blob: 62f434d0fd1d5e32f2ff38ed60528a891441a58a [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Daniel Dunbara8dfb792010-02-13 09:27:52 +000017#include "X86FixupKinds.h"
Chris Lattner45762472010-02-03 21:24:49 +000018#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000019#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000020#include "llvm/MC/MCInst.h"
21#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000022using namespace llvm;
23
24namespace {
25class X86MCCodeEmitter : public MCCodeEmitter {
Argyrios Kyrtzidis8c8b9ee2010-08-15 10:27:23 +000026 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
27 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000028 const TargetMachine &TM;
29 const TargetInstrInfo &TII;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000030 MCContext &Ctx;
Chris Lattner1ac23b12010-02-05 02:18:40 +000031 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000032public:
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000033 X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000034 : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000035 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000036 }
37
38 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000039
40 unsigned getNumFixupKinds() const {
Rafael Espindolaa8c02c32010-09-30 03:11:42 +000041 return 6;
Daniel Dunbar73c55742010-02-09 22:59:55 +000042 }
43
Chris Lattner8d31de62010-02-11 21:27:18 +000044 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
45 const static MCFixupKindInfo Infos[] = {
Daniel Dunbarb36052f2010-03-19 10:43:23 +000046 { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
47 { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel },
Chris Lattner9fc05222010-07-07 22:27:31 +000048 { "reloc_pcrel_2byte", 0, 2 * 8, MCFixupKindInfo::FKF_IsPCRel },
Daniel Dunbarb36052f2010-03-19 10:43:23 +000049 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
Rafael Espindolaa8c02c32010-09-30 03:11:42 +000050 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
51 { "reloc_signed_4byte", 0, 4 * 8, 0}
Daniel Dunbar73c55742010-02-09 22:59:55 +000052 };
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000053
Chris Lattner8d31de62010-02-11 21:27:18 +000054 if (Kind < FirstTargetFixupKind)
55 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000056
Chris Lattner8d31de62010-02-11 21:27:18 +000057 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000058 "Invalid kind!");
59 return Infos[Kind - FirstTargetFixupKind];
60 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000061
Chris Lattner28249d92010-02-05 01:53:19 +000062 static unsigned GetX86RegNum(const MCOperand &MO) {
63 return X86RegisterInfo::getX86RegNum(MO.getReg());
64 }
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000065
66 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
67 // 0-7 and the difference between the 2 groups is given by the REX prefix.
68 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
69 // in 1's complement form, example:
70 //
71 // ModRM field => XMM9 => 1
72 // VEX.VVVV => XMM9 => ~9
73 //
74 // See table 4-35 of Intel AVX Programming Reference for details.
75 static unsigned char getVEXRegisterEncoding(const MCInst &MI,
76 unsigned OpNum) {
77 unsigned SrcReg = MI.getOperand(OpNum).getReg();
78 unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
Bruno Cardoso Lopese86b01c2010-07-09 18:27:43 +000079 if ((SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15) ||
80 (SrcReg >= X86::YMM8 && SrcReg <= X86::YMM15))
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000081 SrcRegNum += 8;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000082
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000083 // The registers represented through VEX_VVVV should
84 // be encoded in 1's complement form.
85 return (~SrcRegNum) & 0xf;
86 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000087
Chris Lattner37ce80e2010-02-10 06:41:02 +000088 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000089 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000090 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000091 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000092
Chris Lattner37ce80e2010-02-10 06:41:02 +000093 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
94 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000095 // Output the constant in little endian byte order.
96 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000097 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000098 Val >>= 8;
99 }
100 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000101
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000102 void EmitImmediate(const MCOperand &Disp,
Chris Lattnercf653392010-02-12 22:36:47 +0000103 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000104 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000105 SmallVectorImpl<MCFixup> &Fixups,
106 int ImmOffset = 0) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000107
Chris Lattner28249d92010-02-05 01:53:19 +0000108 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
109 unsigned RM) {
110 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
111 return RM | (RegOpcode << 3) | (Mod << 6);
112 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000113
Chris Lattner28249d92010-02-05 01:53:19 +0000114 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000115 unsigned &CurByte, raw_ostream &OS) const {
116 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000117 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000118
Chris Lattner0e73c392010-02-05 06:16:07 +0000119 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000120 unsigned &CurByte, raw_ostream &OS) const {
121 // SIB byte is in the same format as the ModRMByte.
122 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000123 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000124
125
Chris Lattner1ac23b12010-02-05 02:18:40 +0000126 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000127 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000128 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000129 SmallVectorImpl<MCFixup> &Fixups) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000130
Daniel Dunbar73c55742010-02-09 22:59:55 +0000131 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
132 SmallVectorImpl<MCFixup> &Fixups) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000133
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000134 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000135 const MCInst &MI, const TargetInstrDesc &Desc,
136 raw_ostream &OS) const;
137
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000138 void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
139 int MemOperand, const MCInst &MI,
140 raw_ostream &OS) const;
141
Chris Lattner834df192010-07-08 22:28:12 +0000142 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000143 const MCInst &MI, const TargetInstrDesc &Desc,
144 raw_ostream &OS) const;
Chris Lattner45762472010-02-03 21:24:49 +0000145};
146
147} // end anonymous namespace
148
149
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000150MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000151 TargetMachine &TM,
152 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000153 return new X86MCCodeEmitter(TM, Ctx, false);
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000154}
155
156MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000157 TargetMachine &TM,
158 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000159 return new X86MCCodeEmitter(TM, Ctx, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000160}
161
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000162/// isDisp8 - Return true if this signed displacement fits in a 8-bit
163/// sign-extended field.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000164static bool isDisp8(int Value) {
165 return Value == (signed char)Value;
166}
167
Chris Lattnercf653392010-02-12 22:36:47 +0000168/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
169/// in an instruction with the specified TSFlags.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000170static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
Chris Lattnercf653392010-02-12 22:36:47 +0000171 unsigned Size = X86II::getSizeOfImm(TSFlags);
172 bool isPCRel = X86II::isImmPCRel(TSFlags);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000173
Chris Lattnercf653392010-02-12 22:36:47 +0000174 switch (Size) {
175 default: assert(0 && "Unknown immediate size");
176 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
Chris Lattner9fc05222010-07-07 22:27:31 +0000177 case 2: return isPCRel ? MCFixupKind(X86::reloc_pcrel_2byte) : FK_Data_2;
Chris Lattnercf653392010-02-12 22:36:47 +0000178 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
Chris Lattnercf653392010-02-12 22:36:47 +0000179 case 8: assert(!isPCRel); return FK_Data_8;
180 }
181}
182
Chris Lattner8a507292010-09-29 03:33:25 +0000183/// Is32BitMemOperand - Return true if the specified instruction with a memory
184/// operand should emit the 0x67 prefix byte in 64-bit mode due to a 32-bit
185/// memory operand. Op specifies the operand # of the memoperand.
186static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
187 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
188 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
189
Nick Lewycky8892b032010-09-29 18:56:57 +0000190 if ((BaseReg.getReg() != 0 && X86::GR32RegClass.contains(BaseReg.getReg())) ||
191 (IndexReg.getReg() != 0 && X86::GR32RegClass.contains(IndexReg.getReg())))
Chris Lattner8a507292010-09-29 03:33:25 +0000192 return true;
193 return false;
194}
Chris Lattnercf653392010-02-12 22:36:47 +0000195
Chris Lattner0e73c392010-02-05 06:16:07 +0000196void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000197EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000198 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000199 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000200 // If this is a simple integer displacement that doesn't require a relocation,
201 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000202 if (DispOp.isImm()) {
Chris Lattnera08b5872010-02-16 05:03:17 +0000203 // FIXME: is this right for pc-rel encoding?? Probably need to emit this as
204 // a fixup if so.
Chris Lattner835acab2010-02-12 23:00:36 +0000205 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000206 return;
207 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000208
Chris Lattner835acab2010-02-12 23:00:36 +0000209 // If we have an immoffset, add it to the expression.
210 const MCExpr *Expr = DispOp.getExpr();
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000211
Chris Lattnera08b5872010-02-16 05:03:17 +0000212 // If the fixup is pc-relative, we need to bias the value to be relative to
213 // the start of the field, not the end of the field.
214 if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000215 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
216 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
Chris Lattnera08b5872010-02-16 05:03:17 +0000217 ImmOffset -= 4;
Chris Lattner9fc05222010-07-07 22:27:31 +0000218 if (FixupKind == MCFixupKind(X86::reloc_pcrel_2byte))
Chris Lattnerda3051a2010-07-07 22:35:13 +0000219 ImmOffset -= 2;
Chris Lattnera08b5872010-02-16 05:03:17 +0000220 if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
221 ImmOffset -= 1;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000222
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000223 if (ImmOffset)
Chris Lattnera08b5872010-02-16 05:03:17 +0000224 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000225 Ctx);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000226
Chris Lattner5dccfad2010-02-10 06:52:12 +0000227 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000228 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000229 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000230}
231
Chris Lattner1ac23b12010-02-05 02:18:40 +0000232void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
233 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000234 uint64_t TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000235 raw_ostream &OS,
236 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8a507292010-09-29 03:33:25 +0000237 const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
238 const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg);
239 const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt);
240 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000241 unsigned BaseReg = Base.getReg();
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000242
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000243 // Handle %rip relative addressing.
244 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Eric Christopher497f1eb2010-06-08 22:57:33 +0000245 assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode");
246 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000247 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000248
Chris Lattner0f53cf22010-03-18 18:10:56 +0000249 unsigned FixupKind = X86::reloc_riprel_4byte;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000250
Chris Lattner0f53cf22010-03-18 18:10:56 +0000251 // movq loads are handled with a special relocation form which allows the
252 // linker to eliminate some loads for GOT references which end up in the
253 // same linkage unit.
Jakob Stoklund Olesend0eeeeb2010-10-12 17:15:00 +0000254 if (MI.getOpcode() == X86::MOV64rm)
Chris Lattner0f53cf22010-03-18 18:10:56 +0000255 FixupKind = X86::reloc_riprel_4byte_movq_load;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000256
Chris Lattner835acab2010-02-12 23:00:36 +0000257 // rip-relative addressing is actually relative to the *next* instruction.
258 // Since an immediate can follow the mod/rm byte for an instruction, this
259 // means that we need to bias the immediate field of the instruction with
260 // the size of the immediate field. If we have this case, add it into the
261 // expression to emit.
262 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000263
Chris Lattner0f53cf22010-03-18 18:10:56 +0000264 EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
Chris Lattner835acab2010-02-12 23:00:36 +0000265 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000266 return;
267 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000268
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000269 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000270
Chris Lattnera8168ec2010-02-09 21:57:34 +0000271 // Determine whether a SIB byte is needed.
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000272 // If no BaseReg, issue a RIP relative instruction only if the MCE can
Chris Lattner1ac23b12010-02-05 02:18:40 +0000273 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
274 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000275
Chris Lattnera8168ec2010-02-09 21:57:34 +0000276 if (// The SIB byte must be used if there is an index register.
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000277 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000278 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
279 // encode to an R/M value of 4, which indicates that a SIB byte is
280 // present.
281 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000282 // If there is no base register and we're in 64-bit mode, we need a SIB
283 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
284 (!Is64BitMode || BaseReg != 0)) {
285
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000286 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000287 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000288 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000289 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000290 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000291
Chris Lattnera8168ec2010-02-09 21:57:34 +0000292 // If the base is not EBP/ESP and there is no displacement, use simple
293 // indirect register encoding, this handles addresses like [EAX]. The
294 // encoding for [EBP] with no displacement means [disp32] so we handle it
295 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000296 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000297 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000298 return;
299 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000300
Chris Lattnera8168ec2010-02-09 21:57:34 +0000301 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000302 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000303 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000304 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000305 return;
306 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000307
Chris Lattnera8168ec2010-02-09 21:57:34 +0000308 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000309 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Rafael Espindolaa8c02c32010-09-30 03:11:42 +0000310 EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
311 Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000312 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000313 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000314
Chris Lattner0e73c392010-02-05 06:16:07 +0000315 // We need a SIB byte, so start by outputting the ModR/M byte first
316 assert(IndexReg.getReg() != X86::ESP &&
317 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000318
Chris Lattner0e73c392010-02-05 06:16:07 +0000319 bool ForceDisp32 = false;
320 bool ForceDisp8 = false;
321 if (BaseReg == 0) {
322 // If there is no base register, we emit the special case SIB byte with
323 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000324 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000325 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000326 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000327 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000328 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000329 ForceDisp32 = true;
Chris Lattner618d0ed2010-03-18 20:04:36 +0000330 } else if (Disp.getImm() == 0 &&
331 // Base reg can't be anything that ends up with '5' as the base
332 // reg, it is the magic [*] nomenclature that indicates no base.
333 BaseRegNo != N86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000334 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000335 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000336 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000337 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000338 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000339 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
340 } else {
341 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000342 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000343 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000344
Chris Lattner0e73c392010-02-05 06:16:07 +0000345 // Calculate what the SS field value should be...
346 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
347 unsigned SS = SSTable[Scale.getImm()];
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000348
Chris Lattner0e73c392010-02-05 06:16:07 +0000349 if (BaseReg == 0) {
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000350 // Handle the SIB byte for the case where there is no base, see Intel
Chris Lattner0e73c392010-02-05 06:16:07 +0000351 // Manual 2A, table 2-7. The displacement has already been output.
352 unsigned IndexRegNo;
353 if (IndexReg.getReg())
354 IndexRegNo = GetX86RegNum(IndexReg);
355 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
356 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000357 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000358 } else {
359 unsigned IndexRegNo;
360 if (IndexReg.getReg())
361 IndexRegNo = GetX86RegNum(IndexReg);
362 else
363 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000364 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000365 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000366
Chris Lattner0e73c392010-02-05 06:16:07 +0000367 // Do we need to output a displacement?
368 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000369 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000370 else if (ForceDisp32 || Disp.getImm() != 0)
Rafael Espindolaa8c02c32010-09-30 03:11:42 +0000371 EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
372 Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000373}
374
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000375/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
376/// called VEX.
377void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000378 int MemOperand, const MCInst &MI,
379 const TargetInstrDesc &Desc,
380 raw_ostream &OS) const {
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000381 bool HasVEX_4V = false;
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000382 if ((TSFlags >> 32) & X86II::VEX_4V)
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000383 HasVEX_4V = true;
384
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000385 // VEX_R: opcode externsion equivalent to REX.R in
386 // 1's complement (inverted) form
387 //
388 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
389 // 0: Same as REX_R=1 (64 bit mode only)
390 //
391 unsigned char VEX_R = 0x1;
392
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000393 // VEX_X: equivalent to REX.X, only used when a
394 // register is used for index in SIB Byte.
395 //
396 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
397 // 0: Same as REX.X=1 (64-bit mode only)
398 unsigned char VEX_X = 0x1;
399
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000400 // VEX_B:
401 //
402 // 1: Same as REX_B=0 (ignored in 32-bit mode)
403 // 0: Same as REX_B=1 (64 bit mode only)
404 //
405 unsigned char VEX_B = 0x1;
406
407 // VEX_W: opcode specific (use like REX.W, or used for
408 // opcode extension, or ignored, depending on the opcode byte)
409 unsigned char VEX_W = 0;
410
411 // VEX_5M (VEX m-mmmmm field):
412 //
413 // 0b00000: Reserved for future use
414 // 0b00001: implied 0F leading opcode
415 // 0b00010: implied 0F 38 leading opcode bytes
416 // 0b00011: implied 0F 3A leading opcode bytes
417 // 0b00100-0b11111: Reserved for future use
418 //
419 unsigned char VEX_5M = 0x1;
420
421 // VEX_4V (VEX vvvv field): a register specifier
422 // (in 1's complement form) or 1111 if unused.
423 unsigned char VEX_4V = 0xf;
424
425 // VEX_L (Vector Length):
426 //
427 // 0: scalar or 128-bit vector
428 // 1: 256-bit vector
429 //
430 unsigned char VEX_L = 0;
431
432 // VEX_PP: opcode extension providing equivalent
433 // functionality of a SIMD prefix
434 //
435 // 0b00: None
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000436 // 0b01: 66
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000437 // 0b10: F3
438 // 0b11: F2
439 //
440 unsigned char VEX_PP = 0;
441
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000442 // Encode the operand size opcode prefix as needed.
443 if (TSFlags & X86II::OpSize)
444 VEX_PP = 0x01;
445
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000446 if ((TSFlags >> 32) & X86II::VEX_W)
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000447 VEX_W = 1;
448
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000449 if ((TSFlags >> 32) & X86II::VEX_L)
Bruno Cardoso Lopes87a85c72010-07-13 21:07:28 +0000450 VEX_L = 1;
451
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000452 switch (TSFlags & X86II::Op0Mask) {
453 default: assert(0 && "Invalid prefix!");
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000454 case X86II::T8: // 0F 38
455 VEX_5M = 0x2;
456 break;
457 case X86II::TA: // 0F 3A
458 VEX_5M = 0x3;
459 break;
460 case X86II::TF: // F2 0F 38
461 VEX_PP = 0x3;
462 VEX_5M = 0x2;
463 break;
464 case X86II::XS: // F3 0F
465 VEX_PP = 0x2;
466 break;
467 case X86II::XD: // F2 0F
468 VEX_PP = 0x3;
469 break;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000470 case X86II::TB: // Bypass: Not used by VEX
471 case 0:
472 break; // No prefix!
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000473 }
474
Bruno Cardoso Lopese86b01c2010-07-09 18:27:43 +0000475 // Set the vector length to 256-bit if YMM0-YMM15 is used
476 for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
477 if (!MI.getOperand(i).isReg())
478 continue;
479 unsigned SrcReg = MI.getOperand(i).getReg();
480 if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
481 VEX_L = 1;
482 }
483
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000484 unsigned NumOps = MI.getNumOperands();
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000485 unsigned CurOp = 0;
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000486 bool IsDestMem = false;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000487
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000488 switch (TSFlags & X86II::FormMask) {
489 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000490 case X86II::MRMDestMem:
491 IsDestMem = true;
492 // The important info for the VEX prefix is never beyond the address
493 // registers. Don't check beyond that.
494 NumOps = CurOp = X86::AddrNumOperands;
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000495 case X86II::MRM0m: case X86II::MRM1m:
496 case X86II::MRM2m: case X86II::MRM3m:
497 case X86II::MRM4m: case X86II::MRM5m:
498 case X86II::MRM6m: case X86II::MRM7m:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000499 case X86II::MRMSrcMem:
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000500 case X86II::MRMSrcReg:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000501 if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000502 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000503 VEX_R = 0x0;
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000504 CurOp++;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000505
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000506 if (HasVEX_4V) {
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000507 VEX_4V = getVEXRegisterEncoding(MI, IsDestMem ? CurOp-1 : CurOp);
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000508 CurOp++;
509 }
510
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000511 // To only check operands before the memory address ones, start
512 // the search from the begining
513 if (IsDestMem)
514 CurOp = 0;
515
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000516 // If the last register should be encoded in the immediate field
Bruno Cardoso Lopes01066802010-07-06 22:38:32 +0000517 // do not use any bit from VEX prefix to this register, ignore it
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000518 if ((TSFlags >> 32) & X86II::VEX_I8IMM)
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000519 NumOps--;
520
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000521 for (; CurOp != NumOps; ++CurOp) {
522 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000523 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
524 VEX_B = 0x0;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000525 if (!VEX_B && MO.isReg() &&
526 ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000527 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
528 VEX_X = 0x0;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000529 }
530 break;
Bruno Cardoso Lopescf6ca032010-07-21 08:56:24 +0000531 default: // MRMDestReg, MRM0r-MRM7r, RawFrm
532 if (!MI.getNumOperands())
533 break;
534
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000535 if (MI.getOperand(CurOp).isReg() &&
536 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
537 VEX_B = 0;
538
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000539 if (HasVEX_4V)
540 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
541
542 CurOp++;
543 for (; CurOp != NumOps; ++CurOp) {
544 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000545 if (MO.isReg() && !HasVEX_4V &&
546 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
547 VEX_R = 0x0;
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000548 }
549 break;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000550 }
551
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000552 // Emit segment override opcode prefix as needed.
553 EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
554
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000555 // VEX opcode prefix can have 2 or 3 bytes
556 //
557 // 3 bytes:
558 // +-----+ +--------------+ +-------------------+
559 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
560 // +-----+ +--------------+ +-------------------+
561 // 2 bytes:
562 // +-----+ +-------------------+
563 // | C5h | | R | vvvv | L | pp |
564 // +-----+ +-------------------+
565 //
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000566 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
567
Bruno Cardoso Lopesf5cd8c52010-07-02 22:06:54 +0000568 if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000569 EmitByte(0xC5, CurByte, OS);
570 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
571 return;
572 }
573
574 // 3 byte VEX prefix
575 EmitByte(0xC4, CurByte, OS);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000576 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000577 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
578}
579
Chris Lattner39a612e2010-02-05 22:10:22 +0000580/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
581/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
582/// size, and 3) use of X86-64 extended registers.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000583static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
Chris Lattner39a612e2010-02-05 22:10:22 +0000584 const TargetInstrDesc &Desc) {
Chris Lattner7e851802010-02-11 22:39:10 +0000585 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000586 if (TSFlags & X86II::REX_W)
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000587 REX |= 1 << 3; // set REX.W
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000588
Chris Lattner39a612e2010-02-05 22:10:22 +0000589 if (MI.getNumOperands() == 0) return REX;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000590
Chris Lattner39a612e2010-02-05 22:10:22 +0000591 unsigned NumOps = MI.getNumOperands();
592 // FIXME: MCInst should explicitize the two-addrness.
593 bool isTwoAddr = NumOps > 1 &&
594 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000595
Chris Lattner39a612e2010-02-05 22:10:22 +0000596 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
597 unsigned i = isTwoAddr ? 1 : 0;
598 for (; i != NumOps; ++i) {
599 const MCOperand &MO = MI.getOperand(i);
600 if (!MO.isReg()) continue;
601 unsigned Reg = MO.getReg();
602 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000603 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
604 // that returns non-zero.
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000605 REX |= 0x40; // REX fixed encoding prefix
Chris Lattner39a612e2010-02-05 22:10:22 +0000606 break;
607 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000608
Chris Lattner39a612e2010-02-05 22:10:22 +0000609 switch (TSFlags & X86II::FormMask) {
610 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
611 case X86II::MRMSrcReg:
612 if (MI.getOperand(0).isReg() &&
613 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000614 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000615 i = isTwoAddr ? 2 : 1;
616 for (; i != NumOps; ++i) {
617 const MCOperand &MO = MI.getOperand(i);
618 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000619 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000620 }
621 break;
622 case X86II::MRMSrcMem: {
623 if (MI.getOperand(0).isReg() &&
624 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000625 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000626 unsigned Bit = 0;
627 i = isTwoAddr ? 2 : 1;
628 for (; i != NumOps; ++i) {
629 const MCOperand &MO = MI.getOperand(i);
630 if (MO.isReg()) {
631 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000632 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000633 Bit++;
634 }
635 }
636 break;
637 }
638 case X86II::MRM0m: case X86II::MRM1m:
639 case X86II::MRM2m: case X86II::MRM3m:
640 case X86II::MRM4m: case X86II::MRM5m:
641 case X86II::MRM6m: case X86II::MRM7m:
642 case X86II::MRMDestMem: {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000643 unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
Chris Lattner39a612e2010-02-05 22:10:22 +0000644 i = isTwoAddr ? 1 : 0;
645 if (NumOps > e && MI.getOperand(e).isReg() &&
646 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000647 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000648 unsigned Bit = 0;
649 for (; i != e; ++i) {
650 const MCOperand &MO = MI.getOperand(i);
651 if (MO.isReg()) {
652 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000653 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000654 Bit++;
655 }
656 }
657 break;
658 }
659 default:
660 if (MI.getOperand(0).isReg() &&
661 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000662 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000663 i = isTwoAddr ? 2 : 1;
664 for (unsigned e = NumOps; i != e; ++i) {
665 const MCOperand &MO = MI.getOperand(i);
666 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000667 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000668 }
669 break;
670 }
671 return REX;
672}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000673
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000674/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
675void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
676 unsigned &CurByte, int MemOperand,
677 const MCInst &MI,
Chris Lattner9d199892010-07-04 22:56:10 +0000678 raw_ostream &OS) const {
Chris Lattner1e80f402010-02-03 21:57:59 +0000679 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000680 default: assert(0 && "Invalid segment!");
Chris Lattner834df192010-07-08 22:28:12 +0000681 case 0:
682 // No segment override, check for explicit one on memory operand.
Chris Lattner599b5312010-07-08 23:46:44 +0000683 if (MemOperand != -1) { // If the instruction has a memory operand.
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000684 switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
Chris Lattner834df192010-07-08 22:28:12 +0000685 default: assert(0 && "Unknown segment register!");
686 case 0: break;
687 case X86::CS: EmitByte(0x2E, CurByte, OS); break;
688 case X86::SS: EmitByte(0x36, CurByte, OS); break;
689 case X86::DS: EmitByte(0x3E, CurByte, OS); break;
690 case X86::ES: EmitByte(0x26, CurByte, OS); break;
691 case X86::FS: EmitByte(0x64, CurByte, OS); break;
692 case X86::GS: EmitByte(0x65, CurByte, OS); break;
693 }
694 }
695 break;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000696 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000697 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000698 break;
699 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000700 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000701 break;
702 }
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000703}
704
705/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
706///
707/// MemOperand is the operand # of the start of a memory operand if present. If
708/// Not present, it is -1.
709void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
710 int MemOperand, const MCInst &MI,
711 const TargetInstrDesc &Desc,
712 raw_ostream &OS) const {
713
714 // Emit the lock opcode prefix as needed.
715 if (TSFlags & X86II::LOCK)
716 EmitByte(0xF0, CurByte, OS);
717
718 // Emit segment override opcode prefix as needed.
719 EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000720
Chris Lattner1e80f402010-02-03 21:57:59 +0000721 // Emit the repeat opcode prefix as needed.
722 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000723 EmitByte(0xF3, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000724
Chris Lattner1e80f402010-02-03 21:57:59 +0000725 // Emit the address size opcode prefix as needed.
Chris Lattner8a507292010-09-29 03:33:25 +0000726 if ((TSFlags & X86II::AdSize) ||
727 (MemOperand != -1 && Is64BitMode && Is32BitMemOperand(MI, MemOperand)))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000728 EmitByte(0x67, CurByte, OS);
Chris Lattner78a19462010-09-29 03:43:43 +0000729
730 // Emit the operand size opcode prefix as needed.
731 if (TSFlags & X86II::OpSize)
732 EmitByte(0x66, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000733
Chris Lattner1e80f402010-02-03 21:57:59 +0000734 bool Need0FPrefix = false;
735 switch (TSFlags & X86II::Op0Mask) {
736 default: assert(0 && "Invalid prefix!");
737 case 0: break; // No prefix!
738 case X86II::REP: break; // already handled.
739 case X86II::TB: // Two-byte opcode prefix
740 case X86II::T8: // 0F 38
741 case X86II::TA: // 0F 3A
742 Need0FPrefix = true;
743 break;
744 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000745 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000746 Need0FPrefix = true;
747 break;
748 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000749 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000750 Need0FPrefix = true;
751 break;
752 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000753 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000754 Need0FPrefix = true;
755 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000756 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
757 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
758 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
759 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
760 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
761 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
762 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
763 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000764 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000765
Chris Lattner1e80f402010-02-03 21:57:59 +0000766 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000767 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000768 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000769 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000770 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000771 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000772
Chris Lattner1e80f402010-02-03 21:57:59 +0000773 // 0x0F escape code must be emitted just before the opcode.
774 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000775 EmitByte(0x0F, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000776
Chris Lattner1e80f402010-02-03 21:57:59 +0000777 // FIXME: Pull this up into previous switch if REX can be moved earlier.
778 switch (TSFlags & X86II::Op0Mask) {
779 case X86II::TF: // F2 0F 38
780 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000781 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000782 break;
783 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000784 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000785 break;
786 }
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000787}
788
789void X86MCCodeEmitter::
790EncodeInstruction(const MCInst &MI, raw_ostream &OS,
791 SmallVectorImpl<MCFixup> &Fixups) const {
792 unsigned Opcode = MI.getOpcode();
793 const TargetInstrDesc &Desc = TII.get(Opcode);
794 uint64_t TSFlags = Desc.TSFlags;
795
Chris Lattner757e8d62010-07-09 00:17:50 +0000796 // Pseudo instructions don't get encoded.
797 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
798 return;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000799
Chris Lattner834df192010-07-08 22:28:12 +0000800 // If this is a two-address instruction, skip one of the register operands.
801 // FIXME: This should be handled during MCInst lowering.
802 unsigned NumOps = Desc.getNumOperands();
803 unsigned CurOp = 0;
804 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
805 ++CurOp;
806 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
807 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
808 --NumOps;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000809
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000810 // Keep track of the current byte being emitted.
811 unsigned CurByte = 0;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000812
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000813 // Is this instruction encoded using the AVX VEX prefix?
814 bool HasVEXPrefix = false;
815
816 // It uses the VEX.VVVV field?
817 bool HasVEX_4V = false;
818
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000819 if ((TSFlags >> 32) & X86II::VEX)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000820 HasVEXPrefix = true;
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000821 if ((TSFlags >> 32) & X86II::VEX_4V)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000822 HasVEX_4V = true;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000823
Chris Lattner548abfc2010-10-03 18:08:05 +0000824
Chris Lattner834df192010-07-08 22:28:12 +0000825 // Determine where the memory operand starts, if present.
826 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
827 if (MemoryOperand != -1) MemoryOperand += CurOp;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000828
Chris Lattner834df192010-07-08 22:28:12 +0000829 if (!HasVEXPrefix)
830 EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
831 else
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000832 EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000833
Chris Lattner548abfc2010-10-03 18:08:05 +0000834
Chris Lattner74a21512010-02-05 19:24:13 +0000835 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner548abfc2010-10-03 18:08:05 +0000836
837 if ((TSFlags >> 32) & X86II::Has3DNow0F0FOpcode)
838 BaseOpcode = 0x0F; // Weird 3DNow! encoding.
839
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000840 unsigned SrcRegNum = 0;
Chris Lattner1e80f402010-02-03 21:57:59 +0000841 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000842 case X86II::MRMInitReg:
843 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000844 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000845 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner757e8d62010-07-09 00:17:50 +0000846 case X86II::Pseudo:
847 assert(0 && "Pseudo instruction shouldn't be emitted");
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000848 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000849 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000850 break;
Chris Lattner59f8a6a2010-08-19 01:18:43 +0000851
Chris Lattner40cc3f82010-09-17 18:02:29 +0000852 case X86II::RawFrmImm8:
853 EmitByte(BaseOpcode, CurByte, OS);
854 EmitImmediate(MI.getOperand(CurOp++),
855 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
856 CurByte, OS, Fixups);
857 EmitImmediate(MI.getOperand(CurOp++), 1, FK_Data_1, CurByte, OS, Fixups);
858 break;
Chris Lattner59f8a6a2010-08-19 01:18:43 +0000859 case X86II::RawFrmImm16:
860 EmitByte(BaseOpcode, CurByte, OS);
861 EmitImmediate(MI.getOperand(CurOp++),
862 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
863 CurByte, OS, Fixups);
864 EmitImmediate(MI.getOperand(CurOp++), 2, FK_Data_2, CurByte, OS, Fixups);
865 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000866
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000867 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000868 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000869 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000870
Chris Lattner28249d92010-02-05 01:53:19 +0000871 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000872 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000873 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000874 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000875 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000876 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000877
Chris Lattner1ac23b12010-02-05 02:18:40 +0000878 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000879 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000880 SrcRegNum = CurOp + X86::AddrNumOperands;
881
882 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
883 SrcRegNum++;
884
Chris Lattner1ac23b12010-02-05 02:18:40 +0000885 EmitMemModRMByte(MI, CurOp,
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000886 GetX86RegNum(MI.getOperand(SrcRegNum)),
Chris Lattner835acab2010-02-12 23:00:36 +0000887 TSFlags, CurByte, OS, Fixups);
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000888 CurOp = SrcRegNum + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000889 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000890
Chris Lattnerdaa45552010-02-05 19:04:37 +0000891 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000892 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000893 SrcRegNum = CurOp + 1;
894
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000895 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000896 SrcRegNum++;
897
898 EmitRegModRMByte(MI.getOperand(SrcRegNum),
899 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
900 CurOp = SrcRegNum + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000901 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000902
Chris Lattnerdaa45552010-02-05 19:04:37 +0000903 case X86II::MRMSrcMem: {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000904 int AddrOperands = X86::AddrNumOperands;
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000905 unsigned FirstMemOp = CurOp+1;
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000906 if (HasVEX_4V) {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000907 ++AddrOperands;
908 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
909 }
Chris Lattnerdaa45552010-02-05 19:04:37 +0000910
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000911 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000912
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000913 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000914 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000915 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000916 break;
917 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000918
919 case X86II::MRM0r: case X86II::MRM1r:
920 case X86II::MRM2r: case X86II::MRM3r:
921 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000922 case X86II::MRM6r: case X86II::MRM7r:
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000923 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
924 CurOp++;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000925 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000926 EmitRegModRMByte(MI.getOperand(CurOp++),
927 (TSFlags & X86II::FormMask)-X86II::MRM0r,
928 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000929 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000930 case X86II::MRM0m: case X86II::MRM1m:
931 case X86II::MRM2m: case X86II::MRM3m:
932 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000933 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000934 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000935 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000936 TSFlags, CurByte, OS, Fixups);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000937 CurOp += X86::AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000938 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000939 case X86II::MRM_C1:
940 EmitByte(BaseOpcode, CurByte, OS);
941 EmitByte(0xC1, CurByte, OS);
942 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000943 case X86II::MRM_C2:
944 EmitByte(BaseOpcode, CurByte, OS);
945 EmitByte(0xC2, CurByte, OS);
946 break;
947 case X86II::MRM_C3:
948 EmitByte(BaseOpcode, CurByte, OS);
949 EmitByte(0xC3, CurByte, OS);
950 break;
951 case X86II::MRM_C4:
952 EmitByte(BaseOpcode, CurByte, OS);
953 EmitByte(0xC4, CurByte, OS);
954 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000955 case X86II::MRM_C8:
956 EmitByte(BaseOpcode, CurByte, OS);
957 EmitByte(0xC8, CurByte, OS);
958 break;
959 case X86II::MRM_C9:
960 EmitByte(BaseOpcode, CurByte, OS);
961 EmitByte(0xC9, CurByte, OS);
962 break;
963 case X86II::MRM_E8:
964 EmitByte(BaseOpcode, CurByte, OS);
965 EmitByte(0xE8, CurByte, OS);
966 break;
967 case X86II::MRM_F0:
968 EmitByte(BaseOpcode, CurByte, OS);
969 EmitByte(0xF0, CurByte, OS);
970 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000971 case X86II::MRM_F8:
972 EmitByte(BaseOpcode, CurByte, OS);
973 EmitByte(0xF8, CurByte, OS);
974 break;
Chris Lattnerb7790332010-02-13 03:42:24 +0000975 case X86II::MRM_F9:
976 EmitByte(BaseOpcode, CurByte, OS);
977 EmitByte(0xF9, CurByte, OS);
978 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000979 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000980
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000981 // If there is a remaining operand, it must be a trailing immediate. Emit it
982 // according to the right size for the instruction.
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000983 if (CurOp != NumOps) {
984 // The last source register of a 4 operand instruction in AVX is encoded
985 // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
Bruno Cardoso Lopese943c152010-08-26 01:02:53 +0000986 if ((TSFlags >> 32) & X86II::VEX_I8IMM) {
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000987 const MCOperand &MO = MI.getOperand(CurOp++);
988 bool IsExtReg =
989 X86InstrInfo::isX86_64ExtendedReg(MO.getReg());
990 unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
991 RegNum |= GetX86RegNum(MO) << 4;
992 EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
993 Fixups);
Rafael Espindolaa8c02c32010-09-30 03:11:42 +0000994 } else {
995 unsigned FixupKind;
996 if (MI.getOpcode() == X86::MOV64ri32 || MI.getOpcode() == X86::MOV64mi32)
997 FixupKind = X86::reloc_signed_4byte;
998 else
999 FixupKind = getImmFixupKind(TSFlags);
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001000 EmitImmediate(MI.getOperand(CurOp++),
Rafael Espindolaa8c02c32010-09-30 03:11:42 +00001001 X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001002 CurByte, OS, Fixups);
Rafael Espindolaa8c02c32010-09-30 03:11:42 +00001003 }
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001004 }
1005
Chris Lattner548abfc2010-10-03 18:08:05 +00001006 if ((TSFlags >> 32) & X86II::Has3DNow0F0FOpcode)
1007 EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1008
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001009
Chris Lattner28249d92010-02-05 01:53:19 +00001010#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +00001011 // FIXME: Verify.
1012 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +00001013 errs() << "Cannot encode all operands of: ";
1014 MI.dump();
1015 errs() << '\n';
1016 abort();
1017 }
1018#endif
Chris Lattner45762472010-02-03 21:24:49 +00001019}