 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000804 assert(isSCEVable(Ty) &&
805 "This is not a conversion to a SCEVable type!");
806 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000807
Dan Gohmanc050fd92009-07-13 20:50:19 +0000808 FoldingSetNodeID ID;
809 ID.AddInteger(scTruncate);
810 ID.AddPointer(Op);
811 ID.AddPointer(Ty);
812 void *IP = 0;
813 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
814
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000815 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000816 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000817 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000818 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
819 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000820
Dan Gohman20900ca2009-04-22 16:20:48 +0000821 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000822 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000823 return getTruncateExpr(ST->getOperand(), Ty);
824
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000825 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000826 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000827 return getTruncateOrSignExtend(SS->getOperand(), Ty);
828
829 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000830 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000831 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
832
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000833 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
834 // eliminate all the truncates.
835 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
836 SmallVector<const SCEV *, 4> Operands;
837 bool hasTrunc = false;
838 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
839 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
840 hasTrunc = isa<SCEVTruncateExpr>(S);
841 Operands.push_back(S);
842 }
843 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000844 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000845 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000846 }
847
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000848 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
849 // eliminate all the truncates.
850 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
851 SmallVector<const SCEV *, 4> Operands;
852 bool hasTrunc = false;
853 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
854 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
855 hasTrunc = isa<SCEVTruncateExpr>(S);
856 Operands.push_back(S);
857 }
858 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000859 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000860 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000861 }
862
Dan Gohman6864db62009-06-18 16:24:47 +0000863 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000864 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000865 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000866 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000867 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000868 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000869 }
870
Dan Gohmanf53462d2010-07-15 20:02:11 +0000871 // As a special case, fold trunc(undef) to undef. We don't want to
872 // know too much about SCEVUnknowns, but this special case is handy
873 // and harmless.
874 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
875 if (isa<UndefValue>(U->getValue()))
876 return getSCEV(UndefValue::get(Ty));
877
Dan Gohman420ab912010-06-25 18:47:08 +0000878 // The cast wasn't folded; create an explicit cast node. We can reuse
879 // the existing insert position since if we get here, we won't have
880 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000881 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
882 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000883 UniqueSCEVs.InsertNode(S, IP);
884 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000885}
886
Dan Gohman0bba49c2009-07-07 17:06:11 +0000887const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000888 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000889 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000890 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000891 assert(isSCEVable(Ty) &&
892 "This is not a conversion to a SCEVable type!");
893 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000894
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000895 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000896 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
897 return getConstant(
898 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
899 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000900
Dan Gohman20900ca2009-04-22 16:20:48 +0000901 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000902 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000903 return getZeroExtendExpr(SZ->getOperand(), Ty);
904
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000905 // Before doing any expensive analysis, check to see if we've already
906 // computed a SCEV for this Op and Ty.
907 FoldingSetNodeID ID;
908 ID.AddInteger(scZeroExtend);
909 ID.AddPointer(Op);
910 ID.AddPointer(Ty);
911 void *IP = 0;
912 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
913
Nick Lewycky630d85a2011-01-23 06:20:19 +0000914 // zext(trunc(x)) --> zext(x) or x or trunc(x)
915 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
916 // It's possible the bits taken off by the truncate were all zero bits. If
917 // so, we should be able to simplify this further.
918 const SCEV *X = ST->getOperand();
919 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000920 unsigned TruncBits = getTypeSizeInBits(ST->getType());
921 unsigned NewBits = getTypeSizeInBits(Ty);
922 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000923 CR.zextOrTrunc(NewBits)))
924 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000925 }
926
Dan Gohman01ecca22009-04-27 20:16:15 +0000927 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000928 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000929 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000930 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000931 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000932 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000933 const SCEV *Start = AR->getStart();
934 const SCEV *Step = AR->getStepRecurrence(*this);
935 unsigned BitWidth = getTypeSizeInBits(AR->getType());
936 const Loop *L = AR->getLoop();
937
Dan Gohmaneb490a72009-07-25 01:22:26 +0000938 // If we have special knowledge that this addrec won't overflow,
939 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000940 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000941 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
942 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000943 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000944
Dan Gohman01ecca22009-04-27 20:16:15 +0000945 // Check whether the backedge-taken count is SCEVCouldNotCompute.
946 // Note that this serves two purposes: It filters out loops that are
947 // simply not analyzable, and it covers the case where this code is
948 // being called from within backedge-taken count analysis, such that
949 // attempting to ask for the backedge-taken count would likely result
950 // in infinite recursion. In the later case, the analysis code will
951 // cope with a conservative value, and it will take care to purge
952 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000953 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000954 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000955 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000956 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000957
958 // Check whether the backedge-taken count can be losslessly casted to
959 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000960 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000961 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000962 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000963 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
964 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000965 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000966 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000967 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000968 const SCEV *Add = getAddExpr(Start, ZMul);
969 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000970 getAddExpr(getZeroExtendExpr(Start, WideTy),
971 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
972 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +0000973 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
974 // Cache knowledge of AR NUW, which is propagated to this AddRec.
975 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000976 // Return the expression with the addrec on the outside.
977 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
978 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000979 L, AR->getNoWrapFlags());
980 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000981 // Similar to above, only this time treat the step value as signed.
982 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000983 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000984 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000985 OperandExtendedAdd =
986 getAddExpr(getZeroExtendExpr(Start, WideTy),
987 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
988 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +0000989 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
990 // Cache knowledge of AR NW, which is propagated to this AddRec.
991 // Negative step causes unsigned wrap, but it still can't self-wrap.
992 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000993 // Return the expression with the addrec on the outside.
994 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
995 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000996 L, AR->getNoWrapFlags());
997 }
Dan Gohman85b05a22009-07-13 21:35:55 +0000998 }
999
1000 // If the backedge is guarded by a comparison with the pre-inc value
1001 // the addrec is safe. Also, if the entry is guarded by a comparison
1002 // with the start value and the backedge is guarded by a comparison
1003 // with the post-inc value, the addrec is safe.
1004 if (isKnownPositive(Step)) {
1005 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1006 getUnsignedRange(Step).getUnsignedMax());
1007 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001008 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001009 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001010 AR->getPostIncExpr(*this), N))) {
1011 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1012 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001013 // Return the expression with the addrec on the outside.
1014 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1015 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001016 L, AR->getNoWrapFlags());
1017 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001018 } else if (isKnownNegative(Step)) {
1019 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1020 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001021 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1022 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001023 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001024 AR->getPostIncExpr(*this), N))) {
1025 // Cache knowledge of AR NW, which is propagated to this AddRec.
1026 // Negative step causes unsigned wrap, but it still can't self-wrap.
1027 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1028 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001029 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1030 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001031 L, AR->getNoWrapFlags());
1032 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001033 }
1034 }
1035 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001036
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001037 // The cast wasn't folded; create an explicit cast node.
1038 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001039 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001040 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1041 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001042 UniqueSCEVs.InsertNode(S, IP);
1043 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001044}
1045
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001046// Get the limit of a recurrence such that incrementing by Step cannot cause
1047// signed overflow as long as the value of the recurrence within the loop does
1048// not exceed this limit before incrementing.
1049static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1050 ICmpInst::Predicate *Pred,
1051 ScalarEvolution *SE) {
1052 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1053 if (SE->isKnownPositive(Step)) {
1054 *Pred = ICmpInst::ICMP_SLT;
1055 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1056 SE->getSignedRange(Step).getSignedMax());
1057 }
1058 if (SE->isKnownNegative(Step)) {
1059 *Pred = ICmpInst::ICMP_SGT;
1060 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1061 SE->getSignedRange(Step).getSignedMin());
1062 }
1063 return 0;
1064}
1065
1066// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1067// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1068// or postincrement sibling. This allows normalizing a sign extended AddRec as
1069// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1070// result, the expression "Step + sext(PreIncAR)" is congruent with
1071// "sext(PostIncAR)"
1072static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001073 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001074 ScalarEvolution *SE) {
1075 const Loop *L = AR->getLoop();
1076 const SCEV *Start = AR->getStart();
1077 const SCEV *Step = AR->getStepRecurrence(*SE);
1078
1079 // Check for a simple looking step prior to loop entry.
1080 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickf63ae212011-09-28 17:02:54 +00001081 if (!SA)
1082 return 0;
1083
1084 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1085 // subtraction is expensive. For this purpose, perform a quick and dirty
1086 // difference, by checking for Step in the operand list.
1087 SmallVector<const SCEV *, 4> DiffOps;
1088 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1089 I != E; ++I) {
1090 if (*I != Step)
1091 DiffOps.push_back(*I);
1092 }
1093 if (DiffOps.size() == SA->getNumOperands())
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001094 return 0;
1095
1096 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1097 // same three conditions that getSignExtendedExpr checks.
1098
1099 // 1. NSW flags on the step increment.
Andrew Trickf63ae212011-09-28 17:02:54 +00001100 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001101 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1102 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1103
Andrew Trickcf31f912011-06-01 19:14:56 +00001104 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001105 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001106
1107 // 2. Direct overflow check on the step operation's expression.
1108 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001109 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001110 const SCEV *OperandExtendedStart =
1111 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1112 SE->getSignExtendExpr(Step, WideTy));
1113 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1114 // Cache knowledge of PreAR NSW.
1115 if (PreAR)
1116 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1117 // FIXME: this optimization needs a unit test
1118 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1119 return PreStart;
1120 }
1121
1122 // 3. Loop precondition.
1123 ICmpInst::Predicate Pred;
1124 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1125
Andrew Trickcf31f912011-06-01 19:14:56 +00001126 if (OverflowLimit &&
1127 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001128 return PreStart;
1129 }
1130 return 0;
1131}
1132
1133// Get the normalized sign-extended expression for this AddRec's Start.
1134static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001135 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001136 ScalarEvolution *SE) {
1137 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1138 if (!PreStart)
1139 return SE->getSignExtendExpr(AR->getStart(), Ty);
1140
1141 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1142 SE->getSignExtendExpr(PreStart, Ty));
1143}
1144
Dan Gohman0bba49c2009-07-07 17:06:11 +00001145const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001146 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001147 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001148 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001149 assert(isSCEVable(Ty) &&
1150 "This is not a conversion to a SCEVable type!");
1151 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001152
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001153 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001154 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1155 return getConstant(
1156 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1157 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001158
Dan Gohman20900ca2009-04-22 16:20:48 +00001159 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001160 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001161 return getSignExtendExpr(SS->getOperand(), Ty);
1162
Nick Lewycky73f565e2011-01-19 15:56:12 +00001163 // sext(zext(x)) --> zext(x)
1164 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1165 return getZeroExtendExpr(SZ->getOperand(), Ty);
1166
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001167 // Before doing any expensive analysis, check to see if we've already
1168 // computed a SCEV for this Op and Ty.
1169 FoldingSetNodeID ID;
1170 ID.AddInteger(scSignExtend);
1171 ID.AddPointer(Op);
1172 ID.AddPointer(Ty);
1173 void *IP = 0;
1174 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1175
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001176 // If the input value is provably positive, build a zext instead.
1177 if (isKnownNonNegative(Op))
1178 return getZeroExtendExpr(Op, Ty);
1179
Nick Lewycky630d85a2011-01-23 06:20:19 +00001180 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1181 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1182 // It's possible the bits taken off by the truncate were all sign bits. If
1183 // so, we should be able to simplify this further.
1184 const SCEV *X = ST->getOperand();
1185 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001186 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1187 unsigned NewBits = getTypeSizeInBits(Ty);
1188 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001189 CR.sextOrTrunc(NewBits)))
1190 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001191 }
1192
Dan Gohman01ecca22009-04-27 20:16:15 +00001193 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001194 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001195 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001196 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001197 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001198 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001199 const SCEV *Start = AR->getStart();
1200 const SCEV *Step = AR->getStepRecurrence(*this);
1201 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1202 const Loop *L = AR->getLoop();
1203
Dan Gohmaneb490a72009-07-25 01:22:26 +00001204 // If we have special knowledge that this addrec won't overflow,
1205 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001206 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001207 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001208 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001209 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001210
Dan Gohman01ecca22009-04-27 20:16:15 +00001211 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1212 // Note that this serves two purposes: It filters out loops that are
1213 // simply not analyzable, and it covers the case where this code is
1214 // being called from within backedge-taken count analysis, such that
1215 // attempting to ask for the backedge-taken count would likely result
1216 // in infinite recursion. In the later case, the analysis code will
1217 // cope with a conservative value, and it will take care to purge
1218 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001219 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001220 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001221 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001222 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001223
1224 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001225 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001226 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001227 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001228 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001229 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1230 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001231 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001232 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001233 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001234 const SCEV *Add = getAddExpr(Start, SMul);
1235 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001236 getAddExpr(getSignExtendExpr(Start, WideTy),
1237 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1238 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001239 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1240 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1241 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001242 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001243 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001244 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001245 L, AR->getNoWrapFlags());
1246 }
Dan Gohman850f7912009-07-16 17:34:36 +00001247 // Similar to above, only this time treat the step value as unsigned.
1248 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001249 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001250 Add = getAddExpr(Start, UMul);
1251 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001252 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001253 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1254 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001255 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1256 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1257 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001258 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001259 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001260 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001261 L, AR->getNoWrapFlags());
1262 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001263 }
1264
1265 // If the backedge is guarded by a comparison with the pre-inc value
1266 // the addrec is safe. Also, if the entry is guarded by a comparison
1267 // with the start value and the backedge is guarded by a comparison
1268 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001269 ICmpInst::Predicate Pred;
1270 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1271 if (OverflowLimit &&
1272 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1273 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1274 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1275 OverflowLimit)))) {
1276 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1277 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1278 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1279 getSignExtendExpr(Step, Ty),
1280 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001281 }
1282 }
1283 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001284
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001285 // The cast wasn't folded; create an explicit cast node.
1286 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001287 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001288 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1289 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001290 UniqueSCEVs.InsertNode(S, IP);
1291 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001292}
1293
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001294/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1295/// unspecified bits out to the given type.
1296///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001297const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001298 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001299 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1300 "This is not an extending conversion!");
1301 assert(isSCEVable(Ty) &&
1302 "This is not a conversion to a SCEVable type!");
1303 Ty = getEffectiveSCEVType(Ty);
1304
1305 // Sign-extend negative constants.
1306 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1307 if (SC->getValue()->getValue().isNegative())
1308 return getSignExtendExpr(Op, Ty);
1309
1310 // Peel off a truncate cast.
1311 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001312 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001313 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1314 return getAnyExtendExpr(NewOp, Ty);
1315 return getTruncateOrNoop(NewOp, Ty);
1316 }
1317
1318 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001319 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001320 if (!isa<SCEVZeroExtendExpr>(ZExt))
1321 return ZExt;
1322
1323 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001324 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001325 if (!isa<SCEVSignExtendExpr>(SExt))
1326 return SExt;
1327
Dan Gohmana10756e2010-01-21 02:09:26 +00001328 // Force the cast to be folded into the operands of an addrec.
1329 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1330 SmallVector<const SCEV *, 4> Ops;
1331 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1332 I != E; ++I)
1333 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001334 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001335 }
1336
Dan Gohmanf53462d2010-07-15 20:02:11 +00001337 // As a special case, fold anyext(undef) to undef. We don't want to
1338 // know too much about SCEVUnknowns, but this special case is handy
1339 // and harmless.
1340 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1341 if (isa<UndefValue>(U->getValue()))
1342 return getSCEV(UndefValue::get(Ty));
1343
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001344 // If the expression is obviously signed, use the sext cast value.
1345 if (isa<SCEVSMaxExpr>(Op))
1346 return SExt;
1347
1348 // Absent any other information, use the zext cast value.
1349 return ZExt;
1350}
1351
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001352/// CollectAddOperandsWithScales - Process the given Ops list, which is
1353/// a list of operands to be added under the given scale, update the given
1354/// map. This is a helper function for getAddRecExpr. As an example of
1355/// what it does, given a sequence of operands that would form an add
1356/// expression like this:
1357///
1358/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1359///
1360/// where A and B are constants, update the map with these values:
1361///
1362/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1363///
1364/// and add 13 + A*B*29 to AccumulatedConstant.
1365/// This will allow getAddRecExpr to produce this:
1366///
1367/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1368///
1369/// This form often exposes folding opportunities that are hidden in
1370/// the original operand list.
1371///
1372/// Return true iff it appears that any interesting folding opportunities
1373/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1374/// the common case where no interesting opportunities are present, and
1375/// is also used as a check to avoid infinite recursion.
1376///
1377static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001378CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1379 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001380 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001381 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001382 const APInt &Scale,
1383 ScalarEvolution &SE) {
1384 bool Interesting = false;
1385
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001386 // Iterate over the add operands. They are sorted, with constants first.
1387 unsigned i = 0;
1388 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1389 ++i;
1390 // Pull a buried constant out to the outside.
1391 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1392 Interesting = true;
1393 AccumulatedConstant += Scale * C->getValue()->getValue();
1394 }
1395
1396 // Next comes everything else. We're especially interested in multiplies
1397 // here, but they're in the middle, so just visit the rest with one loop.
1398 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001399 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1400 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1401 APInt NewScale =
1402 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1403 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1404 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001405 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001406 Interesting |=
1407 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001408 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001409 NewScale, SE);
1410 } else {
1411 // A multiplication of a constant with some other value. Update
1412 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001413 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1414 const SCEV *Key = SE.getMulExpr(MulOps);
1415 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001416 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001417 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001418 NewOps.push_back(Pair.first->first);
1419 } else {
1420 Pair.first->second += NewScale;
1421 // The map already had an entry for this value, which may indicate
1422 // a folding opportunity.
1423 Interesting = true;
1424 }
1425 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001426 } else {
1427 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001428 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001429 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001430 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001431 NewOps.push_back(Pair.first->first);
1432 } else {
1433 Pair.first->second += Scale;
1434 // The map already had an entry for this value, which may indicate
1435 // a folding opportunity.
1436 Interesting = true;
1437 }
1438 }
1439 }
1440
1441 return Interesting;
1442}
1443
1444namespace {
1445 struct APIntCompare {
1446 bool operator()(const APInt &LHS, const APInt &RHS) const {
1447 return LHS.ult(RHS);
1448 }
1449 };
1450}
1451
Dan Gohman6c0866c2009-05-24 23:45:28 +00001452/// getAddExpr - Get a canonical add expression, or something simpler if
1453/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001454const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001455 SCEV::NoWrapFlags Flags) {
1456 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1457 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001458 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001459 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001460#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001461 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001462 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001463 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001464 "SCEVAddExpr operand types don't match!");
1465#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001466
Andrew Trick3228cc22011-03-14 16:50:06 +00001467 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001468 // And vice-versa.
1469 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1470 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1471 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001472 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001473 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1474 E = Ops.end(); I != E; ++I)
1475 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001476 All = false;
1477 break;
1478 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001479 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001480 }
1481
Chris Lattner53e677a2004-04-02 20:23:17 +00001482 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001483 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001484
1485 // If there are any constants, fold them together.
1486 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001487 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001488 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001489 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001490 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001491 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001492 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1493 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001494 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001495 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001496 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001497 }
1498
1499 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001500 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001501 Ops.erase(Ops.begin());
1502 --Idx;
1503 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001504
Dan Gohmanbca091d2010-04-12 23:08:18 +00001505 if (Ops.size() == 1) return Ops[0];
1506 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001507
Dan Gohman68ff7762010-08-27 21:39:59 +00001508 // Okay, check to see if the same value occurs in the operand list more than
1509 // once. If so, merge them together into an multiply expression. Since we
1510 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001511 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001512 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001513 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001514 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001515 // Scan ahead to count how many equal operands there are.
1516 unsigned Count = 2;
1517 while (i+Count != e && Ops[i+Count] == Ops[i])
1518 ++Count;
1519 // Merge the values into a multiply.
1520 const SCEV *Scale = getConstant(Ty, Count);
1521 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1522 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001523 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001524 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001525 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001526 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001527 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001528 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001529 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001530 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001531
Dan Gohman728c7f32009-05-08 21:03:19 +00001532 // Check for truncates. If all the operands are truncated from the same
1533 // type, see if factoring out the truncate would permit the result to be
1534 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1535 // if the contents of the resulting outer trunc fold to something simple.
1536 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1537 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001538 Type *DstType = Trunc->getType();
1539 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001540 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001541 bool Ok = true;
1542 // Check all the operands to see if they can be represented in the
1543 // source type of the truncate.
1544 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1545 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1546 if (T->getOperand()->getType() != SrcType) {
1547 Ok = false;
1548 break;
1549 }
1550 LargeOps.push_back(T->getOperand());
1551 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001552 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001553 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001554 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001555 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1556 if (const SCEVTruncateExpr *T =
1557 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1558 if (T->getOperand()->getType() != SrcType) {
1559 Ok = false;
1560 break;
1561 }
1562 LargeMulOps.push_back(T->getOperand());
1563 } else if (const SCEVConstant *C =
1564 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001565 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001566 } else {
1567 Ok = false;
1568 break;
1569 }
1570 }
1571 if (Ok)
1572 LargeOps.push_back(getMulExpr(LargeMulOps));
1573 } else {
1574 Ok = false;
1575 break;
1576 }
1577 }
1578 if (Ok) {
1579 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001580 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001581 // If it folds to something simple, use it. Otherwise, don't.
1582 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1583 return getTruncateExpr(Fold, DstType);
1584 }
1585 }
1586
1587 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001588 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1589 ++Idx;
1590
1591 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001592 if (Idx < Ops.size()) {
1593 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001594 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001595 // If we have an add, expand the add operands onto the end of the operands
1596 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001597 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001598 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001599 DeletedAdd = true;
1600 }
1601
1602 // If we deleted at least one add, we added operands to the end of the list,
1603 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001604 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001605 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001606 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001607 }
1608
1609 // Skip over the add expression until we get to a multiply.
1610 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1611 ++Idx;
1612
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001613 // Check to see if there are any folding opportunities present with
1614 // operands multiplied by constant values.
1615 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1616 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001617 DenseMap<const SCEV *, APInt> M;
1618 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001619 APInt AccumulatedConstant(BitWidth, 0);
1620 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001621 Ops.data(), Ops.size(),
1622 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001623 // Some interesting folding opportunity is present, so its worthwhile to
1624 // re-generate the operands list. Group the operands by constant scale,
1625 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001626 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001627 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001628 E = NewOps.end(); I != E; ++I)
1629 MulOpLists[M.find(*I)->second].push_back(*I);
1630 // Re-generate the operands list.
1631 Ops.clear();
1632 if (AccumulatedConstant != 0)
1633 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001634 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1635 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001636 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001637 Ops.push_back(getMulExpr(getConstant(I->first),
1638 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001639 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001640 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001641 if (Ops.size() == 1)
1642 return Ops[0];
1643 return getAddExpr(Ops);
1644 }
1645 }
1646
Chris Lattner53e677a2004-04-02 20:23:17 +00001647 // If we are adding something to a multiply expression, make sure the
1648 // something is not already an operand of the multiply. If so, merge it into
1649 // the multiply.
1650 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001651 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001652 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001653 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001654 if (isa<SCEVConstant>(MulOpSCEV))
1655 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001656 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001657 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001658 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001659 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001660 if (Mul->getNumOperands() != 2) {
1661 // If the multiply has more than two operands, we must get the
1662 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001663 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1664 Mul->op_begin()+MulOp);
1665 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001666 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001667 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001668 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001669 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001670 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001671 if (Ops.size() == 2) return OuterMul;
1672 if (AddOp < Idx) {
1673 Ops.erase(Ops.begin()+AddOp);
1674 Ops.erase(Ops.begin()+Idx-1);
1675 } else {
1676 Ops.erase(Ops.begin()+Idx);
1677 Ops.erase(Ops.begin()+AddOp-1);
1678 }
1679 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001680 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001681 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001682
Chris Lattner53e677a2004-04-02 20:23:17 +00001683 // Check this multiply against other multiplies being added together.
1684 for (unsigned OtherMulIdx = Idx+1;
1685 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1686 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001687 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001688 // If MulOp occurs in OtherMul, we can fold the two multiplies
1689 // together.
1690 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1691 OMulOp != e; ++OMulOp)
1692 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1693 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001694 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001695 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001696 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001697 Mul->op_begin()+MulOp);
1698 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001699 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001700 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001701 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001702 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001703 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001704 OtherMul->op_begin()+OMulOp);
1705 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001706 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001707 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001708 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1709 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001710 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001711 Ops.erase(Ops.begin()+Idx);
1712 Ops.erase(Ops.begin()+OtherMulIdx-1);
1713 Ops.push_back(OuterMul);
1714 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001715 }
1716 }
1717 }
1718 }
1719
1720 // If there are any add recurrences in the operands list, see if any other
1721 // added values are loop invariant. If so, we can fold them into the
1722 // recurrence.
1723 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1724 ++Idx;
1725
1726 // Scan over all recurrences, trying to fold loop invariants into them.
1727 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1728 // Scan all of the other operands to this add and add them to the vector if
1729 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001730 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001731 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001732 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001733 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001734 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001735 LIOps.push_back(Ops[i]);
1736 Ops.erase(Ops.begin()+i);
1737 --i; --e;
1738 }
1739
1740 // If we found some loop invariants, fold them into the recurrence.
1741 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001742 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001743 LIOps.push_back(AddRec->getStart());
1744
Dan Gohman0bba49c2009-07-07 17:06:11 +00001745 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001746 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001747 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001748
Dan Gohmanb9f96512010-06-30 07:16:37 +00001749 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001750 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001751 // Always propagate NW.
1752 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001753 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001754
Chris Lattner53e677a2004-04-02 20:23:17 +00001755 // If all of the other operands were loop invariant, we are done.
1756 if (Ops.size() == 1) return NewRec;
1757
Nick Lewycky980e9f32011-09-06 05:08:09 +00001758 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001759 for (unsigned i = 0;; ++i)
1760 if (Ops[i] == AddRec) {
1761 Ops[i] = NewRec;
1762 break;
1763 }
Dan Gohman246b2562007-10-22 18:31:58 +00001764 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001765 }
1766
1767 // Okay, if there weren't any loop invariants to be folded, check to see if
1768 // there are multiple AddRec's with the same loop induction variable being
1769 // added together. If so, we can fold them.
1770 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001771 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1772 ++OtherIdx)
1773 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1774 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1775 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1776 AddRec->op_end());
1777 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1778 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001779 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001780 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001781 if (OtherAddRec->getLoop() == AddRecLoop) {
1782 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1783 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001784 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001785 AddRecOps.append(OtherAddRec->op_begin()+i,
1786 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001787 break;
1788 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001789 AddRecOps[i] = getAddExpr(AddRecOps[i],
1790 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001791 }
1792 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001793 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001794 // Step size has changed, so we cannot guarantee no self-wraparound.
1795 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001796 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001797 }
1798
1799 // Otherwise couldn't fold anything into this recurrence. Move onto the
1800 // next one.
1801 }
1802
1803 // Okay, it looks like we really DO need an add expr. Check to see if we
1804 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001805 FoldingSetNodeID ID;
1806 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001807 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1808 ID.AddPointer(Ops[i]);
1809 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001810 SCEVAddExpr *S =
1811 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1812 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001813 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1814 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001815 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1816 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001817 UniqueSCEVs.InsertNode(S, IP);
1818 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001819 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001820 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001821}
1822
Nick Lewyckye97728e2011-10-04 06:51:26 +00001823static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1824 uint64_t k = i*j;
1825 if (j > 1 && k / j != i) Overflow = true;
1826 return k;
1827}
1828
1829/// Compute the result of "n choose k", the binomial coefficient. If an
1830/// intermediate computation overflows, Overflow will be set and the return will
1831/// be garbage. Overflow is not cleared on absense of overflow.
1832static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1833 // We use the multiplicative formula:
1834 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1835 // At each iteration, we take the n-th term of the numeral and divide by the
1836 // (k-n)th term of the denominator. This division will always produce an
1837 // integral result, and helps reduce the chance of overflow in the
1838 // intermediate computations. However, we can still overflow even when the
1839 // final result would fit.
1840
1841 if (n == 0 || n == k) return 1;
1842 if (k > n) return 0;
1843
1844 if (k > n/2)
1845 k = n-k;
1846
1847 uint64_t r = 1;
1848 for (uint64_t i = 1; i <= k; ++i) {
1849 r = umul_ov(r, n-(i-1), Overflow);
1850 r /= i;
1851 }
1852 return r;
1853}
1854
Dan Gohman6c0866c2009-05-24 23:45:28 +00001855/// getMulExpr - Get a canonical multiply expression, or something simpler if
1856/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001857const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001858 SCEV::NoWrapFlags Flags) {
1859 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1860 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001861 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001862 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001863#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001864 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001865 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001866 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001867 "SCEVMulExpr operand types don't match!");
1868#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001869
Andrew Trick3228cc22011-03-14 16:50:06 +00001870 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001871 // And vice-versa.
1872 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1873 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1874 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001875 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001876 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1877 E = Ops.end(); I != E; ++I)
1878 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001879 All = false;
1880 break;
1881 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001882 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001883 }
1884
Chris Lattner53e677a2004-04-02 20:23:17 +00001885 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001886 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001887
1888 // If there are any constants, fold them together.
1889 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001890 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001891
1892 // C1*(C2+V) -> C1*C2 + C1*V
1893 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001894 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001895 if (Add->getNumOperands() == 2 &&
1896 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001897 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1898 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001899
Chris Lattner53e677a2004-04-02 20:23:17 +00001900 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001901 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001902 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001903 ConstantInt *Fold = ConstantInt::get(getContext(),
1904 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001905 RHSC->getValue()->getValue());
1906 Ops[0] = getConstant(Fold);
1907 Ops.erase(Ops.begin()+1); // Erase the folded element
1908 if (Ops.size() == 1) return Ops[0];
1909 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001910 }
1911
1912 // If we are left with a constant one being multiplied, strip it off.
1913 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1914 Ops.erase(Ops.begin());
1915 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001916 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001917 // If we have a multiply of zero, it will always be zero.
1918 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001919 } else if (Ops[0]->isAllOnesValue()) {
1920 // If we have a mul by -1 of an add, try distributing the -1 among the
1921 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001922 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001923 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1924 SmallVector<const SCEV *, 4> NewOps;
1925 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001926 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1927 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001928 const SCEV *Mul = getMulExpr(Ops[0], *I);
1929 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1930 NewOps.push_back(Mul);
1931 }
1932 if (AnyFolded)
1933 return getAddExpr(NewOps);
1934 }
Andrew Tricka053b212011-03-14 17:38:54 +00001935 else if (const SCEVAddRecExpr *
1936 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1937 // Negation preserves a recurrence's no self-wrap property.
1938 SmallVector<const SCEV *, 4> Operands;
1939 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1940 E = AddRec->op_end(); I != E; ++I) {
1941 Operands.push_back(getMulExpr(Ops[0], *I));
1942 }
1943 return getAddRecExpr(Operands, AddRec->getLoop(),
1944 AddRec->getNoWrapFlags(SCEV::FlagNW));
1945 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001946 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001947 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001948
1949 if (Ops.size() == 1)
1950 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001951 }
1952
1953 // Skip over the add expression until we get to a multiply.
1954 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1955 ++Idx;
1956
Chris Lattner53e677a2004-04-02 20:23:17 +00001957 // If there are mul operands inline them all into this expression.
1958 if (Idx < Ops.size()) {
1959 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001960 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001961 // If we have an mul, expand the mul operands onto the end of the operands
1962 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001963 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001964 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001965 DeletedMul = true;
1966 }
1967
1968 // If we deleted at least one mul, we added operands to the end of the list,
1969 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001970 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001971 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001972 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001973 }
1974
1975 // If there are any add recurrences in the operands list, see if any other
1976 // added values are loop invariant. If so, we can fold them into the
1977 // recurrence.
1978 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1979 ++Idx;
1980
1981 // Scan over all recurrences, trying to fold loop invariants into them.
1982 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1983 // Scan all of the other operands to this mul and add them to the vector if
1984 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001985 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001986 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001987 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001988 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001989 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001990 LIOps.push_back(Ops[i]);
1991 Ops.erase(Ops.begin()+i);
1992 --i; --e;
1993 }
1994
1995 // If we found some loop invariants, fold them into the recurrence.
1996 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001997 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001998 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001999 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00002000 const SCEV *Scale = getMulExpr(LIOps);
2001 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2002 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00002003
Dan Gohmanb9f96512010-06-30 07:16:37 +00002004 // Build the new addrec. Propagate the NUW and NSW flags if both the
2005 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00002006 //
2007 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002008 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00002009 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2010 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002011
2012 // If all of the other operands were loop invariant, we are done.
2013 if (Ops.size() == 1) return NewRec;
2014
Nick Lewycky980e9f32011-09-06 05:08:09 +00002015 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00002016 for (unsigned i = 0;; ++i)
2017 if (Ops[i] == AddRec) {
2018 Ops[i] = NewRec;
2019 break;
2020 }
Dan Gohman246b2562007-10-22 18:31:58 +00002021 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002022 }
2023
2024 // Okay, if there weren't any loop invariants to be folded, check to see if
2025 // there are multiple AddRec's with the same loop induction variable being
2026 // multiplied together. If so, we can fold them.
2027 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002028 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002029 ++OtherIdx) {
Dan Gohman6a0c1252010-08-31 22:52:12 +00002030 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
Nick Lewyckye97728e2011-10-04 06:51:26 +00002031 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2032 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2033 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2034 // ]]],+,...up to x=2n}.
2035 // Note that the arguments to choose() are always integers with values
2036 // known at compile time, never SCEV objects.
Nick Lewycky28682ae2011-09-06 05:33:18 +00002037 //
Nick Lewyckye97728e2011-10-04 06:51:26 +00002038 // The implementation avoids pointless extra computations when the two
2039 // addrec's are of different length (mathematically, it's equivalent to
2040 // an infinite stream of zeros on the right).
2041 bool OpsModified = false;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002042 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2043 ++OtherIdx)
2044 if (const SCEVAddRecExpr *OtherAddRec =
2045 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2046 if (OtherAddRec->getLoop() == AddRecLoop) {
Nick Lewyckye97728e2011-10-04 06:51:26 +00002047 bool Overflow = false;
2048 Type *Ty = AddRec->getType();
2049 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2050 SmallVector<const SCEV*, 7> AddRecOps;
2051 for (int x = 0, xe = AddRec->getNumOperands() +
2052 OtherAddRec->getNumOperands() - 1;
2053 x != xe && !Overflow; ++x) {
2054 const SCEV *Term = getConstant(Ty, 0);
2055 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2056 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2057 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2058 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2059 z < ze && !Overflow; ++z) {
2060 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2061 uint64_t Coeff;
2062 if (LargerThan64Bits)
2063 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2064 else
2065 Coeff = Coeff1*Coeff2;
2066 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2067 const SCEV *Term1 = AddRec->getOperand(y-z);
2068 const SCEV *Term2 = OtherAddRec->getOperand(z);
2069 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2070 }
2071 }
2072 AddRecOps.push_back(Term);
2073 }
2074 if (!Overflow) {
Nick Lewyckyc103a082011-09-06 21:42:18 +00002075 const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
2076 AddRec->getLoop(),
2077 SCEV::FlagAnyWrap);
2078 if (Ops.size() == 2) return NewAddRec;
2079 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
2080 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Nick Lewyckye97728e2011-10-04 06:51:26 +00002081 OpsModified = true;
Nick Lewyckyc103a082011-09-06 21:42:18 +00002082 }
Dan Gohman6a0c1252010-08-31 22:52:12 +00002083 }
Nick Lewyckye97728e2011-10-04 06:51:26 +00002084 if (OpsModified)
Nick Lewyckyc103a082011-09-06 21:42:18 +00002085 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002086 }
Nick Lewyckyc103a082011-09-06 21:42:18 +00002087 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002088
2089 // Otherwise couldn't fold anything into this recurrence. Move onto the
2090 // next one.
2091 }
2092
2093 // Okay, it looks like we really DO need an mul expr. Check to see if we
2094 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002095 FoldingSetNodeID ID;
2096 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002097 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2098 ID.AddPointer(Ops[i]);
2099 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002100 SCEVMulExpr *S =
2101 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2102 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002103 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2104 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002105 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2106 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002107 UniqueSCEVs.InsertNode(S, IP);
2108 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002109 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002110 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002111}
2112
Andreas Bolka8a11c982009-08-07 22:55:26 +00002113/// getUDivExpr - Get a canonical unsigned division expression, or something
2114/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002115const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2116 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002117 assert(getEffectiveSCEVType(LHS->getType()) ==
2118 getEffectiveSCEVType(RHS->getType()) &&
2119 "SCEVUDivExpr operand types don't match!");
2120
Dan Gohman622ed672009-05-04 22:02:23 +00002121 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002122 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002123 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002124 // If the denominator is zero, the result of the udiv is undefined. Don't
2125 // try to analyze it, because the resolution chosen here may differ from
2126 // the resolution chosen in other parts of the compiler.
2127 if (!RHSC->getValue()->isZero()) {
2128 // Determine if the division can be folded into the operands of
2129 // its operands.
2130 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002131 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002132 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002133 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002134 // For non-power-of-two values, effectively round the value up to the
2135 // nearest power of two.
2136 if (!RHSC->getValue()->getValue().isPowerOf2())
2137 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002138 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002139 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002140 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2141 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002142 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2143 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2144 const APInt &StepInt = Step->getValue()->getValue();
2145 const APInt &DivInt = RHSC->getValue()->getValue();
2146 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002147 getZeroExtendExpr(AR, ExtTy) ==
2148 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2149 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002150 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002151 SmallVector<const SCEV *, 4> Operands;
2152 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2153 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002154 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002155 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002156 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002157 /// Get a canonical UDivExpr for a recurrence.
2158 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2159 // We can currently only fold X%N if X is constant.
2160 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2161 if (StartC && !DivInt.urem(StepInt) &&
2162 getZeroExtendExpr(AR, ExtTy) ==
2163 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2164 getZeroExtendExpr(Step, ExtTy),
2165 AR->getLoop(), SCEV::FlagAnyWrap)) {
2166 const APInt &StartInt = StartC->getValue()->getValue();
2167 const APInt &StartRem = StartInt.urem(StepInt);
2168 if (StartRem != 0)
2169 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2170 AR->getLoop(), SCEV::FlagNW);
2171 }
2172 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002173 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2174 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2175 SmallVector<const SCEV *, 4> Operands;
2176 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2177 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2178 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2179 // Find an operand that's safely divisible.
2180 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2181 const SCEV *Op = M->getOperand(i);
2182 const SCEV *Div = getUDivExpr(Op, RHSC);
2183 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2184 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2185 M->op_end());
2186 Operands[i] = Div;
2187 return getMulExpr(Operands);
2188 }
2189 }
Dan Gohman185cf032009-05-08 20:18:49 +00002190 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002191 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002192 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002193 SmallVector<const SCEV *, 4> Operands;
2194 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2195 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2196 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2197 Operands.clear();
2198 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2199 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2200 if (isa<SCEVUDivExpr>(Op) ||
2201 getMulExpr(Op, RHS) != A->getOperand(i))
2202 break;
2203 Operands.push_back(Op);
2204 }
2205 if (Operands.size() == A->getNumOperands())
2206 return getAddExpr(Operands);
2207 }
2208 }
Dan Gohman185cf032009-05-08 20:18:49 +00002209
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002210 // Fold if both operands are constant.
2211 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2212 Constant *LHSCV = LHSC->getValue();
2213 Constant *RHSCV = RHSC->getValue();
2214 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2215 RHSCV)));
2216 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002217 }
2218 }
2219
Dan Gohman1c343752009-06-27 21:21:31 +00002220 FoldingSetNodeID ID;
2221 ID.AddInteger(scUDivExpr);
2222 ID.AddPointer(LHS);
2223 ID.AddPointer(RHS);
2224 void *IP = 0;
2225 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002226 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2227 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002228 UniqueSCEVs.InsertNode(S, IP);
2229 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002230}
2231
2232
Dan Gohman6c0866c2009-05-24 23:45:28 +00002233/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2234/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002235const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2236 const Loop *L,
2237 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002238 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002239 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002240 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002241 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002242 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002243 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002244 }
2245
2246 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002247 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002248}
2249
Dan Gohman6c0866c2009-05-24 23:45:28 +00002250/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2251/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002252const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002253ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002254 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002255 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002256#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002257 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002258 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002259 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002260 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002261 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002262 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002263 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002264#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002265
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002266 if (Operands.back()->isZero()) {
2267 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002268 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002269 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002270
Dan Gohmanbc028532010-02-19 18:49:22 +00002271 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2272 // use that information to infer NUW and NSW flags. However, computing a
2273 // BE count requires calling getAddRecExpr, so we may not yet have a
2274 // meaningful BE count at this point (and if we don't, we'd be stuck
2275 // with a SCEVCouldNotCompute as the cached BE count).
2276
Andrew Trick3228cc22011-03-14 16:50:06 +00002277 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002278 // And vice-versa.
2279 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2280 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2281 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002282 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002283 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2284 E = Operands.end(); I != E; ++I)
2285 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002286 All = false;
2287 break;
2288 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002289 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002290 }
2291
Dan Gohmand9cc7492008-08-08 18:33:12 +00002292 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002293 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002294 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002295 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002296 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002297 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002298 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002299 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002300 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002301 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002302 // AddRecs require their operands be loop-invariant with respect to their
2303 // loops. Don't perform this transformation if it would break this
2304 // requirement.
2305 bool AllInvariant = true;
2306 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002307 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002308 AllInvariant = false;
2309 break;
2310 }
2311 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002312 // Create a recurrence for the outer loop with the same step size.
2313 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002314 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2315 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002316 SCEV::NoWrapFlags OuterFlags =
2317 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002318
2319 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002320 AllInvariant = true;
2321 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002322 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002323 AllInvariant = false;
2324 break;
2325 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002326 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002327 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002328 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002329 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2330 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002331 SCEV::NoWrapFlags InnerFlags =
2332 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002333 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2334 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002335 }
2336 // Reset Operands to its original state.
2337 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002338 }
2339 }
2340
Dan Gohman67847532010-01-19 22:27:22 +00002341 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2342 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002343 FoldingSetNodeID ID;
2344 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002345 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2346 ID.AddPointer(Operands[i]);
2347 ID.AddPointer(L);
2348 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002349 SCEVAddRecExpr *S =
2350 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2351 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002352 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2353 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002354 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2355 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002356 UniqueSCEVs.InsertNode(S, IP);
2357 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002358 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002359 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002360}
2361
Dan Gohman9311ef62009-06-24 14:49:00 +00002362const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2363 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002364 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002365 Ops.push_back(LHS);
2366 Ops.push_back(RHS);
2367 return getSMaxExpr(Ops);
2368}
2369
Dan Gohman0bba49c2009-07-07 17:06:11 +00002370const SCEV *
2371ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002372 assert(!Ops.empty() && "Cannot get empty smax!");
2373 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002374#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002375 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002376 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002377 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002378 "SCEVSMaxExpr operand types don't match!");
2379#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002380
2381 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002382 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002383
2384 // If there are any constants, fold them together.
2385 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002386 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002387 ++Idx;
2388 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002389 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002390 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002391 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002392 APIntOps::smax(LHSC->getValue()->getValue(),
2393 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002394 Ops[0] = getConstant(Fold);
2395 Ops.erase(Ops.begin()+1); // Erase the folded element
2396 if (Ops.size() == 1) return Ops[0];
2397 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002398 }
2399
Dan Gohmane5aceed2009-06-24 14:46:22 +00002400 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002401 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2402 Ops.erase(Ops.begin());
2403 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002404 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2405 // If we have an smax with a constant maximum-int, it will always be
2406 // maximum-int.
2407 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002408 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002409
Dan Gohman3ab13122010-04-13 16:49:23 +00002410 if (Ops.size() == 1) return Ops[0];
2411 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002412
2413 // Find the first SMax
2414 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2415 ++Idx;
2416
2417 // Check to see if one of the operands is an SMax. If so, expand its operands
2418 // onto our operand list, and recurse to simplify.
2419 if (Idx < Ops.size()) {
2420 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002421 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002422 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002423 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002424 DeletedSMax = true;
2425 }
2426
2427 if (DeletedSMax)
2428 return getSMaxExpr(Ops);
2429 }
2430
2431 // Okay, check to see if the same value occurs in the operand list twice. If
2432 // so, delete one. Since we sorted the list, these values are required to
2433 // be adjacent.
2434 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002435 // X smax Y smax Y --> X smax Y
2436 // X smax Y --> X, if X is always greater than Y
2437 if (Ops[i] == Ops[i+1] ||
2438 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2439 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2440 --i; --e;
2441 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002442 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2443 --i; --e;
2444 }
2445
2446 if (Ops.size() == 1) return Ops[0];
2447
2448 assert(!Ops.empty() && "Reduced smax down to nothing!");
2449
Nick Lewycky3e630762008-02-20 06:48:22 +00002450 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002451 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002452 FoldingSetNodeID ID;
2453 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002454 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2455 ID.AddPointer(Ops[i]);
2456 void *IP = 0;
2457 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002458 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2459 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002460 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2461 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002462 UniqueSCEVs.InsertNode(S, IP);
2463 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002464}
2465
Dan Gohman9311ef62009-06-24 14:49:00 +00002466const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2467 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002468 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002469 Ops.push_back(LHS);
2470 Ops.push_back(RHS);
2471 return getUMaxExpr(Ops);
2472}
2473
Dan Gohman0bba49c2009-07-07 17:06:11 +00002474const SCEV *
2475ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002476 assert(!Ops.empty() && "Cannot get empty umax!");
2477 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002478#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002479 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002480 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002481 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002482 "SCEVUMaxExpr operand types don't match!");
2483#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002484
2485 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002486 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002487
2488 // If there are any constants, fold them together.
2489 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002490 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002491 ++Idx;
2492 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002493 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002494 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002495 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002496 APIntOps::umax(LHSC->getValue()->getValue(),
2497 RHSC->getValue()->getValue()));
2498 Ops[0] = getConstant(Fold);
2499 Ops.erase(Ops.begin()+1); // Erase the folded element
2500 if (Ops.size() == 1) return Ops[0];
2501 LHSC = cast<SCEVConstant>(Ops[0]);
2502 }
2503
Dan Gohmane5aceed2009-06-24 14:46:22 +00002504 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002505 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2506 Ops.erase(Ops.begin());
2507 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002508 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2509 // If we have an umax with a constant maximum-int, it will always be
2510 // maximum-int.
2511 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002512 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002513
Dan Gohman3ab13122010-04-13 16:49:23 +00002514 if (Ops.size() == 1) return Ops[0];
2515 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002516
2517 // Find the first UMax
2518 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2519 ++Idx;
2520
2521 // Check to see if one of the operands is a UMax. If so, expand its operands
2522 // onto our operand list, and recurse to simplify.
2523 if (Idx < Ops.size()) {
2524 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002525 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002526 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002527 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002528 DeletedUMax = true;
2529 }
2530
2531 if (DeletedUMax)
2532 return getUMaxExpr(Ops);
2533 }
2534
2535 // Okay, check to see if the same value occurs in the operand list twice. If
2536 // so, delete one. Since we sorted the list, these values are required to
2537 // be adjacent.
2538 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002539 // X umax Y umax Y --> X umax Y
2540 // X umax Y --> X, if X is always greater than Y
2541 if (Ops[i] == Ops[i+1] ||
2542 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2543 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2544 --i; --e;
2545 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002546 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2547 --i; --e;
2548 }
2549
2550 if (Ops.size() == 1) return Ops[0];
2551
2552 assert(!Ops.empty() && "Reduced umax down to nothing!");
2553
2554 // Okay, it looks like we really DO need a umax expr. Check to see if we
2555 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002556 FoldingSetNodeID ID;
2557 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002558 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2559 ID.AddPointer(Ops[i]);
2560 void *IP = 0;
2561 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002562 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2563 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002564 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2565 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002566 UniqueSCEVs.InsertNode(S, IP);
2567 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002568}
2569
Dan Gohman9311ef62009-06-24 14:49:00 +00002570const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2571 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002572 // ~smax(~x, ~y) == smin(x, y).
2573 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2574}
2575
Dan Gohman9311ef62009-06-24 14:49:00 +00002576const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2577 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002578 // ~umax(~x, ~y) == umin(x, y)
2579 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2580}
2581
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002582const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002583 // If we have TargetData, we can bypass creating a target-independent
2584 // constant expression and then folding it back into a ConstantInt.
2585 // This is just a compile-time optimization.
2586 if (TD)
2587 return getConstant(TD->getIntPtrType(getContext()),
2588 TD->getTypeAllocSize(AllocTy));
2589
Dan Gohman4f8eea82010-02-01 18:27:38 +00002590 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2591 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002592 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2593 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002594 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002595 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2596}
2597
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002598const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002599 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2600 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002601 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2602 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002603 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002604 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2605}
2606
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002607const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002608 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002609 // If we have TargetData, we can bypass creating a target-independent
2610 // constant expression and then folding it back into a ConstantInt.
2611 // This is just a compile-time optimization.
2612 if (TD)
2613 return getConstant(TD->getIntPtrType(getContext()),
2614 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2615
Dan Gohman0f5efe52010-01-28 02:15:55 +00002616 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2617 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002618 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2619 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002620 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002621 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002622}
2623
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002624const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002625 Constant *FieldNo) {
2626 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002627 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002628 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2629 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002630 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002631 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002632}
2633
Dan Gohman0bba49c2009-07-07 17:06:11 +00002634const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002635 // Don't attempt to do anything other than create a SCEVUnknown object
2636 // here. createSCEV only calls getUnknown after checking for all other
2637 // interesting possibilities, and any other code that calls getUnknown
2638 // is doing so in order to hide a value from SCEV canonicalization.
2639
Dan Gohman1c343752009-06-27 21:21:31 +00002640 FoldingSetNodeID ID;
2641 ID.AddInteger(scUnknown);
2642 ID.AddPointer(V);
2643 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002644 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2645 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2646 "Stale SCEVUnknown in uniquing map!");
2647 return S;
2648 }
2649 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2650 FirstUnknown);
2651 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002652 UniqueSCEVs.InsertNode(S, IP);
2653 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002654}
2655
Chris Lattner53e677a2004-04-02 20:23:17 +00002656//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002657// Basic SCEV Analysis and PHI Idiom Recognition Code
2658//
2659
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002660/// isSCEVable - Test if values of the given type are analyzable within
2661/// the SCEV framework. This primarily includes integer types, and it
2662/// can optionally include pointer types if the ScalarEvolution class
2663/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002664bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002665 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002666 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002667}
2668
2669/// getTypeSizeInBits - Return the size in bits of the specified type,
2670/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002671uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002672 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2673
2674 // If we have a TargetData, use it!
2675 if (TD)
2676 return TD->getTypeSizeInBits(Ty);
2677
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002678 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002679 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002680 return Ty->getPrimitiveSizeInBits();
2681
2682 // The only other support type is pointer. Without TargetData, conservatively
2683 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002684 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002685 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002686}
2687
2688/// getEffectiveSCEVType - Return a type with the same bitwidth as
2689/// the given type and which represents how SCEV will treat the given
2690/// type, for which isSCEVable must return true. For pointer types,
2691/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002692Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002693 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2694
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002695 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002696 return Ty;
2697
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002698 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002699 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002700 if (TD) return TD->getIntPtrType(getContext());
2701
2702 // Without TargetData, conservatively assume pointers are 64-bit.
2703 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002704}
Chris Lattner53e677a2004-04-02 20:23:17 +00002705
Dan Gohman0bba49c2009-07-07 17:06:11 +00002706const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002707 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002708}
2709
Chris Lattner53e677a2004-04-02 20:23:17 +00002710/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2711/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002712const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002713 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002714
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002715 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2716 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002717 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002718
2719 // The process of creating a SCEV for V may have caused other SCEVs
2720 // to have been created, so it's necessary to insert the new entry
2721 // from scratch, rather than trying to remember the insert position
2722 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002723 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002724 return S;
2725}
2726
Dan Gohman2d1be872009-04-16 03:18:22 +00002727/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2728///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002729const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002730 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002731 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002732 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002733
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002734 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002735 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002736 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002737 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002738}
2739
2740/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002741const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002742 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002743 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002744 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002745
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002746 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002747 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002748 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002749 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002750 return getMinusSCEV(AllOnes, V);
2751}
2752
Andrew Trick3228cc22011-03-14 16:50:06 +00002753/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002754const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002755 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002756 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2757
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002758 // Fast path: X - X --> 0.
2759 if (LHS == RHS)
2760 return getConstant(LHS->getType(), 0);
2761
Dan Gohman2d1be872009-04-16 03:18:22 +00002762 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002763 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002764}
2765
2766/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2767/// input value to the specified type. If the type must be extended, it is zero
2768/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002769const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002770ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2771 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002772 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2773 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002774 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002775 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002776 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002777 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002778 return getTruncateExpr(V, Ty);
2779 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002780}
2781
2782/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2783/// input value to the specified type. If the type must be extended, it is sign
2784/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002785const SCEV *
2786ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002787 Type *Ty) {
2788 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002789 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2790 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002791 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002792 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002793 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002794 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002795 return getTruncateExpr(V, Ty);
2796 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002797}
2798
Dan Gohman467c4302009-05-13 03:46:30 +00002799/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2800/// input value to the specified type. If the type must be extended, it is zero
2801/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002802const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002803ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2804 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002805 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2806 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002807 "Cannot noop or zero extend with non-integer arguments!");
2808 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2809 "getNoopOrZeroExtend cannot truncate!");
2810 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2811 return V; // No conversion
2812 return getZeroExtendExpr(V, Ty);
2813}
2814
2815/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2816/// input value to the specified type. If the type must be extended, it is sign
2817/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002818const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002819ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2820 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002821 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2822 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002823 "Cannot noop or sign extend with non-integer arguments!");
2824 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2825 "getNoopOrSignExtend cannot truncate!");
2826 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2827 return V; // No conversion
2828 return getSignExtendExpr(V, Ty);
2829}
2830
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002831/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2832/// the input value to the specified type. If the type must be extended,
2833/// it is extended with unspecified bits. The conversion must not be
2834/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002835const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002836ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2837 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002838 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2839 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002840 "Cannot noop or any extend with non-integer arguments!");
2841 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2842 "getNoopOrAnyExtend cannot truncate!");
2843 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2844 return V; // No conversion
2845 return getAnyExtendExpr(V, Ty);
2846}
2847
Dan Gohman467c4302009-05-13 03:46:30 +00002848/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2849/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002850const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002851ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2852 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002853 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2854 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002855 "Cannot truncate or noop with non-integer arguments!");
2856 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2857 "getTruncateOrNoop cannot extend!");
2858 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2859 return V; // No conversion
2860 return getTruncateExpr(V, Ty);
2861}
2862
Dan Gohmana334aa72009-06-22 00:31:57 +00002863/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2864/// the types using zero-extension, and then perform a umax operation
2865/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002866const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2867 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002868 const SCEV *PromotedLHS = LHS;
2869 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002870
2871 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2872 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2873 else
2874 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2875
2876 return getUMaxExpr(PromotedLHS, PromotedRHS);
2877}
2878
Dan Gohmanc9759e82009-06-22 15:03:27 +00002879/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2880/// the types using zero-extension, and then perform a umin operation
2881/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002882const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2883 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002884 const SCEV *PromotedLHS = LHS;
2885 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002886
2887 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2888 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2889 else
2890 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2891
2892 return getUMinExpr(PromotedLHS, PromotedRHS);
2893}
2894
Andrew Trickb12a7542011-03-17 23:51:11 +00002895/// getPointerBase - Transitively follow the chain of pointer-type operands
2896/// until reaching a SCEV that does not have a single pointer operand. This
2897/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2898/// but corner cases do exist.
2899const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2900 // A pointer operand may evaluate to a nonpointer expression, such as null.
2901 if (!V->getType()->isPointerTy())
2902 return V;
2903
2904 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2905 return getPointerBase(Cast->getOperand());
2906 }
2907 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2908 const SCEV *PtrOp = 0;
2909 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2910 I != E; ++I) {
2911 if ((*I)->getType()->isPointerTy()) {
2912 // Cannot find the base of an expression with multiple pointer operands.
2913 if (PtrOp)
2914 return V;
2915 PtrOp = *I;
2916 }
2917 }
2918 if (!PtrOp)
2919 return V;
2920 return getPointerBase(PtrOp);
2921 }
2922 return V;
2923}
2924
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002925/// PushDefUseChildren - Push users of the given Instruction
2926/// onto the given Worklist.
2927static void
2928PushDefUseChildren(Instruction *I,
2929 SmallVectorImpl<Instruction *> &Worklist) {
2930 // Push the def-use children onto the Worklist stack.
2931 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2932 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002933 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002934}
2935
2936/// ForgetSymbolicValue - This looks up computed SCEV values for all
2937/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002938/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002939/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002940void
Dan Gohman85669632010-02-25 06:57:05 +00002941ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002942 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002943 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002944
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002945 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002946 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002947 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002948 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002949 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002950
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002951 ValueExprMapType::iterator It =
2952 ValueExprMap.find(static_cast<Value *>(I));
2953 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002954 const SCEV *Old = It->second;
2955
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002956 // Short-circuit the def-use traversal if the symbolic name
2957 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002958 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002959 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002960
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002961 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002962 // structure, it's a PHI that's in the progress of being computed
2963 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2964 // additional loop trip count information isn't going to change anything.
2965 // In the second case, createNodeForPHI will perform the necessary
2966 // updates on its own when it gets to that point. In the third, we do
2967 // want to forget the SCEVUnknown.
2968 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002969 !isa<SCEVUnknown>(Old) ||
2970 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002971 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002972 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002973 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002974 }
2975
2976 PushDefUseChildren(I, Worklist);
2977 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002978}
Chris Lattner53e677a2004-04-02 20:23:17 +00002979
2980/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2981/// a loop header, making it a potential recurrence, or it doesn't.
2982///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002983const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002984 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2985 if (L->getHeader() == PN->getParent()) {
2986 // The loop may have multiple entrances or multiple exits; we can analyze
2987 // this phi as an addrec if it has a unique entry value and a unique
2988 // backedge value.
2989 Value *BEValueV = 0, *StartValueV = 0;
2990 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2991 Value *V = PN->getIncomingValue(i);
2992 if (L->contains(PN->getIncomingBlock(i))) {
2993 if (!BEValueV) {
2994 BEValueV = V;
2995 } else if (BEValueV != V) {
2996 BEValueV = 0;
2997 break;
2998 }
2999 } else if (!StartValueV) {
3000 StartValueV = V;
3001 } else if (StartValueV != V) {
3002 StartValueV = 0;
3003 break;
3004 }
3005 }
3006 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003007 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003008 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003009 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003010 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003011 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00003012
3013 // Using this symbolic name for the PHI, analyze the value coming around
3014 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003015 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00003016
3017 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3018 // has a special value for the first iteration of the loop.
3019
3020 // If the value coming around the backedge is an add with the symbolic
3021 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00003022 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003023 // If there is a single occurrence of the symbolic value, replace it
3024 // with a recurrence.
3025 unsigned FoundIndex = Add->getNumOperands();
3026 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3027 if (Add->getOperand(i) == SymbolicName)
3028 if (FoundIndex == e) {
3029 FoundIndex = i;
3030 break;
3031 }
3032
3033 if (FoundIndex != Add->getNumOperands()) {
3034 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003035 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00003036 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3037 if (i != FoundIndex)
3038 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00003039 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00003040
3041 // This is not a valid addrec if the step amount is varying each
3042 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003043 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00003044 (isa<SCEVAddRecExpr>(Accum) &&
3045 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003046 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00003047
3048 // If the increment doesn't overflow, then neither the addrec nor
3049 // the post-increment will overflow.
3050 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3051 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003052 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003053 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003054 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00003055 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00003056 dyn_cast<GEPOperator>(BEValueV)) {
3057 // If the increment is an inbounds GEP, then we know the address
3058 // space cannot be wrapped around. We cannot make any guarantee
3059 // about signed or unsigned overflow because pointers are
3060 // unsigned but we may have a negative index from the base
3061 // pointer.
3062 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00003063 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003064 }
3065
Dan Gohman27dead42010-04-12 07:49:36 +00003066 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00003067 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00003068
Dan Gohmana10756e2010-01-21 02:09:26 +00003069 // Since the no-wrap flags are on the increment, they apply to the
3070 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003071 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003072 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003073 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003074
3075 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003076 // to be symbolic. We now need to go back and purge all of the
3077 // entries for the scalars that use the symbolic expression.
3078 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003079 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003080 return PHISCEV;
3081 }
3082 }
Dan Gohman622ed672009-05-04 22:02:23 +00003083 } else if (const SCEVAddRecExpr *AddRec =
3084 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003085 // Otherwise, this could be a loop like this:
3086 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3087 // In this case, j = {1,+,1} and BEValue is j.
3088 // Because the other in-value of i (0) fits the evolution of BEValue
3089 // i really is an addrec evolution.
3090 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003091 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003092
3093 // If StartVal = j.start - j.stride, we can use StartVal as the
3094 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003095 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003096 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003097 // FIXME: For constant StartVal, we should be able to infer
3098 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003099 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003100 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3101 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003102
3103 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003104 // to be symbolic. We now need to go back and purge all of the
3105 // entries for the scalars that use the symbolic expression.
3106 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003107 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003108 return PHISCEV;
3109 }
3110 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003111 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003112 }
Dan Gohman27dead42010-04-12 07:49:36 +00003113 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003114
Dan Gohman85669632010-02-25 06:57:05 +00003115 // If the PHI has a single incoming value, follow that value, unless the
3116 // PHI's incoming blocks are in a different loop, in which case doing so
3117 // risks breaking LCSSA form. Instcombine would normally zap these, but
3118 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003119 if (Value *V = SimplifyInstruction(PN, TD, DT))
3120 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003121 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003122
Chris Lattner53e677a2004-04-02 20:23:17 +00003123 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003124 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003125}
3126
Dan Gohman26466c02009-05-08 20:26:55 +00003127/// createNodeForGEP - Expand GEP instructions into add and multiply
3128/// operations. This allows them to be analyzed by regular SCEV code.
3129///
Dan Gohmand281ed22009-12-18 02:09:29 +00003130const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003131
Dan Gohmanb9f96512010-06-30 07:16:37 +00003132 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3133 // Add expression, because the Instruction may be guarded by control flow
3134 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003135 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003136 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003137
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003138 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003139 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003140 // Don't attempt to analyze GEPs over unsized objects.
3141 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3142 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003143 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003144 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003145 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003146 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003147 I != E; ++I) {
3148 Value *Index = *I;
3149 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003150 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003151 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003152 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00003153 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3154
Dan Gohmanb9f96512010-06-30 07:16:37 +00003155 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003156 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003157 } else {
3158 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003159 const SCEV *ElementSize = getSizeOfExpr(*GTI);
3160 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003161 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003162 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3163
Dan Gohmanb9f96512010-06-30 07:16:37 +00003164 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003165 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3166 isInBounds ? SCEV::FlagNSW :
3167 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003168
3169 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003170 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003171 }
3172 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003173
3174 // Get the SCEV for the GEP base.
3175 const SCEV *BaseS = getSCEV(Base);
3176
Dan Gohmanb9f96512010-06-30 07:16:37 +00003177 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003178 return getAddExpr(BaseS, TotalOffset,
3179 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003180}
3181
Nick Lewycky83bb0052007-11-22 07:59:40 +00003182/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3183/// guaranteed to end in (at every loop iteration). It is, at the same time,
3184/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3185/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003186uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003187ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003188 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003189 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003190
Dan Gohman622ed672009-05-04 22:02:23 +00003191 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003192 return std::min(GetMinTrailingZeros(T->getOperand()),
3193 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003194
Dan Gohman622ed672009-05-04 22:02:23 +00003195 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003196 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3197 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3198 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003199 }
3200
Dan Gohman622ed672009-05-04 22:02:23 +00003201 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003202 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3203 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3204 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003205 }
3206
Dan Gohman622ed672009-05-04 22:02:23 +00003207 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003208 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003209 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003210 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003211 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003212 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003213 }
3214
Dan Gohman622ed672009-05-04 22:02:23 +00003215 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003216 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003217 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3218 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003219 for (unsigned i = 1, e = M->getNumOperands();
3220 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003221 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003222 BitWidth);
3223 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003224 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003225
Dan Gohman622ed672009-05-04 22:02:23 +00003226 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003227 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003228 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003229 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003230 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003231 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003232 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003233
Dan Gohman622ed672009-05-04 22:02:23 +00003234 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003235 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003236 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003237 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003238 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003239 return MinOpRes;
3240 }
3241
Dan Gohman622ed672009-05-04 22:02:23 +00003242 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003243 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003244 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003245 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003246 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003247 return MinOpRes;
3248 }
3249
Dan Gohman2c364ad2009-06-19 23:29:04 +00003250 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3251 // For a SCEVUnknown, ask ValueTracking.
3252 unsigned BitWidth = getTypeSizeInBits(U->getType());
3253 APInt Mask = APInt::getAllOnesValue(BitWidth);
3254 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3255 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3256 return Zeros.countTrailingOnes();
3257 }
3258
3259 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003260 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003261}
Chris Lattner53e677a2004-04-02 20:23:17 +00003262
Dan Gohman85b05a22009-07-13 21:35:55 +00003263/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3264///
3265ConstantRange
3266ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003267 // See if we've computed this range already.
3268 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3269 if (I != UnsignedRanges.end())
3270 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003271
3272 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003273 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003274
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003275 unsigned BitWidth = getTypeSizeInBits(S->getType());
3276 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3277
3278 // If the value has known zeros, the maximum unsigned value will have those
3279 // known zeros as well.
3280 uint32_t TZ = GetMinTrailingZeros(S);
3281 if (TZ != 0)
3282 ConservativeResult =
3283 ConstantRange(APInt::getMinValue(BitWidth),
3284 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3285
Dan Gohman85b05a22009-07-13 21:35:55 +00003286 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3287 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3288 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3289 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003290 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003291 }
3292
3293 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3294 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3295 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3296 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003297 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003298 }
3299
3300 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3301 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3302 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3303 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003304 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003305 }
3306
3307 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3308 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3309 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3310 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003311 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003312 }
3313
3314 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3315 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3316 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003317 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003318 }
3319
3320 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3321 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003322 return setUnsignedRange(ZExt,
3323 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003324 }
3325
3326 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3327 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003328 return setUnsignedRange(SExt,
3329 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003330 }
3331
3332 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3333 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003334 return setUnsignedRange(Trunc,
3335 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003336 }
3337
Dan Gohman85b05a22009-07-13 21:35:55 +00003338 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003339 // If there's no unsigned wrap, the value will never be less than its
3340 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003341 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003342 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003343 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003344 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003345 ConservativeResult.intersectWith(
3346 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003347
3348 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003349 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003350 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003351 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003352 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3353 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003354 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3355
3356 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003357 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003358
3359 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003360 ConstantRange StepRange = getSignedRange(Step);
3361 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3362 ConstantRange EndRange =
3363 StartRange.add(MaxBECountRange.multiply(StepRange));
3364
3365 // Check for overflow. This must be done with ConstantRange arithmetic
3366 // because we could be called from within the ScalarEvolution overflow
3367 // checking code.
3368 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3369 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3370 ConstantRange ExtMaxBECountRange =
3371 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3372 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3373 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3374 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003375 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003376
Dan Gohman85b05a22009-07-13 21:35:55 +00003377 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3378 EndRange.getUnsignedMin());
3379 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3380 EndRange.getUnsignedMax());
3381 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003382 return setUnsignedRange(AddRec, ConservativeResult);
3383 return setUnsignedRange(AddRec,
3384 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003385 }
3386 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003387
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003388 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003389 }
3390
3391 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3392 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003393 APInt Mask = APInt::getAllOnesValue(BitWidth);
3394 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3395 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003396 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003397 return setUnsignedRange(U, ConservativeResult);
3398 return setUnsignedRange(U,
3399 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003400 }
3401
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003402 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003403}
3404
Dan Gohman85b05a22009-07-13 21:35:55 +00003405/// getSignedRange - Determine the signed range for a particular SCEV.
3406///
3407ConstantRange
3408ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003409 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003410 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3411 if (I != SignedRanges.end())
3412 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003413
Dan Gohman85b05a22009-07-13 21:35:55 +00003414 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003415 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003416
Dan Gohman52fddd32010-01-26 04:40:18 +00003417 unsigned BitWidth = getTypeSizeInBits(S->getType());
3418 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3419
3420 // If the value has known zeros, the maximum signed value will have those
3421 // known zeros as well.
3422 uint32_t TZ = GetMinTrailingZeros(S);
3423 if (TZ != 0)
3424 ConservativeResult =
3425 ConstantRange(APInt::getSignedMinValue(BitWidth),
3426 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3427
Dan Gohman85b05a22009-07-13 21:35:55 +00003428 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3429 ConstantRange X = getSignedRange(Add->getOperand(0));
3430 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3431 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003432 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003433 }
3434
Dan Gohman85b05a22009-07-13 21:35:55 +00003435 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3436 ConstantRange X = getSignedRange(Mul->getOperand(0));
3437 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3438 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003439 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003440 }
3441
Dan Gohman85b05a22009-07-13 21:35:55 +00003442 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3443 ConstantRange X = getSignedRange(SMax->getOperand(0));
3444 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3445 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003446 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003447 }
Dan Gohman62849c02009-06-24 01:05:09 +00003448
Dan Gohman85b05a22009-07-13 21:35:55 +00003449 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3450 ConstantRange X = getSignedRange(UMax->getOperand(0));
3451 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3452 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003453 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003454 }
Dan Gohman62849c02009-06-24 01:05:09 +00003455
Dan Gohman85b05a22009-07-13 21:35:55 +00003456 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3457 ConstantRange X = getSignedRange(UDiv->getLHS());
3458 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003459 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003460 }
Dan Gohman62849c02009-06-24 01:05:09 +00003461
Dan Gohman85b05a22009-07-13 21:35:55 +00003462 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3463 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003464 return setSignedRange(ZExt,
3465 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003466 }
3467
3468 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3469 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003470 return setSignedRange(SExt,
3471 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003472 }
3473
3474 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3475 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003476 return setSignedRange(Trunc,
3477 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003478 }
3479
Dan Gohman85b05a22009-07-13 21:35:55 +00003480 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003481 // If there's no signed wrap, and all the operands have the same sign or
3482 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003483 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003484 bool AllNonNeg = true;
3485 bool AllNonPos = true;
3486 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3487 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3488 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3489 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003490 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003491 ConservativeResult = ConservativeResult.intersectWith(
3492 ConstantRange(APInt(BitWidth, 0),
3493 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003494 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003495 ConservativeResult = ConservativeResult.intersectWith(
3496 ConstantRange(APInt::getSignedMinValue(BitWidth),
3497 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003498 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003499
3500 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003501 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003502 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003503 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003504 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3505 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003506 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3507
3508 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003509 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003510
3511 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003512 ConstantRange StepRange = getSignedRange(Step);
3513 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3514 ConstantRange EndRange =
3515 StartRange.add(MaxBECountRange.multiply(StepRange));
3516
3517 // Check for overflow. This must be done with ConstantRange arithmetic
3518 // because we could be called from within the ScalarEvolution overflow
3519 // checking code.
3520 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3521 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3522 ConstantRange ExtMaxBECountRange =
3523 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3524 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3525 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3526 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003527 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003528
Dan Gohman85b05a22009-07-13 21:35:55 +00003529 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3530 EndRange.getSignedMin());
3531 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3532 EndRange.getSignedMax());
3533 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003534 return setSignedRange(AddRec, ConservativeResult);
3535 return setSignedRange(AddRec,
3536 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003537 }
Dan Gohman62849c02009-06-24 01:05:09 +00003538 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003539
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003540 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003541 }
3542
Dan Gohman2c364ad2009-06-19 23:29:04 +00003543 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3544 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003545 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003546 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003547 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3548 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003549 return setSignedRange(U, ConservativeResult);
3550 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003551 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003552 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003553 }
3554
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003555 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003556}
3557
Chris Lattner53e677a2004-04-02 20:23:17 +00003558/// createSCEV - We know that there is no SCEV for the specified value.
3559/// Analyze the expression.
3560///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003561const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003562 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003563 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003564
Dan Gohman6c459a22008-06-22 19:56:46 +00003565 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003566 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003567 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003568
3569 // Don't attempt to analyze instructions in blocks that aren't
3570 // reachable. Such instructions don't matter, and they aren't required
3571 // to obey basic rules for definitions dominating uses which this
3572 // analysis depends on.
3573 if (!DT->isReachableFromEntry(I->getParent()))
3574 return getUnknown(V);
3575 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003576 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003577 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3578 return getConstant(CI);
3579 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003580 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003581 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3582 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003583 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003584 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003585
Dan Gohmanca178902009-07-17 20:47:02 +00003586 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003587 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003588 case Instruction::Add: {
3589 // The simple thing to do would be to just call getSCEV on both operands
3590 // and call getAddExpr with the result. However if we're looking at a
3591 // bunch of things all added together, this can be quite inefficient,
3592 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3593 // Instead, gather up all the operands and make a single getAddExpr call.
3594 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickecb35ec2011-11-29 02:16:38 +00003595 //
3596 // Don't apply this instruction's NSW or NUW flags to the new
3597 // expression. The instruction may be guarded by control flow that the
3598 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3599 // mapped to the same SCEV expression, and it would be incorrect to transfer
3600 // NSW/NUW semantics to those operations.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003601 SmallVector<const SCEV *, 4> AddOps;
3602 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003603 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3604 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3605 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3606 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003607 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003608 const SCEV *Op1 = getSCEV(U->getOperand(1));
3609 if (Opcode == Instruction::Sub)
3610 AddOps.push_back(getNegativeSCEV(Op1));
3611 else
3612 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003613 }
3614 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickecb35ec2011-11-29 02:16:38 +00003615 return getAddExpr(AddOps);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003616 }
3617 case Instruction::Mul: {
Andrew Trickecb35ec2011-11-29 02:16:38 +00003618 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003619 SmallVector<const SCEV *, 4> MulOps;
3620 MulOps.push_back(getSCEV(U->getOperand(1)));
3621 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003622 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003623 Op = U->getOperand(0)) {
3624 U = cast<Operator>(Op);
3625 MulOps.push_back(getSCEV(U->getOperand(1)));
3626 }
3627 MulOps.push_back(getSCEV(U->getOperand(0)));
3628 return getMulExpr(MulOps);
3629 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003630 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003631 return getUDivExpr(getSCEV(U->getOperand(0)),
3632 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003633 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003634 return getMinusSCEV(getSCEV(U->getOperand(0)),
3635 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003636 case Instruction::And:
3637 // For an expression like x&255 that merely masks off the high bits,
3638 // use zext(trunc(x)) as the SCEV expression.
3639 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003640 if (CI->isNullValue())
3641 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003642 if (CI->isAllOnesValue())
3643 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003644 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003645
3646 // Instcombine's ShrinkDemandedConstant may strip bits out of
3647 // constants, obscuring what would otherwise be a low-bits mask.
3648 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3649 // knew about to reconstruct a low-bits mask value.
3650 unsigned LZ = A.countLeadingZeros();
3651 unsigned BitWidth = A.getBitWidth();
3652 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3653 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3654 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3655
3656 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3657
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003658 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003659 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003660 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003661 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003662 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003663 }
3664 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003665
Dan Gohman6c459a22008-06-22 19:56:46 +00003666 case Instruction::Or:
3667 // If the RHS of the Or is a constant, we may have something like:
3668 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3669 // optimizations will transparently handle this case.
3670 //
3671 // In order for this transformation to be safe, the LHS must be of the
3672 // form X*(2^n) and the Or constant must be less than 2^n.
3673 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003674 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003675 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003676 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003677 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3678 // Build a plain add SCEV.
3679 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3680 // If the LHS of the add was an addrec and it has no-wrap flags,
3681 // transfer the no-wrap flags, since an or won't introduce a wrap.
3682 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3683 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003684 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3685 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003686 }
3687 return S;
3688 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003689 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003690 break;
3691 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003692 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003693 // If the RHS of the xor is a signbit, then this is just an add.
3694 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003695 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003696 return getAddExpr(getSCEV(U->getOperand(0)),
3697 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003698
3699 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003700 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003701 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003702
3703 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3704 // This is a variant of the check for xor with -1, and it handles
3705 // the case where instcombine has trimmed non-demanded bits out
3706 // of an xor with -1.
3707 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3708 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3709 if (BO->getOpcode() == Instruction::And &&
3710 LCI->getValue() == CI->getValue())
3711 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003712 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003713 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003714 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003715 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003716 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3717
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003718 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003719 // mask off the high bits. Complement the operand and
3720 // re-apply the zext.
3721 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3722 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3723
3724 // If C is a single bit, it may be in the sign-bit position
3725 // before the zero-extend. In this case, represent the xor
3726 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003727 APInt Trunc = CI->getValue().trunc(Z0TySize);
3728 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003729 Trunc.isSignBit())
3730 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3731 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003732 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003733 }
3734 break;
3735
3736 case Instruction::Shl:
3737 // Turn shift left of a constant amount into a multiply.
3738 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003739 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003740
3741 // If the shift count is not less than the bitwidth, the result of
3742 // the shift is undefined. Don't try to analyze it, because the
3743 // resolution chosen here may differ from the resolution chosen in
3744 // other parts of the compiler.
3745 if (SA->getValue().uge(BitWidth))
3746 break;
3747
Owen Andersoneed707b2009-07-24 23:12:02 +00003748 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003749 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003750 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003751 }
3752 break;
3753
Nick Lewycky01eaf802008-07-07 06:15:49 +00003754 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003755 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003756 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003757 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003758
3759 // If the shift count is not less than the bitwidth, the result of
3760 // the shift is undefined. Don't try to analyze it, because the
3761 // resolution chosen here may differ from the resolution chosen in
3762 // other parts of the compiler.
3763 if (SA->getValue().uge(BitWidth))
3764 break;
3765
Owen Andersoneed707b2009-07-24 23:12:02 +00003766 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003767 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003768 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003769 }
3770 break;
3771
Dan Gohman4ee29af2009-04-21 02:26:00 +00003772 case Instruction::AShr:
3773 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3774 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003775 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003776 if (L->getOpcode() == Instruction::Shl &&
3777 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003778 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3779
3780 // If the shift count is not less than the bitwidth, the result of
3781 // the shift is undefined. Don't try to analyze it, because the
3782 // resolution chosen here may differ from the resolution chosen in
3783 // other parts of the compiler.
3784 if (CI->getValue().uge(BitWidth))
3785 break;
3786
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003787 uint64_t Amt = BitWidth - CI->getZExtValue();
3788 if (Amt == BitWidth)
3789 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003790 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003791 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003792 IntegerType::get(getContext(),
3793 Amt)),
3794 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003795 }
3796 break;
3797
Dan Gohman6c459a22008-06-22 19:56:46 +00003798 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003799 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003800
3801 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003802 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003803
3804 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003805 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003806
3807 case Instruction::BitCast:
3808 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003809 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003810 return getSCEV(U->getOperand(0));
3811 break;
3812
Dan Gohman4f8eea82010-02-01 18:27:38 +00003813 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3814 // lead to pointer expressions which cannot safely be expanded to GEPs,
3815 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3816 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003817
Dan Gohman26466c02009-05-08 20:26:55 +00003818 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003819 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003820
Dan Gohman6c459a22008-06-22 19:56:46 +00003821 case Instruction::PHI:
3822 return createNodeForPHI(cast<PHINode>(U));
3823
3824 case Instruction::Select:
3825 // This could be a smax or umax that was lowered earlier.
3826 // Try to recover it.
3827 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3828 Value *LHS = ICI->getOperand(0);
3829 Value *RHS = ICI->getOperand(1);
3830 switch (ICI->getPredicate()) {
3831 case ICmpInst::ICMP_SLT:
3832 case ICmpInst::ICMP_SLE:
3833 std::swap(LHS, RHS);
3834 // fall through
3835 case ICmpInst::ICMP_SGT:
3836 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003837 // a >s b ? a+x : b+x -> smax(a, b)+x
3838 // a >s b ? b+x : a+x -> smin(a, b)+x
3839 if (LHS->getType() == U->getType()) {
3840 const SCEV *LS = getSCEV(LHS);
3841 const SCEV *RS = getSCEV(RHS);
3842 const SCEV *LA = getSCEV(U->getOperand(1));
3843 const SCEV *RA = getSCEV(U->getOperand(2));
3844 const SCEV *LDiff = getMinusSCEV(LA, LS);
3845 const SCEV *RDiff = getMinusSCEV(RA, RS);
3846 if (LDiff == RDiff)
3847 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3848 LDiff = getMinusSCEV(LA, RS);
3849 RDiff = getMinusSCEV(RA, LS);
3850 if (LDiff == RDiff)
3851 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3852 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003853 break;
3854 case ICmpInst::ICMP_ULT:
3855 case ICmpInst::ICMP_ULE:
3856 std::swap(LHS, RHS);
3857 // fall through
3858 case ICmpInst::ICMP_UGT:
3859 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003860 // a >u b ? a+x : b+x -> umax(a, b)+x
3861 // a >u b ? b+x : a+x -> umin(a, b)+x
3862 if (LHS->getType() == U->getType()) {
3863 const SCEV *LS = getSCEV(LHS);
3864 const SCEV *RS = getSCEV(RHS);
3865 const SCEV *LA = getSCEV(U->getOperand(1));
3866 const SCEV *RA = getSCEV(U->getOperand(2));
3867 const SCEV *LDiff = getMinusSCEV(LA, LS);
3868 const SCEV *RDiff = getMinusSCEV(RA, RS);
3869 if (LDiff == RDiff)
3870 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3871 LDiff = getMinusSCEV(LA, RS);
3872 RDiff = getMinusSCEV(RA, LS);
3873 if (LDiff == RDiff)
3874 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3875 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003876 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003877 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003878 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3879 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003880 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003881 cast<ConstantInt>(RHS)->isZero()) {
3882 const SCEV *One = getConstant(LHS->getType(), 1);
3883 const SCEV *LS = getSCEV(LHS);
3884 const SCEV *LA = getSCEV(U->getOperand(1));
3885 const SCEV *RA = getSCEV(U->getOperand(2));
3886 const SCEV *LDiff = getMinusSCEV(LA, LS);
3887 const SCEV *RDiff = getMinusSCEV(RA, One);
3888 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003889 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003890 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003891 break;
3892 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003893 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3894 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003895 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003896 cast<ConstantInt>(RHS)->isZero()) {
3897 const SCEV *One = getConstant(LHS->getType(), 1);
3898 const SCEV *LS = getSCEV(LHS);
3899 const SCEV *LA = getSCEV(U->getOperand(1));
3900 const SCEV *RA = getSCEV(U->getOperand(2));
3901 const SCEV *LDiff = getMinusSCEV(LA, One);
3902 const SCEV *RDiff = getMinusSCEV(RA, LS);
3903 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003904 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003905 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003906 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003907 default:
3908 break;
3909 }
3910 }
3911
3912 default: // We cannot analyze this expression.
3913 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003914 }
3915
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003916 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003917}
3918
3919
3920
3921//===----------------------------------------------------------------------===//
3922// Iteration Count Computation Code
3923//
3924
Andrew Trickb1831c62011-08-11 23:36:16 +00003925/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3926/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
3927/// or not constant. Will also return 0 if the maximum trip count is very large
3928/// (>= 2^32)
3929unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
3930 BasicBlock *ExitBlock) {
3931 const SCEVConstant *ExitCount =
3932 dyn_cast<SCEVConstant>(getExitCount(L, ExitBlock));
3933 if (!ExitCount)
3934 return 0;
3935
3936 ConstantInt *ExitConst = ExitCount->getValue();
3937
3938 // Guard against huge trip counts.
3939 if (ExitConst->getValue().getActiveBits() > 32)
3940 return 0;
3941
3942 // In case of integer overflow, this returns 0, which is correct.
3943 return ((unsigned)ExitConst->getZExtValue()) + 1;
3944}
3945
3946/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3947/// trip count of this loop as a normal unsigned value, if possible. This
3948/// means that the actual trip count is always a multiple of the returned
3949/// value (don't forget the trip count could very well be zero as well!).
3950///
3951/// Returns 1 if the trip count is unknown or not guaranteed to be the
3952/// multiple of a constant (which is also the case if the trip count is simply
3953/// constant, use getSmallConstantTripCount for that case), Will also return 1
3954/// if the trip count is very large (>= 2^32).
3955unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
3956 BasicBlock *ExitBlock) {
3957 const SCEV *ExitCount = getExitCount(L, ExitBlock);
3958 if (ExitCount == getCouldNotCompute())
3959 return 1;
3960
3961 // Get the trip count from the BE count by adding 1.
3962 const SCEV *TCMul = getAddExpr(ExitCount,
3963 getConstant(ExitCount->getType(), 1));
3964 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3965 // to factor simple cases.
3966 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3967 TCMul = Mul->getOperand(0);
3968
3969 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3970 if (!MulC)
3971 return 1;
3972
3973 ConstantInt *Result = MulC->getValue();
3974
3975 // Guard against huge trip counts.
3976 if (!Result || Result->getValue().getActiveBits() > 32)
3977 return 1;
3978
3979 return (unsigned)Result->getZExtValue();
3980}
3981
Andrew Trick5116ff62011-07-26 17:19:55 +00003982// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickfcb43562011-08-02 04:23:35 +00003983// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00003984// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00003985const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
3986 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00003987}
3988
Dan Gohman46bdfb02009-02-24 18:55:53 +00003989/// getBackedgeTakenCount - If the specified loop has a predictable
3990/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3991/// object. The backedge-taken count is the number of times the loop header
3992/// will be branched to from within the loop. This is one less than the
3993/// trip count of the loop, since it doesn't count the first iteration,
3994/// when the header is branched to from outside the loop.
3995///
3996/// Note that it is not valid to call this method on a loop without a
3997/// loop-invariant backedge-taken count (see
3998/// hasLoopInvariantBackedgeTakenCount).
3999///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004000const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004001 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004002}
4003
4004/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4005/// return the least SCEV value that is known never to be less than the
4006/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004007const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004008 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004009}
4010
Dan Gohman59ae6b92009-07-08 19:23:34 +00004011/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4012/// onto the given Worklist.
4013static void
4014PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4015 BasicBlock *Header = L->getHeader();
4016
4017 // Push all Loop-header PHIs onto the Worklist stack.
4018 for (BasicBlock::iterator I = Header->begin();
4019 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4020 Worklist.push_back(PN);
4021}
4022
Dan Gohmana1af7572009-04-30 20:47:05 +00004023const ScalarEvolution::BackedgeTakenInfo &
4024ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004025 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004026 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00004027 // update the value. The temporary CouldNotCompute value tells SCEV
4028 // code elsewhere that it shouldn't attempt to request a new
4029 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004030 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00004031 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00004032 if (!Pair.second)
4033 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00004034
Andrew Trick5116ff62011-07-26 17:19:55 +00004035 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4036 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4037 // must be cleared in this scope.
4038 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4039
4040 if (Result.getExact(this) != getCouldNotCompute()) {
4041 assert(isLoopInvariant(Result.getExact(this), L) &&
4042 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00004043 "Computed backedge-taken count isn't loop invariant for loop!");
4044 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00004045 }
4046 else if (Result.getMax(this) == getCouldNotCompute() &&
4047 isa<PHINode>(L->getHeader()->begin())) {
4048 // Only count loops that have phi nodes as not being computable.
4049 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00004050 }
Dan Gohmana1af7572009-04-30 20:47:05 +00004051
Chris Lattnerf1859892011-01-09 02:16:18 +00004052 // Now that we know more about the trip count for this loop, forget any
4053 // existing SCEV values for PHI nodes in this loop since they are only
4054 // conservative estimates made without the benefit of trip count
4055 // information. This is similar to the code in forgetLoop, except that
4056 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00004057 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00004058 SmallVector<Instruction *, 16> Worklist;
4059 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004060
Chris Lattnerf1859892011-01-09 02:16:18 +00004061 SmallPtrSet<Instruction *, 8> Visited;
4062 while (!Worklist.empty()) {
4063 Instruction *I = Worklist.pop_back_val();
4064 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004065
Chris Lattnerf1859892011-01-09 02:16:18 +00004066 ValueExprMapType::iterator It =
4067 ValueExprMap.find(static_cast<Value *>(I));
4068 if (It != ValueExprMap.end()) {
4069 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00004070
Chris Lattnerf1859892011-01-09 02:16:18 +00004071 // SCEVUnknown for a PHI either means that it has an unrecognized
4072 // structure, or it's a PHI that's in the progress of being computed
4073 // by createNodeForPHI. In the former case, additional loop trip
4074 // count information isn't going to change anything. In the later
4075 // case, createNodeForPHI will perform the necessary updates on its
4076 // own when it gets to that point.
4077 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4078 forgetMemoizedResults(Old);
4079 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004080 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004081 if (PHINode *PN = dyn_cast<PHINode>(I))
4082 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004083 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004084
4085 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004086 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004087 }
Dan Gohman308bec32011-04-25 22:48:29 +00004088
4089 // Re-lookup the insert position, since the call to
4090 // ComputeBackedgeTakenCount above could result in a
4091 // recusive call to getBackedgeTakenInfo (on a different
4092 // loop), which would invalidate the iterator computed
4093 // earlier.
4094 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004095}
4096
Dan Gohman4c7279a2009-10-31 15:04:55 +00004097/// forgetLoop - This method should be called by the client when it has
4098/// changed a loop in a way that may effect ScalarEvolution's ability to
4099/// compute a trip count, or if the loop is deleted.
4100void ScalarEvolution::forgetLoop(const Loop *L) {
4101 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004102 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4103 BackedgeTakenCounts.find(L);
4104 if (BTCPos != BackedgeTakenCounts.end()) {
4105 BTCPos->second.clear();
4106 BackedgeTakenCounts.erase(BTCPos);
4107 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004108
Dan Gohman4c7279a2009-10-31 15:04:55 +00004109 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004110 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004111 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004112
Dan Gohman59ae6b92009-07-08 19:23:34 +00004113 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004114 while (!Worklist.empty()) {
4115 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004116 if (!Visited.insert(I)) continue;
4117
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004118 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4119 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004120 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004121 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004122 if (PHINode *PN = dyn_cast<PHINode>(I))
4123 ConstantEvolutionLoopExitValue.erase(PN);
4124 }
4125
4126 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004127 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004128
4129 // Forget all contained loops too, to avoid dangling entries in the
4130 // ValuesAtScopes map.
4131 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4132 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004133}
4134
Eric Christophere6cbfa62010-07-29 01:25:38 +00004135/// forgetValue - This method should be called by the client when it has
4136/// changed a value in a way that may effect its value, or which may
4137/// disconnect it from a def-use chain linking it to a loop.
4138void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004139 Instruction *I = dyn_cast<Instruction>(V);
4140 if (!I) return;
4141
4142 // Drop information about expressions based on loop-header PHIs.
4143 SmallVector<Instruction *, 16> Worklist;
4144 Worklist.push_back(I);
4145
4146 SmallPtrSet<Instruction *, 8> Visited;
4147 while (!Worklist.empty()) {
4148 I = Worklist.pop_back_val();
4149 if (!Visited.insert(I)) continue;
4150
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004151 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4152 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004153 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004154 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004155 if (PHINode *PN = dyn_cast<PHINode>(I))
4156 ConstantEvolutionLoopExitValue.erase(PN);
4157 }
4158
4159 PushDefUseChildren(I, Worklist);
4160 }
4161}
4162
Andrew Trick5116ff62011-07-26 17:19:55 +00004163/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004164/// exits. A computable result can only be return for loops with a single exit.
4165/// Returning the minimum taken count among all exits is incorrect because one
4166/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4167/// the limit of each loop test is never skipped. This is a valid assumption as
4168/// long as the loop exits via that test. For precise results, it is the
4169/// caller's responsibility to specify the relevant loop exit using
4170/// getExact(ExitingBlock, SE).
Andrew Trick5116ff62011-07-26 17:19:55 +00004171const SCEV *
4172ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4173 // If any exits were not computable, the loop is not computable.
4174 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4175
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004176 // We need exactly one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004177 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004178 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4179
4180 const SCEV *BECount = 0;
4181 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4182 ENT != 0; ENT = ENT->getNextExit()) {
4183
4184 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4185
4186 if (!BECount)
4187 BECount = ENT->ExactNotTaken;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004188 else if (BECount != ENT->ExactNotTaken)
4189 return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004190 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004191 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004192 return BECount;
4193}
4194
4195/// getExact - Get the exact not taken count for this loop exit.
4196const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004197ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004198 ScalarEvolution *SE) const {
4199 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4200 ENT != 0; ENT = ENT->getNextExit()) {
4201
Andrew Trickfcb43562011-08-02 04:23:35 +00004202 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004203 return ENT->ExactNotTaken;
4204 }
4205 return SE->getCouldNotCompute();
4206}
4207
4208/// getMax - Get the max backedge taken count for the loop.
4209const SCEV *
4210ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4211 return Max ? Max : SE->getCouldNotCompute();
4212}
4213
4214/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4215/// computable exit into a persistent ExitNotTakenInfo array.
4216ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4217 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4218 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4219
4220 if (!Complete)
4221 ExitNotTaken.setIncomplete();
4222
4223 unsigned NumExits = ExitCounts.size();
4224 if (NumExits == 0) return;
4225
Andrew Trickfcb43562011-08-02 04:23:35 +00004226 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004227 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4228 if (NumExits == 1) return;
4229
4230 // Handle the rare case of multiple computable exits.
4231 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4232
4233 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4234 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4235 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004236 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004237 ENT->ExactNotTaken = ExitCounts[i].second;
4238 }
4239}
4240
4241/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4242void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004243 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004244 ExitNotTaken.ExactNotTaken = 0;
4245 delete[] ExitNotTaken.getNextExit();
4246}
4247
Dan Gohman46bdfb02009-02-24 18:55:53 +00004248/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4249/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004250ScalarEvolution::BackedgeTakenInfo
4251ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004252 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004253 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004254
Dan Gohmana334aa72009-06-22 00:31:57 +00004255 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004256 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004257 bool CouldComputeBECount = true;
4258 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004259 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004260 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4261 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004262 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004263 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004264 CouldComputeBECount = false;
4265 else
4266 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4267
Dan Gohman1c343752009-06-27 21:21:31 +00004268 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004269 MaxBECount = EL.Max;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004270 else if (EL.Max != getCouldNotCompute()) {
4271 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4272 // skip some loop tests. Taking the max over the exits is sufficiently
4273 // conservative. TODO: We could do better taking into consideration
4274 // that (1) the loop has unit stride (2) the last loop test is
4275 // less-than/greater-than (3) any loop test is less-than/greater-than AND
4276 // falls-through some constant times less then the other tests.
4277 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4278 }
Dan Gohmana334aa72009-06-22 00:31:57 +00004279 }
4280
Andrew Trick5116ff62011-07-26 17:19:55 +00004281 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004282}
4283
Andrew Trick5116ff62011-07-26 17:19:55 +00004284/// ComputeExitLimit - Compute the number of times the backedge of the specified
4285/// loop will execute if it exits via the specified block.
4286ScalarEvolution::ExitLimit
4287ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004288
4289 // Okay, we've chosen an exiting block. See what condition causes us to
4290 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004291 //
4292 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004293 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004294 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004295 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004296
Chris Lattner8b0e3602007-01-07 02:24:26 +00004297 // At this point, we know we have a conditional branch that determines whether
4298 // the loop is exited. However, we don't know if the branch is executed each
4299 // time through the loop. If not, then the execution count of the branch will
4300 // not be equal to the trip count of the loop.
4301 //
4302 // Currently we check for this by checking to see if the Exit branch goes to
4303 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004304 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004305 // loop header. This is common for un-rotated loops.
4306 //
4307 // If both of those tests fail, walk up the unique predecessor chain to the
4308 // header, stopping if there is an edge that doesn't exit the loop. If the
4309 // header is reached, the execution count of the branch will be equal to the
4310 // trip count of the loop.
4311 //
4312 // More extensive analysis could be done to handle more cases here.
4313 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004314 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004315 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004316 ExitBr->getParent() != L->getHeader()) {
4317 // The simple checks failed, try climbing the unique predecessor chain
4318 // up to the header.
4319 bool Ok = false;
4320 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4321 BasicBlock *Pred = BB->getUniquePredecessor();
4322 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004323 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004324 TerminatorInst *PredTerm = Pred->getTerminator();
4325 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4326 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4327 if (PredSucc == BB)
4328 continue;
4329 // If the predecessor has a successor that isn't BB and isn't
4330 // outside the loop, assume the worst.
4331 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004332 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004333 }
4334 if (Pred == L->getHeader()) {
4335 Ok = true;
4336 break;
4337 }
4338 BB = Pred;
4339 }
4340 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004341 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004342 }
4343
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004344 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004345 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4346 ExitBr->getSuccessor(0),
4347 ExitBr->getSuccessor(1));
Dan Gohmana334aa72009-06-22 00:31:57 +00004348}
4349
Andrew Trick5116ff62011-07-26 17:19:55 +00004350/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004351/// backedge of the specified loop will execute if its exit condition
4352/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004353ScalarEvolution::ExitLimit
4354ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4355 Value *ExitCond,
4356 BasicBlock *TBB,
4357 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004358 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004359 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4360 if (BO->getOpcode() == Instruction::And) {
4361 // Recurse on the operands of the and.
Andrew Trick5116ff62011-07-26 17:19:55 +00004362 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4363 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004364 const SCEV *BECount = getCouldNotCompute();
4365 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004366 if (L->contains(TBB)) {
4367 // Both conditions must be true for the loop to continue executing.
4368 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004369 if (EL0.Exact == getCouldNotCompute() ||
4370 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004371 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004372 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004373 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4374 if (EL0.Max == getCouldNotCompute())
4375 MaxBECount = EL1.Max;
4376 else if (EL1.Max == getCouldNotCompute())
4377 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004378 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004379 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004380 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004381 // Both conditions must be true at the same time for the loop to exit.
4382 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004383 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004384 if (EL0.Max == EL1.Max)
4385 MaxBECount = EL0.Max;
4386 if (EL0.Exact == EL1.Exact)
4387 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004388 }
4389
Andrew Trick5116ff62011-07-26 17:19:55 +00004390 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004391 }
4392 if (BO->getOpcode() == Instruction::Or) {
4393 // Recurse on the operands of the or.
Andrew Trick5116ff62011-07-26 17:19:55 +00004394 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4395 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004396 const SCEV *BECount = getCouldNotCompute();
4397 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004398 if (L->contains(FBB)) {
4399 // Both conditions must be false for the loop to continue executing.
4400 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004401 if (EL0.Exact == getCouldNotCompute() ||
4402 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004403 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004404 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004405 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4406 if (EL0.Max == getCouldNotCompute())
4407 MaxBECount = EL1.Max;
4408 else if (EL1.Max == getCouldNotCompute())
4409 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004410 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004411 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004412 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004413 // Both conditions must be false at the same time for the loop to exit.
4414 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004415 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004416 if (EL0.Max == EL1.Max)
4417 MaxBECount = EL0.Max;
4418 if (EL0.Exact == EL1.Exact)
4419 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004420 }
4421
Andrew Trick5116ff62011-07-26 17:19:55 +00004422 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004423 }
4424 }
4425
4426 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004427 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004428 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5116ff62011-07-26 17:19:55 +00004429 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004430
Dan Gohman00cb5b72010-02-19 18:12:07 +00004431 // Check for a constant condition. These are normally stripped out by
4432 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4433 // preserve the CFG and is temporarily leaving constant conditions
4434 // in place.
4435 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4436 if (L->contains(FBB) == !CI->getZExtValue())
4437 // The backedge is always taken.
4438 return getCouldNotCompute();
4439 else
4440 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004441 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004442 }
4443
Eli Friedman361e54d2009-05-09 12:32:42 +00004444 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004445 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004446}
4447
Andrew Trick5116ff62011-07-26 17:19:55 +00004448/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004449/// backedge of the specified loop will execute if its exit condition
4450/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004451ScalarEvolution::ExitLimit
4452ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4453 ICmpInst *ExitCond,
4454 BasicBlock *TBB,
4455 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004456
Reid Spencere4d87aa2006-12-23 06:05:41 +00004457 // If the condition was exit on true, convert the condition to exit on false
4458 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004459 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004460 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004461 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004462 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004463
4464 // Handle common loops like: for (X = "string"; *X; ++X)
4465 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4466 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004467 ExitLimit ItCnt =
4468 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004469 if (ItCnt.hasAnyInfo())
4470 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004471 }
4472
Dan Gohman0bba49c2009-07-07 17:06:11 +00004473 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4474 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004475
4476 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004477 LHS = getSCEVAtScope(LHS, L);
4478 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004479
Dan Gohman64a845e2009-06-24 04:48:43 +00004480 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004481 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004482 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004483 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004484 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004485 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004486 }
4487
Dan Gohman03557dc2010-05-03 16:35:17 +00004488 // Simplify the operands before analyzing them.
4489 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4490
Chris Lattner53e677a2004-04-02 20:23:17 +00004491 // If we have a comparison of a chrec against a constant, try to use value
4492 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004493 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4494 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004495 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004496 // Form the constant range.
4497 ConstantRange CompRange(
4498 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004499
Dan Gohman0bba49c2009-07-07 17:06:11 +00004500 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004501 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004502 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004503
Chris Lattner53e677a2004-04-02 20:23:17 +00004504 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004505 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004506 // Convert to: while (X-Y != 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004507 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4508 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004509 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004510 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004511 case ICmpInst::ICMP_EQ: { // while (X == Y)
4512 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004513 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4514 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004515 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004516 }
4517 case ICmpInst::ICMP_SLT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004518 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4519 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004520 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004521 }
4522 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004523 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004524 getNotSCEV(RHS), L, true);
Andrew Trick5116ff62011-07-26 17:19:55 +00004525 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004526 break;
4527 }
4528 case ICmpInst::ICMP_ULT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004529 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4530 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004531 break;
4532 }
4533 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004534 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004535 getNotSCEV(RHS), L, false);
Andrew Trick5116ff62011-07-26 17:19:55 +00004536 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004537 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004538 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004539 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004540#if 0
David Greene25e0e872009-12-23 22:18:14 +00004541 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004542 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004543 dbgs() << "[unsigned] ";
4544 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004545 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004546 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004547#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004548 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004549 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004550 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004551}
4552
Chris Lattner673e02b2004-10-12 01:49:27 +00004553static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004554EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4555 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004556 const SCEV *InVal = SE.getConstant(C);
4557 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004558 assert(isa<SCEVConstant>(Val) &&
4559 "Evaluation of SCEV at constant didn't fold correctly?");
4560 return cast<SCEVConstant>(Val)->getValue();
4561}
4562
4563/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4564/// and a GEP expression (missing the pointer index) indexing into it, return
4565/// the addressed element of the initializer or null if the index expression is
4566/// invalid.
4567static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004568GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004569 const std::vector<ConstantInt*> &Indices) {
4570 Constant *Init = GV->getInitializer();
4571 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004572 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004573 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4574 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4575 Init = cast<Constant>(CS->getOperand(Idx));
4576 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4577 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4578 Init = cast<Constant>(CA->getOperand(Idx));
4579 } else if (isa<ConstantAggregateZero>(Init)) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004580 if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004581 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004582 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004583 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004584 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004585 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004586 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004587 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004588 }
4589 return 0;
4590 } else {
4591 return 0; // Unknown initializer type
4592 }
4593 }
4594 return Init;
4595}
4596
Andrew Trick5116ff62011-07-26 17:19:55 +00004597/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004598/// 'icmp op load X, cst', try to see if we can compute the backedge
4599/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004600ScalarEvolution::ExitLimit
4601ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4602 LoadInst *LI,
4603 Constant *RHS,
4604 const Loop *L,
4605 ICmpInst::Predicate predicate) {
4606
Dan Gohman1c343752009-06-27 21:21:31 +00004607 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004608
4609 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004610 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004611 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004612 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004613
4614 // Make sure that it is really a constant global we are gepping, with an
4615 // initializer, and make sure the first IDX is really 0.
4616 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004617 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004618 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4619 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004620 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004621
4622 // Okay, we allow one non-constant index into the GEP instruction.
4623 Value *VarIdx = 0;
4624 std::vector<ConstantInt*> Indexes;
4625 unsigned VarIdxNum = 0;
4626 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4627 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4628 Indexes.push_back(CI);
4629 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004630 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004631 VarIdx = GEP->getOperand(i);
4632 VarIdxNum = i-2;
4633 Indexes.push_back(0);
4634 }
4635
4636 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4637 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004638 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004639 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004640
4641 // We can only recognize very limited forms of loop index expressions, in
4642 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004643 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004644 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004645 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4646 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004647 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004648
4649 unsigned MaxSteps = MaxBruteForceIterations;
4650 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004651 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004652 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004653 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004654
4655 // Form the GEP offset.
4656 Indexes[VarIdxNum] = Val;
4657
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004658 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004659 if (Result == 0) break; // Cannot compute!
4660
4661 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004662 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004663 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004664 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004665#if 0
David Greene25e0e872009-12-23 22:18:14 +00004666 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004667 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4668 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004669#endif
4670 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004671 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004672 }
4673 }
Dan Gohman1c343752009-06-27 21:21:31 +00004674 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004675}
4676
4677
Chris Lattner3221ad02004-04-17 22:58:41 +00004678/// CanConstantFold - Return true if we can constant fold an instruction of the
4679/// specified type, assuming that all operands were constants.
4680static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004681 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewycky614fef62011-10-22 19:58:20 +00004682 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4683 isa<LoadInst>(I))
Chris Lattner3221ad02004-04-17 22:58:41 +00004684 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004685
Chris Lattner3221ad02004-04-17 22:58:41 +00004686 if (const CallInst *CI = dyn_cast<CallInst>(I))
4687 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004688 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004689 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004690}
4691
Andrew Trick13d31e02011-10-05 03:25:31 +00004692/// Determine whether this instruction can constant evolve within this loop
4693/// assuming its operands can all constant evolve.
4694static bool canConstantEvolve(Instruction *I, const Loop *L) {
4695 // An instruction outside of the loop can't be derived from a loop PHI.
4696 if (!L->contains(I)) return false;
4697
4698 if (isa<PHINode>(I)) {
4699 if (L->getHeader() == I->getParent())
4700 return true;
4701 else
4702 // We don't currently keep track of the control flow needed to evaluate
4703 // PHIs, so we cannot handle PHIs inside of loops.
4704 return false;
4705 }
4706
4707 // If we won't be able to constant fold this expression even if the operands
4708 // are constants, bail early.
4709 return CanConstantFold(I);
4710}
4711
4712/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4713/// recursing through each instruction operand until reaching a loop header phi.
4714static PHINode *
4715getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Trick28ab7db2011-10-05 05:58:49 +00004716 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004717
4718 // Otherwise, we can evaluate this instruction if all of its operands are
4719 // constant or derived from a PHI node themselves.
4720 PHINode *PHI = 0;
4721 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4722 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4723
4724 if (isa<Constant>(*OpI)) continue;
4725
4726 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4727 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4728
4729 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trickef8a4c22011-10-05 22:06:53 +00004730 if (!P)
4731 // If this operand is already visited, reuse the prior result.
4732 // We may have P != PHI if this is the deepest point at which the
4733 // inconsistent paths meet.
4734 P = PHIMap.lookup(OpInst);
4735 if (!P) {
4736 // Recurse and memoize the results, whether a phi is found or not.
4737 // This recursive call invalidates pointers into PHIMap.
4738 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4739 PHIMap[OpInst] = P;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004740 }
Andrew Trick28ab7db2011-10-05 05:58:49 +00004741 if (P == 0) return 0; // Not evolving from PHI
4742 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4743 PHI = P;
Andrew Trick13d31e02011-10-05 03:25:31 +00004744 }
4745 // This is a expression evolving from a constant PHI!
4746 return PHI;
4747}
4748
Chris Lattner3221ad02004-04-17 22:58:41 +00004749/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4750/// in the loop that V is derived from. We allow arbitrary operations along the
4751/// way, but the operands of an operation must either be constants or a value
4752/// derived from a constant PHI. If this expression does not fit with these
4753/// constraints, return null.
4754static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004755 Instruction *I = dyn_cast<Instruction>(V);
Andrew Trick13d31e02011-10-05 03:25:31 +00004756 if (I == 0 || !canConstantEvolve(I, L)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004757
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004758 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004759 return PN;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004760 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004761
Andrew Trick13d31e02011-10-05 03:25:31 +00004762 // Record non-constant instructions contained by the loop.
Andrew Trick28ab7db2011-10-05 05:58:49 +00004763 DenseMap<Instruction *, PHINode *> PHIMap;
4764 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattner3221ad02004-04-17 22:58:41 +00004765}
4766
4767/// EvaluateExpression - Given an expression that passes the
4768/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4769/// in the loop has the value PHIVal. If we can't fold this expression for some
4770/// reason, return null.
Andrew Trick13d31e02011-10-05 03:25:31 +00004771static Constant *EvaluateExpression(Value *V, const Loop *L,
4772 DenseMap<Instruction *, Constant *> &Vals,
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004773 const TargetData *TD) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004774 // Convenient constant check, but redundant for recursive calls.
Reid Spencere8404342004-07-18 00:18:30 +00004775 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewycky614fef62011-10-22 19:58:20 +00004776 Instruction *I = dyn_cast<Instruction>(V);
4777 if (!I) return 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004778
Andrew Trick13d31e02011-10-05 03:25:31 +00004779 if (Constant *C = Vals.lookup(I)) return C;
4780
Nick Lewycky614fef62011-10-22 19:58:20 +00004781 // An instruction inside the loop depends on a value outside the loop that we
4782 // weren't given a mapping for, or a value such as a call inside the loop.
4783 if (!canConstantEvolve(I, L)) return 0;
4784
4785 // An unmapped PHI can be due to a branch or another loop inside this loop,
4786 // or due to this not being the initial iteration through a loop where we
4787 // couldn't compute the evolution of this particular PHI last time.
4788 if (isa<PHINode>(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004789
Dan Gohman9d4588f2010-06-22 13:15:46 +00004790 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004791
4792 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004793 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4794 if (!Operand) {
Nick Lewycky4c7f1ca2011-10-14 09:38:46 +00004795 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4796 if (!Operands[i]) return 0;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004797 continue;
4798 }
4799 Constant *C = EvaluateExpression(Operand, L, Vals, TD);
4800 Vals[Operand] = C;
4801 if (!C) return 0;
4802 Operands[i] = C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004803 }
4804
Nick Lewycky614fef62011-10-22 19:58:20 +00004805 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004806 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004807 Operands[1], TD);
Nick Lewycky614fef62011-10-22 19:58:20 +00004808 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4809 if (!LI->isVolatile())
4810 return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4811 }
Jay Foad1d2f5692011-07-19 13:32:40 +00004812 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004813}
4814
4815/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4816/// in the header of its containing loop, we know the loop executes a
4817/// constant number of times, and the PHI node is just a recurrence
4818/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004819Constant *
4820ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004821 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004822 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004823 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004824 ConstantEvolutionLoopExitValue.find(PN);
4825 if (I != ConstantEvolutionLoopExitValue.end())
4826 return I->second;
4827
Dan Gohmane0567812010-04-08 23:03:40 +00004828 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004829 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4830
4831 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4832
Andrew Trick13d31e02011-10-05 03:25:31 +00004833 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewycky614fef62011-10-22 19:58:20 +00004834 BasicBlock *Header = L->getHeader();
4835 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick13d31e02011-10-05 03:25:31 +00004836
Chris Lattner3221ad02004-04-17 22:58:41 +00004837 // Since the loop is canonicalized, the PHI node must have two entries. One
4838 // entry must be a constant (coming in from outside of the loop), and the
4839 // second must be derived from the same PHI.
4840 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Nick Lewycky614fef62011-10-22 19:58:20 +00004841 PHINode *PHI = 0;
4842 for (BasicBlock::iterator I = Header->begin();
4843 (PHI = dyn_cast<PHINode>(I)); ++I) {
4844 Constant *StartCST =
4845 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4846 if (StartCST == 0) continue;
4847 CurrentIterVals[PHI] = StartCST;
4848 }
4849 if (!CurrentIterVals.count(PN))
4850 return RetVal = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004851
4852 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattner3221ad02004-04-17 22:58:41 +00004853
4854 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004855 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004856 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004857
Dan Gohman46bdfb02009-02-24 18:55:53 +00004858 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004859 unsigned IterationNum = 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004860 for (; ; ++IterationNum) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004861 if (IterationNum == NumIterations)
Andrew Trick13d31e02011-10-05 03:25:31 +00004862 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattner3221ad02004-04-17 22:58:41 +00004863
Nick Lewycky614fef62011-10-22 19:58:20 +00004864 // Compute the value of the PHIs for the next iteration.
Andrew Trick13d31e02011-10-05 03:25:31 +00004865 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewycky614fef62011-10-22 19:58:20 +00004866 DenseMap<Instruction *, Constant *> NextIterVals;
Andrew Trick13d31e02011-10-05 03:25:31 +00004867 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004868 if (NextPHI == 0)
4869 return 0; // Couldn't evaluate!
Andrew Trick13d31e02011-10-05 03:25:31 +00004870 NextIterVals[PN] = NextPHI;
Nick Lewycky614fef62011-10-22 19:58:20 +00004871
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004872 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4873
Nick Lewycky614fef62011-10-22 19:58:20 +00004874 // Also evaluate the other PHI nodes. However, we don't get to stop if we
4875 // cease to be able to evaluate one of them or if they stop evolving,
4876 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004877 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewycky614fef62011-10-22 19:58:20 +00004878 for (DenseMap<Instruction *, Constant *>::const_iterator
4879 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4880 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky5bef0eb2011-10-24 05:51:01 +00004881 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004882 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4883 }
4884 // We use two distinct loops because EvaluateExpression may invalidate any
4885 // iterators into CurrentIterVals.
4886 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4887 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4888 PHINode *PHI = I->first;
Nick Lewycky614fef62011-10-22 19:58:20 +00004889 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004890 if (!NextPHI) { // Not already computed.
4891 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
4892 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD);
4893 }
4894 if (NextPHI != I->second)
4895 StoppedEvolving = false;
Nick Lewycky614fef62011-10-22 19:58:20 +00004896 }
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004897
4898 // If all entries in CurrentIterVals == NextIterVals then we can stop
4899 // iterating, the loop can't continue to change.
4900 if (StoppedEvolving)
4901 return RetVal = CurrentIterVals[PN];
4902
Andrew Trick13d31e02011-10-05 03:25:31 +00004903 CurrentIterVals.swap(NextIterVals);
Chris Lattner3221ad02004-04-17 22:58:41 +00004904 }
4905}
4906
Andrew Trick5116ff62011-07-26 17:19:55 +00004907/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004908/// constant number of times (the condition evolves only from constants),
4909/// try to evaluate a few iterations of the loop until we get the exit
4910/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004911/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewycky614fef62011-10-22 19:58:20 +00004912const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4913 Value *Cond,
4914 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004915 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004916 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004917
Dan Gohmanb92654d2010-06-19 14:17:24 +00004918 // If the loop is canonicalized, the PHI will have exactly two entries.
4919 // That's the only form we support here.
4920 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4921
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004922 DenseMap<Instruction *, Constant *> CurrentIterVals;
4923 BasicBlock *Header = L->getHeader();
4924 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4925
Dan Gohmanb92654d2010-06-19 14:17:24 +00004926 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004927 // second must be derived from the same PHI.
4928 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004929 PHINode *PHI = 0;
4930 for (BasicBlock::iterator I = Header->begin();
4931 (PHI = dyn_cast<PHINode>(I)); ++I) {
4932 Constant *StartCST =
4933 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4934 if (StartCST == 0) continue;
4935 CurrentIterVals[PHI] = StartCST;
4936 }
4937 if (!CurrentIterVals.count(PN))
4938 return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004939
4940 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4941 // the loop symbolically to determine when the condition gets a value of
4942 // "ExitWhen".
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004943
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004944 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004945 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004946 ConstantInt *CondVal =
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004947 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L,
4948 CurrentIterVals, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004949
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004950 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004951 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004952
Reid Spencere8019bb2007-03-01 07:25:48 +00004953 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004954 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004955 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004956 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004957
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004958 // Update all the PHI nodes for the next iteration.
4959 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004960
4961 // Create a list of which PHIs we need to compute. We want to do this before
4962 // calling EvaluateExpression on them because that may invalidate iterators
4963 // into CurrentIterVals.
4964 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004965 for (DenseMap<Instruction *, Constant *>::const_iterator
4966 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4967 PHINode *PHI = dyn_cast<PHINode>(I->first);
4968 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004969 PHIsToCompute.push_back(PHI);
4970 }
4971 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
4972 E = PHIsToCompute.end(); I != E; ++I) {
4973 PHINode *PHI = *I;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004974 Constant *&NextPHI = NextIterVals[PHI];
4975 if (NextPHI) continue; // Already computed!
4976
4977 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
4978 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD);
4979 }
4980 CurrentIterVals.swap(NextIterVals);
Chris Lattner7980fb92004-04-17 18:36:24 +00004981 }
4982
4983 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004984 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004985}
4986
Dan Gohmane7125f42009-09-03 15:00:26 +00004987/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004988/// at the specified scope in the program. The L value specifies a loop
4989/// nest to evaluate the expression at, where null is the top-level or a
4990/// specified loop is immediately inside of the loop.
4991///
4992/// This method can be used to compute the exit value for a variable defined
4993/// in a loop by querying what the value will hold in the parent loop.
4994///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004995/// In the case that a relevant loop exit value cannot be computed, the
4996/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004997const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004998 // Check to see if we've folded this expression at this loop before.
4999 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
5000 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
5001 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
5002 if (!Pair.second)
5003 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00005004
Dan Gohman42214892009-08-31 21:15:23 +00005005 // Otherwise compute it.
5006 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00005007 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00005008 return C;
5009}
5010
Nick Lewycky614fef62011-10-22 19:58:20 +00005011/// This builds up a Constant using the ConstantExpr interface. That way, we
5012/// will return Constants for objects which aren't represented by a
5013/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5014/// Returns NULL if the SCEV isn't representable as a Constant.
5015static Constant *BuildConstantFromSCEV(const SCEV *V) {
5016 switch (V->getSCEVType()) {
5017 default: // TODO: smax, umax.
5018 case scCouldNotCompute:
5019 case scAddRecExpr:
5020 break;
5021 case scConstant:
5022 return cast<SCEVConstant>(V)->getValue();
5023 case scUnknown:
5024 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5025 case scSignExtend: {
5026 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5027 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5028 return ConstantExpr::getSExt(CastOp, SS->getType());
5029 break;
5030 }
5031 case scZeroExtend: {
5032 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5033 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5034 return ConstantExpr::getZExt(CastOp, SZ->getType());
5035 break;
5036 }
5037 case scTruncate: {
5038 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5039 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5040 return ConstantExpr::getTrunc(CastOp, ST->getType());
5041 break;
5042 }
5043 case scAddExpr: {
5044 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5045 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5046 if (C->getType()->isPointerTy())
5047 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5048 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5049 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5050 if (!C2) return 0;
5051
5052 // First pointer!
5053 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5054 std::swap(C, C2);
5055 // The offsets have been converted to bytes. We can add bytes to an
5056 // i8* by GEP with the byte count in the first index.
5057 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5058 }
5059
5060 // Don't bother trying to sum two pointers. We probably can't
5061 // statically compute a load that results from it anyway.
5062 if (C2->getType()->isPointerTy())
5063 return 0;
5064
5065 if (C->getType()->isPointerTy()) {
5066 if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5067 C2 = ConstantExpr::getIntegerCast(
5068 C2, Type::getInt32Ty(C->getContext()), true);
5069 C = ConstantExpr::getGetElementPtr(C, C2);
5070 } else
5071 C = ConstantExpr::getAdd(C, C2);
5072 }
5073 return C;
5074 }
5075 break;
5076 }
5077 case scMulExpr: {
5078 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5079 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5080 // Don't bother with pointers at all.
5081 if (C->getType()->isPointerTy()) return 0;
5082 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5083 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5084 if (!C2 || C2->getType()->isPointerTy()) return 0;
5085 C = ConstantExpr::getMul(C, C2);
5086 }
5087 return C;
5088 }
5089 break;
5090 }
5091 case scUDivExpr: {
5092 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5093 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5094 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5095 if (LHS->getType() == RHS->getType())
5096 return ConstantExpr::getUDiv(LHS, RHS);
5097 break;
5098 }
5099 }
5100 return 0;
5101}
5102
Dan Gohman42214892009-08-31 21:15:23 +00005103const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005104 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005105
Nick Lewycky3e630762008-02-20 06:48:22 +00005106 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00005107 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00005108 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005109 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005110 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00005111 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5112 if (PHINode *PN = dyn_cast<PHINode>(I))
5113 if (PN->getParent() == LI->getHeader()) {
5114 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00005115 // to see if the loop that contains it has a known backedge-taken
5116 // count. If so, we may be able to force computation of the exit
5117 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005118 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00005119 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00005120 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005121 // Okay, we know how many times the containing loop executes. If
5122 // this is a constant evolving PHI node, get the final value at
5123 // the specified iteration number.
5124 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00005125 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00005126 LI);
Dan Gohman09987962009-06-29 21:31:18 +00005127 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00005128 }
5129 }
5130
Reid Spencer09906f32006-12-04 21:33:23 +00005131 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00005132 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00005133 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00005134 // result. This is particularly useful for computing loop exit values.
5135 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00005136 SmallVector<Constant *, 4> Operands;
5137 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00005138 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5139 Value *Op = I->getOperand(i);
5140 if (Constant *C = dyn_cast<Constant>(Op)) {
5141 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00005142 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00005143 }
Dan Gohman11046452010-06-29 23:43:06 +00005144
5145 // If any of the operands is non-constant and if they are
5146 // non-integer and non-pointer, don't even try to analyze them
5147 // with scev techniques.
5148 if (!isSCEVable(Op->getType()))
5149 return V;
5150
5151 const SCEV *OrigV = getSCEV(Op);
5152 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5153 MadeImprovement |= OrigV != OpV;
5154
Nick Lewycky614fef62011-10-22 19:58:20 +00005155 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohman11046452010-06-29 23:43:06 +00005156 if (!C) return V;
5157 if (C->getType() != Op->getType())
5158 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5159 Op->getType(),
5160 false),
5161 C, Op->getType());
5162 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00005163 }
Dan Gohman64a845e2009-06-24 04:48:43 +00005164
Dan Gohman11046452010-06-29 23:43:06 +00005165 // Check to see if getSCEVAtScope actually made an improvement.
5166 if (MadeImprovement) {
5167 Constant *C = 0;
5168 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5169 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
5170 Operands[0], Operands[1], TD);
Nick Lewycky614fef62011-10-22 19:58:20 +00005171 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5172 if (!LI->isVolatile())
5173 C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5174 } else
Dan Gohman11046452010-06-29 23:43:06 +00005175 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Jay Foad1d2f5692011-07-19 13:32:40 +00005176 Operands, TD);
Dan Gohman11046452010-06-29 23:43:06 +00005177 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00005178 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00005179 }
Chris Lattner3221ad02004-04-17 22:58:41 +00005180 }
5181 }
5182
5183 // This is some other type of SCEVUnknown, just return it.
5184 return V;
5185 }
5186
Dan Gohman622ed672009-05-04 22:02:23 +00005187 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005188 // Avoid performing the look-up in the common case where the specified
5189 // expression has no loop-variant portions.
5190 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005191 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005192 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005193 // Okay, at least one of these operands is loop variant but might be
5194 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00005195 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5196 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00005197 NewOps.push_back(OpAtScope);
5198
5199 for (++i; i != e; ++i) {
5200 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005201 NewOps.push_back(OpAtScope);
5202 }
5203 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005204 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005205 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005206 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005207 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005208 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00005209 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005210 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00005211 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005212 }
5213 }
5214 // If we got here, all operands are loop invariant.
5215 return Comm;
5216 }
5217
Dan Gohman622ed672009-05-04 22:02:23 +00005218 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005219 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5220 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00005221 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5222 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005223 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00005224 }
5225
5226 // If this is a loop recurrence for a loop that does not contain L, then we
5227 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00005228 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00005229 // First, attempt to evaluate each operand.
5230 // Avoid performing the look-up in the common case where the specified
5231 // expression has no loop-variant portions.
5232 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5233 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5234 if (OpAtScope == AddRec->getOperand(i))
5235 continue;
5236
5237 // Okay, at least one of these operands is loop variant but might be
5238 // foldable. Build a new instance of the folded commutative expression.
5239 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5240 AddRec->op_begin()+i);
5241 NewOps.push_back(OpAtScope);
5242 for (++i; i != e; ++i)
5243 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5244
Andrew Trick3f95c882011-04-27 01:21:25 +00005245 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00005246 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00005247 AddRec->getNoWrapFlags(SCEV::FlagNW));
5248 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00005249 // The addrec may be folded to a nonrecurrence, for example, if the
5250 // induction variable is multiplied by zero after constant folding. Go
5251 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00005252 if (!AddRec)
5253 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00005254 break;
5255 }
5256
5257 // If the scope is outside the addrec's loop, evaluate it by using the
5258 // loop exit value of the addrec.
5259 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005260 // To evaluate this recurrence, we need to know how many times the AddRec
5261 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005262 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00005263 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005264
Eli Friedmanb42a6262008-08-04 23:49:06 +00005265 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005266 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005267 }
Dan Gohman11046452010-06-29 23:43:06 +00005268
Dan Gohmand594e6f2009-05-24 23:25:42 +00005269 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00005270 }
5271
Dan Gohman622ed672009-05-04 22:02:23 +00005272 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005273 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005274 if (Op == Cast->getOperand())
5275 return Cast; // must be loop invariant
5276 return getZeroExtendExpr(Op, Cast->getType());
5277 }
5278
Dan Gohman622ed672009-05-04 22:02:23 +00005279 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005280 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005281 if (Op == Cast->getOperand())
5282 return Cast; // must be loop invariant
5283 return getSignExtendExpr(Op, Cast->getType());
5284 }
5285
Dan Gohman622ed672009-05-04 22:02:23 +00005286 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005287 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005288 if (Op == Cast->getOperand())
5289 return Cast; // must be loop invariant
5290 return getTruncateExpr(Op, Cast->getType());
5291 }
5292
Torok Edwinc23197a2009-07-14 16:55:14 +00005293 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00005294 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00005295}
5296
Dan Gohman66a7e852009-05-08 20:38:54 +00005297/// getSCEVAtScope - This is a convenience function which does
5298/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00005299const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005300 return getSCEVAtScope(getSCEV(V), L);
5301}
5302
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005303/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5304/// following equation:
5305///
5306/// A * X = B (mod N)
5307///
5308/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5309/// A and B isn't important.
5310///
5311/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005312static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005313 ScalarEvolution &SE) {
5314 uint32_t BW = A.getBitWidth();
5315 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5316 assert(A != 0 && "A must be non-zero.");
5317
5318 // 1. D = gcd(A, N)
5319 //
5320 // The gcd of A and N may have only one prime factor: 2. The number of
5321 // trailing zeros in A is its multiplicity
5322 uint32_t Mult2 = A.countTrailingZeros();
5323 // D = 2^Mult2
5324
5325 // 2. Check if B is divisible by D.
5326 //
5327 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5328 // is not less than multiplicity of this prime factor for D.
5329 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005330 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005331
5332 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5333 // modulo (N / D).
5334 //
5335 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5336 // bit width during computations.
5337 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5338 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005339 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005340 APInt I = AD.multiplicativeInverse(Mod);
5341
5342 // 4. Compute the minimum unsigned root of the equation:
5343 // I * (B / D) mod (N / D)
5344 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5345
5346 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5347 // bits.
5348 return SE.getConstant(Result.trunc(BW));
5349}
Chris Lattner53e677a2004-04-02 20:23:17 +00005350
5351/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5352/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5353/// might be the same) or two SCEVCouldNotCompute objects.
5354///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005355static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005356SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005357 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005358 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5359 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5360 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005361
Chris Lattner53e677a2004-04-02 20:23:17 +00005362 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005363 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005364 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005365 return std::make_pair(CNC, CNC);
5366 }
5367
Reid Spencere8019bb2007-03-01 07:25:48 +00005368 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005369 const APInt &L = LC->getValue()->getValue();
5370 const APInt &M = MC->getValue()->getValue();
5371 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005372 APInt Two(BitWidth, 2);
5373 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005374
Dan Gohman64a845e2009-06-24 04:48:43 +00005375 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005376 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005377 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005378 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5379 // The B coefficient is M-N/2
5380 APInt B(M);
5381 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005382
Reid Spencere8019bb2007-03-01 07:25:48 +00005383 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005384 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005385
Reid Spencere8019bb2007-03-01 07:25:48 +00005386 // Compute the B^2-4ac term.
5387 APInt SqrtTerm(B);
5388 SqrtTerm *= B;
5389 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005390
Reid Spencere8019bb2007-03-01 07:25:48 +00005391 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5392 // integer value or else APInt::sqrt() will assert.
5393 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005394
Dan Gohman64a845e2009-06-24 04:48:43 +00005395 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005396 // The divisions must be performed as signed divisions.
5397 APInt NegB(-B);
Nick Lewycky1cbae182011-10-03 07:10:45 +00005398 APInt TwoA(A << 1);
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005399 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005400 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005401 return std::make_pair(CNC, CNC);
5402 }
5403
Owen Andersone922c022009-07-22 00:24:57 +00005404 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005405
5406 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005407 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005408 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005409 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005410
Dan Gohman64a845e2009-06-24 04:48:43 +00005411 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005412 SE.getConstant(Solution2));
Nick Lewycky1cbae182011-10-03 07:10:45 +00005413 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005414}
5415
5416/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005417/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005418///
5419/// This is only used for loops with a "x != y" exit test. The exit condition is
5420/// now expressed as a single expression, V = x-y. So the exit test is
5421/// effectively V != 0. We know and take advantage of the fact that this
5422/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005423ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005424ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005425 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005426 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005427 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005428 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005429 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005430 }
5431
Dan Gohman35738ac2009-05-04 22:30:44 +00005432 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005433 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005434 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005435
Chris Lattner7975e3e2011-01-09 22:39:48 +00005436 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5437 // the quadratic equation to solve it.
5438 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5439 std::pair<const SCEV *,const SCEV *> Roots =
5440 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005441 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5442 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005443 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005444#if 0
David Greene25e0e872009-12-23 22:18:14 +00005445 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005446 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005447#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005448 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005449 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005450 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5451 R1->getValue(),
5452 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005453 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005454 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005455
Chris Lattner53e677a2004-04-02 20:23:17 +00005456 // We can only use this value if the chrec ends up with an exact zero
5457 // value at this index. When solving for "X*X != 5", for example, we
5458 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005459 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005460 if (Val->isZero())
5461 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005462 }
5463 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005464 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005465 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005466
Chris Lattner7975e3e2011-01-09 22:39:48 +00005467 // Otherwise we can only handle this if it is affine.
5468 if (!AddRec->isAffine())
5469 return getCouldNotCompute();
5470
5471 // If this is an affine expression, the execution count of this branch is
5472 // the minimum unsigned root of the following equation:
5473 //
5474 // Start + Step*N = 0 (mod 2^BW)
5475 //
5476 // equivalent to:
5477 //
5478 // Step*N = -Start (mod 2^BW)
5479 //
5480 // where BW is the common bit width of Start and Step.
5481
5482 // Get the initial value for the loop.
5483 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5484 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5485
5486 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005487 //
5488 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5489 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5490 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5491 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005492 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5493 if (StepC == 0)
5494 return getCouldNotCompute();
5495
Andrew Trick3228cc22011-03-14 16:50:06 +00005496 // For positive steps (counting up until unsigned overflow):
5497 // N = -Start/Step (as unsigned)
5498 // For negative steps (counting down to zero):
5499 // N = Start/-Step
5500 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005501 bool CountDown = StepC->getValue()->getValue().isNegative();
5502 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005503
5504 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005505 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5506 // N = Distance (as unsigned)
Nick Lewycky1cbae182011-10-03 07:10:45 +00005507 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5508 ConstantRange CR = getUnsignedRange(Start);
5509 const SCEV *MaxBECount;
5510 if (!CountDown && CR.getUnsignedMin().isMinValue())
5511 // When counting up, the worst starting value is 1, not 0.
5512 MaxBECount = CR.getUnsignedMax().isMinValue()
5513 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5514 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5515 else
5516 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5517 : -CR.getUnsignedMin());
5518 return ExitLimit(Distance, MaxBECount);
5519 }
Andrew Trick635f7182011-03-09 17:23:39 +00005520
Andrew Trickdcfd4042011-03-14 17:28:02 +00005521 // If the recurrence is known not to wraparound, unsigned divide computes the
5522 // back edge count. We know that the value will either become zero (and thus
5523 // the loop terminates), that the loop will terminate through some other exit
5524 // condition first, or that the loop has undefined behavior. This means
5525 // we can't "miss" the exit value, even with nonunit stride.
5526 //
5527 // FIXME: Prove that loops always exhibits *acceptable* undefined
5528 // behavior. Loops must exhibit defined behavior until a wrapped value is
5529 // actually used. So the trip count computed by udiv could be smaller than the
5530 // number of well-defined iterations.
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005531 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
Andrew Trickdcfd4042011-03-14 17:28:02 +00005532 // FIXME: We really want an "isexact" bit for udiv.
5533 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005534 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005535 // Then, try to solve the above equation provided that Start is constant.
5536 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5537 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5538 -StartC->getValue()->getValue(),
5539 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005540 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005541}
5542
5543/// HowFarToNonZero - Return the number of times a backedge checking the
5544/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005545/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005546ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005547ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005548 // Loops that look like: while (X == 0) are very strange indeed. We don't
5549 // handle them yet except for the trivial case. This could be expanded in the
5550 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005551
Chris Lattner53e677a2004-04-02 20:23:17 +00005552 // If the value is a constant, check to see if it is known to be non-zero
5553 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005554 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005555 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005556 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005557 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005558 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005559
Chris Lattner53e677a2004-04-02 20:23:17 +00005560 // We could implement others, but I really doubt anyone writes loops like
5561 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005562 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005563}
5564
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005565/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5566/// (which may not be an immediate predecessor) which has exactly one
5567/// successor from which BB is reachable, or null if no such block is
5568/// found.
5569///
Dan Gohman005752b2010-04-15 16:19:08 +00005570std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005571ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005572 // If the block has a unique predecessor, then there is no path from the
5573 // predecessor to the block that does not go through the direct edge
5574 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005575 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005576 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005577
5578 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005579 // If the header has a unique predecessor outside the loop, it must be
5580 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005581 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005582 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005583
Dan Gohman005752b2010-04-15 16:19:08 +00005584 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005585}
5586
Dan Gohman763bad12009-06-20 00:35:32 +00005587/// HasSameValue - SCEV structural equivalence is usually sufficient for
5588/// testing whether two expressions are equal, however for the purposes of
5589/// looking for a condition guarding a loop, it can be useful to be a little
5590/// more general, since a front-end may have replicated the controlling
5591/// expression.
5592///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005593static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005594 // Quick check to see if they are the same SCEV.
5595 if (A == B) return true;
5596
5597 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5598 // two different instructions with the same value. Check for this case.
5599 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5600 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5601 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5602 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005603 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005604 return true;
5605
5606 // Otherwise assume they may have a different value.
5607 return false;
5608}
5609
Dan Gohmane9796502010-04-24 01:28:42 +00005610/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5611/// predicate Pred. Return true iff any changes were made.
5612///
5613bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5614 const SCEV *&LHS, const SCEV *&RHS) {
5615 bool Changed = false;
5616
5617 // Canonicalize a constant to the right side.
5618 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5619 // Check for both operands constant.
5620 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5621 if (ConstantExpr::getICmp(Pred,
5622 LHSC->getValue(),
5623 RHSC->getValue())->isNullValue())
5624 goto trivially_false;
5625 else
5626 goto trivially_true;
5627 }
5628 // Otherwise swap the operands to put the constant on the right.
5629 std::swap(LHS, RHS);
5630 Pred = ICmpInst::getSwappedPredicate(Pred);
5631 Changed = true;
5632 }
5633
5634 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005635 // addrec's loop, put the addrec on the left. Also make a dominance check,
5636 // as both operands could be addrecs loop-invariant in each other's loop.
5637 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5638 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005639 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005640 std::swap(LHS, RHS);
5641 Pred = ICmpInst::getSwappedPredicate(Pred);
5642 Changed = true;
5643 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005644 }
Dan Gohmane9796502010-04-24 01:28:42 +00005645
5646 // If there's a constant operand, canonicalize comparisons with boundary
5647 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5648 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5649 const APInt &RA = RC->getValue()->getValue();
5650 switch (Pred) {
5651 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5652 case ICmpInst::ICMP_EQ:
5653 case ICmpInst::ICMP_NE:
5654 break;
5655 case ICmpInst::ICMP_UGE:
5656 if ((RA - 1).isMinValue()) {
5657 Pred = ICmpInst::ICMP_NE;
5658 RHS = getConstant(RA - 1);
5659 Changed = true;
5660 break;
5661 }
5662 if (RA.isMaxValue()) {
5663 Pred = ICmpInst::ICMP_EQ;
5664 Changed = true;
5665 break;
5666 }
5667 if (RA.isMinValue()) goto trivially_true;
5668
5669 Pred = ICmpInst::ICMP_UGT;
5670 RHS = getConstant(RA - 1);
5671 Changed = true;
5672 break;
5673 case ICmpInst::ICMP_ULE:
5674 if ((RA + 1).isMaxValue()) {
5675 Pred = ICmpInst::ICMP_NE;
5676 RHS = getConstant(RA + 1);
5677 Changed = true;
5678 break;
5679 }
5680 if (RA.isMinValue()) {
5681 Pred = ICmpInst::ICMP_EQ;
5682 Changed = true;
5683 break;
5684 }
5685 if (RA.isMaxValue()) goto trivially_true;
5686
5687 Pred = ICmpInst::ICMP_ULT;
5688 RHS = getConstant(RA + 1);
5689 Changed = true;
5690 break;
5691 case ICmpInst::ICMP_SGE:
5692 if ((RA - 1).isMinSignedValue()) {
5693 Pred = ICmpInst::ICMP_NE;
5694 RHS = getConstant(RA - 1);
5695 Changed = true;
5696 break;
5697 }
5698 if (RA.isMaxSignedValue()) {
5699 Pred = ICmpInst::ICMP_EQ;
5700 Changed = true;
5701 break;
5702 }
5703 if (RA.isMinSignedValue()) goto trivially_true;
5704
5705 Pred = ICmpInst::ICMP_SGT;
5706 RHS = getConstant(RA - 1);
5707 Changed = true;
5708 break;
5709 case ICmpInst::ICMP_SLE:
5710 if ((RA + 1).isMaxSignedValue()) {
5711 Pred = ICmpInst::ICMP_NE;
5712 RHS = getConstant(RA + 1);
5713 Changed = true;
5714 break;
5715 }
5716 if (RA.isMinSignedValue()) {
5717 Pred = ICmpInst::ICMP_EQ;
5718 Changed = true;
5719 break;
5720 }
5721 if (RA.isMaxSignedValue()) goto trivially_true;
5722
5723 Pred = ICmpInst::ICMP_SLT;
5724 RHS = getConstant(RA + 1);
5725 Changed = true;
5726 break;
5727 case ICmpInst::ICMP_UGT:
5728 if (RA.isMinValue()) {
5729 Pred = ICmpInst::ICMP_NE;
5730 Changed = true;
5731 break;
5732 }
5733 if ((RA + 1).isMaxValue()) {
5734 Pred = ICmpInst::ICMP_EQ;
5735 RHS = getConstant(RA + 1);
5736 Changed = true;
5737 break;
5738 }
5739 if (RA.isMaxValue()) goto trivially_false;
5740 break;
5741 case ICmpInst::ICMP_ULT:
5742 if (RA.isMaxValue()) {
5743 Pred = ICmpInst::ICMP_NE;
5744 Changed = true;
5745 break;
5746 }
5747 if ((RA - 1).isMinValue()) {
5748 Pred = ICmpInst::ICMP_EQ;
5749 RHS = getConstant(RA - 1);
5750 Changed = true;
5751 break;
5752 }
5753 if (RA.isMinValue()) goto trivially_false;
5754 break;
5755 case ICmpInst::ICMP_SGT:
5756 if (RA.isMinSignedValue()) {
5757 Pred = ICmpInst::ICMP_NE;
5758 Changed = true;
5759 break;
5760 }
5761 if ((RA + 1).isMaxSignedValue()) {
5762 Pred = ICmpInst::ICMP_EQ;
5763 RHS = getConstant(RA + 1);
5764 Changed = true;
5765 break;
5766 }
5767 if (RA.isMaxSignedValue()) goto trivially_false;
5768 break;
5769 case ICmpInst::ICMP_SLT:
5770 if (RA.isMaxSignedValue()) {
5771 Pred = ICmpInst::ICMP_NE;
5772 Changed = true;
5773 break;
5774 }
5775 if ((RA - 1).isMinSignedValue()) {
5776 Pred = ICmpInst::ICMP_EQ;
5777 RHS = getConstant(RA - 1);
5778 Changed = true;
5779 break;
5780 }
5781 if (RA.isMinSignedValue()) goto trivially_false;
5782 break;
5783 }
5784 }
5785
5786 // Check for obvious equality.
5787 if (HasSameValue(LHS, RHS)) {
5788 if (ICmpInst::isTrueWhenEqual(Pred))
5789 goto trivially_true;
5790 if (ICmpInst::isFalseWhenEqual(Pred))
5791 goto trivially_false;
5792 }
5793
Dan Gohman03557dc2010-05-03 16:35:17 +00005794 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5795 // adding or subtracting 1 from one of the operands.
5796 switch (Pred) {
5797 case ICmpInst::ICMP_SLE:
5798 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5799 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005800 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005801 Pred = ICmpInst::ICMP_SLT;
5802 Changed = true;
5803 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005804 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005805 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005806 Pred = ICmpInst::ICMP_SLT;
5807 Changed = true;
5808 }
5809 break;
5810 case ICmpInst::ICMP_SGE:
5811 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005812 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005813 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005814 Pred = ICmpInst::ICMP_SGT;
5815 Changed = true;
5816 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5817 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005818 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005819 Pred = ICmpInst::ICMP_SGT;
5820 Changed = true;
5821 }
5822 break;
5823 case ICmpInst::ICMP_ULE:
5824 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005825 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005826 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005827 Pred = ICmpInst::ICMP_ULT;
5828 Changed = true;
5829 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005830 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005831 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005832 Pred = ICmpInst::ICMP_ULT;
5833 Changed = true;
5834 }
5835 break;
5836 case ICmpInst::ICMP_UGE:
5837 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005838 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005839 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005840 Pred = ICmpInst::ICMP_UGT;
5841 Changed = true;
5842 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005843 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005844 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005845 Pred = ICmpInst::ICMP_UGT;
5846 Changed = true;
5847 }
5848 break;
5849 default:
5850 break;
5851 }
5852
Dan Gohmane9796502010-04-24 01:28:42 +00005853 // TODO: More simplifications are possible here.
5854
5855 return Changed;
5856
5857trivially_true:
5858 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005859 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005860 Pred = ICmpInst::ICMP_EQ;
5861 return true;
5862
5863trivially_false:
5864 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005865 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005866 Pred = ICmpInst::ICMP_NE;
5867 return true;
5868}
5869
Dan Gohman85b05a22009-07-13 21:35:55 +00005870bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5871 return getSignedRange(S).getSignedMax().isNegative();
5872}
5873
5874bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5875 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5876}
5877
5878bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5879 return !getSignedRange(S).getSignedMin().isNegative();
5880}
5881
5882bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5883 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5884}
5885
5886bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5887 return isKnownNegative(S) || isKnownPositive(S);
5888}
5889
5890bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5891 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005892 // Canonicalize the inputs first.
5893 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5894
Dan Gohman53c66ea2010-04-11 22:16:48 +00005895 // If LHS or RHS is an addrec, check to see if the condition is true in
5896 // every iteration of the loop.
5897 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5898 if (isLoopEntryGuardedByCond(
5899 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5900 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005901 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005902 return true;
5903 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5904 if (isLoopEntryGuardedByCond(
5905 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5906 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005907 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005908 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005909
Dan Gohman53c66ea2010-04-11 22:16:48 +00005910 // Otherwise see what can be done with known constant ranges.
5911 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5912}
5913
5914bool
5915ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5916 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005917 if (HasSameValue(LHS, RHS))
5918 return ICmpInst::isTrueWhenEqual(Pred);
5919
Dan Gohman53c66ea2010-04-11 22:16:48 +00005920 // This code is split out from isKnownPredicate because it is called from
5921 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005922 switch (Pred) {
5923 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005924 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005925 break;
5926 case ICmpInst::ICMP_SGT:
5927 Pred = ICmpInst::ICMP_SLT;
5928 std::swap(LHS, RHS);
5929 case ICmpInst::ICMP_SLT: {
5930 ConstantRange LHSRange = getSignedRange(LHS);
5931 ConstantRange RHSRange = getSignedRange(RHS);
5932 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5933 return true;
5934 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5935 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005936 break;
5937 }
5938 case ICmpInst::ICMP_SGE:
5939 Pred = ICmpInst::ICMP_SLE;
5940 std::swap(LHS, RHS);
5941 case ICmpInst::ICMP_SLE: {
5942 ConstantRange LHSRange = getSignedRange(LHS);
5943 ConstantRange RHSRange = getSignedRange(RHS);
5944 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5945 return true;
5946 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5947 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005948 break;
5949 }
5950 case ICmpInst::ICMP_UGT:
5951 Pred = ICmpInst::ICMP_ULT;
5952 std::swap(LHS, RHS);
5953 case ICmpInst::ICMP_ULT: {
5954 ConstantRange LHSRange = getUnsignedRange(LHS);
5955 ConstantRange RHSRange = getUnsignedRange(RHS);
5956 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5957 return true;
5958 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5959 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005960 break;
5961 }
5962 case ICmpInst::ICMP_UGE:
5963 Pred = ICmpInst::ICMP_ULE;
5964 std::swap(LHS, RHS);
5965 case ICmpInst::ICMP_ULE: {
5966 ConstantRange LHSRange = getUnsignedRange(LHS);
5967 ConstantRange RHSRange = getUnsignedRange(RHS);
5968 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5969 return true;
5970 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5971 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005972 break;
5973 }
5974 case ICmpInst::ICMP_NE: {
5975 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5976 return true;
5977 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5978 return true;
5979
5980 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5981 if (isKnownNonZero(Diff))
5982 return true;
5983 break;
5984 }
5985 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005986 // The check at the top of the function catches the case where
5987 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005988 break;
5989 }
5990 return false;
5991}
5992
5993/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5994/// protected by a conditional between LHS and RHS. This is used to
5995/// to eliminate casts.
5996bool
5997ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5998 ICmpInst::Predicate Pred,
5999 const SCEV *LHS, const SCEV *RHS) {
6000 // Interpret a null as meaning no loop, where there is obviously no guard
6001 // (interprocedural conditions notwithstanding).
6002 if (!L) return true;
6003
6004 BasicBlock *Latch = L->getLoopLatch();
6005 if (!Latch)
6006 return false;
6007
6008 BranchInst *LoopContinuePredicate =
6009 dyn_cast<BranchInst>(Latch->getTerminator());
6010 if (!LoopContinuePredicate ||
6011 LoopContinuePredicate->isUnconditional())
6012 return false;
6013
Dan Gohmanaf08a362010-08-10 23:46:30 +00006014 return isImpliedCond(Pred, LHS, RHS,
6015 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00006016 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00006017}
6018
Dan Gohman3948d0b2010-04-11 19:27:13 +00006019/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00006020/// by a conditional between LHS and RHS. This is used to help avoid max
6021/// expressions in loop trip counts, and to eliminate casts.
6022bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00006023ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6024 ICmpInst::Predicate Pred,
6025 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00006026 // Interpret a null as meaning no loop, where there is obviously no guard
6027 // (interprocedural conditions notwithstanding).
6028 if (!L) return false;
6029
Dan Gohman859b4822009-05-18 15:36:09 +00006030 // Starting at the loop predecessor, climb up the predecessor chain, as long
6031 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00006032 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00006033 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00006034 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00006035 Pair.first;
6036 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00006037
6038 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00006039 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00006040 if (!LoopEntryPredicate ||
6041 LoopEntryPredicate->isUnconditional())
6042 continue;
6043
Dan Gohmanaf08a362010-08-10 23:46:30 +00006044 if (isImpliedCond(Pred, LHS, RHS,
6045 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00006046 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00006047 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00006048 }
6049
Dan Gohman38372182008-08-12 20:17:31 +00006050 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00006051}
6052
Dan Gohman0f4b2852009-07-21 23:03:19 +00006053/// isImpliedCond - Test whether the condition described by Pred, LHS,
6054/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006055bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006056 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00006057 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006058 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006059 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006060 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006061 if (BO->getOpcode() == Instruction::And) {
6062 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006063 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6064 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006065 } else if (BO->getOpcode() == Instruction::Or) {
6066 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006067 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6068 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006069 }
6070 }
6071
Dan Gohmanaf08a362010-08-10 23:46:30 +00006072 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006073 if (!ICI) return false;
6074
Dan Gohman85b05a22009-07-13 21:35:55 +00006075 // Bail if the ICmp's operands' types are wider than the needed type
6076 // before attempting to call getSCEV on them. This avoids infinite
6077 // recursion, since the analysis of widening casts can require loop
6078 // exit condition information for overflow checking, which would
6079 // lead back here.
6080 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00006081 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00006082 return false;
6083
Dan Gohman0f4b2852009-07-21 23:03:19 +00006084 // Now that we found a conditional branch that dominates the loop, check to
6085 // see if it is the comparison we are looking for.
6086 ICmpInst::Predicate FoundPred;
6087 if (Inverse)
6088 FoundPred = ICI->getInversePredicate();
6089 else
6090 FoundPred = ICI->getPredicate();
6091
6092 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6093 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00006094
6095 // Balance the types. The case where FoundLHS' type is wider than
6096 // LHS' type is checked for above.
6097 if (getTypeSizeInBits(LHS->getType()) >
6098 getTypeSizeInBits(FoundLHS->getType())) {
6099 if (CmpInst::isSigned(Pred)) {
6100 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6101 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6102 } else {
6103 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6104 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6105 }
6106 }
6107
Dan Gohman0f4b2852009-07-21 23:03:19 +00006108 // Canonicalize the query to match the way instcombine will have
6109 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00006110 if (SimplifyICmpOperands(Pred, LHS, RHS))
6111 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006112 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00006113 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6114 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006115 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00006116
6117 // Check to see if we can make the LHS or RHS match.
6118 if (LHS == FoundRHS || RHS == FoundLHS) {
6119 if (isa<SCEVConstant>(RHS)) {
6120 std::swap(FoundLHS, FoundRHS);
6121 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6122 } else {
6123 std::swap(LHS, RHS);
6124 Pred = ICmpInst::getSwappedPredicate(Pred);
6125 }
6126 }
6127
6128 // Check whether the found predicate is the same as the desired predicate.
6129 if (FoundPred == Pred)
6130 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6131
6132 // Check whether swapping the found predicate makes it the same as the
6133 // desired predicate.
6134 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6135 if (isa<SCEVConstant>(RHS))
6136 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6137 else
6138 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6139 RHS, LHS, FoundLHS, FoundRHS);
6140 }
6141
6142 // Check whether the actual condition is beyond sufficient.
6143 if (FoundPred == ICmpInst::ICMP_EQ)
6144 if (ICmpInst::isTrueWhenEqual(Pred))
6145 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6146 return true;
6147 if (Pred == ICmpInst::ICMP_NE)
6148 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6149 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6150 return true;
6151
6152 // Otherwise assume the worst.
6153 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006154}
6155
Dan Gohman0f4b2852009-07-21 23:03:19 +00006156/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006157/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006158/// and FoundRHS is true.
6159bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6160 const SCEV *LHS, const SCEV *RHS,
6161 const SCEV *FoundLHS,
6162 const SCEV *FoundRHS) {
6163 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6164 FoundLHS, FoundRHS) ||
6165 // ~x < ~y --> x > y
6166 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6167 getNotSCEV(FoundRHS),
6168 getNotSCEV(FoundLHS));
6169}
6170
6171/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006172/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006173/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00006174bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00006175ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6176 const SCEV *LHS, const SCEV *RHS,
6177 const SCEV *FoundLHS,
6178 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006179 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00006180 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6181 case ICmpInst::ICMP_EQ:
6182 case ICmpInst::ICMP_NE:
6183 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6184 return true;
6185 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00006186 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00006187 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006188 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6189 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006190 return true;
6191 break;
6192 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006193 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006194 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6195 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006196 return true;
6197 break;
6198 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00006199 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006200 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6201 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006202 return true;
6203 break;
6204 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006205 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006206 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6207 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006208 return true;
6209 break;
6210 }
6211
6212 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006213}
6214
Dan Gohman51f53b72009-06-21 23:46:38 +00006215/// getBECount - Subtract the end and start values and divide by the step,
6216/// rounding up, to get the number of times the backedge is executed. Return
6217/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006218const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00006219 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00006220 const SCEV *Step,
6221 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00006222 assert(!isKnownNegative(Step) &&
6223 "This code doesn't handle negative strides yet!");
6224
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006225 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00006226
6227 // When Start == End, we have an exact BECount == 0. Short-circuit this case
6228 // here because SCEV may not be able to determine that the unsigned division
6229 // after rounding is zero.
6230 if (Start == End)
6231 return getConstant(Ty, 0);
6232
Dan Gohmandeff6212010-05-03 22:09:21 +00006233 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00006234 const SCEV *Diff = getMinusSCEV(End, Start);
6235 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00006236
6237 // Add an adjustment to the difference between End and Start so that
6238 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006239 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00006240
Dan Gohman1f96e672009-09-17 18:05:20 +00006241 if (!NoWrap) {
6242 // Check Add for unsigned overflow.
6243 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006244 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00006245 getTypeSizeInBits(Ty) + 1);
6246 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6247 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6248 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6249 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6250 return getCouldNotCompute();
6251 }
Dan Gohman51f53b72009-06-21 23:46:38 +00006252
6253 return getUDivExpr(Add, Step);
6254}
6255
Chris Lattnerdb25de42005-08-15 23:33:51 +00006256/// HowManyLessThans - Return the number of times a backedge containing the
6257/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00006258/// CouldNotCompute.
Andrew Trick5116ff62011-07-26 17:19:55 +00006259ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00006260ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6261 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00006262 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00006263 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006264
Dan Gohman35738ac2009-05-04 22:30:44 +00006265 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006266 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00006267 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006268
Dan Gohman1f96e672009-09-17 18:05:20 +00006269 // Check to see if we have a flag which makes analysis easy.
Nick Lewycky89d093d2011-11-09 07:11:37 +00006270 bool NoWrap = isSigned ?
6271 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
6272 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
Dan Gohman1f96e672009-09-17 18:05:20 +00006273
Chris Lattnerdb25de42005-08-15 23:33:51 +00006274 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006275 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00006276 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00006277
Dan Gohman52fddd32010-01-26 04:40:18 +00006278 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00006279 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00006280 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006281 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00006282 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00006283 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00006284 // value and past the maximum value for its type in a single step.
6285 // Note that it's not sufficient to check NoWrap here, because even
6286 // though the value after a wrap is undefined, it's not undefined
6287 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00006288 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00006289 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00006290 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00006291 if (isSigned) {
6292 APInt Max = APInt::getSignedMaxValue(BitWidth);
6293 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6294 .slt(getSignedRange(RHS).getSignedMax()))
6295 return getCouldNotCompute();
6296 } else {
6297 APInt Max = APInt::getMaxValue(BitWidth);
6298 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6299 .ult(getUnsignedRange(RHS).getUnsignedMax()))
6300 return getCouldNotCompute();
6301 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006302 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00006303 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00006304 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006305
Dan Gohmana1af7572009-04-30 20:47:05 +00006306 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6307 // m. So, we count the number of iterations in which {n,+,s} < m is true.
6308 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00006309 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00006310
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006311 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00006312 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006313
Dan Gohmana1af7572009-04-30 20:47:05 +00006314 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006315 const SCEV *MinStart = getConstant(isSigned ?
6316 getSignedRange(Start).getSignedMin() :
6317 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006318
Dan Gohmana1af7572009-04-30 20:47:05 +00006319 // If we know that the condition is true in order to enter the loop,
6320 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006321 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6322 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006323 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006324 if (!isLoopEntryGuardedByCond(L,
6325 isSigned ? ICmpInst::ICMP_SLT :
6326 ICmpInst::ICMP_ULT,
6327 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006328 End = isSigned ? getSMaxExpr(RHS, Start)
6329 : getUMaxExpr(RHS, Start);
6330
6331 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006332 const SCEV *MaxEnd = getConstant(isSigned ?
6333 getSignedRange(End).getSignedMax() :
6334 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006335
Dan Gohman52fddd32010-01-26 04:40:18 +00006336 // If MaxEnd is within a step of the maximum integer value in its type,
6337 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006338 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006339 // compute the correct value.
6340 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006341 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006342 MaxEnd = isSigned ?
6343 getSMinExpr(MaxEnd,
6344 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6345 StepMinusOne)) :
6346 getUMinExpr(MaxEnd,
6347 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6348 StepMinusOne));
6349
Dan Gohmana1af7572009-04-30 20:47:05 +00006350 // Finally, we subtract these two values and divide, rounding up, to get
6351 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006352 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006353
6354 // The maximum backedge count is similar, except using the minimum start
6355 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006356 // If we already have an exact constant BECount, use it instead.
6357 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6358 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6359
6360 // If the stride is nonconstant, and NoWrap == true, then
6361 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6362 // exact BECount and invalid MaxBECount, which should be avoided to catch
6363 // more optimization opportunities.
6364 if (isa<SCEVCouldNotCompute>(MaxBECount))
6365 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006366
Andrew Trick5116ff62011-07-26 17:19:55 +00006367 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006368 }
6369
Dan Gohman1c343752009-06-27 21:21:31 +00006370 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006371}
6372
Chris Lattner53e677a2004-04-02 20:23:17 +00006373/// getNumIterationsInRange - Return the number of iterations of this loop that
6374/// produce values in the specified constant range. Another way of looking at
6375/// this is that it returns the first iteration number where the value is not in
6376/// the condition, thus computing the exit count. If the iteration count can't
6377/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006378const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006379 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006380 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006381 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006382
6383 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006384 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006385 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006386 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006387 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006388 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006389 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006390 if (const SCEVAddRecExpr *ShiftedAddRec =
6391 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006392 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006393 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006394 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006395 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006396 }
6397
6398 // The only time we can solve this is when we have all constant indices.
6399 // Otherwise, we cannot determine the overflow conditions.
6400 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6401 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006402 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006403
6404
6405 // Okay at this point we know that all elements of the chrec are constants and
6406 // that the start element is zero.
6407
6408 // First check to see if the range contains zero. If not, the first
6409 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006410 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006411 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006412 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006413
Chris Lattner53e677a2004-04-02 20:23:17 +00006414 if (isAffine()) {
6415 // If this is an affine expression then we have this situation:
6416 // Solve {0,+,A} in Range === Ax in Range
6417
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006418 // We know that zero is in the range. If A is positive then we know that
6419 // the upper value of the range must be the first possible exit value.
6420 // If A is negative then the lower of the range is the last possible loop
6421 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006422 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006423 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6424 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006425
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006426 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006427 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006428 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006429
6430 // Evaluate at the exit value. If we really did fall out of the valid
6431 // range, then we computed our trip count, otherwise wrap around or other
6432 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006433 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006434 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006435 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006436
6437 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006438 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006439 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006440 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006441 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006442 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006443 } else if (isQuadratic()) {
6444 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6445 // quadratic equation to solve it. To do this, we must frame our problem in
6446 // terms of figuring out when zero is crossed, instead of when
6447 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006448 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006449 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006450 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6451 // getNoWrapFlags(FlagNW)
6452 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006453
6454 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006455 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006456 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006457 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6458 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006459 if (R1) {
6460 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006461 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006462 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006463 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006464 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006465 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006466
Chris Lattner53e677a2004-04-02 20:23:17 +00006467 // Make sure the root is not off by one. The returned iteration should
6468 // not be in the range, but the previous one should be. When solving
6469 // for "X*X < 5", for example, we should not return a root of 2.
6470 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006471 R1->getValue(),
6472 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006473 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006474 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006475 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006476 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006477
Dan Gohman246b2562007-10-22 18:31:58 +00006478 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006479 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006480 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006481 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006482 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006483
Chris Lattner53e677a2004-04-02 20:23:17 +00006484 // If R1 was not in the range, then it is a good return value. Make
6485 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006486 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006487 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006488 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006489 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006490 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006491 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006492 }
6493 }
6494 }
6495
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006496 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006497}
6498
6499
6500
6501//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006502// SCEVCallbackVH Class Implementation
6503//===----------------------------------------------------------------------===//
6504
Dan Gohman1959b752009-05-19 19:22:47 +00006505void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006506 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006507 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6508 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006509 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006510 // this now dangles!
6511}
6512
Dan Gohman81f91212010-07-28 01:09:07 +00006513void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006514 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006515
Dan Gohman35738ac2009-05-04 22:30:44 +00006516 // Forget all the expressions associated with users of the old value,
6517 // so that future queries will recompute the expressions using the new
6518 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006519 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006520 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006521 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006522 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6523 UI != UE; ++UI)
6524 Worklist.push_back(*UI);
6525 while (!Worklist.empty()) {
6526 User *U = Worklist.pop_back_val();
6527 // Deleting the Old value will cause this to dangle. Postpone
6528 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006529 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006530 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006531 if (!Visited.insert(U))
6532 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006533 if (PHINode *PN = dyn_cast<PHINode>(U))
6534 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006535 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006536 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6537 UI != UE; ++UI)
6538 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006539 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006540 // Delete the Old value.
6541 if (PHINode *PN = dyn_cast<PHINode>(Old))
6542 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006543 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006544 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006545}
6546
Dan Gohman1959b752009-05-19 19:22:47 +00006547ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006548 : CallbackVH(V), SE(se) {}
6549
6550//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006551// ScalarEvolution Class Implementation
6552//===----------------------------------------------------------------------===//
6553
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006554ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006555 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006556 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006557}
6558
Chris Lattner53e677a2004-04-02 20:23:17 +00006559bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006560 this->F = &F;
6561 LI = &getAnalysis<LoopInfo>();
6562 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006563 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006564 return false;
6565}
6566
6567void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006568 // Iterate through all the SCEVUnknown instances and call their
6569 // destructors, so that they release their references to their values.
6570 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6571 U->~SCEVUnknown();
6572 FirstUnknown = 0;
6573
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006574 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006575
6576 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6577 // that a loop had multiple computable exits.
6578 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6579 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6580 I != E; ++I) {
6581 I->second.clear();
6582 }
6583
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006584 BackedgeTakenCounts.clear();
6585 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006586 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006587 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006588 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006589 UnsignedRanges.clear();
6590 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006591 UniqueSCEVs.clear();
6592 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006593}
6594
6595void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6596 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006597 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006598 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006599}
6600
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006601bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006602 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006603}
6604
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006605static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006606 const Loop *L) {
6607 // Print all inner loops first
6608 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6609 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006610
Dan Gohman30733292010-01-09 18:17:45 +00006611 OS << "Loop ";
6612 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6613 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006614
Dan Gohman5d984912009-12-18 01:14:11 +00006615 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006616 L->getExitBlocks(ExitBlocks);
6617 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006618 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006619
Dan Gohman46bdfb02009-02-24 18:55:53 +00006620 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6621 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006622 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006623 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006624 }
6625
Dan Gohman30733292010-01-09 18:17:45 +00006626 OS << "\n"
6627 "Loop ";
6628 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6629 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006630
6631 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6632 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6633 } else {
6634 OS << "Unpredictable max backedge-taken count. ";
6635 }
6636
6637 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006638}
6639
Dan Gohman5d984912009-12-18 01:14:11 +00006640void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006641 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006642 // out SCEV values of all instructions that are interesting. Doing
6643 // this potentially causes it to create new SCEV objects though,
6644 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006645 // observable from outside the class though, so casting away the
6646 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006647 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006648
Dan Gohman30733292010-01-09 18:17:45 +00006649 OS << "Classifying expressions for: ";
6650 WriteAsOperand(OS, F, /*PrintType=*/false);
6651 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006652 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006653 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006654 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006655 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006656 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006657 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006658
Dan Gohman0c689c52009-06-19 17:49:54 +00006659 const Loop *L = LI->getLoopFor((*I).getParent());
6660
Dan Gohman0bba49c2009-07-07 17:06:11 +00006661 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006662 if (AtUse != SV) {
6663 OS << " --> ";
6664 AtUse->print(OS);
6665 }
6666
6667 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006668 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006669 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006670 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006671 OS << "<<Unknown>>";
6672 } else {
6673 OS << *ExitValue;
6674 }
6675 }
6676
Chris Lattner53e677a2004-04-02 20:23:17 +00006677 OS << "\n";
6678 }
6679
Dan Gohman30733292010-01-09 18:17:45 +00006680 OS << "Determining loop execution counts for: ";
6681 WriteAsOperand(OS, F, /*PrintType=*/false);
6682 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006683 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6684 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006685}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006686
Dan Gohman714b5292010-11-17 23:21:44 +00006687ScalarEvolution::LoopDisposition
6688ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6689 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6690 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6691 Values.insert(std::make_pair(L, LoopVariant));
6692 if (!Pair.second)
6693 return Pair.first->second;
6694
6695 LoopDisposition D = computeLoopDisposition(S, L);
6696 return LoopDispositions[S][L] = D;
6697}
6698
6699ScalarEvolution::LoopDisposition
6700ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006701 switch (S->getSCEVType()) {
6702 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006703 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006704 case scTruncate:
6705 case scZeroExtend:
6706 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006707 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006708 case scAddRecExpr: {
6709 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6710
Dan Gohman714b5292010-11-17 23:21:44 +00006711 // If L is the addrec's loop, it's computable.
6712 if (AR->getLoop() == L)
6713 return LoopComputable;
6714
Dan Gohman17ead4f2010-11-17 21:23:15 +00006715 // Add recurrences are never invariant in the function-body (null loop).
6716 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006717 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006718
6719 // This recurrence is variant w.r.t. L if L contains AR's loop.
6720 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006721 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006722
6723 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6724 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006725 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006726
6727 // This recurrence is variant w.r.t. L if any of its operands
6728 // are variant.
6729 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6730 I != E; ++I)
6731 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006732 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006733
6734 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006735 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006736 }
6737 case scAddExpr:
6738 case scMulExpr:
6739 case scUMaxExpr:
6740 case scSMaxExpr: {
6741 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006742 bool HasVarying = false;
6743 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6744 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006745 LoopDisposition D = getLoopDisposition(*I, L);
6746 if (D == LoopVariant)
6747 return LoopVariant;
6748 if (D == LoopComputable)
6749 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006750 }
Dan Gohman714b5292010-11-17 23:21:44 +00006751 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006752 }
6753 case scUDivExpr: {
6754 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006755 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6756 if (LD == LoopVariant)
6757 return LoopVariant;
6758 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6759 if (RD == LoopVariant)
6760 return LoopVariant;
6761 return (LD == LoopInvariant && RD == LoopInvariant) ?
6762 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006763 }
6764 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006765 // All non-instruction values are loop invariant. All instructions are loop
6766 // invariant if they are not contained in the specified loop.
6767 // Instructions are never considered invariant in the function body
6768 // (null loop) because they are defined within the "loop".
6769 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6770 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6771 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006772 case scCouldNotCompute:
6773 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman714b5292010-11-17 23:21:44 +00006774 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006775 default: break;
6776 }
6777 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman714b5292010-11-17 23:21:44 +00006778 return LoopVariant;
6779}
6780
6781bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6782 return getLoopDisposition(S, L) == LoopInvariant;
6783}
6784
6785bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6786 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006787}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006788
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006789ScalarEvolution::BlockDisposition
6790ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6791 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6792 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6793 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6794 if (!Pair.second)
6795 return Pair.first->second;
6796
6797 BlockDisposition D = computeBlockDisposition(S, BB);
6798 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006799}
6800
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006801ScalarEvolution::BlockDisposition
6802ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006803 switch (S->getSCEVType()) {
6804 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006805 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006806 case scTruncate:
6807 case scZeroExtend:
6808 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006809 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006810 case scAddRecExpr: {
6811 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006812 // to test for proper dominance too, because the instruction which
6813 // produces the addrec's value is a PHI, and a PHI effectively properly
6814 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006815 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6816 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006817 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006818 }
6819 // FALL THROUGH into SCEVNAryExpr handling.
6820 case scAddExpr:
6821 case scMulExpr:
6822 case scUMaxExpr:
6823 case scSMaxExpr: {
6824 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006825 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006826 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006827 I != E; ++I) {
6828 BlockDisposition D = getBlockDisposition(*I, BB);
6829 if (D == DoesNotDominateBlock)
6830 return DoesNotDominateBlock;
6831 if (D == DominatesBlock)
6832 Proper = false;
6833 }
6834 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006835 }
6836 case scUDivExpr: {
6837 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006838 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6839 BlockDisposition LD = getBlockDisposition(LHS, BB);
6840 if (LD == DoesNotDominateBlock)
6841 return DoesNotDominateBlock;
6842 BlockDisposition RD = getBlockDisposition(RHS, BB);
6843 if (RD == DoesNotDominateBlock)
6844 return DoesNotDominateBlock;
6845 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6846 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006847 }
6848 case scUnknown:
6849 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006850 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6851 if (I->getParent() == BB)
6852 return DominatesBlock;
6853 if (DT->properlyDominates(I->getParent(), BB))
6854 return ProperlyDominatesBlock;
6855 return DoesNotDominateBlock;
6856 }
6857 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006858 case scCouldNotCompute:
6859 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006860 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006861 default: break;
6862 }
6863 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006864 return DoesNotDominateBlock;
6865}
6866
6867bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6868 return getBlockDisposition(S, BB) >= DominatesBlock;
6869}
6870
6871bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6872 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006873}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006874
6875bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6876 switch (S->getSCEVType()) {
6877 case scConstant:
6878 return false;
6879 case scTruncate:
6880 case scZeroExtend:
6881 case scSignExtend: {
6882 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6883 const SCEV *CastOp = Cast->getOperand();
6884 return Op == CastOp || hasOperand(CastOp, Op);
6885 }
6886 case scAddRecExpr:
6887 case scAddExpr:
6888 case scMulExpr:
6889 case scUMaxExpr:
6890 case scSMaxExpr: {
6891 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6892 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6893 I != E; ++I) {
6894 const SCEV *NAryOp = *I;
6895 if (NAryOp == Op || hasOperand(NAryOp, Op))
6896 return true;
6897 }
6898 return false;
6899 }
6900 case scUDivExpr: {
6901 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6902 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6903 return LHS == Op || hasOperand(LHS, Op) ||
6904 RHS == Op || hasOperand(RHS, Op);
6905 }
6906 case scUnknown:
6907 return false;
6908 case scCouldNotCompute:
6909 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6910 return false;
6911 default: break;
6912 }
6913 llvm_unreachable("Unknown SCEV kind!");
6914 return false;
6915}
Dan Gohman56a75682010-11-17 23:28:48 +00006916
6917void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6918 ValuesAtScopes.erase(S);
6919 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006920 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006921 UnsignedRanges.erase(S);
6922 SignedRanges.erase(S);
6923}