blob: 4f5d69d77aa98365d637d644c362e962c0d14586 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000016#include "llvm/ADT/APFloat.h"
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
James Molloy493e57d2015-10-26 14:10:46 +000020#include "llvm/ADT/Optional.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000021#include "llvm/ADT/STLExtras.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000022#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000023#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/Analysis/AliasAnalysis.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000028#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000029#include "llvm/Analysis/InstructionSimplify.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000030#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000031#include "llvm/Analysis/LoopInfo.h"
Adam Nemet0965da22017-10-09 23:19:02 +000032#include "llvm/Analysis/OptimizationRemarkEmitter.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000033#include "llvm/Analysis/TargetLibraryInfo.h"
34#include "llvm/IR/Argument.h"
35#include "llvm/IR/Attributes.h"
36#include "llvm/IR/BasicBlock.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000037#include "llvm/IR/CallSite.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000038#include "llvm/IR/Constant.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000039#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000040#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
Matthias Braun50ec0b52017-05-19 22:37:09 +000042#include "llvm/IR/DerivedTypes.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000043#include "llvm/IR/DiagnosticInfo.h"
Hal Finkel60db0582014-09-07 18:57:58 +000044#include "llvm/IR/Dominators.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000045#include "llvm/IR/Function.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000046#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000047#include "llvm/IR/GlobalAlias.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000048#include "llvm/IR/GlobalValue.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000049#include "llvm/IR/GlobalVariable.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000050#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000052#include "llvm/IR/Instructions.h"
53#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000054#include "llvm/IR/Intrinsics.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000055#include "llvm/IR/LLVMContext.h"
56#include "llvm/IR/Metadata.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000057#include "llvm/IR/Module.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000058#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000059#include "llvm/IR/PatternMatch.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000060#include "llvm/IR/Type.h"
61#include "llvm/IR/User.h"
62#include "llvm/IR/Value.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Compiler.h"
66#include "llvm/Support/ErrorHandling.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000067#include "llvm/Support/KnownBits.h"
Chris Lattner965c7692008-06-02 01:18:21 +000068#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000069#include <algorithm>
70#include <array>
Eugene Zelenko75075ef2017-09-01 21:37:29 +000071#include <cassert>
72#include <cstdint>
73#include <iterator>
74#include <utility>
75
Chris Lattner965c7692008-06-02 01:18:21 +000076using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000077using namespace llvm::PatternMatch;
78
79const unsigned MaxDepth = 6;
80
Philip Reames1c292272015-03-10 22:43:20 +000081// Controls the number of uses of the value searched for possible
82// dominating comparisons.
83static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000084 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000085
Chandler Carruth37c7b082017-08-14 07:03:24 +000086// This optimization is known to cause performance regressions is some cases,
87// keep it under a temporary flag for now.
88static cl::opt<bool>
89DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
90 cl::Hidden, cl::init(true));
91
Craig Topper6b3940a2017-05-03 22:25:19 +000092/// Returns the bitwidth of the given scalar or pointer type. For vector types,
93/// returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000094static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000095 if (unsigned BitWidth = Ty->getScalarSizeInBits())
96 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000097
Mehdi Aminia28d91d2015-03-10 02:37:25 +000098 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000099}
Chris Lattner965c7692008-06-02 01:18:21 +0000100
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000101namespace {
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000102
Hal Finkel60db0582014-09-07 18:57:58 +0000103// Simplifying using an assume can only be done in a particular control-flow
104// context (the context instruction provides that context). If an assume and
105// the context instruction are not in the same block then the DT helps in
106// figuring out if we can use it.
107struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000108 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000109 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +0000110 const Instruction *CxtI;
111 const DominatorTree *DT;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000112
Sanjay Patel54656ca2017-02-06 18:26:06 +0000113 // Unlike the other analyses, this may be a nullptr because not all clients
114 // provide it currently.
115 OptimizationRemarkEmitter *ORE;
Hal Finkel60db0582014-09-07 18:57:58 +0000116
Matthias Braun37e5d792016-01-28 06:29:33 +0000117 /// Set of assumptions that should be excluded from further queries.
118 /// This is because of the potential for mutual recursion to cause
119 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
120 /// classic case of this is assume(x = y), which will attempt to determine
121 /// bits in x from bits in y, which will attempt to determine bits in y from
122 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
Craig Topper6e11a052017-05-08 16:22:48 +0000123 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
124 /// (all of which can call computeKnownBits), and so on.
Li Huang755f75f2016-10-15 19:00:04 +0000125 std::array<const Value *, MaxDepth> Excluded;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000126
127 unsigned NumExcluded = 0;
Matthias Braun37e5d792016-01-28 06:29:33 +0000128
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000129 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000130 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000131 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000132
133 Query(const Query &Q, const Value *NewExcl)
Sanjay Patel54656ca2017-02-06 18:26:06 +0000134 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
135 NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +0000136 Excluded = Q.Excluded;
137 Excluded[NumExcluded++] = NewExcl;
138 assert(NumExcluded <= Excluded.size());
139 }
140
141 bool isExcluded(const Value *Value) const {
142 if (NumExcluded == 0)
143 return false;
144 auto End = Excluded.begin() + NumExcluded;
145 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000146 }
147};
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000148
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000149} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000150
Sanjay Patel547e9752014-11-04 16:09:50 +0000151// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000152// the preferred context instruction (if any).
153static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
154 // If we've been provided with a context instruction, then use that (provided
155 // it has been inserted).
156 if (CxtI && CxtI->getParent())
157 return CxtI;
158
159 // If the value is really an already-inserted instruction, then use that.
160 CxtI = dyn_cast<Instruction>(V);
161 if (CxtI && CxtI->getParent())
162 return CxtI;
163
164 return nullptr;
165}
166
Craig Topperb45eabc2017-04-26 16:39:58 +0000167static void computeKnownBits(const Value *V, KnownBits &Known,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000168 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000169
Craig Topperb45eabc2017-04-26 16:39:58 +0000170void llvm::computeKnownBits(const Value *V, KnownBits &Known,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000171 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000172 AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000173 const DominatorTree *DT,
174 OptimizationRemarkEmitter *ORE) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000175 ::computeKnownBits(V, Known, Depth,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000176 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Hal Finkel60db0582014-09-07 18:57:58 +0000177}
178
Craig Topper6e11a052017-05-08 16:22:48 +0000179static KnownBits computeKnownBits(const Value *V, unsigned Depth,
180 const Query &Q);
181
182KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
183 unsigned Depth, AssumptionCache *AC,
184 const Instruction *CxtI,
Craig Toppera2025ea2017-05-24 16:53:03 +0000185 const DominatorTree *DT,
186 OptimizationRemarkEmitter *ORE) {
187 return ::computeKnownBits(V, Depth,
188 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Craig Topper6e11a052017-05-08 16:22:48 +0000189}
190
Pete Cooper35b00d52016-08-13 01:05:32 +0000191bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
192 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000193 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000194 const DominatorTree *DT) {
195 assert(LHS->getType() == RHS->getType() &&
196 "LHS and RHS should have the same type");
197 assert(LHS->getType()->isIntOrIntVectorTy() &&
198 "LHS and RHS should be integers");
199 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
Craig Topperb45eabc2017-04-26 16:39:58 +0000200 KnownBits LHSKnown(IT->getBitWidth());
201 KnownBits RHSKnown(IT->getBitWidth());
202 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT);
203 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT);
204 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
Jingyue Wuca321902015-05-14 23:53:19 +0000205}
206
Zaara Syeda3a7578c2017-05-31 17:12:38 +0000207bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
208 for (const User *U : CxtI->users()) {
209 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
210 if (IC->isEquality())
211 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
212 if (C->isNullValue())
213 continue;
214 return false;
215 }
216 return true;
217}
218
Pete Cooper35b00d52016-08-13 01:05:32 +0000219static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000220 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000221
Pete Cooper35b00d52016-08-13 01:05:32 +0000222bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
223 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000224 unsigned Depth, AssumptionCache *AC,
225 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000226 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000227 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000228 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000229}
230
Pete Cooper35b00d52016-08-13 01:05:32 +0000231static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000232
Pete Cooper35b00d52016-08-13 01:05:32 +0000233bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000234 AssumptionCache *AC, const Instruction *CxtI,
235 const DominatorTree *DT) {
236 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000237}
238
Pete Cooper35b00d52016-08-13 01:05:32 +0000239bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000240 unsigned Depth,
241 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000242 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000243 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
244 return Known.isNonNegative();
Jingyue Wu10fcea52015-08-20 18:27:04 +0000245}
246
Pete Cooper35b00d52016-08-13 01:05:32 +0000247bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000248 AssumptionCache *AC, const Instruction *CxtI,
249 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000250 if (auto *CI = dyn_cast<ConstantInt>(V))
251 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000252
Philip Reames8f12eba2016-03-09 21:31:47 +0000253 // TODO: We'd doing two recursive queries here. We should factor this such
254 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000255 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
256 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000257}
258
Pete Cooper35b00d52016-08-13 01:05:32 +0000259bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000260 AssumptionCache *AC, const Instruction *CxtI,
261 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000262 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
263 return Known.isNegative();
Nick Lewycky762f8a82016-04-21 00:53:14 +0000264}
265
Pete Cooper35b00d52016-08-13 01:05:32 +0000266static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000267
Pete Cooper35b00d52016-08-13 01:05:32 +0000268bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000269 const DataLayout &DL,
270 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000271 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000272 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
273 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000274 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000275}
276
Pete Cooper35b00d52016-08-13 01:05:32 +0000277static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000278 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000279
Pete Cooper35b00d52016-08-13 01:05:32 +0000280bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
281 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000282 unsigned Depth, AssumptionCache *AC,
283 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000284 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000285 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000286}
287
Pete Cooper35b00d52016-08-13 01:05:32 +0000288static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
289 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000290
Pete Cooper35b00d52016-08-13 01:05:32 +0000291unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000292 unsigned Depth, AssumptionCache *AC,
293 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000294 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000295 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000296}
297
Craig Topper8fbb74b2017-03-24 22:12:10 +0000298static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
299 bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000300 KnownBits &KnownOut, KnownBits &Known2,
Craig Topper8fbb74b2017-03-24 22:12:10 +0000301 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000302 unsigned BitWidth = KnownOut.getBitWidth();
Craig Topper8fbb74b2017-03-24 22:12:10 +0000303
304 // If an initial sequence of bits in the result is not needed, the
305 // corresponding bits in the operands are not needed.
Craig Topperb45eabc2017-04-26 16:39:58 +0000306 KnownBits LHSKnown(BitWidth);
307 computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
308 computeKnownBits(Op1, Known2, Depth + 1, Q);
Craig Topper8fbb74b2017-03-24 22:12:10 +0000309
Craig Topperb498a232017-08-08 16:29:35 +0000310 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000311}
312
Pete Cooper35b00d52016-08-13 01:05:32 +0000313static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000314 KnownBits &Known, KnownBits &Known2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000315 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000316 unsigned BitWidth = Known.getBitWidth();
317 computeKnownBits(Op1, Known, Depth + 1, Q);
318 computeKnownBits(Op0, Known2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000319
320 bool isKnownNegative = false;
321 bool isKnownNonNegative = false;
322 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000323 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000324 if (Op0 == Op1) {
325 // The product of a number with itself is non-negative.
326 isKnownNonNegative = true;
327 } else {
Craig Topperca48af32017-04-29 16:43:11 +0000328 bool isKnownNonNegativeOp1 = Known.isNonNegative();
329 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
330 bool isKnownNegativeOp1 = Known.isNegative();
331 bool isKnownNegativeOp0 = Known2.isNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000332 // The product of two numbers with the same sign is non-negative.
333 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
334 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
335 // The product of a negative number and a non-negative number is either
336 // negative or zero.
337 if (!isKnownNonNegative)
338 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000339 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000340 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000341 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000342 }
343 }
344
345 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000346 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000347 // More trickiness is possible, but this is sufficient for the
348 // interesting case of alignment computation.
Craig Topper8df66c62017-05-12 17:20:30 +0000349 unsigned TrailZ = Known.countMinTrailingZeros() +
350 Known2.countMinTrailingZeros();
351 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
352 Known2.countMinLeadingZeros(),
Nick Lewyckyfa306072012-03-18 23:28:48 +0000353 BitWidth) - BitWidth;
354
355 TrailZ = std::min(TrailZ, BitWidth);
356 LeadZ = std::min(LeadZ, BitWidth);
Craig Topperf0aeee02017-05-05 17:36:09 +0000357 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000358 Known.Zero.setLowBits(TrailZ);
359 Known.Zero.setHighBits(LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000360
361 // Only make use of no-wrap flags if we failed to compute the sign bit
362 // directly. This matters if the multiplication always overflows, in
363 // which case we prefer to follow the result of the direct computation,
364 // though as the program is invoking undefined behaviour we can choose
365 // whatever we like here.
Craig Topperca48af32017-04-29 16:43:11 +0000366 if (isKnownNonNegative && !Known.isNegative())
367 Known.makeNonNegative();
368 else if (isKnownNegative && !Known.isNonNegative())
369 Known.makeNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000370}
371
Jingyue Wu37fcb592014-06-19 16:50:16 +0000372void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Craig Topperf42b23f2017-04-28 06:28:56 +0000373 KnownBits &Known) {
374 unsigned BitWidth = Known.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000375 unsigned NumRanges = Ranges.getNumOperands() / 2;
376 assert(NumRanges >= 1);
377
Craig Topperf42b23f2017-04-28 06:28:56 +0000378 Known.Zero.setAllBits();
379 Known.One.setAllBits();
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000380
Rafael Espindola53190532012-03-30 15:52:11 +0000381 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000382 ConstantInt *Lower =
383 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
384 ConstantInt *Upper =
385 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000386 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000387
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000388 // The first CommonPrefixBits of all values in Range are equal.
389 unsigned CommonPrefixBits =
390 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
391
392 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
Craig Topperf42b23f2017-04-28 06:28:56 +0000393 Known.One &= Range.getUnsignedMax() & Mask;
394 Known.Zero &= ~Range.getUnsignedMax() & Mask;
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000395 }
Rafael Espindola53190532012-03-30 15:52:11 +0000396}
Jay Foad5a29c362014-05-15 12:12:55 +0000397
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000398static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000399 SmallVector<const Value *, 16> WorkSet(1, I);
400 SmallPtrSet<const Value *, 32> Visited;
401 SmallPtrSet<const Value *, 16> EphValues;
402
Hal Finkelf2199b22015-10-23 20:37:08 +0000403 // The instruction defining an assumption's condition itself is always
404 // considered ephemeral to that assumption (even if it has other
405 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000406 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000407 return true;
408
Hal Finkel60db0582014-09-07 18:57:58 +0000409 while (!WorkSet.empty()) {
410 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000411 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000412 continue;
413
414 // If all uses of this value are ephemeral, then so is this value.
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000415 if (llvm::all_of(V->users(), [&](const User *U) {
416 return EphValues.count(U);
417 })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000418 if (V == E)
419 return true;
420
Hal Finkelb03dd4b2017-08-14 17:11:43 +0000421 if (V == I || isSafeToSpeculativelyExecute(V)) {
422 EphValues.insert(V);
423 if (const User *U = dyn_cast<User>(V))
424 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
425 J != JE; ++J)
426 WorkSet.push_back(*J);
427 }
Hal Finkel60db0582014-09-07 18:57:58 +0000428 }
429 }
430
431 return false;
432}
433
434// Is this an intrinsic that cannot be speculated but also cannot trap?
435static bool isAssumeLikeIntrinsic(const Instruction *I) {
436 if (const CallInst *CI = dyn_cast<CallInst>(I))
437 if (Function *F = CI->getCalledFunction())
438 switch (F->getIntrinsicID()) {
439 default: break;
440 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
441 case Intrinsic::assume:
442 case Intrinsic::dbg_declare:
443 case Intrinsic::dbg_value:
444 case Intrinsic::invariant_start:
445 case Intrinsic::invariant_end:
446 case Intrinsic::lifetime_start:
447 case Intrinsic::lifetime_end:
448 case Intrinsic::objectsize:
449 case Intrinsic::ptr_annotation:
450 case Intrinsic::var_annotation:
451 return true;
452 }
453
454 return false;
455}
456
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000457bool llvm::isValidAssumeForContext(const Instruction *Inv,
458 const Instruction *CxtI,
459 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000460 // There are two restrictions on the use of an assume:
461 // 1. The assume must dominate the context (or the control flow must
462 // reach the assume whenever it reaches the context).
463 // 2. The context must not be in the assume's set of ephemeral values
464 // (otherwise we will use the assume to prove that the condition
465 // feeding the assume is trivially true, thus causing the removal of
466 // the assume).
467
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000468 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000469 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000470 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000471 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
472 // We don't have a DT, but this trivially dominates.
473 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000474 }
475
Pete Cooper54a02552016-08-12 01:00:15 +0000476 // With or without a DT, the only remaining case we will check is if the
477 // instructions are in the same BB. Give up if that is not the case.
478 if (Inv->getParent() != CxtI->getParent())
479 return false;
480
481 // If we have a dom tree, then we now know that the assume doens't dominate
482 // the other instruction. If we don't have a dom tree then we can check if
483 // the assume is first in the BB.
484 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000485 // Search forward from the assume until we reach the context (or the end
486 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000487 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000488 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000489 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000490 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000491 }
492
Pete Cooper54a02552016-08-12 01:00:15 +0000493 // The context comes first, but they're both in the same block. Make sure
494 // there is nothing in between that might interrupt the control flow.
495 for (BasicBlock::const_iterator I =
496 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
497 I != IE; ++I)
498 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
499 return false;
500
501 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000502}
503
Craig Topperb45eabc2017-04-26 16:39:58 +0000504static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
505 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000506 // Use of assumptions is context-sensitive. If we don't have a context, we
507 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000508 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000509 return;
510
Craig Topperb45eabc2017-04-26 16:39:58 +0000511 unsigned BitWidth = Known.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000512
Hal Finkel8a9a7832017-01-11 13:24:24 +0000513 // Note that the patterns below need to be kept in sync with the code
514 // in AssumptionCache::updateAffectedValues.
515
516 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000517 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000518 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000519 CallInst *I = cast<CallInst>(AssumeVH);
520 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
521 "Got assumption for the wrong function!");
522 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000523 continue;
524
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000525 // Warning: This loop can end up being somewhat performance sensetive.
526 // We're running this loop for once for each value queried resulting in a
527 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000528
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000529 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
530 "must be an assume intrinsic");
531
532 Value *Arg = I->getArgOperand(0);
533
534 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000535 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000536 Known.setAllOnes();
Hal Finkel60db0582014-09-07 18:57:58 +0000537 return;
538 }
Sanjay Patel96669962017-01-17 18:15:49 +0000539 if (match(Arg, m_Not(m_Specific(V))) &&
540 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
541 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000542 Known.setAllZero();
Sanjay Patel96669962017-01-17 18:15:49 +0000543 return;
544 }
Hal Finkel60db0582014-09-07 18:57:58 +0000545
David Majnemer9b609752014-12-12 23:59:29 +0000546 // The remaining tests are all recursive, so bail out if we hit the limit.
547 if (Depth == MaxDepth)
548 continue;
549
Hal Finkel60db0582014-09-07 18:57:58 +0000550 Value *A, *B;
551 auto m_V = m_CombineOr(m_Specific(V),
552 m_CombineOr(m_PtrToInt(m_Specific(V)),
553 m_BitCast(m_Specific(V))));
554
555 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000556 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000557 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000558 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000559 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000560 KnownBits RHSKnown(BitWidth);
561 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
562 Known.Zero |= RHSKnown.Zero;
563 Known.One |= RHSKnown.One;
Hal Finkel60db0582014-09-07 18:57:58 +0000564 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000565 } else if (match(Arg,
566 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000567 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000568 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000569 KnownBits RHSKnown(BitWidth);
570 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
571 KnownBits MaskKnown(BitWidth);
572 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000573
574 // For those bits in the mask that are known to be one, we can propagate
575 // known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000576 Known.Zero |= RHSKnown.Zero & MaskKnown.One;
577 Known.One |= RHSKnown.One & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000578 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000579 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
580 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000581 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000582 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000583 KnownBits RHSKnown(BitWidth);
584 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
585 KnownBits MaskKnown(BitWidth);
586 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000587
588 // For those bits in the mask that are known to be one, we can propagate
589 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000590 Known.Zero |= RHSKnown.One & MaskKnown.One;
591 Known.One |= RHSKnown.Zero & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000592 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000593 } else if (match(Arg,
594 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000595 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000596 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000597 KnownBits RHSKnown(BitWidth);
598 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
599 KnownBits BKnown(BitWidth);
600 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000601
602 // For those bits in B that are known to be zero, we can propagate known
603 // bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000604 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
605 Known.One |= RHSKnown.One & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000606 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000607 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
608 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000609 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000610 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000611 KnownBits RHSKnown(BitWidth);
612 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
613 KnownBits BKnown(BitWidth);
614 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000615
616 // For those bits in B that are known to be zero, we can propagate
617 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000618 Known.Zero |= RHSKnown.One & BKnown.Zero;
619 Known.One |= RHSKnown.Zero & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000620 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000621 } else if (match(Arg,
622 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000623 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000624 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000625 KnownBits RHSKnown(BitWidth);
626 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
627 KnownBits BKnown(BitWidth);
628 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000629
630 // For those bits in B that are known to be zero, we can propagate known
631 // bits from the RHS to V. For those bits in B that are known to be one,
632 // we can propagate inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000633 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
634 Known.One |= RHSKnown.One & BKnown.Zero;
635 Known.Zero |= RHSKnown.One & BKnown.One;
636 Known.One |= RHSKnown.Zero & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000637 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000638 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
639 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000640 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000641 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000642 KnownBits RHSKnown(BitWidth);
643 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
644 KnownBits BKnown(BitWidth);
645 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000646
647 // For those bits in B that are known to be zero, we can propagate
648 // inverted known bits from the RHS to V. For those bits in B that are
649 // known to be one, we can propagate known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000650 Known.Zero |= RHSKnown.One & BKnown.Zero;
651 Known.One |= RHSKnown.Zero & BKnown.Zero;
652 Known.Zero |= RHSKnown.Zero & BKnown.One;
653 Known.One |= RHSKnown.One & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000654 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000655 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
656 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000657 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000658 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000659 KnownBits RHSKnown(BitWidth);
660 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000661 // For those bits in RHS that are known, we can propagate them to known
662 // bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000663 RHSKnown.Zero.lshrInPlace(C->getZExtValue());
664 Known.Zero |= RHSKnown.Zero;
665 RHSKnown.One.lshrInPlace(C->getZExtValue());
666 Known.One |= RHSKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000667 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000668 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
669 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000670 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000671 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000672 KnownBits RHSKnown(BitWidth);
673 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000674 // For those bits in RHS that are known, we can propagate them inverted
675 // to known bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000676 RHSKnown.One.lshrInPlace(C->getZExtValue());
677 Known.Zero |= RHSKnown.One;
678 RHSKnown.Zero.lshrInPlace(C->getZExtValue());
679 Known.One |= RHSKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000680 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000681 } else if (match(Arg,
Craig Topper7b66ffe2017-06-24 06:24:04 +0000682 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000683 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000684 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000685 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000686 KnownBits RHSKnown(BitWidth);
687 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000688 // For those bits in RHS that are known, we can propagate them to known
689 // bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000690 Known.Zero |= RHSKnown.Zero << C->getZExtValue();
691 Known.One |= RHSKnown.One << C->getZExtValue();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000692 // assume(~(v >> c) = a)
Craig Topper7b66ffe2017-06-24 06:24:04 +0000693 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
Philip Reames00d3b272014-11-24 23:44:28 +0000694 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000695 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000696 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000697 KnownBits RHSKnown(BitWidth);
698 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000699 // For those bits in RHS that are known, we can propagate them inverted
700 // to known bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000701 Known.Zero |= RHSKnown.One << C->getZExtValue();
702 Known.One |= RHSKnown.Zero << C->getZExtValue();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000703 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000704 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000705 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000706 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000707 KnownBits RHSKnown(BitWidth);
708 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000709
Craig Topperca48af32017-04-29 16:43:11 +0000710 if (RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000711 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000712 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000713 }
714 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000715 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000716 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000717 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000718 KnownBits RHSKnown(BitWidth);
719 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000720
Craig Topperf0aeee02017-05-05 17:36:09 +0000721 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000722 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000723 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000724 }
725 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000726 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000727 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000728 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000729 KnownBits RHSKnown(BitWidth);
730 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000731
Craig Topperca48af32017-04-29 16:43:11 +0000732 if (RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000733 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000734 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000735 }
736 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000737 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000738 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000739 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000740 KnownBits RHSKnown(BitWidth);
741 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000742
Craig Topperf0aeee02017-05-05 17:36:09 +0000743 if (RHSKnown.isZero() || RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000744 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000745 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000746 }
747 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000748 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000749 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000750 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000751 KnownBits RHSKnown(BitWidth);
752 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000753
754 // Whatever high bits in c are zero are known to be zero.
Craig Topper8df66c62017-05-12 17:20:30 +0000755 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
756 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000757 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000758 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000759 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000760 KnownBits RHSKnown(BitWidth);
761 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000762
763 // Whatever high bits in c are zero are known to be zero (if c is a power
764 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000765 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Craig Topper8df66c62017-05-12 17:20:30 +0000766 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000767 else
Craig Topper8df66c62017-05-12 17:20:30 +0000768 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
Hal Finkel60db0582014-09-07 18:57:58 +0000769 }
770 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000771
772 // If assumptions conflict with each other or previous known bits, then we
Sanjay Patel54656ca2017-02-06 18:26:06 +0000773 // have a logical fallacy. It's possible that the assumption is not reachable,
774 // so this isn't a real bug. On the other hand, the program may have undefined
775 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
776 // clear out the known bits, try to warn the user, and hope for the best.
Craig Topperb45eabc2017-04-26 16:39:58 +0000777 if (Known.Zero.intersects(Known.One)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000778 Known.resetAll();
Sanjay Patel54656ca2017-02-06 18:26:06 +0000779
Vivek Pandya95906582017-10-11 17:12:59 +0000780 if (Q.ORE)
781 Q.ORE->emit([&]() {
782 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
783 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
784 CxtI)
785 << "Detected conflicting code assumptions. Program may "
786 "have undefined behavior, or compiler may have "
787 "internal error.";
788 });
Sanjay Patel25f6d712017-02-01 15:41:32 +0000789 }
Hal Finkel60db0582014-09-07 18:57:58 +0000790}
791
Sanjay Patelb7d12382017-10-16 14:46:37 +0000792/// Compute known bits from a shift operator, including those with a
793/// non-constant shift amount. Known is the output of this function. Known2 is a
794/// pre-allocated temporary with the same bit width as Known. KZF and KOF are
795/// operator-specific functors that, given the known-zero or known-one bits
796/// respectively, and a shift amount, compute the implied known-zero or
797/// known-one bits of the shift operator's result respectively for that shift
798/// amount. The results from calling KZF and KOF are conservatively combined for
799/// all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000800static void computeKnownBitsFromShiftOperator(
Craig Topperb45eabc2017-04-26 16:39:58 +0000801 const Operator *I, KnownBits &Known, KnownBits &Known2,
802 unsigned Depth, const Query &Q,
David Majnemer54690dc2016-08-23 20:52:00 +0000803 function_ref<APInt(const APInt &, unsigned)> KZF,
804 function_ref<APInt(const APInt &, unsigned)> KOF) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000805 unsigned BitWidth = Known.getBitWidth();
Hal Finkelf2199b22015-10-23 20:37:08 +0000806
807 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
808 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
809
Craig Topperb45eabc2017-04-26 16:39:58 +0000810 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
811 Known.Zero = KZF(Known.Zero, ShiftAmt);
812 Known.One = KOF(Known.One, ShiftAmt);
Sanjay Patele272be72017-10-12 17:31:46 +0000813 // If the known bits conflict, this must be an overflowing left shift, so
814 // the shift result is poison. We can return anything we want. Choose 0 for
815 // the best folding opportunity.
816 if (Known.hasConflict())
817 Known.setAllZero();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000818
Hal Finkelf2199b22015-10-23 20:37:08 +0000819 return;
820 }
821
Craig Topperb45eabc2017-04-26 16:39:58 +0000822 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000823
Sanjay Patele272be72017-10-12 17:31:46 +0000824 // If the shift amount could be greater than or equal to the bit-width of the
825 // LHS, the value could be poison, but bail out because the check below is
826 // expensive. TODO: Should we just carry on?
Craig Topperb45eabc2017-04-26 16:39:58 +0000827 if ((~Known.Zero).uge(BitWidth)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000828 Known.resetAll();
Oliver Stannard06204112017-03-14 10:13:17 +0000829 return;
830 }
831
Craig Topperb45eabc2017-04-26 16:39:58 +0000832 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
Hal Finkelf2199b22015-10-23 20:37:08 +0000833 // BitWidth > 64 and any upper bits are known, we'll end up returning the
834 // limit value (which implies all bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000835 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
836 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
Hal Finkelf2199b22015-10-23 20:37:08 +0000837
838 // It would be more-clearly correct to use the two temporaries for this
839 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Craig Topperf0aeee02017-05-05 17:36:09 +0000840 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000841
James Molloy493e57d2015-10-26 14:10:46 +0000842 // If we know the shifter operand is nonzero, we can sometimes infer more
843 // known bits. However this is expensive to compute, so be lazy about it and
844 // only compute it when absolutely necessary.
845 Optional<bool> ShifterOperandIsNonZero;
846
Hal Finkelf2199b22015-10-23 20:37:08 +0000847 // Early exit if we can't constrain any well-defined shift amount.
Craig Topperf93b7b12017-06-14 17:04:59 +0000848 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
849 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
Sanjay Patelb7d12382017-10-16 14:46:37 +0000850 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000851 if (!*ShifterOperandIsNonZero)
852 return;
853 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000854
Craig Topperb45eabc2017-04-26 16:39:58 +0000855 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000856
Craig Topperb45eabc2017-04-26 16:39:58 +0000857 Known.Zero.setAllBits();
858 Known.One.setAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000859 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
860 // Combine the shifted known input bits only for those shift amounts
861 // compatible with its known constraints.
862 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
863 continue;
864 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
865 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000866 // If we know the shifter is nonzero, we may be able to infer more known
867 // bits. This check is sunk down as far as possible to avoid the expensive
868 // call to isKnownNonZero if the cheaper checks above fail.
869 if (ShiftAmt == 0) {
870 if (!ShifterOperandIsNonZero.hasValue())
871 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000872 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000873 if (*ShifterOperandIsNonZero)
874 continue;
875 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000876
Craig Topperb45eabc2017-04-26 16:39:58 +0000877 Known.Zero &= KZF(Known2.Zero, ShiftAmt);
878 Known.One &= KOF(Known2.One, ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +0000879 }
880
Sanjay Patele272be72017-10-12 17:31:46 +0000881 // If the known bits conflict, the result is poison. Return a 0 and hope the
882 // caller can further optimize that.
883 if (Known.hasConflict())
884 Known.setAllZero();
Hal Finkelf2199b22015-10-23 20:37:08 +0000885}
886
Craig Topperb45eabc2017-04-26 16:39:58 +0000887static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
888 unsigned Depth, const Query &Q) {
889 unsigned BitWidth = Known.getBitWidth();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000890
Craig Topperb45eabc2017-04-26 16:39:58 +0000891 KnownBits Known2(Known);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000892 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000893 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000894 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000895 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +0000896 computeKnownBitsFromRangeMetadata(*MD, Known);
Jay Foad5a29c362014-05-15 12:12:55 +0000897 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000898 case Instruction::And: {
899 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000900 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
901 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000902
Chris Lattner965c7692008-06-02 01:18:21 +0000903 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000904 Known.One &= Known2.One;
Chris Lattner965c7692008-06-02 01:18:21 +0000905 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000906 Known.Zero |= Known2.Zero;
Philip Reames2d858742015-11-10 18:46:14 +0000907
908 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
909 // here we handle the more general case of adding any odd number by
910 // matching the form add(x, add(x, y)) where y is odd.
911 // TODO: This could be generalized to clearing any bit set in y where the
912 // following bit is known to be unset in y.
913 Value *Y = nullptr;
Craig Topperb45eabc2017-04-26 16:39:58 +0000914 if (!Known.Zero[0] && !Known.One[0] &&
Craig Toppera80f2042017-04-13 19:04:45 +0000915 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
916 m_Value(Y))) ||
917 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
918 m_Value(Y))))) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000919 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000920 computeKnownBits(Y, Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000921 if (Known2.countMinTrailingOnes() > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +0000922 Known.Zero.setBit(0);
Philip Reames2d858742015-11-10 18:46:14 +0000923 }
Jay Foad5a29c362014-05-15 12:12:55 +0000924 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000925 }
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000926 case Instruction::Or:
Craig Topperb45eabc2017-04-26 16:39:58 +0000927 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
928 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000929
Chris Lattner965c7692008-06-02 01:18:21 +0000930 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000931 Known.Zero &= Known2.Zero;
Chris Lattner965c7692008-06-02 01:18:21 +0000932 // Output known-1 are known to be set if set in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000933 Known.One |= Known2.One;
Jay Foad5a29c362014-05-15 12:12:55 +0000934 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000935 case Instruction::Xor: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000936 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
937 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000938
Chris Lattner965c7692008-06-02 01:18:21 +0000939 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000940 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
Chris Lattner965c7692008-06-02 01:18:21 +0000941 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000942 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
943 Known.Zero = std::move(KnownZeroOut);
Jay Foad5a29c362014-05-15 12:12:55 +0000944 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000945 }
946 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000947 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperb45eabc2017-04-26 16:39:58 +0000948 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
949 Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000950 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000951 }
952 case Instruction::UDiv: {
953 // For the purposes of computing leading zeros we can conservatively
954 // treat a udiv as a logical right shift by the power of 2 known to
955 // be less than the denominator.
Craig Topperb45eabc2017-04-26 16:39:58 +0000956 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000957 unsigned LeadZ = Known2.countMinLeadingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +0000958
Craig Topperf0aeee02017-05-05 17:36:09 +0000959 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000960 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000961 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
962 if (RHSMaxLeadingZeros != BitWidth)
963 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
Chris Lattner965c7692008-06-02 01:18:21 +0000964
Craig Topperb45eabc2017-04-26 16:39:58 +0000965 Known.Zero.setHighBits(LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000966 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000967 }
David Majnemera19d0f22016-08-06 08:16:00 +0000968 case Instruction::Select: {
Craig Toppere953dec2017-04-13 20:39:37 +0000969 const Value *LHS, *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000970 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
971 if (SelectPatternResult::isMinOrMax(SPF)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000972 computeKnownBits(RHS, Known, Depth + 1, Q);
973 computeKnownBits(LHS, Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000974 } else {
Craig Topperb45eabc2017-04-26 16:39:58 +0000975 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
976 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000977 }
978
979 unsigned MaxHighOnes = 0;
980 unsigned MaxHighZeros = 0;
981 if (SPF == SPF_SMAX) {
982 // If both sides are negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +0000983 if (Known.isNegative() && Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000984 // We can derive a lower bound on the result by taking the max of the
985 // leading one bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000986 MaxHighOnes =
987 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +0000988 // If either side is non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000989 else if (Known.isNonNegative() || Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000990 MaxHighZeros = 1;
991 } else if (SPF == SPF_SMIN) {
992 // If both sides are non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000993 if (Known.isNonNegative() && Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000994 // We can derive an upper bound on the result by taking the max of the
995 // leading zero bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000996 MaxHighZeros = std::max(Known.countMinLeadingZeros(),
997 Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +0000998 // If either side is negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +0000999 else if (Known.isNegative() || Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +00001000 MaxHighOnes = 1;
1001 } else if (SPF == SPF_UMAX) {
1002 // We can derive a lower bound on the result by taking the max of the
1003 // leading one bits.
1004 MaxHighOnes =
Craig Topper8df66c62017-05-12 17:20:30 +00001005 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001006 } else if (SPF == SPF_UMIN) {
1007 // We can derive an upper bound on the result by taking the max of the
1008 // leading zero bits.
1009 MaxHighZeros =
Craig Topper8df66c62017-05-12 17:20:30 +00001010 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001011 }
1012
Chris Lattner965c7692008-06-02 01:18:21 +00001013 // Only known if known in both the LHS and RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001014 Known.One &= Known2.One;
1015 Known.Zero &= Known2.Zero;
David Majnemera19d0f22016-08-06 08:16:00 +00001016 if (MaxHighOnes > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001017 Known.One.setHighBits(MaxHighOnes);
David Majnemera19d0f22016-08-06 08:16:00 +00001018 if (MaxHighZeros > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001019 Known.Zero.setHighBits(MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001020 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001021 }
Chris Lattner965c7692008-06-02 01:18:21 +00001022 case Instruction::FPTrunc:
1023 case Instruction::FPExt:
1024 case Instruction::FPToUI:
1025 case Instruction::FPToSI:
1026 case Instruction::SIToFP:
1027 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001028 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001029 case Instruction::PtrToInt:
1030 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001031 // Fall through and handle them the same as zext/trunc.
1032 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001033 case Instruction::ZExt:
1034 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001035 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001036
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001037 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001038 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1039 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001040 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001041
1042 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Craig Topperd938fd12017-05-03 22:07:25 +00001043 Known = Known.zextOrTrunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001044 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Craig Topperd938fd12017-05-03 22:07:25 +00001045 Known = Known.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001046 // Any top bits are known to be zero.
1047 if (BitWidth > SrcBitWidth)
Craig Topperb45eabc2017-04-26 16:39:58 +00001048 Known.Zero.setBitsFrom(SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001049 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001050 }
1051 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001052 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001053 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001054 // TODO: For now, not handling conversions like:
1055 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001056 !I->getType()->isVectorTy()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001057 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001058 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001059 }
1060 break;
1061 }
1062 case Instruction::SExt: {
1063 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001064 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001065
Craig Topperd938fd12017-05-03 22:07:25 +00001066 Known = Known.trunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001067 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001068 // If the sign bit of the input is known set or clear, then we know the
1069 // top bits of the result.
Craig Topperd938fd12017-05-03 22:07:25 +00001070 Known = Known.sext(BitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001071 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001072 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001073 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001074 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001075 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperd73c6b42017-03-23 07:06:39 +00001076 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1077 APInt KZResult = KnownZero << ShiftAmt;
1078 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001079 // If this shift has "nsw" keyword, then the result is either a poison
1080 // value or has the same sign bit as the first operand.
Craig Topperd23004c2017-04-17 16:38:20 +00001081 if (NSW && KnownZero.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001082 KZResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001083 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001084 };
1085
Craig Topperd73c6b42017-03-23 07:06:39 +00001086 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001087 APInt KOResult = KnownOne << ShiftAmt;
Craig Topperd23004c2017-04-17 16:38:20 +00001088 if (NSW && KnownOne.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001089 KOResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001090 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001091 };
1092
Craig Topperb45eabc2017-04-26 16:39:58 +00001093 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001094 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001095 }
1096 case Instruction::LShr: {
Sanjay Patelb7d12382017-10-16 14:46:37 +00001097 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Craig Topperfc947bc2017-04-18 17:14:21 +00001098 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1099 APInt KZResult = KnownZero.lshr(ShiftAmt);
1100 // High bits known zero.
1101 KZResult.setHighBits(ShiftAmt);
1102 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001103 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001104
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001105 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001106 return KnownOne.lshr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001107 };
1108
Craig Topperb45eabc2017-04-26 16:39:58 +00001109 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001110 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001111 }
1112 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001113 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001114 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001115 return KnownZero.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001116 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001117
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001118 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001119 return KnownOne.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001120 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001121
Craig Topperb45eabc2017-04-26 16:39:58 +00001122 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001123 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001124 }
Chris Lattner965c7692008-06-02 01:18:21 +00001125 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001126 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001127 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001128 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001129 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001130 }
Chris Lattner965c7692008-06-02 01:18:21 +00001131 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001132 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001133 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001134 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001135 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001136 }
1137 case Instruction::SRem:
1138 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001139 APInt RA = Rem->getValue().abs();
1140 if (RA.isPowerOf2()) {
1141 APInt LowBits = RA - 1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001142 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001143
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001144 // The low bits of the first operand are unchanged by the srem.
Craig Topperb45eabc2017-04-26 16:39:58 +00001145 Known.Zero = Known2.Zero & LowBits;
1146 Known.One = Known2.One & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001147
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001148 // If the first operand is non-negative or has all low bits zero, then
1149 // the upper bits are all zero.
Craig Topperca48af32017-04-29 16:43:11 +00001150 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
Craig Topperb45eabc2017-04-26 16:39:58 +00001151 Known.Zero |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001152
1153 // If the first operand is negative and not all low bits are zero, then
1154 // the upper bits are all one.
Craig Topperca48af32017-04-29 16:43:11 +00001155 if (Known2.isNegative() && LowBits.intersects(Known2.One))
Craig Topperb45eabc2017-04-26 16:39:58 +00001156 Known.One |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001157
Craig Topperb45eabc2017-04-26 16:39:58 +00001158 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +00001159 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001160 }
1161 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001162
1163 // The sign bit is the LHS's sign bit, except when the result of the
1164 // remainder is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +00001165 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topperda886c62017-04-16 21:46:12 +00001166 // If it's known zero, our sign bit is also zero.
Craig Topperca48af32017-04-29 16:43:11 +00001167 if (Known2.isNonNegative())
1168 Known.makeNonNegative();
Nick Lewyckye4679792011-03-07 01:50:10 +00001169
Chris Lattner965c7692008-06-02 01:18:21 +00001170 break;
1171 case Instruction::URem: {
1172 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001173 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001174 if (RA.isPowerOf2()) {
1175 APInt LowBits = (RA - 1);
Craig Topperb45eabc2017-04-26 16:39:58 +00001176 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1177 Known.Zero |= ~LowBits;
1178 Known.One &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001179 break;
1180 }
1181 }
1182
1183 // Since the result is less than or equal to either operand, any leading
1184 // zero bits in either operand must also exist in the result.
Craig Topperb45eabc2017-04-26 16:39:58 +00001185 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1186 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001187
Craig Topper8df66c62017-05-12 17:20:30 +00001188 unsigned Leaders =
1189 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Craig Topperf0aeee02017-05-05 17:36:09 +00001190 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001191 Known.Zero.setHighBits(Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001192 break;
1193 }
1194
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001195 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001196 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001197 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001198 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001199 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001200
Chris Lattner965c7692008-06-02 01:18:21 +00001201 if (Align > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001202 Known.Zero.setLowBits(countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001203 break;
1204 }
1205 case Instruction::GetElementPtr: {
1206 // Analyze all of the subscripts of this getelementptr instruction
1207 // to determine if we can prove known low zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001208 KnownBits LocalKnown(BitWidth);
1209 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001210 unsigned TrailZ = LocalKnown.countMinTrailingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001211
1212 gep_type_iterator GTI = gep_type_begin(I);
1213 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1214 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001215 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001216 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001217
1218 // Handle case when index is vector zeroinitializer
1219 Constant *CIndex = cast<Constant>(Index);
1220 if (CIndex->isZeroValue())
1221 continue;
1222
1223 if (CIndex->getType()->isVectorTy())
1224 Index = CIndex->getSplatValue();
1225
Chris Lattner965c7692008-06-02 01:18:21 +00001226 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001227 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001228 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001229 TrailZ = std::min<unsigned>(TrailZ,
1230 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001231 } else {
1232 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001233 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001234 if (!IndexedTy->isSized()) {
1235 TrailZ = 0;
1236 break;
1237 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001238 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001239 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Craig Topperb45eabc2017-04-26 16:39:58 +00001240 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1241 computeKnownBits(Index, LocalKnown, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001242 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001243 unsigned(countTrailingZeros(TypeSize) +
Craig Topper8df66c62017-05-12 17:20:30 +00001244 LocalKnown.countMinTrailingZeros()));
Chris Lattner965c7692008-06-02 01:18:21 +00001245 }
1246 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001247
Craig Topperb45eabc2017-04-26 16:39:58 +00001248 Known.Zero.setLowBits(TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001249 break;
1250 }
1251 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001252 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001253 // Handle the case of a simple two-predecessor recurrence PHI.
1254 // There's a lot more that could theoretically be done here, but
1255 // this is sufficient to catch some interesting cases.
1256 if (P->getNumIncomingValues() == 2) {
1257 for (unsigned i = 0; i != 2; ++i) {
1258 Value *L = P->getIncomingValue(i);
1259 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001260 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001261 if (!LU)
1262 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001263 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001264 // Check for operations that have the property that if
1265 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001266 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001267 if (Opcode == Instruction::Add ||
1268 Opcode == Instruction::Sub ||
1269 Opcode == Instruction::And ||
1270 Opcode == Instruction::Or ||
1271 Opcode == Instruction::Mul) {
1272 Value *LL = LU->getOperand(0);
1273 Value *LR = LU->getOperand(1);
1274 // Find a recurrence.
1275 if (LL == I)
1276 L = LR;
1277 else if (LR == I)
1278 L = LL;
1279 else
1280 break;
1281 // Ok, we have a PHI of the form L op= R. Check for low
1282 // zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001283 computeKnownBits(R, Known2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001284
1285 // We need to take the minimum number of known bits
Craig Topperb45eabc2017-04-26 16:39:58 +00001286 KnownBits Known3(Known);
1287 computeKnownBits(L, Known3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001288
Craig Topper8df66c62017-05-12 17:20:30 +00001289 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1290 Known3.countMinTrailingZeros()));
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001291
Chandler Carruth37c7b082017-08-14 07:03:24 +00001292 if (DontImproveNonNegativePhiBits)
1293 break;
1294
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001295 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1296 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1297 // If initial value of recurrence is nonnegative, and we are adding
1298 // a nonnegative number with nsw, the result can only be nonnegative
1299 // or poison value regardless of the number of times we execute the
1300 // add in phi recurrence. If initial value is negative and we are
1301 // adding a negative number with nsw, the result can only be
1302 // negative or poison value. Similar arguments apply to sub and mul.
1303 //
1304 // (add non-negative, non-negative) --> non-negative
1305 // (add negative, negative) --> negative
1306 if (Opcode == Instruction::Add) {
Craig Topperca48af32017-04-29 16:43:11 +00001307 if (Known2.isNonNegative() && Known3.isNonNegative())
1308 Known.makeNonNegative();
1309 else if (Known2.isNegative() && Known3.isNegative())
1310 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001311 }
1312
1313 // (sub nsw non-negative, negative) --> non-negative
1314 // (sub nsw negative, non-negative) --> negative
1315 else if (Opcode == Instruction::Sub && LL == I) {
Craig Topperca48af32017-04-29 16:43:11 +00001316 if (Known2.isNonNegative() && Known3.isNegative())
1317 Known.makeNonNegative();
1318 else if (Known2.isNegative() && Known3.isNonNegative())
1319 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001320 }
1321
1322 // (mul nsw non-negative, non-negative) --> non-negative
Craig Topperca48af32017-04-29 16:43:11 +00001323 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1324 Known3.isNonNegative())
1325 Known.makeNonNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001326 }
1327
Chris Lattner965c7692008-06-02 01:18:21 +00001328 break;
1329 }
1330 }
1331 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001332
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001333 // Unreachable blocks may have zero-operand PHI nodes.
1334 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001335 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001336
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001337 // Otherwise take the unions of the known bit sets of the operands,
1338 // taking conservative care to avoid excessive recursion.
Craig Topperb45eabc2017-04-26 16:39:58 +00001339 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001340 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001341 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001342 break;
1343
Craig Topperb45eabc2017-04-26 16:39:58 +00001344 Known.Zero.setAllBits();
1345 Known.One.setAllBits();
Pete Cooper833f34d2015-05-12 20:05:31 +00001346 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001347 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001348 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001349
Craig Topperb45eabc2017-04-26 16:39:58 +00001350 Known2 = KnownBits(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001351 // Recurse, but cap the recursion to one level, because we don't
1352 // want to waste time spinning around in loops.
Craig Topperb45eabc2017-04-26 16:39:58 +00001353 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1354 Known.Zero &= Known2.Zero;
1355 Known.One &= Known2.One;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001356 // If all bits have been ruled out, there's no need to check
1357 // more operands.
Craig Topperb45eabc2017-04-26 16:39:58 +00001358 if (!Known.Zero && !Known.One)
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001359 break;
1360 }
1361 }
Chris Lattner965c7692008-06-02 01:18:21 +00001362 break;
1363 }
1364 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001365 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001366 // If range metadata is attached to this call, set known bits from that,
1367 // and then intersect with known bits based on other properties of the
1368 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001369 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +00001370 computeKnownBitsFromRangeMetadata(*MD, Known);
Pete Cooper35b00d52016-08-13 01:05:32 +00001371 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001372 computeKnownBits(RV, Known2, Depth + 1, Q);
1373 Known.Zero |= Known2.Zero;
1374 Known.One |= Known2.One;
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001375 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001376 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001377 switch (II->getIntrinsicID()) {
1378 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001379 case Intrinsic::bitreverse:
Craig Topperb45eabc2017-04-26 16:39:58 +00001380 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1381 Known.Zero |= Known2.Zero.reverseBits();
1382 Known.One |= Known2.One.reverseBits();
Chad Rosier85204292017-01-17 17:23:51 +00001383 break;
Philip Reames675418e2015-10-06 20:20:45 +00001384 case Intrinsic::bswap:
Craig Topperb45eabc2017-04-26 16:39:58 +00001385 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1386 Known.Zero |= Known2.Zero.byteSwap();
1387 Known.One |= Known2.One.byteSwap();
Philip Reames675418e2015-10-06 20:20:45 +00001388 break;
Craig Topper868813f2017-05-08 17:22:34 +00001389 case Intrinsic::ctlz: {
1390 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1391 // If we have a known 1, its position is our upper bound.
1392 unsigned PossibleLZ = Known2.One.countLeadingZeros();
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001393 // If this call is undefined for 0, the result will be less than 2^n.
1394 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
Craig Topper868813f2017-05-08 17:22:34 +00001395 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1396 unsigned LowBits = Log2_32(PossibleLZ)+1;
1397 Known.Zero.setBitsFrom(LowBits);
1398 break;
1399 }
1400 case Intrinsic::cttz: {
1401 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1402 // If we have a known 1, its position is our upper bound.
1403 unsigned PossibleTZ = Known2.One.countTrailingZeros();
1404 // If this call is undefined for 0, the result will be less than 2^n.
1405 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1406 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1407 unsigned LowBits = Log2_32(PossibleTZ)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001408 Known.Zero.setBitsFrom(LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001409 break;
1410 }
1411 case Intrinsic::ctpop: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001412 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001413 // We can bound the space the count needs. Also, bits known to be zero
1414 // can't contribute to the population.
Craig Topper8df66c62017-05-12 17:20:30 +00001415 unsigned BitsPossiblySet = Known2.countMaxPopulation();
Craig Topper66df10f2017-04-14 06:43:34 +00001416 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001417 Known.Zero.setBitsFrom(LowBits);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001418 // TODO: we could bound KnownOne using the lower bound on the number
1419 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001420 break;
1421 }
Chad Rosierb3628842011-05-26 23:13:19 +00001422 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topperb45eabc2017-04-26 16:39:58 +00001423 Known.Zero.setBitsFrom(32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001424 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001425 }
1426 }
1427 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001428 case Instruction::ExtractElement:
1429 // Look through extract element. At the moment we keep this simple and skip
1430 // tracking the specific element. But at least we might find information
1431 // valid for all elements of the vector (for example if vector is sign
1432 // extended, shifted, etc).
Craig Topperb45eabc2017-04-26 16:39:58 +00001433 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Bjorn Pettersson39616032016-10-06 09:56:21 +00001434 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001435 case Instruction::ExtractValue:
1436 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001437 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001438 if (EVI->getNumIndices() != 1) break;
1439 if (EVI->getIndices()[0] == 0) {
1440 switch (II->getIntrinsicID()) {
1441 default: break;
1442 case Intrinsic::uadd_with_overflow:
1443 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001444 computeKnownBitsAddSub(true, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001445 II->getArgOperand(1), false, Known, Known2,
1446 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001447 break;
1448 case Intrinsic::usub_with_overflow:
1449 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001450 computeKnownBitsAddSub(false, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001451 II->getArgOperand(1), false, Known, Known2,
1452 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001453 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001454 case Intrinsic::umul_with_overflow:
1455 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001456 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Craig Topperb45eabc2017-04-26 16:39:58 +00001457 Known, Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001458 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001459 }
1460 }
1461 }
Chris Lattner965c7692008-06-02 01:18:21 +00001462 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001463}
1464
1465/// Determine which bits of V are known to be either zero or one and return
Craig Topper6e11a052017-05-08 16:22:48 +00001466/// them.
1467KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1468 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1469 computeKnownBits(V, Known, Depth, Q);
1470 return Known;
1471}
1472
1473/// Determine which bits of V are known to be either zero or one and return
Craig Topperb45eabc2017-04-26 16:39:58 +00001474/// them in the Known bit set.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001475///
1476/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1477/// we cannot optimize based on the assumption that it is zero without changing
1478/// it to be an explicit zero. If we don't change it to zero, other code could
1479/// optimized based on the contradictory assumption that it is non-zero.
1480/// Because instcombine aggressively folds operations with undef args anyway,
1481/// this won't lose us code quality.
1482///
1483/// This function is defined on values with integer type, values with pointer
1484/// type, and vectors of integers. In the case
1485/// where V is a vector, known zero, and known one values are the
1486/// same width as the vector element, and the bit is set only if it is true
1487/// for all of the elements in the vector.
Craig Topperb45eabc2017-04-26 16:39:58 +00001488void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1489 const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001490 assert(V && "No Value?");
1491 assert(Depth <= MaxDepth && "Limit Search Depth");
Craig Topperb45eabc2017-04-26 16:39:58 +00001492 unsigned BitWidth = Known.getBitWidth();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001493
Craig Topperfde47232017-07-09 07:04:03 +00001494 assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
Craig Topper95d23472017-07-09 07:04:00 +00001495 V->getType()->isPtrOrPtrVectorTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001496 "Not integer or pointer type!");
Craig Topperfde47232017-07-09 07:04:03 +00001497 assert(Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth &&
Craig Topperb45eabc2017-04-26 16:39:58 +00001498 "V and Known should have same BitWidth");
Craig Topperd73c6b42017-03-23 07:06:39 +00001499 (void)BitWidth;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001500
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001501 const APInt *C;
1502 if (match(V, m_APInt(C))) {
1503 // We know all of the bits for a scalar constant or a splat vector constant!
Craig Topperb45eabc2017-04-26 16:39:58 +00001504 Known.One = *C;
1505 Known.Zero = ~Known.One;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001506 return;
1507 }
1508 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001509 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001510 Known.setAllZero();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001511 return;
1512 }
1513 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001514 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001515 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001516 // We know that CDS must be a vector of integers. Take the intersection of
1517 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001518 Known.Zero.setAllBits(); Known.One.setAllBits();
Craig Topper9c932d32017-04-25 16:48:03 +00001519 APInt Elt(BitWidth, 0);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001520 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1521 Elt = CDS->getElementAsInteger(i);
Craig Topperb45eabc2017-04-26 16:39:58 +00001522 Known.Zero &= ~Elt;
1523 Known.One &= Elt;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001524 }
1525 return;
1526 }
1527
Pete Cooper35b00d52016-08-13 01:05:32 +00001528 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001529 // We know that CV must be a vector of integers. Take the intersection of
1530 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001531 Known.Zero.setAllBits(); Known.One.setAllBits();
1532 APInt Elt(BitWidth, 0);
David Majnemer3918cdd2016-05-04 06:13:33 +00001533 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1534 Constant *Element = CV->getAggregateElement(i);
1535 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1536 if (!ElementCI) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001537 Known.resetAll();
David Majnemer3918cdd2016-05-04 06:13:33 +00001538 return;
1539 }
1540 Elt = ElementCI->getValue();
Craig Topperb45eabc2017-04-26 16:39:58 +00001541 Known.Zero &= ~Elt;
1542 Known.One &= Elt;
David Majnemer3918cdd2016-05-04 06:13:33 +00001543 }
1544 return;
1545 }
1546
Jingyue Wu12b0c282015-06-15 05:46:29 +00001547 // Start out not knowing anything.
Craig Topperf0aeee02017-05-05 17:36:09 +00001548 Known.resetAll();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001549
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001550 // We can't imply anything about undefs.
1551 if (isa<UndefValue>(V))
1552 return;
1553
1554 // There's no point in looking through other users of ConstantData for
1555 // assumptions. Confirm that we've handled them all.
1556 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1557
Jingyue Wu12b0c282015-06-15 05:46:29 +00001558 // Limit search depth.
1559 // All recursive calls that increase depth must come after this.
1560 if (Depth == MaxDepth)
1561 return;
1562
1563 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1564 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001565 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001566 if (!GA->isInterposable())
Craig Topperb45eabc2017-04-26 16:39:58 +00001567 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001568 return;
1569 }
1570
Pete Cooper35b00d52016-08-13 01:05:32 +00001571 if (const Operator *I = dyn_cast<Operator>(V))
Craig Topperb45eabc2017-04-26 16:39:58 +00001572 computeKnownBitsFromOperator(I, Known, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001573
Craig Topperb45eabc2017-04-26 16:39:58 +00001574 // Aligned pointers have trailing zeros - refine Known.Zero set
Artur Pilipenko029d8532015-09-30 11:55:45 +00001575 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001576 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001577 if (Align)
Craig Topperb45eabc2017-04-26 16:39:58 +00001578 Known.Zero.setLowBits(countTrailingZeros(Align));
Artur Pilipenko029d8532015-09-30 11:55:45 +00001579 }
1580
Craig Topperb45eabc2017-04-26 16:39:58 +00001581 // computeKnownBitsFromAssume strictly refines Known.
1582 // Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001583
1584 // Check whether a nearby assume intrinsic can determine some known bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001585 computeKnownBitsFromAssume(V, Known, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001586
Craig Topperb45eabc2017-04-26 16:39:58 +00001587 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001588}
1589
Sanjay Patelaee84212014-11-04 16:27:42 +00001590/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001591/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001592/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001593/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001594bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001595 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00001596 assert(Depth <= MaxDepth && "Limit Search Depth");
1597
Pete Cooper35b00d52016-08-13 01:05:32 +00001598 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001599 if (C->isNullValue())
1600 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001601
1602 const APInt *ConstIntOrConstSplatInt;
1603 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1604 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001605 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001606
1607 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1608 // it is shifted off the end then the result is undefined.
1609 if (match(V, m_Shl(m_One(), m_Value())))
1610 return true;
1611
Craig Topperbcfd2d12017-04-20 16:56:25 +00001612 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1613 // the bottom. If it is shifted off the bottom then the result is undefined.
1614 if (match(V, m_LShr(m_SignMask(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001615 return true;
1616
1617 // The remaining tests are all recursive, so bail out if we hit the limit.
1618 if (Depth++ == MaxDepth)
1619 return false;
1620
Craig Topper9f008862014-04-15 04:59:12 +00001621 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001622 // A shift left or a logical shift right of a power of two is a power of two
1623 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001624 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001625 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001626 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001627
Pete Cooper35b00d52016-08-13 01:05:32 +00001628 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001629 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001630
Pete Cooper35b00d52016-08-13 01:05:32 +00001631 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001632 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1633 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001634
Duncan Sandsba286d72011-10-26 20:55:21 +00001635 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1636 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001637 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1638 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001639 return true;
1640 // X & (-X) is always a power of two or zero.
1641 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1642 return true;
1643 return false;
1644 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001645
David Majnemerb7d54092013-07-30 21:01:36 +00001646 // Adding a power-of-two or zero to the same power-of-two or zero yields
1647 // either the original power-of-two, a larger power-of-two or zero.
1648 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001649 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001650 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1651 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1652 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001653 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001654 return true;
1655 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1656 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001657 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001658 return true;
1659
1660 unsigned BitWidth = V->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00001661 KnownBits LHSBits(BitWidth);
1662 computeKnownBits(X, LHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001663
Craig Topperb45eabc2017-04-26 16:39:58 +00001664 KnownBits RHSBits(BitWidth);
1665 computeKnownBits(Y, RHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001666 // If i8 V is a power of two or zero:
1667 // ZeroBits: 1 1 1 0 1 1 1 1
1668 // ~ZeroBits: 0 0 0 1 0 0 0 0
Craig Topperb45eabc2017-04-26 16:39:58 +00001669 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
David Majnemerb7d54092013-07-30 21:01:36 +00001670 // If OrZero isn't set, we cannot give back a zero result.
1671 // Make sure either the LHS or RHS has a bit set.
Craig Topperb45eabc2017-04-26 16:39:58 +00001672 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
David Majnemerb7d54092013-07-30 21:01:36 +00001673 return true;
1674 }
1675 }
David Majnemerbeab5672013-05-18 19:30:37 +00001676
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001677 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001678 // is a power of two only if the first operand is a power of two and not
1679 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001680 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1681 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001682 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001683 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001684 }
1685
Duncan Sandsd3951082011-01-25 09:38:29 +00001686 return false;
1687}
1688
Chandler Carruth80d3e562012-12-07 02:08:58 +00001689/// \brief Test whether a GEP's result is known to be non-null.
1690///
1691/// Uses properties inherent in a GEP to try to determine whether it is known
1692/// to be non-null.
1693///
1694/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001695static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001696 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001697 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1698 return false;
1699
1700 // FIXME: Support vector-GEPs.
1701 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1702
1703 // If the base pointer is non-null, we cannot walk to a null address with an
1704 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001705 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001706 return true;
1707
Chandler Carruth80d3e562012-12-07 02:08:58 +00001708 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1709 // If so, then the GEP cannot produce a null pointer, as doing so would
1710 // inherently violate the inbounds contract within address space zero.
1711 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1712 GTI != GTE; ++GTI) {
1713 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001714 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001715 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1716 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001717 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001718 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1719 if (ElementOffset > 0)
1720 return true;
1721 continue;
1722 }
1723
1724 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001725 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001726 continue;
1727
1728 // Fast path the constant operand case both for efficiency and so we don't
1729 // increment Depth when just zipping down an all-constant GEP.
1730 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1731 if (!OpC->isZero())
1732 return true;
1733 continue;
1734 }
1735
1736 // We post-increment Depth here because while isKnownNonZero increments it
1737 // as well, when we pop back up that increment won't persist. We don't want
1738 // to recurse 10k times just because we have 10k GEP operands. We don't
1739 // bail completely out because we want to handle constant GEPs regardless
1740 // of depth.
1741 if (Depth++ >= MaxDepth)
1742 continue;
1743
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001744 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001745 return true;
1746 }
1747
1748 return false;
1749}
1750
Nuno Lopes404f1062017-09-09 18:23:11 +00001751static bool isKnownNonNullFromDominatingCondition(const Value *V,
1752 const Instruction *CtxI,
1753 const DominatorTree *DT) {
1754 assert(V->getType()->isPointerTy() && "V must be pointer type");
1755 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1756
1757 if (!CtxI || !DT)
1758 return false;
1759
1760 unsigned NumUsesExplored = 0;
1761 for (auto *U : V->users()) {
1762 // Avoid massive lists
1763 if (NumUsesExplored >= DomConditionsMaxUses)
1764 break;
1765 NumUsesExplored++;
1766
1767 // If the value is used as an argument to a call or invoke, then argument
1768 // attributes may provide an answer about null-ness.
1769 if (auto CS = ImmutableCallSite(U))
1770 if (auto *CalledFunc = CS.getCalledFunction())
1771 for (const Argument &Arg : CalledFunc->args())
1772 if (CS.getArgOperand(Arg.getArgNo()) == V &&
1773 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1774 return true;
1775
1776 // Consider only compare instructions uniquely controlling a branch
1777 CmpInst::Predicate Pred;
1778 if (!match(const_cast<User *>(U),
1779 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1780 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1781 continue;
1782
1783 for (auto *CmpU : U->users()) {
1784 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
1785 assert(BI->isConditional() && "uses a comparison!");
1786
1787 BasicBlock *NonNullSuccessor =
1788 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1789 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1790 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1791 return true;
1792 } else if (Pred == ICmpInst::ICMP_NE &&
1793 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
1794 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
1795 return true;
1796 }
1797 }
1798 }
1799
1800 return false;
1801}
1802
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001803/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1804/// ensure that the value it's attached to is never Value? 'RangeType' is
1805/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001806static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001807 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1808 assert(NumRanges >= 1);
1809 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001810 ConstantInt *Lower =
1811 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1812 ConstantInt *Upper =
1813 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001814 ConstantRange Range(Lower->getValue(), Upper->getValue());
1815 if (Range.contains(Value))
1816 return false;
1817 }
1818 return true;
1819}
1820
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001821/// Return true if the given value is known to be non-zero when defined. For
1822/// vectors, return true if every element is known to be non-zero when
1823/// defined. For pointers, if the context instruction and dominator tree are
1824/// specified, perform context-sensitive analysis and return true if the
1825/// pointer couldn't possibly be null at the specified instruction.
1826/// Supports values with integer or pointer type and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001827bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001828 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001829 if (C->isNullValue())
1830 return false;
1831 if (isa<ConstantInt>(C))
1832 // Must be non-zero due to null test above.
1833 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001834
1835 // For constant vectors, check that all elements are undefined or known
1836 // non-zero to determine that the whole vector is known non-zero.
1837 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1838 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1839 Constant *Elt = C->getAggregateElement(i);
1840 if (!Elt || Elt->isNullValue())
1841 return false;
1842 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1843 return false;
1844 }
1845 return true;
1846 }
1847
Nuno Lopes404f1062017-09-09 18:23:11 +00001848 // A global variable in address space 0 is non null unless extern weak
1849 // or an absolute symbol reference. Other address spaces may have null as a
1850 // valid address for a global, so we can't assume anything.
1851 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1852 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
1853 GV->getType()->getAddressSpace() == 0)
1854 return true;
1855 } else
1856 return false;
Duncan Sandsd3951082011-01-25 09:38:29 +00001857 }
1858
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001859 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001860 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001861 // If the possible ranges don't contain zero, then the value is
1862 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001863 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001864 const APInt ZeroValue(Ty->getBitWidth(), 0);
1865 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1866 return true;
1867 }
1868 }
1869 }
1870
Nuno Lopes404f1062017-09-09 18:23:11 +00001871 // Check for pointer simplifications.
1872 if (V->getType()->isPointerTy()) {
1873 // Alloca never returns null, malloc might.
1874 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
1875 return true;
1876
1877 // A byval, inalloca, or nonnull argument is never null.
1878 if (const Argument *A = dyn_cast<Argument>(V))
1879 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
1880 return true;
1881
1882 // A Load tagged with nonnull metadata is never null.
1883 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
1884 if (LI->getMetadata(LLVMContext::MD_nonnull))
1885 return true;
1886
1887 if (auto CS = ImmutableCallSite(V))
1888 if (CS.isReturnNonNull())
1889 return true;
1890 }
1891
Duncan Sandsd3951082011-01-25 09:38:29 +00001892 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001893 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001894 return false;
1895
Nuno Lopes404f1062017-09-09 18:23:11 +00001896 // Check for recursive pointer simplifications.
Chandler Carruth80d3e562012-12-07 02:08:58 +00001897 if (V->getType()->isPointerTy()) {
Nuno Lopes404f1062017-09-09 18:23:11 +00001898 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001899 return true;
Nuno Lopes404f1062017-09-09 18:23:11 +00001900
Pete Cooper35b00d52016-08-13 01:05:32 +00001901 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001902 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001903 return true;
1904 }
1905
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001906 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001907
1908 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001909 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001910 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001911 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001912
1913 // ext X != 0 if X != 0.
1914 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001915 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001916
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001917 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001918 // if the lowest bit is shifted off the end.
Craig Topper6b3940a2017-05-03 22:25:19 +00001919 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001920 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001921 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001922 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001923 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001924
Craig Topperb45eabc2017-04-26 16:39:58 +00001925 KnownBits Known(BitWidth);
1926 computeKnownBits(X, Known, Depth, Q);
1927 if (Known.One[0])
Duncan Sandsd3951082011-01-25 09:38:29 +00001928 return true;
1929 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001930 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001931 // defined if the sign bit is shifted off the end.
1932 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001933 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001934 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001935 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001936 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001937
Craig Topper6e11a052017-05-08 16:22:48 +00001938 KnownBits Known = computeKnownBits(X, Depth, Q);
1939 if (Known.isNegative())
Duncan Sandsd3951082011-01-25 09:38:29 +00001940 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001941
1942 // If the shifter operand is a constant, and all of the bits shifted
1943 // out are known to be zero, and X is known non-zero then at least one
1944 // non-zero bit must remain.
1945 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
James Molloyb6be1eb2015-09-24 16:06:32 +00001946 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1947 // Is there a known one in the portion not shifted out?
Craig Topper8df66c62017-05-12 17:20:30 +00001948 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
James Molloyb6be1eb2015-09-24 16:06:32 +00001949 return true;
1950 // Are all the bits to be shifted out known zero?
NAKAMURA Takumi76bab1f2017-07-11 02:31:51 +00001951 if (Known.countMinTrailingZeros() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001952 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001953 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001954 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001955 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001956 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001957 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001958 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001959 // X + Y.
1960 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Craig Topper6e11a052017-05-08 16:22:48 +00001961 KnownBits XKnown = computeKnownBits(X, Depth, Q);
1962 KnownBits YKnown = computeKnownBits(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001963
1964 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001965 // zero unless both X and Y are zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001966 if (XKnown.isNonNegative() && YKnown.isNonNegative())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001967 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001968 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001969
1970 // If X and Y are both negative (as signed values) then their sum is not
1971 // zero unless both X and Y equal INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001972 if (XKnown.isNegative() && YKnown.isNegative()) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001973 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1974 // The sign bit of X is set. If some other bit is set then X is not equal
1975 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001976 if (XKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001977 return true;
1978 // The sign bit of Y is set. If some other bit is set then Y is not equal
1979 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001980 if (YKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001981 return true;
1982 }
1983
1984 // The sum of a non-negative number and a power of two is not zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001985 if (XKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001986 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001987 return true;
Craig Topper6e11a052017-05-08 16:22:48 +00001988 if (YKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001989 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001990 return true;
1991 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001992 // X * Y.
1993 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001994 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001995 // If X and Y are non-zero then so is X * Y as long as the multiplication
1996 // does not overflow.
1997 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001998 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001999 return true;
2000 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002001 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00002002 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002003 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2004 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002005 return true;
2006 }
James Molloy897048b2015-09-29 14:08:45 +00002007 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00002008 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00002009 // Try and detect a recurrence that monotonically increases from a
2010 // starting value, as these are common as induction variables.
2011 if (PN->getNumIncomingValues() == 2) {
2012 Value *Start = PN->getIncomingValue(0);
2013 Value *Induction = PN->getIncomingValue(1);
2014 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2015 std::swap(Start, Induction);
2016 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2017 if (!C->isZero() && !C->isNegative()) {
2018 ConstantInt *X;
2019 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2020 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2021 !X->isNegative())
2022 return true;
2023 }
2024 }
2025 }
Jun Bum Limca832662016-02-01 17:03:07 +00002026 // Check if all incoming values are non-zero constant.
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002027 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
Craig Topper79ab6432017-07-06 18:39:47 +00002028 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
Jun Bum Limca832662016-02-01 17:03:07 +00002029 });
2030 if (AllNonZeroConstants)
2031 return true;
James Molloy897048b2015-09-29 14:08:45 +00002032 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002033
Craig Topperb45eabc2017-04-26 16:39:58 +00002034 KnownBits Known(BitWidth);
2035 computeKnownBits(V, Known, Depth, Q);
2036 return Known.One != 0;
Duncan Sandsd3951082011-01-25 09:38:29 +00002037}
2038
James Molloy1d88d6f2015-10-22 13:18:42 +00002039/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00002040static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2041 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00002042 if (!BO || BO->getOpcode() != Instruction::Add)
2043 return false;
2044 Value *Op = nullptr;
2045 if (V2 == BO->getOperand(0))
2046 Op = BO->getOperand(1);
2047 else if (V2 == BO->getOperand(1))
2048 Op = BO->getOperand(0);
2049 else
2050 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002051 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002052}
2053
2054/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00002055static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
Craig Topper3002d5b2017-06-06 07:13:15 +00002056 if (V1 == V2)
James Molloy1d88d6f2015-10-22 13:18:42 +00002057 return false;
2058 if (V1->getType() != V2->getType())
2059 // We can't look through casts yet.
2060 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002061 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002062 return true;
2063
Craig Topper3002d5b2017-06-06 07:13:15 +00002064 if (V1->getType()->isIntOrIntVectorTy()) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002065 // Are any known bits in V1 contradictory to known bits in V2? If V1
2066 // has a known zero where V2 has a known one, they must not be equal.
Craig Topper8e662f72017-06-06 07:13:11 +00002067 KnownBits Known1 = computeKnownBits(V1, 0, Q);
2068 KnownBits Known2 = computeKnownBits(V2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002069
Craig Topper8365df82017-06-06 07:13:09 +00002070 if (Known1.Zero.intersects(Known2.One) ||
2071 Known2.Zero.intersects(Known1.One))
James Molloy1d88d6f2015-10-22 13:18:42 +00002072 return true;
2073 }
2074 return false;
2075}
2076
Sanjay Patelaee84212014-11-04 16:27:42 +00002077/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2078/// simplify operations downstream. Mask is known to be zero for bits that V
2079/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002080///
2081/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002082/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002083/// where V is a vector, the mask, known zero, and known one values are the
2084/// same width as the vector element, and the bit is set only if it is true
2085/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002086bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002087 const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002088 KnownBits Known(Mask.getBitWidth());
2089 computeKnownBits(V, Known, Depth, Q);
2090 return Mask.isSubsetOf(Known.Zero);
Chris Lattner965c7692008-06-02 01:18:21 +00002091}
2092
Sanjay Patela06d9892016-06-22 19:20:59 +00002093/// For vector constants, loop over the elements and find the constant with the
2094/// minimum number of sign bits. Return 0 if the value is not a vector constant
2095/// or if any element was not analyzed; otherwise, return the count for the
2096/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002097static unsigned computeNumSignBitsVectorConstant(const Value *V,
2098 unsigned TyBits) {
2099 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002100 if (!CV || !CV->getType()->isVectorTy())
2101 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002102
Sanjay Patela06d9892016-06-22 19:20:59 +00002103 unsigned MinSignBits = TyBits;
2104 unsigned NumElts = CV->getType()->getVectorNumElements();
2105 for (unsigned i = 0; i != NumElts; ++i) {
2106 // If we find a non-ConstantInt, bail out.
2107 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2108 if (!Elt)
2109 return 0;
2110
2111 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2112 APInt EltVal = Elt->getValue();
2113 if (EltVal.isNegative())
2114 EltVal = ~EltVal;
2115 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2116 }
2117
2118 return MinSignBits;
2119}
Chris Lattner965c7692008-06-02 01:18:21 +00002120
Sanjoy Das39a684d2017-02-25 20:30:45 +00002121static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2122 const Query &Q);
2123
2124static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2125 const Query &Q) {
2126 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2127 assert(Result > 0 && "At least one sign bit needs to be present!");
2128 return Result;
2129}
2130
Sanjay Patelaee84212014-11-04 16:27:42 +00002131/// Return the number of times the sign bit of the register is replicated into
2132/// the other bits. We know that at least 1 bit is always equal to the sign bit
2133/// (itself), but other cases can give us information. For example, immediately
2134/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002135/// other, so we return 3. For vectors, return the number of sign bits for the
2136/// vector element with the mininum number of known sign bits.
Sanjoy Das39a684d2017-02-25 20:30:45 +00002137static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2138 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00002139 assert(Depth <= MaxDepth && "Limit Search Depth");
Sanjoy Das39a684d2017-02-25 20:30:45 +00002140
2141 // We return the minimum number of sign bits that are guaranteed to be present
2142 // in V, so for undef we have to conservatively return 1. We don't have the
2143 // same behavior for poison though -- that's a FIXME today.
2144
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002145 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002146 unsigned Tmp, Tmp2;
2147 unsigned FirstAnswer = 1;
2148
Jay Foada0653a32014-05-14 21:14:37 +00002149 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002150 // below.
2151
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002152 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002153 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002154
Pete Cooper35b00d52016-08-13 01:05:32 +00002155 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002156 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002157 default: break;
2158 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002159 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002160 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002161
Nadav Rotemc99a3872015-03-06 00:23:58 +00002162 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002163 const APInt *Denominator;
2164 // sdiv X, C -> adds log(C) sign bits.
2165 if (match(U->getOperand(1), m_APInt(Denominator))) {
2166
2167 // Ignore non-positive denominator.
2168 if (!Denominator->isStrictlyPositive())
2169 break;
2170
2171 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002172 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002173
2174 // Add floor(log(C)) bits to the numerator bits.
2175 return std::min(TyBits, NumBits + Denominator->logBase2());
2176 }
2177 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002178 }
2179
2180 case Instruction::SRem: {
2181 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002182 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2183 // positive constant. This let us put a lower bound on the number of sign
2184 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002185 if (match(U->getOperand(1), m_APInt(Denominator))) {
2186
2187 // Ignore non-positive denominator.
2188 if (!Denominator->isStrictlyPositive())
2189 break;
2190
2191 // Calculate the incoming numerator bits. SRem by a positive constant
2192 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002193 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002194 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002195
2196 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002197 // denominator. Given that the denominator is positive, there are two
2198 // cases:
2199 //
2200 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2201 // (1 << ceilLogBase2(C)).
2202 //
2203 // 2. the numerator is negative. Then the result range is (-C,0] and
2204 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2205 //
2206 // Thus a lower bound on the number of sign bits is `TyBits -
2207 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002208
Sanjoy Dase561fee2015-03-25 22:33:53 +00002209 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002210 return std::max(NumrBits, ResBits);
2211 }
2212 break;
2213 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002214
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002215 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002216 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002217 // ashr X, C -> adds C sign bits. Vectors too.
2218 const APInt *ShAmt;
2219 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Sanjoy Das39a684d2017-02-25 20:30:45 +00002220 unsigned ShAmtLimited = ShAmt->getZExtValue();
2221 if (ShAmtLimited >= TyBits)
2222 break; // Bad shift.
2223 Tmp += ShAmtLimited;
Chris Lattner965c7692008-06-02 01:18:21 +00002224 if (Tmp > TyBits) Tmp = TyBits;
2225 }
2226 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002227 }
2228 case Instruction::Shl: {
2229 const APInt *ShAmt;
2230 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002231 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002232 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002233 Tmp2 = ShAmt->getZExtValue();
2234 if (Tmp2 >= TyBits || // Bad shift.
2235 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2236 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002237 }
2238 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002239 }
Chris Lattner965c7692008-06-02 01:18:21 +00002240 case Instruction::And:
2241 case Instruction::Or:
2242 case Instruction::Xor: // NOT is handled here.
2243 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002244 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002245 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002246 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002247 FirstAnswer = std::min(Tmp, Tmp2);
2248 // We computed what we know about the sign bits as our first
2249 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002250 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002251 }
2252 break;
2253
2254 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002255 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002256 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002257 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002258 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002259
Chris Lattner965c7692008-06-02 01:18:21 +00002260 case Instruction::Add:
2261 // Add can have at most one carry bit. Thus we know that the output
2262 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002263 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002264 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002265
Chris Lattner965c7692008-06-02 01:18:21 +00002266 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002267 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002268 if (CRHS->isAllOnesValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002269 KnownBits Known(TyBits);
2270 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002271
Chris Lattner965c7692008-06-02 01:18:21 +00002272 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2273 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002274 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002275 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002276
Chris Lattner965c7692008-06-02 01:18:21 +00002277 // If we are subtracting one from a positive number, there is no carry
2278 // out of the result.
Craig Topperca48af32017-04-29 16:43:11 +00002279 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002280 return Tmp;
2281 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002282
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002283 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002284 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002285 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002286
Chris Lattner965c7692008-06-02 01:18:21 +00002287 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002288 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002289 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002290
Chris Lattner965c7692008-06-02 01:18:21 +00002291 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002292 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002293 if (CLHS->isNullValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002294 KnownBits Known(TyBits);
2295 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002296 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2297 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002298 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002299 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002300
Chris Lattner965c7692008-06-02 01:18:21 +00002301 // If the input is known to be positive (the sign bit is known clear),
2302 // the output of the NEG has the same number of sign bits as the input.
Craig Topperca48af32017-04-29 16:43:11 +00002303 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002304 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002305
Chris Lattner965c7692008-06-02 01:18:21 +00002306 // Otherwise, we treat this like a SUB.
2307 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002308
Chris Lattner965c7692008-06-02 01:18:21 +00002309 // Sub can have at most one carry bit. Thus we know that the output
2310 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002311 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002312 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002313 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002314
Amjad Aboud88ffa3a2017-08-18 22:56:55 +00002315 case Instruction::Mul: {
2316 // The output of the Mul can be at most twice the valid bits in the inputs.
2317 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2318 if (SignBitsOp0 == 1) return 1; // Early out.
2319 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2320 if (SignBitsOp1 == 1) return 1;
2321 unsigned OutValidBits =
2322 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2323 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2324 }
2325
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002326 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002327 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002328 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002329 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002330 if (NumIncomingValues > 4) break;
2331 // Unreachable blocks may have zero-operand PHI nodes.
2332 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002333
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002334 // Take the minimum of all incoming values. This can't infinitely loop
2335 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002336 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002337 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002338 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002339 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002340 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002341 }
2342 return Tmp;
2343 }
2344
Chris Lattner965c7692008-06-02 01:18:21 +00002345 case Instruction::Trunc:
2346 // FIXME: it's tricky to do anything useful for this, but it is an important
2347 // case for targets like X86.
2348 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002349
2350 case Instruction::ExtractElement:
2351 // Look through extract element. At the moment we keep this simple and skip
2352 // tracking the specific element. But at least we might find information
2353 // valid for all elements of the vector (for example if vector is sign
2354 // extended, shifted, etc).
2355 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002356 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002357
Chris Lattner965c7692008-06-02 01:18:21 +00002358 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2359 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002360
2361 // If we can examine all elements of a vector constant successfully, we're
2362 // done (we can't do any better than that). If not, keep trying.
2363 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2364 return VecSignBits;
2365
Craig Topperb45eabc2017-04-26 16:39:58 +00002366 KnownBits Known(TyBits);
2367 computeKnownBits(V, Known, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002368
Sanjay Patele0536212016-06-23 17:41:59 +00002369 // If we know that the sign bit is either zero or one, determine the number of
2370 // identical bits in the top of the input value.
Craig Topper8df66c62017-05-12 17:20:30 +00002371 return std::max(FirstAnswer, Known.countMinSignBits());
Chris Lattner965c7692008-06-02 01:18:21 +00002372}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002373
Sanjay Patelaee84212014-11-04 16:27:42 +00002374/// This function computes the integer multiple of Base that equals V.
2375/// If successful, it returns true and returns the multiple in
2376/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002377/// through SExt instructions only if LookThroughSExt is true.
2378bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002379 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002380 const unsigned MaxDepth = 6;
2381
Dan Gohman6a976bb2009-11-18 00:58:27 +00002382 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002383 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002384 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002385
Chris Lattner229907c2011-07-18 04:54:35 +00002386 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002387
Dan Gohman6a976bb2009-11-18 00:58:27 +00002388 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002389
2390 if (Base == 0)
2391 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002392
Victor Hernandez47444882009-11-10 08:28:35 +00002393 if (Base == 1) {
2394 Multiple = V;
2395 return true;
2396 }
2397
2398 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2399 Constant *BaseVal = ConstantInt::get(T, Base);
2400 if (CO && CO == BaseVal) {
2401 // Multiple is 1.
2402 Multiple = ConstantInt::get(T, 1);
2403 return true;
2404 }
2405
2406 if (CI && CI->getZExtValue() % Base == 0) {
2407 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002408 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002409 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002410
Victor Hernandez47444882009-11-10 08:28:35 +00002411 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002412
Victor Hernandez47444882009-11-10 08:28:35 +00002413 Operator *I = dyn_cast<Operator>(V);
2414 if (!I) return false;
2415
2416 switch (I->getOpcode()) {
2417 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002418 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002419 if (!LookThroughSExt) return false;
2420 // otherwise fall through to ZExt
Galina Kistanova244621f2017-05-31 22:16:24 +00002421 LLVM_FALLTHROUGH;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002422 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002423 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2424 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002425 case Instruction::Shl:
2426 case Instruction::Mul: {
2427 Value *Op0 = I->getOperand(0);
2428 Value *Op1 = I->getOperand(1);
2429
2430 if (I->getOpcode() == Instruction::Shl) {
2431 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2432 if (!Op1CI) return false;
2433 // Turn Op0 << Op1 into Op0 * 2^Op1
2434 APInt Op1Int = Op1CI->getValue();
2435 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002436 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002437 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002438 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002439 }
2440
Craig Topper9f008862014-04-15 04:59:12 +00002441 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002442 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2443 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2444 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002445 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002446 MulC->getType()->getPrimitiveSizeInBits())
2447 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002448 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002449 MulC->getType()->getPrimitiveSizeInBits())
2450 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002451
Chris Lattner72d283c2010-09-05 17:20:46 +00002452 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2453 Multiple = ConstantExpr::getMul(MulC, Op1C);
2454 return true;
2455 }
Victor Hernandez47444882009-11-10 08:28:35 +00002456
2457 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2458 if (Mul0CI->getValue() == 1) {
2459 // V == Base * Op1, so return Op1
2460 Multiple = Op1;
2461 return true;
2462 }
2463 }
2464
Craig Topper9f008862014-04-15 04:59:12 +00002465 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002466 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2467 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2468 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002469 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002470 MulC->getType()->getPrimitiveSizeInBits())
2471 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002472 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002473 MulC->getType()->getPrimitiveSizeInBits())
2474 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002475
Chris Lattner72d283c2010-09-05 17:20:46 +00002476 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2477 Multiple = ConstantExpr::getMul(MulC, Op0C);
2478 return true;
2479 }
Victor Hernandez47444882009-11-10 08:28:35 +00002480
2481 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2482 if (Mul1CI->getValue() == 1) {
2483 // V == Base * Op0, so return Op0
2484 Multiple = Op0;
2485 return true;
2486 }
2487 }
Victor Hernandez47444882009-11-10 08:28:35 +00002488 }
2489 }
2490
2491 // We could not determine if V is a multiple of Base.
2492 return false;
2493}
2494
David Majnemerb4b27232016-04-19 19:10:21 +00002495Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2496 const TargetLibraryInfo *TLI) {
2497 const Function *F = ICS.getCalledFunction();
2498 if (!F)
2499 return Intrinsic::not_intrinsic;
2500
2501 if (F->isIntrinsic())
2502 return F->getIntrinsicID();
2503
2504 if (!TLI)
2505 return Intrinsic::not_intrinsic;
2506
David L. Jonesd21529f2017-01-23 23:16:46 +00002507 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002508 // We're going to make assumptions on the semantics of the functions, check
2509 // that the target knows that it's available in this environment and it does
2510 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002511 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2512 return Intrinsic::not_intrinsic;
2513
2514 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002515 return Intrinsic::not_intrinsic;
2516
2517 // Otherwise check if we have a call to a function that can be turned into a
2518 // vector intrinsic.
2519 switch (Func) {
2520 default:
2521 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002522 case LibFunc_sin:
2523 case LibFunc_sinf:
2524 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002525 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002526 case LibFunc_cos:
2527 case LibFunc_cosf:
2528 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002529 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002530 case LibFunc_exp:
2531 case LibFunc_expf:
2532 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002533 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002534 case LibFunc_exp2:
2535 case LibFunc_exp2f:
2536 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002537 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002538 case LibFunc_log:
2539 case LibFunc_logf:
2540 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002541 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002542 case LibFunc_log10:
2543 case LibFunc_log10f:
2544 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002545 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002546 case LibFunc_log2:
2547 case LibFunc_log2f:
2548 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002549 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002550 case LibFunc_fabs:
2551 case LibFunc_fabsf:
2552 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002553 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002554 case LibFunc_fmin:
2555 case LibFunc_fminf:
2556 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002557 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002558 case LibFunc_fmax:
2559 case LibFunc_fmaxf:
2560 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002561 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002562 case LibFunc_copysign:
2563 case LibFunc_copysignf:
2564 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002565 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002566 case LibFunc_floor:
2567 case LibFunc_floorf:
2568 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002569 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002570 case LibFunc_ceil:
2571 case LibFunc_ceilf:
2572 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002573 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002574 case LibFunc_trunc:
2575 case LibFunc_truncf:
2576 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002577 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002578 case LibFunc_rint:
2579 case LibFunc_rintf:
2580 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002581 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002582 case LibFunc_nearbyint:
2583 case LibFunc_nearbyintf:
2584 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002585 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002586 case LibFunc_round:
2587 case LibFunc_roundf:
2588 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002589 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002590 case LibFunc_pow:
2591 case LibFunc_powf:
2592 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002593 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002594 case LibFunc_sqrt:
2595 case LibFunc_sqrtf:
2596 case LibFunc_sqrtl:
David Majnemerb4b27232016-04-19 19:10:21 +00002597 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002598 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002599 return Intrinsic::not_intrinsic;
2600 }
2601
2602 return Intrinsic::not_intrinsic;
2603}
2604
Sanjay Patelaee84212014-11-04 16:27:42 +00002605/// Return true if we can prove that the specified FP value is never equal to
2606/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002607///
2608/// NOTE: this function will need to be revisited when we support non-default
2609/// rounding modes!
David Majnemer3ee5f342016-04-13 06:55:52 +00002610bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2611 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002612 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2613 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002614
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002615 if (Depth == MaxDepth)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002616 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002617
Dan Gohman80ca01c2009-07-17 20:47:02 +00002618 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002619 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002620
2621 // Check if the nsz fast-math flag is set
2622 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2623 if (FPO->hasNoSignedZeros())
2624 return true;
2625
Chris Lattnera12a6de2008-06-02 01:29:46 +00002626 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002627 if (I->getOpcode() == Instruction::FAdd)
2628 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2629 if (CFP->isNullValue())
2630 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002631
Chris Lattnera12a6de2008-06-02 01:29:46 +00002632 // sitofp and uitofp turn into +0.0 for zero.
2633 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2634 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002635
David Majnemer3ee5f342016-04-13 06:55:52 +00002636 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002637 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002638 switch (IID) {
2639 default:
2640 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002641 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002642 case Intrinsic::sqrt:
2643 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2644 // fabs(x) != -0.0
2645 case Intrinsic::fabs:
2646 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002647 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002648 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002649
Chris Lattnera12a6de2008-06-02 01:29:46 +00002650 return false;
2651}
2652
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002653/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2654/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2655/// bit despite comparing equal.
2656static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2657 const TargetLibraryInfo *TLI,
2658 bool SignBitOnly,
2659 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002660 // TODO: This function does not do the right thing when SignBitOnly is true
2661 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2662 // which flips the sign bits of NaNs. See
2663 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2664
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002665 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2666 return !CFP->getValueAPF().isNegative() ||
2667 (!SignBitOnly && CFP->getValueAPF().isZero());
2668 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002669
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002670 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002671 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002672
2673 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002674 if (!I)
2675 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002676
2677 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002678 default:
2679 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002680 // Unsigned integers are always nonnegative.
2681 case Instruction::UIToFP:
2682 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002683 case Instruction::FMul:
2684 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002685 if (I->getOperand(0) == I->getOperand(1) &&
2686 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002687 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002688
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002689 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002690 case Instruction::FAdd:
2691 case Instruction::FDiv:
2692 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002693 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2694 Depth + 1) &&
2695 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2696 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002697 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002698 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2699 Depth + 1) &&
2700 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2701 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002702 case Instruction::FPExt:
2703 case Instruction::FPTrunc:
2704 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002705 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2706 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002707 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002708 const auto *CI = cast<CallInst>(I);
2709 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002710 switch (IID) {
2711 default:
2712 break;
2713 case Intrinsic::maxnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002714 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2715 Depth + 1) ||
2716 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2717 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002718 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002719 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2720 Depth + 1) &&
2721 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2722 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002723 case Intrinsic::exp:
2724 case Intrinsic::exp2:
2725 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002726 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002727
2728 case Intrinsic::sqrt:
2729 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2730 if (!SignBitOnly)
2731 return true;
2732 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2733 CannotBeNegativeZero(CI->getOperand(0), TLI));
2734
David Majnemer3ee5f342016-04-13 06:55:52 +00002735 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002736 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002737 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002738 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002739 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002740 }
Justin Lebar322c1272017-01-27 00:58:34 +00002741 // TODO: This is not correct. Given that exp is an integer, here are the
2742 // ways that pow can return a negative value:
2743 //
2744 // pow(x, exp) --> negative if exp is odd and x is negative.
2745 // pow(-0, exp) --> -inf if exp is negative odd.
2746 // pow(-0, exp) --> -0 if exp is positive odd.
2747 // pow(-inf, exp) --> -0 if exp is negative odd.
2748 // pow(-inf, exp) --> -inf if exp is positive odd.
2749 //
2750 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2751 // but we must return false if x == -0. Unfortunately we do not currently
2752 // have a way of expressing this constraint. See details in
2753 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002754 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2755 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00002756
David Majnemer3ee5f342016-04-13 06:55:52 +00002757 case Intrinsic::fma:
2758 case Intrinsic::fmuladd:
2759 // x*x+y is non-negative if y is non-negative.
2760 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002761 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2762 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2763 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002764 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002765 break;
2766 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002767 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002768}
2769
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002770bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2771 const TargetLibraryInfo *TLI) {
2772 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2773}
2774
2775bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2776 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2777}
2778
Sanjay Patel6840c5f2017-09-05 23:13:13 +00002779bool llvm::isKnownNeverNaN(const Value *V) {
2780 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
2781
2782 // If we're told that NaNs won't happen, assume they won't.
2783 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
2784 if (FPMathOp->hasNoNaNs())
2785 return true;
2786
2787 // TODO: Handle instructions and potentially recurse like other 'isKnown'
2788 // functions. For example, the result of sitofp is never NaN.
2789
2790 // Handle scalar constants.
2791 if (auto *CFP = dyn_cast<ConstantFP>(V))
2792 return !CFP->isNaN();
2793
2794 // Bail out for constant expressions, but try to handle vector constants.
2795 if (!V->getType()->isVectorTy() || !isa<Constant>(V))
2796 return false;
2797
2798 // For vectors, verify that each element is not NaN.
2799 unsigned NumElts = V->getType()->getVectorNumElements();
2800 for (unsigned i = 0; i != NumElts; ++i) {
2801 Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
2802 if (!Elt)
2803 return false;
2804 if (isa<UndefValue>(Elt))
2805 continue;
2806 auto *CElt = dyn_cast<ConstantFP>(Elt);
2807 if (!CElt || CElt->isNaN())
2808 return false;
2809 }
2810 // All elements were confirmed not-NaN or undefined.
2811 return true;
2812}
2813
Sanjay Patelaee84212014-11-04 16:27:42 +00002814/// If the specified value can be set by repeating the same byte in memory,
2815/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002816/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2817/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2818/// byte store (e.g. i16 0x1234), return null.
2819Value *llvm::isBytewiseValue(Value *V) {
2820 // All byte-wide stores are splatable, even of arbitrary variables.
2821 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002822
2823 // Handle 'null' ConstantArrayZero etc.
2824 if (Constant *C = dyn_cast<Constant>(V))
2825 if (C->isNullValue())
2826 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002827
Chris Lattner9cb10352010-12-26 20:15:01 +00002828 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002829 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002830 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2831 if (CFP->getType()->isFloatTy())
2832 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2833 if (CFP->getType()->isDoubleTy())
2834 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2835 // Don't handle long double formats, which have strange constraints.
2836 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002837
Benjamin Kramer17d90152015-02-07 19:29:02 +00002838 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002839 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002840 if (CI->getBitWidth() % 8 == 0) {
2841 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002842
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002843 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002844 return nullptr;
2845 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002846 }
2847 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002848
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002849 // A ConstantDataArray/Vector is splatable if all its members are equal and
2850 // also splatable.
2851 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2852 Value *Elt = CA->getElementAsConstant(0);
2853 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002854 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002855 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002856
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002857 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2858 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002859 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002860
Chris Lattner9cb10352010-12-26 20:15:01 +00002861 return Val;
2862 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002863
Chris Lattner9cb10352010-12-26 20:15:01 +00002864 // Conceptually, we could handle things like:
2865 // %a = zext i8 %X to i16
2866 // %b = shl i16 %a, 8
2867 // %c = or i16 %a, %b
2868 // but until there is an example that actually needs this, it doesn't seem
2869 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002870 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002871}
2872
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002873// This is the recursive version of BuildSubAggregate. It takes a few different
2874// arguments. Idxs is the index within the nested struct From that we are
2875// looking at now (which is of type IndexedType). IdxSkip is the number of
2876// indices from Idxs that should be left out when inserting into the resulting
2877// struct. To is the result struct built so far, new insertvalue instructions
2878// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002879static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002880 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002881 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002882 Instruction *InsertBefore) {
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002883 StructType *STy = dyn_cast<StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002884 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002885 // Save the original To argument so we can modify it
2886 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002887 // General case, the type indexed by Idxs is a struct
2888 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2889 // Process each struct element recursively
2890 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002891 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002892 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002893 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002894 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002895 if (!To) {
2896 // Couldn't find any inserted value for this index? Cleanup
2897 while (PrevTo != OrigTo) {
2898 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2899 PrevTo = Del->getAggregateOperand();
2900 Del->eraseFromParent();
2901 }
2902 // Stop processing elements
2903 break;
2904 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002905 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002906 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002907 if (To)
2908 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002909 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002910 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2911 // the struct's elements had a value that was inserted directly. In the latter
2912 // case, perhaps we can't determine each of the subelements individually, but
2913 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002914
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002915 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002916 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002917
2918 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002919 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002920
2921 // Insert the value in the new (sub) aggregrate
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002922 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2923 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002924}
2925
2926// This helper takes a nested struct and extracts a part of it (which is again a
2927// struct) into a new value. For example, given the struct:
2928// { a, { b, { c, d }, e } }
2929// and the indices "1, 1" this returns
2930// { c, d }.
2931//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002932// It does this by inserting an insertvalue for each element in the resulting
2933// struct, as opposed to just inserting a single struct. This will only work if
2934// each of the elements of the substruct are known (ie, inserted into From by an
2935// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002936//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002937// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002938static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002939 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002940 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002941 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002942 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002943 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002944 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002945 unsigned IdxSkip = Idxs.size();
2946
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002947 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002948}
2949
Sanjay Patelaee84212014-11-04 16:27:42 +00002950/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002951/// the scalar value indexed is already around as a register, for example if it
2952/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002953///
2954/// If InsertBefore is not null, this function will duplicate (modified)
2955/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002956Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2957 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002958 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002959 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002960 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002961 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002962 // We have indices, so V should have an indexable type.
2963 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2964 "Not looking at a struct or array?");
2965 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2966 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002967
Chris Lattner67058832012-01-25 06:48:06 +00002968 if (Constant *C = dyn_cast<Constant>(V)) {
2969 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002970 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002971 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2972 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002973
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002974 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002975 // Loop the indices for the insertvalue instruction in parallel with the
2976 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002977 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002978 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2979 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002980 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002981 // We can't handle this without inserting insertvalues
2982 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002983 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002984
2985 // The requested index identifies a part of a nested aggregate. Handle
2986 // this specially. For example,
2987 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2988 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2989 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2990 // This can be changed into
2991 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2992 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2993 // which allows the unused 0,0 element from the nested struct to be
2994 // removed.
2995 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2996 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002997 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002998
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002999 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00003000 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003001 // looking for, then.
3002 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00003003 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003004 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003005 }
3006 // If we end up here, the indices of the insertvalue match with those
3007 // requested (though possibly only partially). Now we recursively look at
3008 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00003009 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00003010 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00003011 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003012 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003013
Chris Lattnerf7eb5432012-01-24 07:54:10 +00003014 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00003015 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003016 // something else, we can extract from that something else directly instead.
3017 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00003018
3019 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00003020 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003021 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00003022 SmallVector<unsigned, 5> Idxs;
3023 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003024 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00003025 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00003026
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003027 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00003028 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003029
Craig Topper1bef2c82012-12-22 19:15:35 +00003030 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00003031 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00003032
Jay Foad57aa6362011-07-13 10:26:04 +00003033 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003034 }
3035 // Otherwise, we don't know (such as, extracting from a function return value
3036 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00003037 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003038}
Evan Chengda3db112008-06-30 07:31:25 +00003039
Sanjay Patelaee84212014-11-04 16:27:42 +00003040/// Analyze the specified pointer to see if it can be expressed as a base
3041/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00003042Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003043 const DataLayout &DL) {
3044 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00003045 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00003046
3047 // We walk up the defs but use a visited set to handle unreachable code. In
3048 // that case, we stop after accumulating the cycle once (not that it
3049 // matters).
3050 SmallPtrSet<Value *, 16> Visited;
3051 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003052 if (Ptr->getType()->isVectorTy())
3053 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00003054
Nuno Lopes368c4d02012-12-31 20:48:35 +00003055 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00003056 // If one of the values we have visited is an addrspacecast, then
3057 // the pointer type of this GEP may be different from the type
3058 // of the Ptr parameter which was passed to this function. This
3059 // means when we construct GEPOffset, we need to use the size
3060 // of GEP's pointer type rather than the size of the original
3061 // pointer type.
3062 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003063 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3064 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003065
Tom Stellard17eb3412016-10-07 14:23:29 +00003066 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003067
Nuno Lopes368c4d02012-12-31 20:48:35 +00003068 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00003069 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3070 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003071 Ptr = cast<Operator>(Ptr)->getOperand(0);
3072 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003073 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00003074 break;
3075 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00003076 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003077 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00003078 }
3079 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00003080 Offset = ByteOffset.getSExtValue();
3081 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00003082}
3083
Matthias Braun50ec0b52017-05-19 22:37:09 +00003084bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3085 unsigned CharSize) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003086 // Make sure the GEP has exactly three arguments.
3087 if (GEP->getNumOperands() != 3)
3088 return false;
3089
Matthias Braun50ec0b52017-05-19 22:37:09 +00003090 // Make sure the index-ee is a pointer to array of \p CharSize integers.
3091 // CharSize.
David L Kreitzer752c1442016-04-13 14:31:06 +00003092 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
Matthias Braun50ec0b52017-05-19 22:37:09 +00003093 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
David L Kreitzer752c1442016-04-13 14:31:06 +00003094 return false;
3095
3096 // Check to make sure that the first operand of the GEP is an integer and
3097 // has value 0 so that we are sure we're indexing into the initializer.
3098 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3099 if (!FirstIdx || !FirstIdx->isZero())
3100 return false;
3101
3102 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003103}
Chris Lattnere28618d2010-11-30 22:25:26 +00003104
Matthias Braun50ec0b52017-05-19 22:37:09 +00003105bool llvm::getConstantDataArrayInfo(const Value *V,
3106 ConstantDataArraySlice &Slice,
3107 unsigned ElementSize, uint64_t Offset) {
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003108 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00003109
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003110 // Look through bitcast instructions and geps.
3111 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00003112
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003113 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003114 // offset.
3115 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003116 // The GEP operator should be based on a pointer to string constant, and is
3117 // indexing into the string constant.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003118 if (!isGEPBasedOnPointerToString(GEP, ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003119 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003120
Evan Chengda3db112008-06-30 07:31:25 +00003121 // If the second index isn't a ConstantInt, then this is a variable index
3122 // into the array. If this occurs, we can't say anything meaningful about
3123 // the string.
3124 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003125 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003126 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003127 else
3128 return false;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003129 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3130 StartIdx + Offset);
Evan Chengda3db112008-06-30 07:31:25 +00003131 }
Nick Lewycky46209882011-10-20 00:34:35 +00003132
Evan Chengda3db112008-06-30 07:31:25 +00003133 // The GEP instruction, constant or instruction, must reference a global
3134 // variable that is a constant and is initialized. The referenced constant
3135 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003136 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003137 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003138 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003139
Matthias Braun50ec0b52017-05-19 22:37:09 +00003140 const ConstantDataArray *Array;
3141 ArrayType *ArrayTy;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003142 if (GV->getInitializer()->isNullValue()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003143 Type *GVTy = GV->getValueType();
3144 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
Sanjay Patel2ad88f82017-06-12 22:34:37 +00003145 // A zeroinitializer for the array; there is no ConstantDataArray.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003146 Array = nullptr;
3147 } else {
3148 const DataLayout &DL = GV->getParent()->getDataLayout();
3149 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3150 uint64_t Length = SizeInBytes / (ElementSize / 8);
3151 if (Length <= Offset)
3152 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003153
Matthias Braun50ec0b52017-05-19 22:37:09 +00003154 Slice.Array = nullptr;
3155 Slice.Offset = 0;
3156 Slice.Length = Length - Offset;
3157 return true;
3158 }
3159 } else {
3160 // This must be a ConstantDataArray.
3161 Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3162 if (!Array)
3163 return false;
3164 ArrayTy = Array->getType();
3165 }
3166 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003167 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003168
Matthias Braun50ec0b52017-05-19 22:37:09 +00003169 uint64_t NumElts = ArrayTy->getArrayNumElements();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003170 if (Offset > NumElts)
3171 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003172
Matthias Braun50ec0b52017-05-19 22:37:09 +00003173 Slice.Array = Array;
3174 Slice.Offset = Offset;
3175 Slice.Length = NumElts - Offset;
3176 return true;
3177}
3178
3179/// This function computes the length of a null-terminated C string pointed to
3180/// by V. If successful, it returns true and returns the string in Str.
3181/// If unsuccessful, it returns false.
3182bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3183 uint64_t Offset, bool TrimAtNul) {
3184 ConstantDataArraySlice Slice;
3185 if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3186 return false;
3187
3188 if (Slice.Array == nullptr) {
3189 if (TrimAtNul) {
3190 Str = StringRef();
3191 return true;
3192 }
3193 if (Slice.Length == 1) {
3194 Str = StringRef("", 1);
3195 return true;
3196 }
Sanjay Patelfef83e82017-06-09 14:21:18 +00003197 // We cannot instantiate a StringRef as we do not have an appropriate string
Matthias Braun50ec0b52017-05-19 22:37:09 +00003198 // of 0s at hand.
3199 return false;
3200 }
3201
3202 // Start out with the entire array in the StringRef.
3203 Str = Slice.Array->getAsString();
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003204 // Skip over 'offset' bytes.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003205 Str = Str.substr(Slice.Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003206
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003207 if (TrimAtNul) {
3208 // Trim off the \0 and anything after it. If the array is not nul
3209 // terminated, we just return the whole end of string. The client may know
3210 // some other way that the string is length-bound.
3211 Str = Str.substr(0, Str.find('\0'));
3212 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003213 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003214}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003215
3216// These next two are very similar to the above, but also look through PHI
3217// nodes.
3218// TODO: See if we can integrate these two together.
3219
Sanjay Patelaee84212014-11-04 16:27:42 +00003220/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003221/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003222static uint64_t GetStringLengthH(const Value *V,
Matthias Braun50ec0b52017-05-19 22:37:09 +00003223 SmallPtrSetImpl<const PHINode*> &PHIs,
3224 unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003225 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003226 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003227
3228 // If this is a PHI node, there are two cases: either we have already seen it
3229 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003230 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003231 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003232 return ~0ULL; // already in the set.
3233
3234 // If it was new, see if all the input strings are the same length.
3235 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003236 for (Value *IncValue : PN->incoming_values()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003237 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003238 if (Len == 0) return 0; // Unknown length -> unknown.
3239
3240 if (Len == ~0ULL) continue;
3241
3242 if (Len != LenSoFar && LenSoFar != ~0ULL)
3243 return 0; // Disagree -> unknown.
3244 LenSoFar = Len;
3245 }
3246
3247 // Success, all agree.
3248 return LenSoFar;
3249 }
3250
3251 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003252 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003253 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003254 if (Len1 == 0) return 0;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003255 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003256 if (Len2 == 0) return 0;
3257 if (Len1 == ~0ULL) return Len2;
3258 if (Len2 == ~0ULL) return Len1;
3259 if (Len1 != Len2) return 0;
3260 return Len1;
3261 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003262
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003263 // Otherwise, see if we can read the string.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003264 ConstantDataArraySlice Slice;
3265 if (!getConstantDataArrayInfo(V, Slice, CharSize))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003266 return 0;
3267
Matthias Braun50ec0b52017-05-19 22:37:09 +00003268 if (Slice.Array == nullptr)
3269 return 1;
3270
3271 // Search for nul characters
3272 unsigned NullIndex = 0;
3273 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3274 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3275 break;
3276 }
3277
3278 return NullIndex + 1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003279}
3280
Sanjay Patelaee84212014-11-04 16:27:42 +00003281/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003282/// the specified pointer, return 'len+1'. If we can't, return 0.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003283uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003284 if (!V->getType()->isPointerTy()) return 0;
3285
Pete Cooper35b00d52016-08-13 01:05:32 +00003286 SmallPtrSet<const PHINode*, 32> PHIs;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003287 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003288 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3289 // an empty string as a length.
3290 return Len == ~0ULL ? 1 : Len;
3291}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003292
Adam Nemete2b885c2015-04-23 20:09:20 +00003293/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3294/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003295static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3296 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003297 // Find the loop-defined value.
3298 Loop *L = LI->getLoopFor(PN->getParent());
3299 if (PN->getNumIncomingValues() != 2)
3300 return true;
3301
3302 // Find the value from previous iteration.
3303 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3304 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3305 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3306 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3307 return true;
3308
3309 // If a new pointer is loaded in the loop, the pointer references a different
3310 // object in every iteration. E.g.:
3311 // for (i)
3312 // int *p = a[i];
3313 // ...
3314 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3315 if (!L->isLoopInvariant(Load->getPointerOperand()))
3316 return false;
3317 return true;
3318}
3319
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003320Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3321 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003322 if (!V->getType()->isPointerTy())
3323 return V;
3324 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3325 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3326 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003327 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3328 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003329 V = cast<Operator>(V)->getOperand(0);
3330 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003331 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003332 return V;
3333 V = GA->getAliasee();
Craig Topper85482412017-04-12 22:29:23 +00003334 } else if (isa<AllocaInst>(V)) {
3335 // An alloca can't be further simplified.
3336 return V;
Dan Gohmana4fcd242010-12-15 20:02:24 +00003337 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003338 if (auto CS = CallSite(V))
3339 if (Value *RV = CS.getReturnedArgOperand()) {
3340 V = RV;
3341 continue;
3342 }
3343
Dan Gohman05b18f12010-12-15 20:49:55 +00003344 // See if InstructionSimplify knows any relevant tricks.
3345 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003346 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Daniel Berlin4d0fe642017-04-28 19:55:38 +00003347 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003348 V = Simplified;
3349 continue;
3350 }
3351
Dan Gohmana4fcd242010-12-15 20:02:24 +00003352 return V;
3353 }
3354 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3355 }
3356 return V;
3357}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003358
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003359void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003360 const DataLayout &DL, LoopInfo *LI,
3361 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003362 SmallPtrSet<Value *, 4> Visited;
3363 SmallVector<Value *, 4> Worklist;
3364 Worklist.push_back(V);
3365 do {
3366 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003367 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003368
David Blaikie70573dc2014-11-19 07:49:26 +00003369 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003370 continue;
3371
3372 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3373 Worklist.push_back(SI->getTrueValue());
3374 Worklist.push_back(SI->getFalseValue());
3375 continue;
3376 }
3377
3378 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003379 // If this PHI changes the underlying object in every iteration of the
3380 // loop, don't look through it. Consider:
3381 // int **A;
3382 // for (i) {
3383 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3384 // Curr = A[i];
3385 // *Prev, *Curr;
3386 //
3387 // Prev is tracking Curr one iteration behind so they refer to different
3388 // underlying objects.
3389 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3390 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003391 for (Value *IncValue : PN->incoming_values())
3392 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003393 continue;
3394 }
3395
3396 Objects.push_back(P);
3397 } while (!Worklist.empty());
3398}
3399
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003400/// This is the function that does the work of looking through basic
3401/// ptrtoint+arithmetic+inttoptr sequences.
3402static const Value *getUnderlyingObjectFromInt(const Value *V) {
3403 do {
3404 if (const Operator *U = dyn_cast<Operator>(V)) {
3405 // If we find a ptrtoint, we can transfer control back to the
3406 // regular getUnderlyingObjectFromInt.
3407 if (U->getOpcode() == Instruction::PtrToInt)
3408 return U->getOperand(0);
3409 // If we find an add of a constant, a multiplied value, or a phi, it's
3410 // likely that the other operand will lead us to the base
3411 // object. We don't have to worry about the case where the
3412 // object address is somehow being computed by the multiply,
3413 // because our callers only care when the result is an
3414 // identifiable object.
3415 if (U->getOpcode() != Instruction::Add ||
3416 (!isa<ConstantInt>(U->getOperand(1)) &&
3417 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3418 !isa<PHINode>(U->getOperand(1))))
3419 return V;
3420 V = U->getOperand(0);
3421 } else {
3422 return V;
3423 }
3424 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3425 } while (true);
3426}
3427
3428/// This is a wrapper around GetUnderlyingObjects and adds support for basic
3429/// ptrtoint+arithmetic+inttoptr sequences.
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003430/// It returns false if unidentified object is found in GetUnderlyingObjects.
3431bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003432 SmallVectorImpl<Value *> &Objects,
3433 const DataLayout &DL) {
3434 SmallPtrSet<const Value *, 16> Visited;
3435 SmallVector<const Value *, 4> Working(1, V);
3436 do {
3437 V = Working.pop_back_val();
3438
3439 SmallVector<Value *, 4> Objs;
3440 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3441
3442 for (Value *V : Objs) {
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003443 if (!Visited.insert(V).second)
3444 continue;
3445 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3446 const Value *O =
3447 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3448 if (O->getType()->isPointerTy()) {
3449 Working.push_back(O);
3450 continue;
3451 }
3452 }
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003453 // If GetUnderlyingObjects fails to find an identifiable object,
3454 // getUnderlyingObjectsForCodeGen also fails for safety.
3455 if (!isIdentifiedObject(V)) {
3456 Objects.clear();
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003457 return false;
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003458 }
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003459 Objects.push_back(const_cast<Value *>(V));
3460 }
3461 } while (!Working.empty());
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003462 return true;
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003463}
3464
Sanjay Patelaee84212014-11-04 16:27:42 +00003465/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003466bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003467 for (const User *U : V->users()) {
3468 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003469 if (!II) return false;
3470
3471 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3472 II->getIntrinsicID() != Intrinsic::lifetime_end)
3473 return false;
3474 }
3475 return true;
3476}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003477
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003478bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3479 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003480 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003481 const Operator *Inst = dyn_cast<Operator>(V);
3482 if (!Inst)
3483 return false;
3484
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003485 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3486 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3487 if (C->canTrap())
3488 return false;
3489
3490 switch (Inst->getOpcode()) {
3491 default:
3492 return true;
3493 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003494 case Instruction::URem: {
3495 // x / y is undefined if y == 0.
3496 const APInt *V;
3497 if (match(Inst->getOperand(1), m_APInt(V)))
3498 return *V != 0;
3499 return false;
3500 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003501 case Instruction::SDiv:
3502 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003503 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003504 const APInt *Numerator, *Denominator;
3505 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3506 return false;
3507 // We cannot hoist this division if the denominator is 0.
3508 if (*Denominator == 0)
3509 return false;
3510 // It's safe to hoist if the denominator is not 0 or -1.
3511 if (*Denominator != -1)
3512 return true;
3513 // At this point we know that the denominator is -1. It is safe to hoist as
3514 // long we know that the numerator is not INT_MIN.
3515 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3516 return !Numerator->isMinSignedValue();
3517 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003518 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003519 }
3520 case Instruction::Load: {
3521 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003522 if (!LI->isUnordered() ||
3523 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003524 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003525 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003526 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003527 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003528 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003529 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3530 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003531 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003532 case Instruction::Call: {
Matt Arsenaultcf5e7fe2017-04-28 21:13:09 +00003533 auto *CI = cast<const CallInst>(Inst);
3534 const Function *Callee = CI->getCalledFunction();
David Majnemer0a92f862015-08-28 21:13:39 +00003535
Matt Arsenault6a288c12017-05-03 02:26:10 +00003536 // The called function could have undefined behavior or side-effects, even
3537 // if marked readnone nounwind.
3538 return Callee && Callee->isSpeculatable();
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003539 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003540 case Instruction::VAArg:
3541 case Instruction::Alloca:
3542 case Instruction::Invoke:
3543 case Instruction::PHI:
3544 case Instruction::Store:
3545 case Instruction::Ret:
3546 case Instruction::Br:
3547 case Instruction::IndirectBr:
3548 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003549 case Instruction::Unreachable:
3550 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003551 case Instruction::AtomicRMW:
3552 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003553 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003554 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003555 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003556 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003557 case Instruction::CatchRet:
3558 case Instruction::CleanupPad:
3559 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003560 return false; // Misc instructions which have effects
3561 }
3562}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003563
Quentin Colombet6443cce2015-08-06 18:44:34 +00003564bool llvm::mayBeMemoryDependent(const Instruction &I) {
3565 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3566}
3567
Pete Cooper35b00d52016-08-13 01:05:32 +00003568OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3569 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003570 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003571 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003572 const Instruction *CxtI,
3573 const DominatorTree *DT) {
3574 // Multiplying n * m significant bits yields a result of n + m significant
3575 // bits. If the total number of significant bits does not exceed the
3576 // result bit width (minus 1), there is no overflow.
3577 // This means if we have enough leading zero bits in the operands
3578 // we can guarantee that the result does not overflow.
3579 // Ref: "Hacker's Delight" by Henry Warren
3580 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00003581 KnownBits LHSKnown(BitWidth);
3582 KnownBits RHSKnown(BitWidth);
3583 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
3584 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer491331a2015-01-02 07:29:43 +00003585 // Note that underestimating the number of zero bits gives a more
3586 // conservative answer.
Craig Topper8df66c62017-05-12 17:20:30 +00003587 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3588 RHSKnown.countMinLeadingZeros();
David Majnemer491331a2015-01-02 07:29:43 +00003589 // First handle the easy case: if we have enough zero bits there's
3590 // definitely no overflow.
3591 if (ZeroBits >= BitWidth)
3592 return OverflowResult::NeverOverflows;
3593
3594 // Get the largest possible values for each operand.
Craig Topperb45eabc2017-04-26 16:39:58 +00003595 APInt LHSMax = ~LHSKnown.Zero;
3596 APInt RHSMax = ~RHSKnown.Zero;
David Majnemer491331a2015-01-02 07:29:43 +00003597
3598 // We know the multiply operation doesn't overflow if the maximum values for
3599 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003600 bool MaxOverflow;
Craig Topper9b71a402017-04-19 21:09:45 +00003601 (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003602 if (!MaxOverflow)
3603 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003604
David Majnemerc8a576b2015-01-02 07:29:47 +00003605 // We know it always overflows if multiplying the smallest possible values for
3606 // the operands also results in overflow.
3607 bool MinOverflow;
Craig Topperb45eabc2017-04-26 16:39:58 +00003608 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003609 if (MinOverflow)
3610 return OverflowResult::AlwaysOverflows;
3611
3612 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003613}
David Majnemer5310c1e2015-01-07 00:39:50 +00003614
Pete Cooper35b00d52016-08-13 01:05:32 +00003615OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3616 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003617 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003618 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003619 const Instruction *CxtI,
3620 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +00003621 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3622 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
3623 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003624
Craig Topper6e11a052017-05-08 16:22:48 +00003625 if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003626 // The sign bit is set in both cases: this MUST overflow.
3627 // Create a simple add instruction, and insert it into the struct.
3628 return OverflowResult::AlwaysOverflows;
3629 }
3630
Craig Topper6e11a052017-05-08 16:22:48 +00003631 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003632 // The sign bit is clear in both cases: this CANNOT overflow.
3633 // Create a simple add instruction, and insert it into the struct.
3634 return OverflowResult::NeverOverflows;
3635 }
3636 }
3637
3638 return OverflowResult::MayOverflow;
3639}
James Molloy71b91c22015-05-11 14:42:20 +00003640
Craig Topperbb973722017-05-15 02:44:08 +00003641/// \brief Return true if we can prove that adding the two values of the
3642/// knownbits will not overflow.
3643/// Otherwise return false.
3644static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
3645 const KnownBits &RHSKnown) {
3646 // Addition of two 2's complement numbers having opposite signs will never
3647 // overflow.
3648 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
3649 (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
3650 return true;
3651
3652 // If either of the values is known to be non-negative, adding them can only
3653 // overflow if the second is also non-negative, so we can assume that.
3654 // Two non-negative numbers will only overflow if there is a carry to the
3655 // sign bit, so we can check if even when the values are as big as possible
3656 // there is no overflow to the sign bit.
3657 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
3658 APInt MaxLHS = ~LHSKnown.Zero;
3659 MaxLHS.clearSignBit();
3660 APInt MaxRHS = ~RHSKnown.Zero;
3661 MaxRHS.clearSignBit();
3662 APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
3663 return Result.isSignBitClear();
3664 }
3665
3666 // If either of the values is known to be negative, adding them can only
3667 // overflow if the second is also negative, so we can assume that.
3668 // Two negative number will only overflow if there is no carry to the sign
3669 // bit, so we can check if even when the values are as small as possible
3670 // there is overflow to the sign bit.
3671 if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
3672 APInt MinLHS = LHSKnown.One;
3673 MinLHS.clearSignBit();
3674 APInt MinRHS = RHSKnown.One;
3675 MinRHS.clearSignBit();
3676 APInt Result = std::move(MinLHS) + std::move(MinRHS);
3677 return Result.isSignBitSet();
3678 }
3679
3680 // If we reached here it means that we know nothing about the sign bits.
3681 // In this case we can't know if there will be an overflow, since by
3682 // changing the sign bits any two values can be made to overflow.
3683 return false;
3684}
3685
Pete Cooper35b00d52016-08-13 01:05:32 +00003686static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3687 const Value *RHS,
3688 const AddOperator *Add,
3689 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003690 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003691 const Instruction *CxtI,
3692 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003693 if (Add && Add->hasNoSignedWrap()) {
3694 return OverflowResult::NeverOverflows;
3695 }
3696
Craig Topperbb973722017-05-15 02:44:08 +00003697 // If LHS and RHS each have at least two sign bits, the addition will look
3698 // like
3699 //
3700 // XX..... +
3701 // YY.....
3702 //
3703 // If the carry into the most significant position is 0, X and Y can't both
3704 // be 1 and therefore the carry out of the addition is also 0.
3705 //
3706 // If the carry into the most significant position is 1, X and Y can't both
3707 // be 0 and therefore the carry out of the addition is also 1.
3708 //
3709 // Since the carry into the most significant position is always equal to
3710 // the carry out of the addition, there is no signed overflow.
3711 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
3712 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
3713 return OverflowResult::NeverOverflows;
3714
Craig Topper6e11a052017-05-08 16:22:48 +00003715 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3716 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003717
Craig Topperbb973722017-05-15 02:44:08 +00003718 if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
Jingyue Wu10fcea52015-08-20 18:27:04 +00003719 return OverflowResult::NeverOverflows;
Jingyue Wu10fcea52015-08-20 18:27:04 +00003720
3721 // The remaining code needs Add to be available. Early returns if not so.
3722 if (!Add)
3723 return OverflowResult::MayOverflow;
3724
3725 // If the sign of Add is the same as at least one of the operands, this add
3726 // CANNOT overflow. This is particularly useful when the sum is
3727 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3728 // operands.
3729 bool LHSOrRHSKnownNonNegative =
Craig Topper6e11a052017-05-08 16:22:48 +00003730 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
Craig Topperbb973722017-05-15 02:44:08 +00003731 bool LHSOrRHSKnownNegative =
3732 (LHSKnown.isNegative() || RHSKnown.isNegative());
Jingyue Wu10fcea52015-08-20 18:27:04 +00003733 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
Craig Topper6e11a052017-05-08 16:22:48 +00003734 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
3735 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
3736 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003737 return OverflowResult::NeverOverflows;
3738 }
3739 }
3740
3741 return OverflowResult::MayOverflow;
3742}
3743
Pete Cooper35b00d52016-08-13 01:05:32 +00003744bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3745 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003746#ifndef NDEBUG
3747 auto IID = II->getIntrinsicID();
3748 assert((IID == Intrinsic::sadd_with_overflow ||
3749 IID == Intrinsic::uadd_with_overflow ||
3750 IID == Intrinsic::ssub_with_overflow ||
3751 IID == Intrinsic::usub_with_overflow ||
3752 IID == Intrinsic::smul_with_overflow ||
3753 IID == Intrinsic::umul_with_overflow) &&
3754 "Not an overflow intrinsic!");
3755#endif
3756
Pete Cooper35b00d52016-08-13 01:05:32 +00003757 SmallVector<const BranchInst *, 2> GuardingBranches;
3758 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003759
Pete Cooper35b00d52016-08-13 01:05:32 +00003760 for (const User *U : II->users()) {
3761 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003762 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3763
3764 if (EVI->getIndices()[0] == 0)
3765 Results.push_back(EVI);
3766 else {
3767 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3768
Pete Cooper35b00d52016-08-13 01:05:32 +00003769 for (const auto *U : EVI->users())
3770 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003771 assert(B->isConditional() && "How else is it using an i1?");
3772 GuardingBranches.push_back(B);
3773 }
3774 }
3775 } else {
3776 // We are using the aggregate directly in a way we don't want to analyze
3777 // here (storing it to a global, say).
3778 return false;
3779 }
3780 }
3781
Pete Cooper35b00d52016-08-13 01:05:32 +00003782 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003783 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3784 if (!NoWrapEdge.isSingleEdge())
3785 return false;
3786
3787 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003788 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003789 // If the extractvalue itself is not executed on overflow, the we don't
3790 // need to check each use separately, since domination is transitive.
3791 if (DT.dominates(NoWrapEdge, Result->getParent()))
3792 continue;
3793
3794 for (auto &RU : Result->uses())
3795 if (!DT.dominates(NoWrapEdge, RU))
3796 return false;
3797 }
3798
3799 return true;
3800 };
3801
Eugene Zelenko75075ef2017-09-01 21:37:29 +00003802 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003803}
3804
3805
Pete Cooper35b00d52016-08-13 01:05:32 +00003806OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003807 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003808 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003809 const Instruction *CxtI,
3810 const DominatorTree *DT) {
3811 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003812 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003813}
3814
Pete Cooper35b00d52016-08-13 01:05:32 +00003815OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3816 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003817 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003818 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003819 const Instruction *CxtI,
3820 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003821 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003822}
3823
Jingyue Wu42f1d672015-07-28 18:22:40 +00003824bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003825 // A memory operation returns normally if it isn't volatile. A volatile
3826 // operation is allowed to trap.
3827 //
3828 // An atomic operation isn't guaranteed to return in a reasonable amount of
3829 // time because it's possible for another thread to interfere with it for an
3830 // arbitrary length of time, but programs aren't allowed to rely on that.
3831 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3832 return !LI->isVolatile();
3833 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3834 return !SI->isVolatile();
3835 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3836 return !CXI->isVolatile();
3837 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3838 return !RMWI->isVolatile();
3839 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3840 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003841
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003842 // If there is no successor, then execution can't transfer to it.
3843 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3844 return !CRI->unwindsToCaller();
3845 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3846 return !CatchSwitch->unwindsToCaller();
3847 if (isa<ResumeInst>(I))
3848 return false;
3849 if (isa<ReturnInst>(I))
3850 return false;
Sebastian Pop4a4d2452017-03-08 01:54:50 +00003851 if (isa<UnreachableInst>(I))
3852 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003853
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003854 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00003855 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00003856 // Call sites that throw have implicit non-local control flow.
3857 if (!CS.doesNotThrow())
3858 return false;
3859
3860 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3861 // etc. and thus not return. However, LLVM already assumes that
3862 //
3863 // - Thread exiting actions are modeled as writes to memory invisible to
3864 // the program.
3865 //
3866 // - Loops that don't have side effects (side effects are volatile/atomic
3867 // stores and IO) always terminate (see http://llvm.org/PR965).
3868 // Furthermore IO itself is also modeled as writes to memory invisible to
3869 // the program.
3870 //
3871 // We rely on those assumptions here, and use the memory effects of the call
3872 // target as a proxy for checking that it always returns.
3873
3874 // FIXME: This isn't aggressive enough; a call which only writes to a global
3875 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003876 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3877 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003878 }
3879
3880 // Other instructions return normally.
3881 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003882}
3883
3884bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3885 const Loop *L) {
3886 // The loop header is guaranteed to be executed for every iteration.
3887 //
3888 // FIXME: Relax this constraint to cover all basic blocks that are
3889 // guaranteed to be executed at every iteration.
3890 if (I->getParent() != L->getHeader()) return false;
3891
3892 for (const Instruction &LI : *L->getHeader()) {
3893 if (&LI == I) return true;
3894 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3895 }
3896 llvm_unreachable("Instruction not contained in its own parent basic block.");
3897}
3898
3899bool llvm::propagatesFullPoison(const Instruction *I) {
3900 switch (I->getOpcode()) {
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003901 case Instruction::Add:
3902 case Instruction::Sub:
3903 case Instruction::Xor:
3904 case Instruction::Trunc:
3905 case Instruction::BitCast:
3906 case Instruction::AddrSpaceCast:
Sanjoy Das5cd6c5ca2017-02-22 06:52:32 +00003907 case Instruction::Mul:
3908 case Instruction::Shl:
3909 case Instruction::GetElementPtr:
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003910 // These operations all propagate poison unconditionally. Note that poison
3911 // is not any particular value, so xor or subtraction of poison with
3912 // itself still yields poison, not zero.
3913 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003914
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003915 case Instruction::AShr:
3916 case Instruction::SExt:
3917 // For these operations, one bit of the input is replicated across
3918 // multiple output bits. A replicated poison bit is still poison.
3919 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003920
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003921 case Instruction::ICmp:
3922 // Comparing poison with any value yields poison. This is why, for
3923 // instance, x s< (x +nsw 1) can be folded to true.
3924 return true;
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003925
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003926 default:
3927 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003928 }
3929}
3930
3931const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3932 switch (I->getOpcode()) {
3933 case Instruction::Store:
3934 return cast<StoreInst>(I)->getPointerOperand();
3935
3936 case Instruction::Load:
3937 return cast<LoadInst>(I)->getPointerOperand();
3938
3939 case Instruction::AtomicCmpXchg:
3940 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3941
3942 case Instruction::AtomicRMW:
3943 return cast<AtomicRMWInst>(I)->getPointerOperand();
3944
3945 case Instruction::UDiv:
3946 case Instruction::SDiv:
3947 case Instruction::URem:
3948 case Instruction::SRem:
3949 return I->getOperand(1);
3950
3951 default:
3952 return nullptr;
3953 }
3954}
3955
Sanjoy Das08989c72017-04-30 19:41:19 +00003956bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00003957 // We currently only look for uses of poison values within the same basic
3958 // block, as that makes it easier to guarantee that the uses will be
3959 // executed given that PoisonI is executed.
3960 //
3961 // FIXME: Expand this to consider uses beyond the same basic block. To do
3962 // this, look out for the distinction between post-dominance and strong
3963 // post-dominance.
3964 const BasicBlock *BB = PoisonI->getParent();
3965
3966 // Set of instructions that we have proved will yield poison if PoisonI
3967 // does.
3968 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003969 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003970 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003971 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003972
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003973 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003974
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003975 unsigned Iter = 0;
3976 while (Iter++ < MaxDepth) {
3977 for (auto &I : make_range(Begin, End)) {
3978 if (&I != PoisonI) {
3979 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3980 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3981 return true;
3982 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3983 return false;
3984 }
3985
3986 // Mark poison that propagates from I through uses of I.
3987 if (YieldsPoison.count(&I)) {
3988 for (const User *User : I.users()) {
3989 const Instruction *UserI = cast<Instruction>(User);
3990 if (propagatesFullPoison(UserI))
3991 YieldsPoison.insert(User);
3992 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003993 }
3994 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003995
3996 if (auto *NextBB = BB->getSingleSuccessor()) {
3997 if (Visited.insert(NextBB).second) {
3998 BB = NextBB;
3999 Begin = BB->getFirstNonPHI()->getIterator();
4000 End = BB->end();
4001 continue;
4002 }
4003 }
4004
4005 break;
Eugene Zelenko75075ef2017-09-01 21:37:29 +00004006 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004007 return false;
4008}
4009
Pete Cooper35b00d52016-08-13 01:05:32 +00004010static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00004011 if (FMF.noNaNs())
4012 return true;
4013
4014 if (auto *C = dyn_cast<ConstantFP>(V))
4015 return !C->isNaN();
4016 return false;
4017}
4018
Pete Cooper35b00d52016-08-13 01:05:32 +00004019static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00004020 if (auto *C = dyn_cast<ConstantFP>(V))
4021 return !C->isZero();
4022 return false;
4023}
4024
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004025/// Match clamp pattern for float types without care about NaNs or signed zeros.
4026/// Given non-min/max outer cmp/select from the clamp pattern this
4027/// function recognizes if it can be substitued by a "canonical" min/max
4028/// pattern.
4029static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4030 Value *CmpLHS, Value *CmpRHS,
4031 Value *TrueVal, Value *FalseVal,
4032 Value *&LHS, Value *&RHS) {
4033 // Try to match
4034 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4035 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4036 // and return description of the outer Max/Min.
4037
4038 // First, check if select has inverse order:
4039 if (CmpRHS == FalseVal) {
4040 std::swap(TrueVal, FalseVal);
4041 Pred = CmpInst::getInversePredicate(Pred);
4042 }
4043
4044 // Assume success now. If there's no match, callers should not use these anyway.
4045 LHS = TrueVal;
4046 RHS = FalseVal;
4047
4048 const APFloat *FC1;
4049 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4050 return {SPF_UNKNOWN, SPNB_NA, false};
4051
4052 const APFloat *FC2;
4053 switch (Pred) {
4054 case CmpInst::FCMP_OLT:
4055 case CmpInst::FCMP_OLE:
4056 case CmpInst::FCMP_ULT:
4057 case CmpInst::FCMP_ULE:
4058 if (match(FalseVal,
4059 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4060 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4061 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4062 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4063 break;
4064 case CmpInst::FCMP_OGT:
4065 case CmpInst::FCMP_OGE:
4066 case CmpInst::FCMP_UGT:
4067 case CmpInst::FCMP_UGE:
4068 if (match(FalseVal,
4069 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4070 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4071 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4072 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4073 break;
4074 default:
4075 break;
4076 }
4077
4078 return {SPF_UNKNOWN, SPNB_NA, false};
4079}
4080
Sanjay Patel819f0962016-11-13 19:30:19 +00004081/// Match non-obvious integer minimum and maximum sequences.
4082static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4083 Value *CmpLHS, Value *CmpRHS,
4084 Value *TrueVal, Value *FalseVal,
4085 Value *&LHS, Value *&RHS) {
Nikolai Bozhenov346f4322017-10-17 11:50:48 +00004086 assert(!ICmpInst::isEquality(Pred) && "Expected not equality predicate only!");
4087
4088 // First, check if select has inverse order of what we will check below:
4089 if (CmpRHS == FalseVal) {
4090 std::swap(TrueVal, FalseVal);
4091 Pred = CmpInst::getInversePredicate(Pred);
4092 }
4093
Sanjay Patel24c6f882017-01-21 17:51:25 +00004094 // Assume success. If there's no match, callers should not use these anyway.
4095 LHS = TrueVal;
4096 RHS = FalseVal;
4097
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004098 // Recognize variations of:
4099 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4100 const APInt *C1;
4101 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4102 const APInt *C2;
4103
4104 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4105 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov346f4322017-10-17 11:50:48 +00004106 C1->slt(*C2) &&
4107 (Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE))
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004108 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004109
4110 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4111 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov346f4322017-10-17 11:50:48 +00004112 C1->sgt(*C2) &&
4113 (Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE))
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004114 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004115
4116 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4117 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov346f4322017-10-17 11:50:48 +00004118 C1->ult(*C2) &&
4119 (Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE))
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004120 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004121
4122 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4123 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov346f4322017-10-17 11:50:48 +00004124 C1->ugt(*C2) &&
4125 (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE))
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004126 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004127 }
4128
Nikolai Bozhenov346f4322017-10-17 11:50:48 +00004129 if (!CmpInst::isSigned(Pred))
Sanjay Patel819f0962016-11-13 19:30:19 +00004130 return {SPF_UNKNOWN, SPNB_NA, false};
4131
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004132 // Z = X -nsw Y
4133 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4134 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4135 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004136 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Nikolai Bozhenov346f4322017-10-17 11:50:48 +00004137 return {(Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE) ? SPF_SMIN
4138 : SPF_SMAX,
4139 SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004140
4141 // Z = X -nsw Y
4142 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4143 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4144 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004145 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Nikolai Bozhenov346f4322017-10-17 11:50:48 +00004146 return {(Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE) ? SPF_SMAX
4147 : SPF_SMIN,
4148 SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004149
Sanjay Patel819f0962016-11-13 19:30:19 +00004150 if (!match(CmpRHS, m_APInt(C1)))
4151 return {SPF_UNKNOWN, SPNB_NA, false};
4152
4153 // An unsigned min/max can be written with a signed compare.
4154 const APInt *C2;
4155 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4156 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4157 // Is the sign bit set?
4158 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4159 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Nikolai Bozhenov346f4322017-10-17 11:50:48 +00004160 if ((Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE) && *C1 == 0 &&
4161 C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004162 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004163
4164 // Is the sign bit clear?
4165 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4166 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
Nikolai Bozhenov346f4322017-10-17 11:50:48 +00004167 if ((Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE) &&
4168 C1->isAllOnesValue() && C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004169 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004170 }
4171
4172 // Look through 'not' ops to find disguised signed min/max.
4173 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4174 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4175 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004176 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Nikolai Bozhenov346f4322017-10-17 11:50:48 +00004177 return {(Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE) ? SPF_SMIN
4178 : SPF_SMAX,
4179 SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004180
4181 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4182 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4183 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004184 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Nikolai Bozhenov346f4322017-10-17 11:50:48 +00004185 return {(Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE) ? SPF_SMAX
4186 : SPF_SMIN,
4187 SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004188
4189 return {SPF_UNKNOWN, SPNB_NA, false};
4190}
4191
James Molloy134bec22015-08-11 09:12:57 +00004192static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4193 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00004194 Value *CmpLHS, Value *CmpRHS,
4195 Value *TrueVal, Value *FalseVal,
4196 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004197 LHS = CmpLHS;
4198 RHS = CmpRHS;
4199
James Molloy134bec22015-08-11 09:12:57 +00004200 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
4201 // return inconsistent results between implementations.
4202 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4203 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4204 // Therefore we behave conservatively and only proceed if at least one of the
4205 // operands is known to not be zero, or if we don't care about signed zeroes.
4206 switch (Pred) {
4207 default: break;
4208 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4209 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4210 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4211 !isKnownNonZero(CmpRHS))
4212 return {SPF_UNKNOWN, SPNB_NA, false};
4213 }
4214
4215 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4216 bool Ordered = false;
4217
4218 // When given one NaN and one non-NaN input:
4219 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4220 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4221 // ordered comparison fails), which could be NaN or non-NaN.
4222 // so here we discover exactly what NaN behavior is required/accepted.
4223 if (CmpInst::isFPPredicate(Pred)) {
4224 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4225 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4226
4227 if (LHSSafe && RHSSafe) {
4228 // Both operands are known non-NaN.
4229 NaNBehavior = SPNB_RETURNS_ANY;
4230 } else if (CmpInst::isOrdered(Pred)) {
4231 // An ordered comparison will return false when given a NaN, so it
4232 // returns the RHS.
4233 Ordered = true;
4234 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004235 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004236 NaNBehavior = SPNB_RETURNS_NAN;
4237 else if (RHSSafe)
4238 NaNBehavior = SPNB_RETURNS_OTHER;
4239 else
4240 // Completely unsafe.
4241 return {SPF_UNKNOWN, SPNB_NA, false};
4242 } else {
4243 Ordered = false;
4244 // An unordered comparison will return true when given a NaN, so it
4245 // returns the LHS.
4246 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004247 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004248 NaNBehavior = SPNB_RETURNS_OTHER;
4249 else if (RHSSafe)
4250 NaNBehavior = SPNB_RETURNS_NAN;
4251 else
4252 // Completely unsafe.
4253 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004254 }
4255 }
4256
James Molloy71b91c22015-05-11 14:42:20 +00004257 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004258 std::swap(CmpLHS, CmpRHS);
4259 Pred = CmpInst::getSwappedPredicate(Pred);
4260 if (NaNBehavior == SPNB_RETURNS_NAN)
4261 NaNBehavior = SPNB_RETURNS_OTHER;
4262 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4263 NaNBehavior = SPNB_RETURNS_NAN;
4264 Ordered = !Ordered;
4265 }
4266
4267 // ([if]cmp X, Y) ? X : Y
4268 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004269 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004270 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004271 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004272 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004273 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004274 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004275 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004276 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004277 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004278 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4279 case FCmpInst::FCMP_UGT:
4280 case FCmpInst::FCMP_UGE:
4281 case FCmpInst::FCMP_OGT:
4282 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4283 case FCmpInst::FCMP_ULT:
4284 case FCmpInst::FCMP_ULE:
4285 case FCmpInst::FCMP_OLT:
4286 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004287 }
4288 }
4289
Sanjay Patele372aec2016-10-27 15:26:10 +00004290 const APInt *C1;
4291 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004292 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4293 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4294
4295 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4296 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Sanjay Patele372aec2016-10-27 15:26:10 +00004297 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004298 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004299 }
4300
4301 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4302 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Sanjay Patele372aec2016-10-27 15:26:10 +00004303 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
James Molloy134bec22015-08-11 09:12:57 +00004304 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004305 }
4306 }
James Molloy71b91c22015-05-11 14:42:20 +00004307 }
4308
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004309 if (CmpInst::isIntPredicate(Pred))
4310 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4311
4312 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4313 // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4314 // semantics than minNum. Be conservative in such case.
4315 if (NaNBehavior != SPNB_RETURNS_ANY ||
4316 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4317 !isKnownNonZero(CmpRHS)))
4318 return {SPF_UNKNOWN, SPNB_NA, false};
4319
4320 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004321}
James Molloy270ef8c2015-05-15 16:04:50 +00004322
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004323/// Helps to match a select pattern in case of a type mismatch.
4324///
4325/// The function processes the case when type of true and false values of a
4326/// select instruction differs from type of the cmp instruction operands because
4327/// of a cast instructon. The function checks if it is legal to move the cast
4328/// operation after "select". If yes, it returns the new second value of
4329/// "select" (with the assumption that cast is moved):
4330/// 1. As operand of cast instruction when both values of "select" are same cast
4331/// instructions.
4332/// 2. As restored constant (by applying reverse cast operation) when the first
4333/// value of the "select" is a cast operation and the second value is a
4334/// constant.
4335/// NOTE: We return only the new second value because the first value could be
4336/// accessed as operand of cast instruction.
James Molloy569cea62015-09-02 17:25:25 +00004337static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4338 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004339 auto *Cast1 = dyn_cast<CastInst>(V1);
4340 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004341 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004342
Sanjay Patel14a4b812017-01-29 16:34:57 +00004343 *CastOp = Cast1->getOpcode();
4344 Type *SrcTy = Cast1->getSrcTy();
4345 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4346 // If V1 and V2 are both the same cast from the same type, look through V1.
4347 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4348 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004349 return nullptr;
4350 }
4351
Sanjay Patel14a4b812017-01-29 16:34:57 +00004352 auto *C = dyn_cast<Constant>(V2);
4353 if (!C)
4354 return nullptr;
4355
David Majnemerd2a074b2016-04-29 18:40:34 +00004356 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00004357 switch (*CastOp) {
4358 case Instruction::ZExt:
4359 if (CmpI->isUnsigned())
4360 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4361 break;
4362 case Instruction::SExt:
4363 if (CmpI->isSigned())
4364 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4365 break;
4366 case Instruction::Trunc:
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004367 Constant *CmpConst;
Nikolai Bozhenov9723f122017-10-18 14:24:50 +00004368 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
4369 CmpConst->getType() == SrcTy) {
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004370 // Here we have the following case:
4371 //
4372 // %cond = cmp iN %x, CmpConst
4373 // %tr = trunc iN %x to iK
4374 // %narrowsel = select i1 %cond, iK %t, iK C
4375 //
4376 // We can always move trunc after select operation:
4377 //
4378 // %cond = cmp iN %x, CmpConst
4379 // %widesel = select i1 %cond, iN %x, iN CmpConst
4380 // %tr = trunc iN %widesel to iK
4381 //
4382 // Note that C could be extended in any way because we don't care about
4383 // upper bits after truncation. It can't be abs pattern, because it would
4384 // look like:
4385 //
4386 // select i1 %cond, x, -x.
4387 //
4388 // So only min/max pattern could be matched. Such match requires widened C
4389 // == CmpConst. That is why set widened C = CmpConst, condition trunc
4390 // CmpConst == C is checked below.
4391 CastedTo = CmpConst;
4392 } else {
4393 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4394 }
Sanjay Patel14a4b812017-01-29 16:34:57 +00004395 break;
4396 case Instruction::FPTrunc:
4397 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4398 break;
4399 case Instruction::FPExt:
4400 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4401 break;
4402 case Instruction::FPToUI:
4403 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4404 break;
4405 case Instruction::FPToSI:
4406 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4407 break;
4408 case Instruction::UIToFP:
4409 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4410 break;
4411 case Instruction::SIToFP:
4412 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4413 break;
4414 default:
4415 break;
4416 }
David Majnemerd2a074b2016-04-29 18:40:34 +00004417
4418 if (!CastedTo)
4419 return nullptr;
4420
David Majnemerd2a074b2016-04-29 18:40:34 +00004421 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00004422 Constant *CastedBack =
4423 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00004424 if (CastedBack != C)
4425 return nullptr;
4426
4427 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004428}
4429
Sanjay Patele8dc0902016-05-23 17:57:54 +00004430SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004431 Instruction::CastOps *CastOp) {
4432 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004433 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004434
James Molloy134bec22015-08-11 09:12:57 +00004435 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4436 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004437
James Molloy134bec22015-08-11 09:12:57 +00004438 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004439 Value *CmpLHS = CmpI->getOperand(0);
4440 Value *CmpRHS = CmpI->getOperand(1);
4441 Value *TrueVal = SI->getTrueValue();
4442 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004443 FastMathFlags FMF;
4444 if (isa<FPMathOperator>(CmpI))
4445 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004446
4447 // Bail out early.
4448 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004449 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004450
4451 // Deal with type mismatches.
4452 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004453 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004454 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004455 cast<CastInst>(TrueVal)->getOperand(0), C,
4456 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004457 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004458 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004459 C, cast<CastInst>(FalseVal)->getOperand(0),
4460 LHS, RHS);
4461 }
James Molloy134bec22015-08-11 09:12:57 +00004462 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004463 LHS, RHS);
4464}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004465
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004466/// Return true if "icmp Pred LHS RHS" is always true.
Chad Rosiere42b44b2017-07-28 14:39:06 +00004467static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
4468 const Value *RHS, const DataLayout &DL,
4469 unsigned Depth) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004470 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004471 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4472 return true;
4473
4474 switch (Pred) {
4475 default:
4476 return false;
4477
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004478 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004479 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004480
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004481 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004482 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004483 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004484 return false;
4485 }
4486
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004487 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004488 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004489
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004490 // LHS u<= LHS +_{nuw} C for any C
4491 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004492 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004493
4494 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004495 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4496 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004497 const APInt *&CA, const APInt *&CB) {
4498 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4499 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4500 return true;
4501
4502 // If X & C == 0 then (X | C) == X +_{nuw} C
4503 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4504 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
Craig Topperb45eabc2017-04-26 16:39:58 +00004505 KnownBits Known(CA->getBitWidth());
Chad Rosiere42b44b2017-07-28 14:39:06 +00004506 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
4507 /*CxtI*/ nullptr, /*DT*/ nullptr);
Craig Topperb45eabc2017-04-26 16:39:58 +00004508 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
Sanjoy Das92568102015-11-10 23:56:20 +00004509 return true;
4510 }
4511
4512 return false;
4513 };
4514
Pete Cooper35b00d52016-08-13 01:05:32 +00004515 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004516 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004517 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4518 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004519
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004520 return false;
4521 }
4522 }
4523}
4524
4525/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004526/// ALHS ARHS" is true. Otherwise, return None.
4527static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004528isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
Chad Rosiere42b44b2017-07-28 14:39:06 +00004529 const Value *ARHS, const Value *BLHS, const Value *BRHS,
4530 const DataLayout &DL, unsigned Depth) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004531 switch (Pred) {
4532 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004533 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004534
4535 case CmpInst::ICMP_SLT:
4536 case CmpInst::ICMP_SLE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004537 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
4538 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004539 return true;
4540 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004541
4542 case CmpInst::ICMP_ULT:
4543 case CmpInst::ICMP_ULE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004544 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
4545 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004546 return true;
4547 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004548 }
4549}
4550
Chad Rosier226a7342016-05-05 17:41:19 +00004551/// Return true if the operands of the two compares match. IsSwappedOps is true
4552/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004553static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4554 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004555 bool &IsSwappedOps) {
4556
4557 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4558 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4559 return IsMatchingOps || IsSwappedOps;
4560}
4561
Chad Rosier41dd31f2016-04-20 19:15:26 +00004562/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4563/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4564/// BRHS" is false. Otherwise, return None if we can't infer anything.
4565static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004566 const Value *ALHS,
4567 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004568 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004569 const Value *BLHS,
4570 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004571 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004572 // Canonicalize the operands so they're matching.
4573 if (IsSwappedOps) {
4574 std::swap(BLHS, BRHS);
4575 BPred = ICmpInst::getSwappedPredicate(BPred);
4576 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004577 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004578 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004579 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004580 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004581
Chad Rosier41dd31f2016-04-20 19:15:26 +00004582 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004583}
4584
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004585/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4586/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4587/// C2" is false. Otherwise, return None if we can't infer anything.
4588static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004589isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4590 const ConstantInt *C1,
4591 CmpInst::Predicate BPred,
4592 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004593 assert(ALHS == BLHS && "LHS operands must match.");
4594 ConstantRange DomCR =
4595 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4596 ConstantRange CR =
4597 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4598 ConstantRange Intersection = DomCR.intersectWith(CR);
4599 ConstantRange Difference = DomCR.difference(CR);
4600 if (Intersection.isEmptySet())
4601 return false;
4602 if (Difference.isEmptySet())
4603 return true;
4604 return None;
4605}
4606
Chad Rosier2f498032017-07-28 18:47:43 +00004607/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
4608/// false. Otherwise, return None if we can't infer anything.
4609static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
4610 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004611 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00004612 unsigned Depth) {
4613 Value *ALHS = LHS->getOperand(0);
4614 Value *ARHS = LHS->getOperand(1);
Chad Rosiera72a9ff2017-07-06 20:00:25 +00004615 // The rest of the logic assumes the LHS condition is true. If that's not the
4616 // case, invert the predicate to make it so.
Chad Rosier2f498032017-07-28 18:47:43 +00004617 ICmpInst::Predicate APred =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004618 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
Chad Rosier2f498032017-07-28 18:47:43 +00004619
4620 Value *BLHS = RHS->getOperand(0);
4621 Value *BRHS = RHS->getOperand(1);
4622 ICmpInst::Predicate BPred = RHS->getPredicate();
Chad Rosiere2cbd132016-04-25 17:23:36 +00004623
Chad Rosier226a7342016-05-05 17:41:19 +00004624 // Can we infer anything when the two compares have matching operands?
4625 bool IsSwappedOps;
4626 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4627 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4628 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004629 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004630 // No amount of additional analysis will infer the second condition, so
4631 // early exit.
4632 return None;
4633 }
4634
4635 // Can we infer anything when the LHS operands match and the RHS operands are
4636 // constants (not necessarily matching)?
4637 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4638 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4639 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4640 cast<ConstantInt>(BRHS)))
4641 return Implication;
4642 // No amount of additional analysis will infer the second condition, so
4643 // early exit.
4644 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004645 }
4646
Chad Rosier41dd31f2016-04-20 19:15:26 +00004647 if (APred == BPred)
Chad Rosiere42b44b2017-07-28 14:39:06 +00004648 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
Chad Rosier41dd31f2016-04-20 19:15:26 +00004649 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004650}
Chad Rosier2f498032017-07-28 18:47:43 +00004651
Chad Rosierf73a10d2017-08-01 19:22:36 +00004652/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
4653/// false. Otherwise, return None if we can't infer anything. We expect the
4654/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
4655static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
4656 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004657 const DataLayout &DL, bool LHSIsTrue,
Chad Rosierf73a10d2017-08-01 19:22:36 +00004658 unsigned Depth) {
4659 // The LHS must be an 'or' or an 'and' instruction.
4660 assert((LHS->getOpcode() == Instruction::And ||
4661 LHS->getOpcode() == Instruction::Or) &&
4662 "Expected LHS to be 'and' or 'or'.");
4663
Davide Italiano1a943a92017-08-09 16:06:54 +00004664 assert(Depth <= MaxDepth && "Hit recursion limit");
Chad Rosierf73a10d2017-08-01 19:22:36 +00004665
4666 // If the result of an 'or' is false, then we know both legs of the 'or' are
4667 // false. Similarly, if the result of an 'and' is true, then we know both
4668 // legs of the 'and' are true.
4669 Value *ALHS, *ARHS;
Chad Rosierdfd1de62017-08-01 20:18:54 +00004670 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
4671 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
Chad Rosierf73a10d2017-08-01 19:22:36 +00004672 // FIXME: Make this non-recursion.
4673 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004674 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00004675 return Implication;
4676 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004677 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00004678 return Implication;
4679 return None;
4680 }
4681 return None;
4682}
4683
Chad Rosier2f498032017-07-28 18:47:43 +00004684Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004685 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00004686 unsigned Depth) {
Davide Italiano30e51942017-08-09 15:13:50 +00004687 // Bail out when we hit the limit.
4688 if (Depth == MaxDepth)
4689 return None;
4690
Chad Rosierf73a10d2017-08-01 19:22:36 +00004691 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
4692 // example.
Chad Rosier2f498032017-07-28 18:47:43 +00004693 if (LHS->getType() != RHS->getType())
4694 return None;
4695
4696 Type *OpTy = LHS->getType();
Chad Rosierf73a10d2017-08-01 19:22:36 +00004697 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
Chad Rosier2f498032017-07-28 18:47:43 +00004698
4699 // LHS ==> RHS by definition
4700 if (LHS == RHS)
Chad Rosierdfd1de62017-08-01 20:18:54 +00004701 return LHSIsTrue;
Chad Rosier2f498032017-07-28 18:47:43 +00004702
Chad Rosierf73a10d2017-08-01 19:22:36 +00004703 // FIXME: Extending the code below to handle vectors.
Chad Rosier2f498032017-07-28 18:47:43 +00004704 if (OpTy->isVectorTy())
Chad Rosier2f498032017-07-28 18:47:43 +00004705 return None;
Chad Rosierf73a10d2017-08-01 19:22:36 +00004706
Chad Rosier2f498032017-07-28 18:47:43 +00004707 assert(OpTy->isIntegerTy(1) && "implied by above");
4708
Chad Rosier2f498032017-07-28 18:47:43 +00004709 // Both LHS and RHS are icmps.
Chad Rosierf73a10d2017-08-01 19:22:36 +00004710 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
4711 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
4712 if (LHSCmp && RHSCmp)
Chad Rosierdfd1de62017-08-01 20:18:54 +00004713 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00004714
Chad Rosierf73a10d2017-08-01 19:22:36 +00004715 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be
4716 // an icmp. FIXME: Add support for and/or on the RHS.
4717 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
4718 if (LHSBO && RHSCmp) {
4719 if ((LHSBO->getOpcode() == Instruction::And ||
4720 LHSBO->getOpcode() == Instruction::Or))
Chad Rosierdfd1de62017-08-01 20:18:54 +00004721 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00004722 }
Chad Rosierf73a10d2017-08-01 19:22:36 +00004723 return None;
Chad Rosier2f498032017-07-28 18:47:43 +00004724}