blob: 886812be5faa58a76bfb0af8590b45ff3fd47ace [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chad Rosier618c1db2011-12-01 03:08:23 +000077#include "llvm/Target/TargetLibraryInfo.h"
Chris Lattner95255282006-06-28 23:17:24 +000078#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000079#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000080#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000081#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000082#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000083#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000084#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000085#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000086#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000087#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000088#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000089#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000090using namespace llvm;
91
Chris Lattner3b27d682006-12-19 22:30:33 +000092STATISTIC(NumArrayLenItCounts,
93 "Number of trip counts computed with array length");
94STATISTIC(NumTripCountsComputed,
95 "Number of loops with predictable loop counts");
96STATISTIC(NumTripCountsNotComputed,
97 "Number of loops without predictable loop counts");
98STATISTIC(NumBruteForceTripCountsComputed,
99 "Number of loops with trip counts computed by force");
100
Dan Gohman844731a2008-05-13 00:00:25 +0000101static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000102MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000104 "symbolically execute a constant "
105 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000106 cl::init(100));
107
Owen Anderson2ab36d32010-10-12 19:48:12 +0000108INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
109 "Scalar Evolution Analysis", false, true)
110INITIALIZE_PASS_DEPENDENCY(LoopInfo)
111INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Chad Rosier618c1db2011-12-01 03:08:23 +0000112INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000113INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000114 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000115char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000116
117//===----------------------------------------------------------------------===//
118// SCEV class definitions
119//===----------------------------------------------------------------------===//
120
121//===----------------------------------------------------------------------===//
122// Implementation of the SCEV class.
123//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000124
Chris Lattner53e677a2004-04-02 20:23:17 +0000125void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000126 print(dbgs());
127 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000128}
129
Dan Gohman4ce32db2010-11-17 22:27:42 +0000130void SCEV::print(raw_ostream &OS) const {
131 switch (getSCEVType()) {
132 case scConstant:
133 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
134 return;
135 case scTruncate: {
136 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
137 const SCEV *Op = Trunc->getOperand();
138 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
139 << *Trunc->getType() << ")";
140 return;
141 }
142 case scZeroExtend: {
143 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
144 const SCEV *Op = ZExt->getOperand();
145 OS << "(zext " << *Op->getType() << " " << *Op << " to "
146 << *ZExt->getType() << ")";
147 return;
148 }
149 case scSignExtend: {
150 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
151 const SCEV *Op = SExt->getOperand();
152 OS << "(sext " << *Op->getType() << " " << *Op << " to "
153 << *SExt->getType() << ")";
154 return;
155 }
156 case scAddRecExpr: {
157 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
158 OS << "{" << *AR->getOperand(0);
159 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
160 OS << ",+," << *AR->getOperand(i);
161 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000162 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000163 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000164 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000165 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000166 if (AR->getNoWrapFlags(FlagNW) &&
167 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
168 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000169 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
170 OS << ">";
171 return;
172 }
173 case scAddExpr:
174 case scMulExpr:
175 case scUMaxExpr:
176 case scSMaxExpr: {
177 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000178 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000179 switch (NAry->getSCEVType()) {
180 case scAddExpr: OpStr = " + "; break;
181 case scMulExpr: OpStr = " * "; break;
182 case scUMaxExpr: OpStr = " umax "; break;
183 case scSMaxExpr: OpStr = " smax "; break;
184 }
185 OS << "(";
186 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
187 I != E; ++I) {
188 OS << **I;
189 if (llvm::next(I) != E)
190 OS << OpStr;
191 }
192 OS << ")";
Andrew Trick121d78f2011-11-29 02:06:35 +0000193 switch (NAry->getSCEVType()) {
194 case scAddExpr:
195 case scMulExpr:
196 if (NAry->getNoWrapFlags(FlagNUW))
197 OS << "<nuw>";
198 if (NAry->getNoWrapFlags(FlagNSW))
199 OS << "<nsw>";
200 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000201 return;
202 }
203 case scUDivExpr: {
204 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
205 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
206 return;
207 }
208 case scUnknown: {
209 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000210 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000211 if (U->isSizeOf(AllocTy)) {
212 OS << "sizeof(" << *AllocTy << ")";
213 return;
214 }
215 if (U->isAlignOf(AllocTy)) {
216 OS << "alignof(" << *AllocTy << ")";
217 return;
218 }
Andrew Trick635f7182011-03-09 17:23:39 +0000219
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000220 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000221 Constant *FieldNo;
222 if (U->isOffsetOf(CTy, FieldNo)) {
223 OS << "offsetof(" << *CTy << ", ";
224 WriteAsOperand(OS, FieldNo, false);
225 OS << ")";
226 return;
227 }
Andrew Trick635f7182011-03-09 17:23:39 +0000228
Dan Gohman4ce32db2010-11-17 22:27:42 +0000229 // Otherwise just print it normally.
230 WriteAsOperand(OS, U->getValue(), false);
231 return;
232 }
233 case scCouldNotCompute:
234 OS << "***COULDNOTCOMPUTE***";
235 return;
236 default: break;
237 }
238 llvm_unreachable("Unknown SCEV kind!");
239}
240
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000241Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000242 switch (getSCEVType()) {
243 case scConstant:
244 return cast<SCEVConstant>(this)->getType();
245 case scTruncate:
246 case scZeroExtend:
247 case scSignExtend:
248 return cast<SCEVCastExpr>(this)->getType();
249 case scAddRecExpr:
250 case scMulExpr:
251 case scUMaxExpr:
252 case scSMaxExpr:
253 return cast<SCEVNAryExpr>(this)->getType();
254 case scAddExpr:
255 return cast<SCEVAddExpr>(this)->getType();
256 case scUDivExpr:
257 return cast<SCEVUDivExpr>(this)->getType();
258 case scUnknown:
259 return cast<SCEVUnknown>(this)->getType();
260 case scCouldNotCompute:
261 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +0000262 default:
263 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman4ce32db2010-11-17 22:27:42 +0000264 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000265}
266
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000267bool SCEV::isZero() const {
268 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
269 return SC->getValue()->isZero();
270 return false;
271}
272
Dan Gohman70a1fe72009-05-18 15:22:39 +0000273bool SCEV::isOne() const {
274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
275 return SC->getValue()->isOne();
276 return false;
277}
Chris Lattner53e677a2004-04-02 20:23:17 +0000278
Dan Gohman4d289bf2009-06-24 00:30:26 +0000279bool SCEV::isAllOnesValue() const {
280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
281 return SC->getValue()->isAllOnesValue();
282 return false;
283}
284
Andrew Trickf8fd8412012-01-07 00:27:31 +0000285/// isNonConstantNegative - Return true if the specified scev is negated, but
286/// not a constant.
287bool SCEV::isNonConstantNegative() const {
288 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
289 if (!Mul) return false;
290
291 // If there is a constant factor, it will be first.
292 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
293 if (!SC) return false;
294
295 // Return true if the value is negative, this matches things like (-42 * V).
296 return SC->getValue()->getValue().isNegative();
297}
298
Owen Anderson753ad612009-06-22 21:57:23 +0000299SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000300 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000301
Chris Lattner53e677a2004-04-02 20:23:17 +0000302bool SCEVCouldNotCompute::classof(const SCEV *S) {
303 return S->getSCEVType() == scCouldNotCompute;
304}
305
Dan Gohman0bba49c2009-07-07 17:06:11 +0000306const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000307 FoldingSetNodeID ID;
308 ID.AddInteger(scConstant);
309 ID.AddPointer(V);
310 void *IP = 0;
311 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000312 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000313 UniqueSCEVs.InsertNode(S, IP);
314 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000315}
Chris Lattner53e677a2004-04-02 20:23:17 +0000316
Dan Gohman0bba49c2009-07-07 17:06:11 +0000317const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000318 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000319}
320
Dan Gohman0bba49c2009-07-07 17:06:11 +0000321const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000322ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
323 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000324 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000325}
326
Dan Gohman3bf63762010-06-18 19:54:20 +0000327SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000328 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000329 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000330
Dan Gohman3bf63762010-06-18 19:54:20 +0000331SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000332 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000333 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000334 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
335 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000336 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000337}
Chris Lattner53e677a2004-04-02 20:23:17 +0000338
Dan Gohman3bf63762010-06-18 19:54:20 +0000339SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000340 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000341 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000344 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345}
346
Dan Gohman3bf63762010-06-18 19:54:20 +0000347SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000348 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000349 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000352 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000353}
354
Dan Gohmanab37f502010-08-02 23:49:30 +0000355void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000356 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000357 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000358
359 // Remove this SCEVUnknown from the uniquing map.
360 SE->UniqueSCEVs.RemoveNode(this);
361
362 // Release the value.
363 setValPtr(0);
364}
365
366void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000367 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000368 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000369
370 // Remove this SCEVUnknown from the uniquing map.
371 SE->UniqueSCEVs.RemoveNode(this);
372
373 // Update this SCEVUnknown to point to the new value. This is needed
374 // because there may still be outstanding SCEVs which still point to
375 // this SCEVUnknown.
376 setValPtr(New);
377}
378
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000379bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000380 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000381 if (VCE->getOpcode() == Instruction::PtrToInt)
382 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000383 if (CE->getOpcode() == Instruction::GetElementPtr &&
384 CE->getOperand(0)->isNullValue() &&
385 CE->getNumOperands() == 2)
386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
387 if (CI->isOne()) {
388 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
389 ->getElementType();
390 return true;
391 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000392
393 return false;
394}
395
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000396bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000398 if (VCE->getOpcode() == Instruction::PtrToInt)
399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000400 if (CE->getOpcode() == Instruction::GetElementPtr &&
401 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000402 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000403 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000404 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000405 if (!STy->isPacked() &&
406 CE->getNumOperands() == 3 &&
407 CE->getOperand(1)->isNullValue()) {
408 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
409 if (CI->isOne() &&
410 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000411 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000412 AllocTy = STy->getElementType(1);
413 return true;
414 }
415 }
416 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000417
418 return false;
419}
420
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000421bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000422 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000423 if (VCE->getOpcode() == Instruction::PtrToInt)
424 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
425 if (CE->getOpcode() == Instruction::GetElementPtr &&
426 CE->getNumOperands() == 3 &&
427 CE->getOperand(0)->isNullValue() &&
428 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000429 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000430 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
431 // Ignore vector types here so that ScalarEvolutionExpander doesn't
432 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000433 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000434 CTy = Ty;
435 FieldNo = CE->getOperand(2);
436 return true;
437 }
438 }
439
440 return false;
441}
442
Chris Lattner8d741b82004-06-20 06:23:15 +0000443//===----------------------------------------------------------------------===//
444// SCEV Utilities
445//===----------------------------------------------------------------------===//
446
447namespace {
448 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
449 /// than the complexity of the RHS. This comparator is used to canonicalize
450 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000451 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000452 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000453 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000454 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000455
Dan Gohman67ef74e2010-08-27 15:26:01 +0000456 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000457 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000458 return compare(LHS, RHS) < 0;
459 }
460
461 // Return negative, zero, or positive, if LHS is less than, equal to, or
462 // greater than RHS, respectively. A three-way result allows recursive
463 // comparisons to be more efficient.
464 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000465 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
466 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000467 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000468
Dan Gohman72861302009-05-07 14:39:04 +0000469 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000470 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
471 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000472 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000473
Dan Gohman3bf63762010-06-18 19:54:20 +0000474 // Aside from the getSCEVType() ordering, the particular ordering
475 // isn't very important except that it's beneficial to be consistent,
476 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000477 switch (LType) {
478 case scUnknown: {
479 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000480 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000481
482 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
483 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000484 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000485
486 // Order pointer values after integer values. This helps SCEVExpander
487 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000488 bool LIsPointer = LV->getType()->isPointerTy(),
489 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000490 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000491 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000492
493 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000494 unsigned LID = LV->getValueID(),
495 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000496 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000497 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000498
499 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000500 if (const Argument *LA = dyn_cast<Argument>(LV)) {
501 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
503 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000504 }
505
Dan Gohman67ef74e2010-08-27 15:26:01 +0000506 // For instructions, compare their loop depth, and their operand
507 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000508 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
509 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000510
511 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000512 const BasicBlock *LParent = LInst->getParent(),
513 *RParent = RInst->getParent();
514 if (LParent != RParent) {
515 unsigned LDepth = LI->getLoopDepth(LParent),
516 RDepth = LI->getLoopDepth(RParent);
517 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000518 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000519 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000520
521 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000522 unsigned LNumOps = LInst->getNumOperands(),
523 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000524 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000525 }
526
Dan Gohman67ef74e2010-08-27 15:26:01 +0000527 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000528 }
529
Dan Gohman67ef74e2010-08-27 15:26:01 +0000530 case scConstant: {
531 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000532 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000533
534 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000535 const APInt &LA = LC->getValue()->getValue();
536 const APInt &RA = RC->getValue()->getValue();
537 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000538 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000539 return (int)LBitWidth - (int)RBitWidth;
540 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000541 }
542
Dan Gohman67ef74e2010-08-27 15:26:01 +0000543 case scAddRecExpr: {
544 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000545 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000546
547 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000548 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
549 if (LLoop != RLoop) {
550 unsigned LDepth = LLoop->getLoopDepth(),
551 RDepth = RLoop->getLoopDepth();
552 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000553 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000554 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000555
556 // Addrec complexity grows with operand count.
557 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
558 if (LNumOps != RNumOps)
559 return (int)LNumOps - (int)RNumOps;
560
561 // Lexicographically compare.
562 for (unsigned i = 0; i != LNumOps; ++i) {
563 long X = compare(LA->getOperand(i), RA->getOperand(i));
564 if (X != 0)
565 return X;
566 }
567
568 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000569 }
570
Dan Gohman67ef74e2010-08-27 15:26:01 +0000571 case scAddExpr:
572 case scMulExpr:
573 case scSMaxExpr:
574 case scUMaxExpr: {
575 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000576 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000577
578 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000579 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
580 for (unsigned i = 0; i != LNumOps; ++i) {
581 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000582 return 1;
583 long X = compare(LC->getOperand(i), RC->getOperand(i));
584 if (X != 0)
585 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000586 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000587 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000588 }
589
Dan Gohman67ef74e2010-08-27 15:26:01 +0000590 case scUDivExpr: {
591 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000592 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000593
594 // Lexicographically compare udiv expressions.
595 long X = compare(LC->getLHS(), RC->getLHS());
596 if (X != 0)
597 return X;
598 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000599 }
600
Dan Gohman67ef74e2010-08-27 15:26:01 +0000601 case scTruncate:
602 case scZeroExtend:
603 case scSignExtend: {
604 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000605 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000606
607 // Compare cast expressions by operand.
608 return compare(LC->getOperand(), RC->getOperand());
609 }
610
611 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +0000612 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman3bf63762010-06-18 19:54:20 +0000613 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000614 }
615 };
616}
617
618/// GroupByComplexity - Given a list of SCEV objects, order them by their
619/// complexity, and group objects of the same complexity together by value.
620/// When this routine is finished, we know that any duplicates in the vector are
621/// consecutive and that complexity is monotonically increasing.
622///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000623/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000624/// results from this routine. In other words, we don't want the results of
625/// this to depend on where the addresses of various SCEV objects happened to
626/// land in memory.
627///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000628static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000629 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000630 if (Ops.size() < 2) return; // Noop
631 if (Ops.size() == 2) {
632 // This is the common case, which also happens to be trivially simple.
633 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000634 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
635 if (SCEVComplexityCompare(LI)(RHS, LHS))
636 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000637 return;
638 }
639
Dan Gohman3bf63762010-06-18 19:54:20 +0000640 // Do the rough sort by complexity.
641 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
642
643 // Now that we are sorted by complexity, group elements of the same
644 // complexity. Note that this is, at worst, N^2, but the vector is likely to
645 // be extremely short in practice. Note that we take this approach because we
646 // do not want to depend on the addresses of the objects we are grouping.
647 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
648 const SCEV *S = Ops[i];
649 unsigned Complexity = S->getSCEVType();
650
651 // If there are any objects of the same complexity and same value as this
652 // one, group them.
653 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
654 if (Ops[j] == S) { // Found a duplicate.
655 // Move it to immediately after i'th element.
656 std::swap(Ops[i+1], Ops[j]);
657 ++i; // no need to rescan it.
658 if (i == e-2) return; // Done!
659 }
660 }
661 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000662}
663
Chris Lattner53e677a2004-04-02 20:23:17 +0000664
Chris Lattner53e677a2004-04-02 20:23:17 +0000665
666//===----------------------------------------------------------------------===//
667// Simple SCEV method implementations
668//===----------------------------------------------------------------------===//
669
Eli Friedmanb42a6262008-08-04 23:49:06 +0000670/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000671/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000672static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000673 ScalarEvolution &SE,
Nick Lewycky8cfb2f82011-09-06 06:39:54 +0000674 Type *ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000675 // Handle the simplest case efficiently.
676 if (K == 1)
677 return SE.getTruncateOrZeroExtend(It, ResultTy);
678
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000679 // We are using the following formula for BC(It, K):
680 //
681 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
682 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000683 // Suppose, W is the bitwidth of the return value. We must be prepared for
684 // overflow. Hence, we must assure that the result of our computation is
685 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
686 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000687 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000688 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000689 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000690 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
691 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000692 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000693 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000694 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000695 // This formula is trivially equivalent to the previous formula. However,
696 // this formula can be implemented much more efficiently. The trick is that
697 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
698 // arithmetic. To do exact division in modular arithmetic, all we have
699 // to do is multiply by the inverse. Therefore, this step can be done at
700 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000701 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000702 // The next issue is how to safely do the division by 2^T. The way this
703 // is done is by doing the multiplication step at a width of at least W + T
704 // bits. This way, the bottom W+T bits of the product are accurate. Then,
705 // when we perform the division by 2^T (which is equivalent to a right shift
706 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
707 // truncated out after the division by 2^T.
708 //
709 // In comparison to just directly using the first formula, this technique
710 // is much more efficient; using the first formula requires W * K bits,
711 // but this formula less than W + K bits. Also, the first formula requires
712 // a division step, whereas this formula only requires multiplies and shifts.
713 //
714 // It doesn't matter whether the subtraction step is done in the calculation
715 // width or the input iteration count's width; if the subtraction overflows,
716 // the result must be zero anyway. We prefer here to do it in the width of
717 // the induction variable because it helps a lot for certain cases; CodeGen
718 // isn't smart enough to ignore the overflow, which leads to much less
719 // efficient code if the width of the subtraction is wider than the native
720 // register width.
721 //
722 // (It's possible to not widen at all by pulling out factors of 2 before
723 // the multiplication; for example, K=2 can be calculated as
724 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
725 // extra arithmetic, so it's not an obvious win, and it gets
726 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000727
Eli Friedmanb42a6262008-08-04 23:49:06 +0000728 // Protection from insane SCEVs; this bound is conservative,
729 // but it probably doesn't matter.
730 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000731 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000732
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000733 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000734
Eli Friedmanb42a6262008-08-04 23:49:06 +0000735 // Calculate K! / 2^T and T; we divide out the factors of two before
736 // multiplying for calculating K! / 2^T to avoid overflow.
737 // Other overflow doesn't matter because we only care about the bottom
738 // W bits of the result.
739 APInt OddFactorial(W, 1);
740 unsigned T = 1;
741 for (unsigned i = 3; i <= K; ++i) {
742 APInt Mult(W, i);
743 unsigned TwoFactors = Mult.countTrailingZeros();
744 T += TwoFactors;
745 Mult = Mult.lshr(TwoFactors);
746 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000747 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000748
Eli Friedmanb42a6262008-08-04 23:49:06 +0000749 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000750 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000751
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000752 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000753 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
754
755 // Calculate the multiplicative inverse of K! / 2^T;
756 // this multiplication factor will perform the exact division by
757 // K! / 2^T.
758 APInt Mod = APInt::getSignedMinValue(W+1);
759 APInt MultiplyFactor = OddFactorial.zext(W+1);
760 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
761 MultiplyFactor = MultiplyFactor.trunc(W);
762
763 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000764 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000765 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000766 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000767 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000768 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000769 Dividend = SE.getMulExpr(Dividend,
770 SE.getTruncateOrZeroExtend(S, CalculationTy));
771 }
772
773 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000774 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000775
776 // Truncate the result, and divide by K! / 2^T.
777
778 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
779 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000780}
781
Chris Lattner53e677a2004-04-02 20:23:17 +0000782/// evaluateAtIteration - Return the value of this chain of recurrences at
783/// the specified iteration number. We can evaluate this recurrence by
784/// multiplying each element in the chain by the binomial coefficient
785/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
786///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000787/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000788///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000789/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000790///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000791const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000792 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000793 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000794 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000795 // The computation is correct in the face of overflow provided that the
796 // multiplication is performed _after_ the evaluation of the binomial
797 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000798 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000799 if (isa<SCEVCouldNotCompute>(Coeff))
800 return Coeff;
801
802 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000803 }
804 return Result;
805}
806
Chris Lattner53e677a2004-04-02 20:23:17 +0000807//===----------------------------------------------------------------------===//
808// SCEV Expression folder implementations
809//===----------------------------------------------------------------------===//
810
Dan Gohman0bba49c2009-07-07 17:06:11 +0000811const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000812 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000813 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000814 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000815 assert(isSCEVable(Ty) &&
816 "This is not a conversion to a SCEVable type!");
817 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000818
Dan Gohmanc050fd92009-07-13 20:50:19 +0000819 FoldingSetNodeID ID;
820 ID.AddInteger(scTruncate);
821 ID.AddPointer(Op);
822 ID.AddPointer(Ty);
823 void *IP = 0;
824 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
825
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000826 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000827 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000828 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000829 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000830
Dan Gohman20900ca2009-04-22 16:20:48 +0000831 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000832 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000833 return getTruncateExpr(ST->getOperand(), Ty);
834
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000835 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000836 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000837 return getTruncateOrSignExtend(SS->getOperand(), Ty);
838
839 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000840 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000841 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
842
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000843 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
844 // eliminate all the truncates.
845 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
846 SmallVector<const SCEV *, 4> Operands;
847 bool hasTrunc = false;
848 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
849 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
850 hasTrunc = isa<SCEVTruncateExpr>(S);
851 Operands.push_back(S);
852 }
853 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000854 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000855 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000856 }
857
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000858 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
859 // eliminate all the truncates.
860 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
861 SmallVector<const SCEV *, 4> Operands;
862 bool hasTrunc = false;
863 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
864 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
865 hasTrunc = isa<SCEVTruncateExpr>(S);
866 Operands.push_back(S);
867 }
868 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000869 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000870 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000871 }
872
Dan Gohman6864db62009-06-18 16:24:47 +0000873 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000874 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000875 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000876 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000877 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000878 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000879 }
880
Dan Gohmanf53462d2010-07-15 20:02:11 +0000881 // As a special case, fold trunc(undef) to undef. We don't want to
882 // know too much about SCEVUnknowns, but this special case is handy
883 // and harmless.
884 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
885 if (isa<UndefValue>(U->getValue()))
886 return getSCEV(UndefValue::get(Ty));
887
Dan Gohman420ab912010-06-25 18:47:08 +0000888 // The cast wasn't folded; create an explicit cast node. We can reuse
889 // the existing insert position since if we get here, we won't have
890 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000891 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
892 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000893 UniqueSCEVs.InsertNode(S, IP);
894 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000895}
896
Dan Gohman0bba49c2009-07-07 17:06:11 +0000897const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000898 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000899 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000900 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000901 assert(isSCEVable(Ty) &&
902 "This is not a conversion to a SCEVable type!");
903 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000904
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000905 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000906 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
907 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000908 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000909
Dan Gohman20900ca2009-04-22 16:20:48 +0000910 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000911 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000912 return getZeroExtendExpr(SZ->getOperand(), Ty);
913
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000914 // Before doing any expensive analysis, check to see if we've already
915 // computed a SCEV for this Op and Ty.
916 FoldingSetNodeID ID;
917 ID.AddInteger(scZeroExtend);
918 ID.AddPointer(Op);
919 ID.AddPointer(Ty);
920 void *IP = 0;
921 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
922
Nick Lewycky630d85a2011-01-23 06:20:19 +0000923 // zext(trunc(x)) --> zext(x) or x or trunc(x)
924 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
925 // It's possible the bits taken off by the truncate were all zero bits. If
926 // so, we should be able to simplify this further.
927 const SCEV *X = ST->getOperand();
928 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000929 unsigned TruncBits = getTypeSizeInBits(ST->getType());
930 unsigned NewBits = getTypeSizeInBits(Ty);
931 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000932 CR.zextOrTrunc(NewBits)))
933 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000934 }
935
Dan Gohman01ecca22009-04-27 20:16:15 +0000936 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000937 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000938 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000939 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000940 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000941 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000942 const SCEV *Start = AR->getStart();
943 const SCEV *Step = AR->getStepRecurrence(*this);
944 unsigned BitWidth = getTypeSizeInBits(AR->getType());
945 const Loop *L = AR->getLoop();
946
Dan Gohmaneb490a72009-07-25 01:22:26 +0000947 // If we have special knowledge that this addrec won't overflow,
948 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000949 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000950 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
951 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000952 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000953
Dan Gohman01ecca22009-04-27 20:16:15 +0000954 // Check whether the backedge-taken count is SCEVCouldNotCompute.
955 // Note that this serves two purposes: It filters out loops that are
956 // simply not analyzable, and it covers the case where this code is
957 // being called from within backedge-taken count analysis, such that
958 // attempting to ask for the backedge-taken count would likely result
959 // in infinite recursion. In the later case, the analysis code will
960 // cope with a conservative value, and it will take care to purge
961 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000962 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000963 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000964 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000965 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000966
967 // Check whether the backedge-taken count can be losslessly casted to
968 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000969 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000970 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000971 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000972 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
973 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000974 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000975 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000976 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +0000977 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
978 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
979 const SCEV *WideMaxBECount =
980 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000981 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000982 getAddExpr(WideStart,
983 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000984 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +0000985 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +0000986 // Cache knowledge of AR NUW, which is propagated to this AddRec.
987 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000988 // Return the expression with the addrec on the outside.
989 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
990 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000991 L, AR->getNoWrapFlags());
992 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000993 // Similar to above, only this time treat the step value as signed.
994 // This covers loops that count down.
Dan Gohman5183cae2009-05-18 15:58:39 +0000995 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000996 getAddExpr(WideStart,
997 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000998 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +0000999 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001000 // Cache knowledge of AR NW, which is propagated to this AddRec.
1001 // Negative step causes unsigned wrap, but it still can't self-wrap.
1002 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001003 // Return the expression with the addrec on the outside.
1004 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1005 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001006 L, AR->getNoWrapFlags());
1007 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001008 }
1009
1010 // If the backedge is guarded by a comparison with the pre-inc value
1011 // the addrec is safe. Also, if the entry is guarded by a comparison
1012 // with the start value and the backedge is guarded by a comparison
1013 // with the post-inc value, the addrec is safe.
1014 if (isKnownPositive(Step)) {
1015 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1016 getUnsignedRange(Step).getUnsignedMax());
1017 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001018 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001019 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001020 AR->getPostIncExpr(*this), N))) {
1021 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1022 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001023 // Return the expression with the addrec on the outside.
1024 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1025 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001026 L, AR->getNoWrapFlags());
1027 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001028 } else if (isKnownNegative(Step)) {
1029 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1030 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001031 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1032 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001033 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001034 AR->getPostIncExpr(*this), N))) {
1035 // Cache knowledge of AR NW, which is propagated to this AddRec.
1036 // Negative step causes unsigned wrap, but it still can't self-wrap.
1037 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1038 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001039 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1040 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001041 L, AR->getNoWrapFlags());
1042 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001043 }
1044 }
1045 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001046
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001047 // The cast wasn't folded; create an explicit cast node.
1048 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001049 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001050 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1051 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001052 UniqueSCEVs.InsertNode(S, IP);
1053 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001054}
1055
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001056// Get the limit of a recurrence such that incrementing by Step cannot cause
1057// signed overflow as long as the value of the recurrence within the loop does
1058// not exceed this limit before incrementing.
1059static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1060 ICmpInst::Predicate *Pred,
1061 ScalarEvolution *SE) {
1062 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1063 if (SE->isKnownPositive(Step)) {
1064 *Pred = ICmpInst::ICMP_SLT;
1065 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1066 SE->getSignedRange(Step).getSignedMax());
1067 }
1068 if (SE->isKnownNegative(Step)) {
1069 *Pred = ICmpInst::ICMP_SGT;
1070 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1071 SE->getSignedRange(Step).getSignedMin());
1072 }
1073 return 0;
1074}
1075
1076// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1077// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1078// or postincrement sibling. This allows normalizing a sign extended AddRec as
1079// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1080// result, the expression "Step + sext(PreIncAR)" is congruent with
1081// "sext(PostIncAR)"
1082static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001083 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001084 ScalarEvolution *SE) {
1085 const Loop *L = AR->getLoop();
1086 const SCEV *Start = AR->getStart();
1087 const SCEV *Step = AR->getStepRecurrence(*SE);
1088
1089 // Check for a simple looking step prior to loop entry.
1090 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickf63ae212011-09-28 17:02:54 +00001091 if (!SA)
1092 return 0;
1093
1094 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1095 // subtraction is expensive. For this purpose, perform a quick and dirty
1096 // difference, by checking for Step in the operand list.
1097 SmallVector<const SCEV *, 4> DiffOps;
1098 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1099 I != E; ++I) {
1100 if (*I != Step)
1101 DiffOps.push_back(*I);
1102 }
1103 if (DiffOps.size() == SA->getNumOperands())
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001104 return 0;
1105
1106 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1107 // same three conditions that getSignExtendedExpr checks.
1108
1109 // 1. NSW flags on the step increment.
Andrew Trickf63ae212011-09-28 17:02:54 +00001110 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001111 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1112 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1113
Andrew Trickcf31f912011-06-01 19:14:56 +00001114 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001115 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001116
1117 // 2. Direct overflow check on the step operation's expression.
1118 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001119 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001120 const SCEV *OperandExtendedStart =
1121 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1122 SE->getSignExtendExpr(Step, WideTy));
1123 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1124 // Cache knowledge of PreAR NSW.
1125 if (PreAR)
1126 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1127 // FIXME: this optimization needs a unit test
1128 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1129 return PreStart;
1130 }
1131
1132 // 3. Loop precondition.
1133 ICmpInst::Predicate Pred;
1134 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1135
Andrew Trickcf31f912011-06-01 19:14:56 +00001136 if (OverflowLimit &&
1137 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001138 return PreStart;
1139 }
1140 return 0;
1141}
1142
1143// Get the normalized sign-extended expression for this AddRec's Start.
1144static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001145 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001146 ScalarEvolution *SE) {
1147 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1148 if (!PreStart)
1149 return SE->getSignExtendExpr(AR->getStart(), Ty);
1150
1151 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1152 SE->getSignExtendExpr(PreStart, Ty));
1153}
1154
Dan Gohman0bba49c2009-07-07 17:06:11 +00001155const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001156 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001157 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001158 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001159 assert(isSCEVable(Ty) &&
1160 "This is not a conversion to a SCEVable type!");
1161 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001162
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001163 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001164 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1165 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +00001166 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmand19534a2007-06-15 14:38:12 +00001167
Dan Gohman20900ca2009-04-22 16:20:48 +00001168 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001169 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001170 return getSignExtendExpr(SS->getOperand(), Ty);
1171
Nick Lewycky73f565e2011-01-19 15:56:12 +00001172 // sext(zext(x)) --> zext(x)
1173 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1174 return getZeroExtendExpr(SZ->getOperand(), Ty);
1175
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001176 // Before doing any expensive analysis, check to see if we've already
1177 // computed a SCEV for this Op and Ty.
1178 FoldingSetNodeID ID;
1179 ID.AddInteger(scSignExtend);
1180 ID.AddPointer(Op);
1181 ID.AddPointer(Ty);
1182 void *IP = 0;
1183 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1184
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001185 // If the input value is provably positive, build a zext instead.
1186 if (isKnownNonNegative(Op))
1187 return getZeroExtendExpr(Op, Ty);
1188
Nick Lewycky630d85a2011-01-23 06:20:19 +00001189 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1190 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1191 // It's possible the bits taken off by the truncate were all sign bits. If
1192 // so, we should be able to simplify this further.
1193 const SCEV *X = ST->getOperand();
1194 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001195 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1196 unsigned NewBits = getTypeSizeInBits(Ty);
1197 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001198 CR.sextOrTrunc(NewBits)))
1199 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001200 }
1201
Dan Gohman01ecca22009-04-27 20:16:15 +00001202 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001203 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001204 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001205 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001206 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001207 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001208 const SCEV *Start = AR->getStart();
1209 const SCEV *Step = AR->getStepRecurrence(*this);
1210 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1211 const Loop *L = AR->getLoop();
1212
Dan Gohmaneb490a72009-07-25 01:22:26 +00001213 // If we have special knowledge that this addrec won't overflow,
1214 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001215 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001216 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001217 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001218 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001219
Dan Gohman01ecca22009-04-27 20:16:15 +00001220 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1221 // Note that this serves two purposes: It filters out loops that are
1222 // simply not analyzable, and it covers the case where this code is
1223 // being called from within backedge-taken count analysis, such that
1224 // attempting to ask for the backedge-taken count would likely result
1225 // in infinite recursion. In the later case, the analysis code will
1226 // cope with a conservative value, and it will take care to purge
1227 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001228 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001229 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001230 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001231 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001232
1233 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001234 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001235 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001236 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001237 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001238 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1239 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001240 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001241 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001242 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +00001243 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1244 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1245 const SCEV *WideMaxBECount =
1246 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001247 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001248 getAddExpr(WideStart,
1249 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +00001250 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001251 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001252 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1253 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001254 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001255 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001256 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001257 L, AR->getNoWrapFlags());
1258 }
Dan Gohman850f7912009-07-16 17:34:36 +00001259 // Similar to above, only this time treat the step value as unsigned.
1260 // This covers loops that count up with an unsigned step.
Dan Gohman850f7912009-07-16 17:34:36 +00001261 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001262 getAddExpr(WideStart,
1263 getMulExpr(WideMaxBECount,
Dan Gohman850f7912009-07-16 17:34:36 +00001264 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001265 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001266 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1267 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001268 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001269 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001270 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001271 L, AR->getNoWrapFlags());
1272 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001273 }
1274
1275 // If the backedge is guarded by a comparison with the pre-inc value
1276 // the addrec is safe. Also, if the entry is guarded by a comparison
1277 // with the start value and the backedge is guarded by a comparison
1278 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001279 ICmpInst::Predicate Pred;
1280 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1281 if (OverflowLimit &&
1282 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1283 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1284 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1285 OverflowLimit)))) {
1286 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1287 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1288 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1289 getSignExtendExpr(Step, Ty),
1290 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001291 }
1292 }
1293 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001294
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001295 // The cast wasn't folded; create an explicit cast node.
1296 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001297 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001298 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1299 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001300 UniqueSCEVs.InsertNode(S, IP);
1301 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001302}
1303
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001304/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1305/// unspecified bits out to the given type.
1306///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001307const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001308 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001309 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1310 "This is not an extending conversion!");
1311 assert(isSCEVable(Ty) &&
1312 "This is not a conversion to a SCEVable type!");
1313 Ty = getEffectiveSCEVType(Ty);
1314
1315 // Sign-extend negative constants.
1316 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1317 if (SC->getValue()->getValue().isNegative())
1318 return getSignExtendExpr(Op, Ty);
1319
1320 // Peel off a truncate cast.
1321 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001322 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001323 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1324 return getAnyExtendExpr(NewOp, Ty);
1325 return getTruncateOrNoop(NewOp, Ty);
1326 }
1327
1328 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001329 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001330 if (!isa<SCEVZeroExtendExpr>(ZExt))
1331 return ZExt;
1332
1333 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001334 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001335 if (!isa<SCEVSignExtendExpr>(SExt))
1336 return SExt;
1337
Dan Gohmana10756e2010-01-21 02:09:26 +00001338 // Force the cast to be folded into the operands of an addrec.
1339 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1340 SmallVector<const SCEV *, 4> Ops;
1341 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1342 I != E; ++I)
1343 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001344 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001345 }
1346
Dan Gohmanf53462d2010-07-15 20:02:11 +00001347 // As a special case, fold anyext(undef) to undef. We don't want to
1348 // know too much about SCEVUnknowns, but this special case is handy
1349 // and harmless.
1350 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1351 if (isa<UndefValue>(U->getValue()))
1352 return getSCEV(UndefValue::get(Ty));
1353
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001354 // If the expression is obviously signed, use the sext cast value.
1355 if (isa<SCEVSMaxExpr>(Op))
1356 return SExt;
1357
1358 // Absent any other information, use the zext cast value.
1359 return ZExt;
1360}
1361
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001362/// CollectAddOperandsWithScales - Process the given Ops list, which is
1363/// a list of operands to be added under the given scale, update the given
1364/// map. This is a helper function for getAddRecExpr. As an example of
1365/// what it does, given a sequence of operands that would form an add
1366/// expression like this:
1367///
1368/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1369///
1370/// where A and B are constants, update the map with these values:
1371///
1372/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1373///
1374/// and add 13 + A*B*29 to AccumulatedConstant.
1375/// This will allow getAddRecExpr to produce this:
1376///
1377/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1378///
1379/// This form often exposes folding opportunities that are hidden in
1380/// the original operand list.
1381///
1382/// Return true iff it appears that any interesting folding opportunities
1383/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1384/// the common case where no interesting opportunities are present, and
1385/// is also used as a check to avoid infinite recursion.
1386///
1387static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001388CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1389 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001390 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001391 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001392 const APInt &Scale,
1393 ScalarEvolution &SE) {
1394 bool Interesting = false;
1395
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001396 // Iterate over the add operands. They are sorted, with constants first.
1397 unsigned i = 0;
1398 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1399 ++i;
1400 // Pull a buried constant out to the outside.
1401 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1402 Interesting = true;
1403 AccumulatedConstant += Scale * C->getValue()->getValue();
1404 }
1405
1406 // Next comes everything else. We're especially interested in multiplies
1407 // here, but they're in the middle, so just visit the rest with one loop.
1408 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001409 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1410 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1411 APInt NewScale =
1412 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1413 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1414 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001415 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001416 Interesting |=
1417 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001418 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001419 NewScale, SE);
1420 } else {
1421 // A multiplication of a constant with some other value. Update
1422 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001423 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1424 const SCEV *Key = SE.getMulExpr(MulOps);
1425 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001426 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001427 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001428 NewOps.push_back(Pair.first->first);
1429 } else {
1430 Pair.first->second += NewScale;
1431 // The map already had an entry for this value, which may indicate
1432 // a folding opportunity.
1433 Interesting = true;
1434 }
1435 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001436 } else {
1437 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001438 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001439 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001440 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001441 NewOps.push_back(Pair.first->first);
1442 } else {
1443 Pair.first->second += Scale;
1444 // The map already had an entry for this value, which may indicate
1445 // a folding opportunity.
1446 Interesting = true;
1447 }
1448 }
1449 }
1450
1451 return Interesting;
1452}
1453
1454namespace {
1455 struct APIntCompare {
1456 bool operator()(const APInt &LHS, const APInt &RHS) const {
1457 return LHS.ult(RHS);
1458 }
1459 };
1460}
1461
Dan Gohman6c0866c2009-05-24 23:45:28 +00001462/// getAddExpr - Get a canonical add expression, or something simpler if
1463/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001464const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001465 SCEV::NoWrapFlags Flags) {
1466 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1467 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001468 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001469 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001470#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001471 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001472 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001473 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001474 "SCEVAddExpr operand types don't match!");
1475#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001476
Andrew Trick3228cc22011-03-14 16:50:06 +00001477 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001478 // And vice-versa.
1479 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1480 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1481 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001482 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001483 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1484 E = Ops.end(); I != E; ++I)
1485 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001486 All = false;
1487 break;
1488 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001489 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001490 }
1491
Chris Lattner53e677a2004-04-02 20:23:17 +00001492 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001493 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001494
1495 // If there are any constants, fold them together.
1496 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001497 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001498 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001499 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001500 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001501 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001502 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1503 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001504 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001505 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001506 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001507 }
1508
1509 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001510 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001511 Ops.erase(Ops.begin());
1512 --Idx;
1513 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001514
Dan Gohmanbca091d2010-04-12 23:08:18 +00001515 if (Ops.size() == 1) return Ops[0];
1516 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001517
Dan Gohman68ff7762010-08-27 21:39:59 +00001518 // Okay, check to see if the same value occurs in the operand list more than
1519 // once. If so, merge them together into an multiply expression. Since we
1520 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001521 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001522 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001523 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001524 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001525 // Scan ahead to count how many equal operands there are.
1526 unsigned Count = 2;
1527 while (i+Count != e && Ops[i+Count] == Ops[i])
1528 ++Count;
1529 // Merge the values into a multiply.
1530 const SCEV *Scale = getConstant(Ty, Count);
1531 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1532 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001533 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001534 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001535 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001536 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001537 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001538 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001539 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001540 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001541
Dan Gohman728c7f32009-05-08 21:03:19 +00001542 // Check for truncates. If all the operands are truncated from the same
1543 // type, see if factoring out the truncate would permit the result to be
1544 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1545 // if the contents of the resulting outer trunc fold to something simple.
1546 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1547 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001548 Type *DstType = Trunc->getType();
1549 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001550 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001551 bool Ok = true;
1552 // Check all the operands to see if they can be represented in the
1553 // source type of the truncate.
1554 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1555 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1556 if (T->getOperand()->getType() != SrcType) {
1557 Ok = false;
1558 break;
1559 }
1560 LargeOps.push_back(T->getOperand());
1561 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001562 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001563 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001564 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001565 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1566 if (const SCEVTruncateExpr *T =
1567 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1568 if (T->getOperand()->getType() != SrcType) {
1569 Ok = false;
1570 break;
1571 }
1572 LargeMulOps.push_back(T->getOperand());
1573 } else if (const SCEVConstant *C =
1574 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001575 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001576 } else {
1577 Ok = false;
1578 break;
1579 }
1580 }
1581 if (Ok)
1582 LargeOps.push_back(getMulExpr(LargeMulOps));
1583 } else {
1584 Ok = false;
1585 break;
1586 }
1587 }
1588 if (Ok) {
1589 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001590 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001591 // If it folds to something simple, use it. Otherwise, don't.
1592 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1593 return getTruncateExpr(Fold, DstType);
1594 }
1595 }
1596
1597 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001598 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1599 ++Idx;
1600
1601 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001602 if (Idx < Ops.size()) {
1603 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001604 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001605 // If we have an add, expand the add operands onto the end of the operands
1606 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001607 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001608 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001609 DeletedAdd = true;
1610 }
1611
1612 // If we deleted at least one add, we added operands to the end of the list,
1613 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001614 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001615 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001616 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001617 }
1618
1619 // Skip over the add expression until we get to a multiply.
1620 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1621 ++Idx;
1622
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001623 // Check to see if there are any folding opportunities present with
1624 // operands multiplied by constant values.
1625 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1626 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001627 DenseMap<const SCEV *, APInt> M;
1628 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001629 APInt AccumulatedConstant(BitWidth, 0);
1630 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001631 Ops.data(), Ops.size(),
1632 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001633 // Some interesting folding opportunity is present, so its worthwhile to
1634 // re-generate the operands list. Group the operands by constant scale,
1635 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001636 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001637 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001638 E = NewOps.end(); I != E; ++I)
1639 MulOpLists[M.find(*I)->second].push_back(*I);
1640 // Re-generate the operands list.
1641 Ops.clear();
1642 if (AccumulatedConstant != 0)
1643 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001644 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1645 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001646 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001647 Ops.push_back(getMulExpr(getConstant(I->first),
1648 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001649 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001650 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001651 if (Ops.size() == 1)
1652 return Ops[0];
1653 return getAddExpr(Ops);
1654 }
1655 }
1656
Chris Lattner53e677a2004-04-02 20:23:17 +00001657 // If we are adding something to a multiply expression, make sure the
1658 // something is not already an operand of the multiply. If so, merge it into
1659 // the multiply.
1660 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001661 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001662 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001663 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001664 if (isa<SCEVConstant>(MulOpSCEV))
1665 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001666 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001667 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001668 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001669 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001670 if (Mul->getNumOperands() != 2) {
1671 // If the multiply has more than two operands, we must get the
1672 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001673 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1674 Mul->op_begin()+MulOp);
1675 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001676 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001677 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001678 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001679 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001680 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001681 if (Ops.size() == 2) return OuterMul;
1682 if (AddOp < Idx) {
1683 Ops.erase(Ops.begin()+AddOp);
1684 Ops.erase(Ops.begin()+Idx-1);
1685 } else {
1686 Ops.erase(Ops.begin()+Idx);
1687 Ops.erase(Ops.begin()+AddOp-1);
1688 }
1689 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001690 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001691 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001692
Chris Lattner53e677a2004-04-02 20:23:17 +00001693 // Check this multiply against other multiplies being added together.
1694 for (unsigned OtherMulIdx = Idx+1;
1695 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1696 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001697 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001698 // If MulOp occurs in OtherMul, we can fold the two multiplies
1699 // together.
1700 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1701 OMulOp != e; ++OMulOp)
1702 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1703 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001704 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001705 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001706 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001707 Mul->op_begin()+MulOp);
1708 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001709 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001710 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001711 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001712 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001713 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001714 OtherMul->op_begin()+OMulOp);
1715 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001716 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001717 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001718 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1719 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001720 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001721 Ops.erase(Ops.begin()+Idx);
1722 Ops.erase(Ops.begin()+OtherMulIdx-1);
1723 Ops.push_back(OuterMul);
1724 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001725 }
1726 }
1727 }
1728 }
1729
1730 // If there are any add recurrences in the operands list, see if any other
1731 // added values are loop invariant. If so, we can fold them into the
1732 // recurrence.
1733 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1734 ++Idx;
1735
1736 // Scan over all recurrences, trying to fold loop invariants into them.
1737 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1738 // Scan all of the other operands to this add and add them to the vector if
1739 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001740 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001741 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001742 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001743 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001744 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001745 LIOps.push_back(Ops[i]);
1746 Ops.erase(Ops.begin()+i);
1747 --i; --e;
1748 }
1749
1750 // If we found some loop invariants, fold them into the recurrence.
1751 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001752 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001753 LIOps.push_back(AddRec->getStart());
1754
Dan Gohman0bba49c2009-07-07 17:06:11 +00001755 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001756 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001757 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001758
Dan Gohmanb9f96512010-06-30 07:16:37 +00001759 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001760 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001761 // Always propagate NW.
1762 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001763 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001764
Chris Lattner53e677a2004-04-02 20:23:17 +00001765 // If all of the other operands were loop invariant, we are done.
1766 if (Ops.size() == 1) return NewRec;
1767
Nick Lewycky980e9f32011-09-06 05:08:09 +00001768 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001769 for (unsigned i = 0;; ++i)
1770 if (Ops[i] == AddRec) {
1771 Ops[i] = NewRec;
1772 break;
1773 }
Dan Gohman246b2562007-10-22 18:31:58 +00001774 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001775 }
1776
1777 // Okay, if there weren't any loop invariants to be folded, check to see if
1778 // there are multiple AddRec's with the same loop induction variable being
1779 // added together. If so, we can fold them.
1780 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001781 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1782 ++OtherIdx)
1783 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1784 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1785 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1786 AddRec->op_end());
1787 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1788 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001789 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001790 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001791 if (OtherAddRec->getLoop() == AddRecLoop) {
1792 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1793 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001794 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001795 AddRecOps.append(OtherAddRec->op_begin()+i,
1796 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001797 break;
1798 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001799 AddRecOps[i] = getAddExpr(AddRecOps[i],
1800 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001801 }
1802 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001803 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001804 // Step size has changed, so we cannot guarantee no self-wraparound.
1805 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001806 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001807 }
1808
1809 // Otherwise couldn't fold anything into this recurrence. Move onto the
1810 // next one.
1811 }
1812
1813 // Okay, it looks like we really DO need an add expr. Check to see if we
1814 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001815 FoldingSetNodeID ID;
1816 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001817 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1818 ID.AddPointer(Ops[i]);
1819 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001820 SCEVAddExpr *S =
1821 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1822 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001823 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1824 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001825 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1826 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001827 UniqueSCEVs.InsertNode(S, IP);
1828 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001829 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001830 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001831}
1832
Nick Lewyckye97728e2011-10-04 06:51:26 +00001833static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1834 uint64_t k = i*j;
1835 if (j > 1 && k / j != i) Overflow = true;
1836 return k;
1837}
1838
1839/// Compute the result of "n choose k", the binomial coefficient. If an
1840/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerd9b0b022012-06-02 10:20:22 +00001841/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewyckye97728e2011-10-04 06:51:26 +00001842static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1843 // We use the multiplicative formula:
1844 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1845 // At each iteration, we take the n-th term of the numeral and divide by the
1846 // (k-n)th term of the denominator. This division will always produce an
1847 // integral result, and helps reduce the chance of overflow in the
1848 // intermediate computations. However, we can still overflow even when the
1849 // final result would fit.
1850
1851 if (n == 0 || n == k) return 1;
1852 if (k > n) return 0;
1853
1854 if (k > n/2)
1855 k = n-k;
1856
1857 uint64_t r = 1;
1858 for (uint64_t i = 1; i <= k; ++i) {
1859 r = umul_ov(r, n-(i-1), Overflow);
1860 r /= i;
1861 }
1862 return r;
1863}
1864
Dan Gohman6c0866c2009-05-24 23:45:28 +00001865/// getMulExpr - Get a canonical multiply expression, or something simpler if
1866/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001867const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001868 SCEV::NoWrapFlags Flags) {
1869 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1870 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001871 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001872 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001873#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001874 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001875 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001876 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001877 "SCEVMulExpr operand types don't match!");
1878#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001879
Andrew Trick3228cc22011-03-14 16:50:06 +00001880 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001881 // And vice-versa.
1882 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1883 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1884 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001885 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001886 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1887 E = Ops.end(); I != E; ++I)
1888 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001889 All = false;
1890 break;
1891 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001892 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001893 }
1894
Chris Lattner53e677a2004-04-02 20:23:17 +00001895 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001896 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001897
1898 // If there are any constants, fold them together.
1899 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001900 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001901
1902 // C1*(C2+V) -> C1*C2 + C1*V
1903 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001904 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001905 if (Add->getNumOperands() == 2 &&
1906 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001907 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1908 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001909
Chris Lattner53e677a2004-04-02 20:23:17 +00001910 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001911 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001912 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001913 ConstantInt *Fold = ConstantInt::get(getContext(),
1914 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001915 RHSC->getValue()->getValue());
1916 Ops[0] = getConstant(Fold);
1917 Ops.erase(Ops.begin()+1); // Erase the folded element
1918 if (Ops.size() == 1) return Ops[0];
1919 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001920 }
1921
1922 // If we are left with a constant one being multiplied, strip it off.
1923 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1924 Ops.erase(Ops.begin());
1925 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001926 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001927 // If we have a multiply of zero, it will always be zero.
1928 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001929 } else if (Ops[0]->isAllOnesValue()) {
1930 // If we have a mul by -1 of an add, try distributing the -1 among the
1931 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001932 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001933 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1934 SmallVector<const SCEV *, 4> NewOps;
1935 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001936 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1937 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001938 const SCEV *Mul = getMulExpr(Ops[0], *I);
1939 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1940 NewOps.push_back(Mul);
1941 }
1942 if (AnyFolded)
1943 return getAddExpr(NewOps);
1944 }
Andrew Tricka053b212011-03-14 17:38:54 +00001945 else if (const SCEVAddRecExpr *
1946 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1947 // Negation preserves a recurrence's no self-wrap property.
1948 SmallVector<const SCEV *, 4> Operands;
1949 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1950 E = AddRec->op_end(); I != E; ++I) {
1951 Operands.push_back(getMulExpr(Ops[0], *I));
1952 }
1953 return getAddRecExpr(Operands, AddRec->getLoop(),
1954 AddRec->getNoWrapFlags(SCEV::FlagNW));
1955 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001956 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001957 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001958
1959 if (Ops.size() == 1)
1960 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001961 }
1962
1963 // Skip over the add expression until we get to a multiply.
1964 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1965 ++Idx;
1966
Chris Lattner53e677a2004-04-02 20:23:17 +00001967 // If there are mul operands inline them all into this expression.
1968 if (Idx < Ops.size()) {
1969 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001970 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001971 // If we have an mul, expand the mul operands onto the end of the operands
1972 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001973 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001974 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001975 DeletedMul = true;
1976 }
1977
1978 // If we deleted at least one mul, we added operands to the end of the list,
1979 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001980 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001981 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001982 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001983 }
1984
1985 // If there are any add recurrences in the operands list, see if any other
1986 // added values are loop invariant. If so, we can fold them into the
1987 // recurrence.
1988 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1989 ++Idx;
1990
1991 // Scan over all recurrences, trying to fold loop invariants into them.
1992 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1993 // Scan all of the other operands to this mul and add them to the vector if
1994 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001995 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001996 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001997 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001998 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001999 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002000 LIOps.push_back(Ops[i]);
2001 Ops.erase(Ops.begin()+i);
2002 --i; --e;
2003 }
2004
2005 // If we found some loop invariants, fold them into the recurrence.
2006 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00002007 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00002008 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00002009 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00002010 const SCEV *Scale = getMulExpr(LIOps);
2011 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2012 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00002013
Dan Gohmanb9f96512010-06-30 07:16:37 +00002014 // Build the new addrec. Propagate the NUW and NSW flags if both the
2015 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00002016 //
2017 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002018 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00002019 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2020 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002021
2022 // If all of the other operands were loop invariant, we are done.
2023 if (Ops.size() == 1) return NewRec;
2024
Nick Lewycky980e9f32011-09-06 05:08:09 +00002025 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00002026 for (unsigned i = 0;; ++i)
2027 if (Ops[i] == AddRec) {
2028 Ops[i] = NewRec;
2029 break;
2030 }
Dan Gohman246b2562007-10-22 18:31:58 +00002031 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002032 }
2033
2034 // Okay, if there weren't any loop invariants to be folded, check to see if
2035 // there are multiple AddRec's with the same loop induction variable being
2036 // multiplied together. If so, we can fold them.
2037 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002038 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002039 ++OtherIdx) {
Andrew Trick97178ae2012-05-30 03:35:17 +00002040 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2041 continue;
2042
2043 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2044 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2045 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2046 // ]]],+,...up to x=2n}.
2047 // Note that the arguments to choose() are always integers with values
2048 // known at compile time, never SCEV objects.
2049 //
2050 // The implementation avoids pointless extra computations when the two
2051 // addrec's are of different length (mathematically, it's equivalent to
2052 // an infinite stream of zeros on the right).
2053 bool OpsModified = false;
2054 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2055 ++OtherIdx) {
2056 const SCEVAddRecExpr *OtherAddRec =
2057 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2058 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2059 continue;
2060
2061 bool Overflow = false;
2062 Type *Ty = AddRec->getType();
2063 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2064 SmallVector<const SCEV*, 7> AddRecOps;
2065 for (int x = 0, xe = AddRec->getNumOperands() +
2066 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2067 const SCEV *Term = getConstant(Ty, 0);
2068 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2069 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2070 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2071 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2072 z < ze && !Overflow; ++z) {
2073 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2074 uint64_t Coeff;
2075 if (LargerThan64Bits)
2076 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2077 else
2078 Coeff = Coeff1*Coeff2;
2079 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2080 const SCEV *Term1 = AddRec->getOperand(y-z);
2081 const SCEV *Term2 = OtherAddRec->getOperand(z);
2082 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Dan Gohman6a0c1252010-08-31 22:52:12 +00002083 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002084 }
2085 AddRecOps.push_back(Term);
2086 }
2087 if (!Overflow) {
2088 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2089 SCEV::FlagAnyWrap);
2090 if (Ops.size() == 2) return NewAddRec;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002091 Ops[Idx] = NewAddRec;
Andrew Trick97178ae2012-05-30 03:35:17 +00002092 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2093 OpsModified = true;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002094 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2095 if (!AddRec)
2096 break;
Andrew Trick97178ae2012-05-30 03:35:17 +00002097 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002098 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002099 if (OpsModified)
2100 return getMulExpr(Ops);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002101 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002102
2103 // Otherwise couldn't fold anything into this recurrence. Move onto the
2104 // next one.
2105 }
2106
2107 // Okay, it looks like we really DO need an mul expr. Check to see if we
2108 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002109 FoldingSetNodeID ID;
2110 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002111 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2112 ID.AddPointer(Ops[i]);
2113 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002114 SCEVMulExpr *S =
2115 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2116 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002117 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2118 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002119 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2120 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002121 UniqueSCEVs.InsertNode(S, IP);
2122 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002123 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002124 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002125}
2126
Andreas Bolka8a11c982009-08-07 22:55:26 +00002127/// getUDivExpr - Get a canonical unsigned division expression, or something
2128/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002129const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2130 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002131 assert(getEffectiveSCEVType(LHS->getType()) ==
2132 getEffectiveSCEVType(RHS->getType()) &&
2133 "SCEVUDivExpr operand types don't match!");
2134
Dan Gohman622ed672009-05-04 22:02:23 +00002135 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002136 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002137 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002138 // If the denominator is zero, the result of the udiv is undefined. Don't
2139 // try to analyze it, because the resolution chosen here may differ from
2140 // the resolution chosen in other parts of the compiler.
2141 if (!RHSC->getValue()->isZero()) {
2142 // Determine if the division can be folded into the operands of
2143 // its operands.
2144 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002145 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002146 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002147 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002148 // For non-power-of-two values, effectively round the value up to the
2149 // nearest power of two.
2150 if (!RHSC->getValue()->getValue().isPowerOf2())
2151 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002152 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002153 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002154 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2155 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002156 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2157 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2158 const APInt &StepInt = Step->getValue()->getValue();
2159 const APInt &DivInt = RHSC->getValue()->getValue();
2160 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002161 getZeroExtendExpr(AR, ExtTy) ==
2162 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2163 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002164 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002165 SmallVector<const SCEV *, 4> Operands;
2166 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2167 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002168 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002169 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002170 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002171 /// Get a canonical UDivExpr for a recurrence.
2172 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2173 // We can currently only fold X%N if X is constant.
2174 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2175 if (StartC && !DivInt.urem(StepInt) &&
2176 getZeroExtendExpr(AR, ExtTy) ==
2177 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2178 getZeroExtendExpr(Step, ExtTy),
2179 AR->getLoop(), SCEV::FlagAnyWrap)) {
2180 const APInt &StartInt = StartC->getValue()->getValue();
2181 const APInt &StartRem = StartInt.urem(StepInt);
2182 if (StartRem != 0)
2183 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2184 AR->getLoop(), SCEV::FlagNW);
2185 }
2186 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002187 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2188 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2189 SmallVector<const SCEV *, 4> Operands;
2190 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2191 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2192 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2193 // Find an operand that's safely divisible.
2194 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2195 const SCEV *Op = M->getOperand(i);
2196 const SCEV *Div = getUDivExpr(Op, RHSC);
2197 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2198 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2199 M->op_end());
2200 Operands[i] = Div;
2201 return getMulExpr(Operands);
2202 }
2203 }
Dan Gohman185cf032009-05-08 20:18:49 +00002204 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002205 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002206 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002207 SmallVector<const SCEV *, 4> Operands;
2208 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2209 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2210 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2211 Operands.clear();
2212 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2213 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2214 if (isa<SCEVUDivExpr>(Op) ||
2215 getMulExpr(Op, RHS) != A->getOperand(i))
2216 break;
2217 Operands.push_back(Op);
2218 }
2219 if (Operands.size() == A->getNumOperands())
2220 return getAddExpr(Operands);
2221 }
2222 }
Dan Gohman185cf032009-05-08 20:18:49 +00002223
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002224 // Fold if both operands are constant.
2225 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2226 Constant *LHSCV = LHSC->getValue();
2227 Constant *RHSCV = RHSC->getValue();
2228 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2229 RHSCV)));
2230 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002231 }
2232 }
2233
Dan Gohman1c343752009-06-27 21:21:31 +00002234 FoldingSetNodeID ID;
2235 ID.AddInteger(scUDivExpr);
2236 ID.AddPointer(LHS);
2237 ID.AddPointer(RHS);
2238 void *IP = 0;
2239 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002240 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2241 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002242 UniqueSCEVs.InsertNode(S, IP);
2243 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002244}
2245
2246
Dan Gohman6c0866c2009-05-24 23:45:28 +00002247/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2248/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002249const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2250 const Loop *L,
2251 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002252 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002253 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002254 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002255 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002256 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002257 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002258 }
2259
2260 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002261 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002262}
2263
Dan Gohman6c0866c2009-05-24 23:45:28 +00002264/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2265/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002266const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002267ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002268 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002269 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002270#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002271 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002272 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002273 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002274 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002275 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002276 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002277 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002278#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002279
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002280 if (Operands.back()->isZero()) {
2281 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002282 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002283 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002284
Dan Gohmanbc028532010-02-19 18:49:22 +00002285 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2286 // use that information to infer NUW and NSW flags. However, computing a
2287 // BE count requires calling getAddRecExpr, so we may not yet have a
2288 // meaningful BE count at this point (and if we don't, we'd be stuck
2289 // with a SCEVCouldNotCompute as the cached BE count).
2290
Andrew Trick3228cc22011-03-14 16:50:06 +00002291 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002292 // And vice-versa.
2293 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2294 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2295 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002296 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002297 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2298 E = Operands.end(); I != E; ++I)
2299 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002300 All = false;
2301 break;
2302 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002303 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002304 }
2305
Dan Gohmand9cc7492008-08-08 18:33:12 +00002306 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002307 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002308 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002309 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002310 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002311 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002312 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002313 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002314 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002315 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002316 // AddRecs require their operands be loop-invariant with respect to their
2317 // loops. Don't perform this transformation if it would break this
2318 // requirement.
2319 bool AllInvariant = true;
2320 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002321 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002322 AllInvariant = false;
2323 break;
2324 }
2325 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002326 // Create a recurrence for the outer loop with the same step size.
2327 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002328 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2329 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002330 SCEV::NoWrapFlags OuterFlags =
2331 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002332
2333 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002334 AllInvariant = true;
2335 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002336 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002337 AllInvariant = false;
2338 break;
2339 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002340 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002341 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002342 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002343 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2344 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002345 SCEV::NoWrapFlags InnerFlags =
2346 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002347 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2348 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002349 }
2350 // Reset Operands to its original state.
2351 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002352 }
2353 }
2354
Dan Gohman67847532010-01-19 22:27:22 +00002355 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2356 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002357 FoldingSetNodeID ID;
2358 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002359 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2360 ID.AddPointer(Operands[i]);
2361 ID.AddPointer(L);
2362 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002363 SCEVAddRecExpr *S =
2364 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2365 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002366 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2367 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002368 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2369 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002370 UniqueSCEVs.InsertNode(S, IP);
2371 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002372 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002373 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002374}
2375
Dan Gohman9311ef62009-06-24 14:49:00 +00002376const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2377 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002378 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002379 Ops.push_back(LHS);
2380 Ops.push_back(RHS);
2381 return getSMaxExpr(Ops);
2382}
2383
Dan Gohman0bba49c2009-07-07 17:06:11 +00002384const SCEV *
2385ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002386 assert(!Ops.empty() && "Cannot get empty smax!");
2387 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002388#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002389 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002390 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002391 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002392 "SCEVSMaxExpr operand types don't match!");
2393#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002394
2395 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002396 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002397
2398 // If there are any constants, fold them together.
2399 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002400 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002401 ++Idx;
2402 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002403 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002404 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002405 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002406 APIntOps::smax(LHSC->getValue()->getValue(),
2407 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002408 Ops[0] = getConstant(Fold);
2409 Ops.erase(Ops.begin()+1); // Erase the folded element
2410 if (Ops.size() == 1) return Ops[0];
2411 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002412 }
2413
Dan Gohmane5aceed2009-06-24 14:46:22 +00002414 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002415 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2416 Ops.erase(Ops.begin());
2417 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002418 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2419 // If we have an smax with a constant maximum-int, it will always be
2420 // maximum-int.
2421 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002422 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002423
Dan Gohman3ab13122010-04-13 16:49:23 +00002424 if (Ops.size() == 1) return Ops[0];
2425 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002426
2427 // Find the first SMax
2428 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2429 ++Idx;
2430
2431 // Check to see if one of the operands is an SMax. If so, expand its operands
2432 // onto our operand list, and recurse to simplify.
2433 if (Idx < Ops.size()) {
2434 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002435 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002436 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002437 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002438 DeletedSMax = true;
2439 }
2440
2441 if (DeletedSMax)
2442 return getSMaxExpr(Ops);
2443 }
2444
2445 // Okay, check to see if the same value occurs in the operand list twice. If
2446 // so, delete one. Since we sorted the list, these values are required to
2447 // be adjacent.
2448 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002449 // X smax Y smax Y --> X smax Y
2450 // X smax Y --> X, if X is always greater than Y
2451 if (Ops[i] == Ops[i+1] ||
2452 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2453 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2454 --i; --e;
2455 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002456 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2457 --i; --e;
2458 }
2459
2460 if (Ops.size() == 1) return Ops[0];
2461
2462 assert(!Ops.empty() && "Reduced smax down to nothing!");
2463
Nick Lewycky3e630762008-02-20 06:48:22 +00002464 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002465 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002466 FoldingSetNodeID ID;
2467 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002468 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2469 ID.AddPointer(Ops[i]);
2470 void *IP = 0;
2471 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002472 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2473 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002474 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2475 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002476 UniqueSCEVs.InsertNode(S, IP);
2477 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002478}
2479
Dan Gohman9311ef62009-06-24 14:49:00 +00002480const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2481 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002482 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002483 Ops.push_back(LHS);
2484 Ops.push_back(RHS);
2485 return getUMaxExpr(Ops);
2486}
2487
Dan Gohman0bba49c2009-07-07 17:06:11 +00002488const SCEV *
2489ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002490 assert(!Ops.empty() && "Cannot get empty umax!");
2491 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002492#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002493 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002494 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002495 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002496 "SCEVUMaxExpr operand types don't match!");
2497#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002498
2499 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002500 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002501
2502 // If there are any constants, fold them together.
2503 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002504 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002505 ++Idx;
2506 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002507 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002508 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002509 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002510 APIntOps::umax(LHSC->getValue()->getValue(),
2511 RHSC->getValue()->getValue()));
2512 Ops[0] = getConstant(Fold);
2513 Ops.erase(Ops.begin()+1); // Erase the folded element
2514 if (Ops.size() == 1) return Ops[0];
2515 LHSC = cast<SCEVConstant>(Ops[0]);
2516 }
2517
Dan Gohmane5aceed2009-06-24 14:46:22 +00002518 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002519 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2520 Ops.erase(Ops.begin());
2521 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002522 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2523 // If we have an umax with a constant maximum-int, it will always be
2524 // maximum-int.
2525 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002526 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002527
Dan Gohman3ab13122010-04-13 16:49:23 +00002528 if (Ops.size() == 1) return Ops[0];
2529 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002530
2531 // Find the first UMax
2532 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2533 ++Idx;
2534
2535 // Check to see if one of the operands is a UMax. If so, expand its operands
2536 // onto our operand list, and recurse to simplify.
2537 if (Idx < Ops.size()) {
2538 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002539 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002540 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002541 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002542 DeletedUMax = true;
2543 }
2544
2545 if (DeletedUMax)
2546 return getUMaxExpr(Ops);
2547 }
2548
2549 // Okay, check to see if the same value occurs in the operand list twice. If
2550 // so, delete one. Since we sorted the list, these values are required to
2551 // be adjacent.
2552 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002553 // X umax Y umax Y --> X umax Y
2554 // X umax Y --> X, if X is always greater than Y
2555 if (Ops[i] == Ops[i+1] ||
2556 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2557 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2558 --i; --e;
2559 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002560 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2561 --i; --e;
2562 }
2563
2564 if (Ops.size() == 1) return Ops[0];
2565
2566 assert(!Ops.empty() && "Reduced umax down to nothing!");
2567
2568 // Okay, it looks like we really DO need a umax expr. Check to see if we
2569 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002570 FoldingSetNodeID ID;
2571 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002572 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2573 ID.AddPointer(Ops[i]);
2574 void *IP = 0;
2575 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002576 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2577 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002578 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2579 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002580 UniqueSCEVs.InsertNode(S, IP);
2581 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002582}
2583
Dan Gohman9311ef62009-06-24 14:49:00 +00002584const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2585 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002586 // ~smax(~x, ~y) == smin(x, y).
2587 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2588}
2589
Dan Gohman9311ef62009-06-24 14:49:00 +00002590const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2591 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002592 // ~umax(~x, ~y) == umin(x, y)
2593 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2594}
2595
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002596const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002597 // If we have TargetData, we can bypass creating a target-independent
2598 // constant expression and then folding it back into a ConstantInt.
2599 // This is just a compile-time optimization.
2600 if (TD)
2601 return getConstant(TD->getIntPtrType(getContext()),
2602 TD->getTypeAllocSize(AllocTy));
2603
Dan Gohman4f8eea82010-02-01 18:27:38 +00002604 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2605 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002606 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002607 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002608 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002609 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2610}
2611
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002612const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002613 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2614 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002615 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002616 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002617 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002618 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2619}
2620
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002621const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002622 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002623 // If we have TargetData, we can bypass creating a target-independent
2624 // constant expression and then folding it back into a ConstantInt.
2625 // This is just a compile-time optimization.
2626 if (TD)
2627 return getConstant(TD->getIntPtrType(getContext()),
2628 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2629
Dan Gohman0f5efe52010-01-28 02:15:55 +00002630 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2631 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002632 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002633 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002634 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002635 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002636}
2637
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002638const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002639 Constant *FieldNo) {
2640 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002641 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002642 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002643 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002644 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002645 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002646}
2647
Dan Gohman0bba49c2009-07-07 17:06:11 +00002648const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002649 // Don't attempt to do anything other than create a SCEVUnknown object
2650 // here. createSCEV only calls getUnknown after checking for all other
2651 // interesting possibilities, and any other code that calls getUnknown
2652 // is doing so in order to hide a value from SCEV canonicalization.
2653
Dan Gohman1c343752009-06-27 21:21:31 +00002654 FoldingSetNodeID ID;
2655 ID.AddInteger(scUnknown);
2656 ID.AddPointer(V);
2657 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002658 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2659 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2660 "Stale SCEVUnknown in uniquing map!");
2661 return S;
2662 }
2663 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2664 FirstUnknown);
2665 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002666 UniqueSCEVs.InsertNode(S, IP);
2667 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002668}
2669
Chris Lattner53e677a2004-04-02 20:23:17 +00002670//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002671// Basic SCEV Analysis and PHI Idiom Recognition Code
2672//
2673
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002674/// isSCEVable - Test if values of the given type are analyzable within
2675/// the SCEV framework. This primarily includes integer types, and it
2676/// can optionally include pointer types if the ScalarEvolution class
2677/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002678bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002679 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002680 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002681}
2682
2683/// getTypeSizeInBits - Return the size in bits of the specified type,
2684/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002685uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002686 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2687
2688 // If we have a TargetData, use it!
2689 if (TD)
2690 return TD->getTypeSizeInBits(Ty);
2691
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002692 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002693 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002694 return Ty->getPrimitiveSizeInBits();
2695
2696 // The only other support type is pointer. Without TargetData, conservatively
2697 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002698 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002699 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002700}
2701
2702/// getEffectiveSCEVType - Return a type with the same bitwidth as
2703/// the given type and which represents how SCEV will treat the given
2704/// type, for which isSCEVable must return true. For pointer types,
2705/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002706Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002707 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2708
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002709 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002710 return Ty;
2711
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002712 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002713 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002714 if (TD) return TD->getIntPtrType(getContext());
2715
2716 // Without TargetData, conservatively assume pointers are 64-bit.
2717 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002718}
Chris Lattner53e677a2004-04-02 20:23:17 +00002719
Dan Gohman0bba49c2009-07-07 17:06:11 +00002720const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002721 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002722}
2723
Chris Lattner53e677a2004-04-02 20:23:17 +00002724/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2725/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002726const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002727 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002728
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002729 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2730 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002731 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002732
2733 // The process of creating a SCEV for V may have caused other SCEVs
2734 // to have been created, so it's necessary to insert the new entry
2735 // from scratch, rather than trying to remember the insert position
2736 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002737 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002738 return S;
2739}
2740
Dan Gohman2d1be872009-04-16 03:18:22 +00002741/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2742///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002743const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002744 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002745 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002746 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002747
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002748 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002749 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002750 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002751 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002752}
2753
2754/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002755const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002756 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002757 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002758 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002759
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002760 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002761 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002762 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002763 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002764 return getMinusSCEV(AllOnes, V);
2765}
2766
Andrew Trick3228cc22011-03-14 16:50:06 +00002767/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002768const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002769 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002770 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2771
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002772 // Fast path: X - X --> 0.
2773 if (LHS == RHS)
2774 return getConstant(LHS->getType(), 0);
2775
Dan Gohman2d1be872009-04-16 03:18:22 +00002776 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002777 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002778}
2779
2780/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2781/// input value to the specified type. If the type must be extended, it is zero
2782/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002783const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002784ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2785 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002786 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2787 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002788 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002789 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002790 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002791 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002792 return getTruncateExpr(V, Ty);
2793 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002794}
2795
2796/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2797/// input value to the specified type. If the type must be extended, it is sign
2798/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002799const SCEV *
2800ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002801 Type *Ty) {
2802 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002803 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2804 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002805 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002806 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002807 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002808 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002809 return getTruncateExpr(V, Ty);
2810 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002811}
2812
Dan Gohman467c4302009-05-13 03:46:30 +00002813/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2814/// input value to the specified type. If the type must be extended, it is zero
2815/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002816const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002817ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2818 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002819 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2820 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002821 "Cannot noop or zero extend with non-integer arguments!");
2822 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2823 "getNoopOrZeroExtend cannot truncate!");
2824 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2825 return V; // No conversion
2826 return getZeroExtendExpr(V, Ty);
2827}
2828
2829/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2830/// input value to the specified type. If the type must be extended, it is sign
2831/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002832const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002833ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2834 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002835 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2836 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002837 "Cannot noop or sign extend with non-integer arguments!");
2838 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2839 "getNoopOrSignExtend cannot truncate!");
2840 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2841 return V; // No conversion
2842 return getSignExtendExpr(V, Ty);
2843}
2844
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002845/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2846/// the input value to the specified type. If the type must be extended,
2847/// it is extended with unspecified bits. The conversion must not be
2848/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002849const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002850ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2851 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002852 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2853 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002854 "Cannot noop or any extend with non-integer arguments!");
2855 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2856 "getNoopOrAnyExtend cannot truncate!");
2857 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2858 return V; // No conversion
2859 return getAnyExtendExpr(V, Ty);
2860}
2861
Dan Gohman467c4302009-05-13 03:46:30 +00002862/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2863/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002864const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002865ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2866 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002867 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2868 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002869 "Cannot truncate or noop with non-integer arguments!");
2870 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2871 "getTruncateOrNoop cannot extend!");
2872 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2873 return V; // No conversion
2874 return getTruncateExpr(V, Ty);
2875}
2876
Dan Gohmana334aa72009-06-22 00:31:57 +00002877/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2878/// the types using zero-extension, and then perform a umax operation
2879/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002880const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2881 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002882 const SCEV *PromotedLHS = LHS;
2883 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002884
2885 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2886 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2887 else
2888 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2889
2890 return getUMaxExpr(PromotedLHS, PromotedRHS);
2891}
2892
Dan Gohmanc9759e82009-06-22 15:03:27 +00002893/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2894/// the types using zero-extension, and then perform a umin operation
2895/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002896const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2897 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002898 const SCEV *PromotedLHS = LHS;
2899 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002900
2901 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2902 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2903 else
2904 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2905
2906 return getUMinExpr(PromotedLHS, PromotedRHS);
2907}
2908
Andrew Trickb12a7542011-03-17 23:51:11 +00002909/// getPointerBase - Transitively follow the chain of pointer-type operands
2910/// until reaching a SCEV that does not have a single pointer operand. This
2911/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2912/// but corner cases do exist.
2913const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2914 // A pointer operand may evaluate to a nonpointer expression, such as null.
2915 if (!V->getType()->isPointerTy())
2916 return V;
2917
2918 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2919 return getPointerBase(Cast->getOperand());
2920 }
2921 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2922 const SCEV *PtrOp = 0;
2923 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2924 I != E; ++I) {
2925 if ((*I)->getType()->isPointerTy()) {
2926 // Cannot find the base of an expression with multiple pointer operands.
2927 if (PtrOp)
2928 return V;
2929 PtrOp = *I;
2930 }
2931 }
2932 if (!PtrOp)
2933 return V;
2934 return getPointerBase(PtrOp);
2935 }
2936 return V;
2937}
2938
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002939/// PushDefUseChildren - Push users of the given Instruction
2940/// onto the given Worklist.
2941static void
2942PushDefUseChildren(Instruction *I,
2943 SmallVectorImpl<Instruction *> &Worklist) {
2944 // Push the def-use children onto the Worklist stack.
2945 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2946 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002947 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002948}
2949
2950/// ForgetSymbolicValue - This looks up computed SCEV values for all
2951/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002952/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002953/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002954void
Dan Gohman85669632010-02-25 06:57:05 +00002955ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002956 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002957 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002958
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002959 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002960 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002961 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002962 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002963 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002964
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002965 ValueExprMapType::iterator It =
2966 ValueExprMap.find(static_cast<Value *>(I));
2967 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002968 const SCEV *Old = It->second;
2969
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002970 // Short-circuit the def-use traversal if the symbolic name
2971 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002972 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002973 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002974
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002975 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002976 // structure, it's a PHI that's in the progress of being computed
2977 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2978 // additional loop trip count information isn't going to change anything.
2979 // In the second case, createNodeForPHI will perform the necessary
2980 // updates on its own when it gets to that point. In the third, we do
2981 // want to forget the SCEVUnknown.
2982 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002983 !isa<SCEVUnknown>(Old) ||
2984 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002985 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002986 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002987 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002988 }
2989
2990 PushDefUseChildren(I, Worklist);
2991 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002992}
Chris Lattner53e677a2004-04-02 20:23:17 +00002993
2994/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2995/// a loop header, making it a potential recurrence, or it doesn't.
2996///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002997const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002998 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2999 if (L->getHeader() == PN->getParent()) {
3000 // The loop may have multiple entrances or multiple exits; we can analyze
3001 // this phi as an addrec if it has a unique entry value and a unique
3002 // backedge value.
3003 Value *BEValueV = 0, *StartValueV = 0;
3004 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3005 Value *V = PN->getIncomingValue(i);
3006 if (L->contains(PN->getIncomingBlock(i))) {
3007 if (!BEValueV) {
3008 BEValueV = V;
3009 } else if (BEValueV != V) {
3010 BEValueV = 0;
3011 break;
3012 }
3013 } else if (!StartValueV) {
3014 StartValueV = V;
3015 } else if (StartValueV != V) {
3016 StartValueV = 0;
3017 break;
3018 }
3019 }
3020 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003021 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003022 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003023 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003024 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003025 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00003026
3027 // Using this symbolic name for the PHI, analyze the value coming around
3028 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003029 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00003030
3031 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3032 // has a special value for the first iteration of the loop.
3033
3034 // If the value coming around the backedge is an add with the symbolic
3035 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00003036 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003037 // If there is a single occurrence of the symbolic value, replace it
3038 // with a recurrence.
3039 unsigned FoundIndex = Add->getNumOperands();
3040 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3041 if (Add->getOperand(i) == SymbolicName)
3042 if (FoundIndex == e) {
3043 FoundIndex = i;
3044 break;
3045 }
3046
3047 if (FoundIndex != Add->getNumOperands()) {
3048 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003049 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00003050 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3051 if (i != FoundIndex)
3052 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00003053 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00003054
3055 // This is not a valid addrec if the step amount is varying each
3056 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003057 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00003058 (isa<SCEVAddRecExpr>(Accum) &&
3059 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003060 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00003061
3062 // If the increment doesn't overflow, then neither the addrec nor
3063 // the post-increment will overflow.
3064 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3065 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003066 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003067 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003068 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00003069 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00003070 dyn_cast<GEPOperator>(BEValueV)) {
3071 // If the increment is an inbounds GEP, then we know the address
3072 // space cannot be wrapped around. We cannot make any guarantee
3073 // about signed or unsigned overflow because pointers are
3074 // unsigned but we may have a negative index from the base
3075 // pointer.
3076 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00003077 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003078 }
3079
Dan Gohman27dead42010-04-12 07:49:36 +00003080 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00003081 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00003082
Dan Gohmana10756e2010-01-21 02:09:26 +00003083 // Since the no-wrap flags are on the increment, they apply to the
3084 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003085 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003086 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003087 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003088
3089 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003090 // to be symbolic. We now need to go back and purge all of the
3091 // entries for the scalars that use the symbolic expression.
3092 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003093 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003094 return PHISCEV;
3095 }
3096 }
Dan Gohman622ed672009-05-04 22:02:23 +00003097 } else if (const SCEVAddRecExpr *AddRec =
3098 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003099 // Otherwise, this could be a loop like this:
3100 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3101 // In this case, j = {1,+,1} and BEValue is j.
3102 // Because the other in-value of i (0) fits the evolution of BEValue
3103 // i really is an addrec evolution.
3104 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003105 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003106
3107 // If StartVal = j.start - j.stride, we can use StartVal as the
3108 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003109 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003110 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003111 // FIXME: For constant StartVal, we should be able to infer
3112 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003113 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003114 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3115 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003116
3117 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003118 // to be symbolic. We now need to go back and purge all of the
3119 // entries for the scalars that use the symbolic expression.
3120 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003121 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003122 return PHISCEV;
3123 }
3124 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003125 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003126 }
Dan Gohman27dead42010-04-12 07:49:36 +00003127 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003128
Dan Gohman85669632010-02-25 06:57:05 +00003129 // If the PHI has a single incoming value, follow that value, unless the
3130 // PHI's incoming blocks are in a different loop, in which case doing so
3131 // risks breaking LCSSA form. Instcombine would normally zap these, but
3132 // it doesn't have DominatorTree information, so it may miss cases.
Chad Rosier618c1db2011-12-01 03:08:23 +00003133 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003134 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003135 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003136
Chris Lattner53e677a2004-04-02 20:23:17 +00003137 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003138 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003139}
3140
Dan Gohman26466c02009-05-08 20:26:55 +00003141/// createNodeForGEP - Expand GEP instructions into add and multiply
3142/// operations. This allows them to be analyzed by regular SCEV code.
3143///
Dan Gohmand281ed22009-12-18 02:09:29 +00003144const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003145
Dan Gohmanb9f96512010-06-30 07:16:37 +00003146 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3147 // Add expression, because the Instruction may be guarded by control flow
3148 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003149 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003150 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003151
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003152 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003153 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003154 // Don't attempt to analyze GEPs over unsized objects.
3155 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3156 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003157 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003158 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003159 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003160 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003161 I != E; ++I) {
3162 Value *Index = *I;
3163 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003164 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003165 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003166 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00003167 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3168
Dan Gohmanb9f96512010-06-30 07:16:37 +00003169 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003170 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003171 } else {
3172 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003173 const SCEV *ElementSize = getSizeOfExpr(*GTI);
3174 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003175 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003176 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3177
Dan Gohmanb9f96512010-06-30 07:16:37 +00003178 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003179 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3180 isInBounds ? SCEV::FlagNSW :
3181 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003182
3183 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003184 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003185 }
3186 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003187
3188 // Get the SCEV for the GEP base.
3189 const SCEV *BaseS = getSCEV(Base);
3190
Dan Gohmanb9f96512010-06-30 07:16:37 +00003191 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003192 return getAddExpr(BaseS, TotalOffset,
Benjamin Kramer86df0622012-04-17 06:33:57 +00003193 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003194}
3195
Nick Lewycky83bb0052007-11-22 07:59:40 +00003196/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3197/// guaranteed to end in (at every loop iteration). It is, at the same time,
3198/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3199/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003200uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003201ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003202 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003203 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003204
Dan Gohman622ed672009-05-04 22:02:23 +00003205 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003206 return std::min(GetMinTrailingZeros(T->getOperand()),
3207 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003208
Dan Gohman622ed672009-05-04 22:02:23 +00003209 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003210 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3211 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3212 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003213 }
3214
Dan Gohman622ed672009-05-04 22:02:23 +00003215 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003216 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3217 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3218 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003219 }
3220
Dan Gohman622ed672009-05-04 22:02:23 +00003221 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003222 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003223 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003224 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003225 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003226 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003227 }
3228
Dan Gohman622ed672009-05-04 22:02:23 +00003229 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003230 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003231 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3232 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003233 for (unsigned i = 1, e = M->getNumOperands();
3234 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003235 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003236 BitWidth);
3237 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003238 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003239
Dan Gohman622ed672009-05-04 22:02:23 +00003240 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003241 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003242 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003243 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003244 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003245 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003246 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003247
Dan Gohman622ed672009-05-04 22:02:23 +00003248 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003249 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003250 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003251 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003252 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003253 return MinOpRes;
3254 }
3255
Dan Gohman622ed672009-05-04 22:02:23 +00003256 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003257 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003258 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003259 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003260 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003261 return MinOpRes;
3262 }
3263
Dan Gohman2c364ad2009-06-19 23:29:04 +00003264 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3265 // For a SCEVUnknown, ask ValueTracking.
3266 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohman2c364ad2009-06-19 23:29:04 +00003267 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003268 ComputeMaskedBits(U->getValue(), Zeros, Ones);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003269 return Zeros.countTrailingOnes();
3270 }
3271
3272 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003273 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003274}
Chris Lattner53e677a2004-04-02 20:23:17 +00003275
Dan Gohman85b05a22009-07-13 21:35:55 +00003276/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3277///
3278ConstantRange
3279ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003280 // See if we've computed this range already.
3281 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3282 if (I != UnsignedRanges.end())
3283 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003284
3285 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003286 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003287
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003288 unsigned BitWidth = getTypeSizeInBits(S->getType());
3289 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3290
3291 // If the value has known zeros, the maximum unsigned value will have those
3292 // known zeros as well.
3293 uint32_t TZ = GetMinTrailingZeros(S);
3294 if (TZ != 0)
3295 ConservativeResult =
3296 ConstantRange(APInt::getMinValue(BitWidth),
3297 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3298
Dan Gohman85b05a22009-07-13 21:35:55 +00003299 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3300 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3301 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3302 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003303 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003304 }
3305
3306 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3307 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3308 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3309 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003310 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003311 }
3312
3313 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3314 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3315 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3316 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003317 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003318 }
3319
3320 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3321 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3322 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3323 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003324 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003325 }
3326
3327 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3328 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3329 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003330 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003331 }
3332
3333 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3334 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003335 return setUnsignedRange(ZExt,
3336 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003337 }
3338
3339 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3340 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003341 return setUnsignedRange(SExt,
3342 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003343 }
3344
3345 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3346 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003347 return setUnsignedRange(Trunc,
3348 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003349 }
3350
Dan Gohman85b05a22009-07-13 21:35:55 +00003351 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003352 // If there's no unsigned wrap, the value will never be less than its
3353 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003354 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003355 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003356 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003357 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003358 ConservativeResult.intersectWith(
3359 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003360
3361 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003362 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003363 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003364 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003365 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3366 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003367 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3368
3369 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003370 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003371
3372 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003373 ConstantRange StepRange = getSignedRange(Step);
3374 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3375 ConstantRange EndRange =
3376 StartRange.add(MaxBECountRange.multiply(StepRange));
3377
3378 // Check for overflow. This must be done with ConstantRange arithmetic
3379 // because we could be called from within the ScalarEvolution overflow
3380 // checking code.
3381 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3382 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3383 ConstantRange ExtMaxBECountRange =
3384 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3385 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3386 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3387 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003388 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003389
Dan Gohman85b05a22009-07-13 21:35:55 +00003390 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3391 EndRange.getUnsignedMin());
3392 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3393 EndRange.getUnsignedMax());
3394 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003395 return setUnsignedRange(AddRec, ConservativeResult);
3396 return setUnsignedRange(AddRec,
3397 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003398 }
3399 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003400
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003401 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003402 }
3403
3404 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3405 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003406 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003407 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003408 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003409 return setUnsignedRange(U, ConservativeResult);
3410 return setUnsignedRange(U,
3411 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003412 }
3413
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003414 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003415}
3416
Dan Gohman85b05a22009-07-13 21:35:55 +00003417/// getSignedRange - Determine the signed range for a particular SCEV.
3418///
3419ConstantRange
3420ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003421 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003422 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3423 if (I != SignedRanges.end())
3424 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003425
Dan Gohman85b05a22009-07-13 21:35:55 +00003426 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003427 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003428
Dan Gohman52fddd32010-01-26 04:40:18 +00003429 unsigned BitWidth = getTypeSizeInBits(S->getType());
3430 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3431
3432 // If the value has known zeros, the maximum signed value will have those
3433 // known zeros as well.
3434 uint32_t TZ = GetMinTrailingZeros(S);
3435 if (TZ != 0)
3436 ConservativeResult =
3437 ConstantRange(APInt::getSignedMinValue(BitWidth),
3438 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3439
Dan Gohman85b05a22009-07-13 21:35:55 +00003440 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3441 ConstantRange X = getSignedRange(Add->getOperand(0));
3442 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3443 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003444 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003445 }
3446
Dan Gohman85b05a22009-07-13 21:35:55 +00003447 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3448 ConstantRange X = getSignedRange(Mul->getOperand(0));
3449 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3450 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003451 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003452 }
3453
Dan Gohman85b05a22009-07-13 21:35:55 +00003454 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3455 ConstantRange X = getSignedRange(SMax->getOperand(0));
3456 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3457 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003458 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003459 }
Dan Gohman62849c02009-06-24 01:05:09 +00003460
Dan Gohman85b05a22009-07-13 21:35:55 +00003461 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3462 ConstantRange X = getSignedRange(UMax->getOperand(0));
3463 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3464 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003465 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003466 }
Dan Gohman62849c02009-06-24 01:05:09 +00003467
Dan Gohman85b05a22009-07-13 21:35:55 +00003468 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3469 ConstantRange X = getSignedRange(UDiv->getLHS());
3470 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003471 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003472 }
Dan Gohman62849c02009-06-24 01:05:09 +00003473
Dan Gohman85b05a22009-07-13 21:35:55 +00003474 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3475 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003476 return setSignedRange(ZExt,
3477 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003478 }
3479
3480 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3481 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003482 return setSignedRange(SExt,
3483 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003484 }
3485
3486 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3487 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003488 return setSignedRange(Trunc,
3489 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003490 }
3491
Dan Gohman85b05a22009-07-13 21:35:55 +00003492 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003493 // If there's no signed wrap, and all the operands have the same sign or
3494 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003495 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003496 bool AllNonNeg = true;
3497 bool AllNonPos = true;
3498 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3499 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3500 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3501 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003502 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003503 ConservativeResult = ConservativeResult.intersectWith(
3504 ConstantRange(APInt(BitWidth, 0),
3505 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003506 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003507 ConservativeResult = ConservativeResult.intersectWith(
3508 ConstantRange(APInt::getSignedMinValue(BitWidth),
3509 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003510 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003511
3512 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003513 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003514 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003515 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003516 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3517 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003518 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3519
3520 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003521 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003522
3523 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003524 ConstantRange StepRange = getSignedRange(Step);
3525 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3526 ConstantRange EndRange =
3527 StartRange.add(MaxBECountRange.multiply(StepRange));
3528
3529 // Check for overflow. This must be done with ConstantRange arithmetic
3530 // because we could be called from within the ScalarEvolution overflow
3531 // checking code.
3532 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3533 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3534 ConstantRange ExtMaxBECountRange =
3535 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3536 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3537 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3538 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003539 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003540
Dan Gohman85b05a22009-07-13 21:35:55 +00003541 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3542 EndRange.getSignedMin());
3543 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3544 EndRange.getSignedMax());
3545 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003546 return setSignedRange(AddRec, ConservativeResult);
3547 return setSignedRange(AddRec,
3548 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003549 }
Dan Gohman62849c02009-06-24 01:05:09 +00003550 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003551
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003552 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003553 }
3554
Dan Gohman2c364ad2009-06-19 23:29:04 +00003555 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3556 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003557 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003558 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003559 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3560 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003561 return setSignedRange(U, ConservativeResult);
3562 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003563 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003564 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003565 }
3566
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003567 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003568}
3569
Chris Lattner53e677a2004-04-02 20:23:17 +00003570/// createSCEV - We know that there is no SCEV for the specified value.
3571/// Analyze the expression.
3572///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003573const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003574 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003575 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003576
Dan Gohman6c459a22008-06-22 19:56:46 +00003577 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003578 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003579 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003580
3581 // Don't attempt to analyze instructions in blocks that aren't
3582 // reachable. Such instructions don't matter, and they aren't required
3583 // to obey basic rules for definitions dominating uses which this
3584 // analysis depends on.
3585 if (!DT->isReachableFromEntry(I->getParent()))
3586 return getUnknown(V);
3587 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003588 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003589 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3590 return getConstant(CI);
3591 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003592 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003593 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3594 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003595 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003596 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003597
Dan Gohmanca178902009-07-17 20:47:02 +00003598 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003599 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003600 case Instruction::Add: {
3601 // The simple thing to do would be to just call getSCEV on both operands
3602 // and call getAddExpr with the result. However if we're looking at a
3603 // bunch of things all added together, this can be quite inefficient,
3604 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3605 // Instead, gather up all the operands and make a single getAddExpr call.
3606 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickecb35ec2011-11-29 02:16:38 +00003607 //
3608 // Don't apply this instruction's NSW or NUW flags to the new
3609 // expression. The instruction may be guarded by control flow that the
3610 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3611 // mapped to the same SCEV expression, and it would be incorrect to transfer
3612 // NSW/NUW semantics to those operations.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003613 SmallVector<const SCEV *, 4> AddOps;
3614 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003615 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3616 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3617 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3618 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003619 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003620 const SCEV *Op1 = getSCEV(U->getOperand(1));
3621 if (Opcode == Instruction::Sub)
3622 AddOps.push_back(getNegativeSCEV(Op1));
3623 else
3624 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003625 }
3626 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickecb35ec2011-11-29 02:16:38 +00003627 return getAddExpr(AddOps);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003628 }
3629 case Instruction::Mul: {
Andrew Trickecb35ec2011-11-29 02:16:38 +00003630 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003631 SmallVector<const SCEV *, 4> MulOps;
3632 MulOps.push_back(getSCEV(U->getOperand(1)));
3633 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003634 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003635 Op = U->getOperand(0)) {
3636 U = cast<Operator>(Op);
3637 MulOps.push_back(getSCEV(U->getOperand(1)));
3638 }
3639 MulOps.push_back(getSCEV(U->getOperand(0)));
3640 return getMulExpr(MulOps);
3641 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003642 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003643 return getUDivExpr(getSCEV(U->getOperand(0)),
3644 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003645 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003646 return getMinusSCEV(getSCEV(U->getOperand(0)),
3647 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003648 case Instruction::And:
3649 // For an expression like x&255 that merely masks off the high bits,
3650 // use zext(trunc(x)) as the SCEV expression.
3651 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003652 if (CI->isNullValue())
3653 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003654 if (CI->isAllOnesValue())
3655 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003656 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003657
3658 // Instcombine's ShrinkDemandedConstant may strip bits out of
3659 // constants, obscuring what would otherwise be a low-bits mask.
3660 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3661 // knew about to reconstruct a low-bits mask value.
3662 unsigned LZ = A.countLeadingZeros();
3663 unsigned BitWidth = A.getBitWidth();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003664 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003665 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003666
3667 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3668
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003669 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003670 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003671 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003672 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003673 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003674 }
3675 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003676
Dan Gohman6c459a22008-06-22 19:56:46 +00003677 case Instruction::Or:
3678 // If the RHS of the Or is a constant, we may have something like:
3679 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3680 // optimizations will transparently handle this case.
3681 //
3682 // In order for this transformation to be safe, the LHS must be of the
3683 // form X*(2^n) and the Or constant must be less than 2^n.
3684 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003685 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003686 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003687 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003688 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3689 // Build a plain add SCEV.
3690 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3691 // If the LHS of the add was an addrec and it has no-wrap flags,
3692 // transfer the no-wrap flags, since an or won't introduce a wrap.
3693 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3694 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003695 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3696 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003697 }
3698 return S;
3699 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003700 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003701 break;
3702 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003703 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003704 // If the RHS of the xor is a signbit, then this is just an add.
3705 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003706 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003707 return getAddExpr(getSCEV(U->getOperand(0)),
3708 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003709
3710 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003711 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003712 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003713
3714 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3715 // This is a variant of the check for xor with -1, and it handles
3716 // the case where instcombine has trimmed non-demanded bits out
3717 // of an xor with -1.
3718 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3719 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3720 if (BO->getOpcode() == Instruction::And &&
3721 LCI->getValue() == CI->getValue())
3722 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003723 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003724 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003725 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003726 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003727 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3728
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003729 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003730 // mask off the high bits. Complement the operand and
3731 // re-apply the zext.
3732 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3733 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3734
3735 // If C is a single bit, it may be in the sign-bit position
3736 // before the zero-extend. In this case, represent the xor
3737 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003738 APInt Trunc = CI->getValue().trunc(Z0TySize);
3739 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003740 Trunc.isSignBit())
3741 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3742 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003743 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003744 }
3745 break;
3746
3747 case Instruction::Shl:
3748 // Turn shift left of a constant amount into a multiply.
3749 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003750 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003751
3752 // If the shift count is not less than the bitwidth, the result of
3753 // the shift is undefined. Don't try to analyze it, because the
3754 // resolution chosen here may differ from the resolution chosen in
3755 // other parts of the compiler.
3756 if (SA->getValue().uge(BitWidth))
3757 break;
3758
Owen Andersoneed707b2009-07-24 23:12:02 +00003759 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003760 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003761 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003762 }
3763 break;
3764
Nick Lewycky01eaf802008-07-07 06:15:49 +00003765 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003766 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003767 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003768 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003769
3770 // If the shift count is not less than the bitwidth, the result of
3771 // the shift is undefined. Don't try to analyze it, because the
3772 // resolution chosen here may differ from the resolution chosen in
3773 // other parts of the compiler.
3774 if (SA->getValue().uge(BitWidth))
3775 break;
3776
Owen Andersoneed707b2009-07-24 23:12:02 +00003777 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003778 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003779 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003780 }
3781 break;
3782
Dan Gohman4ee29af2009-04-21 02:26:00 +00003783 case Instruction::AShr:
3784 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3785 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003786 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003787 if (L->getOpcode() == Instruction::Shl &&
3788 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003789 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3790
3791 // If the shift count is not less than the bitwidth, the result of
3792 // the shift is undefined. Don't try to analyze it, because the
3793 // resolution chosen here may differ from the resolution chosen in
3794 // other parts of the compiler.
3795 if (CI->getValue().uge(BitWidth))
3796 break;
3797
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003798 uint64_t Amt = BitWidth - CI->getZExtValue();
3799 if (Amt == BitWidth)
3800 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003801 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003802 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003803 IntegerType::get(getContext(),
3804 Amt)),
3805 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003806 }
3807 break;
3808
Dan Gohman6c459a22008-06-22 19:56:46 +00003809 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003810 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003811
3812 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003813 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003814
3815 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003816 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003817
3818 case Instruction::BitCast:
3819 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003820 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003821 return getSCEV(U->getOperand(0));
3822 break;
3823
Dan Gohman4f8eea82010-02-01 18:27:38 +00003824 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3825 // lead to pointer expressions which cannot safely be expanded to GEPs,
3826 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3827 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003828
Dan Gohman26466c02009-05-08 20:26:55 +00003829 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003830 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003831
Dan Gohman6c459a22008-06-22 19:56:46 +00003832 case Instruction::PHI:
3833 return createNodeForPHI(cast<PHINode>(U));
3834
3835 case Instruction::Select:
3836 // This could be a smax or umax that was lowered earlier.
3837 // Try to recover it.
3838 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3839 Value *LHS = ICI->getOperand(0);
3840 Value *RHS = ICI->getOperand(1);
3841 switch (ICI->getPredicate()) {
3842 case ICmpInst::ICMP_SLT:
3843 case ICmpInst::ICMP_SLE:
3844 std::swap(LHS, RHS);
3845 // fall through
3846 case ICmpInst::ICMP_SGT:
3847 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003848 // a >s b ? a+x : b+x -> smax(a, b)+x
3849 // a >s b ? b+x : a+x -> smin(a, b)+x
3850 if (LHS->getType() == U->getType()) {
3851 const SCEV *LS = getSCEV(LHS);
3852 const SCEV *RS = getSCEV(RHS);
3853 const SCEV *LA = getSCEV(U->getOperand(1));
3854 const SCEV *RA = getSCEV(U->getOperand(2));
3855 const SCEV *LDiff = getMinusSCEV(LA, LS);
3856 const SCEV *RDiff = getMinusSCEV(RA, RS);
3857 if (LDiff == RDiff)
3858 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3859 LDiff = getMinusSCEV(LA, RS);
3860 RDiff = getMinusSCEV(RA, LS);
3861 if (LDiff == RDiff)
3862 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3863 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003864 break;
3865 case ICmpInst::ICMP_ULT:
3866 case ICmpInst::ICMP_ULE:
3867 std::swap(LHS, RHS);
3868 // fall through
3869 case ICmpInst::ICMP_UGT:
3870 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003871 // a >u b ? a+x : b+x -> umax(a, b)+x
3872 // a >u b ? b+x : a+x -> umin(a, b)+x
3873 if (LHS->getType() == U->getType()) {
3874 const SCEV *LS = getSCEV(LHS);
3875 const SCEV *RS = getSCEV(RHS);
3876 const SCEV *LA = getSCEV(U->getOperand(1));
3877 const SCEV *RA = getSCEV(U->getOperand(2));
3878 const SCEV *LDiff = getMinusSCEV(LA, LS);
3879 const SCEV *RDiff = getMinusSCEV(RA, RS);
3880 if (LDiff == RDiff)
3881 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3882 LDiff = getMinusSCEV(LA, RS);
3883 RDiff = getMinusSCEV(RA, LS);
3884 if (LDiff == RDiff)
3885 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3886 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003887 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003888 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003889 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3890 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003891 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003892 cast<ConstantInt>(RHS)->isZero()) {
3893 const SCEV *One = getConstant(LHS->getType(), 1);
3894 const SCEV *LS = getSCEV(LHS);
3895 const SCEV *LA = getSCEV(U->getOperand(1));
3896 const SCEV *RA = getSCEV(U->getOperand(2));
3897 const SCEV *LDiff = getMinusSCEV(LA, LS);
3898 const SCEV *RDiff = getMinusSCEV(RA, One);
3899 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003900 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003901 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003902 break;
3903 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003904 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3905 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003906 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003907 cast<ConstantInt>(RHS)->isZero()) {
3908 const SCEV *One = getConstant(LHS->getType(), 1);
3909 const SCEV *LS = getSCEV(LHS);
3910 const SCEV *LA = getSCEV(U->getOperand(1));
3911 const SCEV *RA = getSCEV(U->getOperand(2));
3912 const SCEV *LDiff = getMinusSCEV(LA, One);
3913 const SCEV *RDiff = getMinusSCEV(RA, LS);
3914 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003915 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003916 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003917 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003918 default:
3919 break;
3920 }
3921 }
3922
3923 default: // We cannot analyze this expression.
3924 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003925 }
3926
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003927 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003928}
3929
3930
3931
3932//===----------------------------------------------------------------------===//
3933// Iteration Count Computation Code
3934//
3935
Andrew Trickb1831c62011-08-11 23:36:16 +00003936/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Trick3eada312012-01-11 06:52:55 +00003937/// normal unsigned value. Returns 0 if the trip count is unknown or not
3938/// constant. Will also return 0 if the maximum trip count is very large (>=
3939/// 2^32).
3940///
3941/// This "trip count" assumes that control exits via ExitingBlock. More
3942/// precisely, it is the number of times that control may reach ExitingBlock
3943/// before taking the branch. For loops with multiple exits, it may not be the
3944/// number times that the loop header executes because the loop may exit
3945/// prematurely via another branch.
3946unsigned ScalarEvolution::
3947getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) {
Andrew Trickb1831c62011-08-11 23:36:16 +00003948 const SCEVConstant *ExitCount =
Andrew Trick3eada312012-01-11 06:52:55 +00003949 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trickb1831c62011-08-11 23:36:16 +00003950 if (!ExitCount)
3951 return 0;
3952
3953 ConstantInt *ExitConst = ExitCount->getValue();
3954
3955 // Guard against huge trip counts.
3956 if (ExitConst->getValue().getActiveBits() > 32)
3957 return 0;
3958
3959 // In case of integer overflow, this returns 0, which is correct.
3960 return ((unsigned)ExitConst->getZExtValue()) + 1;
3961}
3962
3963/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3964/// trip count of this loop as a normal unsigned value, if possible. This
3965/// means that the actual trip count is always a multiple of the returned
3966/// value (don't forget the trip count could very well be zero as well!).
3967///
3968/// Returns 1 if the trip count is unknown or not guaranteed to be the
3969/// multiple of a constant (which is also the case if the trip count is simply
3970/// constant, use getSmallConstantTripCount for that case), Will also return 1
3971/// if the trip count is very large (>= 2^32).
Andrew Trick3eada312012-01-11 06:52:55 +00003972///
3973/// As explained in the comments for getSmallConstantTripCount, this assumes
3974/// that control exits the loop via ExitingBlock.
3975unsigned ScalarEvolution::
3976getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) {
3977 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trickb1831c62011-08-11 23:36:16 +00003978 if (ExitCount == getCouldNotCompute())
3979 return 1;
3980
3981 // Get the trip count from the BE count by adding 1.
3982 const SCEV *TCMul = getAddExpr(ExitCount,
3983 getConstant(ExitCount->getType(), 1));
3984 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3985 // to factor simple cases.
3986 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3987 TCMul = Mul->getOperand(0);
3988
3989 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3990 if (!MulC)
3991 return 1;
3992
3993 ConstantInt *Result = MulC->getValue();
3994
3995 // Guard against huge trip counts.
3996 if (!Result || Result->getValue().getActiveBits() > 32)
3997 return 1;
3998
3999 return (unsigned)Result->getZExtValue();
4000}
4001
Andrew Trick5116ff62011-07-26 17:19:55 +00004002// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickfcb43562011-08-02 04:23:35 +00004003// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00004004// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00004005const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4006 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00004007}
4008
Dan Gohman46bdfb02009-02-24 18:55:53 +00004009/// getBackedgeTakenCount - If the specified loop has a predictable
4010/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4011/// object. The backedge-taken count is the number of times the loop header
4012/// will be branched to from within the loop. This is one less than the
4013/// trip count of the loop, since it doesn't count the first iteration,
4014/// when the header is branched to from outside the loop.
4015///
4016/// Note that it is not valid to call this method on a loop without a
4017/// loop-invariant backedge-taken count (see
4018/// hasLoopInvariantBackedgeTakenCount).
4019///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004020const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004021 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004022}
4023
4024/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4025/// return the least SCEV value that is known never to be less than the
4026/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004027const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004028 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004029}
4030
Dan Gohman59ae6b92009-07-08 19:23:34 +00004031/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4032/// onto the given Worklist.
4033static void
4034PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4035 BasicBlock *Header = L->getHeader();
4036
4037 // Push all Loop-header PHIs onto the Worklist stack.
4038 for (BasicBlock::iterator I = Header->begin();
4039 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4040 Worklist.push_back(PN);
4041}
4042
Dan Gohmana1af7572009-04-30 20:47:05 +00004043const ScalarEvolution::BackedgeTakenInfo &
4044ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004045 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004046 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00004047 // update the value. The temporary CouldNotCompute value tells SCEV
4048 // code elsewhere that it shouldn't attempt to request a new
4049 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004050 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00004051 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00004052 if (!Pair.second)
4053 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00004054
Andrew Trick5116ff62011-07-26 17:19:55 +00004055 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4056 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4057 // must be cleared in this scope.
4058 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4059
4060 if (Result.getExact(this) != getCouldNotCompute()) {
4061 assert(isLoopInvariant(Result.getExact(this), L) &&
4062 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00004063 "Computed backedge-taken count isn't loop invariant for loop!");
4064 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00004065 }
4066 else if (Result.getMax(this) == getCouldNotCompute() &&
4067 isa<PHINode>(L->getHeader()->begin())) {
4068 // Only count loops that have phi nodes as not being computable.
4069 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00004070 }
Dan Gohmana1af7572009-04-30 20:47:05 +00004071
Chris Lattnerf1859892011-01-09 02:16:18 +00004072 // Now that we know more about the trip count for this loop, forget any
4073 // existing SCEV values for PHI nodes in this loop since they are only
4074 // conservative estimates made without the benefit of trip count
4075 // information. This is similar to the code in forgetLoop, except that
4076 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00004077 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00004078 SmallVector<Instruction *, 16> Worklist;
4079 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004080
Chris Lattnerf1859892011-01-09 02:16:18 +00004081 SmallPtrSet<Instruction *, 8> Visited;
4082 while (!Worklist.empty()) {
4083 Instruction *I = Worklist.pop_back_val();
4084 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004085
Chris Lattnerf1859892011-01-09 02:16:18 +00004086 ValueExprMapType::iterator It =
4087 ValueExprMap.find(static_cast<Value *>(I));
4088 if (It != ValueExprMap.end()) {
4089 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00004090
Chris Lattnerf1859892011-01-09 02:16:18 +00004091 // SCEVUnknown for a PHI either means that it has an unrecognized
4092 // structure, or it's a PHI that's in the progress of being computed
4093 // by createNodeForPHI. In the former case, additional loop trip
4094 // count information isn't going to change anything. In the later
4095 // case, createNodeForPHI will perform the necessary updates on its
4096 // own when it gets to that point.
4097 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4098 forgetMemoizedResults(Old);
4099 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004100 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004101 if (PHINode *PN = dyn_cast<PHINode>(I))
4102 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004103 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004104
4105 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004106 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004107 }
Dan Gohman308bec32011-04-25 22:48:29 +00004108
4109 // Re-lookup the insert position, since the call to
4110 // ComputeBackedgeTakenCount above could result in a
4111 // recusive call to getBackedgeTakenInfo (on a different
4112 // loop), which would invalidate the iterator computed
4113 // earlier.
4114 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004115}
4116
Dan Gohman4c7279a2009-10-31 15:04:55 +00004117/// forgetLoop - This method should be called by the client when it has
4118/// changed a loop in a way that may effect ScalarEvolution's ability to
4119/// compute a trip count, or if the loop is deleted.
4120void ScalarEvolution::forgetLoop(const Loop *L) {
4121 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004122 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4123 BackedgeTakenCounts.find(L);
4124 if (BTCPos != BackedgeTakenCounts.end()) {
4125 BTCPos->second.clear();
4126 BackedgeTakenCounts.erase(BTCPos);
4127 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004128
Dan Gohman4c7279a2009-10-31 15:04:55 +00004129 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004130 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004131 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004132
Dan Gohman59ae6b92009-07-08 19:23:34 +00004133 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004134 while (!Worklist.empty()) {
4135 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004136 if (!Visited.insert(I)) continue;
4137
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004138 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4139 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004140 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004141 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004142 if (PHINode *PN = dyn_cast<PHINode>(I))
4143 ConstantEvolutionLoopExitValue.erase(PN);
4144 }
4145
4146 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004147 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004148
4149 // Forget all contained loops too, to avoid dangling entries in the
4150 // ValuesAtScopes map.
4151 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4152 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004153}
4154
Eric Christophere6cbfa62010-07-29 01:25:38 +00004155/// forgetValue - This method should be called by the client when it has
4156/// changed a value in a way that may effect its value, or which may
4157/// disconnect it from a def-use chain linking it to a loop.
4158void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004159 Instruction *I = dyn_cast<Instruction>(V);
4160 if (!I) return;
4161
4162 // Drop information about expressions based on loop-header PHIs.
4163 SmallVector<Instruction *, 16> Worklist;
4164 Worklist.push_back(I);
4165
4166 SmallPtrSet<Instruction *, 8> Visited;
4167 while (!Worklist.empty()) {
4168 I = Worklist.pop_back_val();
4169 if (!Visited.insert(I)) continue;
4170
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004171 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4172 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004173 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004174 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004175 if (PHINode *PN = dyn_cast<PHINode>(I))
4176 ConstantEvolutionLoopExitValue.erase(PN);
4177 }
4178
4179 PushDefUseChildren(I, Worklist);
4180 }
4181}
4182
Andrew Trick5116ff62011-07-26 17:19:55 +00004183/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004184/// exits. A computable result can only be return for loops with a single exit.
4185/// Returning the minimum taken count among all exits is incorrect because one
4186/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4187/// the limit of each loop test is never skipped. This is a valid assumption as
4188/// long as the loop exits via that test. For precise results, it is the
4189/// caller's responsibility to specify the relevant loop exit using
4190/// getExact(ExitingBlock, SE).
Andrew Trick5116ff62011-07-26 17:19:55 +00004191const SCEV *
4192ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4193 // If any exits were not computable, the loop is not computable.
4194 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4195
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004196 // We need exactly one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004197 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004198 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4199
4200 const SCEV *BECount = 0;
4201 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4202 ENT != 0; ENT = ENT->getNextExit()) {
4203
4204 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4205
4206 if (!BECount)
4207 BECount = ENT->ExactNotTaken;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004208 else if (BECount != ENT->ExactNotTaken)
4209 return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004210 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004211 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004212 return BECount;
4213}
4214
4215/// getExact - Get the exact not taken count for this loop exit.
4216const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004217ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004218 ScalarEvolution *SE) const {
4219 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4220 ENT != 0; ENT = ENT->getNextExit()) {
4221
Andrew Trickfcb43562011-08-02 04:23:35 +00004222 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004223 return ENT->ExactNotTaken;
4224 }
4225 return SE->getCouldNotCompute();
4226}
4227
4228/// getMax - Get the max backedge taken count for the loop.
4229const SCEV *
4230ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4231 return Max ? Max : SE->getCouldNotCompute();
4232}
4233
4234/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4235/// computable exit into a persistent ExitNotTakenInfo array.
4236ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4237 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4238 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4239
4240 if (!Complete)
4241 ExitNotTaken.setIncomplete();
4242
4243 unsigned NumExits = ExitCounts.size();
4244 if (NumExits == 0) return;
4245
Andrew Trickfcb43562011-08-02 04:23:35 +00004246 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004247 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4248 if (NumExits == 1) return;
4249
4250 // Handle the rare case of multiple computable exits.
4251 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4252
4253 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4254 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4255 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004256 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004257 ENT->ExactNotTaken = ExitCounts[i].second;
4258 }
4259}
4260
4261/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4262void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004263 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004264 ExitNotTaken.ExactNotTaken = 0;
4265 delete[] ExitNotTaken.getNextExit();
4266}
4267
Dan Gohman46bdfb02009-02-24 18:55:53 +00004268/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4269/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004270ScalarEvolution::BackedgeTakenInfo
4271ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004272 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004273 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004274
Dan Gohmana334aa72009-06-22 00:31:57 +00004275 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004276 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004277 bool CouldComputeBECount = true;
4278 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004279 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004280 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4281 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004282 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004283 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004284 CouldComputeBECount = false;
4285 else
4286 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4287
Dan Gohman1c343752009-06-27 21:21:31 +00004288 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004289 MaxBECount = EL.Max;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004290 else if (EL.Max != getCouldNotCompute()) {
4291 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4292 // skip some loop tests. Taking the max over the exits is sufficiently
4293 // conservative. TODO: We could do better taking into consideration
4294 // that (1) the loop has unit stride (2) the last loop test is
4295 // less-than/greater-than (3) any loop test is less-than/greater-than AND
4296 // falls-through some constant times less then the other tests.
4297 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4298 }
Dan Gohmana334aa72009-06-22 00:31:57 +00004299 }
4300
Andrew Trick5116ff62011-07-26 17:19:55 +00004301 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004302}
4303
Andrew Trick5116ff62011-07-26 17:19:55 +00004304/// ComputeExitLimit - Compute the number of times the backedge of the specified
4305/// loop will execute if it exits via the specified block.
4306ScalarEvolution::ExitLimit
4307ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004308
4309 // Okay, we've chosen an exiting block. See what condition causes us to
4310 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004311 //
4312 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004313 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004314 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004315 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004316
Chris Lattner8b0e3602007-01-07 02:24:26 +00004317 // At this point, we know we have a conditional branch that determines whether
4318 // the loop is exited. However, we don't know if the branch is executed each
4319 // time through the loop. If not, then the execution count of the branch will
4320 // not be equal to the trip count of the loop.
4321 //
4322 // Currently we check for this by checking to see if the Exit branch goes to
4323 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004324 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004325 // loop header. This is common for un-rotated loops.
4326 //
4327 // If both of those tests fail, walk up the unique predecessor chain to the
4328 // header, stopping if there is an edge that doesn't exit the loop. If the
4329 // header is reached, the execution count of the branch will be equal to the
4330 // trip count of the loop.
4331 //
4332 // More extensive analysis could be done to handle more cases here.
4333 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004334 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004335 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004336 ExitBr->getParent() != L->getHeader()) {
4337 // The simple checks failed, try climbing the unique predecessor chain
4338 // up to the header.
4339 bool Ok = false;
4340 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4341 BasicBlock *Pred = BB->getUniquePredecessor();
4342 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004343 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004344 TerminatorInst *PredTerm = Pred->getTerminator();
4345 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4346 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4347 if (PredSucc == BB)
4348 continue;
4349 // If the predecessor has a successor that isn't BB and isn't
4350 // outside the loop, assume the worst.
4351 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004352 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004353 }
4354 if (Pred == L->getHeader()) {
4355 Ok = true;
4356 break;
4357 }
4358 BB = Pred;
4359 }
4360 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004361 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004362 }
4363
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004364 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004365 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4366 ExitBr->getSuccessor(0),
4367 ExitBr->getSuccessor(1));
Dan Gohmana334aa72009-06-22 00:31:57 +00004368}
4369
Andrew Trick5116ff62011-07-26 17:19:55 +00004370/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004371/// backedge of the specified loop will execute if its exit condition
4372/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004373ScalarEvolution::ExitLimit
4374ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4375 Value *ExitCond,
4376 BasicBlock *TBB,
4377 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004378 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004379 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4380 if (BO->getOpcode() == Instruction::And) {
4381 // Recurse on the operands of the and.
Andrew Trick5116ff62011-07-26 17:19:55 +00004382 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4383 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004384 const SCEV *BECount = getCouldNotCompute();
4385 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004386 if (L->contains(TBB)) {
4387 // Both conditions must be true for the loop to continue executing.
4388 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004389 if (EL0.Exact == getCouldNotCompute() ||
4390 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004391 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004392 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004393 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4394 if (EL0.Max == getCouldNotCompute())
4395 MaxBECount = EL1.Max;
4396 else if (EL1.Max == getCouldNotCompute())
4397 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004398 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004399 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004400 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004401 // Both conditions must be true at the same time for the loop to exit.
4402 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004403 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004404 if (EL0.Max == EL1.Max)
4405 MaxBECount = EL0.Max;
4406 if (EL0.Exact == EL1.Exact)
4407 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004408 }
4409
Andrew Trick5116ff62011-07-26 17:19:55 +00004410 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004411 }
4412 if (BO->getOpcode() == Instruction::Or) {
4413 // Recurse on the operands of the or.
Andrew Trick5116ff62011-07-26 17:19:55 +00004414 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4415 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004416 const SCEV *BECount = getCouldNotCompute();
4417 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004418 if (L->contains(FBB)) {
4419 // Both conditions must be false for the loop to continue executing.
4420 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004421 if (EL0.Exact == getCouldNotCompute() ||
4422 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004423 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004424 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004425 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4426 if (EL0.Max == getCouldNotCompute())
4427 MaxBECount = EL1.Max;
4428 else if (EL1.Max == getCouldNotCompute())
4429 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004430 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004431 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004432 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004433 // Both conditions must be false at the same time for the loop to exit.
4434 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004435 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004436 if (EL0.Max == EL1.Max)
4437 MaxBECount = EL0.Max;
4438 if (EL0.Exact == EL1.Exact)
4439 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004440 }
4441
Andrew Trick5116ff62011-07-26 17:19:55 +00004442 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004443 }
4444 }
4445
4446 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004447 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004448 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5116ff62011-07-26 17:19:55 +00004449 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004450
Dan Gohman00cb5b72010-02-19 18:12:07 +00004451 // Check for a constant condition. These are normally stripped out by
4452 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4453 // preserve the CFG and is temporarily leaving constant conditions
4454 // in place.
4455 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4456 if (L->contains(FBB) == !CI->getZExtValue())
4457 // The backedge is always taken.
4458 return getCouldNotCompute();
4459 else
4460 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004461 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004462 }
4463
Eli Friedman361e54d2009-05-09 12:32:42 +00004464 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004465 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004466}
4467
Andrew Trick5116ff62011-07-26 17:19:55 +00004468/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004469/// backedge of the specified loop will execute if its exit condition
4470/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004471ScalarEvolution::ExitLimit
4472ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4473 ICmpInst *ExitCond,
4474 BasicBlock *TBB,
4475 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004476
Reid Spencere4d87aa2006-12-23 06:05:41 +00004477 // If the condition was exit on true, convert the condition to exit on false
4478 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004479 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004480 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004481 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004482 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004483
4484 // Handle common loops like: for (X = "string"; *X; ++X)
4485 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4486 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004487 ExitLimit ItCnt =
4488 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004489 if (ItCnt.hasAnyInfo())
4490 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004491 }
4492
Dan Gohman0bba49c2009-07-07 17:06:11 +00004493 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4494 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004495
4496 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004497 LHS = getSCEVAtScope(LHS, L);
4498 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004499
Dan Gohman64a845e2009-06-24 04:48:43 +00004500 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004501 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004502 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004503 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004504 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004505 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004506 }
4507
Dan Gohman03557dc2010-05-03 16:35:17 +00004508 // Simplify the operands before analyzing them.
4509 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4510
Chris Lattner53e677a2004-04-02 20:23:17 +00004511 // If we have a comparison of a chrec against a constant, try to use value
4512 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004513 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4514 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004515 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004516 // Form the constant range.
4517 ConstantRange CompRange(
4518 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004519
Dan Gohman0bba49c2009-07-07 17:06:11 +00004520 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004521 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004522 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004523
Chris Lattner53e677a2004-04-02 20:23:17 +00004524 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004525 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004526 // Convert to: while (X-Y != 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004527 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4528 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004529 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004530 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004531 case ICmpInst::ICMP_EQ: { // while (X == Y)
4532 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004533 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4534 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004535 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004536 }
4537 case ICmpInst::ICMP_SLT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004538 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4539 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004540 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004541 }
4542 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004543 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004544 getNotSCEV(RHS), L, true);
Andrew Trick5116ff62011-07-26 17:19:55 +00004545 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004546 break;
4547 }
4548 case ICmpInst::ICMP_ULT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004549 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4550 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004551 break;
4552 }
4553 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004554 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004555 getNotSCEV(RHS), L, false);
Andrew Trick5116ff62011-07-26 17:19:55 +00004556 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004557 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004558 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004559 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004560#if 0
David Greene25e0e872009-12-23 22:18:14 +00004561 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004562 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004563 dbgs() << "[unsigned] ";
4564 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004565 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004566 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004567#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004568 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004569 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004570 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004571}
4572
Chris Lattner673e02b2004-10-12 01:49:27 +00004573static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004574EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4575 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004576 const SCEV *InVal = SE.getConstant(C);
4577 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004578 assert(isa<SCEVConstant>(Val) &&
4579 "Evaluation of SCEV at constant didn't fold correctly?");
4580 return cast<SCEVConstant>(Val)->getValue();
4581}
4582
Andrew Trick5116ff62011-07-26 17:19:55 +00004583/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004584/// 'icmp op load X, cst', try to see if we can compute the backedge
4585/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004586ScalarEvolution::ExitLimit
4587ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4588 LoadInst *LI,
4589 Constant *RHS,
4590 const Loop *L,
4591 ICmpInst::Predicate predicate) {
4592
Dan Gohman1c343752009-06-27 21:21:31 +00004593 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004594
4595 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004596 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004597 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004598 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004599
4600 // Make sure that it is really a constant global we are gepping, with an
4601 // initializer, and make sure the first IDX is really 0.
4602 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004603 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004604 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4605 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004606 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004607
4608 // Okay, we allow one non-constant index into the GEP instruction.
4609 Value *VarIdx = 0;
Chris Lattnerdada5862012-01-24 05:49:24 +00004610 std::vector<Constant*> Indexes;
Chris Lattner673e02b2004-10-12 01:49:27 +00004611 unsigned VarIdxNum = 0;
4612 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4613 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4614 Indexes.push_back(CI);
4615 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004616 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004617 VarIdx = GEP->getOperand(i);
4618 VarIdxNum = i-2;
4619 Indexes.push_back(0);
4620 }
4621
Andrew Trickeb6dd232012-03-26 22:33:59 +00004622 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4623 if (!VarIdx)
4624 return getCouldNotCompute();
4625
Chris Lattner673e02b2004-10-12 01:49:27 +00004626 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4627 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004628 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004629 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004630
4631 // We can only recognize very limited forms of loop index expressions, in
4632 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004633 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004634 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004635 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4636 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004637 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004638
4639 unsigned MaxSteps = MaxBruteForceIterations;
4640 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004641 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004642 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004643 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004644
4645 // Form the GEP offset.
4646 Indexes[VarIdxNum] = Val;
4647
Chris Lattnerdada5862012-01-24 05:49:24 +00004648 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4649 Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004650 if (Result == 0) break; // Cannot compute!
4651
4652 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004653 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004654 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004655 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004656#if 0
David Greene25e0e872009-12-23 22:18:14 +00004657 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004658 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4659 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004660#endif
4661 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004662 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004663 }
4664 }
Dan Gohman1c343752009-06-27 21:21:31 +00004665 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004666}
4667
4668
Chris Lattner3221ad02004-04-17 22:58:41 +00004669/// CanConstantFold - Return true if we can constant fold an instruction of the
4670/// specified type, assuming that all operands were constants.
4671static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004672 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewycky614fef62011-10-22 19:58:20 +00004673 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4674 isa<LoadInst>(I))
Chris Lattner3221ad02004-04-17 22:58:41 +00004675 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004676
Chris Lattner3221ad02004-04-17 22:58:41 +00004677 if (const CallInst *CI = dyn_cast<CallInst>(I))
4678 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004679 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004680 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004681}
4682
Andrew Trick13d31e02011-10-05 03:25:31 +00004683/// Determine whether this instruction can constant evolve within this loop
4684/// assuming its operands can all constant evolve.
4685static bool canConstantEvolve(Instruction *I, const Loop *L) {
4686 // An instruction outside of the loop can't be derived from a loop PHI.
4687 if (!L->contains(I)) return false;
4688
4689 if (isa<PHINode>(I)) {
4690 if (L->getHeader() == I->getParent())
4691 return true;
4692 else
4693 // We don't currently keep track of the control flow needed to evaluate
4694 // PHIs, so we cannot handle PHIs inside of loops.
4695 return false;
4696 }
4697
4698 // If we won't be able to constant fold this expression even if the operands
4699 // are constants, bail early.
4700 return CanConstantFold(I);
4701}
4702
4703/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4704/// recursing through each instruction operand until reaching a loop header phi.
4705static PHINode *
4706getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Trick28ab7db2011-10-05 05:58:49 +00004707 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004708
4709 // Otherwise, we can evaluate this instruction if all of its operands are
4710 // constant or derived from a PHI node themselves.
4711 PHINode *PHI = 0;
4712 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4713 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4714
4715 if (isa<Constant>(*OpI)) continue;
4716
4717 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4718 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4719
4720 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trickef8a4c22011-10-05 22:06:53 +00004721 if (!P)
4722 // If this operand is already visited, reuse the prior result.
4723 // We may have P != PHI if this is the deepest point at which the
4724 // inconsistent paths meet.
4725 P = PHIMap.lookup(OpInst);
4726 if (!P) {
4727 // Recurse and memoize the results, whether a phi is found or not.
4728 // This recursive call invalidates pointers into PHIMap.
4729 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4730 PHIMap[OpInst] = P;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004731 }
Andrew Trick28ab7db2011-10-05 05:58:49 +00004732 if (P == 0) return 0; // Not evolving from PHI
4733 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4734 PHI = P;
Andrew Trick13d31e02011-10-05 03:25:31 +00004735 }
4736 // This is a expression evolving from a constant PHI!
4737 return PHI;
4738}
4739
Chris Lattner3221ad02004-04-17 22:58:41 +00004740/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4741/// in the loop that V is derived from. We allow arbitrary operations along the
4742/// way, but the operands of an operation must either be constants or a value
4743/// derived from a constant PHI. If this expression does not fit with these
4744/// constraints, return null.
4745static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004746 Instruction *I = dyn_cast<Instruction>(V);
Andrew Trick13d31e02011-10-05 03:25:31 +00004747 if (I == 0 || !canConstantEvolve(I, L)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004748
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004749 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004750 return PN;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004751 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004752
Andrew Trick13d31e02011-10-05 03:25:31 +00004753 // Record non-constant instructions contained by the loop.
Andrew Trick28ab7db2011-10-05 05:58:49 +00004754 DenseMap<Instruction *, PHINode *> PHIMap;
4755 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattner3221ad02004-04-17 22:58:41 +00004756}
4757
4758/// EvaluateExpression - Given an expression that passes the
4759/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4760/// in the loop has the value PHIVal. If we can't fold this expression for some
4761/// reason, return null.
Andrew Trick13d31e02011-10-05 03:25:31 +00004762static Constant *EvaluateExpression(Value *V, const Loop *L,
4763 DenseMap<Instruction *, Constant *> &Vals,
Chad Rosier00737bd2011-12-01 21:29:16 +00004764 const TargetData *TD,
4765 const TargetLibraryInfo *TLI) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004766 // Convenient constant check, but redundant for recursive calls.
Reid Spencere8404342004-07-18 00:18:30 +00004767 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewycky614fef62011-10-22 19:58:20 +00004768 Instruction *I = dyn_cast<Instruction>(V);
4769 if (!I) return 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004770
Andrew Trick13d31e02011-10-05 03:25:31 +00004771 if (Constant *C = Vals.lookup(I)) return C;
4772
Nick Lewycky614fef62011-10-22 19:58:20 +00004773 // An instruction inside the loop depends on a value outside the loop that we
4774 // weren't given a mapping for, or a value such as a call inside the loop.
4775 if (!canConstantEvolve(I, L)) return 0;
4776
4777 // An unmapped PHI can be due to a branch or another loop inside this loop,
4778 // or due to this not being the initial iteration through a loop where we
4779 // couldn't compute the evolution of this particular PHI last time.
4780 if (isa<PHINode>(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004781
Dan Gohman9d4588f2010-06-22 13:15:46 +00004782 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004783
4784 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004785 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4786 if (!Operand) {
Nick Lewycky4c7f1ca2011-10-14 09:38:46 +00004787 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4788 if (!Operands[i]) return 0;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004789 continue;
4790 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004791 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
Andrew Trick28ab7db2011-10-05 05:58:49 +00004792 Vals[Operand] = C;
4793 if (!C) return 0;
4794 Operands[i] = C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004795 }
4796
Nick Lewycky614fef62011-10-22 19:58:20 +00004797 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004798 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chad Rosieraab8e282011-12-02 01:26:24 +00004799 Operands[1], TD, TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00004800 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4801 if (!LI->isVolatile())
4802 return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4803 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004804 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4805 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004806}
4807
4808/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4809/// in the header of its containing loop, we know the loop executes a
4810/// constant number of times, and the PHI node is just a recurrence
4811/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004812Constant *
4813ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004814 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004815 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004816 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004817 ConstantEvolutionLoopExitValue.find(PN);
4818 if (I != ConstantEvolutionLoopExitValue.end())
4819 return I->second;
4820
Dan Gohmane0567812010-04-08 23:03:40 +00004821 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004822 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4823
4824 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4825
Andrew Trick13d31e02011-10-05 03:25:31 +00004826 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewycky614fef62011-10-22 19:58:20 +00004827 BasicBlock *Header = L->getHeader();
4828 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick13d31e02011-10-05 03:25:31 +00004829
Chris Lattner3221ad02004-04-17 22:58:41 +00004830 // Since the loop is canonicalized, the PHI node must have two entries. One
4831 // entry must be a constant (coming in from outside of the loop), and the
4832 // second must be derived from the same PHI.
4833 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Nick Lewycky614fef62011-10-22 19:58:20 +00004834 PHINode *PHI = 0;
4835 for (BasicBlock::iterator I = Header->begin();
4836 (PHI = dyn_cast<PHINode>(I)); ++I) {
4837 Constant *StartCST =
4838 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4839 if (StartCST == 0) continue;
4840 CurrentIterVals[PHI] = StartCST;
4841 }
4842 if (!CurrentIterVals.count(PN))
4843 return RetVal = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004844
4845 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattner3221ad02004-04-17 22:58:41 +00004846
4847 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004848 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004849 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004850
Dan Gohman46bdfb02009-02-24 18:55:53 +00004851 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004852 unsigned IterationNum = 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004853 for (; ; ++IterationNum) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004854 if (IterationNum == NumIterations)
Andrew Trick13d31e02011-10-05 03:25:31 +00004855 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattner3221ad02004-04-17 22:58:41 +00004856
Nick Lewycky614fef62011-10-22 19:58:20 +00004857 // Compute the value of the PHIs for the next iteration.
Andrew Trick13d31e02011-10-05 03:25:31 +00004858 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewycky614fef62011-10-22 19:58:20 +00004859 DenseMap<Instruction *, Constant *> NextIterVals;
Chad Rosier00737bd2011-12-01 21:29:16 +00004860 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4861 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004862 if (NextPHI == 0)
4863 return 0; // Couldn't evaluate!
Andrew Trick13d31e02011-10-05 03:25:31 +00004864 NextIterVals[PN] = NextPHI;
Nick Lewycky614fef62011-10-22 19:58:20 +00004865
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004866 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4867
Nick Lewycky614fef62011-10-22 19:58:20 +00004868 // Also evaluate the other PHI nodes. However, we don't get to stop if we
4869 // cease to be able to evaluate one of them or if they stop evolving,
4870 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004871 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewycky614fef62011-10-22 19:58:20 +00004872 for (DenseMap<Instruction *, Constant *>::const_iterator
4873 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4874 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky5bef0eb2011-10-24 05:51:01 +00004875 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004876 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4877 }
4878 // We use two distinct loops because EvaluateExpression may invalidate any
4879 // iterators into CurrentIterVals.
4880 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4881 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4882 PHINode *PHI = I->first;
Nick Lewycky614fef62011-10-22 19:58:20 +00004883 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004884 if (!NextPHI) { // Not already computed.
4885 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004886 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004887 }
4888 if (NextPHI != I->second)
4889 StoppedEvolving = false;
Nick Lewycky614fef62011-10-22 19:58:20 +00004890 }
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004891
4892 // If all entries in CurrentIterVals == NextIterVals then we can stop
4893 // iterating, the loop can't continue to change.
4894 if (StoppedEvolving)
4895 return RetVal = CurrentIterVals[PN];
4896
Andrew Trick13d31e02011-10-05 03:25:31 +00004897 CurrentIterVals.swap(NextIterVals);
Chris Lattner3221ad02004-04-17 22:58:41 +00004898 }
4899}
4900
Andrew Trick5116ff62011-07-26 17:19:55 +00004901/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004902/// constant number of times (the condition evolves only from constants),
4903/// try to evaluate a few iterations of the loop until we get the exit
4904/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004905/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewycky614fef62011-10-22 19:58:20 +00004906const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4907 Value *Cond,
4908 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004909 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004910 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004911
Dan Gohmanb92654d2010-06-19 14:17:24 +00004912 // If the loop is canonicalized, the PHI will have exactly two entries.
4913 // That's the only form we support here.
4914 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4915
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004916 DenseMap<Instruction *, Constant *> CurrentIterVals;
4917 BasicBlock *Header = L->getHeader();
4918 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4919
Dan Gohmanb92654d2010-06-19 14:17:24 +00004920 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004921 // second must be derived from the same PHI.
4922 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004923 PHINode *PHI = 0;
4924 for (BasicBlock::iterator I = Header->begin();
4925 (PHI = dyn_cast<PHINode>(I)); ++I) {
4926 Constant *StartCST =
4927 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4928 if (StartCST == 0) continue;
4929 CurrentIterVals[PHI] = StartCST;
4930 }
4931 if (!CurrentIterVals.count(PN))
4932 return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004933
4934 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4935 // the loop symbolically to determine when the condition gets a value of
4936 // "ExitWhen".
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004937
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004938 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004939 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004940 ConstantInt *CondVal =
Chad Rosier00737bd2011-12-01 21:29:16 +00004941 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
4942 TD, TLI));
Chris Lattner3221ad02004-04-17 22:58:41 +00004943
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004944 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004945 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004946
Reid Spencere8019bb2007-03-01 07:25:48 +00004947 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004948 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004949 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004950 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004951
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004952 // Update all the PHI nodes for the next iteration.
4953 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004954
4955 // Create a list of which PHIs we need to compute. We want to do this before
4956 // calling EvaluateExpression on them because that may invalidate iterators
4957 // into CurrentIterVals.
4958 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004959 for (DenseMap<Instruction *, Constant *>::const_iterator
4960 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4961 PHINode *PHI = dyn_cast<PHINode>(I->first);
4962 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004963 PHIsToCompute.push_back(PHI);
4964 }
4965 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
4966 E = PHIsToCompute.end(); I != E; ++I) {
4967 PHINode *PHI = *I;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004968 Constant *&NextPHI = NextIterVals[PHI];
4969 if (NextPHI) continue; // Already computed!
4970
4971 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004972 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004973 }
4974 CurrentIterVals.swap(NextIterVals);
Chris Lattner7980fb92004-04-17 18:36:24 +00004975 }
4976
4977 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004978 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004979}
4980
Dan Gohmane7125f42009-09-03 15:00:26 +00004981/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004982/// at the specified scope in the program. The L value specifies a loop
4983/// nest to evaluate the expression at, where null is the top-level or a
4984/// specified loop is immediately inside of the loop.
4985///
4986/// This method can be used to compute the exit value for a variable defined
4987/// in a loop by querying what the value will hold in the parent loop.
4988///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004989/// In the case that a relevant loop exit value cannot be computed, the
4990/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004991const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004992 // Check to see if we've folded this expression at this loop before.
4993 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4994 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4995 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4996 if (!Pair.second)
4997 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004998
Dan Gohman42214892009-08-31 21:15:23 +00004999 // Otherwise compute it.
5000 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00005001 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00005002 return C;
5003}
5004
Nick Lewycky614fef62011-10-22 19:58:20 +00005005/// This builds up a Constant using the ConstantExpr interface. That way, we
5006/// will return Constants for objects which aren't represented by a
5007/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5008/// Returns NULL if the SCEV isn't representable as a Constant.
5009static Constant *BuildConstantFromSCEV(const SCEV *V) {
5010 switch (V->getSCEVType()) {
5011 default: // TODO: smax, umax.
5012 case scCouldNotCompute:
5013 case scAddRecExpr:
5014 break;
5015 case scConstant:
5016 return cast<SCEVConstant>(V)->getValue();
5017 case scUnknown:
5018 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5019 case scSignExtend: {
5020 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5021 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5022 return ConstantExpr::getSExt(CastOp, SS->getType());
5023 break;
5024 }
5025 case scZeroExtend: {
5026 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5027 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5028 return ConstantExpr::getZExt(CastOp, SZ->getType());
5029 break;
5030 }
5031 case scTruncate: {
5032 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5033 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5034 return ConstantExpr::getTrunc(CastOp, ST->getType());
5035 break;
5036 }
5037 case scAddExpr: {
5038 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5039 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5040 if (C->getType()->isPointerTy())
5041 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5042 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5043 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5044 if (!C2) return 0;
5045
5046 // First pointer!
5047 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5048 std::swap(C, C2);
5049 // The offsets have been converted to bytes. We can add bytes to an
5050 // i8* by GEP with the byte count in the first index.
5051 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5052 }
5053
5054 // Don't bother trying to sum two pointers. We probably can't
5055 // statically compute a load that results from it anyway.
5056 if (C2->getType()->isPointerTy())
5057 return 0;
5058
5059 if (C->getType()->isPointerTy()) {
5060 if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5061 C2 = ConstantExpr::getIntegerCast(
5062 C2, Type::getInt32Ty(C->getContext()), true);
5063 C = ConstantExpr::getGetElementPtr(C, C2);
5064 } else
5065 C = ConstantExpr::getAdd(C, C2);
5066 }
5067 return C;
5068 }
5069 break;
5070 }
5071 case scMulExpr: {
5072 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5073 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5074 // Don't bother with pointers at all.
5075 if (C->getType()->isPointerTy()) return 0;
5076 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5077 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5078 if (!C2 || C2->getType()->isPointerTy()) return 0;
5079 C = ConstantExpr::getMul(C, C2);
5080 }
5081 return C;
5082 }
5083 break;
5084 }
5085 case scUDivExpr: {
5086 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5087 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5088 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5089 if (LHS->getType() == RHS->getType())
5090 return ConstantExpr::getUDiv(LHS, RHS);
5091 break;
5092 }
5093 }
5094 return 0;
5095}
5096
Dan Gohman42214892009-08-31 21:15:23 +00005097const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005098 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005099
Nick Lewycky3e630762008-02-20 06:48:22 +00005100 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00005101 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00005102 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005103 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005104 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00005105 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5106 if (PHINode *PN = dyn_cast<PHINode>(I))
5107 if (PN->getParent() == LI->getHeader()) {
5108 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00005109 // to see if the loop that contains it has a known backedge-taken
5110 // count. If so, we may be able to force computation of the exit
5111 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005112 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00005113 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00005114 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005115 // Okay, we know how many times the containing loop executes. If
5116 // this is a constant evolving PHI node, get the final value at
5117 // the specified iteration number.
5118 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00005119 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00005120 LI);
Dan Gohman09987962009-06-29 21:31:18 +00005121 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00005122 }
5123 }
5124
Reid Spencer09906f32006-12-04 21:33:23 +00005125 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00005126 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00005127 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00005128 // result. This is particularly useful for computing loop exit values.
5129 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00005130 SmallVector<Constant *, 4> Operands;
5131 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00005132 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5133 Value *Op = I->getOperand(i);
5134 if (Constant *C = dyn_cast<Constant>(Op)) {
5135 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00005136 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00005137 }
Dan Gohman11046452010-06-29 23:43:06 +00005138
5139 // If any of the operands is non-constant and if they are
5140 // non-integer and non-pointer, don't even try to analyze them
5141 // with scev techniques.
5142 if (!isSCEVable(Op->getType()))
5143 return V;
5144
5145 const SCEV *OrigV = getSCEV(Op);
5146 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5147 MadeImprovement |= OrigV != OpV;
5148
Nick Lewycky614fef62011-10-22 19:58:20 +00005149 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohman11046452010-06-29 23:43:06 +00005150 if (!C) return V;
5151 if (C->getType() != Op->getType())
5152 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5153 Op->getType(),
5154 false),
5155 C, Op->getType());
5156 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00005157 }
Dan Gohman64a845e2009-06-24 04:48:43 +00005158
Dan Gohman11046452010-06-29 23:43:06 +00005159 // Check to see if getSCEVAtScope actually made an improvement.
5160 if (MadeImprovement) {
5161 Constant *C = 0;
5162 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5163 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Chad Rosieraab8e282011-12-02 01:26:24 +00005164 Operands[0], Operands[1], TD,
5165 TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00005166 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5167 if (!LI->isVolatile())
5168 C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5169 } else
Dan Gohman11046452010-06-29 23:43:06 +00005170 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Chad Rosier00737bd2011-12-01 21:29:16 +00005171 Operands, TD, TLI);
Dan Gohman11046452010-06-29 23:43:06 +00005172 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00005173 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00005174 }
Chris Lattner3221ad02004-04-17 22:58:41 +00005175 }
5176 }
5177
5178 // This is some other type of SCEVUnknown, just return it.
5179 return V;
5180 }
5181
Dan Gohman622ed672009-05-04 22:02:23 +00005182 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005183 // Avoid performing the look-up in the common case where the specified
5184 // expression has no loop-variant portions.
5185 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005186 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005187 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005188 // Okay, at least one of these operands is loop variant but might be
5189 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00005190 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5191 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00005192 NewOps.push_back(OpAtScope);
5193
5194 for (++i; i != e; ++i) {
5195 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005196 NewOps.push_back(OpAtScope);
5197 }
5198 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005199 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005200 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005201 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005202 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005203 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00005204 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005205 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00005206 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005207 }
5208 }
5209 // If we got here, all operands are loop invariant.
5210 return Comm;
5211 }
5212
Dan Gohman622ed672009-05-04 22:02:23 +00005213 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005214 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5215 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00005216 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5217 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005218 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00005219 }
5220
5221 // If this is a loop recurrence for a loop that does not contain L, then we
5222 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00005223 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00005224 // First, attempt to evaluate each operand.
5225 // Avoid performing the look-up in the common case where the specified
5226 // expression has no loop-variant portions.
5227 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5228 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5229 if (OpAtScope == AddRec->getOperand(i))
5230 continue;
5231
5232 // Okay, at least one of these operands is loop variant but might be
5233 // foldable. Build a new instance of the folded commutative expression.
5234 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5235 AddRec->op_begin()+i);
5236 NewOps.push_back(OpAtScope);
5237 for (++i; i != e; ++i)
5238 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5239
Andrew Trick3f95c882011-04-27 01:21:25 +00005240 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00005241 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00005242 AddRec->getNoWrapFlags(SCEV::FlagNW));
5243 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00005244 // The addrec may be folded to a nonrecurrence, for example, if the
5245 // induction variable is multiplied by zero after constant folding. Go
5246 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00005247 if (!AddRec)
5248 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00005249 break;
5250 }
5251
5252 // If the scope is outside the addrec's loop, evaluate it by using the
5253 // loop exit value of the addrec.
5254 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005255 // To evaluate this recurrence, we need to know how many times the AddRec
5256 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005257 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00005258 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005259
Eli Friedmanb42a6262008-08-04 23:49:06 +00005260 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005261 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005262 }
Dan Gohman11046452010-06-29 23:43:06 +00005263
Dan Gohmand594e6f2009-05-24 23:25:42 +00005264 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00005265 }
5266
Dan Gohman622ed672009-05-04 22:02:23 +00005267 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005268 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005269 if (Op == Cast->getOperand())
5270 return Cast; // must be loop invariant
5271 return getZeroExtendExpr(Op, Cast->getType());
5272 }
5273
Dan Gohman622ed672009-05-04 22:02:23 +00005274 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005275 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005276 if (Op == Cast->getOperand())
5277 return Cast; // must be loop invariant
5278 return getSignExtendExpr(Op, Cast->getType());
5279 }
5280
Dan Gohman622ed672009-05-04 22:02:23 +00005281 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005282 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005283 if (Op == Cast->getOperand())
5284 return Cast; // must be loop invariant
5285 return getTruncateExpr(Op, Cast->getType());
5286 }
5287
Torok Edwinc23197a2009-07-14 16:55:14 +00005288 llvm_unreachable("Unknown SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005289}
5290
Dan Gohman66a7e852009-05-08 20:38:54 +00005291/// getSCEVAtScope - This is a convenience function which does
5292/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00005293const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005294 return getSCEVAtScope(getSCEV(V), L);
5295}
5296
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005297/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5298/// following equation:
5299///
5300/// A * X = B (mod N)
5301///
5302/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5303/// A and B isn't important.
5304///
5305/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005306static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005307 ScalarEvolution &SE) {
5308 uint32_t BW = A.getBitWidth();
5309 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5310 assert(A != 0 && "A must be non-zero.");
5311
5312 // 1. D = gcd(A, N)
5313 //
5314 // The gcd of A and N may have only one prime factor: 2. The number of
5315 // trailing zeros in A is its multiplicity
5316 uint32_t Mult2 = A.countTrailingZeros();
5317 // D = 2^Mult2
5318
5319 // 2. Check if B is divisible by D.
5320 //
5321 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5322 // is not less than multiplicity of this prime factor for D.
5323 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005324 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005325
5326 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5327 // modulo (N / D).
5328 //
5329 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5330 // bit width during computations.
5331 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5332 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005333 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005334 APInt I = AD.multiplicativeInverse(Mod);
5335
5336 // 4. Compute the minimum unsigned root of the equation:
5337 // I * (B / D) mod (N / D)
5338 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5339
5340 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5341 // bits.
5342 return SE.getConstant(Result.trunc(BW));
5343}
Chris Lattner53e677a2004-04-02 20:23:17 +00005344
5345/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5346/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5347/// might be the same) or two SCEVCouldNotCompute objects.
5348///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005349static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005350SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005351 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005352 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5353 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5354 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005355
Chris Lattner53e677a2004-04-02 20:23:17 +00005356 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005357 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005358 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005359 return std::make_pair(CNC, CNC);
5360 }
5361
Reid Spencere8019bb2007-03-01 07:25:48 +00005362 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005363 const APInt &L = LC->getValue()->getValue();
5364 const APInt &M = MC->getValue()->getValue();
5365 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005366 APInt Two(BitWidth, 2);
5367 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005368
Dan Gohman64a845e2009-06-24 04:48:43 +00005369 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005370 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005371 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005372 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5373 // The B coefficient is M-N/2
5374 APInt B(M);
5375 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005376
Reid Spencere8019bb2007-03-01 07:25:48 +00005377 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005378 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005379
Reid Spencere8019bb2007-03-01 07:25:48 +00005380 // Compute the B^2-4ac term.
5381 APInt SqrtTerm(B);
5382 SqrtTerm *= B;
5383 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005384
Reid Spencere8019bb2007-03-01 07:25:48 +00005385 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5386 // integer value or else APInt::sqrt() will assert.
5387 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005388
Dan Gohman64a845e2009-06-24 04:48:43 +00005389 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005390 // The divisions must be performed as signed divisions.
5391 APInt NegB(-B);
Nick Lewycky1cbae182011-10-03 07:10:45 +00005392 APInt TwoA(A << 1);
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005393 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005394 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005395 return std::make_pair(CNC, CNC);
5396 }
5397
Owen Andersone922c022009-07-22 00:24:57 +00005398 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005399
5400 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005401 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005402 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005403 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005404
Dan Gohman64a845e2009-06-24 04:48:43 +00005405 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005406 SE.getConstant(Solution2));
Nick Lewycky1cbae182011-10-03 07:10:45 +00005407 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005408}
5409
5410/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005411/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005412///
5413/// This is only used for loops with a "x != y" exit test. The exit condition is
5414/// now expressed as a single expression, V = x-y. So the exit test is
5415/// effectively V != 0. We know and take advantage of the fact that this
5416/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005417ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005418ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005419 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005420 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005421 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005422 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005423 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005424 }
5425
Dan Gohman35738ac2009-05-04 22:30:44 +00005426 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005427 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005428 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005429
Chris Lattner7975e3e2011-01-09 22:39:48 +00005430 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5431 // the quadratic equation to solve it.
5432 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5433 std::pair<const SCEV *,const SCEV *> Roots =
5434 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005435 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5436 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005437 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005438#if 0
David Greene25e0e872009-12-23 22:18:14 +00005439 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005440 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005441#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005442 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005443 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005444 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5445 R1->getValue(),
5446 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005447 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005448 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005449
Chris Lattner53e677a2004-04-02 20:23:17 +00005450 // We can only use this value if the chrec ends up with an exact zero
5451 // value at this index. When solving for "X*X != 5", for example, we
5452 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005453 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005454 if (Val->isZero())
5455 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005456 }
5457 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005458 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005459 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005460
Chris Lattner7975e3e2011-01-09 22:39:48 +00005461 // Otherwise we can only handle this if it is affine.
5462 if (!AddRec->isAffine())
5463 return getCouldNotCompute();
5464
5465 // If this is an affine expression, the execution count of this branch is
5466 // the minimum unsigned root of the following equation:
5467 //
5468 // Start + Step*N = 0 (mod 2^BW)
5469 //
5470 // equivalent to:
5471 //
5472 // Step*N = -Start (mod 2^BW)
5473 //
5474 // where BW is the common bit width of Start and Step.
5475
5476 // Get the initial value for the loop.
5477 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5478 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5479
5480 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005481 //
5482 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5483 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5484 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5485 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005486 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5487 if (StepC == 0)
5488 return getCouldNotCompute();
5489
Andrew Trick3228cc22011-03-14 16:50:06 +00005490 // For positive steps (counting up until unsigned overflow):
5491 // N = -Start/Step (as unsigned)
5492 // For negative steps (counting down to zero):
5493 // N = Start/-Step
5494 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005495 bool CountDown = StepC->getValue()->getValue().isNegative();
5496 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005497
5498 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005499 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5500 // N = Distance (as unsigned)
Nick Lewycky1cbae182011-10-03 07:10:45 +00005501 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5502 ConstantRange CR = getUnsignedRange(Start);
5503 const SCEV *MaxBECount;
5504 if (!CountDown && CR.getUnsignedMin().isMinValue())
5505 // When counting up, the worst starting value is 1, not 0.
5506 MaxBECount = CR.getUnsignedMax().isMinValue()
5507 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5508 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5509 else
5510 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5511 : -CR.getUnsignedMin());
5512 return ExitLimit(Distance, MaxBECount);
5513 }
Andrew Trick635f7182011-03-09 17:23:39 +00005514
Andrew Trickdcfd4042011-03-14 17:28:02 +00005515 // If the recurrence is known not to wraparound, unsigned divide computes the
5516 // back edge count. We know that the value will either become zero (and thus
5517 // the loop terminates), that the loop will terminate through some other exit
5518 // condition first, or that the loop has undefined behavior. This means
5519 // we can't "miss" the exit value, even with nonunit stride.
5520 //
5521 // FIXME: Prove that loops always exhibits *acceptable* undefined
5522 // behavior. Loops must exhibit defined behavior until a wrapped value is
5523 // actually used. So the trip count computed by udiv could be smaller than the
5524 // number of well-defined iterations.
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005525 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
Andrew Trickdcfd4042011-03-14 17:28:02 +00005526 // FIXME: We really want an "isexact" bit for udiv.
5527 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005528 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005529 // Then, try to solve the above equation provided that Start is constant.
5530 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5531 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5532 -StartC->getValue()->getValue(),
5533 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005534 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005535}
5536
5537/// HowFarToNonZero - Return the number of times a backedge checking the
5538/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005539/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005540ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005541ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005542 // Loops that look like: while (X == 0) are very strange indeed. We don't
5543 // handle them yet except for the trivial case. This could be expanded in the
5544 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005545
Chris Lattner53e677a2004-04-02 20:23:17 +00005546 // If the value is a constant, check to see if it is known to be non-zero
5547 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005548 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005549 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005550 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005551 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005552 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005553
Chris Lattner53e677a2004-04-02 20:23:17 +00005554 // We could implement others, but I really doubt anyone writes loops like
5555 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005556 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005557}
5558
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005559/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5560/// (which may not be an immediate predecessor) which has exactly one
5561/// successor from which BB is reachable, or null if no such block is
5562/// found.
5563///
Dan Gohman005752b2010-04-15 16:19:08 +00005564std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005565ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005566 // If the block has a unique predecessor, then there is no path from the
5567 // predecessor to the block that does not go through the direct edge
5568 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005569 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005570 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005571
5572 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005573 // If the header has a unique predecessor outside the loop, it must be
5574 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005575 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005576 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005577
Dan Gohman005752b2010-04-15 16:19:08 +00005578 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005579}
5580
Dan Gohman763bad12009-06-20 00:35:32 +00005581/// HasSameValue - SCEV structural equivalence is usually sufficient for
5582/// testing whether two expressions are equal, however for the purposes of
5583/// looking for a condition guarding a loop, it can be useful to be a little
5584/// more general, since a front-end may have replicated the controlling
5585/// expression.
5586///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005587static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005588 // Quick check to see if they are the same SCEV.
5589 if (A == B) return true;
5590
5591 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5592 // two different instructions with the same value. Check for this case.
5593 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5594 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5595 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5596 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005597 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005598 return true;
5599
5600 // Otherwise assume they may have a different value.
5601 return false;
5602}
5603
Dan Gohmane9796502010-04-24 01:28:42 +00005604/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5605/// predicate Pred. Return true iff any changes were made.
5606///
5607bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005608 const SCEV *&LHS, const SCEV *&RHS,
5609 unsigned Depth) {
Dan Gohmane9796502010-04-24 01:28:42 +00005610 bool Changed = false;
5611
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005612 // If we hit the max recursion limit bail out.
5613 if (Depth >= 3)
5614 return false;
5615
Dan Gohmane9796502010-04-24 01:28:42 +00005616 // Canonicalize a constant to the right side.
5617 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5618 // Check for both operands constant.
5619 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5620 if (ConstantExpr::getICmp(Pred,
5621 LHSC->getValue(),
5622 RHSC->getValue())->isNullValue())
5623 goto trivially_false;
5624 else
5625 goto trivially_true;
5626 }
5627 // Otherwise swap the operands to put the constant on the right.
5628 std::swap(LHS, RHS);
5629 Pred = ICmpInst::getSwappedPredicate(Pred);
5630 Changed = true;
5631 }
5632
5633 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005634 // addrec's loop, put the addrec on the left. Also make a dominance check,
5635 // as both operands could be addrecs loop-invariant in each other's loop.
5636 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5637 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005638 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005639 std::swap(LHS, RHS);
5640 Pred = ICmpInst::getSwappedPredicate(Pred);
5641 Changed = true;
5642 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005643 }
Dan Gohmane9796502010-04-24 01:28:42 +00005644
5645 // If there's a constant operand, canonicalize comparisons with boundary
5646 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5647 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5648 const APInt &RA = RC->getValue()->getValue();
5649 switch (Pred) {
5650 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5651 case ICmpInst::ICMP_EQ:
5652 case ICmpInst::ICMP_NE:
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005653 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5654 if (!RA)
5655 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5656 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer127563b2012-05-30 18:42:43 +00005657 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5658 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005659 RHS = AE->getOperand(1);
5660 LHS = ME->getOperand(1);
5661 Changed = true;
5662 }
Dan Gohmane9796502010-04-24 01:28:42 +00005663 break;
5664 case ICmpInst::ICMP_UGE:
5665 if ((RA - 1).isMinValue()) {
5666 Pred = ICmpInst::ICMP_NE;
5667 RHS = getConstant(RA - 1);
5668 Changed = true;
5669 break;
5670 }
5671 if (RA.isMaxValue()) {
5672 Pred = ICmpInst::ICMP_EQ;
5673 Changed = true;
5674 break;
5675 }
5676 if (RA.isMinValue()) goto trivially_true;
5677
5678 Pred = ICmpInst::ICMP_UGT;
5679 RHS = getConstant(RA - 1);
5680 Changed = true;
5681 break;
5682 case ICmpInst::ICMP_ULE:
5683 if ((RA + 1).isMaxValue()) {
5684 Pred = ICmpInst::ICMP_NE;
5685 RHS = getConstant(RA + 1);
5686 Changed = true;
5687 break;
5688 }
5689 if (RA.isMinValue()) {
5690 Pred = ICmpInst::ICMP_EQ;
5691 Changed = true;
5692 break;
5693 }
5694 if (RA.isMaxValue()) goto trivially_true;
5695
5696 Pred = ICmpInst::ICMP_ULT;
5697 RHS = getConstant(RA + 1);
5698 Changed = true;
5699 break;
5700 case ICmpInst::ICMP_SGE:
5701 if ((RA - 1).isMinSignedValue()) {
5702 Pred = ICmpInst::ICMP_NE;
5703 RHS = getConstant(RA - 1);
5704 Changed = true;
5705 break;
5706 }
5707 if (RA.isMaxSignedValue()) {
5708 Pred = ICmpInst::ICMP_EQ;
5709 Changed = true;
5710 break;
5711 }
5712 if (RA.isMinSignedValue()) goto trivially_true;
5713
5714 Pred = ICmpInst::ICMP_SGT;
5715 RHS = getConstant(RA - 1);
5716 Changed = true;
5717 break;
5718 case ICmpInst::ICMP_SLE:
5719 if ((RA + 1).isMaxSignedValue()) {
5720 Pred = ICmpInst::ICMP_NE;
5721 RHS = getConstant(RA + 1);
5722 Changed = true;
5723 break;
5724 }
5725 if (RA.isMinSignedValue()) {
5726 Pred = ICmpInst::ICMP_EQ;
5727 Changed = true;
5728 break;
5729 }
5730 if (RA.isMaxSignedValue()) goto trivially_true;
5731
5732 Pred = ICmpInst::ICMP_SLT;
5733 RHS = getConstant(RA + 1);
5734 Changed = true;
5735 break;
5736 case ICmpInst::ICMP_UGT:
5737 if (RA.isMinValue()) {
5738 Pred = ICmpInst::ICMP_NE;
5739 Changed = true;
5740 break;
5741 }
5742 if ((RA + 1).isMaxValue()) {
5743 Pred = ICmpInst::ICMP_EQ;
5744 RHS = getConstant(RA + 1);
5745 Changed = true;
5746 break;
5747 }
5748 if (RA.isMaxValue()) goto trivially_false;
5749 break;
5750 case ICmpInst::ICMP_ULT:
5751 if (RA.isMaxValue()) {
5752 Pred = ICmpInst::ICMP_NE;
5753 Changed = true;
5754 break;
5755 }
5756 if ((RA - 1).isMinValue()) {
5757 Pred = ICmpInst::ICMP_EQ;
5758 RHS = getConstant(RA - 1);
5759 Changed = true;
5760 break;
5761 }
5762 if (RA.isMinValue()) goto trivially_false;
5763 break;
5764 case ICmpInst::ICMP_SGT:
5765 if (RA.isMinSignedValue()) {
5766 Pred = ICmpInst::ICMP_NE;
5767 Changed = true;
5768 break;
5769 }
5770 if ((RA + 1).isMaxSignedValue()) {
5771 Pred = ICmpInst::ICMP_EQ;
5772 RHS = getConstant(RA + 1);
5773 Changed = true;
5774 break;
5775 }
5776 if (RA.isMaxSignedValue()) goto trivially_false;
5777 break;
5778 case ICmpInst::ICMP_SLT:
5779 if (RA.isMaxSignedValue()) {
5780 Pred = ICmpInst::ICMP_NE;
5781 Changed = true;
5782 break;
5783 }
5784 if ((RA - 1).isMinSignedValue()) {
5785 Pred = ICmpInst::ICMP_EQ;
5786 RHS = getConstant(RA - 1);
5787 Changed = true;
5788 break;
5789 }
5790 if (RA.isMinSignedValue()) goto trivially_false;
5791 break;
5792 }
5793 }
5794
5795 // Check for obvious equality.
5796 if (HasSameValue(LHS, RHS)) {
5797 if (ICmpInst::isTrueWhenEqual(Pred))
5798 goto trivially_true;
5799 if (ICmpInst::isFalseWhenEqual(Pred))
5800 goto trivially_false;
5801 }
5802
Dan Gohman03557dc2010-05-03 16:35:17 +00005803 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5804 // adding or subtracting 1 from one of the operands.
5805 switch (Pred) {
5806 case ICmpInst::ICMP_SLE:
5807 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5808 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005809 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005810 Pred = ICmpInst::ICMP_SLT;
5811 Changed = true;
5812 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005813 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005814 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005815 Pred = ICmpInst::ICMP_SLT;
5816 Changed = true;
5817 }
5818 break;
5819 case ICmpInst::ICMP_SGE:
5820 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005821 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005822 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005823 Pred = ICmpInst::ICMP_SGT;
5824 Changed = true;
5825 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5826 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005827 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005828 Pred = ICmpInst::ICMP_SGT;
5829 Changed = true;
5830 }
5831 break;
5832 case ICmpInst::ICMP_ULE:
5833 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005834 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005835 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005836 Pred = ICmpInst::ICMP_ULT;
5837 Changed = true;
5838 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005839 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005840 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005841 Pred = ICmpInst::ICMP_ULT;
5842 Changed = true;
5843 }
5844 break;
5845 case ICmpInst::ICMP_UGE:
5846 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005847 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005848 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005849 Pred = ICmpInst::ICMP_UGT;
5850 Changed = true;
5851 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005852 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005853 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005854 Pred = ICmpInst::ICMP_UGT;
5855 Changed = true;
5856 }
5857 break;
5858 default:
5859 break;
5860 }
5861
Dan Gohmane9796502010-04-24 01:28:42 +00005862 // TODO: More simplifications are possible here.
5863
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005864 // Recursively simplify until we either hit a recursion limit or nothing
5865 // changes.
5866 if (Changed)
5867 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
5868
Dan Gohmane9796502010-04-24 01:28:42 +00005869 return Changed;
5870
5871trivially_true:
5872 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005873 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005874 Pred = ICmpInst::ICMP_EQ;
5875 return true;
5876
5877trivially_false:
5878 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005879 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005880 Pred = ICmpInst::ICMP_NE;
5881 return true;
5882}
5883
Dan Gohman85b05a22009-07-13 21:35:55 +00005884bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5885 return getSignedRange(S).getSignedMax().isNegative();
5886}
5887
5888bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5889 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5890}
5891
5892bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5893 return !getSignedRange(S).getSignedMin().isNegative();
5894}
5895
5896bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5897 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5898}
5899
5900bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5901 return isKnownNegative(S) || isKnownPositive(S);
5902}
5903
5904bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5905 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005906 // Canonicalize the inputs first.
5907 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5908
Dan Gohman53c66ea2010-04-11 22:16:48 +00005909 // If LHS or RHS is an addrec, check to see if the condition is true in
5910 // every iteration of the loop.
5911 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5912 if (isLoopEntryGuardedByCond(
5913 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5914 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005915 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005916 return true;
5917 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5918 if (isLoopEntryGuardedByCond(
5919 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5920 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005921 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005922 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005923
Dan Gohman53c66ea2010-04-11 22:16:48 +00005924 // Otherwise see what can be done with known constant ranges.
5925 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5926}
5927
5928bool
5929ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5930 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005931 if (HasSameValue(LHS, RHS))
5932 return ICmpInst::isTrueWhenEqual(Pred);
5933
Dan Gohman53c66ea2010-04-11 22:16:48 +00005934 // This code is split out from isKnownPredicate because it is called from
5935 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005936 switch (Pred) {
5937 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005938 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005939 case ICmpInst::ICMP_SGT:
5940 Pred = ICmpInst::ICMP_SLT;
5941 std::swap(LHS, RHS);
5942 case ICmpInst::ICMP_SLT: {
5943 ConstantRange LHSRange = getSignedRange(LHS);
5944 ConstantRange RHSRange = getSignedRange(RHS);
5945 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5946 return true;
5947 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5948 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005949 break;
5950 }
5951 case ICmpInst::ICMP_SGE:
5952 Pred = ICmpInst::ICMP_SLE;
5953 std::swap(LHS, RHS);
5954 case ICmpInst::ICMP_SLE: {
5955 ConstantRange LHSRange = getSignedRange(LHS);
5956 ConstantRange RHSRange = getSignedRange(RHS);
5957 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5958 return true;
5959 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5960 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005961 break;
5962 }
5963 case ICmpInst::ICMP_UGT:
5964 Pred = ICmpInst::ICMP_ULT;
5965 std::swap(LHS, RHS);
5966 case ICmpInst::ICMP_ULT: {
5967 ConstantRange LHSRange = getUnsignedRange(LHS);
5968 ConstantRange RHSRange = getUnsignedRange(RHS);
5969 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5970 return true;
5971 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5972 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005973 break;
5974 }
5975 case ICmpInst::ICMP_UGE:
5976 Pred = ICmpInst::ICMP_ULE;
5977 std::swap(LHS, RHS);
5978 case ICmpInst::ICMP_ULE: {
5979 ConstantRange LHSRange = getUnsignedRange(LHS);
5980 ConstantRange RHSRange = getUnsignedRange(RHS);
5981 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5982 return true;
5983 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5984 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005985 break;
5986 }
5987 case ICmpInst::ICMP_NE: {
5988 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5989 return true;
5990 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5991 return true;
5992
5993 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5994 if (isKnownNonZero(Diff))
5995 return true;
5996 break;
5997 }
5998 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005999 // The check at the top of the function catches the case where
6000 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00006001 break;
6002 }
6003 return false;
6004}
6005
6006/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6007/// protected by a conditional between LHS and RHS. This is used to
6008/// to eliminate casts.
6009bool
6010ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6011 ICmpInst::Predicate Pred,
6012 const SCEV *LHS, const SCEV *RHS) {
6013 // Interpret a null as meaning no loop, where there is obviously no guard
6014 // (interprocedural conditions notwithstanding).
6015 if (!L) return true;
6016
6017 BasicBlock *Latch = L->getLoopLatch();
6018 if (!Latch)
6019 return false;
6020
6021 BranchInst *LoopContinuePredicate =
6022 dyn_cast<BranchInst>(Latch->getTerminator());
6023 if (!LoopContinuePredicate ||
6024 LoopContinuePredicate->isUnconditional())
6025 return false;
6026
Dan Gohmanaf08a362010-08-10 23:46:30 +00006027 return isImpliedCond(Pred, LHS, RHS,
6028 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00006029 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00006030}
6031
Dan Gohman3948d0b2010-04-11 19:27:13 +00006032/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00006033/// by a conditional between LHS and RHS. This is used to help avoid max
6034/// expressions in loop trip counts, and to eliminate casts.
6035bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00006036ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6037 ICmpInst::Predicate Pred,
6038 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00006039 // Interpret a null as meaning no loop, where there is obviously no guard
6040 // (interprocedural conditions notwithstanding).
6041 if (!L) return false;
6042
Dan Gohman859b4822009-05-18 15:36:09 +00006043 // Starting at the loop predecessor, climb up the predecessor chain, as long
6044 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00006045 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00006046 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00006047 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00006048 Pair.first;
6049 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00006050
6051 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00006052 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00006053 if (!LoopEntryPredicate ||
6054 LoopEntryPredicate->isUnconditional())
6055 continue;
6056
Dan Gohmanaf08a362010-08-10 23:46:30 +00006057 if (isImpliedCond(Pred, LHS, RHS,
6058 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00006059 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00006060 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00006061 }
6062
Dan Gohman38372182008-08-12 20:17:31 +00006063 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00006064}
6065
Andrew Trick8aa22012012-05-19 00:48:25 +00006066/// RAII wrapper to prevent recursive application of isImpliedCond.
6067/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6068/// currently evaluating isImpliedCond.
6069struct MarkPendingLoopPredicate {
6070 Value *Cond;
6071 DenseSet<Value*> &LoopPreds;
6072 bool Pending;
6073
6074 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6075 : Cond(C), LoopPreds(LP) {
6076 Pending = !LoopPreds.insert(Cond).second;
6077 }
6078 ~MarkPendingLoopPredicate() {
6079 if (!Pending)
6080 LoopPreds.erase(Cond);
6081 }
6082};
6083
Dan Gohman0f4b2852009-07-21 23:03:19 +00006084/// isImpliedCond - Test whether the condition described by Pred, LHS,
6085/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006086bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006087 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00006088 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006089 bool Inverse) {
Andrew Trick8aa22012012-05-19 00:48:25 +00006090 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6091 if (Mark.Pending)
6092 return false;
6093
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006094 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006095 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006096 if (BO->getOpcode() == Instruction::And) {
6097 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006098 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6099 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006100 } else if (BO->getOpcode() == Instruction::Or) {
6101 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006102 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6103 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006104 }
6105 }
6106
Dan Gohmanaf08a362010-08-10 23:46:30 +00006107 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006108 if (!ICI) return false;
6109
Dan Gohman85b05a22009-07-13 21:35:55 +00006110 // Bail if the ICmp's operands' types are wider than the needed type
6111 // before attempting to call getSCEV on them. This avoids infinite
6112 // recursion, since the analysis of widening casts can require loop
6113 // exit condition information for overflow checking, which would
6114 // lead back here.
6115 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00006116 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00006117 return false;
6118
Dan Gohman0f4b2852009-07-21 23:03:19 +00006119 // Now that we found a conditional branch that dominates the loop, check to
6120 // see if it is the comparison we are looking for.
6121 ICmpInst::Predicate FoundPred;
6122 if (Inverse)
6123 FoundPred = ICI->getInversePredicate();
6124 else
6125 FoundPred = ICI->getPredicate();
6126
6127 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6128 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00006129
6130 // Balance the types. The case where FoundLHS' type is wider than
6131 // LHS' type is checked for above.
6132 if (getTypeSizeInBits(LHS->getType()) >
6133 getTypeSizeInBits(FoundLHS->getType())) {
6134 if (CmpInst::isSigned(Pred)) {
6135 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6136 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6137 } else {
6138 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6139 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6140 }
6141 }
6142
Dan Gohman0f4b2852009-07-21 23:03:19 +00006143 // Canonicalize the query to match the way instcombine will have
6144 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00006145 if (SimplifyICmpOperands(Pred, LHS, RHS))
6146 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006147 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00006148 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6149 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006150 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00006151
6152 // Check to see if we can make the LHS or RHS match.
6153 if (LHS == FoundRHS || RHS == FoundLHS) {
6154 if (isa<SCEVConstant>(RHS)) {
6155 std::swap(FoundLHS, FoundRHS);
6156 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6157 } else {
6158 std::swap(LHS, RHS);
6159 Pred = ICmpInst::getSwappedPredicate(Pred);
6160 }
6161 }
6162
6163 // Check whether the found predicate is the same as the desired predicate.
6164 if (FoundPred == Pred)
6165 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6166
6167 // Check whether swapping the found predicate makes it the same as the
6168 // desired predicate.
6169 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6170 if (isa<SCEVConstant>(RHS))
6171 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6172 else
6173 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6174 RHS, LHS, FoundLHS, FoundRHS);
6175 }
6176
6177 // Check whether the actual condition is beyond sufficient.
6178 if (FoundPred == ICmpInst::ICMP_EQ)
6179 if (ICmpInst::isTrueWhenEqual(Pred))
6180 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6181 return true;
6182 if (Pred == ICmpInst::ICMP_NE)
6183 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6184 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6185 return true;
6186
6187 // Otherwise assume the worst.
6188 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006189}
6190
Dan Gohman0f4b2852009-07-21 23:03:19 +00006191/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006192/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006193/// and FoundRHS is true.
6194bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6195 const SCEV *LHS, const SCEV *RHS,
6196 const SCEV *FoundLHS,
6197 const SCEV *FoundRHS) {
6198 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6199 FoundLHS, FoundRHS) ||
6200 // ~x < ~y --> x > y
6201 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6202 getNotSCEV(FoundRHS),
6203 getNotSCEV(FoundLHS));
6204}
6205
6206/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006207/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006208/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00006209bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00006210ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6211 const SCEV *LHS, const SCEV *RHS,
6212 const SCEV *FoundLHS,
6213 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006214 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00006215 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6216 case ICmpInst::ICMP_EQ:
6217 case ICmpInst::ICMP_NE:
6218 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6219 return true;
6220 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00006221 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00006222 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006223 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6224 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006225 return true;
6226 break;
6227 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006228 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006229 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6230 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006231 return true;
6232 break;
6233 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00006234 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006235 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6236 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006237 return true;
6238 break;
6239 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006240 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006241 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6242 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006243 return true;
6244 break;
6245 }
6246
6247 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006248}
6249
Dan Gohman51f53b72009-06-21 23:46:38 +00006250/// getBECount - Subtract the end and start values and divide by the step,
6251/// rounding up, to get the number of times the backedge is executed. Return
6252/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006253const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00006254 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00006255 const SCEV *Step,
6256 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00006257 assert(!isKnownNegative(Step) &&
6258 "This code doesn't handle negative strides yet!");
6259
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006260 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00006261
6262 // When Start == End, we have an exact BECount == 0. Short-circuit this case
6263 // here because SCEV may not be able to determine that the unsigned division
6264 // after rounding is zero.
6265 if (Start == End)
6266 return getConstant(Ty, 0);
6267
Dan Gohmandeff6212010-05-03 22:09:21 +00006268 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00006269 const SCEV *Diff = getMinusSCEV(End, Start);
6270 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00006271
6272 // Add an adjustment to the difference between End and Start so that
6273 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006274 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00006275
Dan Gohman1f96e672009-09-17 18:05:20 +00006276 if (!NoWrap) {
6277 // Check Add for unsigned overflow.
6278 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006279 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00006280 getTypeSizeInBits(Ty) + 1);
6281 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6282 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6283 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6284 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6285 return getCouldNotCompute();
6286 }
Dan Gohman51f53b72009-06-21 23:46:38 +00006287
6288 return getUDivExpr(Add, Step);
6289}
6290
Chris Lattnerdb25de42005-08-15 23:33:51 +00006291/// HowManyLessThans - Return the number of times a backedge containing the
6292/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00006293/// CouldNotCompute.
Andrew Trick5116ff62011-07-26 17:19:55 +00006294ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00006295ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6296 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00006297 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00006298 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006299
Dan Gohman35738ac2009-05-04 22:30:44 +00006300 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006301 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00006302 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006303
Dan Gohman1f96e672009-09-17 18:05:20 +00006304 // Check to see if we have a flag which makes analysis easy.
Nick Lewycky89d093d2011-11-09 07:11:37 +00006305 bool NoWrap = isSigned ?
6306 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
6307 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
Dan Gohman1f96e672009-09-17 18:05:20 +00006308
Chris Lattnerdb25de42005-08-15 23:33:51 +00006309 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006310 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00006311 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00006312
Dan Gohman52fddd32010-01-26 04:40:18 +00006313 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00006314 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00006315 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006316 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00006317 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00006318 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00006319 // value and past the maximum value for its type in a single step.
6320 // Note that it's not sufficient to check NoWrap here, because even
6321 // though the value after a wrap is undefined, it's not undefined
6322 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00006323 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00006324 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00006325 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00006326 if (isSigned) {
6327 APInt Max = APInt::getSignedMaxValue(BitWidth);
6328 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6329 .slt(getSignedRange(RHS).getSignedMax()))
6330 return getCouldNotCompute();
6331 } else {
6332 APInt Max = APInt::getMaxValue(BitWidth);
6333 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6334 .ult(getUnsignedRange(RHS).getUnsignedMax()))
6335 return getCouldNotCompute();
6336 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006337 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00006338 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00006339 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006340
Dan Gohmana1af7572009-04-30 20:47:05 +00006341 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6342 // m. So, we count the number of iterations in which {n,+,s} < m is true.
6343 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00006344 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00006345
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006346 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00006347 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006348
Dan Gohmana1af7572009-04-30 20:47:05 +00006349 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006350 const SCEV *MinStart = getConstant(isSigned ?
6351 getSignedRange(Start).getSignedMin() :
6352 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006353
Dan Gohmana1af7572009-04-30 20:47:05 +00006354 // If we know that the condition is true in order to enter the loop,
6355 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006356 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6357 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006358 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006359 if (!isLoopEntryGuardedByCond(L,
6360 isSigned ? ICmpInst::ICMP_SLT :
6361 ICmpInst::ICMP_ULT,
6362 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006363 End = isSigned ? getSMaxExpr(RHS, Start)
6364 : getUMaxExpr(RHS, Start);
6365
6366 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006367 const SCEV *MaxEnd = getConstant(isSigned ?
6368 getSignedRange(End).getSignedMax() :
6369 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006370
Dan Gohman52fddd32010-01-26 04:40:18 +00006371 // If MaxEnd is within a step of the maximum integer value in its type,
6372 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006373 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006374 // compute the correct value.
6375 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006376 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006377 MaxEnd = isSigned ?
6378 getSMinExpr(MaxEnd,
6379 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6380 StepMinusOne)) :
6381 getUMinExpr(MaxEnd,
6382 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6383 StepMinusOne));
6384
Dan Gohmana1af7572009-04-30 20:47:05 +00006385 // Finally, we subtract these two values and divide, rounding up, to get
6386 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006387 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006388
6389 // The maximum backedge count is similar, except using the minimum start
6390 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006391 // If we already have an exact constant BECount, use it instead.
6392 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6393 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6394
6395 // If the stride is nonconstant, and NoWrap == true, then
6396 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6397 // exact BECount and invalid MaxBECount, which should be avoided to catch
6398 // more optimization opportunities.
6399 if (isa<SCEVCouldNotCompute>(MaxBECount))
6400 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006401
Andrew Trick5116ff62011-07-26 17:19:55 +00006402 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006403 }
6404
Dan Gohman1c343752009-06-27 21:21:31 +00006405 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006406}
6407
Chris Lattner53e677a2004-04-02 20:23:17 +00006408/// getNumIterationsInRange - Return the number of iterations of this loop that
6409/// produce values in the specified constant range. Another way of looking at
6410/// this is that it returns the first iteration number where the value is not in
6411/// the condition, thus computing the exit count. If the iteration count can't
6412/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006413const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006414 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006415 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006416 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006417
6418 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006419 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006420 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006421 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006422 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006423 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006424 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006425 if (const SCEVAddRecExpr *ShiftedAddRec =
6426 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006427 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006428 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006429 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006430 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006431 }
6432
6433 // The only time we can solve this is when we have all constant indices.
6434 // Otherwise, we cannot determine the overflow conditions.
6435 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6436 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006437 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006438
6439
6440 // Okay at this point we know that all elements of the chrec are constants and
6441 // that the start element is zero.
6442
6443 // First check to see if the range contains zero. If not, the first
6444 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006445 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006446 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006447 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006448
Chris Lattner53e677a2004-04-02 20:23:17 +00006449 if (isAffine()) {
6450 // If this is an affine expression then we have this situation:
6451 // Solve {0,+,A} in Range === Ax in Range
6452
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006453 // We know that zero is in the range. If A is positive then we know that
6454 // the upper value of the range must be the first possible exit value.
6455 // If A is negative then the lower of the range is the last possible loop
6456 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006457 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006458 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6459 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006460
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006461 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006462 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006463 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006464
6465 // Evaluate at the exit value. If we really did fall out of the valid
6466 // range, then we computed our trip count, otherwise wrap around or other
6467 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006468 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006469 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006470 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006471
6472 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006473 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006474 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006475 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006476 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006477 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006478 } else if (isQuadratic()) {
6479 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6480 // quadratic equation to solve it. To do this, we must frame our problem in
6481 // terms of figuring out when zero is crossed, instead of when
6482 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006483 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006484 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006485 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6486 // getNoWrapFlags(FlagNW)
6487 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006488
6489 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006490 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006491 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006492 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6493 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006494 if (R1) {
6495 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006496 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006497 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006498 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006499 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006500 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006501
Chris Lattner53e677a2004-04-02 20:23:17 +00006502 // Make sure the root is not off by one. The returned iteration should
6503 // not be in the range, but the previous one should be. When solving
6504 // for "X*X < 5", for example, we should not return a root of 2.
6505 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006506 R1->getValue(),
6507 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006508 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006509 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006510 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006511 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006512
Dan Gohman246b2562007-10-22 18:31:58 +00006513 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006514 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006515 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006516 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006517 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006518
Chris Lattner53e677a2004-04-02 20:23:17 +00006519 // If R1 was not in the range, then it is a good return value. Make
6520 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006521 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006522 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006523 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006524 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006525 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006526 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006527 }
6528 }
6529 }
6530
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006531 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006532}
6533
6534
6535
6536//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006537// SCEVCallbackVH Class Implementation
6538//===----------------------------------------------------------------------===//
6539
Dan Gohman1959b752009-05-19 19:22:47 +00006540void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006541 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006542 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6543 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006544 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006545 // this now dangles!
6546}
6547
Dan Gohman81f91212010-07-28 01:09:07 +00006548void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006549 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006550
Dan Gohman35738ac2009-05-04 22:30:44 +00006551 // Forget all the expressions associated with users of the old value,
6552 // so that future queries will recompute the expressions using the new
6553 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006554 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006555 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006556 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006557 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6558 UI != UE; ++UI)
6559 Worklist.push_back(*UI);
6560 while (!Worklist.empty()) {
6561 User *U = Worklist.pop_back_val();
6562 // Deleting the Old value will cause this to dangle. Postpone
6563 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006564 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006565 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006566 if (!Visited.insert(U))
6567 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006568 if (PHINode *PN = dyn_cast<PHINode>(U))
6569 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006570 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006571 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6572 UI != UE; ++UI)
6573 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006574 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006575 // Delete the Old value.
6576 if (PHINode *PN = dyn_cast<PHINode>(Old))
6577 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006578 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006579 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006580}
6581
Dan Gohman1959b752009-05-19 19:22:47 +00006582ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006583 : CallbackVH(V), SE(se) {}
6584
6585//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006586// ScalarEvolution Class Implementation
6587//===----------------------------------------------------------------------===//
6588
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006589ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006590 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006591 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006592}
6593
Chris Lattner53e677a2004-04-02 20:23:17 +00006594bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006595 this->F = &F;
6596 LI = &getAnalysis<LoopInfo>();
6597 TD = getAnalysisIfAvailable<TargetData>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006598 TLI = &getAnalysis<TargetLibraryInfo>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006599 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006600 return false;
6601}
6602
6603void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006604 // Iterate through all the SCEVUnknown instances and call their
6605 // destructors, so that they release their references to their values.
6606 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6607 U->~SCEVUnknown();
6608 FirstUnknown = 0;
6609
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006610 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006611
6612 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6613 // that a loop had multiple computable exits.
6614 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6615 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6616 I != E; ++I) {
6617 I->second.clear();
6618 }
6619
Andrew Trick8aa22012012-05-19 00:48:25 +00006620 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
6621
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006622 BackedgeTakenCounts.clear();
6623 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006624 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006625 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006626 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006627 UnsignedRanges.clear();
6628 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006629 UniqueSCEVs.clear();
6630 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006631}
6632
6633void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6634 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006635 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006636 AU.addRequiredTransitive<DominatorTree>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006637 AU.addRequired<TargetLibraryInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006638}
6639
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006640bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006641 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006642}
6643
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006644static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006645 const Loop *L) {
6646 // Print all inner loops first
6647 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6648 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006649
Dan Gohman30733292010-01-09 18:17:45 +00006650 OS << "Loop ";
6651 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6652 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006653
Dan Gohman5d984912009-12-18 01:14:11 +00006654 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006655 L->getExitBlocks(ExitBlocks);
6656 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006657 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006658
Dan Gohman46bdfb02009-02-24 18:55:53 +00006659 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6660 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006661 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006662 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006663 }
6664
Dan Gohman30733292010-01-09 18:17:45 +00006665 OS << "\n"
6666 "Loop ";
6667 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6668 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006669
6670 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6671 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6672 } else {
6673 OS << "Unpredictable max backedge-taken count. ";
6674 }
6675
6676 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006677}
6678
Dan Gohman5d984912009-12-18 01:14:11 +00006679void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006680 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006681 // out SCEV values of all instructions that are interesting. Doing
6682 // this potentially causes it to create new SCEV objects though,
6683 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006684 // observable from outside the class though, so casting away the
6685 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006686 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006687
Dan Gohman30733292010-01-09 18:17:45 +00006688 OS << "Classifying expressions for: ";
6689 WriteAsOperand(OS, F, /*PrintType=*/false);
6690 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006691 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006692 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006693 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006694 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006695 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006696 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006697
Dan Gohman0c689c52009-06-19 17:49:54 +00006698 const Loop *L = LI->getLoopFor((*I).getParent());
6699
Dan Gohman0bba49c2009-07-07 17:06:11 +00006700 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006701 if (AtUse != SV) {
6702 OS << " --> ";
6703 AtUse->print(OS);
6704 }
6705
6706 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006707 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006708 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006709 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006710 OS << "<<Unknown>>";
6711 } else {
6712 OS << *ExitValue;
6713 }
6714 }
6715
Chris Lattner53e677a2004-04-02 20:23:17 +00006716 OS << "\n";
6717 }
6718
Dan Gohman30733292010-01-09 18:17:45 +00006719 OS << "Determining loop execution counts for: ";
6720 WriteAsOperand(OS, F, /*PrintType=*/false);
6721 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006722 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6723 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006724}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006725
Dan Gohman714b5292010-11-17 23:21:44 +00006726ScalarEvolution::LoopDisposition
6727ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6728 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6729 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6730 Values.insert(std::make_pair(L, LoopVariant));
6731 if (!Pair.second)
6732 return Pair.first->second;
6733
6734 LoopDisposition D = computeLoopDisposition(S, L);
6735 return LoopDispositions[S][L] = D;
6736}
6737
6738ScalarEvolution::LoopDisposition
6739ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006740 switch (S->getSCEVType()) {
6741 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006742 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006743 case scTruncate:
6744 case scZeroExtend:
6745 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006746 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006747 case scAddRecExpr: {
6748 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6749
Dan Gohman714b5292010-11-17 23:21:44 +00006750 // If L is the addrec's loop, it's computable.
6751 if (AR->getLoop() == L)
6752 return LoopComputable;
6753
Dan Gohman17ead4f2010-11-17 21:23:15 +00006754 // Add recurrences are never invariant in the function-body (null loop).
6755 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006756 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006757
6758 // This recurrence is variant w.r.t. L if L contains AR's loop.
6759 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006760 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006761
6762 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6763 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006764 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006765
6766 // This recurrence is variant w.r.t. L if any of its operands
6767 // are variant.
6768 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6769 I != E; ++I)
6770 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006771 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006772
6773 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006774 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006775 }
6776 case scAddExpr:
6777 case scMulExpr:
6778 case scUMaxExpr:
6779 case scSMaxExpr: {
6780 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006781 bool HasVarying = false;
6782 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6783 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006784 LoopDisposition D = getLoopDisposition(*I, L);
6785 if (D == LoopVariant)
6786 return LoopVariant;
6787 if (D == LoopComputable)
6788 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006789 }
Dan Gohman714b5292010-11-17 23:21:44 +00006790 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006791 }
6792 case scUDivExpr: {
6793 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006794 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6795 if (LD == LoopVariant)
6796 return LoopVariant;
6797 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6798 if (RD == LoopVariant)
6799 return LoopVariant;
6800 return (LD == LoopInvariant && RD == LoopInvariant) ?
6801 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006802 }
6803 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006804 // All non-instruction values are loop invariant. All instructions are loop
6805 // invariant if they are not contained in the specified loop.
6806 // Instructions are never considered invariant in the function body
6807 // (null loop) because they are defined within the "loop".
6808 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6809 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6810 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006811 case scCouldNotCompute:
6812 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +00006813 default: llvm_unreachable("Unknown SCEV kind!");
Dan Gohman17ead4f2010-11-17 21:23:15 +00006814 }
Dan Gohman714b5292010-11-17 23:21:44 +00006815}
6816
6817bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6818 return getLoopDisposition(S, L) == LoopInvariant;
6819}
6820
6821bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6822 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006823}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006824
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006825ScalarEvolution::BlockDisposition
6826ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6827 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6828 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6829 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6830 if (!Pair.second)
6831 return Pair.first->second;
6832
6833 BlockDisposition D = computeBlockDisposition(S, BB);
6834 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006835}
6836
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006837ScalarEvolution::BlockDisposition
6838ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006839 switch (S->getSCEVType()) {
6840 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006841 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006842 case scTruncate:
6843 case scZeroExtend:
6844 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006845 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006846 case scAddRecExpr: {
6847 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006848 // to test for proper dominance too, because the instruction which
6849 // produces the addrec's value is a PHI, and a PHI effectively properly
6850 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006851 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6852 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006853 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006854 }
6855 // FALL THROUGH into SCEVNAryExpr handling.
6856 case scAddExpr:
6857 case scMulExpr:
6858 case scUMaxExpr:
6859 case scSMaxExpr: {
6860 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006861 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006862 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006863 I != E; ++I) {
6864 BlockDisposition D = getBlockDisposition(*I, BB);
6865 if (D == DoesNotDominateBlock)
6866 return DoesNotDominateBlock;
6867 if (D == DominatesBlock)
6868 Proper = false;
6869 }
6870 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006871 }
6872 case scUDivExpr: {
6873 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006874 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6875 BlockDisposition LD = getBlockDisposition(LHS, BB);
6876 if (LD == DoesNotDominateBlock)
6877 return DoesNotDominateBlock;
6878 BlockDisposition RD = getBlockDisposition(RHS, BB);
6879 if (RD == DoesNotDominateBlock)
6880 return DoesNotDominateBlock;
6881 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6882 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006883 }
6884 case scUnknown:
6885 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006886 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6887 if (I->getParent() == BB)
6888 return DominatesBlock;
6889 if (DT->properlyDominates(I->getParent(), BB))
6890 return ProperlyDominatesBlock;
6891 return DoesNotDominateBlock;
6892 }
6893 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006894 case scCouldNotCompute:
6895 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Andrew Trickeb6dd232012-03-26 22:33:59 +00006896 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +00006897 llvm_unreachable("Unknown SCEV kind!");
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006898 }
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006899}
6900
6901bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6902 return getBlockDisposition(S, BB) >= DominatesBlock;
6903}
6904
6905bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6906 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006907}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006908
6909bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Dan Gohmanac844612012-05-10 17:21:30 +00006910 SmallVector<const SCEV *, 8> Worklist;
6911 Worklist.push_back(S);
6912 do {
6913 S = Worklist.pop_back_val();
6914
6915 switch (S->getSCEVType()) {
6916 case scConstant:
6917 break;
6918 case scTruncate:
6919 case scZeroExtend:
6920 case scSignExtend: {
6921 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6922 const SCEV *CastOp = Cast->getOperand();
6923 if (Op == CastOp)
Dan Gohman4ce32db2010-11-17 22:27:42 +00006924 return true;
Dan Gohmanac844612012-05-10 17:21:30 +00006925 Worklist.push_back(CastOp);
6926 break;
Dan Gohman4ce32db2010-11-17 22:27:42 +00006927 }
Dan Gohmanac844612012-05-10 17:21:30 +00006928 case scAddRecExpr:
6929 case scAddExpr:
6930 case scMulExpr:
6931 case scUMaxExpr:
6932 case scSMaxExpr: {
6933 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6934 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6935 I != E; ++I) {
6936 const SCEV *NAryOp = *I;
6937 if (NAryOp == Op)
6938 return true;
6939 Worklist.push_back(NAryOp);
6940 }
6941 break;
6942 }
6943 case scUDivExpr: {
6944 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6945 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6946 if (LHS == Op || RHS == Op)
6947 return true;
6948 Worklist.push_back(LHS);
6949 Worklist.push_back(RHS);
6950 break;
6951 }
6952 case scUnknown:
6953 break;
6954 case scCouldNotCompute:
6955 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6956 default:
6957 llvm_unreachable("Unknown SCEV kind!");
6958 }
6959 } while (!Worklist.empty());
6960
6961 return false;
Dan Gohman4ce32db2010-11-17 22:27:42 +00006962}
Dan Gohman56a75682010-11-17 23:28:48 +00006963
6964void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6965 ValuesAtScopes.erase(S);
6966 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006967 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006968 UnsignedRanges.erase(S);
6969 SignedRanges.erase(S);
6970}