blob: c535443e2c577747376cea1930e4316ce7251863 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
Tim Northover675a0962014-06-13 14:24:23 +0000120 %0 = add i32 %X, %X ; yields i32:%0
121 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000443A symbol with ``internal`` or ``private`` linkage must have ``default``
444visibility.
445
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000446.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000447
Nico Rieck7157bb72014-01-14 15:22:47 +0000448DLL Storage Classes
449-------------------
450
451All Global Variables, Functions and Aliases can have one of the following
452DLL storage class:
453
454``dllimport``
455 "``dllimport``" causes the compiler to reference a function or variable via
456 a global pointer to a pointer that is set up by the DLL exporting the
457 symbol. On Microsoft Windows targets, the pointer name is formed by
458 combining ``__imp_`` and the function or variable name.
459``dllexport``
460 "``dllexport``" causes the compiler to provide a global pointer to a pointer
461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
462 Microsoft Windows targets, the pointer name is formed by combining
463 ``__imp_`` and the function or variable name. Since this storage class
464 exists for defining a dll interface, the compiler, assembler and linker know
465 it is externally referenced and must refrain from deleting the symbol.
466
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000467.. _tls_model:
468
469Thread Local Storage Models
470---------------------------
471
472A variable may be defined as ``thread_local``, which means that it will
473not be shared by threads (each thread will have a separated copy of the
474variable). Not all targets support thread-local variables. Optionally, a
475TLS model may be specified:
476
477``localdynamic``
478 For variables that are only used within the current shared library.
479``initialexec``
480 For variables in modules that will not be loaded dynamically.
481``localexec``
482 For variables defined in the executable and only used within it.
483
484If no explicit model is given, the "general dynamic" model is used.
485
486The models correspond to the ELF TLS models; see `ELF Handling For
487Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
488more information on under which circumstances the different models may
489be used. The target may choose a different TLS model if the specified
490model is not supported, or if a better choice of model can be made.
491
492A model can also be specified in a alias, but then it only governs how
493the alias is accessed. It will not have any effect in the aliasee.
494
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000495.. _namedtypes:
496
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000497Structure Types
498---------------
Sean Silvab084af42012-12-07 10:36:55 +0000499
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000500LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
501types <t_struct>`. Literal types are uniqued structurally, but identified types
502are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
503to forward declare a type which is not yet available.
504
505An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000506
507.. code-block:: llvm
508
509 %mytype = type { %mytype*, i32 }
510
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000511Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
512literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000513
514.. _globalvars:
515
516Global Variables
517----------------
518
519Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000520instead of run-time.
521
Bob Wilson85b24f22014-06-12 20:40:33 +0000522Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000523
524Global variables in other translation units can also be declared, in which
525case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000526
Bob Wilson85b24f22014-06-12 20:40:33 +0000527Either global variable definitions or declarations may have an explicit section
528to be placed in and may have an optional explicit alignment specified.
529
Michael Gottesman006039c2013-01-31 05:48:48 +0000530A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000531the contents of the variable will **never** be modified (enabling better
532optimization, allowing the global data to be placed in the read-only
533section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000534initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000535variable.
536
537LLVM explicitly allows *declarations* of global variables to be marked
538constant, even if the final definition of the global is not. This
539capability can be used to enable slightly better optimization of the
540program, but requires the language definition to guarantee that
541optimizations based on the 'constantness' are valid for the translation
542units that do not include the definition.
543
544As SSA values, global variables define pointer values that are in scope
545(i.e. they dominate) all basic blocks in the program. Global variables
546always define a pointer to their "content" type because they describe a
547region of memory, and all memory objects in LLVM are accessed through
548pointers.
549
550Global variables can be marked with ``unnamed_addr`` which indicates
551that the address is not significant, only the content. Constants marked
552like this can be merged with other constants if they have the same
553initializer. Note that a constant with significant address *can* be
554merged with a ``unnamed_addr`` constant, the result being a constant
555whose address is significant.
556
557A global variable may be declared to reside in a target-specific
558numbered address space. For targets that support them, address spaces
559may affect how optimizations are performed and/or what target
560instructions are used to access the variable. The default address space
561is zero. The address space qualifier must precede any other attributes.
562
563LLVM allows an explicit section to be specified for globals. If the
564target supports it, it will emit globals to the section specified.
565
Michael Gottesmane743a302013-02-04 03:22:00 +0000566By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000567variables defined within the module are not modified from their
568initial values before the start of the global initializer. This is
569true even for variables potentially accessible from outside the
570module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000571``@llvm.used`` or dllexported variables. This assumption may be suppressed
572by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000573
Sean Silvab084af42012-12-07 10:36:55 +0000574An explicit alignment may be specified for a global, which must be a
575power of 2. If not present, or if the alignment is set to zero, the
576alignment of the global is set by the target to whatever it feels
577convenient. If an explicit alignment is specified, the global is forced
578to have exactly that alignment. Targets and optimizers are not allowed
579to over-align the global if the global has an assigned section. In this
580case, the extra alignment could be observable: for example, code could
581assume that the globals are densely packed in their section and try to
582iterate over them as an array, alignment padding would break this
583iteration.
584
Nico Rieck7157bb72014-01-14 15:22:47 +0000585Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
586
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000587Variables and aliasaes can have a
588:ref:`Thread Local Storage Model <tls_model>`.
589
Nico Rieck7157bb72014-01-14 15:22:47 +0000590Syntax::
591
592 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000593 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000594 <global | constant> <Type> [<InitializerConstant>]
595 [, section "name"] [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000596
Sean Silvab084af42012-12-07 10:36:55 +0000597For example, the following defines a global in a numbered address space
598with an initializer, section, and alignment:
599
600.. code-block:: llvm
601
602 @G = addrspace(5) constant float 1.0, section "foo", align 4
603
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000604The following example just declares a global variable
605
606.. code-block:: llvm
607
608 @G = external global i32
609
Sean Silvab084af42012-12-07 10:36:55 +0000610The following example defines a thread-local global with the
611``initialexec`` TLS model:
612
613.. code-block:: llvm
614
615 @G = thread_local(initialexec) global i32 0, align 4
616
617.. _functionstructure:
618
619Functions
620---------
621
622LLVM function definitions consist of the "``define``" keyword, an
623optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000624style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
625an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000626an optional ``unnamed_addr`` attribute, a return type, an optional
627:ref:`parameter attribute <paramattrs>` for the return type, a function
628name, a (possibly empty) argument list (each with optional :ref:`parameter
629attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
630an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000631collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
632curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000633
634LLVM function declarations consist of the "``declare``" keyword, an
635optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000636style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
637an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000638an optional ``unnamed_addr`` attribute, a return type, an optional
639:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000640name, a possibly empty list of arguments, an optional alignment, an optional
641:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000642
Bill Wendling6822ecb2013-10-27 05:09:12 +0000643A function definition contains a list of basic blocks, forming the CFG (Control
644Flow Graph) for the function. Each basic block may optionally start with a label
645(giving the basic block a symbol table entry), contains a list of instructions,
646and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
647function return). If an explicit label is not provided, a block is assigned an
648implicit numbered label, using the next value from the same counter as used for
649unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
650entry block does not have an explicit label, it will be assigned label "%0",
651then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000652
653The first basic block in a function is special in two ways: it is
654immediately executed on entrance to the function, and it is not allowed
655to have predecessor basic blocks (i.e. there can not be any branches to
656the entry block of a function). Because the block can have no
657predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
658
659LLVM allows an explicit section to be specified for functions. If the
660target supports it, it will emit functions to the section specified.
661
662An explicit alignment may be specified for a function. If not present,
663or if the alignment is set to zero, the alignment of the function is set
664by the target to whatever it feels convenient. If an explicit alignment
665is specified, the function is forced to have at least that much
666alignment. All alignments must be a power of 2.
667
668If the ``unnamed_addr`` attribute is given, the address is know to not
669be significant and two identical functions can be merged.
670
671Syntax::
672
Nico Rieck7157bb72014-01-14 15:22:47 +0000673 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000674 [cconv] [ret attrs]
675 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola84c76ae2014-03-07 04:28:28 +0000676 [unnamed_addr] [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000677 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000678
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000679.. _langref_aliases:
680
Sean Silvab084af42012-12-07 10:36:55 +0000681Aliases
682-------
683
Rafael Espindola64c1e182014-06-03 02:41:57 +0000684Aliases, unlike function or variables, don't create any new data. They
685are just a new symbol and metadata for an existing position.
686
687Aliases have a name and an aliasee that is either a global value or a
688constant expression.
689
Nico Rieck7157bb72014-01-14 15:22:47 +0000690Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000691:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
692<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000693
694Syntax::
695
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000696 @<Name> = [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000697
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000698The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000699``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000700might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000701
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000702Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000703the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
704to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000705
Rafael Espindola64c1e182014-06-03 02:41:57 +0000706Since aliases are only a second name, some restrictions apply, of which
707some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000708
Rafael Espindola64c1e182014-06-03 02:41:57 +0000709* The expression defining the aliasee must be computable at assembly
710 time. Since it is just a name, no relocations can be used.
711
712* No alias in the expression can be weak as the possibility of the
713 intermediate alias being overridden cannot be represented in an
714 object file.
715
716* No global value in the expression can be a declaration, since that
717 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000718
Sean Silvab084af42012-12-07 10:36:55 +0000719.. _namedmetadatastructure:
720
721Named Metadata
722--------------
723
724Named metadata is a collection of metadata. :ref:`Metadata
725nodes <metadata>` (but not metadata strings) are the only valid
726operands for a named metadata.
727
728Syntax::
729
730 ; Some unnamed metadata nodes, which are referenced by the named metadata.
731 !0 = metadata !{metadata !"zero"}
732 !1 = metadata !{metadata !"one"}
733 !2 = metadata !{metadata !"two"}
734 ; A named metadata.
735 !name = !{!0, !1, !2}
736
737.. _paramattrs:
738
739Parameter Attributes
740--------------------
741
742The return type and each parameter of a function type may have a set of
743*parameter attributes* associated with them. Parameter attributes are
744used to communicate additional information about the result or
745parameters of a function. Parameter attributes are considered to be part
746of the function, not of the function type, so functions with different
747parameter attributes can have the same function type.
748
749Parameter attributes are simple keywords that follow the type specified.
750If multiple parameter attributes are needed, they are space separated.
751For example:
752
753.. code-block:: llvm
754
755 declare i32 @printf(i8* noalias nocapture, ...)
756 declare i32 @atoi(i8 zeroext)
757 declare signext i8 @returns_signed_char()
758
759Note that any attributes for the function result (``nounwind``,
760``readonly``) come immediately after the argument list.
761
762Currently, only the following parameter attributes are defined:
763
764``zeroext``
765 This indicates to the code generator that the parameter or return
766 value should be zero-extended to the extent required by the target's
767 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
768 the caller (for a parameter) or the callee (for a return value).
769``signext``
770 This indicates to the code generator that the parameter or return
771 value should be sign-extended to the extent required by the target's
772 ABI (which is usually 32-bits) by the caller (for a parameter) or
773 the callee (for a return value).
774``inreg``
775 This indicates that this parameter or return value should be treated
776 in a special target-dependent fashion during while emitting code for
777 a function call or return (usually, by putting it in a register as
778 opposed to memory, though some targets use it to distinguish between
779 two different kinds of registers). Use of this attribute is
780 target-specific.
781``byval``
782 This indicates that the pointer parameter should really be passed by
783 value to the function. The attribute implies that a hidden copy of
784 the pointee is made between the caller and the callee, so the callee
785 is unable to modify the value in the caller. This attribute is only
786 valid on LLVM pointer arguments. It is generally used to pass
787 structs and arrays by value, but is also valid on pointers to
788 scalars. The copy is considered to belong to the caller not the
789 callee (for example, ``readonly`` functions should not write to
790 ``byval`` parameters). This is not a valid attribute for return
791 values.
792
793 The byval attribute also supports specifying an alignment with the
794 align attribute. It indicates the alignment of the stack slot to
795 form and the known alignment of the pointer specified to the call
796 site. If the alignment is not specified, then the code generator
797 makes a target-specific assumption.
798
Reid Klecknera534a382013-12-19 02:14:12 +0000799.. _attr_inalloca:
800
801``inalloca``
802
Reid Kleckner60d3a832014-01-16 22:59:24 +0000803 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000804 address of outgoing stack arguments. An ``inalloca`` argument must
805 be a pointer to stack memory produced by an ``alloca`` instruction.
806 The alloca, or argument allocation, must also be tagged with the
807 inalloca keyword. Only the past argument may have the ``inalloca``
808 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000809
Reid Kleckner436c42e2014-01-17 23:58:17 +0000810 An argument allocation may be used by a call at most once because
811 the call may deallocate it. The ``inalloca`` attribute cannot be
812 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000813 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
814 ``inalloca`` attribute also disables LLVM's implicit lowering of
815 large aggregate return values, which means that frontend authors
816 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000817
Reid Kleckner60d3a832014-01-16 22:59:24 +0000818 When the call site is reached, the argument allocation must have
819 been the most recent stack allocation that is still live, or the
820 results are undefined. It is possible to allocate additional stack
821 space after an argument allocation and before its call site, but it
822 must be cleared off with :ref:`llvm.stackrestore
823 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000824
825 See :doc:`InAlloca` for more information on how to use this
826 attribute.
827
Sean Silvab084af42012-12-07 10:36:55 +0000828``sret``
829 This indicates that the pointer parameter specifies the address of a
830 structure that is the return value of the function in the source
831 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000832 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000833 not to trap and to be properly aligned. This may only be applied to
834 the first parameter. This is not a valid attribute for return
835 values.
Sean Silva1703e702014-04-08 21:06:22 +0000836
837.. _noalias:
838
Sean Silvab084af42012-12-07 10:36:55 +0000839``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000840 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000841 the argument or return value do not alias pointer values which are
842 not *based* on it, ignoring certain "irrelevant" dependencies. For a
843 call to the parent function, dependencies between memory references
844 from before or after the call and from those during the call are
845 "irrelevant" to the ``noalias`` keyword for the arguments and return
846 value used in that call. The caller shares the responsibility with
847 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000848 details, please see the discussion of the NoAlias response in :ref:`alias
849 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000850
851 Note that this definition of ``noalias`` is intentionally similar
852 to the definition of ``restrict`` in C99 for function arguments,
853 though it is slightly weaker.
854
855 For function return values, C99's ``restrict`` is not meaningful,
856 while LLVM's ``noalias`` is.
857``nocapture``
858 This indicates that the callee does not make any copies of the
859 pointer that outlive the callee itself. This is not a valid
860 attribute for return values.
861
862.. _nest:
863
864``nest``
865 This indicates that the pointer parameter can be excised using the
866 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000867 attribute for return values and can only be applied to one parameter.
868
869``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000870 This indicates that the function always returns the argument as its return
871 value. This is an optimization hint to the code generator when generating
872 the caller, allowing tail call optimization and omission of register saves
873 and restores in some cases; it is not checked or enforced when generating
874 the callee. The parameter and the function return type must be valid
875 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
876 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000877
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000878``nonnull``
879 This indicates that the parameter or return pointer is not null. This
880 attribute may only be applied to pointer typed parameters. This is not
881 checked or enforced by LLVM, the caller must ensure that the pointer
882 passed in is non-null, or the callee must ensure that the returned pointer
883 is non-null.
884
Sean Silvab084af42012-12-07 10:36:55 +0000885.. _gc:
886
887Garbage Collector Names
888-----------------------
889
890Each function may specify a garbage collector name, which is simply a
891string:
892
893.. code-block:: llvm
894
895 define void @f() gc "name" { ... }
896
897The compiler declares the supported values of *name*. Specifying a
898collector which will cause the compiler to alter its output in order to
899support the named garbage collection algorithm.
900
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000901.. _prefixdata:
902
903Prefix Data
904-----------
905
906Prefix data is data associated with a function which the code generator
907will emit immediately before the function body. The purpose of this feature
908is to allow frontends to associate language-specific runtime metadata with
909specific functions and make it available through the function pointer while
910still allowing the function pointer to be called. To access the data for a
911given function, a program may bitcast the function pointer to a pointer to
912the constant's type. This implies that the IR symbol points to the start
913of the prefix data.
914
915To maintain the semantics of ordinary function calls, the prefix data must
916have a particular format. Specifically, it must begin with a sequence of
917bytes which decode to a sequence of machine instructions, valid for the
918module's target, which transfer control to the point immediately succeeding
919the prefix data, without performing any other visible action. This allows
920the inliner and other passes to reason about the semantics of the function
921definition without needing to reason about the prefix data. Obviously this
922makes the format of the prefix data highly target dependent.
923
Peter Collingbourne213358a2013-09-23 20:14:21 +0000924Prefix data is laid out as if it were an initializer for a global variable
925of the prefix data's type. No padding is automatically placed between the
926prefix data and the function body. If padding is required, it must be part
927of the prefix data.
928
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000929A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
930which encodes the ``nop`` instruction:
931
932.. code-block:: llvm
933
934 define void @f() prefix i8 144 { ... }
935
936Generally prefix data can be formed by encoding a relative branch instruction
937which skips the metadata, as in this example of valid prefix data for the
938x86_64 architecture, where the first two bytes encode ``jmp .+10``:
939
940.. code-block:: llvm
941
942 %0 = type <{ i8, i8, i8* }>
943
944 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
945
946A function may have prefix data but no body. This has similar semantics
947to the ``available_externally`` linkage in that the data may be used by the
948optimizers but will not be emitted in the object file.
949
Bill Wendling63b88192013-02-06 06:52:58 +0000950.. _attrgrp:
951
952Attribute Groups
953----------------
954
955Attribute groups are groups of attributes that are referenced by objects within
956the IR. They are important for keeping ``.ll`` files readable, because a lot of
957functions will use the same set of attributes. In the degenerative case of a
958``.ll`` file that corresponds to a single ``.c`` file, the single attribute
959group will capture the important command line flags used to build that file.
960
961An attribute group is a module-level object. To use an attribute group, an
962object references the attribute group's ID (e.g. ``#37``). An object may refer
963to more than one attribute group. In that situation, the attributes from the
964different groups are merged.
965
966Here is an example of attribute groups for a function that should always be
967inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
968
969.. code-block:: llvm
970
971 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000972 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000973
974 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000975 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000976
977 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
978 define void @f() #0 #1 { ... }
979
Sean Silvab084af42012-12-07 10:36:55 +0000980.. _fnattrs:
981
982Function Attributes
983-------------------
984
985Function attributes are set to communicate additional information about
986a function. Function attributes are considered to be part of the
987function, not of the function type, so functions with different function
988attributes can have the same function type.
989
990Function attributes are simple keywords that follow the type specified.
991If multiple attributes are needed, they are space separated. For
992example:
993
994.. code-block:: llvm
995
996 define void @f() noinline { ... }
997 define void @f() alwaysinline { ... }
998 define void @f() alwaysinline optsize { ... }
999 define void @f() optsize { ... }
1000
Sean Silvab084af42012-12-07 10:36:55 +00001001``alignstack(<n>)``
1002 This attribute indicates that, when emitting the prologue and
1003 epilogue, the backend should forcibly align the stack pointer.
1004 Specify the desired alignment, which must be a power of two, in
1005 parentheses.
1006``alwaysinline``
1007 This attribute indicates that the inliner should attempt to inline
1008 this function into callers whenever possible, ignoring any active
1009 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001010``builtin``
1011 This indicates that the callee function at a call site should be
1012 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001013 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +00001014 direct calls to functions which are declared with the ``nobuiltin``
1015 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001016``cold``
1017 This attribute indicates that this function is rarely called. When
1018 computing edge weights, basic blocks post-dominated by a cold
1019 function call are also considered to be cold; and, thus, given low
1020 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001021``inlinehint``
1022 This attribute indicates that the source code contained a hint that
1023 inlining this function is desirable (such as the "inline" keyword in
1024 C/C++). It is just a hint; it imposes no requirements on the
1025 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001026``jumptable``
1027 This attribute indicates that the function should be added to a
1028 jump-instruction table at code-generation time, and that all address-taken
1029 references to this function should be replaced with a reference to the
1030 appropriate jump-instruction-table function pointer. Note that this creates
1031 a new pointer for the original function, which means that code that depends
1032 on function-pointer identity can break. So, any function annotated with
1033 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001034``minsize``
1035 This attribute suggests that optimization passes and code generator
1036 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001037 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001038 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001039``naked``
1040 This attribute disables prologue / epilogue emission for the
1041 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001042``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001043 This indicates that the callee function at a call site is not recognized as
1044 a built-in function. LLVM will retain the original call and not replace it
1045 with equivalent code based on the semantics of the built-in function, unless
1046 the call site uses the ``builtin`` attribute. This is valid at call sites
1047 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001048``noduplicate``
1049 This attribute indicates that calls to the function cannot be
1050 duplicated. A call to a ``noduplicate`` function may be moved
1051 within its parent function, but may not be duplicated within
1052 its parent function.
1053
1054 A function containing a ``noduplicate`` call may still
1055 be an inlining candidate, provided that the call is not
1056 duplicated by inlining. That implies that the function has
1057 internal linkage and only has one call site, so the original
1058 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001059``noimplicitfloat``
1060 This attributes disables implicit floating point instructions.
1061``noinline``
1062 This attribute indicates that the inliner should never inline this
1063 function in any situation. This attribute may not be used together
1064 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001065``nonlazybind``
1066 This attribute suppresses lazy symbol binding for the function. This
1067 may make calls to the function faster, at the cost of extra program
1068 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001069``noredzone``
1070 This attribute indicates that the code generator should not use a
1071 red zone, even if the target-specific ABI normally permits it.
1072``noreturn``
1073 This function attribute indicates that the function never returns
1074 normally. This produces undefined behavior at runtime if the
1075 function ever does dynamically return.
1076``nounwind``
1077 This function attribute indicates that the function never returns
1078 with an unwind or exceptional control flow. If the function does
1079 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001080``optnone``
1081 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001082 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001083 exception of interprocedural optimization passes.
1084 This attribute cannot be used together with the ``alwaysinline``
1085 attribute; this attribute is also incompatible
1086 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001087
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001088 This attribute requires the ``noinline`` attribute to be specified on
1089 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001090 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001091 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001092``optsize``
1093 This attribute suggests that optimization passes and code generator
1094 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001095 and otherwise do optimizations specifically to reduce code size as
1096 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001097``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001098 On a function, this attribute indicates that the function computes its
1099 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001100 without dereferencing any pointer arguments or otherwise accessing
1101 any mutable state (e.g. memory, control registers, etc) visible to
1102 caller functions. It does not write through any pointer arguments
1103 (including ``byval`` arguments) and never changes any state visible
1104 to callers. This means that it cannot unwind exceptions by calling
1105 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001106
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001107 On an argument, this attribute indicates that the function does not
1108 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001109 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001110``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001111 On a function, this attribute indicates that the function does not write
1112 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001113 modify any state (e.g. memory, control registers, etc) visible to
1114 caller functions. It may dereference pointer arguments and read
1115 state that may be set in the caller. A readonly function always
1116 returns the same value (or unwinds an exception identically) when
1117 called with the same set of arguments and global state. It cannot
1118 unwind an exception by calling the ``C++`` exception throwing
1119 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001120
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001121 On an argument, this attribute indicates that the function does not write
1122 through this pointer argument, even though it may write to the memory that
1123 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001124``returns_twice``
1125 This attribute indicates that this function can return twice. The C
1126 ``setjmp`` is an example of such a function. The compiler disables
1127 some optimizations (like tail calls) in the caller of these
1128 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001129``sanitize_address``
1130 This attribute indicates that AddressSanitizer checks
1131 (dynamic address safety analysis) are enabled for this function.
1132``sanitize_memory``
1133 This attribute indicates that MemorySanitizer checks (dynamic detection
1134 of accesses to uninitialized memory) are enabled for this function.
1135``sanitize_thread``
1136 This attribute indicates that ThreadSanitizer checks
1137 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001138``ssp``
1139 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001140 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001141 placed on the stack before the local variables that's checked upon
1142 return from the function to see if it has been overwritten. A
1143 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001144 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001145
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001146 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1147 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1148 - Calls to alloca() with variable sizes or constant sizes greater than
1149 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001150
Josh Magee24c7f062014-02-01 01:36:16 +00001151 Variables that are identified as requiring a protector will be arranged
1152 on the stack such that they are adjacent to the stack protector guard.
1153
Sean Silvab084af42012-12-07 10:36:55 +00001154 If a function that has an ``ssp`` attribute is inlined into a
1155 function that doesn't have an ``ssp`` attribute, then the resulting
1156 function will have an ``ssp`` attribute.
1157``sspreq``
1158 This attribute indicates that the function should *always* emit a
1159 stack smashing protector. This overrides the ``ssp`` function
1160 attribute.
1161
Josh Magee24c7f062014-02-01 01:36:16 +00001162 Variables that are identified as requiring a protector will be arranged
1163 on the stack such that they are adjacent to the stack protector guard.
1164 The specific layout rules are:
1165
1166 #. Large arrays and structures containing large arrays
1167 (``>= ssp-buffer-size``) are closest to the stack protector.
1168 #. Small arrays and structures containing small arrays
1169 (``< ssp-buffer-size``) are 2nd closest to the protector.
1170 #. Variables that have had their address taken are 3rd closest to the
1171 protector.
1172
Sean Silvab084af42012-12-07 10:36:55 +00001173 If a function that has an ``sspreq`` attribute is inlined into a
1174 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001175 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1176 an ``sspreq`` attribute.
1177``sspstrong``
1178 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001179 protector. This attribute causes a strong heuristic to be used when
1180 determining if a function needs stack protectors. The strong heuristic
1181 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001182
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001183 - Arrays of any size and type
1184 - Aggregates containing an array of any size and type.
1185 - Calls to alloca().
1186 - Local variables that have had their address taken.
1187
Josh Magee24c7f062014-02-01 01:36:16 +00001188 Variables that are identified as requiring a protector will be arranged
1189 on the stack such that they are adjacent to the stack protector guard.
1190 The specific layout rules are:
1191
1192 #. Large arrays and structures containing large arrays
1193 (``>= ssp-buffer-size``) are closest to the stack protector.
1194 #. Small arrays and structures containing small arrays
1195 (``< ssp-buffer-size``) are 2nd closest to the protector.
1196 #. Variables that have had their address taken are 3rd closest to the
1197 protector.
1198
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001199 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001200
1201 If a function that has an ``sspstrong`` attribute is inlined into a
1202 function that doesn't have an ``sspstrong`` attribute, then the
1203 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001204``uwtable``
1205 This attribute indicates that the ABI being targeted requires that
1206 an unwind table entry be produce for this function even if we can
1207 show that no exceptions passes by it. This is normally the case for
1208 the ELF x86-64 abi, but it can be disabled for some compilation
1209 units.
Sean Silvab084af42012-12-07 10:36:55 +00001210
1211.. _moduleasm:
1212
1213Module-Level Inline Assembly
1214----------------------------
1215
1216Modules may contain "module-level inline asm" blocks, which corresponds
1217to the GCC "file scope inline asm" blocks. These blocks are internally
1218concatenated by LLVM and treated as a single unit, but may be separated
1219in the ``.ll`` file if desired. The syntax is very simple:
1220
1221.. code-block:: llvm
1222
1223 module asm "inline asm code goes here"
1224 module asm "more can go here"
1225
1226The strings can contain any character by escaping non-printable
1227characters. The escape sequence used is simply "\\xx" where "xx" is the
1228two digit hex code for the number.
1229
1230The inline asm code is simply printed to the machine code .s file when
1231assembly code is generated.
1232
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001233.. _langref_datalayout:
1234
Sean Silvab084af42012-12-07 10:36:55 +00001235Data Layout
1236-----------
1237
1238A module may specify a target specific data layout string that specifies
1239how data is to be laid out in memory. The syntax for the data layout is
1240simply:
1241
1242.. code-block:: llvm
1243
1244 target datalayout = "layout specification"
1245
1246The *layout specification* consists of a list of specifications
1247separated by the minus sign character ('-'). Each specification starts
1248with a letter and may include other information after the letter to
1249define some aspect of the data layout. The specifications accepted are
1250as follows:
1251
1252``E``
1253 Specifies that the target lays out data in big-endian form. That is,
1254 the bits with the most significance have the lowest address
1255 location.
1256``e``
1257 Specifies that the target lays out data in little-endian form. That
1258 is, the bits with the least significance have the lowest address
1259 location.
1260``S<size>``
1261 Specifies the natural alignment of the stack in bits. Alignment
1262 promotion of stack variables is limited to the natural stack
1263 alignment to avoid dynamic stack realignment. The stack alignment
1264 must be a multiple of 8-bits. If omitted, the natural stack
1265 alignment defaults to "unspecified", which does not prevent any
1266 alignment promotions.
1267``p[n]:<size>:<abi>:<pref>``
1268 This specifies the *size* of a pointer and its ``<abi>`` and
1269 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001270 bits. The address space, ``n`` is optional, and if not specified,
1271 denotes the default address space 0. The value of ``n`` must be
1272 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001273``i<size>:<abi>:<pref>``
1274 This specifies the alignment for an integer type of a given bit
1275 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1276``v<size>:<abi>:<pref>``
1277 This specifies the alignment for a vector type of a given bit
1278 ``<size>``.
1279``f<size>:<abi>:<pref>``
1280 This specifies the alignment for a floating point type of a given bit
1281 ``<size>``. Only values of ``<size>`` that are supported by the target
1282 will work. 32 (float) and 64 (double) are supported on all targets; 80
1283 or 128 (different flavors of long double) are also supported on some
1284 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001285``a:<abi>:<pref>``
1286 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001287``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001288 If present, specifies that llvm names are mangled in the output. The
1289 options are
1290
1291 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1292 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1293 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1294 symbols get a ``_`` prefix.
1295 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1296 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001297``n<size1>:<size2>:<size3>...``
1298 This specifies a set of native integer widths for the target CPU in
1299 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1300 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1301 this set are considered to support most general arithmetic operations
1302 efficiently.
1303
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001304On every specification that takes a ``<abi>:<pref>``, specifying the
1305``<pref>`` alignment is optional. If omitted, the preceding ``:``
1306should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1307
Sean Silvab084af42012-12-07 10:36:55 +00001308When constructing the data layout for a given target, LLVM starts with a
1309default set of specifications which are then (possibly) overridden by
1310the specifications in the ``datalayout`` keyword. The default
1311specifications are given in this list:
1312
1313- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001314- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1315- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1316 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001317- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001318- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1319- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1320- ``i16:16:16`` - i16 is 16-bit aligned
1321- ``i32:32:32`` - i32 is 32-bit aligned
1322- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1323 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001324- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001325- ``f32:32:32`` - float is 32-bit aligned
1326- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001327- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001328- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1329- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001330- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001331
1332When LLVM is determining the alignment for a given type, it uses the
1333following rules:
1334
1335#. If the type sought is an exact match for one of the specifications,
1336 that specification is used.
1337#. If no match is found, and the type sought is an integer type, then
1338 the smallest integer type that is larger than the bitwidth of the
1339 sought type is used. If none of the specifications are larger than
1340 the bitwidth then the largest integer type is used. For example,
1341 given the default specifications above, the i7 type will use the
1342 alignment of i8 (next largest) while both i65 and i256 will use the
1343 alignment of i64 (largest specified).
1344#. If no match is found, and the type sought is a vector type, then the
1345 largest vector type that is smaller than the sought vector type will
1346 be used as a fall back. This happens because <128 x double> can be
1347 implemented in terms of 64 <2 x double>, for example.
1348
1349The function of the data layout string may not be what you expect.
1350Notably, this is not a specification from the frontend of what alignment
1351the code generator should use.
1352
1353Instead, if specified, the target data layout is required to match what
1354the ultimate *code generator* expects. This string is used by the
1355mid-level optimizers to improve code, and this only works if it matches
1356what the ultimate code generator uses. If you would like to generate IR
1357that does not embed this target-specific detail into the IR, then you
1358don't have to specify the string. This will disable some optimizations
1359that require precise layout information, but this also prevents those
1360optimizations from introducing target specificity into the IR.
1361
Bill Wendling5cc90842013-10-18 23:41:25 +00001362.. _langref_triple:
1363
1364Target Triple
1365-------------
1366
1367A module may specify a target triple string that describes the target
1368host. The syntax for the target triple is simply:
1369
1370.. code-block:: llvm
1371
1372 target triple = "x86_64-apple-macosx10.7.0"
1373
1374The *target triple* string consists of a series of identifiers delimited
1375by the minus sign character ('-'). The canonical forms are:
1376
1377::
1378
1379 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1380 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1381
1382This information is passed along to the backend so that it generates
1383code for the proper architecture. It's possible to override this on the
1384command line with the ``-mtriple`` command line option.
1385
Sean Silvab084af42012-12-07 10:36:55 +00001386.. _pointeraliasing:
1387
1388Pointer Aliasing Rules
1389----------------------
1390
1391Any memory access must be done through a pointer value associated with
1392an address range of the memory access, otherwise the behavior is
1393undefined. Pointer values are associated with address ranges according
1394to the following rules:
1395
1396- A pointer value is associated with the addresses associated with any
1397 value it is *based* on.
1398- An address of a global variable is associated with the address range
1399 of the variable's storage.
1400- The result value of an allocation instruction is associated with the
1401 address range of the allocated storage.
1402- A null pointer in the default address-space is associated with no
1403 address.
1404- An integer constant other than zero or a pointer value returned from
1405 a function not defined within LLVM may be associated with address
1406 ranges allocated through mechanisms other than those provided by
1407 LLVM. Such ranges shall not overlap with any ranges of addresses
1408 allocated by mechanisms provided by LLVM.
1409
1410A pointer value is *based* on another pointer value according to the
1411following rules:
1412
1413- A pointer value formed from a ``getelementptr`` operation is *based*
1414 on the first operand of the ``getelementptr``.
1415- The result value of a ``bitcast`` is *based* on the operand of the
1416 ``bitcast``.
1417- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1418 values that contribute (directly or indirectly) to the computation of
1419 the pointer's value.
1420- The "*based* on" relationship is transitive.
1421
1422Note that this definition of *"based"* is intentionally similar to the
1423definition of *"based"* in C99, though it is slightly weaker.
1424
1425LLVM IR does not associate types with memory. The result type of a
1426``load`` merely indicates the size and alignment of the memory from
1427which to load, as well as the interpretation of the value. The first
1428operand type of a ``store`` similarly only indicates the size and
1429alignment of the store.
1430
1431Consequently, type-based alias analysis, aka TBAA, aka
1432``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1433:ref:`Metadata <metadata>` may be used to encode additional information
1434which specialized optimization passes may use to implement type-based
1435alias analysis.
1436
1437.. _volatile:
1438
1439Volatile Memory Accesses
1440------------------------
1441
1442Certain memory accesses, such as :ref:`load <i_load>`'s,
1443:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1444marked ``volatile``. The optimizers must not change the number of
1445volatile operations or change their order of execution relative to other
1446volatile operations. The optimizers *may* change the order of volatile
1447operations relative to non-volatile operations. This is not Java's
1448"volatile" and has no cross-thread synchronization behavior.
1449
Andrew Trick89fc5a62013-01-30 21:19:35 +00001450IR-level volatile loads and stores cannot safely be optimized into
1451llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1452flagged volatile. Likewise, the backend should never split or merge
1453target-legal volatile load/store instructions.
1454
Andrew Trick7e6f9282013-01-31 00:49:39 +00001455.. admonition:: Rationale
1456
1457 Platforms may rely on volatile loads and stores of natively supported
1458 data width to be executed as single instruction. For example, in C
1459 this holds for an l-value of volatile primitive type with native
1460 hardware support, but not necessarily for aggregate types. The
1461 frontend upholds these expectations, which are intentionally
1462 unspecified in the IR. The rules above ensure that IR transformation
1463 do not violate the frontend's contract with the language.
1464
Sean Silvab084af42012-12-07 10:36:55 +00001465.. _memmodel:
1466
1467Memory Model for Concurrent Operations
1468--------------------------------------
1469
1470The LLVM IR does not define any way to start parallel threads of
1471execution or to register signal handlers. Nonetheless, there are
1472platform-specific ways to create them, and we define LLVM IR's behavior
1473in their presence. This model is inspired by the C++0x memory model.
1474
1475For a more informal introduction to this model, see the :doc:`Atomics`.
1476
1477We define a *happens-before* partial order as the least partial order
1478that
1479
1480- Is a superset of single-thread program order, and
1481- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1482 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1483 techniques, like pthread locks, thread creation, thread joining,
1484 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1485 Constraints <ordering>`).
1486
1487Note that program order does not introduce *happens-before* edges
1488between a thread and signals executing inside that thread.
1489
1490Every (defined) read operation (load instructions, memcpy, atomic
1491loads/read-modify-writes, etc.) R reads a series of bytes written by
1492(defined) write operations (store instructions, atomic
1493stores/read-modify-writes, memcpy, etc.). For the purposes of this
1494section, initialized globals are considered to have a write of the
1495initializer which is atomic and happens before any other read or write
1496of the memory in question. For each byte of a read R, R\ :sub:`byte`
1497may see any write to the same byte, except:
1498
1499- If write\ :sub:`1` happens before write\ :sub:`2`, and
1500 write\ :sub:`2` happens before R\ :sub:`byte`, then
1501 R\ :sub:`byte` does not see write\ :sub:`1`.
1502- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1503 R\ :sub:`byte` does not see write\ :sub:`3`.
1504
1505Given that definition, R\ :sub:`byte` is defined as follows:
1506
1507- If R is volatile, the result is target-dependent. (Volatile is
1508 supposed to give guarantees which can support ``sig_atomic_t`` in
1509 C/C++, and may be used for accesses to addresses which do not behave
1510 like normal memory. It does not generally provide cross-thread
1511 synchronization.)
1512- Otherwise, if there is no write to the same byte that happens before
1513 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1514- Otherwise, if R\ :sub:`byte` may see exactly one write,
1515 R\ :sub:`byte` returns the value written by that write.
1516- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1517 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1518 Memory Ordering Constraints <ordering>` section for additional
1519 constraints on how the choice is made.
1520- Otherwise R\ :sub:`byte` returns ``undef``.
1521
1522R returns the value composed of the series of bytes it read. This
1523implies that some bytes within the value may be ``undef`` **without**
1524the entire value being ``undef``. Note that this only defines the
1525semantics of the operation; it doesn't mean that targets will emit more
1526than one instruction to read the series of bytes.
1527
1528Note that in cases where none of the atomic intrinsics are used, this
1529model places only one restriction on IR transformations on top of what
1530is required for single-threaded execution: introducing a store to a byte
1531which might not otherwise be stored is not allowed in general.
1532(Specifically, in the case where another thread might write to and read
1533from an address, introducing a store can change a load that may see
1534exactly one write into a load that may see multiple writes.)
1535
1536.. _ordering:
1537
1538Atomic Memory Ordering Constraints
1539----------------------------------
1540
1541Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1542:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1543:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001544ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001545the same address they *synchronize with*. These semantics are borrowed
1546from Java and C++0x, but are somewhat more colloquial. If these
1547descriptions aren't precise enough, check those specs (see spec
1548references in the :doc:`atomics guide <Atomics>`).
1549:ref:`fence <i_fence>` instructions treat these orderings somewhat
1550differently since they don't take an address. See that instruction's
1551documentation for details.
1552
1553For a simpler introduction to the ordering constraints, see the
1554:doc:`Atomics`.
1555
1556``unordered``
1557 The set of values that can be read is governed by the happens-before
1558 partial order. A value cannot be read unless some operation wrote
1559 it. This is intended to provide a guarantee strong enough to model
1560 Java's non-volatile shared variables. This ordering cannot be
1561 specified for read-modify-write operations; it is not strong enough
1562 to make them atomic in any interesting way.
1563``monotonic``
1564 In addition to the guarantees of ``unordered``, there is a single
1565 total order for modifications by ``monotonic`` operations on each
1566 address. All modification orders must be compatible with the
1567 happens-before order. There is no guarantee that the modification
1568 orders can be combined to a global total order for the whole program
1569 (and this often will not be possible). The read in an atomic
1570 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1571 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1572 order immediately before the value it writes. If one atomic read
1573 happens before another atomic read of the same address, the later
1574 read must see the same value or a later value in the address's
1575 modification order. This disallows reordering of ``monotonic`` (or
1576 stronger) operations on the same address. If an address is written
1577 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1578 read that address repeatedly, the other threads must eventually see
1579 the write. This corresponds to the C++0x/C1x
1580 ``memory_order_relaxed``.
1581``acquire``
1582 In addition to the guarantees of ``monotonic``, a
1583 *synchronizes-with* edge may be formed with a ``release`` operation.
1584 This is intended to model C++'s ``memory_order_acquire``.
1585``release``
1586 In addition to the guarantees of ``monotonic``, if this operation
1587 writes a value which is subsequently read by an ``acquire``
1588 operation, it *synchronizes-with* that operation. (This isn't a
1589 complete description; see the C++0x definition of a release
1590 sequence.) This corresponds to the C++0x/C1x
1591 ``memory_order_release``.
1592``acq_rel`` (acquire+release)
1593 Acts as both an ``acquire`` and ``release`` operation on its
1594 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1595``seq_cst`` (sequentially consistent)
1596 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1597 operation which only reads, ``release`` for an operation which only
1598 writes), there is a global total order on all
1599 sequentially-consistent operations on all addresses, which is
1600 consistent with the *happens-before* partial order and with the
1601 modification orders of all the affected addresses. Each
1602 sequentially-consistent read sees the last preceding write to the
1603 same address in this global order. This corresponds to the C++0x/C1x
1604 ``memory_order_seq_cst`` and Java volatile.
1605
1606.. _singlethread:
1607
1608If an atomic operation is marked ``singlethread``, it only *synchronizes
1609with* or participates in modification and seq\_cst total orderings with
1610other operations running in the same thread (for example, in signal
1611handlers).
1612
1613.. _fastmath:
1614
1615Fast-Math Flags
1616---------------
1617
1618LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1619:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1620:ref:`frem <i_frem>`) have the following flags that can set to enable
1621otherwise unsafe floating point operations
1622
1623``nnan``
1624 No NaNs - Allow optimizations to assume the arguments and result are not
1625 NaN. Such optimizations are required to retain defined behavior over
1626 NaNs, but the value of the result is undefined.
1627
1628``ninf``
1629 No Infs - Allow optimizations to assume the arguments and result are not
1630 +/-Inf. Such optimizations are required to retain defined behavior over
1631 +/-Inf, but the value of the result is undefined.
1632
1633``nsz``
1634 No Signed Zeros - Allow optimizations to treat the sign of a zero
1635 argument or result as insignificant.
1636
1637``arcp``
1638 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1639 argument rather than perform division.
1640
1641``fast``
1642 Fast - Allow algebraically equivalent transformations that may
1643 dramatically change results in floating point (e.g. reassociate). This
1644 flag implies all the others.
1645
1646.. _typesystem:
1647
1648Type System
1649===========
1650
1651The LLVM type system is one of the most important features of the
1652intermediate representation. Being typed enables a number of
1653optimizations to be performed on the intermediate representation
1654directly, without having to do extra analyses on the side before the
1655transformation. A strong type system makes it easier to read the
1656generated code and enables novel analyses and transformations that are
1657not feasible to perform on normal three address code representations.
1658
Rafael Espindola08013342013-12-07 19:34:20 +00001659.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001660
Rafael Espindola08013342013-12-07 19:34:20 +00001661Void Type
1662---------
Sean Silvab084af42012-12-07 10:36:55 +00001663
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001664:Overview:
1665
Rafael Espindola08013342013-12-07 19:34:20 +00001666
1667The void type does not represent any value and has no size.
1668
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001669:Syntax:
1670
Rafael Espindola08013342013-12-07 19:34:20 +00001671
1672::
1673
1674 void
Sean Silvab084af42012-12-07 10:36:55 +00001675
1676
Rafael Espindola08013342013-12-07 19:34:20 +00001677.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001678
Rafael Espindola08013342013-12-07 19:34:20 +00001679Function Type
1680-------------
Sean Silvab084af42012-12-07 10:36:55 +00001681
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001682:Overview:
1683
Sean Silvab084af42012-12-07 10:36:55 +00001684
Rafael Espindola08013342013-12-07 19:34:20 +00001685The function type can be thought of as a function signature. It consists of a
1686return type and a list of formal parameter types. The return type of a function
1687type is a void type or first class type --- except for :ref:`label <t_label>`
1688and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001689
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001690:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001691
Rafael Espindola08013342013-12-07 19:34:20 +00001692::
Sean Silvab084af42012-12-07 10:36:55 +00001693
Rafael Espindola08013342013-12-07 19:34:20 +00001694 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001695
Rafael Espindola08013342013-12-07 19:34:20 +00001696...where '``<parameter list>``' is a comma-separated list of type
1697specifiers. Optionally, the parameter list may include a type ``...``, which
1698indicates that the function takes a variable number of arguments. Variable
1699argument functions can access their arguments with the :ref:`variable argument
1700handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1701except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001702
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001703:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001704
Rafael Espindola08013342013-12-07 19:34:20 +00001705+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1706| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1707+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1708| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1709+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1710| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1711+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1712| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1713+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1714
1715.. _t_firstclass:
1716
1717First Class Types
1718-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001719
1720The :ref:`first class <t_firstclass>` types are perhaps the most important.
1721Values of these types are the only ones which can be produced by
1722instructions.
1723
Rafael Espindola08013342013-12-07 19:34:20 +00001724.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001725
Rafael Espindola08013342013-12-07 19:34:20 +00001726Single Value Types
1727^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001728
Rafael Espindola08013342013-12-07 19:34:20 +00001729These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001730
1731.. _t_integer:
1732
1733Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001734""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001735
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001736:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001737
1738The integer type is a very simple type that simply specifies an
1739arbitrary bit width for the integer type desired. Any bit width from 1
1740bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1741
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001742:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001743
1744::
1745
1746 iN
1747
1748The number of bits the integer will occupy is specified by the ``N``
1749value.
1750
1751Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001752*********
Sean Silvab084af42012-12-07 10:36:55 +00001753
1754+----------------+------------------------------------------------+
1755| ``i1`` | a single-bit integer. |
1756+----------------+------------------------------------------------+
1757| ``i32`` | a 32-bit integer. |
1758+----------------+------------------------------------------------+
1759| ``i1942652`` | a really big integer of over 1 million bits. |
1760+----------------+------------------------------------------------+
1761
1762.. _t_floating:
1763
1764Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001765""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001766
1767.. list-table::
1768 :header-rows: 1
1769
1770 * - Type
1771 - Description
1772
1773 * - ``half``
1774 - 16-bit floating point value
1775
1776 * - ``float``
1777 - 32-bit floating point value
1778
1779 * - ``double``
1780 - 64-bit floating point value
1781
1782 * - ``fp128``
1783 - 128-bit floating point value (112-bit mantissa)
1784
1785 * - ``x86_fp80``
1786 - 80-bit floating point value (X87)
1787
1788 * - ``ppc_fp128``
1789 - 128-bit floating point value (two 64-bits)
1790
Reid Kleckner9a16d082014-03-05 02:41:37 +00001791X86_mmx Type
1792""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001793
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001794:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001795
Reid Kleckner9a16d082014-03-05 02:41:37 +00001796The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001797machine. The operations allowed on it are quite limited: parameters and
1798return values, load and store, and bitcast. User-specified MMX
1799instructions are represented as intrinsic or asm calls with arguments
1800and/or results of this type. There are no arrays, vectors or constants
1801of this type.
1802
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001803:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001804
1805::
1806
Reid Kleckner9a16d082014-03-05 02:41:37 +00001807 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001808
Sean Silvab084af42012-12-07 10:36:55 +00001809
Rafael Espindola08013342013-12-07 19:34:20 +00001810.. _t_pointer:
1811
1812Pointer Type
1813""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001814
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001815:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001816
Rafael Espindola08013342013-12-07 19:34:20 +00001817The pointer type is used to specify memory locations. Pointers are
1818commonly used to reference objects in memory.
1819
1820Pointer types may have an optional address space attribute defining the
1821numbered address space where the pointed-to object resides. The default
1822address space is number zero. The semantics of non-zero address spaces
1823are target-specific.
1824
1825Note that LLVM does not permit pointers to void (``void*``) nor does it
1826permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001827
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001828:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001829
1830::
1831
Rafael Espindola08013342013-12-07 19:34:20 +00001832 <type> *
1833
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001834:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001835
1836+-------------------------+--------------------------------------------------------------------------------------------------------------+
1837| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1838+-------------------------+--------------------------------------------------------------------------------------------------------------+
1839| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1840+-------------------------+--------------------------------------------------------------------------------------------------------------+
1841| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1842+-------------------------+--------------------------------------------------------------------------------------------------------------+
1843
1844.. _t_vector:
1845
1846Vector Type
1847"""""""""""
1848
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001849:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001850
1851A vector type is a simple derived type that represents a vector of
1852elements. Vector types are used when multiple primitive data are
1853operated in parallel using a single instruction (SIMD). A vector type
1854requires a size (number of elements) and an underlying primitive data
1855type. Vector types are considered :ref:`first class <t_firstclass>`.
1856
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001857:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001858
1859::
1860
1861 < <# elements> x <elementtype> >
1862
1863The number of elements is a constant integer value larger than 0;
1864elementtype may be any integer or floating point type, or a pointer to
1865these types. Vectors of size zero are not allowed.
1866
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001867:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001868
1869+-------------------+--------------------------------------------------+
1870| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1871+-------------------+--------------------------------------------------+
1872| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1873+-------------------+--------------------------------------------------+
1874| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1875+-------------------+--------------------------------------------------+
1876| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1877+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001878
1879.. _t_label:
1880
1881Label Type
1882^^^^^^^^^^
1883
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001884:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001885
1886The label type represents code labels.
1887
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001888:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001889
1890::
1891
1892 label
1893
1894.. _t_metadata:
1895
1896Metadata Type
1897^^^^^^^^^^^^^
1898
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001899:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001900
1901The metadata type represents embedded metadata. No derived types may be
1902created from metadata except for :ref:`function <t_function>` arguments.
1903
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001904:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001905
1906::
1907
1908 metadata
1909
Sean Silvab084af42012-12-07 10:36:55 +00001910.. _t_aggregate:
1911
1912Aggregate Types
1913^^^^^^^^^^^^^^^
1914
1915Aggregate Types are a subset of derived types that can contain multiple
1916member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1917aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1918aggregate types.
1919
1920.. _t_array:
1921
1922Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001923""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001924
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001925:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001926
1927The array type is a very simple derived type that arranges elements
1928sequentially in memory. The array type requires a size (number of
1929elements) and an underlying data type.
1930
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001931:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001932
1933::
1934
1935 [<# elements> x <elementtype>]
1936
1937The number of elements is a constant integer value; ``elementtype`` may
1938be any type with a size.
1939
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001940:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001941
1942+------------------+--------------------------------------+
1943| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1944+------------------+--------------------------------------+
1945| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1946+------------------+--------------------------------------+
1947| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1948+------------------+--------------------------------------+
1949
1950Here are some examples of multidimensional arrays:
1951
1952+-----------------------------+----------------------------------------------------------+
1953| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1954+-----------------------------+----------------------------------------------------------+
1955| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1956+-----------------------------+----------------------------------------------------------+
1957| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1958+-----------------------------+----------------------------------------------------------+
1959
1960There is no restriction on indexing beyond the end of the array implied
1961by a static type (though there are restrictions on indexing beyond the
1962bounds of an allocated object in some cases). This means that
1963single-dimension 'variable sized array' addressing can be implemented in
1964LLVM with a zero length array type. An implementation of 'pascal style
1965arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1966example.
1967
Sean Silvab084af42012-12-07 10:36:55 +00001968.. _t_struct:
1969
1970Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001971""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001972
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001973:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001974
1975The structure type is used to represent a collection of data members
1976together in memory. The elements of a structure may be any type that has
1977a size.
1978
1979Structures in memory are accessed using '``load``' and '``store``' by
1980getting a pointer to a field with the '``getelementptr``' instruction.
1981Structures in registers are accessed using the '``extractvalue``' and
1982'``insertvalue``' instructions.
1983
1984Structures may optionally be "packed" structures, which indicate that
1985the alignment of the struct is one byte, and that there is no padding
1986between the elements. In non-packed structs, padding between field types
1987is inserted as defined by the DataLayout string in the module, which is
1988required to match what the underlying code generator expects.
1989
1990Structures can either be "literal" or "identified". A literal structure
1991is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1992identified types are always defined at the top level with a name.
1993Literal types are uniqued by their contents and can never be recursive
1994or opaque since there is no way to write one. Identified types can be
1995recursive, can be opaqued, and are never uniqued.
1996
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001997:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001998
1999::
2000
2001 %T1 = type { <type list> } ; Identified normal struct type
2002 %T2 = type <{ <type list> }> ; Identified packed struct type
2003
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002004:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002005
2006+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2007| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2008+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002009| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002010+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2011| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2012+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2013
2014.. _t_opaque:
2015
2016Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002017""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002018
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002019:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002020
2021Opaque structure types are used to represent named structure types that
2022do not have a body specified. This corresponds (for example) to the C
2023notion of a forward declared structure.
2024
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002025:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002026
2027::
2028
2029 %X = type opaque
2030 %52 = type opaque
2031
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002032:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002033
2034+--------------+-------------------+
2035| ``opaque`` | An opaque type. |
2036+--------------+-------------------+
2037
Sean Silva1703e702014-04-08 21:06:22 +00002038.. _constants:
2039
Sean Silvab084af42012-12-07 10:36:55 +00002040Constants
2041=========
2042
2043LLVM has several different basic types of constants. This section
2044describes them all and their syntax.
2045
2046Simple Constants
2047----------------
2048
2049**Boolean constants**
2050 The two strings '``true``' and '``false``' are both valid constants
2051 of the ``i1`` type.
2052**Integer constants**
2053 Standard integers (such as '4') are constants of the
2054 :ref:`integer <t_integer>` type. Negative numbers may be used with
2055 integer types.
2056**Floating point constants**
2057 Floating point constants use standard decimal notation (e.g.
2058 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2059 hexadecimal notation (see below). The assembler requires the exact
2060 decimal value of a floating-point constant. For example, the
2061 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2062 decimal in binary. Floating point constants must have a :ref:`floating
2063 point <t_floating>` type.
2064**Null pointer constants**
2065 The identifier '``null``' is recognized as a null pointer constant
2066 and must be of :ref:`pointer type <t_pointer>`.
2067
2068The one non-intuitive notation for constants is the hexadecimal form of
2069floating point constants. For example, the form
2070'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2071than) '``double 4.5e+15``'. The only time hexadecimal floating point
2072constants are required (and the only time that they are generated by the
2073disassembler) is when a floating point constant must be emitted but it
2074cannot be represented as a decimal floating point number in a reasonable
2075number of digits. For example, NaN's, infinities, and other special
2076values are represented in their IEEE hexadecimal format so that assembly
2077and disassembly do not cause any bits to change in the constants.
2078
2079When using the hexadecimal form, constants of types half, float, and
2080double are represented using the 16-digit form shown above (which
2081matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002082must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002083precision, respectively. Hexadecimal format is always used for long
2084double, and there are three forms of long double. The 80-bit format used
2085by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2086128-bit format used by PowerPC (two adjacent doubles) is represented by
2087``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002088represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2089will only work if they match the long double format on your target.
2090The IEEE 16-bit format (half precision) is represented by ``0xH``
2091followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2092(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002093
Reid Kleckner9a16d082014-03-05 02:41:37 +00002094There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002095
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002096.. _complexconstants:
2097
Sean Silvab084af42012-12-07 10:36:55 +00002098Complex Constants
2099-----------------
2100
2101Complex constants are a (potentially recursive) combination of simple
2102constants and smaller complex constants.
2103
2104**Structure constants**
2105 Structure constants are represented with notation similar to
2106 structure type definitions (a comma separated list of elements,
2107 surrounded by braces (``{}``)). For example:
2108 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2109 "``@G = external global i32``". Structure constants must have
2110 :ref:`structure type <t_struct>`, and the number and types of elements
2111 must match those specified by the type.
2112**Array constants**
2113 Array constants are represented with notation similar to array type
2114 definitions (a comma separated list of elements, surrounded by
2115 square brackets (``[]``)). For example:
2116 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2117 :ref:`array type <t_array>`, and the number and types of elements must
2118 match those specified by the type.
2119**Vector constants**
2120 Vector constants are represented with notation similar to vector
2121 type definitions (a comma separated list of elements, surrounded by
2122 less-than/greater-than's (``<>``)). For example:
2123 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2124 must have :ref:`vector type <t_vector>`, and the number and types of
2125 elements must match those specified by the type.
2126**Zero initialization**
2127 The string '``zeroinitializer``' can be used to zero initialize a
2128 value to zero of *any* type, including scalar and
2129 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2130 having to print large zero initializers (e.g. for large arrays) and
2131 is always exactly equivalent to using explicit zero initializers.
2132**Metadata node**
2133 A metadata node is a structure-like constant with :ref:`metadata
2134 type <t_metadata>`. For example:
2135 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2136 constants that are meant to be interpreted as part of the
2137 instruction stream, metadata is a place to attach additional
2138 information such as debug info.
2139
2140Global Variable and Function Addresses
2141--------------------------------------
2142
2143The addresses of :ref:`global variables <globalvars>` and
2144:ref:`functions <functionstructure>` are always implicitly valid
2145(link-time) constants. These constants are explicitly referenced when
2146the :ref:`identifier for the global <identifiers>` is used and always have
2147:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2148file:
2149
2150.. code-block:: llvm
2151
2152 @X = global i32 17
2153 @Y = global i32 42
2154 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2155
2156.. _undefvalues:
2157
2158Undefined Values
2159----------------
2160
2161The string '``undef``' can be used anywhere a constant is expected, and
2162indicates that the user of the value may receive an unspecified
2163bit-pattern. Undefined values may be of any type (other than '``label``'
2164or '``void``') and be used anywhere a constant is permitted.
2165
2166Undefined values are useful because they indicate to the compiler that
2167the program is well defined no matter what value is used. This gives the
2168compiler more freedom to optimize. Here are some examples of
2169(potentially surprising) transformations that are valid (in pseudo IR):
2170
2171.. code-block:: llvm
2172
2173 %A = add %X, undef
2174 %B = sub %X, undef
2175 %C = xor %X, undef
2176 Safe:
2177 %A = undef
2178 %B = undef
2179 %C = undef
2180
2181This is safe because all of the output bits are affected by the undef
2182bits. Any output bit can have a zero or one depending on the input bits.
2183
2184.. code-block:: llvm
2185
2186 %A = or %X, undef
2187 %B = and %X, undef
2188 Safe:
2189 %A = -1
2190 %B = 0
2191 Unsafe:
2192 %A = undef
2193 %B = undef
2194
2195These logical operations have bits that are not always affected by the
2196input. For example, if ``%X`` has a zero bit, then the output of the
2197'``and``' operation will always be a zero for that bit, no matter what
2198the corresponding bit from the '``undef``' is. As such, it is unsafe to
2199optimize or assume that the result of the '``and``' is '``undef``'.
2200However, it is safe to assume that all bits of the '``undef``' could be
22010, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2202all the bits of the '``undef``' operand to the '``or``' could be set,
2203allowing the '``or``' to be folded to -1.
2204
2205.. code-block:: llvm
2206
2207 %A = select undef, %X, %Y
2208 %B = select undef, 42, %Y
2209 %C = select %X, %Y, undef
2210 Safe:
2211 %A = %X (or %Y)
2212 %B = 42 (or %Y)
2213 %C = %Y
2214 Unsafe:
2215 %A = undef
2216 %B = undef
2217 %C = undef
2218
2219This set of examples shows that undefined '``select``' (and conditional
2220branch) conditions can go *either way*, but they have to come from one
2221of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2222both known to have a clear low bit, then ``%A`` would have to have a
2223cleared low bit. However, in the ``%C`` example, the optimizer is
2224allowed to assume that the '``undef``' operand could be the same as
2225``%Y``, allowing the whole '``select``' to be eliminated.
2226
2227.. code-block:: llvm
2228
2229 %A = xor undef, undef
2230
2231 %B = undef
2232 %C = xor %B, %B
2233
2234 %D = undef
2235 %E = icmp lt %D, 4
2236 %F = icmp gte %D, 4
2237
2238 Safe:
2239 %A = undef
2240 %B = undef
2241 %C = undef
2242 %D = undef
2243 %E = undef
2244 %F = undef
2245
2246This example points out that two '``undef``' operands are not
2247necessarily the same. This can be surprising to people (and also matches
2248C semantics) where they assume that "``X^X``" is always zero, even if
2249``X`` is undefined. This isn't true for a number of reasons, but the
2250short answer is that an '``undef``' "variable" can arbitrarily change
2251its value over its "live range". This is true because the variable
2252doesn't actually *have a live range*. Instead, the value is logically
2253read from arbitrary registers that happen to be around when needed, so
2254the value is not necessarily consistent over time. In fact, ``%A`` and
2255``%C`` need to have the same semantics or the core LLVM "replace all
2256uses with" concept would not hold.
2257
2258.. code-block:: llvm
2259
2260 %A = fdiv undef, %X
2261 %B = fdiv %X, undef
2262 Safe:
2263 %A = undef
2264 b: unreachable
2265
2266These examples show the crucial difference between an *undefined value*
2267and *undefined behavior*. An undefined value (like '``undef``') is
2268allowed to have an arbitrary bit-pattern. This means that the ``%A``
2269operation can be constant folded to '``undef``', because the '``undef``'
2270could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2271However, in the second example, we can make a more aggressive
2272assumption: because the ``undef`` is allowed to be an arbitrary value,
2273we are allowed to assume that it could be zero. Since a divide by zero
2274has *undefined behavior*, we are allowed to assume that the operation
2275does not execute at all. This allows us to delete the divide and all
2276code after it. Because the undefined operation "can't happen", the
2277optimizer can assume that it occurs in dead code.
2278
2279.. code-block:: llvm
2280
2281 a: store undef -> %X
2282 b: store %X -> undef
2283 Safe:
2284 a: <deleted>
2285 b: unreachable
2286
2287These examples reiterate the ``fdiv`` example: a store *of* an undefined
2288value can be assumed to not have any effect; we can assume that the
2289value is overwritten with bits that happen to match what was already
2290there. However, a store *to* an undefined location could clobber
2291arbitrary memory, therefore, it has undefined behavior.
2292
2293.. _poisonvalues:
2294
2295Poison Values
2296-------------
2297
2298Poison values are similar to :ref:`undef values <undefvalues>`, however
2299they also represent the fact that an instruction or constant expression
2300which cannot evoke side effects has nevertheless detected a condition
2301which results in undefined behavior.
2302
2303There is currently no way of representing a poison value in the IR; they
2304only exist when produced by operations such as :ref:`add <i_add>` with
2305the ``nsw`` flag.
2306
2307Poison value behavior is defined in terms of value *dependence*:
2308
2309- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2310- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2311 their dynamic predecessor basic block.
2312- Function arguments depend on the corresponding actual argument values
2313 in the dynamic callers of their functions.
2314- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2315 instructions that dynamically transfer control back to them.
2316- :ref:`Invoke <i_invoke>` instructions depend on the
2317 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2318 call instructions that dynamically transfer control back to them.
2319- Non-volatile loads and stores depend on the most recent stores to all
2320 of the referenced memory addresses, following the order in the IR
2321 (including loads and stores implied by intrinsics such as
2322 :ref:`@llvm.memcpy <int_memcpy>`.)
2323- An instruction with externally visible side effects depends on the
2324 most recent preceding instruction with externally visible side
2325 effects, following the order in the IR. (This includes :ref:`volatile
2326 operations <volatile>`.)
2327- An instruction *control-depends* on a :ref:`terminator
2328 instruction <terminators>` if the terminator instruction has
2329 multiple successors and the instruction is always executed when
2330 control transfers to one of the successors, and may not be executed
2331 when control is transferred to another.
2332- Additionally, an instruction also *control-depends* on a terminator
2333 instruction if the set of instructions it otherwise depends on would
2334 be different if the terminator had transferred control to a different
2335 successor.
2336- Dependence is transitive.
2337
2338Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2339with the additional affect that any instruction which has a *dependence*
2340on a poison value has undefined behavior.
2341
2342Here are some examples:
2343
2344.. code-block:: llvm
2345
2346 entry:
2347 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2348 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2349 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2350 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2351
2352 store i32 %poison, i32* @g ; Poison value stored to memory.
2353 %poison2 = load i32* @g ; Poison value loaded back from memory.
2354
2355 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2356
2357 %narrowaddr = bitcast i32* @g to i16*
2358 %wideaddr = bitcast i32* @g to i64*
2359 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2360 %poison4 = load i64* %wideaddr ; Returns a poison value.
2361
2362 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2363 br i1 %cmp, label %true, label %end ; Branch to either destination.
2364
2365 true:
2366 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2367 ; it has undefined behavior.
2368 br label %end
2369
2370 end:
2371 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2372 ; Both edges into this PHI are
2373 ; control-dependent on %cmp, so this
2374 ; always results in a poison value.
2375
2376 store volatile i32 0, i32* @g ; This would depend on the store in %true
2377 ; if %cmp is true, or the store in %entry
2378 ; otherwise, so this is undefined behavior.
2379
2380 br i1 %cmp, label %second_true, label %second_end
2381 ; The same branch again, but this time the
2382 ; true block doesn't have side effects.
2383
2384 second_true:
2385 ; No side effects!
2386 ret void
2387
2388 second_end:
2389 store volatile i32 0, i32* @g ; This time, the instruction always depends
2390 ; on the store in %end. Also, it is
2391 ; control-equivalent to %end, so this is
2392 ; well-defined (ignoring earlier undefined
2393 ; behavior in this example).
2394
2395.. _blockaddress:
2396
2397Addresses of Basic Blocks
2398-------------------------
2399
2400``blockaddress(@function, %block)``
2401
2402The '``blockaddress``' constant computes the address of the specified
2403basic block in the specified function, and always has an ``i8*`` type.
2404Taking the address of the entry block is illegal.
2405
2406This value only has defined behavior when used as an operand to the
2407':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2408against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002409undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002410no label is equal to the null pointer. This may be passed around as an
2411opaque pointer sized value as long as the bits are not inspected. This
2412allows ``ptrtoint`` and arithmetic to be performed on these values so
2413long as the original value is reconstituted before the ``indirectbr``
2414instruction.
2415
2416Finally, some targets may provide defined semantics when using the value
2417as the operand to an inline assembly, but that is target specific.
2418
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002419.. _constantexprs:
2420
Sean Silvab084af42012-12-07 10:36:55 +00002421Constant Expressions
2422--------------------
2423
2424Constant expressions are used to allow expressions involving other
2425constants to be used as constants. Constant expressions may be of any
2426:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2427that does not have side effects (e.g. load and call are not supported).
2428The following is the syntax for constant expressions:
2429
2430``trunc (CST to TYPE)``
2431 Truncate a constant to another type. The bit size of CST must be
2432 larger than the bit size of TYPE. Both types must be integers.
2433``zext (CST to TYPE)``
2434 Zero extend a constant to another type. The bit size of CST must be
2435 smaller than the bit size of TYPE. Both types must be integers.
2436``sext (CST to TYPE)``
2437 Sign extend a constant to another type. The bit size of CST must be
2438 smaller than the bit size of TYPE. Both types must be integers.
2439``fptrunc (CST to TYPE)``
2440 Truncate a floating point constant to another floating point type.
2441 The size of CST must be larger than the size of TYPE. Both types
2442 must be floating point.
2443``fpext (CST to TYPE)``
2444 Floating point extend a constant to another type. The size of CST
2445 must be smaller or equal to the size of TYPE. Both types must be
2446 floating point.
2447``fptoui (CST to TYPE)``
2448 Convert a floating point constant to the corresponding unsigned
2449 integer constant. TYPE must be a scalar or vector integer type. CST
2450 must be of scalar or vector floating point type. Both CST and TYPE
2451 must be scalars, or vectors of the same number of elements. If the
2452 value won't fit in the integer type, the results are undefined.
2453``fptosi (CST to TYPE)``
2454 Convert a floating point constant to the corresponding signed
2455 integer constant. TYPE must be a scalar or vector integer type. CST
2456 must be of scalar or vector floating point type. Both CST and TYPE
2457 must be scalars, or vectors of the same number of elements. If the
2458 value won't fit in the integer type, the results are undefined.
2459``uitofp (CST to TYPE)``
2460 Convert an unsigned integer constant to the corresponding floating
2461 point constant. TYPE must be a scalar or vector floating point type.
2462 CST must be of scalar or vector integer type. Both CST and TYPE must
2463 be scalars, or vectors of the same number of elements. If the value
2464 won't fit in the floating point type, the results are undefined.
2465``sitofp (CST to TYPE)``
2466 Convert a signed integer constant to the corresponding floating
2467 point constant. TYPE must be a scalar or vector floating point type.
2468 CST must be of scalar or vector integer type. Both CST and TYPE must
2469 be scalars, or vectors of the same number of elements. If the value
2470 won't fit in the floating point type, the results are undefined.
2471``ptrtoint (CST to TYPE)``
2472 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002473 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002474 pointer type. The ``CST`` value is zero extended, truncated, or
2475 unchanged to make it fit in ``TYPE``.
2476``inttoptr (CST to TYPE)``
2477 Convert an integer constant to a pointer constant. TYPE must be a
2478 pointer type. CST must be of integer type. The CST value is zero
2479 extended, truncated, or unchanged to make it fit in a pointer size.
2480 This one is *really* dangerous!
2481``bitcast (CST to TYPE)``
2482 Convert a constant, CST, to another TYPE. The constraints of the
2483 operands are the same as those for the :ref:`bitcast
2484 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002485``addrspacecast (CST to TYPE)``
2486 Convert a constant pointer or constant vector of pointer, CST, to another
2487 TYPE in a different address space. The constraints of the operands are the
2488 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002489``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2490 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2491 constants. As with the :ref:`getelementptr <i_getelementptr>`
2492 instruction, the index list may have zero or more indexes, which are
2493 required to make sense for the type of "CSTPTR".
2494``select (COND, VAL1, VAL2)``
2495 Perform the :ref:`select operation <i_select>` on constants.
2496``icmp COND (VAL1, VAL2)``
2497 Performs the :ref:`icmp operation <i_icmp>` on constants.
2498``fcmp COND (VAL1, VAL2)``
2499 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2500``extractelement (VAL, IDX)``
2501 Perform the :ref:`extractelement operation <i_extractelement>` on
2502 constants.
2503``insertelement (VAL, ELT, IDX)``
2504 Perform the :ref:`insertelement operation <i_insertelement>` on
2505 constants.
2506``shufflevector (VEC1, VEC2, IDXMASK)``
2507 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2508 constants.
2509``extractvalue (VAL, IDX0, IDX1, ...)``
2510 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2511 constants. The index list is interpreted in a similar manner as
2512 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2513 least one index value must be specified.
2514``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2515 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2516 The index list is interpreted in a similar manner as indices in a
2517 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2518 value must be specified.
2519``OPCODE (LHS, RHS)``
2520 Perform the specified operation of the LHS and RHS constants. OPCODE
2521 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2522 binary <bitwiseops>` operations. The constraints on operands are
2523 the same as those for the corresponding instruction (e.g. no bitwise
2524 operations on floating point values are allowed).
2525
2526Other Values
2527============
2528
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002529.. _inlineasmexprs:
2530
Sean Silvab084af42012-12-07 10:36:55 +00002531Inline Assembler Expressions
2532----------------------------
2533
2534LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2535Inline Assembly <moduleasm>`) through the use of a special value. This
2536value represents the inline assembler as a string (containing the
2537instructions to emit), a list of operand constraints (stored as a
2538string), a flag that indicates whether or not the inline asm expression
2539has side effects, and a flag indicating whether the function containing
2540the asm needs to align its stack conservatively. An example inline
2541assembler expression is:
2542
2543.. code-block:: llvm
2544
2545 i32 (i32) asm "bswap $0", "=r,r"
2546
2547Inline assembler expressions may **only** be used as the callee operand
2548of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2549Thus, typically we have:
2550
2551.. code-block:: llvm
2552
2553 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2554
2555Inline asms with side effects not visible in the constraint list must be
2556marked as having side effects. This is done through the use of the
2557'``sideeffect``' keyword, like so:
2558
2559.. code-block:: llvm
2560
2561 call void asm sideeffect "eieio", ""()
2562
2563In some cases inline asms will contain code that will not work unless
2564the stack is aligned in some way, such as calls or SSE instructions on
2565x86, yet will not contain code that does that alignment within the asm.
2566The compiler should make conservative assumptions about what the asm
2567might contain and should generate its usual stack alignment code in the
2568prologue if the '``alignstack``' keyword is present:
2569
2570.. code-block:: llvm
2571
2572 call void asm alignstack "eieio", ""()
2573
2574Inline asms also support using non-standard assembly dialects. The
2575assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2576the inline asm is using the Intel dialect. Currently, ATT and Intel are
2577the only supported dialects. An example is:
2578
2579.. code-block:: llvm
2580
2581 call void asm inteldialect "eieio", ""()
2582
2583If multiple keywords appear the '``sideeffect``' keyword must come
2584first, the '``alignstack``' keyword second and the '``inteldialect``'
2585keyword last.
2586
2587Inline Asm Metadata
2588^^^^^^^^^^^^^^^^^^^
2589
2590The call instructions that wrap inline asm nodes may have a
2591"``!srcloc``" MDNode attached to it that contains a list of constant
2592integers. If present, the code generator will use the integer as the
2593location cookie value when report errors through the ``LLVMContext``
2594error reporting mechanisms. This allows a front-end to correlate backend
2595errors that occur with inline asm back to the source code that produced
2596it. For example:
2597
2598.. code-block:: llvm
2599
2600 call void asm sideeffect "something bad", ""(), !srcloc !42
2601 ...
2602 !42 = !{ i32 1234567 }
2603
2604It is up to the front-end to make sense of the magic numbers it places
2605in the IR. If the MDNode contains multiple constants, the code generator
2606will use the one that corresponds to the line of the asm that the error
2607occurs on.
2608
2609.. _metadata:
2610
2611Metadata Nodes and Metadata Strings
2612-----------------------------------
2613
2614LLVM IR allows metadata to be attached to instructions in the program
2615that can convey extra information about the code to the optimizers and
2616code generator. One example application of metadata is source-level
2617debug information. There are two metadata primitives: strings and nodes.
2618All metadata has the ``metadata`` type and is identified in syntax by a
2619preceding exclamation point ('``!``').
2620
2621A metadata string is a string surrounded by double quotes. It can
2622contain any character by escaping non-printable characters with
2623"``\xx``" where "``xx``" is the two digit hex code. For example:
2624"``!"test\00"``".
2625
2626Metadata nodes are represented with notation similar to structure
2627constants (a comma separated list of elements, surrounded by braces and
2628preceded by an exclamation point). Metadata nodes can have any values as
2629their operand. For example:
2630
2631.. code-block:: llvm
2632
2633 !{ metadata !"test\00", i32 10}
2634
2635A :ref:`named metadata <namedmetadatastructure>` is a collection of
2636metadata nodes, which can be looked up in the module symbol table. For
2637example:
2638
2639.. code-block:: llvm
2640
2641 !foo = metadata !{!4, !3}
2642
2643Metadata can be used as function arguments. Here ``llvm.dbg.value``
2644function is using two metadata arguments:
2645
2646.. code-block:: llvm
2647
2648 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2649
2650Metadata can be attached with an instruction. Here metadata ``!21`` is
2651attached to the ``add`` instruction using the ``!dbg`` identifier:
2652
2653.. code-block:: llvm
2654
2655 %indvar.next = add i64 %indvar, 1, !dbg !21
2656
2657More information about specific metadata nodes recognized by the
2658optimizers and code generator is found below.
2659
2660'``tbaa``' Metadata
2661^^^^^^^^^^^^^^^^^^^
2662
2663In LLVM IR, memory does not have types, so LLVM's own type system is not
2664suitable for doing TBAA. Instead, metadata is added to the IR to
2665describe a type system of a higher level language. This can be used to
2666implement typical C/C++ TBAA, but it can also be used to implement
2667custom alias analysis behavior for other languages.
2668
2669The current metadata format is very simple. TBAA metadata nodes have up
2670to three fields, e.g.:
2671
2672.. code-block:: llvm
2673
2674 !0 = metadata !{ metadata !"an example type tree" }
2675 !1 = metadata !{ metadata !"int", metadata !0 }
2676 !2 = metadata !{ metadata !"float", metadata !0 }
2677 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2678
2679The first field is an identity field. It can be any value, usually a
2680metadata string, which uniquely identifies the type. The most important
2681name in the tree is the name of the root node. Two trees with different
2682root node names are entirely disjoint, even if they have leaves with
2683common names.
2684
2685The second field identifies the type's parent node in the tree, or is
2686null or omitted for a root node. A type is considered to alias all of
2687its descendants and all of its ancestors in the tree. Also, a type is
2688considered to alias all types in other trees, so that bitcode produced
2689from multiple front-ends is handled conservatively.
2690
2691If the third field is present, it's an integer which if equal to 1
2692indicates that the type is "constant" (meaning
2693``pointsToConstantMemory`` should return true; see `other useful
2694AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2695
2696'``tbaa.struct``' Metadata
2697^^^^^^^^^^^^^^^^^^^^^^^^^^
2698
2699The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2700aggregate assignment operations in C and similar languages, however it
2701is defined to copy a contiguous region of memory, which is more than
2702strictly necessary for aggregate types which contain holes due to
2703padding. Also, it doesn't contain any TBAA information about the fields
2704of the aggregate.
2705
2706``!tbaa.struct`` metadata can describe which memory subregions in a
2707memcpy are padding and what the TBAA tags of the struct are.
2708
2709The current metadata format is very simple. ``!tbaa.struct`` metadata
2710nodes are a list of operands which are in conceptual groups of three.
2711For each group of three, the first operand gives the byte offset of a
2712field in bytes, the second gives its size in bytes, and the third gives
2713its tbaa tag. e.g.:
2714
2715.. code-block:: llvm
2716
2717 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2718
2719This describes a struct with two fields. The first is at offset 0 bytes
2720with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2721and has size 4 bytes and has tbaa tag !2.
2722
2723Note that the fields need not be contiguous. In this example, there is a
27244 byte gap between the two fields. This gap represents padding which
2725does not carry useful data and need not be preserved.
2726
2727'``fpmath``' Metadata
2728^^^^^^^^^^^^^^^^^^^^^
2729
2730``fpmath`` metadata may be attached to any instruction of floating point
2731type. It can be used to express the maximum acceptable error in the
2732result of that instruction, in ULPs, thus potentially allowing the
2733compiler to use a more efficient but less accurate method of computing
2734it. ULP is defined as follows:
2735
2736 If ``x`` is a real number that lies between two finite consecutive
2737 floating-point numbers ``a`` and ``b``, without being equal to one
2738 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2739 distance between the two non-equal finite floating-point numbers
2740 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2741
2742The metadata node shall consist of a single positive floating point
2743number representing the maximum relative error, for example:
2744
2745.. code-block:: llvm
2746
2747 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2748
2749'``range``' Metadata
2750^^^^^^^^^^^^^^^^^^^^
2751
Jingyue Wu37fcb592014-06-19 16:50:16 +00002752``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
2753integer types. It expresses the possible ranges the loaded value or the value
2754returned by the called function at this call site is in. The ranges are
2755represented with a flattened list of integers. The loaded value or the value
2756returned is known to be in the union of the ranges defined by each consecutive
2757pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00002758
2759- The type must match the type loaded by the instruction.
2760- The pair ``a,b`` represents the range ``[a,b)``.
2761- Both ``a`` and ``b`` are constants.
2762- The range is allowed to wrap.
2763- The range should not represent the full or empty set. That is,
2764 ``a!=b``.
2765
2766In addition, the pairs must be in signed order of the lower bound and
2767they must be non-contiguous.
2768
2769Examples:
2770
2771.. code-block:: llvm
2772
2773 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2774 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00002775 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
2776 %d = invoke i8 @bar() to label %cont
2777 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00002778 ...
2779 !0 = metadata !{ i8 0, i8 2 }
2780 !1 = metadata !{ i8 255, i8 2 }
2781 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2782 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2783
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002784'``llvm.loop``'
2785^^^^^^^^^^^^^^^
2786
2787It is sometimes useful to attach information to loop constructs. Currently,
2788loop metadata is implemented as metadata attached to the branch instruction
2789in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002790guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002791specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002792
2793The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002794itself to avoid merging it with any other identifier metadata, e.g.,
2795during module linkage or function inlining. That is, each loop should refer
2796to their own identification metadata even if they reside in separate functions.
2797The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002798constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002799
2800.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002801
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002802 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002803 !1 = metadata !{ metadata !1 }
2804
Paul Redmond5fdf8362013-05-28 20:00:34 +00002805The loop identifier metadata can be used to specify additional per-loop
2806metadata. Any operands after the first operand can be treated as user-defined
2807metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2808by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002809
Paul Redmond5fdf8362013-05-28 20:00:34 +00002810.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002811
Paul Redmond5fdf8362013-05-28 20:00:34 +00002812 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2813 ...
2814 !0 = metadata !{ metadata !0, metadata !1 }
2815 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002816
2817'``llvm.mem``'
2818^^^^^^^^^^^^^^^
2819
2820Metadata types used to annotate memory accesses with information helpful
2821for optimizations are prefixed with ``llvm.mem``.
2822
2823'``llvm.mem.parallel_loop_access``' Metadata
2824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2825
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00002826The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
2827or metadata containing a list of loop identifiers for nested loops.
2828The metadata is attached to memory accessing instructions and denotes that
2829no loop carried memory dependence exist between it and other instructions denoted
2830with the same loop identifier.
2831
2832Precisely, given two instructions ``m1`` and ``m2`` that both have the
2833``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
2834set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00002835carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00002836``L2``.
2837
2838As a special case, if all memory accessing instructions in a loop have
2839``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
2840loop has no loop carried memory dependences and is considered to be a parallel
2841loop.
2842
2843Note that if not all memory access instructions have such metadata referring to
2844the loop, then the loop is considered not being trivially parallel. Additional
2845memory dependence analysis is required to make that determination. As a fail
2846safe mechanism, this causes loops that were originally parallel to be considered
2847sequential (if optimization passes that are unaware of the parallel semantics
2848insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002849
2850Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002851both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002852metadata types that refer to the same loop identifier metadata.
2853
2854.. code-block:: llvm
2855
2856 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002857 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002858 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002859 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002860 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002861 ...
2862 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002863
2864 for.end:
2865 ...
2866 !0 = metadata !{ metadata !0 }
2867
2868It is also possible to have nested parallel loops. In that case the
2869memory accesses refer to a list of loop identifier metadata nodes instead of
2870the loop identifier metadata node directly:
2871
2872.. code-block:: llvm
2873
2874 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002875 ...
2876 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
2877 ...
2878 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002879
2880 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002881 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002882 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002883 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002884 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002885 ...
2886 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002887
2888 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002889 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002890 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00002891 ...
2892 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002893
2894 outer.for.end: ; preds = %for.body
2895 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002896 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2897 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2898 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002899
Paul Redmond5fdf8362013-05-28 20:00:34 +00002900'``llvm.vectorizer``'
2901^^^^^^^^^^^^^^^^^^^^^
2902
2903Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2904vectorization parameters such as vectorization factor and unroll factor.
2905
2906``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2907loop identification metadata.
2908
2909'``llvm.vectorizer.unroll``' Metadata
2910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2911
2912This metadata instructs the loop vectorizer to unroll the specified
2913loop exactly ``N`` times.
2914
2915The first operand is the string ``llvm.vectorizer.unroll`` and the second
2916operand is an integer specifying the unroll factor. For example:
2917
2918.. code-block:: llvm
2919
2920 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2921
2922Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2923loop.
2924
2925If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2926determined automatically.
2927
2928'``llvm.vectorizer.width``' Metadata
2929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2930
Paul Redmondeccbb322013-05-30 17:22:46 +00002931This metadata sets the target width of the vectorizer to ``N``. Without
2932this metadata, the vectorizer will choose a width automatically.
2933Regardless of this metadata, the vectorizer will only vectorize loops if
2934it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002935
2936The first operand is the string ``llvm.vectorizer.width`` and the second
2937operand is an integer specifying the width. For example:
2938
2939.. code-block:: llvm
2940
2941 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2942
2943Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2944loop.
2945
2946If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2947automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002948
Sean Silvab084af42012-12-07 10:36:55 +00002949Module Flags Metadata
2950=====================
2951
2952Information about the module as a whole is difficult to convey to LLVM's
2953subsystems. The LLVM IR isn't sufficient to transmit this information.
2954The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002955this. These flags are in the form of key / value pairs --- much like a
2956dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002957look it up.
2958
2959The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2960Each triplet has the following form:
2961
2962- The first element is a *behavior* flag, which specifies the behavior
2963 when two (or more) modules are merged together, and it encounters two
2964 (or more) metadata with the same ID. The supported behaviors are
2965 described below.
2966- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002967 metadata. Each module may only have one flag entry for each unique ID (not
2968 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002969- The third element is the value of the flag.
2970
2971When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002972``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2973each unique metadata ID string, there will be exactly one entry in the merged
2974modules ``llvm.module.flags`` metadata table, and the value for that entry will
2975be determined by the merge behavior flag, as described below. The only exception
2976is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002977
2978The following behaviors are supported:
2979
2980.. list-table::
2981 :header-rows: 1
2982 :widths: 10 90
2983
2984 * - Value
2985 - Behavior
2986
2987 * - 1
2988 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002989 Emits an error if two values disagree, otherwise the resulting value
2990 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002991
2992 * - 2
2993 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002994 Emits a warning if two values disagree. The result value will be the
2995 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002996
2997 * - 3
2998 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002999 Adds a requirement that another module flag be present and have a
3000 specified value after linking is performed. The value must be a
3001 metadata pair, where the first element of the pair is the ID of the
3002 module flag to be restricted, and the second element of the pair is
3003 the value the module flag should be restricted to. This behavior can
3004 be used to restrict the allowable results (via triggering of an
3005 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003006
3007 * - 4
3008 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003009 Uses the specified value, regardless of the behavior or value of the
3010 other module. If both modules specify **Override**, but the values
3011 differ, an error will be emitted.
3012
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003013 * - 5
3014 - **Append**
3015 Appends the two values, which are required to be metadata nodes.
3016
3017 * - 6
3018 - **AppendUnique**
3019 Appends the two values, which are required to be metadata
3020 nodes. However, duplicate entries in the second list are dropped
3021 during the append operation.
3022
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003023It is an error for a particular unique flag ID to have multiple behaviors,
3024except in the case of **Require** (which adds restrictions on another metadata
3025value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003026
3027An example of module flags:
3028
3029.. code-block:: llvm
3030
3031 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3032 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3033 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3034 !3 = metadata !{ i32 3, metadata !"qux",
3035 metadata !{
3036 metadata !"foo", i32 1
3037 }
3038 }
3039 !llvm.module.flags = !{ !0, !1, !2, !3 }
3040
3041- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3042 if two or more ``!"foo"`` flags are seen is to emit an error if their
3043 values are not equal.
3044
3045- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3046 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003047 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003048
3049- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3050 behavior if two or more ``!"qux"`` flags are seen is to emit a
3051 warning if their values are not equal.
3052
3053- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3054
3055 ::
3056
3057 metadata !{ metadata !"foo", i32 1 }
3058
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003059 The behavior is to emit an error if the ``llvm.module.flags`` does not
3060 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3061 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003062
3063Objective-C Garbage Collection Module Flags Metadata
3064----------------------------------------------------
3065
3066On the Mach-O platform, Objective-C stores metadata about garbage
3067collection in a special section called "image info". The metadata
3068consists of a version number and a bitmask specifying what types of
3069garbage collection are supported (if any) by the file. If two or more
3070modules are linked together their garbage collection metadata needs to
3071be merged rather than appended together.
3072
3073The Objective-C garbage collection module flags metadata consists of the
3074following key-value pairs:
3075
3076.. list-table::
3077 :header-rows: 1
3078 :widths: 30 70
3079
3080 * - Key
3081 - Value
3082
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003083 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003084 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003085
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003086 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003087 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003088 always 0.
3089
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003090 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003091 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003092 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3093 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3094 Objective-C ABI version 2.
3095
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003096 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003097 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003098 not. Valid values are 0, for no garbage collection, and 2, for garbage
3099 collection supported.
3100
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003101 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003102 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003103 If present, its value must be 6. This flag requires that the
3104 ``Objective-C Garbage Collection`` flag have the value 2.
3105
3106Some important flag interactions:
3107
3108- If a module with ``Objective-C Garbage Collection`` set to 0 is
3109 merged with a module with ``Objective-C Garbage Collection`` set to
3110 2, then the resulting module has the
3111 ``Objective-C Garbage Collection`` flag set to 0.
3112- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3113 merged with a module with ``Objective-C GC Only`` set to 6.
3114
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003115Automatic Linker Flags Module Flags Metadata
3116--------------------------------------------
3117
3118Some targets support embedding flags to the linker inside individual object
3119files. Typically this is used in conjunction with language extensions which
3120allow source files to explicitly declare the libraries they depend on, and have
3121these automatically be transmitted to the linker via object files.
3122
3123These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003124using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003125to be ``AppendUnique``, and the value for the key is expected to be a metadata
3126node which should be a list of other metadata nodes, each of which should be a
3127list of metadata strings defining linker options.
3128
3129For example, the following metadata section specifies two separate sets of
3130linker options, presumably to link against ``libz`` and the ``Cocoa``
3131framework::
3132
Michael Liaoa7699082013-03-06 18:24:34 +00003133 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003134 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003135 metadata !{ metadata !"-lz" },
3136 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003137 !llvm.module.flags = !{ !0 }
3138
3139The metadata encoding as lists of lists of options, as opposed to a collapsed
3140list of options, is chosen so that the IR encoding can use multiple option
3141strings to specify e.g., a single library, while still having that specifier be
3142preserved as an atomic element that can be recognized by a target specific
3143assembly writer or object file emitter.
3144
3145Each individual option is required to be either a valid option for the target's
3146linker, or an option that is reserved by the target specific assembly writer or
3147object file emitter. No other aspect of these options is defined by the IR.
3148
Oliver Stannard5dc29342014-06-20 10:08:11 +00003149C type width Module Flags Metadata
3150----------------------------------
3151
3152The ARM backend emits a section into each generated object file describing the
3153options that it was compiled with (in a compiler-independent way) to prevent
3154linking incompatible objects, and to allow automatic library selection. Some
3155of these options are not visible at the IR level, namely wchar_t width and enum
3156width.
3157
3158To pass this information to the backend, these options are encoded in module
3159flags metadata, using the following key-value pairs:
3160
3161.. list-table::
3162 :header-rows: 1
3163 :widths: 30 70
3164
3165 * - Key
3166 - Value
3167
3168 * - short_wchar
3169 - * 0 --- sizeof(wchar_t) == 4
3170 * 1 --- sizeof(wchar_t) == 2
3171
3172 * - short_enum
3173 - * 0 --- Enums are at least as large as an ``int``.
3174 * 1 --- Enums are stored in the smallest integer type which can
3175 represent all of its values.
3176
3177For example, the following metadata section specifies that the module was
3178compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3179enum is the smallest type which can represent all of its values::
3180
3181 !llvm.module.flags = !{!0, !1}
3182 !0 = metadata !{i32 1, metadata !"short_wchar", i32 1}
3183 !1 = metadata !{i32 1, metadata !"short_enum", i32 0}
3184
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003185.. _intrinsicglobalvariables:
3186
Sean Silvab084af42012-12-07 10:36:55 +00003187Intrinsic Global Variables
3188==========================
3189
3190LLVM has a number of "magic" global variables that contain data that
3191affect code generation or other IR semantics. These are documented here.
3192All globals of this sort should have a section specified as
3193"``llvm.metadata``". This section and all globals that start with
3194"``llvm.``" are reserved for use by LLVM.
3195
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003196.. _gv_llvmused:
3197
Sean Silvab084af42012-12-07 10:36:55 +00003198The '``llvm.used``' Global Variable
3199-----------------------------------
3200
Rafael Espindola74f2e462013-04-22 14:58:02 +00003201The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003202:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003203pointers to named global variables, functions and aliases which may optionally
3204have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003205use of it is:
3206
3207.. code-block:: llvm
3208
3209 @X = global i8 4
3210 @Y = global i32 123
3211
3212 @llvm.used = appending global [2 x i8*] [
3213 i8* @X,
3214 i8* bitcast (i32* @Y to i8*)
3215 ], section "llvm.metadata"
3216
Rafael Espindola74f2e462013-04-22 14:58:02 +00003217If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3218and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003219symbol that it cannot see (which is why they have to be named). For example, if
3220a variable has internal linkage and no references other than that from the
3221``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3222references from inline asms and other things the compiler cannot "see", and
3223corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003224
3225On some targets, the code generator must emit a directive to the
3226assembler or object file to prevent the assembler and linker from
3227molesting the symbol.
3228
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003229.. _gv_llvmcompilerused:
3230
Sean Silvab084af42012-12-07 10:36:55 +00003231The '``llvm.compiler.used``' Global Variable
3232--------------------------------------------
3233
3234The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3235directive, except that it only prevents the compiler from touching the
3236symbol. On targets that support it, this allows an intelligent linker to
3237optimize references to the symbol without being impeded as it would be
3238by ``@llvm.used``.
3239
3240This is a rare construct that should only be used in rare circumstances,
3241and should not be exposed to source languages.
3242
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003243.. _gv_llvmglobalctors:
3244
Sean Silvab084af42012-12-07 10:36:55 +00003245The '``llvm.global_ctors``' Global Variable
3246-------------------------------------------
3247
3248.. code-block:: llvm
3249
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003250 %0 = type { i32, void ()*, i8* }
3251 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003252
3253The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003254functions, priorities, and an optional associated global or function.
3255The functions referenced by this array will be called in ascending order
3256of priority (i.e. lowest first) when the module is loaded. The order of
3257functions with the same priority is not defined.
3258
3259If the third field is present, non-null, and points to a global variable
3260or function, the initializer function will only run if the associated
3261data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003262
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003263.. _llvmglobaldtors:
3264
Sean Silvab084af42012-12-07 10:36:55 +00003265The '``llvm.global_dtors``' Global Variable
3266-------------------------------------------
3267
3268.. code-block:: llvm
3269
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003270 %0 = type { i32, void ()*, i8* }
3271 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003272
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003273The ``@llvm.global_dtors`` array contains a list of destructor
3274functions, priorities, and an optional associated global or function.
3275The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003276order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003277order of functions with the same priority is not defined.
3278
3279If the third field is present, non-null, and points to a global variable
3280or function, the destructor function will only run if the associated
3281data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003282
3283Instruction Reference
3284=====================
3285
3286The LLVM instruction set consists of several different classifications
3287of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3288instructions <binaryops>`, :ref:`bitwise binary
3289instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3290:ref:`other instructions <otherops>`.
3291
3292.. _terminators:
3293
3294Terminator Instructions
3295-----------------------
3296
3297As mentioned :ref:`previously <functionstructure>`, every basic block in a
3298program ends with a "Terminator" instruction, which indicates which
3299block should be executed after the current block is finished. These
3300terminator instructions typically yield a '``void``' value: they produce
3301control flow, not values (the one exception being the
3302':ref:`invoke <i_invoke>`' instruction).
3303
3304The terminator instructions are: ':ref:`ret <i_ret>`',
3305':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3306':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3307':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3308
3309.. _i_ret:
3310
3311'``ret``' Instruction
3312^^^^^^^^^^^^^^^^^^^^^
3313
3314Syntax:
3315"""""""
3316
3317::
3318
3319 ret <type> <value> ; Return a value from a non-void function
3320 ret void ; Return from void function
3321
3322Overview:
3323"""""""""
3324
3325The '``ret``' instruction is used to return control flow (and optionally
3326a value) from a function back to the caller.
3327
3328There are two forms of the '``ret``' instruction: one that returns a
3329value and then causes control flow, and one that just causes control
3330flow to occur.
3331
3332Arguments:
3333""""""""""
3334
3335The '``ret``' instruction optionally accepts a single argument, the
3336return value. The type of the return value must be a ':ref:`first
3337class <t_firstclass>`' type.
3338
3339A function is not :ref:`well formed <wellformed>` if it it has a non-void
3340return type and contains a '``ret``' instruction with no return value or
3341a return value with a type that does not match its type, or if it has a
3342void return type and contains a '``ret``' instruction with a return
3343value.
3344
3345Semantics:
3346""""""""""
3347
3348When the '``ret``' instruction is executed, control flow returns back to
3349the calling function's context. If the caller is a
3350":ref:`call <i_call>`" instruction, execution continues at the
3351instruction after the call. If the caller was an
3352":ref:`invoke <i_invoke>`" instruction, execution continues at the
3353beginning of the "normal" destination block. If the instruction returns
3354a value, that value shall set the call or invoke instruction's return
3355value.
3356
3357Example:
3358""""""""
3359
3360.. code-block:: llvm
3361
3362 ret i32 5 ; Return an integer value of 5
3363 ret void ; Return from a void function
3364 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3365
3366.. _i_br:
3367
3368'``br``' Instruction
3369^^^^^^^^^^^^^^^^^^^^
3370
3371Syntax:
3372"""""""
3373
3374::
3375
3376 br i1 <cond>, label <iftrue>, label <iffalse>
3377 br label <dest> ; Unconditional branch
3378
3379Overview:
3380"""""""""
3381
3382The '``br``' instruction is used to cause control flow to transfer to a
3383different basic block in the current function. There are two forms of
3384this instruction, corresponding to a conditional branch and an
3385unconditional branch.
3386
3387Arguments:
3388""""""""""
3389
3390The conditional branch form of the '``br``' instruction takes a single
3391'``i1``' value and two '``label``' values. The unconditional form of the
3392'``br``' instruction takes a single '``label``' value as a target.
3393
3394Semantics:
3395""""""""""
3396
3397Upon execution of a conditional '``br``' instruction, the '``i1``'
3398argument is evaluated. If the value is ``true``, control flows to the
3399'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3400to the '``iffalse``' ``label`` argument.
3401
3402Example:
3403""""""""
3404
3405.. code-block:: llvm
3406
3407 Test:
3408 %cond = icmp eq i32 %a, %b
3409 br i1 %cond, label %IfEqual, label %IfUnequal
3410 IfEqual:
3411 ret i32 1
3412 IfUnequal:
3413 ret i32 0
3414
3415.. _i_switch:
3416
3417'``switch``' Instruction
3418^^^^^^^^^^^^^^^^^^^^^^^^
3419
3420Syntax:
3421"""""""
3422
3423::
3424
3425 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3426
3427Overview:
3428"""""""""
3429
3430The '``switch``' instruction is used to transfer control flow to one of
3431several different places. It is a generalization of the '``br``'
3432instruction, allowing a branch to occur to one of many possible
3433destinations.
3434
3435Arguments:
3436""""""""""
3437
3438The '``switch``' instruction uses three parameters: an integer
3439comparison value '``value``', a default '``label``' destination, and an
3440array of pairs of comparison value constants and '``label``'s. The table
3441is not allowed to contain duplicate constant entries.
3442
3443Semantics:
3444""""""""""
3445
3446The ``switch`` instruction specifies a table of values and destinations.
3447When the '``switch``' instruction is executed, this table is searched
3448for the given value. If the value is found, control flow is transferred
3449to the corresponding destination; otherwise, control flow is transferred
3450to the default destination.
3451
3452Implementation:
3453"""""""""""""""
3454
3455Depending on properties of the target machine and the particular
3456``switch`` instruction, this instruction may be code generated in
3457different ways. For example, it could be generated as a series of
3458chained conditional branches or with a lookup table.
3459
3460Example:
3461""""""""
3462
3463.. code-block:: llvm
3464
3465 ; Emulate a conditional br instruction
3466 %Val = zext i1 %value to i32
3467 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3468
3469 ; Emulate an unconditional br instruction
3470 switch i32 0, label %dest [ ]
3471
3472 ; Implement a jump table:
3473 switch i32 %val, label %otherwise [ i32 0, label %onzero
3474 i32 1, label %onone
3475 i32 2, label %ontwo ]
3476
3477.. _i_indirectbr:
3478
3479'``indirectbr``' Instruction
3480^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3481
3482Syntax:
3483"""""""
3484
3485::
3486
3487 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3488
3489Overview:
3490"""""""""
3491
3492The '``indirectbr``' instruction implements an indirect branch to a
3493label within the current function, whose address is specified by
3494"``address``". Address must be derived from a
3495:ref:`blockaddress <blockaddress>` constant.
3496
3497Arguments:
3498""""""""""
3499
3500The '``address``' argument is the address of the label to jump to. The
3501rest of the arguments indicate the full set of possible destinations
3502that the address may point to. Blocks are allowed to occur multiple
3503times in the destination list, though this isn't particularly useful.
3504
3505This destination list is required so that dataflow analysis has an
3506accurate understanding of the CFG.
3507
3508Semantics:
3509""""""""""
3510
3511Control transfers to the block specified in the address argument. All
3512possible destination blocks must be listed in the label list, otherwise
3513this instruction has undefined behavior. This implies that jumps to
3514labels defined in other functions have undefined behavior as well.
3515
3516Implementation:
3517"""""""""""""""
3518
3519This is typically implemented with a jump through a register.
3520
3521Example:
3522""""""""
3523
3524.. code-block:: llvm
3525
3526 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3527
3528.. _i_invoke:
3529
3530'``invoke``' Instruction
3531^^^^^^^^^^^^^^^^^^^^^^^^
3532
3533Syntax:
3534"""""""
3535
3536::
3537
3538 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3539 to label <normal label> unwind label <exception label>
3540
3541Overview:
3542"""""""""
3543
3544The '``invoke``' instruction causes control to transfer to a specified
3545function, with the possibility of control flow transfer to either the
3546'``normal``' label or the '``exception``' label. If the callee function
3547returns with the "``ret``" instruction, control flow will return to the
3548"normal" label. If the callee (or any indirect callees) returns via the
3549":ref:`resume <i_resume>`" instruction or other exception handling
3550mechanism, control is interrupted and continued at the dynamically
3551nearest "exception" label.
3552
3553The '``exception``' label is a `landing
3554pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3555'``exception``' label is required to have the
3556":ref:`landingpad <i_landingpad>`" instruction, which contains the
3557information about the behavior of the program after unwinding happens,
3558as its first non-PHI instruction. The restrictions on the
3559"``landingpad``" instruction's tightly couples it to the "``invoke``"
3560instruction, so that the important information contained within the
3561"``landingpad``" instruction can't be lost through normal code motion.
3562
3563Arguments:
3564""""""""""
3565
3566This instruction requires several arguments:
3567
3568#. The optional "cconv" marker indicates which :ref:`calling
3569 convention <callingconv>` the call should use. If none is
3570 specified, the call defaults to using C calling conventions.
3571#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3572 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3573 are valid here.
3574#. '``ptr to function ty``': shall be the signature of the pointer to
3575 function value being invoked. In most cases, this is a direct
3576 function invocation, but indirect ``invoke``'s are just as possible,
3577 branching off an arbitrary pointer to function value.
3578#. '``function ptr val``': An LLVM value containing a pointer to a
3579 function to be invoked.
3580#. '``function args``': argument list whose types match the function
3581 signature argument types and parameter attributes. All arguments must
3582 be of :ref:`first class <t_firstclass>` type. If the function signature
3583 indicates the function accepts a variable number of arguments, the
3584 extra arguments can be specified.
3585#. '``normal label``': the label reached when the called function
3586 executes a '``ret``' instruction.
3587#. '``exception label``': the label reached when a callee returns via
3588 the :ref:`resume <i_resume>` instruction or other exception handling
3589 mechanism.
3590#. The optional :ref:`function attributes <fnattrs>` list. Only
3591 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3592 attributes are valid here.
3593
3594Semantics:
3595""""""""""
3596
3597This instruction is designed to operate as a standard '``call``'
3598instruction in most regards. The primary difference is that it
3599establishes an association with a label, which is used by the runtime
3600library to unwind the stack.
3601
3602This instruction is used in languages with destructors to ensure that
3603proper cleanup is performed in the case of either a ``longjmp`` or a
3604thrown exception. Additionally, this is important for implementation of
3605'``catch``' clauses in high-level languages that support them.
3606
3607For the purposes of the SSA form, the definition of the value returned
3608by the '``invoke``' instruction is deemed to occur on the edge from the
3609current block to the "normal" label. If the callee unwinds then no
3610return value is available.
3611
3612Example:
3613""""""""
3614
3615.. code-block:: llvm
3616
3617 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003618 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003619 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003620 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003621
3622.. _i_resume:
3623
3624'``resume``' Instruction
3625^^^^^^^^^^^^^^^^^^^^^^^^
3626
3627Syntax:
3628"""""""
3629
3630::
3631
3632 resume <type> <value>
3633
3634Overview:
3635"""""""""
3636
3637The '``resume``' instruction is a terminator instruction that has no
3638successors.
3639
3640Arguments:
3641""""""""""
3642
3643The '``resume``' instruction requires one argument, which must have the
3644same type as the result of any '``landingpad``' instruction in the same
3645function.
3646
3647Semantics:
3648""""""""""
3649
3650The '``resume``' instruction resumes propagation of an existing
3651(in-flight) exception whose unwinding was interrupted with a
3652:ref:`landingpad <i_landingpad>` instruction.
3653
3654Example:
3655""""""""
3656
3657.. code-block:: llvm
3658
3659 resume { i8*, i32 } %exn
3660
3661.. _i_unreachable:
3662
3663'``unreachable``' Instruction
3664^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3665
3666Syntax:
3667"""""""
3668
3669::
3670
3671 unreachable
3672
3673Overview:
3674"""""""""
3675
3676The '``unreachable``' instruction has no defined semantics. This
3677instruction is used to inform the optimizer that a particular portion of
3678the code is not reachable. This can be used to indicate that the code
3679after a no-return function cannot be reached, and other facts.
3680
3681Semantics:
3682""""""""""
3683
3684The '``unreachable``' instruction has no defined semantics.
3685
3686.. _binaryops:
3687
3688Binary Operations
3689-----------------
3690
3691Binary operators are used to do most of the computation in a program.
3692They require two operands of the same type, execute an operation on
3693them, and produce a single value. The operands might represent multiple
3694data, as is the case with the :ref:`vector <t_vector>` data type. The
3695result value has the same type as its operands.
3696
3697There are several different binary operators:
3698
3699.. _i_add:
3700
3701'``add``' Instruction
3702^^^^^^^^^^^^^^^^^^^^^
3703
3704Syntax:
3705"""""""
3706
3707::
3708
Tim Northover675a0962014-06-13 14:24:23 +00003709 <result> = add <ty> <op1>, <op2> ; yields ty:result
3710 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
3711 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
3712 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003713
3714Overview:
3715"""""""""
3716
3717The '``add``' instruction returns the sum of its two operands.
3718
3719Arguments:
3720""""""""""
3721
3722The two arguments to the '``add``' instruction must be
3723:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3724arguments must have identical types.
3725
3726Semantics:
3727""""""""""
3728
3729The value produced is the integer sum of the two operands.
3730
3731If the sum has unsigned overflow, the result returned is the
3732mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3733the result.
3734
3735Because LLVM integers use a two's complement representation, this
3736instruction is appropriate for both signed and unsigned integers.
3737
3738``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3739respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3740result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3741unsigned and/or signed overflow, respectively, occurs.
3742
3743Example:
3744""""""""
3745
3746.. code-block:: llvm
3747
Tim Northover675a0962014-06-13 14:24:23 +00003748 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00003749
3750.. _i_fadd:
3751
3752'``fadd``' Instruction
3753^^^^^^^^^^^^^^^^^^^^^^
3754
3755Syntax:
3756"""""""
3757
3758::
3759
Tim Northover675a0962014-06-13 14:24:23 +00003760 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003761
3762Overview:
3763"""""""""
3764
3765The '``fadd``' instruction returns the sum of its two operands.
3766
3767Arguments:
3768""""""""""
3769
3770The two arguments to the '``fadd``' instruction must be :ref:`floating
3771point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3772Both arguments must have identical types.
3773
3774Semantics:
3775""""""""""
3776
3777The value produced is the floating point sum of the two operands. This
3778instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3779which are optimization hints to enable otherwise unsafe floating point
3780optimizations:
3781
3782Example:
3783""""""""
3784
3785.. code-block:: llvm
3786
Tim Northover675a0962014-06-13 14:24:23 +00003787 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00003788
3789'``sub``' Instruction
3790^^^^^^^^^^^^^^^^^^^^^
3791
3792Syntax:
3793"""""""
3794
3795::
3796
Tim Northover675a0962014-06-13 14:24:23 +00003797 <result> = sub <ty> <op1>, <op2> ; yields ty:result
3798 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
3799 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
3800 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003801
3802Overview:
3803"""""""""
3804
3805The '``sub``' instruction returns the difference of its two operands.
3806
3807Note that the '``sub``' instruction is used to represent the '``neg``'
3808instruction present in most other intermediate representations.
3809
3810Arguments:
3811""""""""""
3812
3813The two arguments to the '``sub``' instruction must be
3814:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3815arguments must have identical types.
3816
3817Semantics:
3818""""""""""
3819
3820The value produced is the integer difference of the two operands.
3821
3822If the difference has unsigned overflow, the result returned is the
3823mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3824the result.
3825
3826Because LLVM integers use a two's complement representation, this
3827instruction is appropriate for both signed and unsigned integers.
3828
3829``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3830respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3831result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3832unsigned and/or signed overflow, respectively, occurs.
3833
3834Example:
3835""""""""
3836
3837.. code-block:: llvm
3838
Tim Northover675a0962014-06-13 14:24:23 +00003839 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
3840 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00003841
3842.. _i_fsub:
3843
3844'``fsub``' Instruction
3845^^^^^^^^^^^^^^^^^^^^^^
3846
3847Syntax:
3848"""""""
3849
3850::
3851
Tim Northover675a0962014-06-13 14:24:23 +00003852 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003853
3854Overview:
3855"""""""""
3856
3857The '``fsub``' instruction returns the difference of its two operands.
3858
3859Note that the '``fsub``' instruction is used to represent the '``fneg``'
3860instruction present in most other intermediate representations.
3861
3862Arguments:
3863""""""""""
3864
3865The two arguments to the '``fsub``' instruction must be :ref:`floating
3866point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3867Both arguments must have identical types.
3868
3869Semantics:
3870""""""""""
3871
3872The value produced is the floating point difference of the two operands.
3873This instruction can also take any number of :ref:`fast-math
3874flags <fastmath>`, which are optimization hints to enable otherwise
3875unsafe floating point optimizations:
3876
3877Example:
3878""""""""
3879
3880.. code-block:: llvm
3881
Tim Northover675a0962014-06-13 14:24:23 +00003882 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
3883 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00003884
3885'``mul``' Instruction
3886^^^^^^^^^^^^^^^^^^^^^
3887
3888Syntax:
3889"""""""
3890
3891::
3892
Tim Northover675a0962014-06-13 14:24:23 +00003893 <result> = mul <ty> <op1>, <op2> ; yields ty:result
3894 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
3895 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
3896 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003897
3898Overview:
3899"""""""""
3900
3901The '``mul``' instruction returns the product of its two operands.
3902
3903Arguments:
3904""""""""""
3905
3906The two arguments to the '``mul``' instruction must be
3907:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3908arguments must have identical types.
3909
3910Semantics:
3911""""""""""
3912
3913The value produced is the integer product of the two operands.
3914
3915If the result of the multiplication has unsigned overflow, the result
3916returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3917bit width of the result.
3918
3919Because LLVM integers use a two's complement representation, and the
3920result is the same width as the operands, this instruction returns the
3921correct result for both signed and unsigned integers. If a full product
3922(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3923sign-extended or zero-extended as appropriate to the width of the full
3924product.
3925
3926``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3927respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3928result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3929unsigned and/or signed overflow, respectively, occurs.
3930
3931Example:
3932""""""""
3933
3934.. code-block:: llvm
3935
Tim Northover675a0962014-06-13 14:24:23 +00003936 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00003937
3938.. _i_fmul:
3939
3940'``fmul``' Instruction
3941^^^^^^^^^^^^^^^^^^^^^^
3942
3943Syntax:
3944"""""""
3945
3946::
3947
Tim Northover675a0962014-06-13 14:24:23 +00003948 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003949
3950Overview:
3951"""""""""
3952
3953The '``fmul``' instruction returns the product of its two operands.
3954
3955Arguments:
3956""""""""""
3957
3958The two arguments to the '``fmul``' instruction must be :ref:`floating
3959point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3960Both arguments must have identical types.
3961
3962Semantics:
3963""""""""""
3964
3965The value produced is the floating point product of the two operands.
3966This instruction can also take any number of :ref:`fast-math
3967flags <fastmath>`, which are optimization hints to enable otherwise
3968unsafe floating point optimizations:
3969
3970Example:
3971""""""""
3972
3973.. code-block:: llvm
3974
Tim Northover675a0962014-06-13 14:24:23 +00003975 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00003976
3977'``udiv``' Instruction
3978^^^^^^^^^^^^^^^^^^^^^^
3979
3980Syntax:
3981"""""""
3982
3983::
3984
Tim Northover675a0962014-06-13 14:24:23 +00003985 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
3986 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003987
3988Overview:
3989"""""""""
3990
3991The '``udiv``' instruction returns the quotient of its two operands.
3992
3993Arguments:
3994""""""""""
3995
3996The two arguments to the '``udiv``' instruction must be
3997:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3998arguments must have identical types.
3999
4000Semantics:
4001""""""""""
4002
4003The value produced is the unsigned integer quotient of the two operands.
4004
4005Note that unsigned integer division and signed integer division are
4006distinct operations; for signed integer division, use '``sdiv``'.
4007
4008Division by zero leads to undefined behavior.
4009
4010If the ``exact`` keyword is present, the result value of the ``udiv`` is
4011a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4012such, "((a udiv exact b) mul b) == a").
4013
4014Example:
4015""""""""
4016
4017.. code-block:: llvm
4018
Tim Northover675a0962014-06-13 14:24:23 +00004019 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004020
4021'``sdiv``' Instruction
4022^^^^^^^^^^^^^^^^^^^^^^
4023
4024Syntax:
4025"""""""
4026
4027::
4028
Tim Northover675a0962014-06-13 14:24:23 +00004029 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4030 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004031
4032Overview:
4033"""""""""
4034
4035The '``sdiv``' instruction returns the quotient of its two operands.
4036
4037Arguments:
4038""""""""""
4039
4040The two arguments to the '``sdiv``' instruction must be
4041:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4042arguments must have identical types.
4043
4044Semantics:
4045""""""""""
4046
4047The value produced is the signed integer quotient of the two operands
4048rounded towards zero.
4049
4050Note that signed integer division and unsigned integer division are
4051distinct operations; for unsigned integer division, use '``udiv``'.
4052
4053Division by zero leads to undefined behavior. Overflow also leads to
4054undefined behavior; this is a rare case, but can occur, for example, by
4055doing a 32-bit division of -2147483648 by -1.
4056
4057If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4058a :ref:`poison value <poisonvalues>` if the result would be rounded.
4059
4060Example:
4061""""""""
4062
4063.. code-block:: llvm
4064
Tim Northover675a0962014-06-13 14:24:23 +00004065 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004066
4067.. _i_fdiv:
4068
4069'``fdiv``' Instruction
4070^^^^^^^^^^^^^^^^^^^^^^
4071
4072Syntax:
4073"""""""
4074
4075::
4076
Tim Northover675a0962014-06-13 14:24:23 +00004077 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004078
4079Overview:
4080"""""""""
4081
4082The '``fdiv``' instruction returns the quotient of its two operands.
4083
4084Arguments:
4085""""""""""
4086
4087The two arguments to the '``fdiv``' instruction must be :ref:`floating
4088point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4089Both arguments must have identical types.
4090
4091Semantics:
4092""""""""""
4093
4094The value produced is the floating point quotient of the two operands.
4095This instruction can also take any number of :ref:`fast-math
4096flags <fastmath>`, which are optimization hints to enable otherwise
4097unsafe floating point optimizations:
4098
4099Example:
4100""""""""
4101
4102.. code-block:: llvm
4103
Tim Northover675a0962014-06-13 14:24:23 +00004104 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004105
4106'``urem``' Instruction
4107^^^^^^^^^^^^^^^^^^^^^^
4108
4109Syntax:
4110"""""""
4111
4112::
4113
Tim Northover675a0962014-06-13 14:24:23 +00004114 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004115
4116Overview:
4117"""""""""
4118
4119The '``urem``' instruction returns the remainder from the unsigned
4120division of its two arguments.
4121
4122Arguments:
4123""""""""""
4124
4125The two arguments to the '``urem``' instruction must be
4126:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4127arguments must have identical types.
4128
4129Semantics:
4130""""""""""
4131
4132This instruction returns the unsigned integer *remainder* of a division.
4133This instruction always performs an unsigned division to get the
4134remainder.
4135
4136Note that unsigned integer remainder and signed integer remainder are
4137distinct operations; for signed integer remainder, use '``srem``'.
4138
4139Taking the remainder of a division by zero leads to undefined behavior.
4140
4141Example:
4142""""""""
4143
4144.. code-block:: llvm
4145
Tim Northover675a0962014-06-13 14:24:23 +00004146 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004147
4148'``srem``' Instruction
4149^^^^^^^^^^^^^^^^^^^^^^
4150
4151Syntax:
4152"""""""
4153
4154::
4155
Tim Northover675a0962014-06-13 14:24:23 +00004156 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004157
4158Overview:
4159"""""""""
4160
4161The '``srem``' instruction returns the remainder from the signed
4162division of its two operands. This instruction can also take
4163:ref:`vector <t_vector>` versions of the values in which case the elements
4164must be integers.
4165
4166Arguments:
4167""""""""""
4168
4169The two arguments to the '``srem``' instruction must be
4170:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4171arguments must have identical types.
4172
4173Semantics:
4174""""""""""
4175
4176This instruction returns the *remainder* of a division (where the result
4177is either zero or has the same sign as the dividend, ``op1``), not the
4178*modulo* operator (where the result is either zero or has the same sign
4179as the divisor, ``op2``) of a value. For more information about the
4180difference, see `The Math
4181Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4182table of how this is implemented in various languages, please see
4183`Wikipedia: modulo
4184operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4185
4186Note that signed integer remainder and unsigned integer remainder are
4187distinct operations; for unsigned integer remainder, use '``urem``'.
4188
4189Taking the remainder of a division by zero leads to undefined behavior.
4190Overflow also leads to undefined behavior; this is a rare case, but can
4191occur, for example, by taking the remainder of a 32-bit division of
4192-2147483648 by -1. (The remainder doesn't actually overflow, but this
4193rule lets srem be implemented using instructions that return both the
4194result of the division and the remainder.)
4195
4196Example:
4197""""""""
4198
4199.. code-block:: llvm
4200
Tim Northover675a0962014-06-13 14:24:23 +00004201 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004202
4203.. _i_frem:
4204
4205'``frem``' Instruction
4206^^^^^^^^^^^^^^^^^^^^^^
4207
4208Syntax:
4209"""""""
4210
4211::
4212
Tim Northover675a0962014-06-13 14:24:23 +00004213 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004214
4215Overview:
4216"""""""""
4217
4218The '``frem``' instruction returns the remainder from the division of
4219its two operands.
4220
4221Arguments:
4222""""""""""
4223
4224The two arguments to the '``frem``' instruction must be :ref:`floating
4225point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4226Both arguments must have identical types.
4227
4228Semantics:
4229""""""""""
4230
4231This instruction returns the *remainder* of a division. The remainder
4232has the same sign as the dividend. This instruction can also take any
4233number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4234to enable otherwise unsafe floating point optimizations:
4235
4236Example:
4237""""""""
4238
4239.. code-block:: llvm
4240
Tim Northover675a0962014-06-13 14:24:23 +00004241 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004242
4243.. _bitwiseops:
4244
4245Bitwise Binary Operations
4246-------------------------
4247
4248Bitwise binary operators are used to do various forms of bit-twiddling
4249in a program. They are generally very efficient instructions and can
4250commonly be strength reduced from other instructions. They require two
4251operands of the same type, execute an operation on them, and produce a
4252single value. The resulting value is the same type as its operands.
4253
4254'``shl``' Instruction
4255^^^^^^^^^^^^^^^^^^^^^
4256
4257Syntax:
4258"""""""
4259
4260::
4261
Tim Northover675a0962014-06-13 14:24:23 +00004262 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4263 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4264 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4265 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004266
4267Overview:
4268"""""""""
4269
4270The '``shl``' instruction returns the first operand shifted to the left
4271a specified number of bits.
4272
4273Arguments:
4274""""""""""
4275
4276Both arguments to the '``shl``' instruction must be the same
4277:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4278'``op2``' is treated as an unsigned value.
4279
4280Semantics:
4281""""""""""
4282
4283The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4284where ``n`` is the width of the result. If ``op2`` is (statically or
4285dynamically) negative or equal to or larger than the number of bits in
4286``op1``, the result is undefined. If the arguments are vectors, each
4287vector element of ``op1`` is shifted by the corresponding shift amount
4288in ``op2``.
4289
4290If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4291value <poisonvalues>` if it shifts out any non-zero bits. If the
4292``nsw`` keyword is present, then the shift produces a :ref:`poison
4293value <poisonvalues>` if it shifts out any bits that disagree with the
4294resultant sign bit. As such, NUW/NSW have the same semantics as they
4295would if the shift were expressed as a mul instruction with the same
4296nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4297
4298Example:
4299""""""""
4300
4301.. code-block:: llvm
4302
Tim Northover675a0962014-06-13 14:24:23 +00004303 <result> = shl i32 4, %var ; yields i32: 4 << %var
4304 <result> = shl i32 4, 2 ; yields i32: 16
4305 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004306 <result> = shl i32 1, 32 ; undefined
4307 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4308
4309'``lshr``' Instruction
4310^^^^^^^^^^^^^^^^^^^^^^
4311
4312Syntax:
4313"""""""
4314
4315::
4316
Tim Northover675a0962014-06-13 14:24:23 +00004317 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4318 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004319
4320Overview:
4321"""""""""
4322
4323The '``lshr``' instruction (logical shift right) returns the first
4324operand shifted to the right a specified number of bits with zero fill.
4325
4326Arguments:
4327""""""""""
4328
4329Both arguments to the '``lshr``' instruction must be the same
4330:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4331'``op2``' is treated as an unsigned value.
4332
4333Semantics:
4334""""""""""
4335
4336This instruction always performs a logical shift right operation. The
4337most significant bits of the result will be filled with zero bits after
4338the shift. If ``op2`` is (statically or dynamically) equal to or larger
4339than the number of bits in ``op1``, the result is undefined. If the
4340arguments are vectors, each vector element of ``op1`` is shifted by the
4341corresponding shift amount in ``op2``.
4342
4343If the ``exact`` keyword is present, the result value of the ``lshr`` is
4344a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4345non-zero.
4346
4347Example:
4348""""""""
4349
4350.. code-block:: llvm
4351
Tim Northover675a0962014-06-13 14:24:23 +00004352 <result> = lshr i32 4, 1 ; yields i32:result = 2
4353 <result> = lshr i32 4, 2 ; yields i32:result = 1
4354 <result> = lshr i8 4, 3 ; yields i8:result = 0
4355 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004356 <result> = lshr i32 1, 32 ; undefined
4357 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4358
4359'``ashr``' Instruction
4360^^^^^^^^^^^^^^^^^^^^^^
4361
4362Syntax:
4363"""""""
4364
4365::
4366
Tim Northover675a0962014-06-13 14:24:23 +00004367 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4368 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004369
4370Overview:
4371"""""""""
4372
4373The '``ashr``' instruction (arithmetic shift right) returns the first
4374operand shifted to the right a specified number of bits with sign
4375extension.
4376
4377Arguments:
4378""""""""""
4379
4380Both arguments to the '``ashr``' instruction must be the same
4381:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4382'``op2``' is treated as an unsigned value.
4383
4384Semantics:
4385""""""""""
4386
4387This instruction always performs an arithmetic shift right operation,
4388The most significant bits of the result will be filled with the sign bit
4389of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4390than the number of bits in ``op1``, the result is undefined. If the
4391arguments are vectors, each vector element of ``op1`` is shifted by the
4392corresponding shift amount in ``op2``.
4393
4394If the ``exact`` keyword is present, the result value of the ``ashr`` is
4395a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4396non-zero.
4397
4398Example:
4399""""""""
4400
4401.. code-block:: llvm
4402
Tim Northover675a0962014-06-13 14:24:23 +00004403 <result> = ashr i32 4, 1 ; yields i32:result = 2
4404 <result> = ashr i32 4, 2 ; yields i32:result = 1
4405 <result> = ashr i8 4, 3 ; yields i8:result = 0
4406 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004407 <result> = ashr i32 1, 32 ; undefined
4408 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4409
4410'``and``' Instruction
4411^^^^^^^^^^^^^^^^^^^^^
4412
4413Syntax:
4414"""""""
4415
4416::
4417
Tim Northover675a0962014-06-13 14:24:23 +00004418 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004419
4420Overview:
4421"""""""""
4422
4423The '``and``' instruction returns the bitwise logical and of its two
4424operands.
4425
4426Arguments:
4427""""""""""
4428
4429The two arguments to the '``and``' instruction must be
4430:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4431arguments must have identical types.
4432
4433Semantics:
4434""""""""""
4435
4436The truth table used for the '``and``' instruction is:
4437
4438+-----+-----+-----+
4439| In0 | In1 | Out |
4440+-----+-----+-----+
4441| 0 | 0 | 0 |
4442+-----+-----+-----+
4443| 0 | 1 | 0 |
4444+-----+-----+-----+
4445| 1 | 0 | 0 |
4446+-----+-----+-----+
4447| 1 | 1 | 1 |
4448+-----+-----+-----+
4449
4450Example:
4451""""""""
4452
4453.. code-block:: llvm
4454
Tim Northover675a0962014-06-13 14:24:23 +00004455 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4456 <result> = and i32 15, 40 ; yields i32:result = 8
4457 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004458
4459'``or``' Instruction
4460^^^^^^^^^^^^^^^^^^^^
4461
4462Syntax:
4463"""""""
4464
4465::
4466
Tim Northover675a0962014-06-13 14:24:23 +00004467 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004468
4469Overview:
4470"""""""""
4471
4472The '``or``' instruction returns the bitwise logical inclusive or of its
4473two operands.
4474
4475Arguments:
4476""""""""""
4477
4478The two arguments to the '``or``' instruction must be
4479:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4480arguments must have identical types.
4481
4482Semantics:
4483""""""""""
4484
4485The truth table used for the '``or``' instruction is:
4486
4487+-----+-----+-----+
4488| In0 | In1 | Out |
4489+-----+-----+-----+
4490| 0 | 0 | 0 |
4491+-----+-----+-----+
4492| 0 | 1 | 1 |
4493+-----+-----+-----+
4494| 1 | 0 | 1 |
4495+-----+-----+-----+
4496| 1 | 1 | 1 |
4497+-----+-----+-----+
4498
4499Example:
4500""""""""
4501
4502::
4503
Tim Northover675a0962014-06-13 14:24:23 +00004504 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4505 <result> = or i32 15, 40 ; yields i32:result = 47
4506 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004507
4508'``xor``' Instruction
4509^^^^^^^^^^^^^^^^^^^^^
4510
4511Syntax:
4512"""""""
4513
4514::
4515
Tim Northover675a0962014-06-13 14:24:23 +00004516 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004517
4518Overview:
4519"""""""""
4520
4521The '``xor``' instruction returns the bitwise logical exclusive or of
4522its two operands. The ``xor`` is used to implement the "one's
4523complement" operation, which is the "~" operator in C.
4524
4525Arguments:
4526""""""""""
4527
4528The two arguments to the '``xor``' instruction must be
4529:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4530arguments must have identical types.
4531
4532Semantics:
4533""""""""""
4534
4535The truth table used for the '``xor``' instruction is:
4536
4537+-----+-----+-----+
4538| In0 | In1 | Out |
4539+-----+-----+-----+
4540| 0 | 0 | 0 |
4541+-----+-----+-----+
4542| 0 | 1 | 1 |
4543+-----+-----+-----+
4544| 1 | 0 | 1 |
4545+-----+-----+-----+
4546| 1 | 1 | 0 |
4547+-----+-----+-----+
4548
4549Example:
4550""""""""
4551
4552.. code-block:: llvm
4553
Tim Northover675a0962014-06-13 14:24:23 +00004554 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4555 <result> = xor i32 15, 40 ; yields i32:result = 39
4556 <result> = xor i32 4, 8 ; yields i32:result = 12
4557 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004558
4559Vector Operations
4560-----------------
4561
4562LLVM supports several instructions to represent vector operations in a
4563target-independent manner. These instructions cover the element-access
4564and vector-specific operations needed to process vectors effectively.
4565While LLVM does directly support these vector operations, many
4566sophisticated algorithms will want to use target-specific intrinsics to
4567take full advantage of a specific target.
4568
4569.. _i_extractelement:
4570
4571'``extractelement``' Instruction
4572^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4573
4574Syntax:
4575"""""""
4576
4577::
4578
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004579 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004580
4581Overview:
4582"""""""""
4583
4584The '``extractelement``' instruction extracts a single scalar element
4585from a vector at a specified index.
4586
4587Arguments:
4588""""""""""
4589
4590The first operand of an '``extractelement``' instruction is a value of
4591:ref:`vector <t_vector>` type. The second operand is an index indicating
4592the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004593variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004594
4595Semantics:
4596""""""""""
4597
4598The result is a scalar of the same type as the element type of ``val``.
4599Its value is the value at position ``idx`` of ``val``. If ``idx``
4600exceeds the length of ``val``, the results are undefined.
4601
4602Example:
4603""""""""
4604
4605.. code-block:: llvm
4606
4607 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4608
4609.. _i_insertelement:
4610
4611'``insertelement``' Instruction
4612^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4613
4614Syntax:
4615"""""""
4616
4617::
4618
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004619 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004620
4621Overview:
4622"""""""""
4623
4624The '``insertelement``' instruction inserts a scalar element into a
4625vector at a specified index.
4626
4627Arguments:
4628""""""""""
4629
4630The first operand of an '``insertelement``' instruction is a value of
4631:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4632type must equal the element type of the first operand. The third operand
4633is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004634index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004635
4636Semantics:
4637""""""""""
4638
4639The result is a vector of the same type as ``val``. Its element values
4640are those of ``val`` except at position ``idx``, where it gets the value
4641``elt``. If ``idx`` exceeds the length of ``val``, the results are
4642undefined.
4643
4644Example:
4645""""""""
4646
4647.. code-block:: llvm
4648
4649 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4650
4651.. _i_shufflevector:
4652
4653'``shufflevector``' Instruction
4654^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4655
4656Syntax:
4657"""""""
4658
4659::
4660
4661 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4662
4663Overview:
4664"""""""""
4665
4666The '``shufflevector``' instruction constructs a permutation of elements
4667from two input vectors, returning a vector with the same element type as
4668the input and length that is the same as the shuffle mask.
4669
4670Arguments:
4671""""""""""
4672
4673The first two operands of a '``shufflevector``' instruction are vectors
4674with the same type. The third argument is a shuffle mask whose element
4675type is always 'i32'. The result of the instruction is a vector whose
4676length is the same as the shuffle mask and whose element type is the
4677same as the element type of the first two operands.
4678
4679The shuffle mask operand is required to be a constant vector with either
4680constant integer or undef values.
4681
4682Semantics:
4683""""""""""
4684
4685The elements of the two input vectors are numbered from left to right
4686across both of the vectors. The shuffle mask operand specifies, for each
4687element of the result vector, which element of the two input vectors the
4688result element gets. The element selector may be undef (meaning "don't
4689care") and the second operand may be undef if performing a shuffle from
4690only one vector.
4691
4692Example:
4693""""""""
4694
4695.. code-block:: llvm
4696
4697 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4698 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4699 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4700 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4701 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4702 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4703 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4704 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4705
4706Aggregate Operations
4707--------------------
4708
4709LLVM supports several instructions for working with
4710:ref:`aggregate <t_aggregate>` values.
4711
4712.. _i_extractvalue:
4713
4714'``extractvalue``' Instruction
4715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4716
4717Syntax:
4718"""""""
4719
4720::
4721
4722 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4723
4724Overview:
4725"""""""""
4726
4727The '``extractvalue``' instruction extracts the value of a member field
4728from an :ref:`aggregate <t_aggregate>` value.
4729
4730Arguments:
4731""""""""""
4732
4733The first operand of an '``extractvalue``' instruction is a value of
4734:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4735constant indices to specify which value to extract in a similar manner
4736as indices in a '``getelementptr``' instruction.
4737
4738The major differences to ``getelementptr`` indexing are:
4739
4740- Since the value being indexed is not a pointer, the first index is
4741 omitted and assumed to be zero.
4742- At least one index must be specified.
4743- Not only struct indices but also array indices must be in bounds.
4744
4745Semantics:
4746""""""""""
4747
4748The result is the value at the position in the aggregate specified by
4749the index operands.
4750
4751Example:
4752""""""""
4753
4754.. code-block:: llvm
4755
4756 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4757
4758.. _i_insertvalue:
4759
4760'``insertvalue``' Instruction
4761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4762
4763Syntax:
4764"""""""
4765
4766::
4767
4768 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4769
4770Overview:
4771"""""""""
4772
4773The '``insertvalue``' instruction inserts a value into a member field in
4774an :ref:`aggregate <t_aggregate>` value.
4775
4776Arguments:
4777""""""""""
4778
4779The first operand of an '``insertvalue``' instruction is a value of
4780:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4781a first-class value to insert. The following operands are constant
4782indices indicating the position at which to insert the value in a
4783similar manner as indices in a '``extractvalue``' instruction. The value
4784to insert must have the same type as the value identified by the
4785indices.
4786
4787Semantics:
4788""""""""""
4789
4790The result is an aggregate of the same type as ``val``. Its value is
4791that of ``val`` except that the value at the position specified by the
4792indices is that of ``elt``.
4793
4794Example:
4795""""""""
4796
4797.. code-block:: llvm
4798
4799 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4800 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4801 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4802
4803.. _memoryops:
4804
4805Memory Access and Addressing Operations
4806---------------------------------------
4807
4808A key design point of an SSA-based representation is how it represents
4809memory. In LLVM, no memory locations are in SSA form, which makes things
4810very simple. This section describes how to read, write, and allocate
4811memory in LLVM.
4812
4813.. _i_alloca:
4814
4815'``alloca``' Instruction
4816^^^^^^^^^^^^^^^^^^^^^^^^
4817
4818Syntax:
4819"""""""
4820
4821::
4822
Tim Northover675a0962014-06-13 14:24:23 +00004823 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00004824
4825Overview:
4826"""""""""
4827
4828The '``alloca``' instruction allocates memory on the stack frame of the
4829currently executing function, to be automatically released when this
4830function returns to its caller. The object is always allocated in the
4831generic address space (address space zero).
4832
4833Arguments:
4834""""""""""
4835
4836The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4837bytes of memory on the runtime stack, returning a pointer of the
4838appropriate type to the program. If "NumElements" is specified, it is
4839the number of elements allocated, otherwise "NumElements" is defaulted
4840to be one. If a constant alignment is specified, the value result of the
4841allocation is guaranteed to be aligned to at least that boundary. If not
4842specified, or if zero, the target can choose to align the allocation on
4843any convenient boundary compatible with the type.
4844
4845'``type``' may be any sized type.
4846
4847Semantics:
4848""""""""""
4849
4850Memory is allocated; a pointer is returned. The operation is undefined
4851if there is insufficient stack space for the allocation. '``alloca``'d
4852memory is automatically released when the function returns. The
4853'``alloca``' instruction is commonly used to represent automatic
4854variables that must have an address available. When the function returns
4855(either with the ``ret`` or ``resume`` instructions), the memory is
4856reclaimed. Allocating zero bytes is legal, but the result is undefined.
4857The order in which memory is allocated (ie., which way the stack grows)
4858is not specified.
4859
4860Example:
4861""""""""
4862
4863.. code-block:: llvm
4864
Tim Northover675a0962014-06-13 14:24:23 +00004865 %ptr = alloca i32 ; yields i32*:ptr
4866 %ptr = alloca i32, i32 4 ; yields i32*:ptr
4867 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
4868 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00004869
4870.. _i_load:
4871
4872'``load``' Instruction
4873^^^^^^^^^^^^^^^^^^^^^^
4874
4875Syntax:
4876"""""""
4877
4878::
4879
4880 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4881 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4882 !<index> = !{ i32 1 }
4883
4884Overview:
4885"""""""""
4886
4887The '``load``' instruction is used to read from memory.
4888
4889Arguments:
4890""""""""""
4891
Eli Bendersky239a78b2013-04-17 20:17:08 +00004892The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004893from which to load. The pointer must point to a :ref:`first
4894class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4895then the optimizer is not allowed to modify the number or order of
4896execution of this ``load`` with other :ref:`volatile
4897operations <volatile>`.
4898
4899If the ``load`` is marked as ``atomic``, it takes an extra
4900:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4901``release`` and ``acq_rel`` orderings are not valid on ``load``
4902instructions. Atomic loads produce :ref:`defined <memmodel>` results
4903when they may see multiple atomic stores. The type of the pointee must
4904be an integer type whose bit width is a power of two greater than or
4905equal to eight and less than or equal to a target-specific size limit.
4906``align`` must be explicitly specified on atomic loads, and the load has
4907undefined behavior if the alignment is not set to a value which is at
4908least the size in bytes of the pointee. ``!nontemporal`` does not have
4909any defined semantics for atomic loads.
4910
4911The optional constant ``align`` argument specifies the alignment of the
4912operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004913or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004914alignment for the target. It is the responsibility of the code emitter
4915to ensure that the alignment information is correct. Overestimating the
4916alignment results in undefined behavior. Underestimating the alignment
4917may produce less efficient code. An alignment of 1 is always safe.
4918
4919The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004920metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004921``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004922metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004923that this load is not expected to be reused in the cache. The code
4924generator may select special instructions to save cache bandwidth, such
4925as the ``MOVNT`` instruction on x86.
4926
4927The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004928metadata name ``<index>`` corresponding to a metadata node with no
4929entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004930instruction tells the optimizer and code generator that this load
4931address points to memory which does not change value during program
4932execution. The optimizer may then move this load around, for example, by
4933hoisting it out of loops using loop invariant code motion.
4934
4935Semantics:
4936""""""""""
4937
4938The location of memory pointed to is loaded. If the value being loaded
4939is of scalar type then the number of bytes read does not exceed the
4940minimum number of bytes needed to hold all bits of the type. For
4941example, loading an ``i24`` reads at most three bytes. When loading a
4942value of a type like ``i20`` with a size that is not an integral number
4943of bytes, the result is undefined if the value was not originally
4944written using a store of the same type.
4945
4946Examples:
4947"""""""""
4948
4949.. code-block:: llvm
4950
Tim Northover675a0962014-06-13 14:24:23 +00004951 %ptr = alloca i32 ; yields i32*:ptr
4952 store i32 3, i32* %ptr ; yields void
4953 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00004954
4955.. _i_store:
4956
4957'``store``' Instruction
4958^^^^^^^^^^^^^^^^^^^^^^^
4959
4960Syntax:
4961"""""""
4962
4963::
4964
Tim Northover675a0962014-06-13 14:24:23 +00004965 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
4966 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00004967
4968Overview:
4969"""""""""
4970
4971The '``store``' instruction is used to write to memory.
4972
4973Arguments:
4974""""""""""
4975
Eli Benderskyca380842013-04-17 17:17:20 +00004976There are two arguments to the ``store`` instruction: a value to store
4977and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004978operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004979the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004980then the optimizer is not allowed to modify the number or order of
4981execution of this ``store`` with other :ref:`volatile
4982operations <volatile>`.
4983
4984If the ``store`` is marked as ``atomic``, it takes an extra
4985:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4986``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4987instructions. Atomic loads produce :ref:`defined <memmodel>` results
4988when they may see multiple atomic stores. The type of the pointee must
4989be an integer type whose bit width is a power of two greater than or
4990equal to eight and less than or equal to a target-specific size limit.
4991``align`` must be explicitly specified on atomic stores, and the store
4992has undefined behavior if the alignment is not set to a value which is
4993at least the size in bytes of the pointee. ``!nontemporal`` does not
4994have any defined semantics for atomic stores.
4995
Eli Benderskyca380842013-04-17 17:17:20 +00004996The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004997operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004998or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004999alignment for the target. It is the responsibility of the code emitter
5000to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005001alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005002alignment may produce less efficient code. An alignment of 1 is always
5003safe.
5004
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005005The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005006name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005007value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005008tells the optimizer and code generator that this load is not expected to
5009be reused in the cache. The code generator may select special
5010instructions to save cache bandwidth, such as the MOVNT instruction on
5011x86.
5012
5013Semantics:
5014""""""""""
5015
Eli Benderskyca380842013-04-17 17:17:20 +00005016The contents of memory are updated to contain ``<value>`` at the
5017location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005018of scalar type then the number of bytes written does not exceed the
5019minimum number of bytes needed to hold all bits of the type. For
5020example, storing an ``i24`` writes at most three bytes. When writing a
5021value of a type like ``i20`` with a size that is not an integral number
5022of bytes, it is unspecified what happens to the extra bits that do not
5023belong to the type, but they will typically be overwritten.
5024
5025Example:
5026""""""""
5027
5028.. code-block:: llvm
5029
Tim Northover675a0962014-06-13 14:24:23 +00005030 %ptr = alloca i32 ; yields i32*:ptr
5031 store i32 3, i32* %ptr ; yields void
5032 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005033
5034.. _i_fence:
5035
5036'``fence``' Instruction
5037^^^^^^^^^^^^^^^^^^^^^^^
5038
5039Syntax:
5040"""""""
5041
5042::
5043
Tim Northover675a0962014-06-13 14:24:23 +00005044 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005045
5046Overview:
5047"""""""""
5048
5049The '``fence``' instruction is used to introduce happens-before edges
5050between operations.
5051
5052Arguments:
5053""""""""""
5054
5055'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5056defines what *synchronizes-with* edges they add. They can only be given
5057``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5058
5059Semantics:
5060""""""""""
5061
5062A fence A which has (at least) ``release`` ordering semantics
5063*synchronizes with* a fence B with (at least) ``acquire`` ordering
5064semantics if and only if there exist atomic operations X and Y, both
5065operating on some atomic object M, such that A is sequenced before X, X
5066modifies M (either directly or through some side effect of a sequence
5067headed by X), Y is sequenced before B, and Y observes M. This provides a
5068*happens-before* dependency between A and B. Rather than an explicit
5069``fence``, one (but not both) of the atomic operations X or Y might
5070provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5071still *synchronize-with* the explicit ``fence`` and establish the
5072*happens-before* edge.
5073
5074A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5075``acquire`` and ``release`` semantics specified above, participates in
5076the global program order of other ``seq_cst`` operations and/or fences.
5077
5078The optional ":ref:`singlethread <singlethread>`" argument specifies
5079that the fence only synchronizes with other fences in the same thread.
5080(This is useful for interacting with signal handlers.)
5081
5082Example:
5083""""""""
5084
5085.. code-block:: llvm
5086
Tim Northover675a0962014-06-13 14:24:23 +00005087 fence acquire ; yields void
5088 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005089
5090.. _i_cmpxchg:
5091
5092'``cmpxchg``' Instruction
5093^^^^^^^^^^^^^^^^^^^^^^^^^
5094
5095Syntax:
5096"""""""
5097
5098::
5099
Tim Northover675a0962014-06-13 14:24:23 +00005100 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005101
5102Overview:
5103"""""""""
5104
5105The '``cmpxchg``' instruction is used to atomically modify memory. It
5106loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005107equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005108
5109Arguments:
5110""""""""""
5111
5112There are three arguments to the '``cmpxchg``' instruction: an address
5113to operate on, a value to compare to the value currently be at that
5114address, and a new value to place at that address if the compared values
5115are equal. The type of '<cmp>' must be an integer type whose bit width
5116is a power of two greater than or equal to eight and less than or equal
5117to a target-specific size limit. '<cmp>' and '<new>' must have the same
5118type, and the type of '<pointer>' must be a pointer to that type. If the
5119``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5120to modify the number or order of execution of this ``cmpxchg`` with
5121other :ref:`volatile operations <volatile>`.
5122
Tim Northovere94a5182014-03-11 10:48:52 +00005123The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005124``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5125must be at least ``monotonic``, the ordering constraint on failure must be no
5126stronger than that on success, and the failure ordering cannot be either
5127``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005128
5129The optional "``singlethread``" argument declares that the ``cmpxchg``
5130is only atomic with respect to code (usually signal handlers) running in
5131the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5132respect to all other code in the system.
5133
5134The pointer passed into cmpxchg must have alignment greater than or
5135equal to the size in memory of the operand.
5136
5137Semantics:
5138""""""""""
5139
Tim Northover420a2162014-06-13 14:24:07 +00005140The contents of memory at the location specified by the '``<pointer>``' operand
5141is read and compared to '``<cmp>``'; if the read value is the equal, the
5142'``<new>``' is written. The original value at the location is returned, together
5143with a flag indicating success (true) or failure (false).
5144
5145If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5146permitted: the operation may not write ``<new>`` even if the comparison
5147matched.
5148
5149If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5150if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005151
Tim Northovere94a5182014-03-11 10:48:52 +00005152A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5153identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5154load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005155
5156Example:
5157""""""""
5158
5159.. code-block:: llvm
5160
5161 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005162 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005163 br label %loop
5164
5165 loop:
5166 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5167 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005168 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005169 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5170 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005171 br i1 %success, label %done, label %loop
5172
5173 done:
5174 ...
5175
5176.. _i_atomicrmw:
5177
5178'``atomicrmw``' Instruction
5179^^^^^^^^^^^^^^^^^^^^^^^^^^^
5180
5181Syntax:
5182"""""""
5183
5184::
5185
Tim Northover675a0962014-06-13 14:24:23 +00005186 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005187
5188Overview:
5189"""""""""
5190
5191The '``atomicrmw``' instruction is used to atomically modify memory.
5192
5193Arguments:
5194""""""""""
5195
5196There are three arguments to the '``atomicrmw``' instruction: an
5197operation to apply, an address whose value to modify, an argument to the
5198operation. The operation must be one of the following keywords:
5199
5200- xchg
5201- add
5202- sub
5203- and
5204- nand
5205- or
5206- xor
5207- max
5208- min
5209- umax
5210- umin
5211
5212The type of '<value>' must be an integer type whose bit width is a power
5213of two greater than or equal to eight and less than or equal to a
5214target-specific size limit. The type of the '``<pointer>``' operand must
5215be a pointer to that type. If the ``atomicrmw`` is marked as
5216``volatile``, then the optimizer is not allowed to modify the number or
5217order of execution of this ``atomicrmw`` with other :ref:`volatile
5218operations <volatile>`.
5219
5220Semantics:
5221""""""""""
5222
5223The contents of memory at the location specified by the '``<pointer>``'
5224operand are atomically read, modified, and written back. The original
5225value at the location is returned. The modification is specified by the
5226operation argument:
5227
5228- xchg: ``*ptr = val``
5229- add: ``*ptr = *ptr + val``
5230- sub: ``*ptr = *ptr - val``
5231- and: ``*ptr = *ptr & val``
5232- nand: ``*ptr = ~(*ptr & val)``
5233- or: ``*ptr = *ptr | val``
5234- xor: ``*ptr = *ptr ^ val``
5235- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5236- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5237- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5238 comparison)
5239- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5240 comparison)
5241
5242Example:
5243""""""""
5244
5245.. code-block:: llvm
5246
Tim Northover675a0962014-06-13 14:24:23 +00005247 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005248
5249.. _i_getelementptr:
5250
5251'``getelementptr``' Instruction
5252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5253
5254Syntax:
5255"""""""
5256
5257::
5258
5259 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5260 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5261 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5262
5263Overview:
5264"""""""""
5265
5266The '``getelementptr``' instruction is used to get the address of a
5267subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5268address calculation only and does not access memory.
5269
5270Arguments:
5271""""""""""
5272
5273The first argument is always a pointer or a vector of pointers, and
5274forms the basis of the calculation. The remaining arguments are indices
5275that indicate which of the elements of the aggregate object are indexed.
5276The interpretation of each index is dependent on the type being indexed
5277into. The first index always indexes the pointer value given as the
5278first argument, the second index indexes a value of the type pointed to
5279(not necessarily the value directly pointed to, since the first index
5280can be non-zero), etc. The first type indexed into must be a pointer
5281value, subsequent types can be arrays, vectors, and structs. Note that
5282subsequent types being indexed into can never be pointers, since that
5283would require loading the pointer before continuing calculation.
5284
5285The type of each index argument depends on the type it is indexing into.
5286When indexing into a (optionally packed) structure, only ``i32`` integer
5287**constants** are allowed (when using a vector of indices they must all
5288be the **same** ``i32`` integer constant). When indexing into an array,
5289pointer or vector, integers of any width are allowed, and they are not
5290required to be constant. These integers are treated as signed values
5291where relevant.
5292
5293For example, let's consider a C code fragment and how it gets compiled
5294to LLVM:
5295
5296.. code-block:: c
5297
5298 struct RT {
5299 char A;
5300 int B[10][20];
5301 char C;
5302 };
5303 struct ST {
5304 int X;
5305 double Y;
5306 struct RT Z;
5307 };
5308
5309 int *foo(struct ST *s) {
5310 return &s[1].Z.B[5][13];
5311 }
5312
5313The LLVM code generated by Clang is:
5314
5315.. code-block:: llvm
5316
5317 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5318 %struct.ST = type { i32, double, %struct.RT }
5319
5320 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5321 entry:
5322 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5323 ret i32* %arrayidx
5324 }
5325
5326Semantics:
5327""""""""""
5328
5329In the example above, the first index is indexing into the
5330'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5331= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5332indexes into the third element of the structure, yielding a
5333'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5334structure. The third index indexes into the second element of the
5335structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5336dimensions of the array are subscripted into, yielding an '``i32``'
5337type. The '``getelementptr``' instruction returns a pointer to this
5338element, thus computing a value of '``i32*``' type.
5339
5340Note that it is perfectly legal to index partially through a structure,
5341returning a pointer to an inner element. Because of this, the LLVM code
5342for the given testcase is equivalent to:
5343
5344.. code-block:: llvm
5345
5346 define i32* @foo(%struct.ST* %s) {
5347 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5348 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5349 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5350 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5351 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5352 ret i32* %t5
5353 }
5354
5355If the ``inbounds`` keyword is present, the result value of the
5356``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5357pointer is not an *in bounds* address of an allocated object, or if any
5358of the addresses that would be formed by successive addition of the
5359offsets implied by the indices to the base address with infinitely
5360precise signed arithmetic are not an *in bounds* address of that
5361allocated object. The *in bounds* addresses for an allocated object are
5362all the addresses that point into the object, plus the address one byte
5363past the end. In cases where the base is a vector of pointers the
5364``inbounds`` keyword applies to each of the computations element-wise.
5365
5366If the ``inbounds`` keyword is not present, the offsets are added to the
5367base address with silently-wrapping two's complement arithmetic. If the
5368offsets have a different width from the pointer, they are sign-extended
5369or truncated to the width of the pointer. The result value of the
5370``getelementptr`` may be outside the object pointed to by the base
5371pointer. The result value may not necessarily be used to access memory
5372though, even if it happens to point into allocated storage. See the
5373:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5374information.
5375
5376The getelementptr instruction is often confusing. For some more insight
5377into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5378
5379Example:
5380""""""""
5381
5382.. code-block:: llvm
5383
5384 ; yields [12 x i8]*:aptr
5385 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5386 ; yields i8*:vptr
5387 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5388 ; yields i8*:eptr
5389 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5390 ; yields i32*:iptr
5391 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5392
5393In cases where the pointer argument is a vector of pointers, each index
5394must be a vector with the same number of elements. For example:
5395
5396.. code-block:: llvm
5397
5398 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5399
5400Conversion Operations
5401---------------------
5402
5403The instructions in this category are the conversion instructions
5404(casting) which all take a single operand and a type. They perform
5405various bit conversions on the operand.
5406
5407'``trunc .. to``' Instruction
5408^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5409
5410Syntax:
5411"""""""
5412
5413::
5414
5415 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5416
5417Overview:
5418"""""""""
5419
5420The '``trunc``' instruction truncates its operand to the type ``ty2``.
5421
5422Arguments:
5423""""""""""
5424
5425The '``trunc``' instruction takes a value to trunc, and a type to trunc
5426it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5427of the same number of integers. The bit size of the ``value`` must be
5428larger than the bit size of the destination type, ``ty2``. Equal sized
5429types are not allowed.
5430
5431Semantics:
5432""""""""""
5433
5434The '``trunc``' instruction truncates the high order bits in ``value``
5435and converts the remaining bits to ``ty2``. Since the source size must
5436be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5437It will always truncate bits.
5438
5439Example:
5440""""""""
5441
5442.. code-block:: llvm
5443
5444 %X = trunc i32 257 to i8 ; yields i8:1
5445 %Y = trunc i32 123 to i1 ; yields i1:true
5446 %Z = trunc i32 122 to i1 ; yields i1:false
5447 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5448
5449'``zext .. to``' Instruction
5450^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5451
5452Syntax:
5453"""""""
5454
5455::
5456
5457 <result> = zext <ty> <value> to <ty2> ; yields ty2
5458
5459Overview:
5460"""""""""
5461
5462The '``zext``' instruction zero extends its operand to type ``ty2``.
5463
5464Arguments:
5465""""""""""
5466
5467The '``zext``' instruction takes a value to cast, and a type to cast it
5468to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5469the same number of integers. The bit size of the ``value`` must be
5470smaller than the bit size of the destination type, ``ty2``.
5471
5472Semantics:
5473""""""""""
5474
5475The ``zext`` fills the high order bits of the ``value`` with zero bits
5476until it reaches the size of the destination type, ``ty2``.
5477
5478When zero extending from i1, the result will always be either 0 or 1.
5479
5480Example:
5481""""""""
5482
5483.. code-block:: llvm
5484
5485 %X = zext i32 257 to i64 ; yields i64:257
5486 %Y = zext i1 true to i32 ; yields i32:1
5487 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5488
5489'``sext .. to``' Instruction
5490^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5491
5492Syntax:
5493"""""""
5494
5495::
5496
5497 <result> = sext <ty> <value> to <ty2> ; yields ty2
5498
5499Overview:
5500"""""""""
5501
5502The '``sext``' sign extends ``value`` to the type ``ty2``.
5503
5504Arguments:
5505""""""""""
5506
5507The '``sext``' instruction takes a value to cast, and a type to cast it
5508to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5509the same number of integers. The bit size of the ``value`` must be
5510smaller than the bit size of the destination type, ``ty2``.
5511
5512Semantics:
5513""""""""""
5514
5515The '``sext``' instruction performs a sign extension by copying the sign
5516bit (highest order bit) of the ``value`` until it reaches the bit size
5517of the type ``ty2``.
5518
5519When sign extending from i1, the extension always results in -1 or 0.
5520
5521Example:
5522""""""""
5523
5524.. code-block:: llvm
5525
5526 %X = sext i8 -1 to i16 ; yields i16 :65535
5527 %Y = sext i1 true to i32 ; yields i32:-1
5528 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5529
5530'``fptrunc .. to``' Instruction
5531^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5532
5533Syntax:
5534"""""""
5535
5536::
5537
5538 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5539
5540Overview:
5541"""""""""
5542
5543The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5544
5545Arguments:
5546""""""""""
5547
5548The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5549value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5550The size of ``value`` must be larger than the size of ``ty2``. This
5551implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5552
5553Semantics:
5554""""""""""
5555
5556The '``fptrunc``' instruction truncates a ``value`` from a larger
5557:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5558point <t_floating>` type. If the value cannot fit within the
5559destination type, ``ty2``, then the results are undefined.
5560
5561Example:
5562""""""""
5563
5564.. code-block:: llvm
5565
5566 %X = fptrunc double 123.0 to float ; yields float:123.0
5567 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5568
5569'``fpext .. to``' Instruction
5570^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5571
5572Syntax:
5573"""""""
5574
5575::
5576
5577 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5578
5579Overview:
5580"""""""""
5581
5582The '``fpext``' extends a floating point ``value`` to a larger floating
5583point value.
5584
5585Arguments:
5586""""""""""
5587
5588The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5589``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5590to. The source type must be smaller than the destination type.
5591
5592Semantics:
5593""""""""""
5594
5595The '``fpext``' instruction extends the ``value`` from a smaller
5596:ref:`floating point <t_floating>` type to a larger :ref:`floating
5597point <t_floating>` type. The ``fpext`` cannot be used to make a
5598*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5599*no-op cast* for a floating point cast.
5600
5601Example:
5602""""""""
5603
5604.. code-block:: llvm
5605
5606 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5607 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5608
5609'``fptoui .. to``' Instruction
5610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5611
5612Syntax:
5613"""""""
5614
5615::
5616
5617 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5618
5619Overview:
5620"""""""""
5621
5622The '``fptoui``' converts a floating point ``value`` to its unsigned
5623integer equivalent of type ``ty2``.
5624
5625Arguments:
5626""""""""""
5627
5628The '``fptoui``' instruction takes a value to cast, which must be a
5629scalar or vector :ref:`floating point <t_floating>` value, and a type to
5630cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5631``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5632type with the same number of elements as ``ty``
5633
5634Semantics:
5635""""""""""
5636
5637The '``fptoui``' instruction converts its :ref:`floating
5638point <t_floating>` operand into the nearest (rounding towards zero)
5639unsigned integer value. If the value cannot fit in ``ty2``, the results
5640are undefined.
5641
5642Example:
5643""""""""
5644
5645.. code-block:: llvm
5646
5647 %X = fptoui double 123.0 to i32 ; yields i32:123
5648 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5649 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5650
5651'``fptosi .. to``' Instruction
5652^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5653
5654Syntax:
5655"""""""
5656
5657::
5658
5659 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5660
5661Overview:
5662"""""""""
5663
5664The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5665``value`` to type ``ty2``.
5666
5667Arguments:
5668""""""""""
5669
5670The '``fptosi``' instruction takes a value to cast, which must be a
5671scalar or vector :ref:`floating point <t_floating>` value, and a type to
5672cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5673``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5674type with the same number of elements as ``ty``
5675
5676Semantics:
5677""""""""""
5678
5679The '``fptosi``' instruction converts its :ref:`floating
5680point <t_floating>` operand into the nearest (rounding towards zero)
5681signed integer value. If the value cannot fit in ``ty2``, the results
5682are undefined.
5683
5684Example:
5685""""""""
5686
5687.. code-block:: llvm
5688
5689 %X = fptosi double -123.0 to i32 ; yields i32:-123
5690 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5691 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5692
5693'``uitofp .. to``' Instruction
5694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5695
5696Syntax:
5697"""""""
5698
5699::
5700
5701 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5702
5703Overview:
5704"""""""""
5705
5706The '``uitofp``' instruction regards ``value`` as an unsigned integer
5707and converts that value to the ``ty2`` type.
5708
5709Arguments:
5710""""""""""
5711
5712The '``uitofp``' instruction takes a value to cast, which must be a
5713scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5714``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5715``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5716type with the same number of elements as ``ty``
5717
5718Semantics:
5719""""""""""
5720
5721The '``uitofp``' instruction interprets its operand as an unsigned
5722integer quantity and converts it to the corresponding floating point
5723value. If the value cannot fit in the floating point value, the results
5724are undefined.
5725
5726Example:
5727""""""""
5728
5729.. code-block:: llvm
5730
5731 %X = uitofp i32 257 to float ; yields float:257.0
5732 %Y = uitofp i8 -1 to double ; yields double:255.0
5733
5734'``sitofp .. to``' Instruction
5735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5736
5737Syntax:
5738"""""""
5739
5740::
5741
5742 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5743
5744Overview:
5745"""""""""
5746
5747The '``sitofp``' instruction regards ``value`` as a signed integer and
5748converts that value to the ``ty2`` type.
5749
5750Arguments:
5751""""""""""
5752
5753The '``sitofp``' instruction takes a value to cast, which must be a
5754scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5755``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5756``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5757type with the same number of elements as ``ty``
5758
5759Semantics:
5760""""""""""
5761
5762The '``sitofp``' instruction interprets its operand as a signed integer
5763quantity and converts it to the corresponding floating point value. If
5764the value cannot fit in the floating point value, the results are
5765undefined.
5766
5767Example:
5768""""""""
5769
5770.. code-block:: llvm
5771
5772 %X = sitofp i32 257 to float ; yields float:257.0
5773 %Y = sitofp i8 -1 to double ; yields double:-1.0
5774
5775.. _i_ptrtoint:
5776
5777'``ptrtoint .. to``' Instruction
5778^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5779
5780Syntax:
5781"""""""
5782
5783::
5784
5785 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5786
5787Overview:
5788"""""""""
5789
5790The '``ptrtoint``' instruction converts the pointer or a vector of
5791pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5792
5793Arguments:
5794""""""""""
5795
5796The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5797a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5798type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5799a vector of integers type.
5800
5801Semantics:
5802""""""""""
5803
5804The '``ptrtoint``' instruction converts ``value`` to integer type
5805``ty2`` by interpreting the pointer value as an integer and either
5806truncating or zero extending that value to the size of the integer type.
5807If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5808``value`` is larger than ``ty2`` then a truncation is done. If they are
5809the same size, then nothing is done (*no-op cast*) other than a type
5810change.
5811
5812Example:
5813""""""""
5814
5815.. code-block:: llvm
5816
5817 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5818 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5819 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5820
5821.. _i_inttoptr:
5822
5823'``inttoptr .. to``' Instruction
5824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5825
5826Syntax:
5827"""""""
5828
5829::
5830
5831 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5832
5833Overview:
5834"""""""""
5835
5836The '``inttoptr``' instruction converts an integer ``value`` to a
5837pointer type, ``ty2``.
5838
5839Arguments:
5840""""""""""
5841
5842The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5843cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5844type.
5845
5846Semantics:
5847""""""""""
5848
5849The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5850applying either a zero extension or a truncation depending on the size
5851of the integer ``value``. If ``value`` is larger than the size of a
5852pointer then a truncation is done. If ``value`` is smaller than the size
5853of a pointer then a zero extension is done. If they are the same size,
5854nothing is done (*no-op cast*).
5855
5856Example:
5857""""""""
5858
5859.. code-block:: llvm
5860
5861 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5862 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5863 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5864 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5865
5866.. _i_bitcast:
5867
5868'``bitcast .. to``' Instruction
5869^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5870
5871Syntax:
5872"""""""
5873
5874::
5875
5876 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5877
5878Overview:
5879"""""""""
5880
5881The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5882changing any bits.
5883
5884Arguments:
5885""""""""""
5886
5887The '``bitcast``' instruction takes a value to cast, which must be a
5888non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005889also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5890bit sizes of ``value`` and the destination type, ``ty2``, must be
5891identical. If the source type is a pointer, the destination type must
5892also be a pointer of the same size. This instruction supports bitwise
5893conversion of vectors to integers and to vectors of other types (as
5894long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005895
5896Semantics:
5897""""""""""
5898
Matt Arsenault24b49c42013-07-31 17:49:08 +00005899The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5900is always a *no-op cast* because no bits change with this
5901conversion. The conversion is done as if the ``value`` had been stored
5902to memory and read back as type ``ty2``. Pointer (or vector of
5903pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005904pointers) types with the same address space through this instruction.
5905To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5906or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005907
5908Example:
5909""""""""
5910
5911.. code-block:: llvm
5912
5913 %X = bitcast i8 255 to i8 ; yields i8 :-1
5914 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5915 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5916 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5917
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005918.. _i_addrspacecast:
5919
5920'``addrspacecast .. to``' Instruction
5921^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5922
5923Syntax:
5924"""""""
5925
5926::
5927
5928 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5929
5930Overview:
5931"""""""""
5932
5933The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5934address space ``n`` to type ``pty2`` in address space ``m``.
5935
5936Arguments:
5937""""""""""
5938
5939The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5940to cast and a pointer type to cast it to, which must have a different
5941address space.
5942
5943Semantics:
5944""""""""""
5945
5946The '``addrspacecast``' instruction converts the pointer value
5947``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005948value modification, depending on the target and the address space
5949pair. Pointer conversions within the same address space must be
5950performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005951conversion is legal then both result and operand refer to the same memory
5952location.
5953
5954Example:
5955""""""""
5956
5957.. code-block:: llvm
5958
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005959 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5960 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5961 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005962
Sean Silvab084af42012-12-07 10:36:55 +00005963.. _otherops:
5964
5965Other Operations
5966----------------
5967
5968The instructions in this category are the "miscellaneous" instructions,
5969which defy better classification.
5970
5971.. _i_icmp:
5972
5973'``icmp``' Instruction
5974^^^^^^^^^^^^^^^^^^^^^^
5975
5976Syntax:
5977"""""""
5978
5979::
5980
Tim Northover675a0962014-06-13 14:24:23 +00005981 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00005982
5983Overview:
5984"""""""""
5985
5986The '``icmp``' instruction returns a boolean value or a vector of
5987boolean values based on comparison of its two integer, integer vector,
5988pointer, or pointer vector operands.
5989
5990Arguments:
5991""""""""""
5992
5993The '``icmp``' instruction takes three operands. The first operand is
5994the condition code indicating the kind of comparison to perform. It is
5995not a value, just a keyword. The possible condition code are:
5996
5997#. ``eq``: equal
5998#. ``ne``: not equal
5999#. ``ugt``: unsigned greater than
6000#. ``uge``: unsigned greater or equal
6001#. ``ult``: unsigned less than
6002#. ``ule``: unsigned less or equal
6003#. ``sgt``: signed greater than
6004#. ``sge``: signed greater or equal
6005#. ``slt``: signed less than
6006#. ``sle``: signed less or equal
6007
6008The remaining two arguments must be :ref:`integer <t_integer>` or
6009:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6010must also be identical types.
6011
6012Semantics:
6013""""""""""
6014
6015The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6016code given as ``cond``. The comparison performed always yields either an
6017:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6018
6019#. ``eq``: yields ``true`` if the operands are equal, ``false``
6020 otherwise. No sign interpretation is necessary or performed.
6021#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6022 otherwise. No sign interpretation is necessary or performed.
6023#. ``ugt``: interprets the operands as unsigned values and yields
6024 ``true`` if ``op1`` is greater than ``op2``.
6025#. ``uge``: interprets the operands as unsigned values and yields
6026 ``true`` if ``op1`` is greater than or equal to ``op2``.
6027#. ``ult``: interprets the operands as unsigned values and yields
6028 ``true`` if ``op1`` is less than ``op2``.
6029#. ``ule``: interprets the operands as unsigned values and yields
6030 ``true`` if ``op1`` is less than or equal to ``op2``.
6031#. ``sgt``: interprets the operands as signed values and yields ``true``
6032 if ``op1`` is greater than ``op2``.
6033#. ``sge``: interprets the operands as signed values and yields ``true``
6034 if ``op1`` is greater than or equal to ``op2``.
6035#. ``slt``: interprets the operands as signed values and yields ``true``
6036 if ``op1`` is less than ``op2``.
6037#. ``sle``: interprets the operands as signed values and yields ``true``
6038 if ``op1`` is less than or equal to ``op2``.
6039
6040If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6041are compared as if they were integers.
6042
6043If the operands are integer vectors, then they are compared element by
6044element. The result is an ``i1`` vector with the same number of elements
6045as the values being compared. Otherwise, the result is an ``i1``.
6046
6047Example:
6048""""""""
6049
6050.. code-block:: llvm
6051
6052 <result> = icmp eq i32 4, 5 ; yields: result=false
6053 <result> = icmp ne float* %X, %X ; yields: result=false
6054 <result> = icmp ult i16 4, 5 ; yields: result=true
6055 <result> = icmp sgt i16 4, 5 ; yields: result=false
6056 <result> = icmp ule i16 -4, 5 ; yields: result=false
6057 <result> = icmp sge i16 4, 5 ; yields: result=false
6058
6059Note that the code generator does not yet support vector types with the
6060``icmp`` instruction.
6061
6062.. _i_fcmp:
6063
6064'``fcmp``' Instruction
6065^^^^^^^^^^^^^^^^^^^^^^
6066
6067Syntax:
6068"""""""
6069
6070::
6071
Tim Northover675a0962014-06-13 14:24:23 +00006072 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006073
6074Overview:
6075"""""""""
6076
6077The '``fcmp``' instruction returns a boolean value or vector of boolean
6078values based on comparison of its operands.
6079
6080If the operands are floating point scalars, then the result type is a
6081boolean (:ref:`i1 <t_integer>`).
6082
6083If the operands are floating point vectors, then the result type is a
6084vector of boolean with the same number of elements as the operands being
6085compared.
6086
6087Arguments:
6088""""""""""
6089
6090The '``fcmp``' instruction takes three operands. The first operand is
6091the condition code indicating the kind of comparison to perform. It is
6092not a value, just a keyword. The possible condition code are:
6093
6094#. ``false``: no comparison, always returns false
6095#. ``oeq``: ordered and equal
6096#. ``ogt``: ordered and greater than
6097#. ``oge``: ordered and greater than or equal
6098#. ``olt``: ordered and less than
6099#. ``ole``: ordered and less than or equal
6100#. ``one``: ordered and not equal
6101#. ``ord``: ordered (no nans)
6102#. ``ueq``: unordered or equal
6103#. ``ugt``: unordered or greater than
6104#. ``uge``: unordered or greater than or equal
6105#. ``ult``: unordered or less than
6106#. ``ule``: unordered or less than or equal
6107#. ``une``: unordered or not equal
6108#. ``uno``: unordered (either nans)
6109#. ``true``: no comparison, always returns true
6110
6111*Ordered* means that neither operand is a QNAN while *unordered* means
6112that either operand may be a QNAN.
6113
6114Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6115point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6116type. They must have identical types.
6117
6118Semantics:
6119""""""""""
6120
6121The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6122condition code given as ``cond``. If the operands are vectors, then the
6123vectors are compared element by element. Each comparison performed
6124always yields an :ref:`i1 <t_integer>` result, as follows:
6125
6126#. ``false``: always yields ``false``, regardless of operands.
6127#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6128 is equal to ``op2``.
6129#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6130 is greater than ``op2``.
6131#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6132 is greater than or equal to ``op2``.
6133#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6134 is less than ``op2``.
6135#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6136 is less than or equal to ``op2``.
6137#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6138 is not equal to ``op2``.
6139#. ``ord``: yields ``true`` if both operands are not a QNAN.
6140#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6141 equal to ``op2``.
6142#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6143 greater than ``op2``.
6144#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6145 greater than or equal to ``op2``.
6146#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6147 less than ``op2``.
6148#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6149 less than or equal to ``op2``.
6150#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6151 not equal to ``op2``.
6152#. ``uno``: yields ``true`` if either operand is a QNAN.
6153#. ``true``: always yields ``true``, regardless of operands.
6154
6155Example:
6156""""""""
6157
6158.. code-block:: llvm
6159
6160 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6161 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6162 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6163 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6164
6165Note that the code generator does not yet support vector types with the
6166``fcmp`` instruction.
6167
6168.. _i_phi:
6169
6170'``phi``' Instruction
6171^^^^^^^^^^^^^^^^^^^^^
6172
6173Syntax:
6174"""""""
6175
6176::
6177
6178 <result> = phi <ty> [ <val0>, <label0>], ...
6179
6180Overview:
6181"""""""""
6182
6183The '``phi``' instruction is used to implement the φ node in the SSA
6184graph representing the function.
6185
6186Arguments:
6187""""""""""
6188
6189The type of the incoming values is specified with the first type field.
6190After this, the '``phi``' instruction takes a list of pairs as
6191arguments, with one pair for each predecessor basic block of the current
6192block. Only values of :ref:`first class <t_firstclass>` type may be used as
6193the value arguments to the PHI node. Only labels may be used as the
6194label arguments.
6195
6196There must be no non-phi instructions between the start of a basic block
6197and the PHI instructions: i.e. PHI instructions must be first in a basic
6198block.
6199
6200For the purposes of the SSA form, the use of each incoming value is
6201deemed to occur on the edge from the corresponding predecessor block to
6202the current block (but after any definition of an '``invoke``'
6203instruction's return value on the same edge).
6204
6205Semantics:
6206""""""""""
6207
6208At runtime, the '``phi``' instruction logically takes on the value
6209specified by the pair corresponding to the predecessor basic block that
6210executed just prior to the current block.
6211
6212Example:
6213""""""""
6214
6215.. code-block:: llvm
6216
6217 Loop: ; Infinite loop that counts from 0 on up...
6218 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6219 %nextindvar = add i32 %indvar, 1
6220 br label %Loop
6221
6222.. _i_select:
6223
6224'``select``' Instruction
6225^^^^^^^^^^^^^^^^^^^^^^^^
6226
6227Syntax:
6228"""""""
6229
6230::
6231
6232 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6233
6234 selty is either i1 or {<N x i1>}
6235
6236Overview:
6237"""""""""
6238
6239The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006240condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006241
6242Arguments:
6243""""""""""
6244
6245The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6246values indicating the condition, and two values of the same :ref:`first
6247class <t_firstclass>` type. If the val1/val2 are vectors and the
6248condition is a scalar, then entire vectors are selected, not individual
6249elements.
6250
6251Semantics:
6252""""""""""
6253
6254If the condition is an i1 and it evaluates to 1, the instruction returns
6255the first value argument; otherwise, it returns the second value
6256argument.
6257
6258If the condition is a vector of i1, then the value arguments must be
6259vectors of the same size, and the selection is done element by element.
6260
6261Example:
6262""""""""
6263
6264.. code-block:: llvm
6265
6266 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6267
6268.. _i_call:
6269
6270'``call``' Instruction
6271^^^^^^^^^^^^^^^^^^^^^^
6272
6273Syntax:
6274"""""""
6275
6276::
6277
Reid Kleckner5772b772014-04-24 20:14:34 +00006278 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006279
6280Overview:
6281"""""""""
6282
6283The '``call``' instruction represents a simple function call.
6284
6285Arguments:
6286""""""""""
6287
6288This instruction requires several arguments:
6289
Reid Kleckner5772b772014-04-24 20:14:34 +00006290#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6291 should perform tail call optimization. The ``tail`` marker is a hint that
6292 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6293 means that the call must be tail call optimized in order for the program to
6294 be correct. The ``musttail`` marker provides these guarantees:
6295
6296 #. The call will not cause unbounded stack growth if it is part of a
6297 recursive cycle in the call graph.
6298 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6299 forwarded in place.
6300
6301 Both markers imply that the callee does not access allocas or varargs from
6302 the caller. Calls marked ``musttail`` must obey the following additional
6303 rules:
6304
6305 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6306 or a pointer bitcast followed by a ret instruction.
6307 - The ret instruction must return the (possibly bitcasted) value
6308 produced by the call or void.
6309 - The caller and callee prototypes must match. Pointer types of
6310 parameters or return types may differ in pointee type, but not
6311 in address space.
6312 - The calling conventions of the caller and callee must match.
6313 - All ABI-impacting function attributes, such as sret, byval, inreg,
6314 returned, and inalloca, must match.
6315
6316 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6317 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006318
6319 - Caller and callee both have the calling convention ``fastcc``.
6320 - The call is in tail position (ret immediately follows call and ret
6321 uses value of call or is void).
6322 - Option ``-tailcallopt`` is enabled, or
6323 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6324 - `Platform specific constraints are
6325 met. <CodeGenerator.html#tailcallopt>`_
6326
6327#. The optional "cconv" marker indicates which :ref:`calling
6328 convention <callingconv>` the call should use. If none is
6329 specified, the call defaults to using C calling conventions. The
6330 calling convention of the call must match the calling convention of
6331 the target function, or else the behavior is undefined.
6332#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6333 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6334 are valid here.
6335#. '``ty``': the type of the call instruction itself which is also the
6336 type of the return value. Functions that return no value are marked
6337 ``void``.
6338#. '``fnty``': shall be the signature of the pointer to function value
6339 being invoked. The argument types must match the types implied by
6340 this signature. This type can be omitted if the function is not
6341 varargs and if the function type does not return a pointer to a
6342 function.
6343#. '``fnptrval``': An LLVM value containing a pointer to a function to
6344 be invoked. In most cases, this is a direct function invocation, but
6345 indirect ``call``'s are just as possible, calling an arbitrary pointer
6346 to function value.
6347#. '``function args``': argument list whose types match the function
6348 signature argument types and parameter attributes. All arguments must
6349 be of :ref:`first class <t_firstclass>` type. If the function signature
6350 indicates the function accepts a variable number of arguments, the
6351 extra arguments can be specified.
6352#. The optional :ref:`function attributes <fnattrs>` list. Only
6353 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6354 attributes are valid here.
6355
6356Semantics:
6357""""""""""
6358
6359The '``call``' instruction is used to cause control flow to transfer to
6360a specified function, with its incoming arguments bound to the specified
6361values. Upon a '``ret``' instruction in the called function, control
6362flow continues with the instruction after the function call, and the
6363return value of the function is bound to the result argument.
6364
6365Example:
6366""""""""
6367
6368.. code-block:: llvm
6369
6370 %retval = call i32 @test(i32 %argc)
6371 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6372 %X = tail call i32 @foo() ; yields i32
6373 %Y = tail call fastcc i32 @foo() ; yields i32
6374 call void %foo(i8 97 signext)
6375
6376 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006377 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006378 %gr = extractvalue %struct.A %r, 0 ; yields i32
6379 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6380 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6381 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6382
6383llvm treats calls to some functions with names and arguments that match
6384the standard C99 library as being the C99 library functions, and may
6385perform optimizations or generate code for them under that assumption.
6386This is something we'd like to change in the future to provide better
6387support for freestanding environments and non-C-based languages.
6388
6389.. _i_va_arg:
6390
6391'``va_arg``' Instruction
6392^^^^^^^^^^^^^^^^^^^^^^^^
6393
6394Syntax:
6395"""""""
6396
6397::
6398
6399 <resultval> = va_arg <va_list*> <arglist>, <argty>
6400
6401Overview:
6402"""""""""
6403
6404The '``va_arg``' instruction is used to access arguments passed through
6405the "variable argument" area of a function call. It is used to implement
6406the ``va_arg`` macro in C.
6407
6408Arguments:
6409""""""""""
6410
6411This instruction takes a ``va_list*`` value and the type of the
6412argument. It returns a value of the specified argument type and
6413increments the ``va_list`` to point to the next argument. The actual
6414type of ``va_list`` is target specific.
6415
6416Semantics:
6417""""""""""
6418
6419The '``va_arg``' instruction loads an argument of the specified type
6420from the specified ``va_list`` and causes the ``va_list`` to point to
6421the next argument. For more information, see the variable argument
6422handling :ref:`Intrinsic Functions <int_varargs>`.
6423
6424It is legal for this instruction to be called in a function which does
6425not take a variable number of arguments, for example, the ``vfprintf``
6426function.
6427
6428``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6429function <intrinsics>` because it takes a type as an argument.
6430
6431Example:
6432""""""""
6433
6434See the :ref:`variable argument processing <int_varargs>` section.
6435
6436Note that the code generator does not yet fully support va\_arg on many
6437targets. Also, it does not currently support va\_arg with aggregate
6438types on any target.
6439
6440.. _i_landingpad:
6441
6442'``landingpad``' Instruction
6443^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6444
6445Syntax:
6446"""""""
6447
6448::
6449
6450 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6451 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6452
6453 <clause> := catch <type> <value>
6454 <clause> := filter <array constant type> <array constant>
6455
6456Overview:
6457"""""""""
6458
6459The '``landingpad``' instruction is used by `LLVM's exception handling
6460system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006461is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006462code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6463defines values supplied by the personality function (``pers_fn``) upon
6464re-entry to the function. The ``resultval`` has the type ``resultty``.
6465
6466Arguments:
6467""""""""""
6468
6469This instruction takes a ``pers_fn`` value. This is the personality
6470function associated with the unwinding mechanism. The optional
6471``cleanup`` flag indicates that the landing pad block is a cleanup.
6472
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006473A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006474contains the global variable representing the "type" that may be caught
6475or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6476clause takes an array constant as its argument. Use
6477"``[0 x i8**] undef``" for a filter which cannot throw. The
6478'``landingpad``' instruction must contain *at least* one ``clause`` or
6479the ``cleanup`` flag.
6480
6481Semantics:
6482""""""""""
6483
6484The '``landingpad``' instruction defines the values which are set by the
6485personality function (``pers_fn``) upon re-entry to the function, and
6486therefore the "result type" of the ``landingpad`` instruction. As with
6487calling conventions, how the personality function results are
6488represented in LLVM IR is target specific.
6489
6490The clauses are applied in order from top to bottom. If two
6491``landingpad`` instructions are merged together through inlining, the
6492clauses from the calling function are appended to the list of clauses.
6493When the call stack is being unwound due to an exception being thrown,
6494the exception is compared against each ``clause`` in turn. If it doesn't
6495match any of the clauses, and the ``cleanup`` flag is not set, then
6496unwinding continues further up the call stack.
6497
6498The ``landingpad`` instruction has several restrictions:
6499
6500- A landing pad block is a basic block which is the unwind destination
6501 of an '``invoke``' instruction.
6502- A landing pad block must have a '``landingpad``' instruction as its
6503 first non-PHI instruction.
6504- There can be only one '``landingpad``' instruction within the landing
6505 pad block.
6506- A basic block that is not a landing pad block may not include a
6507 '``landingpad``' instruction.
6508- All '``landingpad``' instructions in a function must have the same
6509 personality function.
6510
6511Example:
6512""""""""
6513
6514.. code-block:: llvm
6515
6516 ;; A landing pad which can catch an integer.
6517 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6518 catch i8** @_ZTIi
6519 ;; A landing pad that is a cleanup.
6520 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6521 cleanup
6522 ;; A landing pad which can catch an integer and can only throw a double.
6523 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6524 catch i8** @_ZTIi
6525 filter [1 x i8**] [@_ZTId]
6526
6527.. _intrinsics:
6528
6529Intrinsic Functions
6530===================
6531
6532LLVM supports the notion of an "intrinsic function". These functions
6533have well known names and semantics and are required to follow certain
6534restrictions. Overall, these intrinsics represent an extension mechanism
6535for the LLVM language that does not require changing all of the
6536transformations in LLVM when adding to the language (or the bitcode
6537reader/writer, the parser, etc...).
6538
6539Intrinsic function names must all start with an "``llvm.``" prefix. This
6540prefix is reserved in LLVM for intrinsic names; thus, function names may
6541not begin with this prefix. Intrinsic functions must always be external
6542functions: you cannot define the body of intrinsic functions. Intrinsic
6543functions may only be used in call or invoke instructions: it is illegal
6544to take the address of an intrinsic function. Additionally, because
6545intrinsic functions are part of the LLVM language, it is required if any
6546are added that they be documented here.
6547
6548Some intrinsic functions can be overloaded, i.e., the intrinsic
6549represents a family of functions that perform the same operation but on
6550different data types. Because LLVM can represent over 8 million
6551different integer types, overloading is used commonly to allow an
6552intrinsic function to operate on any integer type. One or more of the
6553argument types or the result type can be overloaded to accept any
6554integer type. Argument types may also be defined as exactly matching a
6555previous argument's type or the result type. This allows an intrinsic
6556function which accepts multiple arguments, but needs all of them to be
6557of the same type, to only be overloaded with respect to a single
6558argument or the result.
6559
6560Overloaded intrinsics will have the names of its overloaded argument
6561types encoded into its function name, each preceded by a period. Only
6562those types which are overloaded result in a name suffix. Arguments
6563whose type is matched against another type do not. For example, the
6564``llvm.ctpop`` function can take an integer of any width and returns an
6565integer of exactly the same integer width. This leads to a family of
6566functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6567``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6568overloaded, and only one type suffix is required. Because the argument's
6569type is matched against the return type, it does not require its own
6570name suffix.
6571
6572To learn how to add an intrinsic function, please see the `Extending
6573LLVM Guide <ExtendingLLVM.html>`_.
6574
6575.. _int_varargs:
6576
6577Variable Argument Handling Intrinsics
6578-------------------------------------
6579
6580Variable argument support is defined in LLVM with the
6581:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6582functions. These functions are related to the similarly named macros
6583defined in the ``<stdarg.h>`` header file.
6584
6585All of these functions operate on arguments that use a target-specific
6586value type "``va_list``". The LLVM assembly language reference manual
6587does not define what this type is, so all transformations should be
6588prepared to handle these functions regardless of the type used.
6589
6590This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6591variable argument handling intrinsic functions are used.
6592
6593.. code-block:: llvm
6594
6595 define i32 @test(i32 %X, ...) {
6596 ; Initialize variable argument processing
6597 %ap = alloca i8*
6598 %ap2 = bitcast i8** %ap to i8*
6599 call void @llvm.va_start(i8* %ap2)
6600
6601 ; Read a single integer argument
6602 %tmp = va_arg i8** %ap, i32
6603
6604 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6605 %aq = alloca i8*
6606 %aq2 = bitcast i8** %aq to i8*
6607 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6608 call void @llvm.va_end(i8* %aq2)
6609
6610 ; Stop processing of arguments.
6611 call void @llvm.va_end(i8* %ap2)
6612 ret i32 %tmp
6613 }
6614
6615 declare void @llvm.va_start(i8*)
6616 declare void @llvm.va_copy(i8*, i8*)
6617 declare void @llvm.va_end(i8*)
6618
6619.. _int_va_start:
6620
6621'``llvm.va_start``' Intrinsic
6622^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6623
6624Syntax:
6625"""""""
6626
6627::
6628
Nick Lewycky04f6de02013-09-11 22:04:52 +00006629 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006630
6631Overview:
6632"""""""""
6633
6634The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6635subsequent use by ``va_arg``.
6636
6637Arguments:
6638""""""""""
6639
6640The argument is a pointer to a ``va_list`` element to initialize.
6641
6642Semantics:
6643""""""""""
6644
6645The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6646available in C. In a target-dependent way, it initializes the
6647``va_list`` element to which the argument points, so that the next call
6648to ``va_arg`` will produce the first variable argument passed to the
6649function. Unlike the C ``va_start`` macro, this intrinsic does not need
6650to know the last argument of the function as the compiler can figure
6651that out.
6652
6653'``llvm.va_end``' Intrinsic
6654^^^^^^^^^^^^^^^^^^^^^^^^^^^
6655
6656Syntax:
6657"""""""
6658
6659::
6660
6661 declare void @llvm.va_end(i8* <arglist>)
6662
6663Overview:
6664"""""""""
6665
6666The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6667initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6668
6669Arguments:
6670""""""""""
6671
6672The argument is a pointer to a ``va_list`` to destroy.
6673
6674Semantics:
6675""""""""""
6676
6677The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6678available in C. In a target-dependent way, it destroys the ``va_list``
6679element to which the argument points. Calls to
6680:ref:`llvm.va_start <int_va_start>` and
6681:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6682``llvm.va_end``.
6683
6684.. _int_va_copy:
6685
6686'``llvm.va_copy``' Intrinsic
6687^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6688
6689Syntax:
6690"""""""
6691
6692::
6693
6694 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6695
6696Overview:
6697"""""""""
6698
6699The '``llvm.va_copy``' intrinsic copies the current argument position
6700from the source argument list to the destination argument list.
6701
6702Arguments:
6703""""""""""
6704
6705The first argument is a pointer to a ``va_list`` element to initialize.
6706The second argument is a pointer to a ``va_list`` element to copy from.
6707
6708Semantics:
6709""""""""""
6710
6711The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6712available in C. In a target-dependent way, it copies the source
6713``va_list`` element into the destination ``va_list`` element. This
6714intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6715arbitrarily complex and require, for example, memory allocation.
6716
6717Accurate Garbage Collection Intrinsics
6718--------------------------------------
6719
6720LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6721(GC) requires the implementation and generation of these intrinsics.
6722These intrinsics allow identification of :ref:`GC roots on the
6723stack <int_gcroot>`, as well as garbage collector implementations that
6724require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6725Front-ends for type-safe garbage collected languages should generate
6726these intrinsics to make use of the LLVM garbage collectors. For more
6727details, see `Accurate Garbage Collection with
6728LLVM <GarbageCollection.html>`_.
6729
6730The garbage collection intrinsics only operate on objects in the generic
6731address space (address space zero).
6732
6733.. _int_gcroot:
6734
6735'``llvm.gcroot``' Intrinsic
6736^^^^^^^^^^^^^^^^^^^^^^^^^^^
6737
6738Syntax:
6739"""""""
6740
6741::
6742
6743 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6744
6745Overview:
6746"""""""""
6747
6748The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6749the code generator, and allows some metadata to be associated with it.
6750
6751Arguments:
6752""""""""""
6753
6754The first argument specifies the address of a stack object that contains
6755the root pointer. The second pointer (which must be either a constant or
6756a global value address) contains the meta-data to be associated with the
6757root.
6758
6759Semantics:
6760""""""""""
6761
6762At runtime, a call to this intrinsic stores a null pointer into the
6763"ptrloc" location. At compile-time, the code generator generates
6764information to allow the runtime to find the pointer at GC safe points.
6765The '``llvm.gcroot``' intrinsic may only be used in a function which
6766:ref:`specifies a GC algorithm <gc>`.
6767
6768.. _int_gcread:
6769
6770'``llvm.gcread``' Intrinsic
6771^^^^^^^^^^^^^^^^^^^^^^^^^^^
6772
6773Syntax:
6774"""""""
6775
6776::
6777
6778 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6779
6780Overview:
6781"""""""""
6782
6783The '``llvm.gcread``' intrinsic identifies reads of references from heap
6784locations, allowing garbage collector implementations that require read
6785barriers.
6786
6787Arguments:
6788""""""""""
6789
6790The second argument is the address to read from, which should be an
6791address allocated from the garbage collector. The first object is a
6792pointer to the start of the referenced object, if needed by the language
6793runtime (otherwise null).
6794
6795Semantics:
6796""""""""""
6797
6798The '``llvm.gcread``' intrinsic has the same semantics as a load
6799instruction, but may be replaced with substantially more complex code by
6800the garbage collector runtime, as needed. The '``llvm.gcread``'
6801intrinsic may only be used in a function which :ref:`specifies a GC
6802algorithm <gc>`.
6803
6804.. _int_gcwrite:
6805
6806'``llvm.gcwrite``' Intrinsic
6807^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6808
6809Syntax:
6810"""""""
6811
6812::
6813
6814 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6815
6816Overview:
6817"""""""""
6818
6819The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6820locations, allowing garbage collector implementations that require write
6821barriers (such as generational or reference counting collectors).
6822
6823Arguments:
6824""""""""""
6825
6826The first argument is the reference to store, the second is the start of
6827the object to store it to, and the third is the address of the field of
6828Obj to store to. If the runtime does not require a pointer to the
6829object, Obj may be null.
6830
6831Semantics:
6832""""""""""
6833
6834The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6835instruction, but may be replaced with substantially more complex code by
6836the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6837intrinsic may only be used in a function which :ref:`specifies a GC
6838algorithm <gc>`.
6839
6840Code Generator Intrinsics
6841-------------------------
6842
6843These intrinsics are provided by LLVM to expose special features that
6844may only be implemented with code generator support.
6845
6846'``llvm.returnaddress``' Intrinsic
6847^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6848
6849Syntax:
6850"""""""
6851
6852::
6853
6854 declare i8 *@llvm.returnaddress(i32 <level>)
6855
6856Overview:
6857"""""""""
6858
6859The '``llvm.returnaddress``' intrinsic attempts to compute a
6860target-specific value indicating the return address of the current
6861function or one of its callers.
6862
6863Arguments:
6864""""""""""
6865
6866The argument to this intrinsic indicates which function to return the
6867address for. Zero indicates the calling function, one indicates its
6868caller, etc. The argument is **required** to be a constant integer
6869value.
6870
6871Semantics:
6872""""""""""
6873
6874The '``llvm.returnaddress``' intrinsic either returns a pointer
6875indicating the return address of the specified call frame, or zero if it
6876cannot be identified. The value returned by this intrinsic is likely to
6877be incorrect or 0 for arguments other than zero, so it should only be
6878used for debugging purposes.
6879
6880Note that calling this intrinsic does not prevent function inlining or
6881other aggressive transformations, so the value returned may not be that
6882of the obvious source-language caller.
6883
6884'``llvm.frameaddress``' Intrinsic
6885^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6886
6887Syntax:
6888"""""""
6889
6890::
6891
6892 declare i8* @llvm.frameaddress(i32 <level>)
6893
6894Overview:
6895"""""""""
6896
6897The '``llvm.frameaddress``' intrinsic attempts to return the
6898target-specific frame pointer value for the specified stack frame.
6899
6900Arguments:
6901""""""""""
6902
6903The argument to this intrinsic indicates which function to return the
6904frame pointer for. Zero indicates the calling function, one indicates
6905its caller, etc. The argument is **required** to be a constant integer
6906value.
6907
6908Semantics:
6909""""""""""
6910
6911The '``llvm.frameaddress``' intrinsic either returns a pointer
6912indicating the frame address of the specified call frame, or zero if it
6913cannot be identified. The value returned by this intrinsic is likely to
6914be incorrect or 0 for arguments other than zero, so it should only be
6915used for debugging purposes.
6916
6917Note that calling this intrinsic does not prevent function inlining or
6918other aggressive transformations, so the value returned may not be that
6919of the obvious source-language caller.
6920
Renato Golinc7aea402014-05-06 16:51:25 +00006921.. _int_read_register:
6922.. _int_write_register:
6923
6924'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
6925^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6926
6927Syntax:
6928"""""""
6929
6930::
6931
6932 declare i32 @llvm.read_register.i32(metadata)
6933 declare i64 @llvm.read_register.i64(metadata)
6934 declare void @llvm.write_register.i32(metadata, i32 @value)
6935 declare void @llvm.write_register.i64(metadata, i64 @value)
6936 !0 = metadata !{metadata !"sp\00"}
6937
6938Overview:
6939"""""""""
6940
6941The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
6942provides access to the named register. The register must be valid on
6943the architecture being compiled to. The type needs to be compatible
6944with the register being read.
6945
6946Semantics:
6947""""""""""
6948
6949The '``llvm.read_register``' intrinsic returns the current value of the
6950register, where possible. The '``llvm.write_register``' intrinsic sets
6951the current value of the register, where possible.
6952
6953This is useful to implement named register global variables that need
6954to always be mapped to a specific register, as is common practice on
6955bare-metal programs including OS kernels.
6956
6957The compiler doesn't check for register availability or use of the used
6958register in surrounding code, including inline assembly. Because of that,
6959allocatable registers are not supported.
6960
6961Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00006962architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00006963work is needed to support other registers and even more so, allocatable
6964registers.
6965
Sean Silvab084af42012-12-07 10:36:55 +00006966.. _int_stacksave:
6967
6968'``llvm.stacksave``' Intrinsic
6969^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6970
6971Syntax:
6972"""""""
6973
6974::
6975
6976 declare i8* @llvm.stacksave()
6977
6978Overview:
6979"""""""""
6980
6981The '``llvm.stacksave``' intrinsic is used to remember the current state
6982of the function stack, for use with
6983:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6984implementing language features like scoped automatic variable sized
6985arrays in C99.
6986
6987Semantics:
6988""""""""""
6989
6990This intrinsic returns a opaque pointer value that can be passed to
6991:ref:`llvm.stackrestore <int_stackrestore>`. When an
6992``llvm.stackrestore`` intrinsic is executed with a value saved from
6993``llvm.stacksave``, it effectively restores the state of the stack to
6994the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6995practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6996were allocated after the ``llvm.stacksave`` was executed.
6997
6998.. _int_stackrestore:
6999
7000'``llvm.stackrestore``' Intrinsic
7001^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7002
7003Syntax:
7004"""""""
7005
7006::
7007
7008 declare void @llvm.stackrestore(i8* %ptr)
7009
7010Overview:
7011"""""""""
7012
7013The '``llvm.stackrestore``' intrinsic is used to restore the state of
7014the function stack to the state it was in when the corresponding
7015:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7016useful for implementing language features like scoped automatic variable
7017sized arrays in C99.
7018
7019Semantics:
7020""""""""""
7021
7022See the description for :ref:`llvm.stacksave <int_stacksave>`.
7023
7024'``llvm.prefetch``' Intrinsic
7025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7026
7027Syntax:
7028"""""""
7029
7030::
7031
7032 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7033
7034Overview:
7035"""""""""
7036
7037The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7038insert a prefetch instruction if supported; otherwise, it is a noop.
7039Prefetches have no effect on the behavior of the program but can change
7040its performance characteristics.
7041
7042Arguments:
7043""""""""""
7044
7045``address`` is the address to be prefetched, ``rw`` is the specifier
7046determining if the fetch should be for a read (0) or write (1), and
7047``locality`` is a temporal locality specifier ranging from (0) - no
7048locality, to (3) - extremely local keep in cache. The ``cache type``
7049specifies whether the prefetch is performed on the data (1) or
7050instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7051arguments must be constant integers.
7052
7053Semantics:
7054""""""""""
7055
7056This intrinsic does not modify the behavior of the program. In
7057particular, prefetches cannot trap and do not produce a value. On
7058targets that support this intrinsic, the prefetch can provide hints to
7059the processor cache for better performance.
7060
7061'``llvm.pcmarker``' Intrinsic
7062^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7063
7064Syntax:
7065"""""""
7066
7067::
7068
7069 declare void @llvm.pcmarker(i32 <id>)
7070
7071Overview:
7072"""""""""
7073
7074The '``llvm.pcmarker``' intrinsic is a method to export a Program
7075Counter (PC) in a region of code to simulators and other tools. The
7076method is target specific, but it is expected that the marker will use
7077exported symbols to transmit the PC of the marker. The marker makes no
7078guarantees that it will remain with any specific instruction after
7079optimizations. It is possible that the presence of a marker will inhibit
7080optimizations. The intended use is to be inserted after optimizations to
7081allow correlations of simulation runs.
7082
7083Arguments:
7084""""""""""
7085
7086``id`` is a numerical id identifying the marker.
7087
7088Semantics:
7089""""""""""
7090
7091This intrinsic does not modify the behavior of the program. Backends
7092that do not support this intrinsic may ignore it.
7093
7094'``llvm.readcyclecounter``' Intrinsic
7095^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7096
7097Syntax:
7098"""""""
7099
7100::
7101
7102 declare i64 @llvm.readcyclecounter()
7103
7104Overview:
7105"""""""""
7106
7107The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7108counter register (or similar low latency, high accuracy clocks) on those
7109targets that support it. On X86, it should map to RDTSC. On Alpha, it
7110should map to RPCC. As the backing counters overflow quickly (on the
7111order of 9 seconds on alpha), this should only be used for small
7112timings.
7113
7114Semantics:
7115""""""""""
7116
7117When directly supported, reading the cycle counter should not modify any
7118memory. Implementations are allowed to either return a application
7119specific value or a system wide value. On backends without support, this
7120is lowered to a constant 0.
7121
Tim Northoverbc933082013-05-23 19:11:20 +00007122Note that runtime support may be conditional on the privilege-level code is
7123running at and the host platform.
7124
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007125'``llvm.clear_cache``' Intrinsic
7126^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7127
7128Syntax:
7129"""""""
7130
7131::
7132
7133 declare void @llvm.clear_cache(i8*, i8*)
7134
7135Overview:
7136"""""""""
7137
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007138The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7139in the specified range to the execution unit of the processor. On
7140targets with non-unified instruction and data cache, the implementation
7141flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007142
7143Semantics:
7144""""""""""
7145
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007146On platforms with coherent instruction and data caches (e.g. x86), this
7147intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007148cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007149instructions or a system call, if cache flushing requires special
7150privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007151
Sean Silvad02bf3e2014-04-07 22:29:53 +00007152The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007153time library.
Renato Golin93010e62014-03-26 14:01:32 +00007154
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007155This instrinsic does *not* empty the instruction pipeline. Modifications
7156of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007157
Sean Silvab084af42012-12-07 10:36:55 +00007158Standard C Library Intrinsics
7159-----------------------------
7160
7161LLVM provides intrinsics for a few important standard C library
7162functions. These intrinsics allow source-language front-ends to pass
7163information about the alignment of the pointer arguments to the code
7164generator, providing opportunity for more efficient code generation.
7165
7166.. _int_memcpy:
7167
7168'``llvm.memcpy``' Intrinsic
7169^^^^^^^^^^^^^^^^^^^^^^^^^^^
7170
7171Syntax:
7172"""""""
7173
7174This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7175integer bit width and for different address spaces. Not all targets
7176support all bit widths however.
7177
7178::
7179
7180 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7181 i32 <len>, i32 <align>, i1 <isvolatile>)
7182 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7183 i64 <len>, i32 <align>, i1 <isvolatile>)
7184
7185Overview:
7186"""""""""
7187
7188The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7189source location to the destination location.
7190
7191Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7192intrinsics do not return a value, takes extra alignment/isvolatile
7193arguments and the pointers can be in specified address spaces.
7194
7195Arguments:
7196""""""""""
7197
7198The first argument is a pointer to the destination, the second is a
7199pointer to the source. The third argument is an integer argument
7200specifying the number of bytes to copy, the fourth argument is the
7201alignment of the source and destination locations, and the fifth is a
7202boolean indicating a volatile access.
7203
7204If the call to this intrinsic has an alignment value that is not 0 or 1,
7205then the caller guarantees that both the source and destination pointers
7206are aligned to that boundary.
7207
7208If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7209a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7210very cleanly specified and it is unwise to depend on it.
7211
7212Semantics:
7213""""""""""
7214
7215The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7216source location to the destination location, which are not allowed to
7217overlap. It copies "len" bytes of memory over. If the argument is known
7218to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007219argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007220
7221'``llvm.memmove``' Intrinsic
7222^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7223
7224Syntax:
7225"""""""
7226
7227This is an overloaded intrinsic. You can use llvm.memmove on any integer
7228bit width and for different address space. Not all targets support all
7229bit widths however.
7230
7231::
7232
7233 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7234 i32 <len>, i32 <align>, i1 <isvolatile>)
7235 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7236 i64 <len>, i32 <align>, i1 <isvolatile>)
7237
7238Overview:
7239"""""""""
7240
7241The '``llvm.memmove.*``' intrinsics move a block of memory from the
7242source location to the destination location. It is similar to the
7243'``llvm.memcpy``' intrinsic but allows the two memory locations to
7244overlap.
7245
7246Note that, unlike the standard libc function, the ``llvm.memmove.*``
7247intrinsics do not return a value, takes extra alignment/isvolatile
7248arguments and the pointers can be in specified address spaces.
7249
7250Arguments:
7251""""""""""
7252
7253The first argument is a pointer to the destination, the second is a
7254pointer to the source. The third argument is an integer argument
7255specifying the number of bytes to copy, the fourth argument is the
7256alignment of the source and destination locations, and the fifth is a
7257boolean indicating a volatile access.
7258
7259If the call to this intrinsic has an alignment value that is not 0 or 1,
7260then the caller guarantees that the source and destination pointers are
7261aligned to that boundary.
7262
7263If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7264is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7265not very cleanly specified and it is unwise to depend on it.
7266
7267Semantics:
7268""""""""""
7269
7270The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7271source location to the destination location, which may overlap. It
7272copies "len" bytes of memory over. If the argument is known to be
7273aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007274otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007275
7276'``llvm.memset.*``' Intrinsics
7277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7278
7279Syntax:
7280"""""""
7281
7282This is an overloaded intrinsic. You can use llvm.memset on any integer
7283bit width and for different address spaces. However, not all targets
7284support all bit widths.
7285
7286::
7287
7288 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7289 i32 <len>, i32 <align>, i1 <isvolatile>)
7290 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7291 i64 <len>, i32 <align>, i1 <isvolatile>)
7292
7293Overview:
7294"""""""""
7295
7296The '``llvm.memset.*``' intrinsics fill a block of memory with a
7297particular byte value.
7298
7299Note that, unlike the standard libc function, the ``llvm.memset``
7300intrinsic does not return a value and takes extra alignment/volatile
7301arguments. Also, the destination can be in an arbitrary address space.
7302
7303Arguments:
7304""""""""""
7305
7306The first argument is a pointer to the destination to fill, the second
7307is the byte value with which to fill it, the third argument is an
7308integer argument specifying the number of bytes to fill, and the fourth
7309argument is the known alignment of the destination location.
7310
7311If the call to this intrinsic has an alignment value that is not 0 or 1,
7312then the caller guarantees that the destination pointer is aligned to
7313that boundary.
7314
7315If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7316a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7317very cleanly specified and it is unwise to depend on it.
7318
7319Semantics:
7320""""""""""
7321
7322The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7323at the destination location. If the argument is known to be aligned to
7324some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007325it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007326
7327'``llvm.sqrt.*``' Intrinsic
7328^^^^^^^^^^^^^^^^^^^^^^^^^^^
7329
7330Syntax:
7331"""""""
7332
7333This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7334floating point or vector of floating point type. Not all targets support
7335all types however.
7336
7337::
7338
7339 declare float @llvm.sqrt.f32(float %Val)
7340 declare double @llvm.sqrt.f64(double %Val)
7341 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7342 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7343 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7344
7345Overview:
7346"""""""""
7347
7348The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7349returning the same value as the libm '``sqrt``' functions would. Unlike
7350``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7351negative numbers other than -0.0 (which allows for better optimization,
7352because there is no need to worry about errno being set).
7353``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7354
7355Arguments:
7356""""""""""
7357
7358The argument and return value are floating point numbers of the same
7359type.
7360
7361Semantics:
7362""""""""""
7363
7364This function returns the sqrt of the specified operand if it is a
7365nonnegative floating point number.
7366
7367'``llvm.powi.*``' Intrinsic
7368^^^^^^^^^^^^^^^^^^^^^^^^^^^
7369
7370Syntax:
7371"""""""
7372
7373This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7374floating point or vector of floating point type. Not all targets support
7375all types however.
7376
7377::
7378
7379 declare float @llvm.powi.f32(float %Val, i32 %power)
7380 declare double @llvm.powi.f64(double %Val, i32 %power)
7381 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7382 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7383 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7384
7385Overview:
7386"""""""""
7387
7388The '``llvm.powi.*``' intrinsics return the first operand raised to the
7389specified (positive or negative) power. The order of evaluation of
7390multiplications is not defined. When a vector of floating point type is
7391used, the second argument remains a scalar integer value.
7392
7393Arguments:
7394""""""""""
7395
7396The second argument is an integer power, and the first is a value to
7397raise to that power.
7398
7399Semantics:
7400""""""""""
7401
7402This function returns the first value raised to the second power with an
7403unspecified sequence of rounding operations.
7404
7405'``llvm.sin.*``' Intrinsic
7406^^^^^^^^^^^^^^^^^^^^^^^^^^
7407
7408Syntax:
7409"""""""
7410
7411This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7412floating point or vector of floating point type. Not all targets support
7413all types however.
7414
7415::
7416
7417 declare float @llvm.sin.f32(float %Val)
7418 declare double @llvm.sin.f64(double %Val)
7419 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7420 declare fp128 @llvm.sin.f128(fp128 %Val)
7421 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7422
7423Overview:
7424"""""""""
7425
7426The '``llvm.sin.*``' intrinsics return the sine of the operand.
7427
7428Arguments:
7429""""""""""
7430
7431The argument and return value are floating point numbers of the same
7432type.
7433
7434Semantics:
7435""""""""""
7436
7437This function returns the sine of the specified operand, returning the
7438same values as the libm ``sin`` functions would, and handles error
7439conditions in the same way.
7440
7441'``llvm.cos.*``' Intrinsic
7442^^^^^^^^^^^^^^^^^^^^^^^^^^
7443
7444Syntax:
7445"""""""
7446
7447This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7448floating point or vector of floating point type. Not all targets support
7449all types however.
7450
7451::
7452
7453 declare float @llvm.cos.f32(float %Val)
7454 declare double @llvm.cos.f64(double %Val)
7455 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7456 declare fp128 @llvm.cos.f128(fp128 %Val)
7457 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7458
7459Overview:
7460"""""""""
7461
7462The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7463
7464Arguments:
7465""""""""""
7466
7467The argument and return value are floating point numbers of the same
7468type.
7469
7470Semantics:
7471""""""""""
7472
7473This function returns the cosine of the specified operand, returning the
7474same values as the libm ``cos`` functions would, and handles error
7475conditions in the same way.
7476
7477'``llvm.pow.*``' Intrinsic
7478^^^^^^^^^^^^^^^^^^^^^^^^^^
7479
7480Syntax:
7481"""""""
7482
7483This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7484floating point or vector of floating point type. Not all targets support
7485all types however.
7486
7487::
7488
7489 declare float @llvm.pow.f32(float %Val, float %Power)
7490 declare double @llvm.pow.f64(double %Val, double %Power)
7491 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7492 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7493 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7494
7495Overview:
7496"""""""""
7497
7498The '``llvm.pow.*``' intrinsics return the first operand raised to the
7499specified (positive or negative) power.
7500
7501Arguments:
7502""""""""""
7503
7504The second argument is a floating point power, and the first is a value
7505to raise to that power.
7506
7507Semantics:
7508""""""""""
7509
7510This function returns the first value raised to the second power,
7511returning the same values as the libm ``pow`` functions would, and
7512handles error conditions in the same way.
7513
7514'``llvm.exp.*``' Intrinsic
7515^^^^^^^^^^^^^^^^^^^^^^^^^^
7516
7517Syntax:
7518"""""""
7519
7520This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7521floating point or vector of floating point type. Not all targets support
7522all types however.
7523
7524::
7525
7526 declare float @llvm.exp.f32(float %Val)
7527 declare double @llvm.exp.f64(double %Val)
7528 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7529 declare fp128 @llvm.exp.f128(fp128 %Val)
7530 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7531
7532Overview:
7533"""""""""
7534
7535The '``llvm.exp.*``' intrinsics perform the exp function.
7536
7537Arguments:
7538""""""""""
7539
7540The argument and return value are floating point numbers of the same
7541type.
7542
7543Semantics:
7544""""""""""
7545
7546This function returns the same values as the libm ``exp`` functions
7547would, and handles error conditions in the same way.
7548
7549'``llvm.exp2.*``' Intrinsic
7550^^^^^^^^^^^^^^^^^^^^^^^^^^^
7551
7552Syntax:
7553"""""""
7554
7555This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7556floating point or vector of floating point type. Not all targets support
7557all types however.
7558
7559::
7560
7561 declare float @llvm.exp2.f32(float %Val)
7562 declare double @llvm.exp2.f64(double %Val)
7563 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7564 declare fp128 @llvm.exp2.f128(fp128 %Val)
7565 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7566
7567Overview:
7568"""""""""
7569
7570The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7571
7572Arguments:
7573""""""""""
7574
7575The argument and return value are floating point numbers of the same
7576type.
7577
7578Semantics:
7579""""""""""
7580
7581This function returns the same values as the libm ``exp2`` functions
7582would, and handles error conditions in the same way.
7583
7584'``llvm.log.*``' Intrinsic
7585^^^^^^^^^^^^^^^^^^^^^^^^^^
7586
7587Syntax:
7588"""""""
7589
7590This is an overloaded intrinsic. You can use ``llvm.log`` on any
7591floating point or vector of floating point type. Not all targets support
7592all types however.
7593
7594::
7595
7596 declare float @llvm.log.f32(float %Val)
7597 declare double @llvm.log.f64(double %Val)
7598 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7599 declare fp128 @llvm.log.f128(fp128 %Val)
7600 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7601
7602Overview:
7603"""""""""
7604
7605The '``llvm.log.*``' intrinsics perform the log function.
7606
7607Arguments:
7608""""""""""
7609
7610The argument and return value are floating point numbers of the same
7611type.
7612
7613Semantics:
7614""""""""""
7615
7616This function returns the same values as the libm ``log`` functions
7617would, and handles error conditions in the same way.
7618
7619'``llvm.log10.*``' Intrinsic
7620^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7621
7622Syntax:
7623"""""""
7624
7625This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7626floating point or vector of floating point type. Not all targets support
7627all types however.
7628
7629::
7630
7631 declare float @llvm.log10.f32(float %Val)
7632 declare double @llvm.log10.f64(double %Val)
7633 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7634 declare fp128 @llvm.log10.f128(fp128 %Val)
7635 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7636
7637Overview:
7638"""""""""
7639
7640The '``llvm.log10.*``' intrinsics perform the log10 function.
7641
7642Arguments:
7643""""""""""
7644
7645The argument and return value are floating point numbers of the same
7646type.
7647
7648Semantics:
7649""""""""""
7650
7651This function returns the same values as the libm ``log10`` functions
7652would, and handles error conditions in the same way.
7653
7654'``llvm.log2.*``' Intrinsic
7655^^^^^^^^^^^^^^^^^^^^^^^^^^^
7656
7657Syntax:
7658"""""""
7659
7660This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7661floating point or vector of floating point type. Not all targets support
7662all types however.
7663
7664::
7665
7666 declare float @llvm.log2.f32(float %Val)
7667 declare double @llvm.log2.f64(double %Val)
7668 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7669 declare fp128 @llvm.log2.f128(fp128 %Val)
7670 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7671
7672Overview:
7673"""""""""
7674
7675The '``llvm.log2.*``' intrinsics perform the log2 function.
7676
7677Arguments:
7678""""""""""
7679
7680The argument and return value are floating point numbers of the same
7681type.
7682
7683Semantics:
7684""""""""""
7685
7686This function returns the same values as the libm ``log2`` functions
7687would, and handles error conditions in the same way.
7688
7689'``llvm.fma.*``' Intrinsic
7690^^^^^^^^^^^^^^^^^^^^^^^^^^
7691
7692Syntax:
7693"""""""
7694
7695This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7696floating point or vector of floating point type. Not all targets support
7697all types however.
7698
7699::
7700
7701 declare float @llvm.fma.f32(float %a, float %b, float %c)
7702 declare double @llvm.fma.f64(double %a, double %b, double %c)
7703 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7704 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7705 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7706
7707Overview:
7708"""""""""
7709
7710The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7711operation.
7712
7713Arguments:
7714""""""""""
7715
7716The argument and return value are floating point numbers of the same
7717type.
7718
7719Semantics:
7720""""""""""
7721
7722This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007723would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007724
7725'``llvm.fabs.*``' Intrinsic
7726^^^^^^^^^^^^^^^^^^^^^^^^^^^
7727
7728Syntax:
7729"""""""
7730
7731This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7732floating point or vector of floating point type. Not all targets support
7733all types however.
7734
7735::
7736
7737 declare float @llvm.fabs.f32(float %Val)
7738 declare double @llvm.fabs.f64(double %Val)
7739 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7740 declare fp128 @llvm.fabs.f128(fp128 %Val)
7741 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7742
7743Overview:
7744"""""""""
7745
7746The '``llvm.fabs.*``' intrinsics return the absolute value of the
7747operand.
7748
7749Arguments:
7750""""""""""
7751
7752The argument and return value are floating point numbers of the same
7753type.
7754
7755Semantics:
7756""""""""""
7757
7758This function returns the same values as the libm ``fabs`` functions
7759would, and handles error conditions in the same way.
7760
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007761'``llvm.copysign.*``' Intrinsic
7762^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7763
7764Syntax:
7765"""""""
7766
7767This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7768floating point or vector of floating point type. Not all targets support
7769all types however.
7770
7771::
7772
7773 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7774 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7775 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7776 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7777 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7778
7779Overview:
7780"""""""""
7781
7782The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7783first operand and the sign of the second operand.
7784
7785Arguments:
7786""""""""""
7787
7788The arguments and return value are floating point numbers of the same
7789type.
7790
7791Semantics:
7792""""""""""
7793
7794This function returns the same values as the libm ``copysign``
7795functions would, and handles error conditions in the same way.
7796
Sean Silvab084af42012-12-07 10:36:55 +00007797'``llvm.floor.*``' Intrinsic
7798^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7799
7800Syntax:
7801"""""""
7802
7803This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7804floating point or vector of floating point type. Not all targets support
7805all types however.
7806
7807::
7808
7809 declare float @llvm.floor.f32(float %Val)
7810 declare double @llvm.floor.f64(double %Val)
7811 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7812 declare fp128 @llvm.floor.f128(fp128 %Val)
7813 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7814
7815Overview:
7816"""""""""
7817
7818The '``llvm.floor.*``' intrinsics return the floor of the operand.
7819
7820Arguments:
7821""""""""""
7822
7823The argument and return value are floating point numbers of the same
7824type.
7825
7826Semantics:
7827""""""""""
7828
7829This function returns the same values as the libm ``floor`` functions
7830would, and handles error conditions in the same way.
7831
7832'``llvm.ceil.*``' Intrinsic
7833^^^^^^^^^^^^^^^^^^^^^^^^^^^
7834
7835Syntax:
7836"""""""
7837
7838This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7839floating point or vector of floating point type. Not all targets support
7840all types however.
7841
7842::
7843
7844 declare float @llvm.ceil.f32(float %Val)
7845 declare double @llvm.ceil.f64(double %Val)
7846 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7847 declare fp128 @llvm.ceil.f128(fp128 %Val)
7848 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7849
7850Overview:
7851"""""""""
7852
7853The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7854
7855Arguments:
7856""""""""""
7857
7858The argument and return value are floating point numbers of the same
7859type.
7860
7861Semantics:
7862""""""""""
7863
7864This function returns the same values as the libm ``ceil`` functions
7865would, and handles error conditions in the same way.
7866
7867'``llvm.trunc.*``' Intrinsic
7868^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7869
7870Syntax:
7871"""""""
7872
7873This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7874floating point or vector of floating point type. Not all targets support
7875all types however.
7876
7877::
7878
7879 declare float @llvm.trunc.f32(float %Val)
7880 declare double @llvm.trunc.f64(double %Val)
7881 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7882 declare fp128 @llvm.trunc.f128(fp128 %Val)
7883 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7884
7885Overview:
7886"""""""""
7887
7888The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7889nearest integer not larger in magnitude than the operand.
7890
7891Arguments:
7892""""""""""
7893
7894The argument and return value are floating point numbers of the same
7895type.
7896
7897Semantics:
7898""""""""""
7899
7900This function returns the same values as the libm ``trunc`` functions
7901would, and handles error conditions in the same way.
7902
7903'``llvm.rint.*``' Intrinsic
7904^^^^^^^^^^^^^^^^^^^^^^^^^^^
7905
7906Syntax:
7907"""""""
7908
7909This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7910floating point or vector of floating point type. Not all targets support
7911all types however.
7912
7913::
7914
7915 declare float @llvm.rint.f32(float %Val)
7916 declare double @llvm.rint.f64(double %Val)
7917 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7918 declare fp128 @llvm.rint.f128(fp128 %Val)
7919 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7920
7921Overview:
7922"""""""""
7923
7924The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7925nearest integer. It may raise an inexact floating-point exception if the
7926operand isn't an integer.
7927
7928Arguments:
7929""""""""""
7930
7931The argument and return value are floating point numbers of the same
7932type.
7933
7934Semantics:
7935""""""""""
7936
7937This function returns the same values as the libm ``rint`` functions
7938would, and handles error conditions in the same way.
7939
7940'``llvm.nearbyint.*``' Intrinsic
7941^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7942
7943Syntax:
7944"""""""
7945
7946This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7947floating point or vector of floating point type. Not all targets support
7948all types however.
7949
7950::
7951
7952 declare float @llvm.nearbyint.f32(float %Val)
7953 declare double @llvm.nearbyint.f64(double %Val)
7954 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7955 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7956 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7957
7958Overview:
7959"""""""""
7960
7961The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7962nearest integer.
7963
7964Arguments:
7965""""""""""
7966
7967The argument and return value are floating point numbers of the same
7968type.
7969
7970Semantics:
7971""""""""""
7972
7973This function returns the same values as the libm ``nearbyint``
7974functions would, and handles error conditions in the same way.
7975
Hal Finkel171817e2013-08-07 22:49:12 +00007976'``llvm.round.*``' Intrinsic
7977^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7978
7979Syntax:
7980"""""""
7981
7982This is an overloaded intrinsic. You can use ``llvm.round`` on any
7983floating point or vector of floating point type. Not all targets support
7984all types however.
7985
7986::
7987
7988 declare float @llvm.round.f32(float %Val)
7989 declare double @llvm.round.f64(double %Val)
7990 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7991 declare fp128 @llvm.round.f128(fp128 %Val)
7992 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7993
7994Overview:
7995"""""""""
7996
7997The '``llvm.round.*``' intrinsics returns the operand rounded to the
7998nearest integer.
7999
8000Arguments:
8001""""""""""
8002
8003The argument and return value are floating point numbers of the same
8004type.
8005
8006Semantics:
8007""""""""""
8008
8009This function returns the same values as the libm ``round``
8010functions would, and handles error conditions in the same way.
8011
Sean Silvab084af42012-12-07 10:36:55 +00008012Bit Manipulation Intrinsics
8013---------------------------
8014
8015LLVM provides intrinsics for a few important bit manipulation
8016operations. These allow efficient code generation for some algorithms.
8017
8018'``llvm.bswap.*``' Intrinsics
8019^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8020
8021Syntax:
8022"""""""
8023
8024This is an overloaded intrinsic function. You can use bswap on any
8025integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8026
8027::
8028
8029 declare i16 @llvm.bswap.i16(i16 <id>)
8030 declare i32 @llvm.bswap.i32(i32 <id>)
8031 declare i64 @llvm.bswap.i64(i64 <id>)
8032
8033Overview:
8034"""""""""
8035
8036The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8037values with an even number of bytes (positive multiple of 16 bits).
8038These are useful for performing operations on data that is not in the
8039target's native byte order.
8040
8041Semantics:
8042""""""""""
8043
8044The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8045and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8046intrinsic returns an i32 value that has the four bytes of the input i32
8047swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8048returned i32 will have its bytes in 3, 2, 1, 0 order. The
8049``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8050concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8051respectively).
8052
8053'``llvm.ctpop.*``' Intrinsic
8054^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8055
8056Syntax:
8057"""""""
8058
8059This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8060bit width, or on any vector with integer elements. Not all targets
8061support all bit widths or vector types, however.
8062
8063::
8064
8065 declare i8 @llvm.ctpop.i8(i8 <src>)
8066 declare i16 @llvm.ctpop.i16(i16 <src>)
8067 declare i32 @llvm.ctpop.i32(i32 <src>)
8068 declare i64 @llvm.ctpop.i64(i64 <src>)
8069 declare i256 @llvm.ctpop.i256(i256 <src>)
8070 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8071
8072Overview:
8073"""""""""
8074
8075The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8076in a value.
8077
8078Arguments:
8079""""""""""
8080
8081The only argument is the value to be counted. The argument may be of any
8082integer type, or a vector with integer elements. The return type must
8083match the argument type.
8084
8085Semantics:
8086""""""""""
8087
8088The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8089each element of a vector.
8090
8091'``llvm.ctlz.*``' Intrinsic
8092^^^^^^^^^^^^^^^^^^^^^^^^^^^
8093
8094Syntax:
8095"""""""
8096
8097This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8098integer bit width, or any vector whose elements are integers. Not all
8099targets support all bit widths or vector types, however.
8100
8101::
8102
8103 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8104 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8105 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8106 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8107 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8108 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8109
8110Overview:
8111"""""""""
8112
8113The '``llvm.ctlz``' family of intrinsic functions counts the number of
8114leading zeros in a variable.
8115
8116Arguments:
8117""""""""""
8118
8119The first argument is the value to be counted. This argument may be of
8120any integer type, or a vectory with integer element type. The return
8121type must match the first argument type.
8122
8123The second argument must be a constant and is a flag to indicate whether
8124the intrinsic should ensure that a zero as the first argument produces a
8125defined result. Historically some architectures did not provide a
8126defined result for zero values as efficiently, and many algorithms are
8127now predicated on avoiding zero-value inputs.
8128
8129Semantics:
8130""""""""""
8131
8132The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8133zeros in a variable, or within each element of the vector. If
8134``src == 0`` then the result is the size in bits of the type of ``src``
8135if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8136``llvm.ctlz(i32 2) = 30``.
8137
8138'``llvm.cttz.*``' Intrinsic
8139^^^^^^^^^^^^^^^^^^^^^^^^^^^
8140
8141Syntax:
8142"""""""
8143
8144This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8145integer bit width, or any vector of integer elements. Not all targets
8146support all bit widths or vector types, however.
8147
8148::
8149
8150 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8151 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8152 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8153 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8154 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8155 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8156
8157Overview:
8158"""""""""
8159
8160The '``llvm.cttz``' family of intrinsic functions counts the number of
8161trailing zeros.
8162
8163Arguments:
8164""""""""""
8165
8166The first argument is the value to be counted. This argument may be of
8167any integer type, or a vectory with integer element type. The return
8168type must match the first argument type.
8169
8170The second argument must be a constant and is a flag to indicate whether
8171the intrinsic should ensure that a zero as the first argument produces a
8172defined result. Historically some architectures did not provide a
8173defined result for zero values as efficiently, and many algorithms are
8174now predicated on avoiding zero-value inputs.
8175
8176Semantics:
8177""""""""""
8178
8179The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8180zeros in a variable, or within each element of a vector. If ``src == 0``
8181then the result is the size in bits of the type of ``src`` if
8182``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8183``llvm.cttz(2) = 1``.
8184
8185Arithmetic with Overflow Intrinsics
8186-----------------------------------
8187
8188LLVM provides intrinsics for some arithmetic with overflow operations.
8189
8190'``llvm.sadd.with.overflow.*``' Intrinsics
8191^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8192
8193Syntax:
8194"""""""
8195
8196This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8197on any integer bit width.
8198
8199::
8200
8201 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8202 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8203 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8204
8205Overview:
8206"""""""""
8207
8208The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8209a signed addition of the two arguments, and indicate whether an overflow
8210occurred during the signed summation.
8211
8212Arguments:
8213""""""""""
8214
8215The arguments (%a and %b) and the first element of the result structure
8216may be of integer types of any bit width, but they must have the same
8217bit width. The second element of the result structure must be of type
8218``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8219addition.
8220
8221Semantics:
8222""""""""""
8223
8224The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008225a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008226first element of which is the signed summation, and the second element
8227of which is a bit specifying if the signed summation resulted in an
8228overflow.
8229
8230Examples:
8231"""""""""
8232
8233.. code-block:: llvm
8234
8235 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8236 %sum = extractvalue {i32, i1} %res, 0
8237 %obit = extractvalue {i32, i1} %res, 1
8238 br i1 %obit, label %overflow, label %normal
8239
8240'``llvm.uadd.with.overflow.*``' Intrinsics
8241^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8242
8243Syntax:
8244"""""""
8245
8246This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8247on any integer bit width.
8248
8249::
8250
8251 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8252 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8253 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8254
8255Overview:
8256"""""""""
8257
8258The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8259an unsigned addition of the two arguments, and indicate whether a carry
8260occurred during the unsigned summation.
8261
8262Arguments:
8263""""""""""
8264
8265The arguments (%a and %b) and the first element of the result structure
8266may be of integer types of any bit width, but they must have the same
8267bit width. The second element of the result structure must be of type
8268``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8269addition.
8270
8271Semantics:
8272""""""""""
8273
8274The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008275an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008276first element of which is the sum, and the second element of which is a
8277bit specifying if the unsigned summation resulted in a carry.
8278
8279Examples:
8280"""""""""
8281
8282.. code-block:: llvm
8283
8284 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8285 %sum = extractvalue {i32, i1} %res, 0
8286 %obit = extractvalue {i32, i1} %res, 1
8287 br i1 %obit, label %carry, label %normal
8288
8289'``llvm.ssub.with.overflow.*``' Intrinsics
8290^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8291
8292Syntax:
8293"""""""
8294
8295This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8296on any integer bit width.
8297
8298::
8299
8300 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8301 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8302 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8303
8304Overview:
8305"""""""""
8306
8307The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8308a signed subtraction of the two arguments, and indicate whether an
8309overflow occurred during the signed subtraction.
8310
8311Arguments:
8312""""""""""
8313
8314The arguments (%a and %b) and the first element of the result structure
8315may be of integer types of any bit width, but they must have the same
8316bit width. The second element of the result structure must be of type
8317``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8318subtraction.
8319
8320Semantics:
8321""""""""""
8322
8323The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008324a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008325first element of which is the subtraction, and the second element of
8326which is a bit specifying if the signed subtraction resulted in an
8327overflow.
8328
8329Examples:
8330"""""""""
8331
8332.. code-block:: llvm
8333
8334 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8335 %sum = extractvalue {i32, i1} %res, 0
8336 %obit = extractvalue {i32, i1} %res, 1
8337 br i1 %obit, label %overflow, label %normal
8338
8339'``llvm.usub.with.overflow.*``' Intrinsics
8340^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8341
8342Syntax:
8343"""""""
8344
8345This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8346on any integer bit width.
8347
8348::
8349
8350 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8351 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8352 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8353
8354Overview:
8355"""""""""
8356
8357The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8358an unsigned subtraction of the two arguments, and indicate whether an
8359overflow occurred during the unsigned subtraction.
8360
8361Arguments:
8362""""""""""
8363
8364The arguments (%a and %b) and the first element of the result structure
8365may be of integer types of any bit width, but they must have the same
8366bit width. The second element of the result structure must be of type
8367``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8368subtraction.
8369
8370Semantics:
8371""""""""""
8372
8373The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008374an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008375the first element of which is the subtraction, and the second element of
8376which is a bit specifying if the unsigned subtraction resulted in an
8377overflow.
8378
8379Examples:
8380"""""""""
8381
8382.. code-block:: llvm
8383
8384 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8385 %sum = extractvalue {i32, i1} %res, 0
8386 %obit = extractvalue {i32, i1} %res, 1
8387 br i1 %obit, label %overflow, label %normal
8388
8389'``llvm.smul.with.overflow.*``' Intrinsics
8390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8391
8392Syntax:
8393"""""""
8394
8395This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8396on any integer bit width.
8397
8398::
8399
8400 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8401 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8402 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8403
8404Overview:
8405"""""""""
8406
8407The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8408a signed multiplication of the two arguments, and indicate whether an
8409overflow occurred during the signed multiplication.
8410
8411Arguments:
8412""""""""""
8413
8414The arguments (%a and %b) and the first element of the result structure
8415may be of integer types of any bit width, but they must have the same
8416bit width. The second element of the result structure must be of type
8417``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8418multiplication.
8419
8420Semantics:
8421""""""""""
8422
8423The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008424a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008425the first element of which is the multiplication, and the second element
8426of which is a bit specifying if the signed multiplication resulted in an
8427overflow.
8428
8429Examples:
8430"""""""""
8431
8432.. code-block:: llvm
8433
8434 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8435 %sum = extractvalue {i32, i1} %res, 0
8436 %obit = extractvalue {i32, i1} %res, 1
8437 br i1 %obit, label %overflow, label %normal
8438
8439'``llvm.umul.with.overflow.*``' Intrinsics
8440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8441
8442Syntax:
8443"""""""
8444
8445This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8446on any integer bit width.
8447
8448::
8449
8450 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8451 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8452 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8453
8454Overview:
8455"""""""""
8456
8457The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8458a unsigned multiplication of the two arguments, and indicate whether an
8459overflow occurred during the unsigned multiplication.
8460
8461Arguments:
8462""""""""""
8463
8464The arguments (%a and %b) and the first element of the result structure
8465may be of integer types of any bit width, but they must have the same
8466bit width. The second element of the result structure must be of type
8467``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8468multiplication.
8469
8470Semantics:
8471""""""""""
8472
8473The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008474an unsigned multiplication of the two arguments. They return a structure ---
8475the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008476element of which is a bit specifying if the unsigned multiplication
8477resulted in an overflow.
8478
8479Examples:
8480"""""""""
8481
8482.. code-block:: llvm
8483
8484 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8485 %sum = extractvalue {i32, i1} %res, 0
8486 %obit = extractvalue {i32, i1} %res, 1
8487 br i1 %obit, label %overflow, label %normal
8488
8489Specialised Arithmetic Intrinsics
8490---------------------------------
8491
8492'``llvm.fmuladd.*``' Intrinsic
8493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8494
8495Syntax:
8496"""""""
8497
8498::
8499
8500 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8501 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8502
8503Overview:
8504"""""""""
8505
8506The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008507expressions that can be fused if the code generator determines that (a) the
8508target instruction set has support for a fused operation, and (b) that the
8509fused operation is more efficient than the equivalent, separate pair of mul
8510and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008511
8512Arguments:
8513""""""""""
8514
8515The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8516multiplicands, a and b, and an addend c.
8517
8518Semantics:
8519""""""""""
8520
8521The expression:
8522
8523::
8524
8525 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8526
8527is equivalent to the expression a \* b + c, except that rounding will
8528not be performed between the multiplication and addition steps if the
8529code generator fuses the operations. Fusion is not guaranteed, even if
8530the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008531corresponding llvm.fma.\* intrinsic function should be used
8532instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008533
8534Examples:
8535"""""""""
8536
8537.. code-block:: llvm
8538
Tim Northover675a0962014-06-13 14:24:23 +00008539 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00008540
8541Half Precision Floating Point Intrinsics
8542----------------------------------------
8543
8544For most target platforms, half precision floating point is a
8545storage-only format. This means that it is a dense encoding (in memory)
8546but does not support computation in the format.
8547
8548This means that code must first load the half-precision floating point
8549value as an i16, then convert it to float with
8550:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8551then be performed on the float value (including extending to double
8552etc). To store the value back to memory, it is first converted to float
8553if needed, then converted to i16 with
8554:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8555i16 value.
8556
8557.. _int_convert_to_fp16:
8558
8559'``llvm.convert.to.fp16``' Intrinsic
8560^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8561
8562Syntax:
8563"""""""
8564
8565::
8566
8567 declare i16 @llvm.convert.to.fp16(f32 %a)
8568
8569Overview:
8570"""""""""
8571
8572The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8573from single precision floating point format to half precision floating
8574point format.
8575
8576Arguments:
8577""""""""""
8578
8579The intrinsic function contains single argument - the value to be
8580converted.
8581
8582Semantics:
8583""""""""""
8584
8585The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8586from single precision floating point format to half precision floating
8587point format. The return value is an ``i16`` which contains the
8588converted number.
8589
8590Examples:
8591"""""""""
8592
8593.. code-block:: llvm
8594
8595 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8596 store i16 %res, i16* @x, align 2
8597
8598.. _int_convert_from_fp16:
8599
8600'``llvm.convert.from.fp16``' Intrinsic
8601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8602
8603Syntax:
8604"""""""
8605
8606::
8607
8608 declare f32 @llvm.convert.from.fp16(i16 %a)
8609
8610Overview:
8611"""""""""
8612
8613The '``llvm.convert.from.fp16``' intrinsic function performs a
8614conversion from half precision floating point format to single precision
8615floating point format.
8616
8617Arguments:
8618""""""""""
8619
8620The intrinsic function contains single argument - the value to be
8621converted.
8622
8623Semantics:
8624""""""""""
8625
8626The '``llvm.convert.from.fp16``' intrinsic function performs a
8627conversion from half single precision floating point format to single
8628precision floating point format. The input half-float value is
8629represented by an ``i16`` value.
8630
8631Examples:
8632"""""""""
8633
8634.. code-block:: llvm
8635
8636 %a = load i16* @x, align 2
8637 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8638
8639Debugger Intrinsics
8640-------------------
8641
8642The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8643prefix), are described in the `LLVM Source Level
8644Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8645document.
8646
8647Exception Handling Intrinsics
8648-----------------------------
8649
8650The LLVM exception handling intrinsics (which all start with
8651``llvm.eh.`` prefix), are described in the `LLVM Exception
8652Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8653
8654.. _int_trampoline:
8655
8656Trampoline Intrinsics
8657---------------------
8658
8659These intrinsics make it possible to excise one parameter, marked with
8660the :ref:`nest <nest>` attribute, from a function. The result is a
8661callable function pointer lacking the nest parameter - the caller does
8662not need to provide a value for it. Instead, the value to use is stored
8663in advance in a "trampoline", a block of memory usually allocated on the
8664stack, which also contains code to splice the nest value into the
8665argument list. This is used to implement the GCC nested function address
8666extension.
8667
8668For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8669then the resulting function pointer has signature ``i32 (i32, i32)*``.
8670It can be created as follows:
8671
8672.. code-block:: llvm
8673
8674 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8675 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8676 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8677 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8678 %fp = bitcast i8* %p to i32 (i32, i32)*
8679
8680The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8681``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8682
8683.. _int_it:
8684
8685'``llvm.init.trampoline``' Intrinsic
8686^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8687
8688Syntax:
8689"""""""
8690
8691::
8692
8693 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8694
8695Overview:
8696"""""""""
8697
8698This fills the memory pointed to by ``tramp`` with executable code,
8699turning it into a trampoline.
8700
8701Arguments:
8702""""""""""
8703
8704The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8705pointers. The ``tramp`` argument must point to a sufficiently large and
8706sufficiently aligned block of memory; this memory is written to by the
8707intrinsic. Note that the size and the alignment are target-specific -
8708LLVM currently provides no portable way of determining them, so a
8709front-end that generates this intrinsic needs to have some
8710target-specific knowledge. The ``func`` argument must hold a function
8711bitcast to an ``i8*``.
8712
8713Semantics:
8714""""""""""
8715
8716The block of memory pointed to by ``tramp`` is filled with target
8717dependent code, turning it into a function. Then ``tramp`` needs to be
8718passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8719be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8720function's signature is the same as that of ``func`` with any arguments
8721marked with the ``nest`` attribute removed. At most one such ``nest``
8722argument is allowed, and it must be of pointer type. Calling the new
8723function is equivalent to calling ``func`` with the same argument list,
8724but with ``nval`` used for the missing ``nest`` argument. If, after
8725calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8726modified, then the effect of any later call to the returned function
8727pointer is undefined.
8728
8729.. _int_at:
8730
8731'``llvm.adjust.trampoline``' Intrinsic
8732^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8733
8734Syntax:
8735"""""""
8736
8737::
8738
8739 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8740
8741Overview:
8742"""""""""
8743
8744This performs any required machine-specific adjustment to the address of
8745a trampoline (passed as ``tramp``).
8746
8747Arguments:
8748""""""""""
8749
8750``tramp`` must point to a block of memory which already has trampoline
8751code filled in by a previous call to
8752:ref:`llvm.init.trampoline <int_it>`.
8753
8754Semantics:
8755""""""""""
8756
8757On some architectures the address of the code to be executed needs to be
8758different to the address where the trampoline is actually stored. This
8759intrinsic returns the executable address corresponding to ``tramp``
8760after performing the required machine specific adjustments. The pointer
8761returned can then be :ref:`bitcast and executed <int_trampoline>`.
8762
8763Memory Use Markers
8764------------------
8765
8766This class of intrinsics exists to information about the lifetime of
8767memory objects and ranges where variables are immutable.
8768
Reid Klecknera534a382013-12-19 02:14:12 +00008769.. _int_lifestart:
8770
Sean Silvab084af42012-12-07 10:36:55 +00008771'``llvm.lifetime.start``' Intrinsic
8772^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8773
8774Syntax:
8775"""""""
8776
8777::
8778
8779 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8780
8781Overview:
8782"""""""""
8783
8784The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8785object's lifetime.
8786
8787Arguments:
8788""""""""""
8789
8790The first argument is a constant integer representing the size of the
8791object, or -1 if it is variable sized. The second argument is a pointer
8792to the object.
8793
8794Semantics:
8795""""""""""
8796
8797This intrinsic indicates that before this point in the code, the value
8798of the memory pointed to by ``ptr`` is dead. This means that it is known
8799to never be used and has an undefined value. A load from the pointer
8800that precedes this intrinsic can be replaced with ``'undef'``.
8801
Reid Klecknera534a382013-12-19 02:14:12 +00008802.. _int_lifeend:
8803
Sean Silvab084af42012-12-07 10:36:55 +00008804'``llvm.lifetime.end``' Intrinsic
8805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8806
8807Syntax:
8808"""""""
8809
8810::
8811
8812 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8813
8814Overview:
8815"""""""""
8816
8817The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8818object's lifetime.
8819
8820Arguments:
8821""""""""""
8822
8823The first argument is a constant integer representing the size of the
8824object, or -1 if it is variable sized. The second argument is a pointer
8825to the object.
8826
8827Semantics:
8828""""""""""
8829
8830This intrinsic indicates that after this point in the code, the value of
8831the memory pointed to by ``ptr`` is dead. This means that it is known to
8832never be used and has an undefined value. Any stores into the memory
8833object following this intrinsic may be removed as dead.
8834
8835'``llvm.invariant.start``' Intrinsic
8836^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8837
8838Syntax:
8839"""""""
8840
8841::
8842
8843 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8844
8845Overview:
8846"""""""""
8847
8848The '``llvm.invariant.start``' intrinsic specifies that the contents of
8849a memory object will not change.
8850
8851Arguments:
8852""""""""""
8853
8854The first argument is a constant integer representing the size of the
8855object, or -1 if it is variable sized. The second argument is a pointer
8856to the object.
8857
8858Semantics:
8859""""""""""
8860
8861This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8862the return value, the referenced memory location is constant and
8863unchanging.
8864
8865'``llvm.invariant.end``' Intrinsic
8866^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8867
8868Syntax:
8869"""""""
8870
8871::
8872
8873 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8874
8875Overview:
8876"""""""""
8877
8878The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8879memory object are mutable.
8880
8881Arguments:
8882""""""""""
8883
8884The first argument is the matching ``llvm.invariant.start`` intrinsic.
8885The second argument is a constant integer representing the size of the
8886object, or -1 if it is variable sized and the third argument is a
8887pointer to the object.
8888
8889Semantics:
8890""""""""""
8891
8892This intrinsic indicates that the memory is mutable again.
8893
8894General Intrinsics
8895------------------
8896
8897This class of intrinsics is designed to be generic and has no specific
8898purpose.
8899
8900'``llvm.var.annotation``' Intrinsic
8901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8902
8903Syntax:
8904"""""""
8905
8906::
8907
8908 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8909
8910Overview:
8911"""""""""
8912
8913The '``llvm.var.annotation``' intrinsic.
8914
8915Arguments:
8916""""""""""
8917
8918The first argument is a pointer to a value, the second is a pointer to a
8919global string, the third is a pointer to a global string which is the
8920source file name, and the last argument is the line number.
8921
8922Semantics:
8923""""""""""
8924
8925This intrinsic allows annotation of local variables with arbitrary
8926strings. This can be useful for special purpose optimizations that want
8927to look for these annotations. These have no other defined use; they are
8928ignored by code generation and optimization.
8929
Michael Gottesman88d18832013-03-26 00:34:27 +00008930'``llvm.ptr.annotation.*``' Intrinsic
8931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8932
8933Syntax:
8934"""""""
8935
8936This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8937pointer to an integer of any width. *NOTE* you must specify an address space for
8938the pointer. The identifier for the default address space is the integer
8939'``0``'.
8940
8941::
8942
8943 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8944 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8945 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8946 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8947 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8948
8949Overview:
8950"""""""""
8951
8952The '``llvm.ptr.annotation``' intrinsic.
8953
8954Arguments:
8955""""""""""
8956
8957The first argument is a pointer to an integer value of arbitrary bitwidth
8958(result of some expression), the second is a pointer to a global string, the
8959third is a pointer to a global string which is the source file name, and the
8960last argument is the line number. It returns the value of the first argument.
8961
8962Semantics:
8963""""""""""
8964
8965This intrinsic allows annotation of a pointer to an integer with arbitrary
8966strings. This can be useful for special purpose optimizations that want to look
8967for these annotations. These have no other defined use; they are ignored by code
8968generation and optimization.
8969
Sean Silvab084af42012-12-07 10:36:55 +00008970'``llvm.annotation.*``' Intrinsic
8971^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8972
8973Syntax:
8974"""""""
8975
8976This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8977any integer bit width.
8978
8979::
8980
8981 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8982 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8983 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8984 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8985 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8986
8987Overview:
8988"""""""""
8989
8990The '``llvm.annotation``' intrinsic.
8991
8992Arguments:
8993""""""""""
8994
8995The first argument is an integer value (result of some expression), the
8996second is a pointer to a global string, the third is a pointer to a
8997global string which is the source file name, and the last argument is
8998the line number. It returns the value of the first argument.
8999
9000Semantics:
9001""""""""""
9002
9003This intrinsic allows annotations to be put on arbitrary expressions
9004with arbitrary strings. This can be useful for special purpose
9005optimizations that want to look for these annotations. These have no
9006other defined use; they are ignored by code generation and optimization.
9007
9008'``llvm.trap``' Intrinsic
9009^^^^^^^^^^^^^^^^^^^^^^^^^
9010
9011Syntax:
9012"""""""
9013
9014::
9015
9016 declare void @llvm.trap() noreturn nounwind
9017
9018Overview:
9019"""""""""
9020
9021The '``llvm.trap``' intrinsic.
9022
9023Arguments:
9024""""""""""
9025
9026None.
9027
9028Semantics:
9029""""""""""
9030
9031This intrinsic is lowered to the target dependent trap instruction. If
9032the target does not have a trap instruction, this intrinsic will be
9033lowered to a call of the ``abort()`` function.
9034
9035'``llvm.debugtrap``' Intrinsic
9036^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9037
9038Syntax:
9039"""""""
9040
9041::
9042
9043 declare void @llvm.debugtrap() nounwind
9044
9045Overview:
9046"""""""""
9047
9048The '``llvm.debugtrap``' intrinsic.
9049
9050Arguments:
9051""""""""""
9052
9053None.
9054
9055Semantics:
9056""""""""""
9057
9058This intrinsic is lowered to code which is intended to cause an
9059execution trap with the intention of requesting the attention of a
9060debugger.
9061
9062'``llvm.stackprotector``' Intrinsic
9063^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9064
9065Syntax:
9066"""""""
9067
9068::
9069
9070 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9071
9072Overview:
9073"""""""""
9074
9075The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9076onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9077is placed on the stack before local variables.
9078
9079Arguments:
9080""""""""""
9081
9082The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9083The first argument is the value loaded from the stack guard
9084``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9085enough space to hold the value of the guard.
9086
9087Semantics:
9088""""""""""
9089
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009090This intrinsic causes the prologue/epilogue inserter to force the position of
9091the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9092to ensure that if a local variable on the stack is overwritten, it will destroy
9093the value of the guard. When the function exits, the guard on the stack is
9094checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9095different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9096calling the ``__stack_chk_fail()`` function.
9097
9098'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009099^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009100
9101Syntax:
9102"""""""
9103
9104::
9105
9106 declare void @llvm.stackprotectorcheck(i8** <guard>)
9107
9108Overview:
9109"""""""""
9110
9111The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009112created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009113``__stack_chk_fail()`` function.
9114
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009115Arguments:
9116""""""""""
9117
9118The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9119the variable ``@__stack_chk_guard``.
9120
9121Semantics:
9122""""""""""
9123
9124This intrinsic is provided to perform the stack protector check by comparing
9125``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9126values do not match call the ``__stack_chk_fail()`` function.
9127
9128The reason to provide this as an IR level intrinsic instead of implementing it
9129via other IR operations is that in order to perform this operation at the IR
9130level without an intrinsic, one would need to create additional basic blocks to
9131handle the success/failure cases. This makes it difficult to stop the stack
9132protector check from disrupting sibling tail calls in Codegen. With this
9133intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009134codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009135
Sean Silvab084af42012-12-07 10:36:55 +00009136'``llvm.objectsize``' Intrinsic
9137^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9138
9139Syntax:
9140"""""""
9141
9142::
9143
9144 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9145 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9146
9147Overview:
9148"""""""""
9149
9150The ``llvm.objectsize`` intrinsic is designed to provide information to
9151the optimizers to determine at compile time whether a) an operation
9152(like memcpy) will overflow a buffer that corresponds to an object, or
9153b) that a runtime check for overflow isn't necessary. An object in this
9154context means an allocation of a specific class, structure, array, or
9155other object.
9156
9157Arguments:
9158""""""""""
9159
9160The ``llvm.objectsize`` intrinsic takes two arguments. The first
9161argument is a pointer to or into the ``object``. The second argument is
9162a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9163or -1 (if false) when the object size is unknown. The second argument
9164only accepts constants.
9165
9166Semantics:
9167""""""""""
9168
9169The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9170the size of the object concerned. If the size cannot be determined at
9171compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9172on the ``min`` argument).
9173
9174'``llvm.expect``' Intrinsic
9175^^^^^^^^^^^^^^^^^^^^^^^^^^^
9176
9177Syntax:
9178"""""""
9179
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009180This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9181integer bit width.
9182
Sean Silvab084af42012-12-07 10:36:55 +00009183::
9184
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009185 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009186 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9187 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9188
9189Overview:
9190"""""""""
9191
9192The ``llvm.expect`` intrinsic provides information about expected (the
9193most probable) value of ``val``, which can be used by optimizers.
9194
9195Arguments:
9196""""""""""
9197
9198The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9199a value. The second argument is an expected value, this needs to be a
9200constant value, variables are not allowed.
9201
9202Semantics:
9203""""""""""
9204
9205This intrinsic is lowered to the ``val``.
9206
9207'``llvm.donothing``' Intrinsic
9208^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9209
9210Syntax:
9211"""""""
9212
9213::
9214
9215 declare void @llvm.donothing() nounwind readnone
9216
9217Overview:
9218"""""""""
9219
9220The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9221only intrinsic that can be called with an invoke instruction.
9222
9223Arguments:
9224""""""""""
9225
9226None.
9227
9228Semantics:
9229""""""""""
9230
9231This intrinsic does nothing, and it's removed by optimizers and ignored
9232by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009233
9234Stack Map Intrinsics
9235--------------------
9236
9237LLVM provides experimental intrinsics to support runtime patching
9238mechanisms commonly desired in dynamic language JITs. These intrinsics
9239are described in :doc:`StackMaps`.