blob: f064114f666b4e1e0bfd9e6b7476482850e73c78 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000027 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000029 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000030 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000031 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000032 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000033 </ol>
34 </li>
Chris Lattner00950542001-06-06 20:29:01 +000035 <li><a href="#typesystem">Type System</a>
36 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000038 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000039 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000040 <li><a href="#t_floating">Floating Point Types</a></li>
41 <li><a href="#t_void">Void Type</a></li>
42 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000043 </ol>
44 </li>
Chris Lattner00950542001-06-06 20:29:01 +000045 <li><a href="#t_derived">Derived Types</a>
46 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000047 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000048 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000049 <li><a href="#t_function">Function Type</a></li>
50 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000051 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000052 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000053 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000054 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000055 </ol>
56 </li>
57 </ol>
58 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000059 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000060 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000061 <li><a href="#simpleconstants">Simple Constants</a></li>
62 <li><a href="#aggregateconstants">Aggregate Constants</a></li>
63 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
64 <li><a href="#undefvalues">Undefined Values</a></li>
65 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000066 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000067 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000068 <li><a href="#othervalues">Other Values</a>
69 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000070 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000071 </ol>
72 </li>
Chris Lattner00950542001-06-06 20:29:01 +000073 <li><a href="#instref">Instruction Reference</a>
74 <ol>
75 <li><a href="#terminators">Terminator Instructions</a>
76 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000077 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
78 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000079 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
80 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000082 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000083 </ol>
84 </li>
Chris Lattner00950542001-06-06 20:29:01 +000085 <li><a href="#binaryops">Binary Operations</a>
86 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000087 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
88 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
89 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000090 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
91 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
92 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000093 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
94 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
95 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000096 </ol>
97 </li>
Chris Lattner00950542001-06-06 20:29:01 +000098 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
99 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000100 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
101 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
102 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000103 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000104 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000105 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000106 </ol>
107 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000108 <li><a href="#vectorops">Vector Operations</a>
109 <ol>
110 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
111 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
112 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000113 </ol>
114 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000115 <li><a href="#aggregateops">Aggregate Operations</a>
116 <ol>
117 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
118 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
119 </ol>
120 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000121 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000122 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000123 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
124 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
125 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000126 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
127 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
128 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000129 </ol>
130 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000131 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000132 <ol>
133 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
134 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000138 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
140 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
141 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000142 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
143 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000144 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000145 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000146 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000147 <li><a href="#otherops">Other Operations</a>
148 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000149 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
150 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000151 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
152 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000153 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000154 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000155 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000156 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000157 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000158 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000159 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000160 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000161 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000162 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000163 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
164 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000165 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
167 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000168 </ol>
169 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000170 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
171 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000172 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
174 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000175 </ol>
176 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000177 <li><a href="#int_codegen">Code Generator Intrinsics</a>
178 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000179 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
181 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
182 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
183 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
184 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
185 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000186 </ol>
187 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000188 <li><a href="#int_libc">Standard C Library Intrinsics</a>
189 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000190 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000195 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000198 </ol>
199 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000200 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000201 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000202 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000203 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
205 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000206 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000208 </ol>
209 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000210 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000211 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000212 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000213 <ol>
214 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000215 </ol>
216 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000217 <li><a href="#int_atomics">Atomic intrinsics</a>
218 <ol>
219 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
220 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
221 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
222 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
223 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
224 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
225 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
226 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
227 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
228 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
229 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
230 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
231 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
232 </ol>
233 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000234 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000235 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000236 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000237 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000238 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000239 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000240 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000241 '<tt>llvm.trap</tt>' Intrinsic</a></li>
242 <li><a href="#int_stackprotector">
243 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000244 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000245 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000246 </ol>
247 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000248</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000249
250<div class="doc_author">
251 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
252 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000253</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000254
Chris Lattner00950542001-06-06 20:29:01 +0000255<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000256<div class="doc_section"> <a name="abstract">Abstract </a></div>
257<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000258
Misha Brukman9d0919f2003-11-08 01:05:38 +0000259<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000260<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000261LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000262type safety, low-level operations, flexibility, and the capability of
263representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000264representation used throughout all phases of the LLVM compilation
265strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000266</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000267
Chris Lattner00950542001-06-06 20:29:01 +0000268<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000269<div class="doc_section"> <a name="introduction">Introduction</a> </div>
270<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
Misha Brukman9d0919f2003-11-08 01:05:38 +0000272<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000273
Chris Lattner261efe92003-11-25 01:02:51 +0000274<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000275different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000276representation (suitable for fast loading by a Just-In-Time compiler),
277and as a human readable assembly language representation. This allows
278LLVM to provide a powerful intermediate representation for efficient
279compiler transformations and analysis, while providing a natural means
280to debug and visualize the transformations. The three different forms
281of LLVM are all equivalent. This document describes the human readable
282representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000283
John Criswellc1f786c2005-05-13 22:25:59 +0000284<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000285while being expressive, typed, and extensible at the same time. It
286aims to be a "universal IR" of sorts, by being at a low enough level
287that high-level ideas may be cleanly mapped to it (similar to how
288microprocessors are "universal IR's", allowing many source languages to
289be mapped to them). By providing type information, LLVM can be used as
290the target of optimizations: for example, through pointer analysis, it
291can be proven that a C automatic variable is never accessed outside of
292the current function... allowing it to be promoted to a simple SSA
293value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000294
Misha Brukman9d0919f2003-11-08 01:05:38 +0000295</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000296
Chris Lattner00950542001-06-06 20:29:01 +0000297<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000298<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000299
Misha Brukman9d0919f2003-11-08 01:05:38 +0000300<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000301
Chris Lattner261efe92003-11-25 01:02:51 +0000302<p>It is important to note that this document describes 'well formed'
303LLVM assembly language. There is a difference between what the parser
304accepts and what is considered 'well formed'. For example, the
305following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000306
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000307<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000308<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000309%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000310</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000311</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000312
Chris Lattner261efe92003-11-25 01:02:51 +0000313<p>...because the definition of <tt>%x</tt> does not dominate all of
314its uses. The LLVM infrastructure provides a verification pass that may
315be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000316automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000317the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000318by the verifier pass indicate bugs in transformation passes or input to
319the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000320</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000321
Chris Lattnercc689392007-10-03 17:34:29 +0000322<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000323
Chris Lattner00950542001-06-06 20:29:01 +0000324<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000325<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000326<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000327
Misha Brukman9d0919f2003-11-08 01:05:38 +0000328<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000329
Reid Spencer2c452282007-08-07 14:34:28 +0000330 <p>LLVM identifiers come in two basic types: global and local. Global
331 identifiers (functions, global variables) begin with the @ character. Local
332 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohman0e451ce2008-10-14 16:51:45 +0000333 there are three different formats for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000334
Chris Lattner00950542001-06-06 20:29:01 +0000335<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000336 <li>Named values are represented as a string of characters with their prefix.
337 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
338 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000339 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar76dea952008-10-14 23:51:43 +0000340 with quotes. Special characters may be escaped using "\xx" where xx is the
341 ASCII code for the character in hexadecimal. In this way, any character can
342 be used in a name value, even quotes themselves.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000343
Reid Spencer2c452282007-08-07 14:34:28 +0000344 <li>Unnamed values are represented as an unsigned numeric value with their
345 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000346
Reid Spencercc16dc32004-12-09 18:02:53 +0000347 <li>Constants, which are described in a <a href="#constants">section about
348 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000349</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000350
Reid Spencer2c452282007-08-07 14:34:28 +0000351<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000352don't need to worry about name clashes with reserved words, and the set of
353reserved words may be expanded in the future without penalty. Additionally,
354unnamed identifiers allow a compiler to quickly come up with a temporary
355variable without having to avoid symbol table conflicts.</p>
356
Chris Lattner261efe92003-11-25 01:02:51 +0000357<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000358languages. There are keywords for different opcodes
359('<tt><a href="#i_add">add</a></tt>',
360 '<tt><a href="#i_bitcast">bitcast</a></tt>',
361 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000362href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000363and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000364none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000365
366<p>Here is an example of LLVM code to multiply the integer variable
367'<tt>%X</tt>' by 8:</p>
368
Misha Brukman9d0919f2003-11-08 01:05:38 +0000369<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000370
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000371<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000372<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000373%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000374</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000375</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000376
Misha Brukman9d0919f2003-11-08 01:05:38 +0000377<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000378
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000379<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000380<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000381%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000382</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000383</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000384
Misha Brukman9d0919f2003-11-08 01:05:38 +0000385<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000386
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000387<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000388<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000389<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
390<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
391%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000392</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000393</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000394
Chris Lattner261efe92003-11-25 01:02:51 +0000395<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
396important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000397
Chris Lattner00950542001-06-06 20:29:01 +0000398<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000399
400 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
401 line.</li>
402
403 <li>Unnamed temporaries are created when the result of a computation is not
404 assigned to a named value.</li>
405
Misha Brukman9d0919f2003-11-08 01:05:38 +0000406 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000407
Misha Brukman9d0919f2003-11-08 01:05:38 +0000408</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000409
John Criswelle4c57cc2005-05-12 16:52:32 +0000410<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000411demonstrating instructions, we will follow an instruction with a comment that
412defines the type and name of value produced. Comments are shown in italic
413text.</p>
414
Misha Brukman9d0919f2003-11-08 01:05:38 +0000415</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000416
417<!-- *********************************************************************** -->
418<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
419<!-- *********************************************************************** -->
420
421<!-- ======================================================================= -->
422<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
423</div>
424
425<div class="doc_text">
426
427<p>LLVM programs are composed of "Module"s, each of which is a
428translation unit of the input programs. Each module consists of
429functions, global variables, and symbol table entries. Modules may be
430combined together with the LLVM linker, which merges function (and
431global variable) definitions, resolves forward declarations, and merges
432symbol table entries. Here is an example of the "hello world" module:</p>
433
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000434<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000435<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000436<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
437 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000438
439<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000440<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000441
442<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000443define i32 @main() { <i>; i32()* </i>
Dan Gohman2a08c532009-01-04 23:44:43 +0000444 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000445 %cast210 = <a
Dan Gohman2a08c532009-01-04 23:44:43 +0000446 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000447
448 <i>; Call puts function to write out the string to stdout...</i>
449 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000450 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000451 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000452 href="#i_ret">ret</a> i32 0<br>}<br>
453</pre>
454</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000455
456<p>This example is made up of a <a href="#globalvars">global variable</a>
457named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
458function, and a <a href="#functionstructure">function definition</a>
459for "<tt>main</tt>".</p>
460
Chris Lattnere5d947b2004-12-09 16:36:40 +0000461<p>In general, a module is made up of a list of global values,
462where both functions and global variables are global values. Global values are
463represented by a pointer to a memory location (in this case, a pointer to an
464array of char, and a pointer to a function), and have one of the following <a
465href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000466
Chris Lattnere5d947b2004-12-09 16:36:40 +0000467</div>
468
469<!-- ======================================================================= -->
470<div class="doc_subsection">
471 <a name="linkage">Linkage Types</a>
472</div>
473
474<div class="doc_text">
475
476<p>
477All Global Variables and Functions have one of the following types of linkage:
478</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000479
480<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000481
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000482 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000483
484 <dd>Global values with internal linkage are only directly accessible by
485 objects in the current module. In particular, linking code into a module with
486 an internal global value may cause the internal to be renamed as necessary to
487 avoid collisions. Because the symbol is internal to the module, all
488 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000489 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000490 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000491
Chris Lattnerfa730212004-12-09 16:11:40 +0000492 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000493
Chris Lattner4887bd82007-01-14 06:51:48 +0000494 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
495 the same name when linkage occurs. This is typically used to implement
496 inline functions, templates, or other code which must be generated in each
497 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
498 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000499 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000500
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000501 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
502
503 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
504 linkage, except that unreferenced <tt>common</tt> globals may not be
505 discarded. This is used for globals that may be emitted in multiple
506 translation units, but that are not guaranteed to be emitted into every
507 translation unit that uses them. One example of this is tentative
508 definitions in C, such as "<tt>int X;</tt>" at global scope.
509 </dd>
510
Chris Lattnerfa730212004-12-09 16:11:40 +0000511 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000512
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000513 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
514 that some targets may choose to emit different assembly sequences for them
515 for target-dependent reasons. This is used for globals that are declared
516 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000517 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000518
Chris Lattnerfa730212004-12-09 16:11:40 +0000519 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000520
521 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
522 pointer to array type. When two global variables with appending linkage are
523 linked together, the two global arrays are appended together. This is the
524 LLVM, typesafe, equivalent of having the system linker append together
525 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000526 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000527
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000528 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000529 <dd>The semantics of this linkage follow the ELF object file model: the
530 symbol is weak until linked, if not linked, the symbol becomes null instead
531 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000532 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000533
Chris Lattnerfa730212004-12-09 16:11:40 +0000534 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000535
536 <dd>If none of the above identifiers are used, the global is externally
537 visible, meaning that it participates in linkage and can be used to resolve
538 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000539 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000540</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000541
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000542 <p>
543 The next two types of linkage are targeted for Microsoft Windows platform
544 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000545 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000546 </p>
547
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000548 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000549 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
550
551 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
552 or variable via a global pointer to a pointer that is set up by the DLL
553 exporting the symbol. On Microsoft Windows targets, the pointer name is
554 formed by combining <code>_imp__</code> and the function or variable name.
555 </dd>
556
557 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
558
559 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
560 pointer to a pointer in a DLL, so that it can be referenced with the
561 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
562 name is formed by combining <code>_imp__</code> and the function or variable
563 name.
564 </dd>
565
Chris Lattnerfa730212004-12-09 16:11:40 +0000566</dl>
567
Dan Gohmanf0032762008-11-24 17:18:39 +0000568<p>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000569variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
570variable and was linked with this one, one of the two would be renamed,
571preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
572external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000573outside of the current module.</p>
574<p>It is illegal for a function <i>declaration</i>
575to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000576or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000577<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000578linkages.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000579</div>
580
581<!-- ======================================================================= -->
582<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000583 <a name="callingconv">Calling Conventions</a>
584</div>
585
586<div class="doc_text">
587
588<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
589and <a href="#i_invoke">invokes</a> can all have an optional calling convention
590specified for the call. The calling convention of any pair of dynamic
591caller/callee must match, or the behavior of the program is undefined. The
592following calling conventions are supported by LLVM, and more may be added in
593the future:</p>
594
595<dl>
596 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
597
598 <dd>This calling convention (the default if no other calling convention is
599 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000600 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000601 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000602 </dd>
603
604 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
605
606 <dd>This calling convention attempts to make calls as fast as possible
607 (e.g. by passing things in registers). This calling convention allows the
608 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000609 without having to conform to an externally specified ABI (Application Binary
610 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000611 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
612 supported. This calling convention does not support varargs and requires the
613 prototype of all callees to exactly match the prototype of the function
614 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000615 </dd>
616
617 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
618
619 <dd>This calling convention attempts to make code in the caller as efficient
620 as possible under the assumption that the call is not commonly executed. As
621 such, these calls often preserve all registers so that the call does not break
622 any live ranges in the caller side. This calling convention does not support
623 varargs and requires the prototype of all callees to exactly match the
624 prototype of the function definition.
625 </dd>
626
Chris Lattnercfe6b372005-05-07 01:46:40 +0000627 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000628
629 <dd>Any calling convention may be specified by number, allowing
630 target-specific calling conventions to be used. Target specific calling
631 conventions start at 64.
632 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000633</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000634
635<p>More calling conventions can be added/defined on an as-needed basis, to
636support pascal conventions or any other well-known target-independent
637convention.</p>
638
639</div>
640
641<!-- ======================================================================= -->
642<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000643 <a name="visibility">Visibility Styles</a>
644</div>
645
646<div class="doc_text">
647
648<p>
649All Global Variables and Functions have one of the following visibility styles:
650</p>
651
652<dl>
653 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
654
Chris Lattnerd3eda892008-08-05 18:29:16 +0000655 <dd>On targets that use the ELF object file format, default visibility means
656 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000657 modules and, in shared libraries, means that the declared entity may be
658 overridden. On Darwin, default visibility means that the declaration is
659 visible to other modules. Default visibility corresponds to "external
660 linkage" in the language.
661 </dd>
662
663 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
664
665 <dd>Two declarations of an object with hidden visibility refer to the same
666 object if they are in the same shared object. Usually, hidden visibility
667 indicates that the symbol will not be placed into the dynamic symbol table,
668 so no other module (executable or shared library) can reference it
669 directly.
670 </dd>
671
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000672 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
673
674 <dd>On ELF, protected visibility indicates that the symbol will be placed in
675 the dynamic symbol table, but that references within the defining module will
676 bind to the local symbol. That is, the symbol cannot be overridden by another
677 module.
678 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000679</dl>
680
681</div>
682
683<!-- ======================================================================= -->
684<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000685 <a name="globalvars">Global Variables</a>
686</div>
687
688<div class="doc_text">
689
Chris Lattner3689a342005-02-12 19:30:21 +0000690<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000691instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000692an explicit section to be placed in, and may have an optional explicit alignment
693specified. A variable may be defined as "thread_local", which means that it
694will not be shared by threads (each thread will have a separated copy of the
695variable). A variable may be defined as a global "constant," which indicates
696that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000697optimization, allowing the global data to be placed in the read-only section of
698an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000699cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000700
701<p>
702LLVM explicitly allows <em>declarations</em> of global variables to be marked
703constant, even if the final definition of the global is not. This capability
704can be used to enable slightly better optimization of the program, but requires
705the language definition to guarantee that optimizations based on the
706'constantness' are valid for the translation units that do not include the
707definition.
708</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000709
710<p>As SSA values, global variables define pointer values that are in
711scope (i.e. they dominate) all basic blocks in the program. Global
712variables always define a pointer to their "content" type because they
713describe a region of memory, and all memory objects in LLVM are
714accessed through pointers.</p>
715
Christopher Lamb284d9922007-12-11 09:31:00 +0000716<p>A global variable may be declared to reside in a target-specifc numbered
717address space. For targets that support them, address spaces may affect how
718optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000719the variable. The default address space is zero. The address space qualifier
720must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000721
Chris Lattner88f6c462005-11-12 00:45:07 +0000722<p>LLVM allows an explicit section to be specified for globals. If the target
723supports it, it will emit globals to the section specified.</p>
724
Chris Lattner2cbdc452005-11-06 08:02:57 +0000725<p>An explicit alignment may be specified for a global. If not present, or if
726the alignment is set to zero, the alignment of the global is set by the target
727to whatever it feels convenient. If an explicit alignment is specified, the
728global is forced to have at least that much alignment. All alignments must be
729a power of 2.</p>
730
Christopher Lamb284d9922007-12-11 09:31:00 +0000731<p>For example, the following defines a global in a numbered address space with
732an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000733
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000734<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000735<pre>
Chris Lattner0c7b39f2009-01-02 07:02:56 +0000736@G = addrspace(5) constant float 1.0 section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000737</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000738</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000739
Chris Lattnerfa730212004-12-09 16:11:40 +0000740</div>
741
742
743<!-- ======================================================================= -->
744<div class="doc_subsection">
745 <a name="functionstructure">Functions</a>
746</div>
747
748<div class="doc_text">
749
Reid Spencerca86e162006-12-31 07:07:53 +0000750<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
751an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000752<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000753<a href="#callingconv">calling convention</a>, a return type, an optional
754<a href="#paramattrs">parameter attribute</a> for the return type, a function
755name, a (possibly empty) argument list (each with optional
Devang Patelf642f472008-10-06 18:50:38 +0000756<a href="#paramattrs">parameter attributes</a>), optional
757<a href="#fnattrs">function attributes</a>, an optional section,
758an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000759an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000760
761LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
762optional <a href="#linkage">linkage type</a>, an optional
763<a href="#visibility">visibility style</a>, an optional
764<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000765<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000766name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000767<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000768
Chris Lattnerd3eda892008-08-05 18:29:16 +0000769<p>A function definition contains a list of basic blocks, forming the CFG
770(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000771the function. Each basic block may optionally start with a label (giving the
772basic block a symbol table entry), contains a list of instructions, and ends
773with a <a href="#terminators">terminator</a> instruction (such as a branch or
774function return).</p>
775
Chris Lattner4a3c9012007-06-08 16:52:14 +0000776<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000777executed on entrance to the function, and it is not allowed to have predecessor
778basic blocks (i.e. there can not be any branches to the entry block of a
779function). Because the block can have no predecessors, it also cannot have any
780<a href="#i_phi">PHI nodes</a>.</p>
781
Chris Lattner88f6c462005-11-12 00:45:07 +0000782<p>LLVM allows an explicit section to be specified for functions. If the target
783supports it, it will emit functions to the section specified.</p>
784
Chris Lattner2cbdc452005-11-06 08:02:57 +0000785<p>An explicit alignment may be specified for a function. If not present, or if
786the alignment is set to zero, the alignment of the function is set by the target
787to whatever it feels convenient. If an explicit alignment is specified, the
788function is forced to have at least that much alignment. All alignments must be
789a power of 2.</p>
790
Devang Patel307e8ab2008-10-07 17:48:33 +0000791 <h5>Syntax:</h5>
792
793<div class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000794<tt>
795define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
796 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
797 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
798 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
799 [<a href="#gc">gc</a>] { ... }
800</tt>
Devang Patel307e8ab2008-10-07 17:48:33 +0000801</div>
802
Chris Lattnerfa730212004-12-09 16:11:40 +0000803</div>
804
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000805
806<!-- ======================================================================= -->
807<div class="doc_subsection">
808 <a name="aliasstructure">Aliases</a>
809</div>
810<div class="doc_text">
811 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000812 function, global variable, another alias or bitcast of global value). Aliases
813 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000814 optional <a href="#visibility">visibility style</a>.</p>
815
816 <h5>Syntax:</h5>
817
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000818<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000819<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000820@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000821</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000822</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000823
824</div>
825
826
827
Chris Lattner4e9aba72006-01-23 23:23:47 +0000828<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000829<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
830<div class="doc_text">
831 <p>The return type and each parameter of a function type may have a set of
832 <i>parameter attributes</i> associated with them. Parameter attributes are
833 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000834 a function. Parameter attributes are considered to be part of the function,
835 not of the function type, so functions with different parameter attributes
836 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000837
Reid Spencer950e9f82007-01-15 18:27:39 +0000838 <p>Parameter attributes are simple keywords that follow the type specified. If
839 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000840 example:</p>
841
842<div class="doc_code">
843<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000844declare i32 @printf(i8* noalias , ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000845declare i32 @atoi(i8 zeroext)
846declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000847</pre>
848</div>
849
Duncan Sandsdc024672007-11-27 13:23:08 +0000850 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
851 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000852
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000853 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000854 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000855 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000856 <dd>This indicates to the code generator that the parameter or return value
857 should be zero-extended to a 32-bit value by the caller (for a parameter)
858 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000859
Reid Spencer9445e9a2007-07-19 23:13:04 +0000860 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000861 <dd>This indicates to the code generator that the parameter or return value
862 should be sign-extended to a 32-bit value by the caller (for a parameter)
863 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000864
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000865 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000866 <dd>This indicates that this parameter or return value should be treated
867 in a special target-dependent fashion during while emitting code for a
868 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000869 to memory, though some targets use it to distinguish between two different
870 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000871
Duncan Sandsedb05df2008-10-06 08:14:18 +0000872 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000873 <dd>This indicates that the pointer parameter should really be passed by
874 value to the function. The attribute implies that a hidden copy of the
875 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000876 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000877 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sandsedb05df2008-10-06 08:14:18 +0000878 value, but is also valid on pointers to scalars. The copy is considered to
879 belong to the caller not the callee (for example,
880 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelf642f472008-10-06 18:50:38 +0000881 <tt>byval</tt> parameters). This is not a valid attribute for return
882 values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000883
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000884 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000885 <dd>This indicates that the pointer parameter specifies the address of a
886 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000887 This pointer must be guaranteed by the caller to be valid: loads and stores
888 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelf642f472008-10-06 18:50:38 +0000889 be applied to the first parameter. This is not a valid attribute for
890 return values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000891
Zhou Shengfebca342007-06-05 05:28:26 +0000892 <dt><tt>noalias</tt></dt>
Nick Lewycky02ff3082008-11-24 03:41:24 +0000893 <dd>This indicates that the pointer does not alias any global or any other
894 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyb2b32fd2008-11-24 05:00:44 +0000895 case. On a function return value, <tt>noalias</tt> additionally indicates
896 that the pointer does not alias any other pointers visible to the
Nick Lewyckyf23d0d32008-12-19 06:39:12 +0000897 caller. For further details, please see the discussion of the NoAlias
898 response in
899 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
900 analysis</a>.</dd>
901
902 <dt><tt>nocapture</tt></dt>
903 <dd>This indicates that the callee does not make any copies of the pointer
904 that outlive the callee itself. This is not a valid attribute for return
905 values.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000906
Duncan Sands50f19f52007-07-27 19:57:41 +0000907 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000908 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelf642f472008-10-06 18:50:38 +0000909 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
910 attribute for return values.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000911 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000912
Reid Spencerca86e162006-12-31 07:07:53 +0000913</div>
914
915<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000916<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000917 <a name="gc">Garbage Collector Names</a>
918</div>
919
920<div class="doc_text">
921<p>Each function may specify a garbage collector name, which is simply a
922string.</p>
923
924<div class="doc_code"><pre
925>define void @f() gc "name" { ...</pre></div>
926
927<p>The compiler declares the supported values of <i>name</i>. Specifying a
928collector which will cause the compiler to alter its output in order to support
929the named garbage collection algorithm.</p>
930</div>
931
932<!-- ======================================================================= -->
933<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000934 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +0000935</div>
936
937<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000938
939<p>Function attributes are set to communicate additional information about
940 a function. Function attributes are considered to be part of the function,
941 not of the function type, so functions with different parameter attributes
942 can have the same function type.</p>
943
944 <p>Function attributes are simple keywords that follow the type specified. If
945 multiple attributes are needed, they are space separated. For
946 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +0000947
948<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000949<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000950define void @f() noinline { ... }
951define void @f() alwaysinline { ... }
952define void @f() alwaysinline optsize { ... }
953define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000954</pre>
Devang Patelf8b94812008-09-04 23:05:13 +0000955</div>
956
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000957<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000958<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000959<dd>This attribute indicates that the inliner should attempt to inline this
960function into callers whenever possible, ignoring any active inlining size
961threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000962
Devang Patel2c9c3e72008-09-26 23:51:19 +0000963<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000964<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner94b5f7d2008-10-05 17:14:59 +0000965in any situation. This attribute may not be used together with the
Chris Lattner88d4b592008-10-04 18:23:17 +0000966<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000967
Devang Patel2c9c3e72008-09-26 23:51:19 +0000968<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +0000969<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +0000970make choices that keep the code size of this function low, and otherwise do
971optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000972
Devang Patel2c9c3e72008-09-26 23:51:19 +0000973<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000974<dd>This function attribute indicates that the function never returns normally.
975This produces undefined behavior at runtime if the function ever does
976dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000977
978<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000979<dd>This function attribute indicates that the function never returns with an
980unwind or exceptional control flow. If the function does unwind, its runtime
981behavior is undefined.</dd>
982
983<dt><tt>readnone</tt></dt>
Duncan Sandsedb05df2008-10-06 08:14:18 +0000984<dd>This attribute indicates that the function computes its result (or the
985exception it throws) based strictly on its arguments, without dereferencing any
986pointer arguments or otherwise accessing any mutable state (e.g. memory, control
987registers, etc) visible to caller functions. It does not write through any
988pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
989never changes any state visible to callers.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000990
Duncan Sandsedb05df2008-10-06 08:14:18 +0000991<dt><tt><a name="readonly">readonly</a></tt></dt>
992<dd>This attribute indicates that the function does not write through any
993pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
994or otherwise modify any state (e.g. memory, control registers, etc) visible to
995caller functions. It may dereference pointer arguments and read state that may
996be set in the caller. A readonly function always returns the same value (or
997throws the same exception) when called with the same set of arguments and global
998state.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +0000999
1000<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001001<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendling31359ba2008-11-13 01:02:51 +00001002protector. It is in the form of a "canary"&mdash;a random value placed on the
1003stack before the local variables that's checked upon return from the function to
1004see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001005needs stack protectors or not.
Bill Wendling31359ba2008-11-13 01:02:51 +00001006
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001007<p>If a function that has an <tt>ssp</tt> attribute is inlined into a function
1008that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
1009have an <tt>ssp</tt> attribute.</p></dd>
1010
1011<dt><tt>sspreq</tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001012<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendling31359ba2008-11-13 01:02:51 +00001013stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001014function attribute.
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001015
1016<p>If a function that has an <tt>sspreq</tt> attribute is inlined into a
1017function that doesn't have an <tt>sspreq</tt> attribute or which has
1018an <tt>ssp</tt> attribute, then the resulting function will have
1019an <tt>sspreq</tt> attribute.</p></dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001020</dl>
1021
Devang Patelf8b94812008-09-04 23:05:13 +00001022</div>
1023
1024<!-- ======================================================================= -->
1025<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001026 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001027</div>
1028
1029<div class="doc_text">
1030<p>
1031Modules may contain "module-level inline asm" blocks, which corresponds to the
1032GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1033LLVM and treated as a single unit, but may be separated in the .ll file if
1034desired. The syntax is very simple:
1035</p>
1036
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001037<div class="doc_code">
1038<pre>
1039module asm "inline asm code goes here"
1040module asm "more can go here"
1041</pre>
1042</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001043
1044<p>The strings can contain any character by escaping non-printable characters.
1045 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1046 for the number.
1047</p>
1048
1049<p>
1050 The inline asm code is simply printed to the machine code .s file when
1051 assembly code is generated.
1052</p>
1053</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001054
Reid Spencerde151942007-02-19 23:54:10 +00001055<!-- ======================================================================= -->
1056<div class="doc_subsection">
1057 <a name="datalayout">Data Layout</a>
1058</div>
1059
1060<div class="doc_text">
1061<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001062data is to be laid out in memory. The syntax for the data layout is simply:</p>
1063<pre> target datalayout = "<i>layout specification</i>"</pre>
1064<p>The <i>layout specification</i> consists of a list of specifications
1065separated by the minus sign character ('-'). Each specification starts with a
1066letter and may include other information after the letter to define some
1067aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001068<dl>
1069 <dt><tt>E</tt></dt>
1070 <dd>Specifies that the target lays out data in big-endian form. That is, the
1071 bits with the most significance have the lowest address location.</dd>
1072 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001073 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001074 the bits with the least significance have the lowest address location.</dd>
1075 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1076 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1077 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1078 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1079 too.</dd>
1080 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1081 <dd>This specifies the alignment for an integer type of a given bit
1082 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1083 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1084 <dd>This specifies the alignment for a vector type of a given bit
1085 <i>size</i>.</dd>
1086 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1087 <dd>This specifies the alignment for a floating point type of a given bit
1088 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1089 (double).</dd>
1090 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1091 <dd>This specifies the alignment for an aggregate type of a given bit
1092 <i>size</i>.</dd>
1093</dl>
1094<p>When constructing the data layout for a given target, LLVM starts with a
1095default set of specifications which are then (possibly) overriden by the
1096specifications in the <tt>datalayout</tt> keyword. The default specifications
1097are given in this list:</p>
1098<ul>
1099 <li><tt>E</tt> - big endian</li>
1100 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1101 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1102 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1103 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1104 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001105 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001106 alignment of 64-bits</li>
1107 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1108 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1109 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1110 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1111 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1112</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001113<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohman0e451ce2008-10-14 16:51:45 +00001114following rules:</p>
Reid Spencerde151942007-02-19 23:54:10 +00001115<ol>
1116 <li>If the type sought is an exact match for one of the specifications, that
1117 specification is used.</li>
1118 <li>If no match is found, and the type sought is an integer type, then the
1119 smallest integer type that is larger than the bitwidth of the sought type is
1120 used. If none of the specifications are larger than the bitwidth then the the
1121 largest integer type is used. For example, given the default specifications
1122 above, the i7 type will use the alignment of i8 (next largest) while both
1123 i65 and i256 will use the alignment of i64 (largest specified).</li>
1124 <li>If no match is found, and the type sought is a vector type, then the
1125 largest vector type that is smaller than the sought vector type will be used
Dan Gohman0e451ce2008-10-14 16:51:45 +00001126 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1127 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001128</ol>
1129</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001130
Chris Lattner00950542001-06-06 20:29:01 +00001131<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001132<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1133<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001134
Misha Brukman9d0919f2003-11-08 01:05:38 +00001135<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001136
Misha Brukman9d0919f2003-11-08 01:05:38 +00001137<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001138intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001139optimizations to be performed on the intermediate representation directly,
1140without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001141extra analyses on the side before the transformation. A strong type
1142system makes it easier to read the generated code and enables novel
1143analyses and transformations that are not feasible to perform on normal
1144three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001145
1146</div>
1147
Chris Lattner00950542001-06-06 20:29:01 +00001148<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001149<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001150Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001151<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001152<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001153classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001154
1155<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001156 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001157 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001158 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001159 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001160 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001161 </tr>
1162 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001163 <td><a href="#t_floating">floating point</a></td>
1164 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001165 </tr>
1166 <tr>
1167 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001168 <td><a href="#t_integer">integer</a>,
1169 <a href="#t_floating">floating point</a>,
1170 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001171 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001172 <a href="#t_struct">structure</a>,
1173 <a href="#t_array">array</a>,
Dan Gohmanade5faa2008-05-23 22:50:26 +00001174 <a href="#t_label">label</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001175 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001176 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001177 <tr>
1178 <td><a href="#t_primitive">primitive</a></td>
1179 <td><a href="#t_label">label</a>,
1180 <a href="#t_void">void</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001181 <a href="#t_floating">floating point</a>.</td>
1182 </tr>
1183 <tr>
1184 <td><a href="#t_derived">derived</a></td>
1185 <td><a href="#t_integer">integer</a>,
1186 <a href="#t_array">array</a>,
1187 <a href="#t_function">function</a>,
1188 <a href="#t_pointer">pointer</a>,
1189 <a href="#t_struct">structure</a>,
1190 <a href="#t_pstruct">packed structure</a>,
1191 <a href="#t_vector">vector</a>,
1192 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001193 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001194 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001195 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001196</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001197
Chris Lattner261efe92003-11-25 01:02:51 +00001198<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1199most important. Values of these types are the only ones which can be
1200produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001201instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001202</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001203
Chris Lattner00950542001-06-06 20:29:01 +00001204<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001205<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001206
Chris Lattner4f69f462008-01-04 04:32:38 +00001207<div class="doc_text">
1208<p>The primitive types are the fundamental building blocks of the LLVM
1209system.</p>
1210
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001211</div>
1212
Chris Lattner4f69f462008-01-04 04:32:38 +00001213<!-- _______________________________________________________________________ -->
1214<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1215
1216<div class="doc_text">
1217 <table>
1218 <tbody>
1219 <tr><th>Type</th><th>Description</th></tr>
1220 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1221 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1222 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1223 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1224 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1225 </tbody>
1226 </table>
1227</div>
1228
1229<!-- _______________________________________________________________________ -->
1230<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1231
1232<div class="doc_text">
1233<h5>Overview:</h5>
1234<p>The void type does not represent any value and has no size.</p>
1235
1236<h5>Syntax:</h5>
1237
1238<pre>
1239 void
1240</pre>
1241</div>
1242
1243<!-- _______________________________________________________________________ -->
1244<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1245
1246<div class="doc_text">
1247<h5>Overview:</h5>
1248<p>The label type represents code labels.</p>
1249
1250<h5>Syntax:</h5>
1251
1252<pre>
1253 label
1254</pre>
1255</div>
1256
1257
1258<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001259<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001260
Misha Brukman9d0919f2003-11-08 01:05:38 +00001261<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001262
Chris Lattner261efe92003-11-25 01:02:51 +00001263<p>The real power in LLVM comes from the derived types in the system.
1264This is what allows a programmer to represent arrays, functions,
1265pointers, and other useful types. Note that these derived types may be
1266recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001267
Misha Brukman9d0919f2003-11-08 01:05:38 +00001268</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001269
Chris Lattner00950542001-06-06 20:29:01 +00001270<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001271<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1272
1273<div class="doc_text">
1274
1275<h5>Overview:</h5>
1276<p>The integer type is a very simple derived type that simply specifies an
1277arbitrary bit width for the integer type desired. Any bit width from 1 bit to
12782^23-1 (about 8 million) can be specified.</p>
1279
1280<h5>Syntax:</h5>
1281
1282<pre>
1283 iN
1284</pre>
1285
1286<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1287value.</p>
1288
1289<h5>Examples:</h5>
1290<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001291 <tbody>
1292 <tr>
1293 <td><tt>i1</tt></td>
1294 <td>a single-bit integer.</td>
1295 </tr><tr>
1296 <td><tt>i32</tt></td>
1297 <td>a 32-bit integer.</td>
1298 </tr><tr>
1299 <td><tt>i1942652</tt></td>
1300 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001301 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001302 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001303</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001304</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001305
1306<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001307<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001308
Misha Brukman9d0919f2003-11-08 01:05:38 +00001309<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001310
Chris Lattner00950542001-06-06 20:29:01 +00001311<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001312
Misha Brukman9d0919f2003-11-08 01:05:38 +00001313<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001314sequentially in memory. The array type requires a size (number of
1315elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001316
Chris Lattner7faa8832002-04-14 06:13:44 +00001317<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001318
1319<pre>
1320 [&lt;# elements&gt; x &lt;elementtype&gt;]
1321</pre>
1322
John Criswelle4c57cc2005-05-12 16:52:32 +00001323<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001324be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001325
Chris Lattner7faa8832002-04-14 06:13:44 +00001326<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001327<table class="layout">
1328 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001329 <td class="left"><tt>[40 x i32]</tt></td>
1330 <td class="left">Array of 40 32-bit integer values.</td>
1331 </tr>
1332 <tr class="layout">
1333 <td class="left"><tt>[41 x i32]</tt></td>
1334 <td class="left">Array of 41 32-bit integer values.</td>
1335 </tr>
1336 <tr class="layout">
1337 <td class="left"><tt>[4 x i8]</tt></td>
1338 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001339 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001340</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001341<p>Here are some examples of multidimensional arrays:</p>
1342<table class="layout">
1343 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001344 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1345 <td class="left">3x4 array of 32-bit integer values.</td>
1346 </tr>
1347 <tr class="layout">
1348 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1349 <td class="left">12x10 array of single precision floating point values.</td>
1350 </tr>
1351 <tr class="layout">
1352 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1353 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001354 </tr>
1355</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001356
John Criswell0ec250c2005-10-24 16:17:18 +00001357<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1358length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001359LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1360As a special case, however, zero length arrays are recognized to be variable
1361length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001362type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001363
Misha Brukman9d0919f2003-11-08 01:05:38 +00001364</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001365
Chris Lattner00950542001-06-06 20:29:01 +00001366<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001367<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001368<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001369
Chris Lattner00950542001-06-06 20:29:01 +00001370<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001371
Chris Lattner261efe92003-11-25 01:02:51 +00001372<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001373consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001374return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001375If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001376class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001377
Chris Lattner00950542001-06-06 20:29:01 +00001378<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001379
1380<pre>
1381 &lt;returntype list&gt; (&lt;parameter list&gt;)
1382</pre>
1383
John Criswell0ec250c2005-10-24 16:17:18 +00001384<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001385specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001386which indicates that the function takes a variable number of arguments.
1387Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001388 href="#int_varargs">variable argument handling intrinsic</a> functions.
1389'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1390<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001391
Chris Lattner00950542001-06-06 20:29:01 +00001392<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001393<table class="layout">
1394 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001395 <td class="left"><tt>i32 (i32)</tt></td>
1396 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001397 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001398 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001399 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001400 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001401 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1402 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001403 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001404 <tt>float</tt>.
1405 </td>
1406 </tr><tr class="layout">
1407 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1408 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001409 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001410 which returns an integer. This is the signature for <tt>printf</tt> in
1411 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001412 </td>
Devang Patela582f402008-03-24 05:35:41 +00001413 </tr><tr class="layout">
1414 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanb0a57aa2008-11-27 06:41:20 +00001415 <td class="left">A function taking an <tt>i32</tt>, returning two
1416 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001417 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001418 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001419</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001420
Misha Brukman9d0919f2003-11-08 01:05:38 +00001421</div>
Chris Lattner00950542001-06-06 20:29:01 +00001422<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001423<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001424<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001425<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001426<p>The structure type is used to represent a collection of data members
1427together in memory. The packing of the field types is defined to match
1428the ABI of the underlying processor. The elements of a structure may
1429be any type that has a size.</p>
1430<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1431and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1432field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1433instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001434<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001435<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001436<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001437<table class="layout">
1438 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001439 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1440 <td class="left">A triple of three <tt>i32</tt> values</td>
1441 </tr><tr class="layout">
1442 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1443 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1444 second element is a <a href="#t_pointer">pointer</a> to a
1445 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1446 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001447 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001448</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001449</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001450
Chris Lattner00950542001-06-06 20:29:01 +00001451<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001452<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1453</div>
1454<div class="doc_text">
1455<h5>Overview:</h5>
1456<p>The packed structure type is used to represent a collection of data members
1457together in memory. There is no padding between fields. Further, the alignment
1458of a packed structure is 1 byte. The elements of a packed structure may
1459be any type that has a size.</p>
1460<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1461and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1462field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1463instruction.</p>
1464<h5>Syntax:</h5>
1465<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1466<h5>Examples:</h5>
1467<table class="layout">
1468 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001469 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1470 <td class="left">A triple of three <tt>i32</tt> values</td>
1471 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001472 <td class="left">
1473<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001474 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1475 second element is a <a href="#t_pointer">pointer</a> to a
1476 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1477 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001478 </tr>
1479</table>
1480</div>
1481
1482<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001483<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001484<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001485<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001486<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001487reference to another object, which must live in memory. Pointer types may have
1488an optional address space attribute defining the target-specific numbered
1489address space where the pointed-to object resides. The default address space is
1490zero.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001491<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001492<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001493<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001494<table class="layout">
1495 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00001496 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001497 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1498 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1499 </tr>
1500 <tr class="layout">
1501 <td class="left"><tt>i32 (i32 *) *</tt></td>
1502 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001503 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001504 <tt>i32</tt>.</td>
1505 </tr>
1506 <tr class="layout">
1507 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1508 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1509 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001510 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001511</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001512</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001513
Chris Lattnera58561b2004-08-12 19:12:28 +00001514<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001515<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001516<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001517
Chris Lattnera58561b2004-08-12 19:12:28 +00001518<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001519
Reid Spencer485bad12007-02-15 03:07:05 +00001520<p>A vector type is a simple derived type that represents a vector
1521of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001522are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001523A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001524elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001525of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001526considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001527
Chris Lattnera58561b2004-08-12 19:12:28 +00001528<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001529
1530<pre>
1531 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1532</pre>
1533
John Criswellc1f786c2005-05-13 22:25:59 +00001534<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001535be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001536
Chris Lattnera58561b2004-08-12 19:12:28 +00001537<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001538
Reid Spencerd3f876c2004-11-01 08:19:36 +00001539<table class="layout">
1540 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001541 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1542 <td class="left">Vector of 4 32-bit integer values.</td>
1543 </tr>
1544 <tr class="layout">
1545 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1546 <td class="left">Vector of 8 32-bit floating-point values.</td>
1547 </tr>
1548 <tr class="layout">
1549 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1550 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001551 </tr>
1552</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001553</div>
1554
Chris Lattner69c11bb2005-04-25 17:34:15 +00001555<!-- _______________________________________________________________________ -->
1556<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1557<div class="doc_text">
1558
1559<h5>Overview:</h5>
1560
1561<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001562corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001563In LLVM, opaque types can eventually be resolved to any type (not just a
1564structure type).</p>
1565
1566<h5>Syntax:</h5>
1567
1568<pre>
1569 opaque
1570</pre>
1571
1572<h5>Examples:</h5>
1573
1574<table class="layout">
1575 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001576 <td class="left"><tt>opaque</tt></td>
1577 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001578 </tr>
1579</table>
1580</div>
1581
1582
Chris Lattnerc3f59762004-12-09 17:30:23 +00001583<!-- *********************************************************************** -->
1584<div class="doc_section"> <a name="constants">Constants</a> </div>
1585<!-- *********************************************************************** -->
1586
1587<div class="doc_text">
1588
1589<p>LLVM has several different basic types of constants. This section describes
1590them all and their syntax.</p>
1591
1592</div>
1593
1594<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001595<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001596
1597<div class="doc_text">
1598
1599<dl>
1600 <dt><b>Boolean constants</b></dt>
1601
1602 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001603 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001604 </dd>
1605
1606 <dt><b>Integer constants</b></dt>
1607
Reid Spencercc16dc32004-12-09 18:02:53 +00001608 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001609 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001610 integer types.
1611 </dd>
1612
1613 <dt><b>Floating point constants</b></dt>
1614
1615 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1616 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001617 notation (see below). The assembler requires the exact decimal value of
1618 a floating-point constant. For example, the assembler accepts 1.25 but
1619 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1620 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001621
1622 <dt><b>Null pointer constants</b></dt>
1623
John Criswell9e2485c2004-12-10 15:51:16 +00001624 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001625 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1626
1627</dl>
1628
John Criswell9e2485c2004-12-10 15:51:16 +00001629<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001630of floating point constants. For example, the form '<tt>double
16310x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
16324.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001633(and the only time that they are generated by the disassembler) is when a
1634floating point constant must be emitted but it cannot be represented as a
1635decimal floating point number. For example, NaN's, infinities, and other
1636special values are represented in their IEEE hexadecimal format so that
1637assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001638
1639</div>
1640
1641<!-- ======================================================================= -->
1642<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1643</div>
1644
1645<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001646<p>Aggregate constants arise from aggregation of simple constants
1647and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001648
1649<dl>
1650 <dt><b>Structure constants</b></dt>
1651
1652 <dd>Structure constants are represented with notation similar to structure
1653 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001654 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1655 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001656 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001657 types of elements must match those specified by the type.
1658 </dd>
1659
1660 <dt><b>Array constants</b></dt>
1661
1662 <dd>Array constants are represented with notation similar to array type
1663 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001664 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001665 constants must have <a href="#t_array">array type</a>, and the number and
1666 types of elements must match those specified by the type.
1667 </dd>
1668
Reid Spencer485bad12007-02-15 03:07:05 +00001669 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001670
Reid Spencer485bad12007-02-15 03:07:05 +00001671 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001672 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001673 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001674 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001675 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001676 match those specified by the type.
1677 </dd>
1678
1679 <dt><b>Zero initialization</b></dt>
1680
1681 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1682 value to zero of <em>any</em> type, including scalar and aggregate types.
1683 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001684 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001685 initializers.
1686 </dd>
1687</dl>
1688
1689</div>
1690
1691<!-- ======================================================================= -->
1692<div class="doc_subsection">
1693 <a name="globalconstants">Global Variable and Function Addresses</a>
1694</div>
1695
1696<div class="doc_text">
1697
1698<p>The addresses of <a href="#globalvars">global variables</a> and <a
1699href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001700constants. These constants are explicitly referenced when the <a
1701href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001702href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1703file:</p>
1704
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001705<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001706<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001707@X = global i32 17
1708@Y = global i32 42
1709@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001710</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001711</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001712
1713</div>
1714
1715<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001716<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001717<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001718 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001719 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001720 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001721
Reid Spencer2dc45b82004-12-09 18:13:12 +00001722 <p>Undefined values indicate to the compiler that the program is well defined
1723 no matter what value is used, giving the compiler more freedom to optimize.
1724 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001725</div>
1726
1727<!-- ======================================================================= -->
1728<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1729</div>
1730
1731<div class="doc_text">
1732
1733<p>Constant expressions are used to allow expressions involving other constants
1734to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001735href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001736that does not have side effects (e.g. load and call are not supported). The
1737following is the syntax for constant expressions:</p>
1738
1739<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001740 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1741 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001742 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001743
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001744 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1745 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001746 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001747
1748 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1749 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001750 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001751
1752 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1753 <dd>Truncate a floating point constant to another floating point type. The
1754 size of CST must be larger than the size of TYPE. Both types must be
1755 floating point.</dd>
1756
1757 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1758 <dd>Floating point extend a constant to another type. The size of CST must be
1759 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1760
Reid Spencer1539a1c2007-07-31 14:40:14 +00001761 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001762 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001763 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1764 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1765 of the same number of elements. If the value won't fit in the integer type,
1766 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001767
Reid Spencerd4448792006-11-09 23:03:26 +00001768 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001769 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001770 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1771 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1772 of the same number of elements. If the value won't fit in the integer type,
1773 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001774
Reid Spencerd4448792006-11-09 23:03:26 +00001775 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001776 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001777 constant. TYPE must be a scalar or vector floating point type. CST must be of
1778 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1779 of the same number of elements. If the value won't fit in the floating point
1780 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001781
Reid Spencerd4448792006-11-09 23:03:26 +00001782 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001783 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001784 constant. TYPE must be a scalar or vector floating point type. CST must be of
1785 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1786 of the same number of elements. If the value won't fit in the floating point
1787 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001788
Reid Spencer5c0ef472006-11-11 23:08:07 +00001789 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1790 <dd>Convert a pointer typed constant to the corresponding integer constant
1791 TYPE must be an integer type. CST must be of pointer type. The CST value is
1792 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1793
1794 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1795 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1796 pointer type. CST must be of integer type. The CST value is zero extended,
1797 truncated, or unchanged to make it fit in a pointer size. This one is
1798 <i>really</i> dangerous!</dd>
1799
1800 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001801 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1802 identical (same number of bits). The conversion is done as if the CST value
1803 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001804 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001805 vector types to any other type, as long as they have the same bit width. For
Dan Gohman500233a2008-09-08 16:45:59 +00001806 pointers it is only valid to cast to another pointer type. It is not valid
1807 to bitcast to or from an aggregate type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001808 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001809
1810 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1811
1812 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1813 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1814 instruction, the index list may have zero or more indexes, which are required
1815 to make sense for the type of "CSTPTR".</dd>
1816
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001817 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1818
1819 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001820 constants.</dd>
1821
1822 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1823 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1824
1825 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1826 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001827
Nate Begemanac80ade2008-05-12 19:01:56 +00001828 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1829 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1830
1831 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1832 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1833
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001834 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1835
1836 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohman0e451ce2008-10-14 16:51:45 +00001837 operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001838
Robert Bocchino05ccd702006-01-15 20:48:27 +00001839 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1840
1841 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001842 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001843
Chris Lattnerc1989542006-04-08 00:13:41 +00001844
1845 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1846
1847 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001848 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001849
Chris Lattnerc3f59762004-12-09 17:30:23 +00001850 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1851
Reid Spencer2dc45b82004-12-09 18:13:12 +00001852 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1853 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001854 binary</a> operations. The constraints on operands are the same as those for
1855 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001856 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001857</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001858</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001859
Chris Lattner00950542001-06-06 20:29:01 +00001860<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001861<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1862<!-- *********************************************************************** -->
1863
1864<!-- ======================================================================= -->
1865<div class="doc_subsection">
1866<a name="inlineasm">Inline Assembler Expressions</a>
1867</div>
1868
1869<div class="doc_text">
1870
1871<p>
1872LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1873Module-Level Inline Assembly</a>) through the use of a special value. This
1874value represents the inline assembler as a string (containing the instructions
1875to emit), a list of operand constraints (stored as a string), and a flag that
1876indicates whether or not the inline asm expression has side effects. An example
1877inline assembler expression is:
1878</p>
1879
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001880<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001881<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001882i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001883</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001884</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001885
1886<p>
1887Inline assembler expressions may <b>only</b> be used as the callee operand of
1888a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1889</p>
1890
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001891<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001892<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001893%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001894</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001895</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001896
1897<p>
1898Inline asms with side effects not visible in the constraint list must be marked
1899as having side effects. This is done through the use of the
1900'<tt>sideeffect</tt>' keyword, like so:
1901</p>
1902
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001903<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001904<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001905call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001906</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001907</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001908
1909<p>TODO: The format of the asm and constraints string still need to be
1910documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00001911need to be documented). This is probably best done by reference to another
1912document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00001913</p>
1914
1915</div>
1916
1917<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001918<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1919<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001920
Misha Brukman9d0919f2003-11-08 01:05:38 +00001921<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001922
Chris Lattner261efe92003-11-25 01:02:51 +00001923<p>The LLVM instruction set consists of several different
1924classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001925instructions</a>, <a href="#binaryops">binary instructions</a>,
1926<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001927 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1928instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001929
Misha Brukman9d0919f2003-11-08 01:05:38 +00001930</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001931
Chris Lattner00950542001-06-06 20:29:01 +00001932<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001933<div class="doc_subsection"> <a name="terminators">Terminator
1934Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001935
Misha Brukman9d0919f2003-11-08 01:05:38 +00001936<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001937
Chris Lattner261efe92003-11-25 01:02:51 +00001938<p>As mentioned <a href="#functionstructure">previously</a>, every
1939basic block in a program ends with a "Terminator" instruction, which
1940indicates which block should be executed after the current block is
1941finished. These terminator instructions typically yield a '<tt>void</tt>'
1942value: they produce control flow, not values (the one exception being
1943the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001944<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001945 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1946instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001947the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1948 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1949 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001950
Misha Brukman9d0919f2003-11-08 01:05:38 +00001951</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001952
Chris Lattner00950542001-06-06 20:29:01 +00001953<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001954<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1955Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001956<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001957<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001958<pre>
1959 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001960 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001961</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001962
Chris Lattner00950542001-06-06 20:29:01 +00001963<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001964
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001965<p>The '<tt>ret</tt>' instruction is used to return control flow (and
1966optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001967<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001968returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00001969control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001970
Chris Lattner00950542001-06-06 20:29:01 +00001971<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001972
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001973<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
1974the return value. The type of the return value must be a
1975'<a href="#t_firstclass">first class</a>' type.</p>
1976
1977<p>A function is not <a href="#wellformed">well formed</a> if
1978it it has a non-void return type and contains a '<tt>ret</tt>'
1979instruction with no return value or a return value with a type that
1980does not match its type, or if it has a void return type and contains
1981a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001982
Chris Lattner00950542001-06-06 20:29:01 +00001983<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001984
Chris Lattner261efe92003-11-25 01:02:51 +00001985<p>When the '<tt>ret</tt>' instruction is executed, control flow
1986returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001987 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001988the instruction after the call. If the caller was an "<a
1989 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001990at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001991returns a value, that value shall set the call or invoke instruction's
Dan Gohman0e451ce2008-10-14 16:51:45 +00001992return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001993
Chris Lattner00950542001-06-06 20:29:01 +00001994<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001995
1996<pre>
1997 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001998 ret void <i>; Return from a void function</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001999 ret { i32, i8 } { i32 4, i8 2 } <i>; Return an aggregate of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002000</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002001</div>
Chris Lattner00950542001-06-06 20:29:01 +00002002<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002003<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002004<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002005<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002006<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002007</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002008<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002009<p>The '<tt>br</tt>' instruction is used to cause control flow to
2010transfer to a different basic block in the current function. There are
2011two forms of this instruction, corresponding to a conditional branch
2012and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002013<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002014<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00002015single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00002016unconditional form of the '<tt>br</tt>' instruction takes a single
2017'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002018<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002019<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002020argument is evaluated. If the value is <tt>true</tt>, control flows
2021to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2022control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002023<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002024<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00002025 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002026</div>
Chris Lattner00950542001-06-06 20:29:01 +00002027<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002028<div class="doc_subsubsection">
2029 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2030</div>
2031
Misha Brukman9d0919f2003-11-08 01:05:38 +00002032<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002033<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002034
2035<pre>
2036 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2037</pre>
2038
Chris Lattner00950542001-06-06 20:29:01 +00002039<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002040
2041<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2042several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00002043instruction, allowing a branch to occur to one of many possible
2044destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002045
2046
Chris Lattner00950542001-06-06 20:29:01 +00002047<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002048
2049<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2050comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2051an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2052table is not allowed to contain duplicate constant entries.</p>
2053
Chris Lattner00950542001-06-06 20:29:01 +00002054<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002055
Chris Lattner261efe92003-11-25 01:02:51 +00002056<p>The <tt>switch</tt> instruction specifies a table of values and
2057destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002058table is searched for the given value. If the value is found, control flow is
2059transfered to the corresponding destination; otherwise, control flow is
2060transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002061
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002062<h5>Implementation:</h5>
2063
2064<p>Depending on properties of the target machine and the particular
2065<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002066ways. For example, it could be generated as a series of chained conditional
2067branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002068
2069<h5>Example:</h5>
2070
2071<pre>
2072 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002073 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00002074 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002075
2076 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002077 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002078
2079 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00002080 switch i32 %val, label %otherwise [ i32 0, label %onzero
2081 i32 1, label %onone
2082 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002083</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002084</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002085
Chris Lattner00950542001-06-06 20:29:01 +00002086<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002087<div class="doc_subsubsection">
2088 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2089</div>
2090
Misha Brukman9d0919f2003-11-08 01:05:38 +00002091<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002092
Chris Lattner00950542001-06-06 20:29:01 +00002093<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002094
2095<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002096 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002097 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002098</pre>
2099
Chris Lattner6536cfe2002-05-06 22:08:29 +00002100<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002101
2102<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2103function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002104'<tt>normal</tt>' label or the
2105'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002106"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2107"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002108href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohman0e451ce2008-10-14 16:51:45 +00002109continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002110
Chris Lattner00950542001-06-06 20:29:01 +00002111<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002112
Misha Brukman9d0919f2003-11-08 01:05:38 +00002113<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002114
Chris Lattner00950542001-06-06 20:29:01 +00002115<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002116 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002117 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002118 convention</a> the call should use. If none is specified, the call defaults
2119 to using C calling conventions.
2120 </li>
Devang Patelf642f472008-10-06 18:50:38 +00002121
2122 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2123 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2124 and '<tt>inreg</tt>' attributes are valid here.</li>
2125
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002126 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2127 function value being invoked. In most cases, this is a direct function
2128 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2129 an arbitrary pointer to function value.
2130 </li>
2131
2132 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2133 function to be invoked. </li>
2134
2135 <li>'<tt>function args</tt>': argument list whose types match the function
2136 signature argument types. If the function signature indicates the function
2137 accepts a variable number of arguments, the extra arguments can be
2138 specified. </li>
2139
2140 <li>'<tt>normal label</tt>': the label reached when the called function
2141 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2142
2143 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2144 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2145
Devang Patel307e8ab2008-10-07 17:48:33 +00002146 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00002147 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2148 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002149</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002150
Chris Lattner00950542001-06-06 20:29:01 +00002151<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002152
Misha Brukman9d0919f2003-11-08 01:05:38 +00002153<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002154href="#i_call">call</a></tt>' instruction in most regards. The primary
2155difference is that it establishes an association with a label, which is used by
2156the runtime library to unwind the stack.</p>
2157
2158<p>This instruction is used in languages with destructors to ensure that proper
2159cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2160exception. Additionally, this is important for implementation of
2161'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2162
Chris Lattner00950542001-06-06 20:29:01 +00002163<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002164<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002165 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002166 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002167 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002168 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002169</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002170</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002171
2172
Chris Lattner27f71f22003-09-03 00:41:47 +00002173<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002174
Chris Lattner261efe92003-11-25 01:02:51 +00002175<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2176Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002177
Misha Brukman9d0919f2003-11-08 01:05:38 +00002178<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002179
Chris Lattner27f71f22003-09-03 00:41:47 +00002180<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002181<pre>
2182 unwind
2183</pre>
2184
Chris Lattner27f71f22003-09-03 00:41:47 +00002185<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002186
2187<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2188at the first callee in the dynamic call stack which used an <a
2189href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2190primarily used to implement exception handling.</p>
2191
Chris Lattner27f71f22003-09-03 00:41:47 +00002192<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002193
Chris Lattner72ed2002008-04-19 21:01:16 +00002194<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002195immediately halt. The dynamic call stack is then searched for the first <a
2196href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2197execution continues at the "exceptional" destination block specified by the
2198<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2199dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002200</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002201
2202<!-- _______________________________________________________________________ -->
2203
2204<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2205Instruction</a> </div>
2206
2207<div class="doc_text">
2208
2209<h5>Syntax:</h5>
2210<pre>
2211 unreachable
2212</pre>
2213
2214<h5>Overview:</h5>
2215
2216<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2217instruction is used to inform the optimizer that a particular portion of the
2218code is not reachable. This can be used to indicate that the code after a
2219no-return function cannot be reached, and other facts.</p>
2220
2221<h5>Semantics:</h5>
2222
2223<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2224</div>
2225
2226
2227
Chris Lattner00950542001-06-06 20:29:01 +00002228<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002229<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002230<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002231<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002232program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002233produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002234multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002235The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002236<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002237</div>
Chris Lattner00950542001-06-06 20:29:01 +00002238<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002239<div class="doc_subsubsection">
2240 <a name="i_add">'<tt>add</tt>' Instruction</a>
2241</div>
2242
Misha Brukman9d0919f2003-11-08 01:05:38 +00002243<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002244
Chris Lattner00950542001-06-06 20:29:01 +00002245<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002246
2247<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002248 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002249</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002250
Chris Lattner00950542001-06-06 20:29:01 +00002251<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002252
Misha Brukman9d0919f2003-11-08 01:05:38 +00002253<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002254
Chris Lattner00950542001-06-06 20:29:01 +00002255<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002256
2257<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2258 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2259 <a href="#t_vector">vector</a> values. Both arguments must have identical
2260 types.</p>
2261
Chris Lattner00950542001-06-06 20:29:01 +00002262<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002263
Misha Brukman9d0919f2003-11-08 01:05:38 +00002264<p>The value produced is the integer or floating point sum of the two
2265operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002266
Chris Lattner5ec89832008-01-28 00:36:27 +00002267<p>If an integer sum has unsigned overflow, the result returned is the
2268mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2269the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002270
Chris Lattner5ec89832008-01-28 00:36:27 +00002271<p>Because LLVM integers use a two's complement representation, this
2272instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002273
Chris Lattner00950542001-06-06 20:29:01 +00002274<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002275
2276<pre>
2277 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002278</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002279</div>
Chris Lattner00950542001-06-06 20:29:01 +00002280<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002281<div class="doc_subsubsection">
2282 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2283</div>
2284
Misha Brukman9d0919f2003-11-08 01:05:38 +00002285<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002286
Chris Lattner00950542001-06-06 20:29:01 +00002287<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002288
2289<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002290 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002291</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002292
Chris Lattner00950542001-06-06 20:29:01 +00002293<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002294
Misha Brukman9d0919f2003-11-08 01:05:38 +00002295<p>The '<tt>sub</tt>' instruction returns the difference of its two
2296operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002297
2298<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2299'<tt>neg</tt>' instruction present in most other intermediate
2300representations.</p>
2301
Chris Lattner00950542001-06-06 20:29:01 +00002302<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002303
2304<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2305 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2306 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2307 types.</p>
2308
Chris Lattner00950542001-06-06 20:29:01 +00002309<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002310
Chris Lattner261efe92003-11-25 01:02:51 +00002311<p>The value produced is the integer or floating point difference of
2312the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002313
Chris Lattner5ec89832008-01-28 00:36:27 +00002314<p>If an integer difference has unsigned overflow, the result returned is the
2315mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2316the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002317
Chris Lattner5ec89832008-01-28 00:36:27 +00002318<p>Because LLVM integers use a two's complement representation, this
2319instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002320
Chris Lattner00950542001-06-06 20:29:01 +00002321<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002322<pre>
2323 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002324 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002325</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002326</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002327
Chris Lattner00950542001-06-06 20:29:01 +00002328<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002329<div class="doc_subsubsection">
2330 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2331</div>
2332
Misha Brukman9d0919f2003-11-08 01:05:38 +00002333<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002334
Chris Lattner00950542001-06-06 20:29:01 +00002335<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002336<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002337</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002338<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002339<p>The '<tt>mul</tt>' instruction returns the product of its two
2340operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002341
Chris Lattner00950542001-06-06 20:29:01 +00002342<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002343
2344<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2345href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2346or <a href="#t_vector">vector</a> values. Both arguments must have identical
2347types.</p>
2348
Chris Lattner00950542001-06-06 20:29:01 +00002349<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002350
Chris Lattner261efe92003-11-25 01:02:51 +00002351<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002352two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002353
Chris Lattner5ec89832008-01-28 00:36:27 +00002354<p>If the result of an integer multiplication has unsigned overflow,
2355the result returned is the mathematical result modulo
23562<sup>n</sup>, where n is the bit width of the result.</p>
2357<p>Because LLVM integers use a two's complement representation, and the
2358result is the same width as the operands, this instruction returns the
2359correct result for both signed and unsigned integers. If a full product
2360(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2361should be sign-extended or zero-extended as appropriate to the
2362width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002363<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002364<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002365</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002366</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002367
Chris Lattner00950542001-06-06 20:29:01 +00002368<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002369<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2370</a></div>
2371<div class="doc_text">
2372<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002373<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002374</pre>
2375<h5>Overview:</h5>
2376<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2377operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002378
Reid Spencer1628cec2006-10-26 06:15:43 +00002379<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002380
Reid Spencer1628cec2006-10-26 06:15:43 +00002381<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002382<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2383values. Both arguments must have identical types.</p>
2384
Reid Spencer1628cec2006-10-26 06:15:43 +00002385<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002386
Chris Lattner5ec89832008-01-28 00:36:27 +00002387<p>The value produced is the unsigned integer quotient of the two operands.</p>
2388<p>Note that unsigned integer division and signed integer division are distinct
2389operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2390<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002391<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002392<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002393</pre>
2394</div>
2395<!-- _______________________________________________________________________ -->
2396<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2397</a> </div>
2398<div class="doc_text">
2399<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002400<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002401 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002402</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002403
Reid Spencer1628cec2006-10-26 06:15:43 +00002404<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002405
Reid Spencer1628cec2006-10-26 06:15:43 +00002406<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2407operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002408
Reid Spencer1628cec2006-10-26 06:15:43 +00002409<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002410
2411<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2412<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2413values. Both arguments must have identical types.</p>
2414
Reid Spencer1628cec2006-10-26 06:15:43 +00002415<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002416<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002417<p>Note that signed integer division and unsigned integer division are distinct
2418operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2419<p>Division by zero leads to undefined behavior. Overflow also leads to
2420undefined behavior; this is a rare case, but can occur, for example,
2421by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002422<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002423<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002424</pre>
2425</div>
2426<!-- _______________________________________________________________________ -->
2427<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002428Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002429<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002430<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002431<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002432 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002433</pre>
2434<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002435
Reid Spencer1628cec2006-10-26 06:15:43 +00002436<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002437operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002438
Chris Lattner261efe92003-11-25 01:02:51 +00002439<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002440
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002441<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002442<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2443of floating point values. Both arguments must have identical types.</p>
2444
Chris Lattner261efe92003-11-25 01:02:51 +00002445<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002446
Reid Spencer1628cec2006-10-26 06:15:43 +00002447<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002448
Chris Lattner261efe92003-11-25 01:02:51 +00002449<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002450
2451<pre>
2452 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002453</pre>
2454</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002455
Chris Lattner261efe92003-11-25 01:02:51 +00002456<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002457<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2458</div>
2459<div class="doc_text">
2460<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002461<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002462</pre>
2463<h5>Overview:</h5>
2464<p>The '<tt>urem</tt>' instruction returns the remainder from the
2465unsigned division of its two arguments.</p>
2466<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002467<p>The two arguments to the '<tt>urem</tt>' instruction must be
2468<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2469values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002470<h5>Semantics:</h5>
2471<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002472This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002473<p>Note that unsigned integer remainder and signed integer remainder are
2474distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2475<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002476<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002477<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002478</pre>
2479
2480</div>
2481<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002482<div class="doc_subsubsection">
2483 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2484</div>
2485
Chris Lattner261efe92003-11-25 01:02:51 +00002486<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002487
Chris Lattner261efe92003-11-25 01:02:51 +00002488<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002489
2490<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002491 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002492</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002493
Chris Lattner261efe92003-11-25 01:02:51 +00002494<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002495
Reid Spencer0a783f72006-11-02 01:53:59 +00002496<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002497signed division of its two operands. This instruction can also take
2498<a href="#t_vector">vector</a> versions of the values in which case
2499the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002500
Chris Lattner261efe92003-11-25 01:02:51 +00002501<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002502
Reid Spencer0a783f72006-11-02 01:53:59 +00002503<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002504<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2505values. Both arguments must have identical types.</p>
2506
Chris Lattner261efe92003-11-25 01:02:51 +00002507<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002508
Reid Spencer0a783f72006-11-02 01:53:59 +00002509<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002510has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2511operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002512a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002513 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002514Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002515please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002516Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002517<p>Note that signed integer remainder and unsigned integer remainder are
2518distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2519<p>Taking the remainder of a division by zero leads to undefined behavior.
2520Overflow also leads to undefined behavior; this is a rare case, but can occur,
2521for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2522(The remainder doesn't actually overflow, but this rule lets srem be
2523implemented using instructions that return both the result of the division
2524and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002525<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002526<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002527</pre>
2528
2529</div>
2530<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002531<div class="doc_subsubsection">
2532 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2533
Reid Spencer0a783f72006-11-02 01:53:59 +00002534<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002535
Reid Spencer0a783f72006-11-02 01:53:59 +00002536<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002537<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002538</pre>
2539<h5>Overview:</h5>
2540<p>The '<tt>frem</tt>' instruction returns the remainder from the
2541division of its two operands.</p>
2542<h5>Arguments:</h5>
2543<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002544<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2545of floating point values. Both arguments must have identical types.</p>
2546
Reid Spencer0a783f72006-11-02 01:53:59 +00002547<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002548
Chris Lattnera73afe02008-04-01 18:45:27 +00002549<p>This instruction returns the <i>remainder</i> of a division.
2550The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002551
Reid Spencer0a783f72006-11-02 01:53:59 +00002552<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002553
2554<pre>
2555 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002556</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002557</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002558
Reid Spencer8e11bf82007-02-02 13:57:07 +00002559<!-- ======================================================================= -->
2560<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2561Operations</a> </div>
2562<div class="doc_text">
2563<p>Bitwise binary operators are used to do various forms of
2564bit-twiddling in a program. They are generally very efficient
2565instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002566instructions. They require two operands of the same type, execute an operation on them,
2567and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002568</div>
2569
Reid Spencer569f2fa2007-01-31 21:39:12 +00002570<!-- _______________________________________________________________________ -->
2571<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2572Instruction</a> </div>
2573<div class="doc_text">
2574<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002575<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002576</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002577
Reid Spencer569f2fa2007-01-31 21:39:12 +00002578<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002579
Reid Spencer569f2fa2007-01-31 21:39:12 +00002580<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2581the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002582
Reid Spencer569f2fa2007-01-31 21:39:12 +00002583<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002584
Reid Spencer569f2fa2007-01-31 21:39:12 +00002585<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002586 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002587type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002588
Reid Spencer569f2fa2007-01-31 21:39:12 +00002589<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002590
Gabor Greiffb224a22008-08-07 21:46:00 +00002591<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2592where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang01f8d092008-12-10 08:55:09 +00002593equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2594If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2595corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002596
Reid Spencer569f2fa2007-01-31 21:39:12 +00002597<h5>Example:</h5><pre>
2598 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2599 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2600 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002601 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002602 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002603</pre>
2604</div>
2605<!-- _______________________________________________________________________ -->
2606<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2607Instruction</a> </div>
2608<div class="doc_text">
2609<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002610<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002611</pre>
2612
2613<h5>Overview:</h5>
2614<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002615operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002616
2617<h5>Arguments:</h5>
2618<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002619<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002620type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002621
2622<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002623
Reid Spencer569f2fa2007-01-31 21:39:12 +00002624<p>This instruction always performs a logical shift right operation. The most
2625significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002626shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang01f8d092008-12-10 08:55:09 +00002627the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2628vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2629amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002630
2631<h5>Example:</h5>
2632<pre>
2633 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2634 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2635 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2636 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002637 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002638 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002639</pre>
2640</div>
2641
Reid Spencer8e11bf82007-02-02 13:57:07 +00002642<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002643<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2644Instruction</a> </div>
2645<div class="doc_text">
2646
2647<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002648<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002649</pre>
2650
2651<h5>Overview:</h5>
2652<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002653operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002654
2655<h5>Arguments:</h5>
2656<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002657<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002658type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002659
2660<h5>Semantics:</h5>
2661<p>This instruction always performs an arithmetic shift right operation,
2662The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00002663of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang01f8d092008-12-10 08:55:09 +00002664larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
2665arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2666corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002667
2668<h5>Example:</h5>
2669<pre>
2670 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2671 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2672 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2673 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002674 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002675 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002676</pre>
2677</div>
2678
Chris Lattner00950542001-06-06 20:29:01 +00002679<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002680<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2681Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002682
Misha Brukman9d0919f2003-11-08 01:05:38 +00002683<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002684
Chris Lattner00950542001-06-06 20:29:01 +00002685<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002686
2687<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002688 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002689</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002690
Chris Lattner00950542001-06-06 20:29:01 +00002691<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002692
Chris Lattner261efe92003-11-25 01:02:51 +00002693<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2694its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002695
Chris Lattner00950542001-06-06 20:29:01 +00002696<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002697
2698<p>The two arguments to the '<tt>and</tt>' instruction must be
2699<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2700values. Both arguments must have identical types.</p>
2701
Chris Lattner00950542001-06-06 20:29:01 +00002702<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002703<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002704<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002705<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002706<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002707 <tbody>
2708 <tr>
2709 <td>In0</td>
2710 <td>In1</td>
2711 <td>Out</td>
2712 </tr>
2713 <tr>
2714 <td>0</td>
2715 <td>0</td>
2716 <td>0</td>
2717 </tr>
2718 <tr>
2719 <td>0</td>
2720 <td>1</td>
2721 <td>0</td>
2722 </tr>
2723 <tr>
2724 <td>1</td>
2725 <td>0</td>
2726 <td>0</td>
2727 </tr>
2728 <tr>
2729 <td>1</td>
2730 <td>1</td>
2731 <td>1</td>
2732 </tr>
2733 </tbody>
2734</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002735</div>
Chris Lattner00950542001-06-06 20:29:01 +00002736<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002737<pre>
2738 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002739 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2740 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002741</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002742</div>
Chris Lattner00950542001-06-06 20:29:01 +00002743<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002744<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002745<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002746<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002747<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002748</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002749<h5>Overview:</h5>
2750<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2751or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002752<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002753
2754<p>The two arguments to the '<tt>or</tt>' instruction must be
2755<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2756values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002757<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002758<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002759<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002760<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002761<table border="1" cellspacing="0" cellpadding="4">
2762 <tbody>
2763 <tr>
2764 <td>In0</td>
2765 <td>In1</td>
2766 <td>Out</td>
2767 </tr>
2768 <tr>
2769 <td>0</td>
2770 <td>0</td>
2771 <td>0</td>
2772 </tr>
2773 <tr>
2774 <td>0</td>
2775 <td>1</td>
2776 <td>1</td>
2777 </tr>
2778 <tr>
2779 <td>1</td>
2780 <td>0</td>
2781 <td>1</td>
2782 </tr>
2783 <tr>
2784 <td>1</td>
2785 <td>1</td>
2786 <td>1</td>
2787 </tr>
2788 </tbody>
2789</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002790</div>
Chris Lattner00950542001-06-06 20:29:01 +00002791<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002792<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2793 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2794 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002795</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002796</div>
Chris Lattner00950542001-06-06 20:29:01 +00002797<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002798<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2799Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002800<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002801<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002802<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002803</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002804<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002805<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2806or of its two operands. The <tt>xor</tt> is used to implement the
2807"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002808<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002809<p>The two arguments to the '<tt>xor</tt>' instruction must be
2810<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2811values. Both arguments must have identical types.</p>
2812
Chris Lattner00950542001-06-06 20:29:01 +00002813<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002814
Misha Brukman9d0919f2003-11-08 01:05:38 +00002815<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002816<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002817<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002818<table border="1" cellspacing="0" cellpadding="4">
2819 <tbody>
2820 <tr>
2821 <td>In0</td>
2822 <td>In1</td>
2823 <td>Out</td>
2824 </tr>
2825 <tr>
2826 <td>0</td>
2827 <td>0</td>
2828 <td>0</td>
2829 </tr>
2830 <tr>
2831 <td>0</td>
2832 <td>1</td>
2833 <td>1</td>
2834 </tr>
2835 <tr>
2836 <td>1</td>
2837 <td>0</td>
2838 <td>1</td>
2839 </tr>
2840 <tr>
2841 <td>1</td>
2842 <td>1</td>
2843 <td>0</td>
2844 </tr>
2845 </tbody>
2846</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002847</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002848<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002849<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002850<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2851 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2852 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2853 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002854</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002855</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002856
Chris Lattner00950542001-06-06 20:29:01 +00002857<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002858<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002859 <a name="vectorops">Vector Operations</a>
2860</div>
2861
2862<div class="doc_text">
2863
2864<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002865target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002866vector-specific operations needed to process vectors effectively. While LLVM
2867does directly support these vector operations, many sophisticated algorithms
2868will want to use target-specific intrinsics to take full advantage of a specific
2869target.</p>
2870
2871</div>
2872
2873<!-- _______________________________________________________________________ -->
2874<div class="doc_subsubsection">
2875 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2876</div>
2877
2878<div class="doc_text">
2879
2880<h5>Syntax:</h5>
2881
2882<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002883 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002884</pre>
2885
2886<h5>Overview:</h5>
2887
2888<p>
2889The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002890element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002891</p>
2892
2893
2894<h5>Arguments:</h5>
2895
2896<p>
2897The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002898value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002899an index indicating the position from which to extract the element.
2900The index may be a variable.</p>
2901
2902<h5>Semantics:</h5>
2903
2904<p>
2905The result is a scalar of the same type as the element type of
2906<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2907<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2908results are undefined.
2909</p>
2910
2911<h5>Example:</h5>
2912
2913<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002914 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002915</pre>
2916</div>
2917
2918
2919<!-- _______________________________________________________________________ -->
2920<div class="doc_subsubsection">
2921 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2922</div>
2923
2924<div class="doc_text">
2925
2926<h5>Syntax:</h5>
2927
2928<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00002929 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002930</pre>
2931
2932<h5>Overview:</h5>
2933
2934<p>
2935The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002936element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002937</p>
2938
2939
2940<h5>Arguments:</h5>
2941
2942<p>
2943The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002944value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002945scalar value whose type must equal the element type of the first
2946operand. The third operand is an index indicating the position at
2947which to insert the value. The index may be a variable.</p>
2948
2949<h5>Semantics:</h5>
2950
2951<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002952The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002953element values are those of <tt>val</tt> except at position
2954<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2955exceeds the length of <tt>val</tt>, the results are undefined.
2956</p>
2957
2958<h5>Example:</h5>
2959
2960<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002961 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002962</pre>
2963</div>
2964
2965<!-- _______________________________________________________________________ -->
2966<div class="doc_subsubsection">
2967 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2968</div>
2969
2970<div class="doc_text">
2971
2972<h5>Syntax:</h5>
2973
2974<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00002975 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002976</pre>
2977
2978<h5>Overview:</h5>
2979
2980<p>
2981The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wangaeb06d22008-11-10 04:46:22 +00002982from two input vectors, returning a vector with the same element type as
2983the input and length that is the same as the shuffle mask.
Chris Lattner3df241e2006-04-08 23:07:04 +00002984</p>
2985
2986<h5>Arguments:</h5>
2987
2988<p>
Mon P Wangaeb06d22008-11-10 04:46:22 +00002989The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2990with types that match each other. The third argument is a shuffle mask whose
2991element type is always 'i32'. The result of the instruction is a vector whose
2992length is the same as the shuffle mask and whose element type is the same as
2993the element type of the first two operands.
Chris Lattner3df241e2006-04-08 23:07:04 +00002994</p>
2995
2996<p>
2997The shuffle mask operand is required to be a constant vector with either
2998constant integer or undef values.
2999</p>
3000
3001<h5>Semantics:</h5>
3002
3003<p>
3004The elements of the two input vectors are numbered from left to right across
3005both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wangaeb06d22008-11-10 04:46:22 +00003006the result vector, which element of the two input vectors the result element
Chris Lattner3df241e2006-04-08 23:07:04 +00003007gets. The element selector may be undef (meaning "don't care") and the second
3008operand may be undef if performing a shuffle from only one vector.
3009</p>
3010
3011<h5>Example:</h5>
3012
3013<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003014 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003015 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003016 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3017 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00003018 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3019 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3020 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3021 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003022</pre>
3023</div>
3024
Tanya Lattner09474292006-04-14 19:24:33 +00003025
Chris Lattner3df241e2006-04-08 23:07:04 +00003026<!-- ======================================================================= -->
3027<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003028 <a name="aggregateops">Aggregate Operations</a>
3029</div>
3030
3031<div class="doc_text">
3032
3033<p>LLVM supports several instructions for working with aggregate values.
3034</p>
3035
3036</div>
3037
3038<!-- _______________________________________________________________________ -->
3039<div class="doc_subsubsection">
3040 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3041</div>
3042
3043<div class="doc_text">
3044
3045<h5>Syntax:</h5>
3046
3047<pre>
3048 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3049</pre>
3050
3051<h5>Overview:</h5>
3052
3053<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003054The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3055or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003056</p>
3057
3058
3059<h5>Arguments:</h5>
3060
3061<p>
3062The first operand of an '<tt>extractvalue</tt>' instruction is a
3063value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003064type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003065in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003066'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3067</p>
3068
3069<h5>Semantics:</h5>
3070
3071<p>
3072The result is the value at the position in the aggregate specified by
3073the index operands.
3074</p>
3075
3076<h5>Example:</h5>
3077
3078<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003079 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003080</pre>
3081</div>
3082
3083
3084<!-- _______________________________________________________________________ -->
3085<div class="doc_subsubsection">
3086 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3087</div>
3088
3089<div class="doc_text">
3090
3091<h5>Syntax:</h5>
3092
3093<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003094 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003095</pre>
3096
3097<h5>Overview:</h5>
3098
3099<p>
3100The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003101into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003102</p>
3103
3104
3105<h5>Arguments:</h5>
3106
3107<p>
3108The first operand of an '<tt>insertvalue</tt>' instruction is a
3109value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3110The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003111The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003112indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003113indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003114'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3115The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003116by the indices.
Dan Gohman0e451ce2008-10-14 16:51:45 +00003117</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003118
3119<h5>Semantics:</h5>
3120
3121<p>
3122The result is an aggregate of the same type as <tt>val</tt>. Its
3123value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003124specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003125</p>
3126
3127<h5>Example:</h5>
3128
3129<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003130 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003131</pre>
3132</div>
3133
3134
3135<!-- ======================================================================= -->
3136<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003137 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003138</div>
3139
Misha Brukman9d0919f2003-11-08 01:05:38 +00003140<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003141
Chris Lattner261efe92003-11-25 01:02:51 +00003142<p>A key design point of an SSA-based representation is how it
3143represents memory. In LLVM, no memory locations are in SSA form, which
3144makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003145allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003146
Misha Brukman9d0919f2003-11-08 01:05:38 +00003147</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003148
Chris Lattner00950542001-06-06 20:29:01 +00003149<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003150<div class="doc_subsubsection">
3151 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3152</div>
3153
Misha Brukman9d0919f2003-11-08 01:05:38 +00003154<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003155
Chris Lattner00950542001-06-06 20:29:01 +00003156<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003157
3158<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003159 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003160</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003161
Chris Lattner00950542001-06-06 20:29:01 +00003162<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003163
Chris Lattner261efe92003-11-25 01:02:51 +00003164<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003165heap and returns a pointer to it. The object is always allocated in the generic
3166address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003167
Chris Lattner00950542001-06-06 20:29:01 +00003168<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003169
3170<p>The '<tt>malloc</tt>' instruction allocates
3171<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003172bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003173appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003174number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003175If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003176be aligned to at least that boundary. If not specified, or if zero, the target can
3177choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003178
Misha Brukman9d0919f2003-11-08 01:05:38 +00003179<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003180
Chris Lattner00950542001-06-06 20:29:01 +00003181<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003182
Chris Lattner261efe92003-11-25 01:02:51 +00003183<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewycky02ff3082008-11-24 03:41:24 +00003184a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattner72ed2002008-04-19 21:01:16 +00003185result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003186
Chris Lattner2cbdc452005-11-06 08:02:57 +00003187<h5>Example:</h5>
3188
3189<pre>
Dan Gohman2a08c532009-01-04 23:44:43 +00003190 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003191
Bill Wendlingaac388b2007-05-29 09:42:13 +00003192 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3193 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3194 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3195 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3196 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003197</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003198</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003199
Chris Lattner00950542001-06-06 20:29:01 +00003200<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003201<div class="doc_subsubsection">
3202 <a name="i_free">'<tt>free</tt>' Instruction</a>
3203</div>
3204
Misha Brukman9d0919f2003-11-08 01:05:38 +00003205<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003206
Chris Lattner00950542001-06-06 20:29:01 +00003207<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003208
3209<pre>
3210 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003211</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003212
Chris Lattner00950542001-06-06 20:29:01 +00003213<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003214
Chris Lattner261efe92003-11-25 01:02:51 +00003215<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003216memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003217
Chris Lattner00950542001-06-06 20:29:01 +00003218<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003219
Chris Lattner261efe92003-11-25 01:02:51 +00003220<p>'<tt>value</tt>' shall be a pointer value that points to a value
3221that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3222instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003223
Chris Lattner00950542001-06-06 20:29:01 +00003224<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003225
John Criswell9e2485c2004-12-10 15:51:16 +00003226<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003227after this instruction executes. If the pointer is null, the operation
3228is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003229
Chris Lattner00950542001-06-06 20:29:01 +00003230<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003231
3232<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003233 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3234 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003235</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003236</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003237
Chris Lattner00950542001-06-06 20:29:01 +00003238<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003239<div class="doc_subsubsection">
3240 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3241</div>
3242
Misha Brukman9d0919f2003-11-08 01:05:38 +00003243<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003244
Chris Lattner00950542001-06-06 20:29:01 +00003245<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003246
3247<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003248 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003249</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003250
Chris Lattner00950542001-06-06 20:29:01 +00003251<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003252
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003253<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3254currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003255returns to its caller. The object is always allocated in the generic address
3256space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003257
Chris Lattner00950542001-06-06 20:29:01 +00003258<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003259
John Criswell9e2485c2004-12-10 15:51:16 +00003260<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003261bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003262appropriate type to the program. If "NumElements" is specified, it is the
3263number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003264If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003265to be aligned to at least that boundary. If not specified, or if zero, the target
3266can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003267
Misha Brukman9d0919f2003-11-08 01:05:38 +00003268<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003269
Chris Lattner00950542001-06-06 20:29:01 +00003270<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003271
Chris Lattner72ed2002008-04-19 21:01:16 +00003272<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3273there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003274memory is automatically released when the function returns. The '<tt>alloca</tt>'
3275instruction is commonly used to represent automatic variables that must
3276have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003277 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003278instructions), the memory is reclaimed. Allocating zero bytes
3279is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003280
Chris Lattner00950542001-06-06 20:29:01 +00003281<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003282
3283<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003284 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003285 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3286 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003287 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003288</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003289</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003290
Chris Lattner00950542001-06-06 20:29:01 +00003291<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003292<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3293Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003294<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003295<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003296<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003297<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003298<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003299<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003300<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003301address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003302 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003303marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003304the number or order of execution of this <tt>load</tt> with other
3305volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3306instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003307<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003308The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003309(that is, the alignment of the memory address). A value of 0 or an
3310omitted "align" argument means that the operation has the preferential
3311alignment for the target. It is the responsibility of the code emitter
3312to ensure that the alignment information is correct. Overestimating
3313the alignment results in an undefined behavior. Underestimating the
3314alignment may produce less efficient code. An alignment of 1 is always
3315safe.
3316</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003317<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003318<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003319<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003320<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003321 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003322 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3323 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003324</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003325</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003326<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003327<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3328Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003329<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003330<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003331<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3332 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003333</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003334<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003335<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003336<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003337<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003338to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003339operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3340of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003341operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003342optimizer is not allowed to modify the number or order of execution of
3343this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3344 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003345<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003346The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003347(that is, the alignment of the memory address). A value of 0 or an
3348omitted "align" argument means that the operation has the preferential
3349alignment for the target. It is the responsibility of the code emitter
3350to ensure that the alignment information is correct. Overestimating
3351the alignment results in an undefined behavior. Underestimating the
3352alignment may produce less efficient code. An alignment of 1 is always
3353safe.
3354</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003355<h5>Semantics:</h5>
3356<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3357at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003358<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003359<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003360 store i32 3, i32* %ptr <i>; yields {void}</i>
3361 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003362</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003363</div>
3364
Chris Lattner2b7d3202002-05-06 03:03:22 +00003365<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003366<div class="doc_subsubsection">
3367 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3368</div>
3369
Misha Brukman9d0919f2003-11-08 01:05:38 +00003370<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003371<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003372<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003373 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003374</pre>
3375
Chris Lattner7faa8832002-04-14 06:13:44 +00003376<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003377
3378<p>
3379The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003380subelement of an aggregate data structure. It performs address calculation only
3381and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003382
Chris Lattner7faa8832002-04-14 06:13:44 +00003383<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003384
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003385<p>The first argument is always a pointer, and forms the basis of the
3386calculation. The remaining arguments are indices, that indicate which of the
3387elements of the aggregate object are indexed. The interpretation of each index
3388is dependent on the type being indexed into. The first index always indexes the
3389pointer value given as the first argument, the second index indexes a value of
3390the type pointed to (not necessarily the value directly pointed to, since the
3391first index can be non-zero), etc. The first type indexed into must be a pointer
3392value, subsequent types can be arrays, vectors and structs. Note that subsequent
3393types being indexed into can never be pointers, since that would require loading
3394the pointer before continuing calculation.</p>
3395
3396<p>The type of each index argument depends on the type it is indexing into.
3397When indexing into a (packed) structure, only <tt>i32</tt> integer
3398<b>constants</b> are allowed. When indexing into an array, pointer or vector,
3399only integers of 32 or 64 bits are allowed (also non-constants). 32-bit values
3400will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003401
Chris Lattner261efe92003-11-25 01:02:51 +00003402<p>For example, let's consider a C code fragment and how it gets
3403compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003404
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003405<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003406<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003407struct RT {
3408 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003409 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003410 char C;
3411};
3412struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003413 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003414 double Y;
3415 struct RT Z;
3416};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003417
Chris Lattnercabc8462007-05-29 15:43:56 +00003418int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003419 return &amp;s[1].Z.B[5][13];
3420}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003421</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003422</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003423
Misha Brukman9d0919f2003-11-08 01:05:38 +00003424<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003425
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003426<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003427<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003428%RT = type { i8 , [10 x [20 x i32]], i8 }
3429%ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003430
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003431define i32* %foo(%ST* %s) {
3432entry:
3433 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3434 ret i32* %reg
3435}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003436</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003437</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003438
Chris Lattner7faa8832002-04-14 06:13:44 +00003439<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003440
Misha Brukman9d0919f2003-11-08 01:05:38 +00003441<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003442type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003443}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003444the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3445i8 }</tt>' type, another structure. The third index indexes into the second
3446element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003447array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003448'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3449to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003450
Chris Lattner261efe92003-11-25 01:02:51 +00003451<p>Note that it is perfectly legal to index partially through a
3452structure, returning a pointer to an inner element. Because of this,
3453the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003454
3455<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003456 define i32* %foo(%ST* %s) {
3457 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003458 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3459 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003460 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3461 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3462 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003463 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003464</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003465
3466<p>Note that it is undefined to access an array out of bounds: array and
3467pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003468The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003469defined to be accessible as variable length arrays, which requires access
3470beyond the zero'th element.</p>
3471
Chris Lattner884a9702006-08-15 00:45:58 +00003472<p>The getelementptr instruction is often confusing. For some more insight
3473into how it works, see <a href="GetElementPtr.html">the getelementptr
3474FAQ</a>.</p>
3475
Chris Lattner7faa8832002-04-14 06:13:44 +00003476<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003477
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003478<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003479 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003480 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3481 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003482 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003483 <i>; yields i8*:eptr</i>
3484 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003485</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003486</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003487
Chris Lattner00950542001-06-06 20:29:01 +00003488<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003489<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003490</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003491<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003492<p>The instructions in this category are the conversion instructions (casting)
3493which all take a single operand and a type. They perform various bit conversions
3494on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003495</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003496
Chris Lattner6536cfe2002-05-06 22:08:29 +00003497<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003498<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003499 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3500</div>
3501<div class="doc_text">
3502
3503<h5>Syntax:</h5>
3504<pre>
3505 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3506</pre>
3507
3508<h5>Overview:</h5>
3509<p>
3510The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3511</p>
3512
3513<h5>Arguments:</h5>
3514<p>
3515The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3516be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003517and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003518type. The bit size of <tt>value</tt> must be larger than the bit size of
3519<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003520
3521<h5>Semantics:</h5>
3522<p>
3523The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003524and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3525larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3526It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003527
3528<h5>Example:</h5>
3529<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003530 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003531 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3532 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003533</pre>
3534</div>
3535
3536<!-- _______________________________________________________________________ -->
3537<div class="doc_subsubsection">
3538 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3539</div>
3540<div class="doc_text">
3541
3542<h5>Syntax:</h5>
3543<pre>
3544 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3545</pre>
3546
3547<h5>Overview:</h5>
3548<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3549<tt>ty2</tt>.</p>
3550
3551
3552<h5>Arguments:</h5>
3553<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003554<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3555also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003556<tt>value</tt> must be smaller than the bit size of the destination type,
3557<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003558
3559<h5>Semantics:</h5>
3560<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003561bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003562
Reid Spencerb5929522007-01-12 15:46:11 +00003563<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003564
3565<h5>Example:</h5>
3566<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003567 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003568 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003569</pre>
3570</div>
3571
3572<!-- _______________________________________________________________________ -->
3573<div class="doc_subsubsection">
3574 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3575</div>
3576<div class="doc_text">
3577
3578<h5>Syntax:</h5>
3579<pre>
3580 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3581</pre>
3582
3583<h5>Overview:</h5>
3584<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3585
3586<h5>Arguments:</h5>
3587<p>
3588The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003589<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3590also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003591<tt>value</tt> must be smaller than the bit size of the destination type,
3592<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003593
3594<h5>Semantics:</h5>
3595<p>
3596The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3597bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003598the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003599
Reid Spencerc78f3372007-01-12 03:35:51 +00003600<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003601
3602<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003603<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003604 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003605 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003606</pre>
3607</div>
3608
3609<!-- _______________________________________________________________________ -->
3610<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003611 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3612</div>
3613
3614<div class="doc_text">
3615
3616<h5>Syntax:</h5>
3617
3618<pre>
3619 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3620</pre>
3621
3622<h5>Overview:</h5>
3623<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3624<tt>ty2</tt>.</p>
3625
3626
3627<h5>Arguments:</h5>
3628<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3629 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3630cast it to. The size of <tt>value</tt> must be larger than the size of
3631<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3632<i>no-op cast</i>.</p>
3633
3634<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003635<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3636<a href="#t_floating">floating point</a> type to a smaller
3637<a href="#t_floating">floating point</a> type. If the value cannot fit within
3638the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003639
3640<h5>Example:</h5>
3641<pre>
3642 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3643 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3644</pre>
3645</div>
3646
3647<!-- _______________________________________________________________________ -->
3648<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003649 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3650</div>
3651<div class="doc_text">
3652
3653<h5>Syntax:</h5>
3654<pre>
3655 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3656</pre>
3657
3658<h5>Overview:</h5>
3659<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3660floating point value.</p>
3661
3662<h5>Arguments:</h5>
3663<p>The '<tt>fpext</tt>' instruction takes a
3664<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003665and a <a href="#t_floating">floating point</a> type to cast it to. The source
3666type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003667
3668<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003669<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003670<a href="#t_floating">floating point</a> type to a larger
3671<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003672used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003673<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003674
3675<h5>Example:</h5>
3676<pre>
3677 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3678 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3679</pre>
3680</div>
3681
3682<!-- _______________________________________________________________________ -->
3683<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003684 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003685</div>
3686<div class="doc_text">
3687
3688<h5>Syntax:</h5>
3689<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003690 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003691</pre>
3692
3693<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003694<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003695unsigned integer equivalent of type <tt>ty2</tt>.
3696</p>
3697
3698<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003699<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003700scalar or vector <a href="#t_floating">floating point</a> value, and a type
3701to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3702type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3703vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003704
3705<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003706<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003707<a href="#t_floating">floating point</a> operand into the nearest (rounding
3708towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3709the results are undefined.</p>
3710
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003711<h5>Example:</h5>
3712<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003713 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003714 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003715 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003716</pre>
3717</div>
3718
3719<!-- _______________________________________________________________________ -->
3720<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003721 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003722</div>
3723<div class="doc_text">
3724
3725<h5>Syntax:</h5>
3726<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003727 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003728</pre>
3729
3730<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003731<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003732<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003733</p>
3734
Chris Lattner6536cfe2002-05-06 22:08:29 +00003735<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003736<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003737scalar or vector <a href="#t_floating">floating point</a> value, and a type
3738to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3739type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3740vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003741
Chris Lattner6536cfe2002-05-06 22:08:29 +00003742<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003743<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003744<a href="#t_floating">floating point</a> operand into the nearest (rounding
3745towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3746the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003747
Chris Lattner33ba0d92001-07-09 00:26:23 +00003748<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003749<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003750 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003751 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003752 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003753</pre>
3754</div>
3755
3756<!-- _______________________________________________________________________ -->
3757<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003758 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003759</div>
3760<div class="doc_text">
3761
3762<h5>Syntax:</h5>
3763<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003764 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003765</pre>
3766
3767<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003768<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003769integer and converts that value to the <tt>ty2</tt> type.</p>
3770
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003771<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003772<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3773scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3774to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3775type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3776floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003777
3778<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003779<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003780integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003781the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003782
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003783<h5>Example:</h5>
3784<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003785 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003786 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003787</pre>
3788</div>
3789
3790<!-- _______________________________________________________________________ -->
3791<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003792 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003793</div>
3794<div class="doc_text">
3795
3796<h5>Syntax:</h5>
3797<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003798 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003799</pre>
3800
3801<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003802<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003803integer and converts that value to the <tt>ty2</tt> type.</p>
3804
3805<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003806<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3807scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3808to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3809type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3810floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003811
3812<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003813<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003814integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003815the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003816
3817<h5>Example:</h5>
3818<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003819 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003820 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003821</pre>
3822</div>
3823
3824<!-- _______________________________________________________________________ -->
3825<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003826 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3827</div>
3828<div class="doc_text">
3829
3830<h5>Syntax:</h5>
3831<pre>
3832 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3833</pre>
3834
3835<h5>Overview:</h5>
3836<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3837the integer type <tt>ty2</tt>.</p>
3838
3839<h5>Arguments:</h5>
3840<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003841must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohman0e451ce2008-10-14 16:51:45 +00003842<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003843
3844<h5>Semantics:</h5>
3845<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3846<tt>ty2</tt> by interpreting the pointer value as an integer and either
3847truncating or zero extending that value to the size of the integer type. If
3848<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3849<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003850are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3851change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003852
3853<h5>Example:</h5>
3854<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003855 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3856 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003857</pre>
3858</div>
3859
3860<!-- _______________________________________________________________________ -->
3861<div class="doc_subsubsection">
3862 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3863</div>
3864<div class="doc_text">
3865
3866<h5>Syntax:</h5>
3867<pre>
3868 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3869</pre>
3870
3871<h5>Overview:</h5>
3872<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3873a pointer type, <tt>ty2</tt>.</p>
3874
3875<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003876<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003877value to cast, and a type to cast it to, which must be a
Dan Gohman0e451ce2008-10-14 16:51:45 +00003878<a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003879
3880<h5>Semantics:</h5>
3881<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3882<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3883the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3884size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3885the size of a pointer then a zero extension is done. If they are the same size,
3886nothing is done (<i>no-op cast</i>).</p>
3887
3888<h5>Example:</h5>
3889<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003890 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3891 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3892 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003893</pre>
3894</div>
3895
3896<!-- _______________________________________________________________________ -->
3897<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003898 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003899</div>
3900<div class="doc_text">
3901
3902<h5>Syntax:</h5>
3903<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003904 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003905</pre>
3906
3907<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003908
Reid Spencer5c0ef472006-11-11 23:08:07 +00003909<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003910<tt>ty2</tt> without changing any bits.</p>
3911
3912<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003913
Reid Spencer5c0ef472006-11-11 23:08:07 +00003914<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00003915a non-aggregate first class value, and a type to cast it to, which must also be
3916a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
3917<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003918and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00003919type is a pointer, the destination type must also be a pointer. This
3920instruction supports bitwise conversion of vectors to integers and to vectors
3921of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003922
3923<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003924<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003925<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3926this conversion. The conversion is done as if the <tt>value</tt> had been
3927stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3928converted to other pointer types with this instruction. To convert pointers to
3929other types, use the <a href="#i_inttoptr">inttoptr</a> or
3930<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003931
3932<h5>Example:</h5>
3933<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003934 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003935 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003936 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003937</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003938</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003939
Reid Spencer2fd21e62006-11-08 01:18:52 +00003940<!-- ======================================================================= -->
3941<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3942<div class="doc_text">
3943<p>The instructions in this category are the "miscellaneous"
3944instructions, which defy better classification.</p>
3945</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003946
3947<!-- _______________________________________________________________________ -->
3948<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3949</div>
3950<div class="doc_text">
3951<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003952<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003953</pre>
3954<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003955<p>The '<tt>icmp</tt>' instruction returns a boolean value or
3956a vector of boolean values based on comparison
3957of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003958<h5>Arguments:</h5>
3959<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003960the condition code indicating the kind of comparison to perform. It is not
3961a value, just a keyword. The possible condition code are:
Dan Gohman0e451ce2008-10-14 16:51:45 +00003962</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003963<ol>
3964 <li><tt>eq</tt>: equal</li>
3965 <li><tt>ne</tt>: not equal </li>
3966 <li><tt>ugt</tt>: unsigned greater than</li>
3967 <li><tt>uge</tt>: unsigned greater or equal</li>
3968 <li><tt>ult</tt>: unsigned less than</li>
3969 <li><tt>ule</tt>: unsigned less or equal</li>
3970 <li><tt>sgt</tt>: signed greater than</li>
3971 <li><tt>sge</tt>: signed greater or equal</li>
3972 <li><tt>slt</tt>: signed less than</li>
3973 <li><tt>sle</tt>: signed less or equal</li>
3974</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003975<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00003976<a href="#t_pointer">pointer</a>
3977or integer <a href="#t_vector">vector</a> typed.
3978They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003979<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003980<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00003981the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00003982yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohman0e451ce2008-10-14 16:51:45 +00003983</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003984<ol>
3985 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3986 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3987 </li>
3988 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohman0e451ce2008-10-14 16:51:45 +00003989 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003990 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003991 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003992 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003993 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003994 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003995 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003996 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003997 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003998 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003999 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004000 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004001 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004002 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004003 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004004 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004005 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004006</ol>
4007<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00004008values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004009<p>If the operands are integer vectors, then they are compared
4010element by element. The result is an <tt>i1</tt> vector with
4011the same number of elements as the values being compared.
4012Otherwise, the result is an <tt>i1</tt>.
4013</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004014
4015<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00004016<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4017 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4018 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4019 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4020 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4021 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004022</pre>
4023</div>
4024
4025<!-- _______________________________________________________________________ -->
4026<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4027</div>
4028<div class="doc_text">
4029<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004030<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004031</pre>
4032<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004033<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4034or vector of boolean values based on comparison
Dan Gohman0e451ce2008-10-14 16:51:45 +00004035of its operands.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004036<p>
4037If the operands are floating point scalars, then the result
4038type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4039</p>
4040<p>If the operands are floating point vectors, then the result type
4041is a vector of boolean with the same number of elements as the
4042operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004043<h5>Arguments:</h5>
4044<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004045the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004046a value, just a keyword. The possible condition code are:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004047<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004048 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004049 <li><tt>oeq</tt>: ordered and equal</li>
4050 <li><tt>ogt</tt>: ordered and greater than </li>
4051 <li><tt>oge</tt>: ordered and greater than or equal</li>
4052 <li><tt>olt</tt>: ordered and less than </li>
4053 <li><tt>ole</tt>: ordered and less than or equal</li>
4054 <li><tt>one</tt>: ordered and not equal</li>
4055 <li><tt>ord</tt>: ordered (no nans)</li>
4056 <li><tt>ueq</tt>: unordered or equal</li>
4057 <li><tt>ugt</tt>: unordered or greater than </li>
4058 <li><tt>uge</tt>: unordered or greater than or equal</li>
4059 <li><tt>ult</tt>: unordered or less than </li>
4060 <li><tt>ule</tt>: unordered or less than or equal</li>
4061 <li><tt>une</tt>: unordered or not equal</li>
4062 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004063 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004064</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004065<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00004066<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004067<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4068either a <a href="#t_floating">floating point</a> type
4069or a <a href="#t_vector">vector</a> of floating point type.
4070They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004071<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004072<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004073according to the condition code given as <tt>cond</tt>.
4074If the operands are vectors, then the vectors are compared
4075element by element.
4076Each comparison performed
Dan Gohman0e451ce2008-10-14 16:51:45 +00004077always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004078<ol>
4079 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004080 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004081 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004082 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004083 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004084 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004085 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004086 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004087 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004088 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004089 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004090 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004091 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004092 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4093 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004094 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004095 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004096 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004097 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004098 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004099 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004100 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004101 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004102 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004103 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004104 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004105 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004106 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4107</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004108
4109<h5>Example:</h5>
4110<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004111 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4112 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4113 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004114</pre>
4115</div>
4116
Reid Spencer2fd21e62006-11-08 01:18:52 +00004117<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004118<div class="doc_subsubsection">
4119 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4120</div>
4121<div class="doc_text">
4122<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004123<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004124</pre>
4125<h5>Overview:</h5>
4126<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4127element-wise comparison of its two integer vector operands.</p>
4128<h5>Arguments:</h5>
4129<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4130the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004131a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004132<ol>
4133 <li><tt>eq</tt>: equal</li>
4134 <li><tt>ne</tt>: not equal </li>
4135 <li><tt>ugt</tt>: unsigned greater than</li>
4136 <li><tt>uge</tt>: unsigned greater or equal</li>
4137 <li><tt>ult</tt>: unsigned less than</li>
4138 <li><tt>ule</tt>: unsigned less or equal</li>
4139 <li><tt>sgt</tt>: signed greater than</li>
4140 <li><tt>sge</tt>: signed greater or equal</li>
4141 <li><tt>slt</tt>: signed less than</li>
4142 <li><tt>sle</tt>: signed less or equal</li>
4143</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004144<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004145<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4146<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004147<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004148according to the condition code given as <tt>cond</tt>. The comparison yields a
4149<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4150identical type as the values being compared. The most significant bit in each
4151element is 1 if the element-wise comparison evaluates to true, and is 0
4152otherwise. All other bits of the result are undefined. The condition codes
4153are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohman0e451ce2008-10-14 16:51:45 +00004154instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004155
4156<h5>Example:</h5>
4157<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004158 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4159 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004160</pre>
4161</div>
4162
4163<!-- _______________________________________________________________________ -->
4164<div class="doc_subsubsection">
4165 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4166</div>
4167<div class="doc_text">
4168<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004169<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004170<h5>Overview:</h5>
4171<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4172element-wise comparison of its two floating point vector operands. The output
4173elements have the same width as the input elements.</p>
4174<h5>Arguments:</h5>
4175<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4176the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004177a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004178<ol>
4179 <li><tt>false</tt>: no comparison, always returns false</li>
4180 <li><tt>oeq</tt>: ordered and equal</li>
4181 <li><tt>ogt</tt>: ordered and greater than </li>
4182 <li><tt>oge</tt>: ordered and greater than or equal</li>
4183 <li><tt>olt</tt>: ordered and less than </li>
4184 <li><tt>ole</tt>: ordered and less than or equal</li>
4185 <li><tt>one</tt>: ordered and not equal</li>
4186 <li><tt>ord</tt>: ordered (no nans)</li>
4187 <li><tt>ueq</tt>: unordered or equal</li>
4188 <li><tt>ugt</tt>: unordered or greater than </li>
4189 <li><tt>uge</tt>: unordered or greater than or equal</li>
4190 <li><tt>ult</tt>: unordered or less than </li>
4191 <li><tt>ule</tt>: unordered or less than or equal</li>
4192 <li><tt>une</tt>: unordered or not equal</li>
4193 <li><tt>uno</tt>: unordered (either nans)</li>
4194 <li><tt>true</tt>: no comparison, always returns true</li>
4195</ol>
4196<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4197<a href="#t_floating">floating point</a> typed. They must also be identical
4198types.</p>
4199<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004200<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004201according to the condition code given as <tt>cond</tt>. The comparison yields a
4202<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4203an identical number of elements as the values being compared, and each element
4204having identical with to the width of the floating point elements. The most
4205significant bit in each element is 1 if the element-wise comparison evaluates to
4206true, and is 0 otherwise. All other bits of the result are undefined. The
4207condition codes are evaluated identically to the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004208<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004209
4210<h5>Example:</h5>
4211<pre>
Chris Lattner50ad45c2008-10-13 16:55:18 +00004212 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4213 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4214
4215 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4216 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemanac80ade2008-05-12 19:01:56 +00004217</pre>
4218</div>
4219
4220<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004221<div class="doc_subsubsection">
4222 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4223</div>
4224
Reid Spencer2fd21e62006-11-08 01:18:52 +00004225<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004226
Reid Spencer2fd21e62006-11-08 01:18:52 +00004227<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004228
Reid Spencer2fd21e62006-11-08 01:18:52 +00004229<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4230<h5>Overview:</h5>
4231<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4232the SSA graph representing the function.</p>
4233<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004234
Jeff Cohenb627eab2007-04-29 01:07:00 +00004235<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004236field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4237as arguments, with one pair for each predecessor basic block of the
4238current block. Only values of <a href="#t_firstclass">first class</a>
4239type may be used as the value arguments to the PHI node. Only labels
4240may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004241
Reid Spencer2fd21e62006-11-08 01:18:52 +00004242<p>There must be no non-phi instructions between the start of a basic
4243block and the PHI instructions: i.e. PHI instructions must be first in
4244a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004245
Reid Spencer2fd21e62006-11-08 01:18:52 +00004246<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004247
Jeff Cohenb627eab2007-04-29 01:07:00 +00004248<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4249specified by the pair corresponding to the predecessor basic block that executed
4250just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004251
Reid Spencer2fd21e62006-11-08 01:18:52 +00004252<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004253<pre>
4254Loop: ; Infinite loop that counts from 0 on up...
4255 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4256 %nextindvar = add i32 %indvar, 1
4257 br label %Loop
4258</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004259</div>
4260
Chris Lattnercc37aae2004-03-12 05:50:16 +00004261<!-- _______________________________________________________________________ -->
4262<div class="doc_subsubsection">
4263 <a name="i_select">'<tt>select</tt>' Instruction</a>
4264</div>
4265
4266<div class="doc_text">
4267
4268<h5>Syntax:</h5>
4269
4270<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004271 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4272
Dan Gohman0e451ce2008-10-14 16:51:45 +00004273 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004274</pre>
4275
4276<h5>Overview:</h5>
4277
4278<p>
4279The '<tt>select</tt>' instruction is used to choose one value based on a
4280condition, without branching.
4281</p>
4282
4283
4284<h5>Arguments:</h5>
4285
4286<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004287The '<tt>select</tt>' instruction requires an 'i1' value or
4288a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004289condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004290type. If the val1/val2 are vectors and
4291the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004292individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004293</p>
4294
4295<h5>Semantics:</h5>
4296
4297<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004298If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004299value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004300</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004301<p>
4302If the condition is a vector of i1, then the value arguments must
4303be vectors of the same size, and the selection is done element
4304by element.
4305</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004306
4307<h5>Example:</h5>
4308
4309<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004310 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004311</pre>
4312</div>
4313
Robert Bocchino05ccd702006-01-15 20:48:27 +00004314
4315<!-- _______________________________________________________________________ -->
4316<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004317 <a name="i_call">'<tt>call</tt>' Instruction</a>
4318</div>
4319
Misha Brukman9d0919f2003-11-08 01:05:38 +00004320<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004321
Chris Lattner00950542001-06-06 20:29:01 +00004322<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004323<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004324 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004325</pre>
4326
Chris Lattner00950542001-06-06 20:29:01 +00004327<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004328
Misha Brukman9d0919f2003-11-08 01:05:38 +00004329<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004330
Chris Lattner00950542001-06-06 20:29:01 +00004331<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004332
Misha Brukman9d0919f2003-11-08 01:05:38 +00004333<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004334
Chris Lattner6536cfe2002-05-06 22:08:29 +00004335<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004336 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004337 <p>The optional "tail" marker indicates whether the callee function accesses
4338 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004339 function call is eligible for tail call optimization. Note that calls may
4340 be marked "tail" even if they do not occur before a <a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004341 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004342 </li>
4343 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004344 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004345 convention</a> the call should use. If none is specified, the call defaults
Dan Gohman0e451ce2008-10-14 16:51:45 +00004346 to using C calling conventions.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004347 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004348
4349 <li>
4350 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4351 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4352 and '<tt>inreg</tt>' attributes are valid here.</p>
4353 </li>
4354
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004355 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004356 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4357 the type of the return value. Functions that return no value are marked
4358 <tt><a href="#t_void">void</a></tt>.</p>
4359 </li>
4360 <li>
4361 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4362 value being invoked. The argument types must match the types implied by
4363 this signature. This type can be omitted if the function is not varargs
4364 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004365 </li>
4366 <li>
4367 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4368 be invoked. In most cases, this is a direct function invocation, but
4369 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004370 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004371 </li>
4372 <li>
4373 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004374 function signature argument types. All arguments must be of
4375 <a href="#t_firstclass">first class</a> type. If the function signature
4376 indicates the function accepts a variable number of arguments, the extra
4377 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004378 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004379 <li>
Devang Patel307e8ab2008-10-07 17:48:33 +00004380 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00004381 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4382 '<tt>readnone</tt>' attributes are valid here.</p>
4383 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004384</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004385
Chris Lattner00950542001-06-06 20:29:01 +00004386<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004387
Chris Lattner261efe92003-11-25 01:02:51 +00004388<p>The '<tt>call</tt>' instruction is used to cause control flow to
4389transfer to a specified function, with its incoming arguments bound to
4390the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4391instruction in the called function, control flow continues with the
4392instruction after the function call, and the return value of the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004393function is bound to the result argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004394
Chris Lattner00950542001-06-06 20:29:01 +00004395<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004396
4397<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004398 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004399 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4400 %X = tail call i32 @foo() <i>; yields i32</i>
4401 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4402 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004403
4404 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004405 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004406 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4407 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00004408 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00004409 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004410</pre>
4411
Misha Brukman9d0919f2003-11-08 01:05:38 +00004412</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004413
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004414<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004415<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004416 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004417</div>
4418
Misha Brukman9d0919f2003-11-08 01:05:38 +00004419<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004420
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004421<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004422
4423<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004424 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004425</pre>
4426
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004427<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004428
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004429<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004430the "variable argument" area of a function call. It is used to implement the
4431<tt>va_arg</tt> macro in C.</p>
4432
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004433<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004434
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004435<p>This instruction takes a <tt>va_list*</tt> value and the type of
4436the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004437increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004438actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004439
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004440<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004441
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004442<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4443type from the specified <tt>va_list</tt> and causes the
4444<tt>va_list</tt> to point to the next argument. For more information,
4445see the variable argument handling <a href="#int_varargs">Intrinsic
4446Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004447
4448<p>It is legal for this instruction to be called in a function which does not
4449take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004450function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004451
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004452<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004453href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004454argument.</p>
4455
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004456<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004457
4458<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4459
Misha Brukman9d0919f2003-11-08 01:05:38 +00004460</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004461
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004462<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004463<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4464<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004465
Misha Brukman9d0919f2003-11-08 01:05:38 +00004466<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004467
4468<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004469well known names and semantics and are required to follow certain restrictions.
4470Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004471language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004472adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004473
John Criswellfc6b8952005-05-16 16:17:45 +00004474<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004475prefix is reserved in LLVM for intrinsic names; thus, function names may not
4476begin with this prefix. Intrinsic functions must always be external functions:
4477you cannot define the body of intrinsic functions. Intrinsic functions may
4478only be used in call or invoke instructions: it is illegal to take the address
4479of an intrinsic function. Additionally, because intrinsic functions are part
4480of the LLVM language, it is required if any are added that they be documented
4481here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004482
Chandler Carruth69940402007-08-04 01:51:18 +00004483<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4484a family of functions that perform the same operation but on different data
4485types. Because LLVM can represent over 8 million different integer types,
4486overloading is used commonly to allow an intrinsic function to operate on any
4487integer type. One or more of the argument types or the result type can be
4488overloaded to accept any integer type. Argument types may also be defined as
4489exactly matching a previous argument's type or the result type. This allows an
4490intrinsic function which accepts multiple arguments, but needs all of them to
4491be of the same type, to only be overloaded with respect to a single argument or
4492the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004493
Chandler Carruth69940402007-08-04 01:51:18 +00004494<p>Overloaded intrinsics will have the names of its overloaded argument types
4495encoded into its function name, each preceded by a period. Only those types
4496which are overloaded result in a name suffix. Arguments whose type is matched
4497against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4498take an integer of any width and returns an integer of exactly the same integer
4499width. This leads to a family of functions such as
4500<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4501Only one type, the return type, is overloaded, and only one type suffix is
4502required. Because the argument's type is matched against the return type, it
4503does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004504
4505<p>To learn how to add an intrinsic function, please see the
4506<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004507</p>
4508
Misha Brukman9d0919f2003-11-08 01:05:38 +00004509</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004510
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004511<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004512<div class="doc_subsection">
4513 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4514</div>
4515
Misha Brukman9d0919f2003-11-08 01:05:38 +00004516<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004517
Misha Brukman9d0919f2003-11-08 01:05:38 +00004518<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004519 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004520intrinsic functions. These functions are related to the similarly
4521named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004522
Chris Lattner261efe92003-11-25 01:02:51 +00004523<p>All of these functions operate on arguments that use a
4524target-specific value type "<tt>va_list</tt>". The LLVM assembly
4525language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004526transformations should be prepared to handle these functions regardless of
4527the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004528
Chris Lattner374ab302006-05-15 17:26:46 +00004529<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004530instruction and the variable argument handling intrinsic functions are
4531used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004532
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004533<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004534<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004535define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004536 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004537 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004538 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004539 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004540
4541 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004542 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004543
4544 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004545 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004546 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004547 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004548 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004549
4550 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004551 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004552 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004553}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004554
4555declare void @llvm.va_start(i8*)
4556declare void @llvm.va_copy(i8*, i8*)
4557declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004558</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004559</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004560
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004561</div>
4562
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004563<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004564<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004565 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004566</div>
4567
4568
Misha Brukman9d0919f2003-11-08 01:05:38 +00004569<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004570<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004571<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004572<h5>Overview:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004573<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004574<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4575href="#i_va_arg">va_arg</a></tt>.</p>
4576
4577<h5>Arguments:</h5>
4578
Dan Gohman0e451ce2008-10-14 16:51:45 +00004579<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004580
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004581<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004582
Dan Gohman0e451ce2008-10-14 16:51:45 +00004583<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004584macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004585<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004586<tt>va_arg</tt> will produce the first variable argument passed to the function.
4587Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004588last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004589
Misha Brukman9d0919f2003-11-08 01:05:38 +00004590</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004591
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004592<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004593<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004594 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004595</div>
4596
Misha Brukman9d0919f2003-11-08 01:05:38 +00004597<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004598<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004599<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004600<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004601
Jeff Cohenb627eab2007-04-29 01:07:00 +00004602<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004603which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004604or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004605
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004606<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004607
Jeff Cohenb627eab2007-04-29 01:07:00 +00004608<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004609
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004610<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004611
Misha Brukman9d0919f2003-11-08 01:05:38 +00004612<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004613macro available in C. In a target-dependent way, it destroys the
4614<tt>va_list</tt> element to which the argument points. Calls to <a
4615href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4616<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4617<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004618
Misha Brukman9d0919f2003-11-08 01:05:38 +00004619</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004620
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004621<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004622<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004623 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004624</div>
4625
Misha Brukman9d0919f2003-11-08 01:05:38 +00004626<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004627
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004628<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004629
4630<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004631 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004632</pre>
4633
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004634<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004635
Jeff Cohenb627eab2007-04-29 01:07:00 +00004636<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4637from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004638
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004639<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004640
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004641<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004642The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004643
Chris Lattnerd7923912004-05-23 21:06:01 +00004644
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004645<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004646
Jeff Cohenb627eab2007-04-29 01:07:00 +00004647<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4648macro available in C. In a target-dependent way, it copies the source
4649<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4650intrinsic is necessary because the <tt><a href="#int_va_start">
4651llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4652example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004653
Misha Brukman9d0919f2003-11-08 01:05:38 +00004654</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004655
Chris Lattner33aec9e2004-02-12 17:01:32 +00004656<!-- ======================================================================= -->
4657<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004658 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4659</div>
4660
4661<div class="doc_text">
4662
4663<p>
4664LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004665Collection</a> (GC) requires the implementation and generation of these
4666intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004667These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004668stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004669href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004670Front-ends for type-safe garbage collected languages should generate these
4671intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4672href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4673</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004674
4675<p>The garbage collection intrinsics only operate on objects in the generic
4676 address space (address space zero).</p>
4677
Chris Lattnerd7923912004-05-23 21:06:01 +00004678</div>
4679
4680<!-- _______________________________________________________________________ -->
4681<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004682 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004683</div>
4684
4685<div class="doc_text">
4686
4687<h5>Syntax:</h5>
4688
4689<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004690 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004691</pre>
4692
4693<h5>Overview:</h5>
4694
John Criswell9e2485c2004-12-10 15:51:16 +00004695<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004696the code generator, and allows some metadata to be associated with it.</p>
4697
4698<h5>Arguments:</h5>
4699
4700<p>The first argument specifies the address of a stack object that contains the
4701root pointer. The second pointer (which must be either a constant or a global
4702value address) contains the meta-data to be associated with the root.</p>
4703
4704<h5>Semantics:</h5>
4705
Chris Lattner05d67092008-04-24 05:59:56 +00004706<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004707location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004708the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4709intrinsic may only be used in a function which <a href="#gc">specifies a GC
4710algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004711
4712</div>
4713
4714
4715<!-- _______________________________________________________________________ -->
4716<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004717 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004718</div>
4719
4720<div class="doc_text">
4721
4722<h5>Syntax:</h5>
4723
4724<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004725 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004726</pre>
4727
4728<h5>Overview:</h5>
4729
4730<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4731locations, allowing garbage collector implementations that require read
4732barriers.</p>
4733
4734<h5>Arguments:</h5>
4735
Chris Lattner80626e92006-03-14 20:02:51 +00004736<p>The second argument is the address to read from, which should be an address
4737allocated from the garbage collector. The first object is a pointer to the
4738start of the referenced object, if needed by the language runtime (otherwise
4739null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004740
4741<h5>Semantics:</h5>
4742
4743<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4744instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004745garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4746may only be used in a function which <a href="#gc">specifies a GC
4747algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004748
4749</div>
4750
4751
4752<!-- _______________________________________________________________________ -->
4753<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004754 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004755</div>
4756
4757<div class="doc_text">
4758
4759<h5>Syntax:</h5>
4760
4761<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004762 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004763</pre>
4764
4765<h5>Overview:</h5>
4766
4767<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4768locations, allowing garbage collector implementations that require write
4769barriers (such as generational or reference counting collectors).</p>
4770
4771<h5>Arguments:</h5>
4772
Chris Lattner80626e92006-03-14 20:02:51 +00004773<p>The first argument is the reference to store, the second is the start of the
4774object to store it to, and the third is the address of the field of Obj to
4775store to. If the runtime does not require a pointer to the object, Obj may be
4776null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004777
4778<h5>Semantics:</h5>
4779
4780<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4781instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004782garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4783may only be used in a function which <a href="#gc">specifies a GC
4784algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004785
4786</div>
4787
4788
4789
4790<!-- ======================================================================= -->
4791<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004792 <a name="int_codegen">Code Generator Intrinsics</a>
4793</div>
4794
4795<div class="doc_text">
4796<p>
4797These intrinsics are provided by LLVM to expose special features that may only
4798be implemented with code generator support.
4799</p>
4800
4801</div>
4802
4803<!-- _______________________________________________________________________ -->
4804<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004805 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004806</div>
4807
4808<div class="doc_text">
4809
4810<h5>Syntax:</h5>
4811<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004812 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004813</pre>
4814
4815<h5>Overview:</h5>
4816
4817<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004818The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4819target-specific value indicating the return address of the current function
4820or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004821</p>
4822
4823<h5>Arguments:</h5>
4824
4825<p>
4826The argument to this intrinsic indicates which function to return the address
4827for. Zero indicates the calling function, one indicates its caller, etc. The
4828argument is <b>required</b> to be a constant integer value.
4829</p>
4830
4831<h5>Semantics:</h5>
4832
4833<p>
4834The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4835the return address of the specified call frame, or zero if it cannot be
4836identified. The value returned by this intrinsic is likely to be incorrect or 0
4837for arguments other than zero, so it should only be used for debugging purposes.
4838</p>
4839
4840<p>
4841Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004842aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004843source-language caller.
4844</p>
4845</div>
4846
4847
4848<!-- _______________________________________________________________________ -->
4849<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004850 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004851</div>
4852
4853<div class="doc_text">
4854
4855<h5>Syntax:</h5>
4856<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004857 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004858</pre>
4859
4860<h5>Overview:</h5>
4861
4862<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004863The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4864target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004865</p>
4866
4867<h5>Arguments:</h5>
4868
4869<p>
4870The argument to this intrinsic indicates which function to return the frame
4871pointer for. Zero indicates the calling function, one indicates its caller,
4872etc. The argument is <b>required</b> to be a constant integer value.
4873</p>
4874
4875<h5>Semantics:</h5>
4876
4877<p>
4878The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4879the frame address of the specified call frame, or zero if it cannot be
4880identified. The value returned by this intrinsic is likely to be incorrect or 0
4881for arguments other than zero, so it should only be used for debugging purposes.
4882</p>
4883
4884<p>
4885Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004886aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004887source-language caller.
4888</p>
4889</div>
4890
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004891<!-- _______________________________________________________________________ -->
4892<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004893 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004894</div>
4895
4896<div class="doc_text">
4897
4898<h5>Syntax:</h5>
4899<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004900 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004901</pre>
4902
4903<h5>Overview:</h5>
4904
4905<p>
4906The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004907the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004908<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4909features like scoped automatic variable sized arrays in C99.
4910</p>
4911
4912<h5>Semantics:</h5>
4913
4914<p>
4915This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004916href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004917<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4918<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4919state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4920practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4921that were allocated after the <tt>llvm.stacksave</tt> was executed.
4922</p>
4923
4924</div>
4925
4926<!-- _______________________________________________________________________ -->
4927<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004928 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004929</div>
4930
4931<div class="doc_text">
4932
4933<h5>Syntax:</h5>
4934<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004935 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004936</pre>
4937
4938<h5>Overview:</h5>
4939
4940<p>
4941The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4942the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004943href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004944useful for implementing language features like scoped automatic variable sized
4945arrays in C99.
4946</p>
4947
4948<h5>Semantics:</h5>
4949
4950<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004951See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004952</p>
4953
4954</div>
4955
4956
4957<!-- _______________________________________________________________________ -->
4958<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004959 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004960</div>
4961
4962<div class="doc_text">
4963
4964<h5>Syntax:</h5>
4965<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004966 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004967</pre>
4968
4969<h5>Overview:</h5>
4970
4971
4972<p>
4973The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004974a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4975no
4976effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004977characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004978</p>
4979
4980<h5>Arguments:</h5>
4981
4982<p>
4983<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4984determining if the fetch should be for a read (0) or write (1), and
4985<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004986locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004987<tt>locality</tt> arguments must be constant integers.
4988</p>
4989
4990<h5>Semantics:</h5>
4991
4992<p>
4993This intrinsic does not modify the behavior of the program. In particular,
4994prefetches cannot trap and do not produce a value. On targets that support this
4995intrinsic, the prefetch can provide hints to the processor cache for better
4996performance.
4997</p>
4998
4999</div>
5000
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005001<!-- _______________________________________________________________________ -->
5002<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005003 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005004</div>
5005
5006<div class="doc_text">
5007
5008<h5>Syntax:</h5>
5009<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005010 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005011</pre>
5012
5013<h5>Overview:</h5>
5014
5015
5016<p>
John Criswellfc6b8952005-05-16 16:17:45 +00005017The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00005018(PC) in a region of
5019code to simulators and other tools. The method is target specific, but it is
5020expected that the marker will use exported symbols to transmit the PC of the
5021marker.
5022The marker makes no guarantees that it will remain with any specific instruction
5023after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00005024optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00005025correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005026</p>
5027
5028<h5>Arguments:</h5>
5029
5030<p>
5031<tt>id</tt> is a numerical id identifying the marker.
5032</p>
5033
5034<h5>Semantics:</h5>
5035
5036<p>
5037This intrinsic does not modify the behavior of the program. Backends that do not
5038support this intrinisic may ignore it.
5039</p>
5040
5041</div>
5042
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005043<!-- _______________________________________________________________________ -->
5044<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005045 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005046</div>
5047
5048<div class="doc_text">
5049
5050<h5>Syntax:</h5>
5051<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005052 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005053</pre>
5054
5055<h5>Overview:</h5>
5056
5057
5058<p>
5059The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5060counter register (or similar low latency, high accuracy clocks) on those targets
5061that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5062As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5063should only be used for small timings.
5064</p>
5065
5066<h5>Semantics:</h5>
5067
5068<p>
5069When directly supported, reading the cycle counter should not modify any memory.
5070Implementations are allowed to either return a application specific value or a
5071system wide value. On backends without support, this is lowered to a constant 0.
5072</p>
5073
5074</div>
5075
Chris Lattner10610642004-02-14 04:08:35 +00005076<!-- ======================================================================= -->
5077<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005078 <a name="int_libc">Standard C Library Intrinsics</a>
5079</div>
5080
5081<div class="doc_text">
5082<p>
Chris Lattner10610642004-02-14 04:08:35 +00005083LLVM provides intrinsics for a few important standard C library functions.
5084These intrinsics allow source-language front-ends to pass information about the
5085alignment of the pointer arguments to the code generator, providing opportunity
5086for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005087</p>
5088
5089</div>
5090
5091<!-- _______________________________________________________________________ -->
5092<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005093 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005094</div>
5095
5096<div class="doc_text">
5097
5098<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005099<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5100width. Not all targets support all bit widths however.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005101<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005102 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5103 i8 &lt;len&gt;, i32 &lt;align&gt;)
5104 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5105 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005106 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005107 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005108 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005109 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005110</pre>
5111
5112<h5>Overview:</h5>
5113
5114<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005115The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005116location to the destination location.
5117</p>
5118
5119<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005120Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5121intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005122</p>
5123
5124<h5>Arguments:</h5>
5125
5126<p>
5127The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005128the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005129specifying the number of bytes to copy, and the fourth argument is the alignment
5130of the source and destination locations.
5131</p>
5132
Chris Lattner3301ced2004-02-12 21:18:15 +00005133<p>
5134If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005135the caller guarantees that both the source and destination pointers are aligned
5136to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005137</p>
5138
Chris Lattner33aec9e2004-02-12 17:01:32 +00005139<h5>Semantics:</h5>
5140
5141<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005142The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005143location to the destination location, which are not allowed to overlap. It
5144copies "len" bytes of memory over. If the argument is known to be aligned to
5145some boundary, this can be specified as the fourth argument, otherwise it should
5146be set to 0 or 1.
5147</p>
5148</div>
5149
5150
Chris Lattner0eb51b42004-02-12 18:10:10 +00005151<!-- _______________________________________________________________________ -->
5152<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005153 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005154</div>
5155
5156<div class="doc_text">
5157
5158<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005159<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5160width. Not all targets support all bit widths however.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005161<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005162 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5163 i8 &lt;len&gt;, i32 &lt;align&gt;)
5164 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5165 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005166 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005167 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005168 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005169 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005170</pre>
5171
5172<h5>Overview:</h5>
5173
5174<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005175The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5176location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005177'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005178</p>
5179
5180<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005181Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5182intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005183</p>
5184
5185<h5>Arguments:</h5>
5186
5187<p>
5188The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005189the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005190specifying the number of bytes to copy, and the fourth argument is the alignment
5191of the source and destination locations.
5192</p>
5193
Chris Lattner3301ced2004-02-12 21:18:15 +00005194<p>
5195If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005196the caller guarantees that the source and destination pointers are aligned to
5197that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005198</p>
5199
Chris Lattner0eb51b42004-02-12 18:10:10 +00005200<h5>Semantics:</h5>
5201
5202<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005203The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005204location to the destination location, which may overlap. It
5205copies "len" bytes of memory over. If the argument is known to be aligned to
5206some boundary, this can be specified as the fourth argument, otherwise it should
5207be set to 0 or 1.
5208</p>
5209</div>
5210
Chris Lattner8ff75902004-01-06 05:31:32 +00005211
Chris Lattner10610642004-02-14 04:08:35 +00005212<!-- _______________________________________________________________________ -->
5213<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005214 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005215</div>
5216
5217<div class="doc_text">
5218
5219<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005220<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5221width. Not all targets support all bit widths however.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005222<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005223 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5224 i8 &lt;len&gt;, i32 &lt;align&gt;)
5225 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5226 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005227 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005228 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005229 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005230 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005231</pre>
5232
5233<h5>Overview:</h5>
5234
5235<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005236The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005237byte value.
5238</p>
5239
5240<p>
5241Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5242does not return a value, and takes an extra alignment argument.
5243</p>
5244
5245<h5>Arguments:</h5>
5246
5247<p>
5248The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005249byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005250argument specifying the number of bytes to fill, and the fourth argument is the
5251known alignment of destination location.
5252</p>
5253
5254<p>
5255If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005256the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005257</p>
5258
5259<h5>Semantics:</h5>
5260
5261<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005262The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5263the
Chris Lattner10610642004-02-14 04:08:35 +00005264destination location. If the argument is known to be aligned to some boundary,
5265this can be specified as the fourth argument, otherwise it should be set to 0 or
52661.
5267</p>
5268</div>
5269
5270
Chris Lattner32006282004-06-11 02:28:03 +00005271<!-- _______________________________________________________________________ -->
5272<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005273 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005274</div>
5275
5276<div class="doc_text">
5277
5278<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005279<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005280floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005281types however.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005282<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005283 declare float @llvm.sqrt.f32(float %Val)
5284 declare double @llvm.sqrt.f64(double %Val)
5285 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5286 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5287 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005288</pre>
5289
5290<h5>Overview:</h5>
5291
5292<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005293The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005294returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005295<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005296negative numbers other than -0.0 (which allows for better optimization, because
5297there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5298defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005299</p>
5300
5301<h5>Arguments:</h5>
5302
5303<p>
5304The argument and return value are floating point numbers of the same type.
5305</p>
5306
5307<h5>Semantics:</h5>
5308
5309<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005310This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005311floating point number.
5312</p>
5313</div>
5314
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005315<!-- _______________________________________________________________________ -->
5316<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005317 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005318</div>
5319
5320<div class="doc_text">
5321
5322<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005323<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005324floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005325types however.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005326<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005327 declare float @llvm.powi.f32(float %Val, i32 %power)
5328 declare double @llvm.powi.f64(double %Val, i32 %power)
5329 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5330 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5331 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005332</pre>
5333
5334<h5>Overview:</h5>
5335
5336<p>
5337The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5338specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005339multiplications is not defined. When a vector of floating point type is
5340used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005341</p>
5342
5343<h5>Arguments:</h5>
5344
5345<p>
5346The second argument is an integer power, and the first is a value to raise to
5347that power.
5348</p>
5349
5350<h5>Semantics:</h5>
5351
5352<p>
5353This function returns the first value raised to the second power with an
5354unspecified sequence of rounding operations.</p>
5355</div>
5356
Dan Gohman91c284c2007-10-15 20:30:11 +00005357<!-- _______________________________________________________________________ -->
5358<div class="doc_subsubsection">
5359 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5360</div>
5361
5362<div class="doc_text">
5363
5364<h5>Syntax:</h5>
5365<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5366floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005367types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005368<pre>
5369 declare float @llvm.sin.f32(float %Val)
5370 declare double @llvm.sin.f64(double %Val)
5371 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5372 declare fp128 @llvm.sin.f128(fp128 %Val)
5373 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5374</pre>
5375
5376<h5>Overview:</h5>
5377
5378<p>
5379The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5380</p>
5381
5382<h5>Arguments:</h5>
5383
5384<p>
5385The argument and return value are floating point numbers of the same type.
5386</p>
5387
5388<h5>Semantics:</h5>
5389
5390<p>
5391This function returns the sine of the specified operand, returning the
5392same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005393conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005394</div>
5395
5396<!-- _______________________________________________________________________ -->
5397<div class="doc_subsubsection">
5398 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5399</div>
5400
5401<div class="doc_text">
5402
5403<h5>Syntax:</h5>
5404<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5405floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005406types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005407<pre>
5408 declare float @llvm.cos.f32(float %Val)
5409 declare double @llvm.cos.f64(double %Val)
5410 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5411 declare fp128 @llvm.cos.f128(fp128 %Val)
5412 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5413</pre>
5414
5415<h5>Overview:</h5>
5416
5417<p>
5418The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5419</p>
5420
5421<h5>Arguments:</h5>
5422
5423<p>
5424The argument and return value are floating point numbers of the same type.
5425</p>
5426
5427<h5>Semantics:</h5>
5428
5429<p>
5430This function returns the cosine of the specified operand, returning the
5431same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005432conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005433</div>
5434
5435<!-- _______________________________________________________________________ -->
5436<div class="doc_subsubsection">
5437 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5438</div>
5439
5440<div class="doc_text">
5441
5442<h5>Syntax:</h5>
5443<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5444floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005445types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005446<pre>
5447 declare float @llvm.pow.f32(float %Val, float %Power)
5448 declare double @llvm.pow.f64(double %Val, double %Power)
5449 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5450 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5451 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5452</pre>
5453
5454<h5>Overview:</h5>
5455
5456<p>
5457The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5458specified (positive or negative) power.
5459</p>
5460
5461<h5>Arguments:</h5>
5462
5463<p>
5464The second argument is a floating point power, and the first is a value to
5465raise to that power.
5466</p>
5467
5468<h5>Semantics:</h5>
5469
5470<p>
5471This function returns the first value raised to the second power,
5472returning the
5473same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005474conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005475</div>
5476
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005477
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005478<!-- ======================================================================= -->
5479<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005480 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005481</div>
5482
5483<div class="doc_text">
5484<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005485LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005486These allow efficient code generation for some algorithms.
5487</p>
5488
5489</div>
5490
5491<!-- _______________________________________________________________________ -->
5492<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005493 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005494</div>
5495
5496<div class="doc_text">
5497
5498<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005499<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohman0e451ce2008-10-14 16:51:45 +00005500type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005501<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005502 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5503 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5504 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005505</pre>
5506
5507<h5>Overview:</h5>
5508
5509<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005510The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005511values with an even number of bytes (positive multiple of 16 bits). These are
5512useful for performing operations on data that is not in the target's native
5513byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005514</p>
5515
5516<h5>Semantics:</h5>
5517
5518<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005519The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005520and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5521intrinsic returns an i32 value that has the four bytes of the input i32
5522swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005523i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5524<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005525additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005526</p>
5527
5528</div>
5529
5530<!-- _______________________________________________________________________ -->
5531<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005532 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005533</div>
5534
5535<div class="doc_text">
5536
5537<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005538<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohman0e451ce2008-10-14 16:51:45 +00005539width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005540<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005541 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5542 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005543 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005544 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5545 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005546</pre>
5547
5548<h5>Overview:</h5>
5549
5550<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005551The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5552value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005553</p>
5554
5555<h5>Arguments:</h5>
5556
5557<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005558The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005559integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005560</p>
5561
5562<h5>Semantics:</h5>
5563
5564<p>
5565The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5566</p>
5567</div>
5568
5569<!-- _______________________________________________________________________ -->
5570<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005571 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005572</div>
5573
5574<div class="doc_text">
5575
5576<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005577<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005578integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005579<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005580 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5581 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005582 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005583 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5584 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005585</pre>
5586
5587<h5>Overview:</h5>
5588
5589<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005590The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5591leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005592</p>
5593
5594<h5>Arguments:</h5>
5595
5596<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005597The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005598integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005599</p>
5600
5601<h5>Semantics:</h5>
5602
5603<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005604The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5605in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005606of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005607</p>
5608</div>
Chris Lattner32006282004-06-11 02:28:03 +00005609
5610
Chris Lattnereff29ab2005-05-15 19:39:26 +00005611
5612<!-- _______________________________________________________________________ -->
5613<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005614 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005615</div>
5616
5617<div class="doc_text">
5618
5619<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005620<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005621integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005622<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005623 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5624 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005625 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005626 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5627 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005628</pre>
5629
5630<h5>Overview:</h5>
5631
5632<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005633The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5634trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005635</p>
5636
5637<h5>Arguments:</h5>
5638
5639<p>
5640The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005641integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005642</p>
5643
5644<h5>Semantics:</h5>
5645
5646<p>
5647The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5648in a variable. If the src == 0 then the result is the size in bits of the type
5649of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5650</p>
5651</div>
5652
Reid Spencer497d93e2007-04-01 08:27:01 +00005653<!-- _______________________________________________________________________ -->
5654<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005655 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005656</div>
5657
5658<div class="doc_text">
5659
5660<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005661<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005662on any integer bit width.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005663<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005664 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5665 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005666</pre>
5667
5668<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005669<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005670range of bits from an integer value and returns them in the same bit width as
5671the original value.</p>
5672
5673<h5>Arguments:</h5>
5674<p>The first argument, <tt>%val</tt> and the result may be integer types of
5675any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005676arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005677
5678<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005679<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005680of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5681<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5682operates in forward mode.</p>
5683<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5684right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005685only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5686<ol>
5687 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5688 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5689 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5690 to determine the number of bits to retain.</li>
5691 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005692 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005693</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005694<p>In reverse mode, a similar computation is made except that the bits are
5695returned in the reverse order. So, for example, if <tt>X</tt> has the value
5696<tt>i16 0x0ACF (101011001111)</tt> and we apply
5697<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5698<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005699</div>
5700
Reid Spencerf86037f2007-04-11 23:23:49 +00005701<div class="doc_subsubsection">
5702 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5703</div>
5704
5705<div class="doc_text">
5706
5707<h5>Syntax:</h5>
5708<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005709on any integer bit width.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00005710<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005711 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5712 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005713</pre>
5714
5715<h5>Overview:</h5>
5716<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5717of bits in an integer value with another integer value. It returns the integer
5718with the replaced bits.</p>
5719
5720<h5>Arguments:</h5>
5721<p>The first argument, <tt>%val</tt> and the result may be integer types of
5722any bit width but they must have the same bit width. <tt>%val</tt> is the value
5723whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5724integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5725type since they specify only a bit index.</p>
5726
5727<h5>Semantics:</h5>
5728<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5729of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5730<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5731operates in forward mode.</p>
5732<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5733truncating it down to the size of the replacement area or zero extending it
5734up to that size.</p>
5735<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5736are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5737in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohman0e451ce2008-10-14 16:51:45 +00005738to the <tt>%hi</tt>th bit.</p>
Reid Spencerc6749c42007-05-14 16:50:20 +00005739<p>In reverse mode, a similar computation is made except that the bits are
5740reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohman0e451ce2008-10-14 16:51:45 +00005741<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00005742<h5>Examples:</h5>
5743<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005744 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005745 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5746 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5747 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005748 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005749</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00005750</div>
5751
Chris Lattner8ff75902004-01-06 05:31:32 +00005752<!-- ======================================================================= -->
5753<div class="doc_subsection">
5754 <a name="int_debugger">Debugger Intrinsics</a>
5755</div>
5756
5757<div class="doc_text">
5758<p>
5759The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5760are described in the <a
5761href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5762Debugging</a> document.
5763</p>
5764</div>
5765
5766
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005767<!-- ======================================================================= -->
5768<div class="doc_subsection">
5769 <a name="int_eh">Exception Handling Intrinsics</a>
5770</div>
5771
5772<div class="doc_text">
5773<p> The LLVM exception handling intrinsics (which all start with
5774<tt>llvm.eh.</tt> prefix), are described in the <a
5775href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5776Handling</a> document. </p>
5777</div>
5778
Tanya Lattner6d806e92007-06-15 20:50:54 +00005779<!-- ======================================================================= -->
5780<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005781 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005782</div>
5783
5784<div class="doc_text">
5785<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005786 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005787 the <tt>nest</tt> attribute, from a function. The result is a callable
5788 function pointer lacking the nest parameter - the caller does not need
5789 to provide a value for it. Instead, the value to use is stored in
5790 advance in a "trampoline", a block of memory usually allocated
5791 on the stack, which also contains code to splice the nest value into the
5792 argument list. This is used to implement the GCC nested function address
5793 extension.
5794</p>
5795<p>
5796 For example, if the function is
5797 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00005798 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005799<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005800 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5801 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5802 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5803 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005804</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00005805 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5806 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005807</div>
5808
5809<!-- _______________________________________________________________________ -->
5810<div class="doc_subsubsection">
5811 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5812</div>
5813<div class="doc_text">
5814<h5>Syntax:</h5>
5815<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005816declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005817</pre>
5818<h5>Overview:</h5>
5819<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005820 This fills the memory pointed to by <tt>tramp</tt> with code
5821 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005822</p>
5823<h5>Arguments:</h5>
5824<p>
5825 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5826 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5827 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005828 intrinsic. Note that the size and the alignment are target-specific - LLVM
5829 currently provides no portable way of determining them, so a front-end that
5830 generates this intrinsic needs to have some target-specific knowledge.
5831 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005832</p>
5833<h5>Semantics:</h5>
5834<p>
5835 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005836 dependent code, turning it into a function. A pointer to this function is
5837 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005838 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005839 before being called. The new function's signature is the same as that of
5840 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5841 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5842 of pointer type. Calling the new function is equivalent to calling
5843 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5844 missing <tt>nest</tt> argument. If, after calling
5845 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5846 modified, then the effect of any later call to the returned function pointer is
5847 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005848</p>
5849</div>
5850
5851<!-- ======================================================================= -->
5852<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005853 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5854</div>
5855
5856<div class="doc_text">
5857<p>
5858 These intrinsic functions expand the "universal IR" of LLVM to represent
5859 hardware constructs for atomic operations and memory synchronization. This
5860 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00005861 is aimed at a low enough level to allow any programming models or APIs
5862 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005863 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5864 hardware behavior. Just as hardware provides a "universal IR" for source
5865 languages, it also provides a starting point for developing a "universal"
5866 atomic operation and synchronization IR.
5867</p>
5868<p>
5869 These do <em>not</em> form an API such as high-level threading libraries,
5870 software transaction memory systems, atomic primitives, and intrinsic
5871 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5872 application libraries. The hardware interface provided by LLVM should allow
5873 a clean implementation of all of these APIs and parallel programming models.
5874 No one model or paradigm should be selected above others unless the hardware
5875 itself ubiquitously does so.
5876
5877</p>
5878</div>
5879
5880<!-- _______________________________________________________________________ -->
5881<div class="doc_subsubsection">
5882 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5883</div>
5884<div class="doc_text">
5885<h5>Syntax:</h5>
5886<pre>
5887declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5888i1 &lt;device&gt; )
5889
5890</pre>
5891<h5>Overview:</h5>
5892<p>
5893 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5894 specific pairs of memory access types.
5895</p>
5896<h5>Arguments:</h5>
5897<p>
5898 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5899 The first four arguments enables a specific barrier as listed below. The fith
5900 argument specifies that the barrier applies to io or device or uncached memory.
5901
5902</p>
5903 <ul>
5904 <li><tt>ll</tt>: load-load barrier</li>
5905 <li><tt>ls</tt>: load-store barrier</li>
5906 <li><tt>sl</tt>: store-load barrier</li>
5907 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005908 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005909 </ul>
5910<h5>Semantics:</h5>
5911<p>
5912 This intrinsic causes the system to enforce some ordering constraints upon
5913 the loads and stores of the program. This barrier does not indicate
5914 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5915 which they occur. For any of the specified pairs of load and store operations
5916 (f.ex. load-load, or store-load), all of the first operations preceding the
5917 barrier will complete before any of the second operations succeeding the
5918 barrier begin. Specifically the semantics for each pairing is as follows:
5919</p>
5920 <ul>
5921 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5922 after the barrier begins.</li>
5923
5924 <li><tt>ls</tt>: All loads before the barrier must complete before any
5925 store after the barrier begins.</li>
5926 <li><tt>ss</tt>: All stores before the barrier must complete before any
5927 store after the barrier begins.</li>
5928 <li><tt>sl</tt>: All stores before the barrier must complete before any
5929 load after the barrier begins.</li>
5930 </ul>
5931<p>
5932 These semantics are applied with a logical "and" behavior when more than one
5933 is enabled in a single memory barrier intrinsic.
5934</p>
5935<p>
5936 Backends may implement stronger barriers than those requested when they do not
5937 support as fine grained a barrier as requested. Some architectures do not
5938 need all types of barriers and on such architectures, these become noops.
5939</p>
5940<h5>Example:</h5>
5941<pre>
5942%ptr = malloc i32
5943 store i32 4, %ptr
5944
5945%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5946 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5947 <i>; guarantee the above finishes</i>
5948 store i32 8, %ptr <i>; before this begins</i>
5949</pre>
5950</div>
5951
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005952<!-- _______________________________________________________________________ -->
5953<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00005954 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005955</div>
5956<div class="doc_text">
5957<h5>Syntax:</h5>
5958<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00005959 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5960 any integer bit width and for different address spaces. Not all targets
5961 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005962
5963<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005964declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5965declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5966declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5967declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005968
5969</pre>
5970<h5>Overview:</h5>
5971<p>
5972 This loads a value in memory and compares it to a given value. If they are
5973 equal, it stores a new value into the memory.
5974</p>
5975<h5>Arguments:</h5>
5976<p>
Mon P Wang28873102008-06-25 08:15:39 +00005977 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005978 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5979 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5980 this integer type. While any bit width integer may be used, targets may only
5981 lower representations they support in hardware.
5982
5983</p>
5984<h5>Semantics:</h5>
5985<p>
5986 This entire intrinsic must be executed atomically. It first loads the value
5987 in memory pointed to by <tt>ptr</tt> and compares it with the value
5988 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5989 loaded value is yielded in all cases. This provides the equivalent of an
5990 atomic compare-and-swap operation within the SSA framework.
5991</p>
5992<h5>Examples:</h5>
5993
5994<pre>
5995%ptr = malloc i32
5996 store i32 4, %ptr
5997
5998%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00005999%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006000 <i>; yields {i32}:result1 = 4</i>
6001%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6002%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6003
6004%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006005%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006006 <i>; yields {i32}:result2 = 8</i>
6007%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6008
6009%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6010</pre>
6011</div>
6012
6013<!-- _______________________________________________________________________ -->
6014<div class="doc_subsubsection">
6015 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6016</div>
6017<div class="doc_text">
6018<h5>Syntax:</h5>
6019
6020<p>
6021 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6022 integer bit width. Not all targets support all bit widths however.</p>
6023<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006024declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6025declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6026declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6027declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006028
6029</pre>
6030<h5>Overview:</h5>
6031<p>
6032 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6033 the value from memory. It then stores the value in <tt>val</tt> in the memory
6034 at <tt>ptr</tt>.
6035</p>
6036<h5>Arguments:</h5>
6037
6038<p>
Mon P Wang28873102008-06-25 08:15:39 +00006039 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006040 <tt>val</tt> argument and the result must be integers of the same bit width.
6041 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6042 integer type. The targets may only lower integer representations they
6043 support.
6044</p>
6045<h5>Semantics:</h5>
6046<p>
6047 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6048 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6049 equivalent of an atomic swap operation within the SSA framework.
6050
6051</p>
6052<h5>Examples:</h5>
6053<pre>
6054%ptr = malloc i32
6055 store i32 4, %ptr
6056
6057%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006058%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006059 <i>; yields {i32}:result1 = 4</i>
6060%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6061%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6062
6063%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006064%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006065 <i>; yields {i32}:result2 = 8</i>
6066
6067%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6068%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6069</pre>
6070</div>
6071
6072<!-- _______________________________________________________________________ -->
6073<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006074 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006075
6076</div>
6077<div class="doc_text">
6078<h5>Syntax:</h5>
6079<p>
Mon P Wang28873102008-06-25 08:15:39 +00006080 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006081 integer bit width. Not all targets support all bit widths however.</p>
6082<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006083declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6084declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6085declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6086declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006087
6088</pre>
6089<h5>Overview:</h5>
6090<p>
6091 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6092 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6093</p>
6094<h5>Arguments:</h5>
6095<p>
6096
6097 The intrinsic takes two arguments, the first a pointer to an integer value
6098 and the second an integer value. The result is also an integer value. These
6099 integer types can have any bit width, but they must all have the same bit
6100 width. The targets may only lower integer representations they support.
6101</p>
6102<h5>Semantics:</h5>
6103<p>
6104 This intrinsic does a series of operations atomically. It first loads the
6105 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6106 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6107</p>
6108
6109<h5>Examples:</h5>
6110<pre>
6111%ptr = malloc i32
6112 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006113%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006114 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006115%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006116 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006117%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006118 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006119%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006120</pre>
6121</div>
6122
Mon P Wang28873102008-06-25 08:15:39 +00006123<!-- _______________________________________________________________________ -->
6124<div class="doc_subsubsection">
6125 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6126
6127</div>
6128<div class="doc_text">
6129<h5>Syntax:</h5>
6130<p>
6131 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006132 any integer bit width and for different address spaces. Not all targets
6133 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006134<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006135declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6136declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6137declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6138declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006139
6140</pre>
6141<h5>Overview:</h5>
6142<p>
6143 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6144 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6145</p>
6146<h5>Arguments:</h5>
6147<p>
6148
6149 The intrinsic takes two arguments, the first a pointer to an integer value
6150 and the second an integer value. The result is also an integer value. These
6151 integer types can have any bit width, but they must all have the same bit
6152 width. The targets may only lower integer representations they support.
6153</p>
6154<h5>Semantics:</h5>
6155<p>
6156 This intrinsic does a series of operations atomically. It first loads the
6157 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6158 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6159</p>
6160
6161<h5>Examples:</h5>
6162<pre>
6163%ptr = malloc i32
6164 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006165%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006166 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006167%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006168 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006169%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006170 <i>; yields {i32}:result3 = 2</i>
6171%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6172</pre>
6173</div>
6174
6175<!-- _______________________________________________________________________ -->
6176<div class="doc_subsubsection">
6177 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6178 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6179 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6180 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6181
6182</div>
6183<div class="doc_text">
6184<h5>Syntax:</h5>
6185<p>
6186 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6187 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006188 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6189 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006190<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006191declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6192declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6193declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6194declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006195
6196</pre>
6197
6198<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006199declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6200declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6201declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6202declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006203
6204</pre>
6205
6206<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006207declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6208declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6209declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6210declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006211
6212</pre>
6213
6214<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006215declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6216declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6217declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6218declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006219
6220</pre>
6221<h5>Overview:</h5>
6222<p>
6223 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6224 the value stored in memory at <tt>ptr</tt>. It yields the original value
6225 at <tt>ptr</tt>.
6226</p>
6227<h5>Arguments:</h5>
6228<p>
6229
6230 These intrinsics take two arguments, the first a pointer to an integer value
6231 and the second an integer value. The result is also an integer value. These
6232 integer types can have any bit width, but they must all have the same bit
6233 width. The targets may only lower integer representations they support.
6234</p>
6235<h5>Semantics:</h5>
6236<p>
6237 These intrinsics does a series of operations atomically. They first load the
6238 value stored at <tt>ptr</tt>. They then do the bitwise operation
6239 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6240 value stored at <tt>ptr</tt>.
6241</p>
6242
6243<h5>Examples:</h5>
6244<pre>
6245%ptr = malloc i32
6246 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006247%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006248 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006249%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006250 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006251%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006252 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006253%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006254 <i>; yields {i32}:result3 = FF</i>
6255%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6256</pre>
6257</div>
6258
6259
6260<!-- _______________________________________________________________________ -->
6261<div class="doc_subsubsection">
6262 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6263 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6264 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6265 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6266
6267</div>
6268<div class="doc_text">
6269<h5>Syntax:</h5>
6270<p>
6271 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6272 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006273 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6274 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006275 support all bit widths however.</p>
6276<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006277declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6278declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6279declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6280declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006281
6282</pre>
6283
6284<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006285declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6286declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6287declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6288declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006289
6290</pre>
6291
6292<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006293declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6294declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6295declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6296declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006297
6298</pre>
6299
6300<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006301declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6302declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6303declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6304declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006305
6306</pre>
6307<h5>Overview:</h5>
6308<p>
6309 These intrinsics takes the signed or unsigned minimum or maximum of
6310 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6311 original value at <tt>ptr</tt>.
6312</p>
6313<h5>Arguments:</h5>
6314<p>
6315
6316 These intrinsics take two arguments, the first a pointer to an integer value
6317 and the second an integer value. The result is also an integer value. These
6318 integer types can have any bit width, but they must all have the same bit
6319 width. The targets may only lower integer representations they support.
6320</p>
6321<h5>Semantics:</h5>
6322<p>
6323 These intrinsics does a series of operations atomically. They first load the
6324 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6325 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6326 the original value stored at <tt>ptr</tt>.
6327</p>
6328
6329<h5>Examples:</h5>
6330<pre>
6331%ptr = malloc i32
6332 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006333%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006334 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006335%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006336 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006337%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006338 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006339%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006340 <i>; yields {i32}:result3 = 8</i>
6341%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6342</pre>
6343</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006344
6345<!-- ======================================================================= -->
6346<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006347 <a name="int_general">General Intrinsics</a>
6348</div>
6349
6350<div class="doc_text">
6351<p> This class of intrinsics is designed to be generic and has
6352no specific purpose. </p>
6353</div>
6354
6355<!-- _______________________________________________________________________ -->
6356<div class="doc_subsubsection">
6357 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6358</div>
6359
6360<div class="doc_text">
6361
6362<h5>Syntax:</h5>
6363<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006364 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006365</pre>
6366
6367<h5>Overview:</h5>
6368
6369<p>
6370The '<tt>llvm.var.annotation</tt>' intrinsic
6371</p>
6372
6373<h5>Arguments:</h5>
6374
6375<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006376The first argument is a pointer to a value, the second is a pointer to a
6377global string, the third is a pointer to a global string which is the source
6378file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006379</p>
6380
6381<h5>Semantics:</h5>
6382
6383<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006384This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006385This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006386annotations. These have no other defined use, they are ignored by code
6387generation and optimization.
6388</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006389</div>
6390
Tanya Lattnerb6367882007-09-21 22:59:12 +00006391<!-- _______________________________________________________________________ -->
6392<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006393 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006394</div>
6395
6396<div class="doc_text">
6397
6398<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006399<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6400any integer bit width.
6401</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006402<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006403 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6404 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6405 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6406 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6407 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006408</pre>
6409
6410<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006411
6412<p>
6413The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006414</p>
6415
6416<h5>Arguments:</h5>
6417
6418<p>
6419The first argument is an integer value (result of some expression),
6420the second is a pointer to a global string, the third is a pointer to a global
6421string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006422It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006423</p>
6424
6425<h5>Semantics:</h5>
6426
6427<p>
6428This intrinsic allows annotations to be put on arbitrary expressions
6429with arbitrary strings. This can be useful for special purpose optimizations
6430that want to look for these annotations. These have no other defined use, they
6431are ignored by code generation and optimization.
Dan Gohman0e451ce2008-10-14 16:51:45 +00006432</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006433</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006434
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006435<!-- _______________________________________________________________________ -->
6436<div class="doc_subsubsection">
6437 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6438</div>
6439
6440<div class="doc_text">
6441
6442<h5>Syntax:</h5>
6443<pre>
6444 declare void @llvm.trap()
6445</pre>
6446
6447<h5>Overview:</h5>
6448
6449<p>
6450The '<tt>llvm.trap</tt>' intrinsic
6451</p>
6452
6453<h5>Arguments:</h5>
6454
6455<p>
6456None
6457</p>
6458
6459<h5>Semantics:</h5>
6460
6461<p>
6462This intrinsics is lowered to the target dependent trap instruction. If the
6463target does not have a trap instruction, this intrinsic will be lowered to the
6464call of the abort() function.
6465</p>
6466</div>
6467
Bill Wendling69e4adb2008-11-19 05:56:17 +00006468<!-- _______________________________________________________________________ -->
6469<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00006470 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00006471</div>
6472<div class="doc_text">
6473<h5>Syntax:</h5>
6474<pre>
6475declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
6476
6477</pre>
6478<h5>Overview:</h5>
6479<p>
6480 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
6481 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
6482 it is placed on the stack before local variables.
6483</p>
6484<h5>Arguments:</h5>
6485<p>
6486 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
6487 first argument is the value loaded from the stack guard
6488 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
6489 has enough space to hold the value of the guard.
6490</p>
6491<h5>Semantics:</h5>
6492<p>
6493 This intrinsic causes the prologue/epilogue inserter to force the position of
6494 the <tt>AllocaInst</tt> stack slot to be before local variables on the
6495 stack. This is to ensure that if a local variable on the stack is overwritten,
6496 it will destroy the value of the guard. When the function exits, the guard on
6497 the stack is checked against the original guard. If they're different, then
6498 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
6499</p>
6500</div>
6501
Chris Lattner00950542001-06-06 20:29:01 +00006502<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00006503<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006504<address>
6505 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00006506 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006507 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00006508 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006509
6510 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00006511 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006512 Last modified: $Date$
6513</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006514
Misha Brukman9d0919f2003-11-08 01:05:38 +00006515</body>
6516</html>