blob: 497f658a4d94571528167b31099aea2aa3b8d4c3 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
Tim Northover675a0962014-06-13 14:24:23 +0000120 %0 = add i32 %X, %X ; yields i32:%0
121 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000443A symbol with ``internal`` or ``private`` linkage must have ``default``
444visibility.
445
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000446.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000447
Nico Rieck7157bb72014-01-14 15:22:47 +0000448DLL Storage Classes
449-------------------
450
451All Global Variables, Functions and Aliases can have one of the following
452DLL storage class:
453
454``dllimport``
455 "``dllimport``" causes the compiler to reference a function or variable via
456 a global pointer to a pointer that is set up by the DLL exporting the
457 symbol. On Microsoft Windows targets, the pointer name is formed by
458 combining ``__imp_`` and the function or variable name.
459``dllexport``
460 "``dllexport``" causes the compiler to provide a global pointer to a pointer
461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
462 Microsoft Windows targets, the pointer name is formed by combining
463 ``__imp_`` and the function or variable name. Since this storage class
464 exists for defining a dll interface, the compiler, assembler and linker know
465 it is externally referenced and must refrain from deleting the symbol.
466
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000467.. _tls_model:
468
469Thread Local Storage Models
470---------------------------
471
472A variable may be defined as ``thread_local``, which means that it will
473not be shared by threads (each thread will have a separated copy of the
474variable). Not all targets support thread-local variables. Optionally, a
475TLS model may be specified:
476
477``localdynamic``
478 For variables that are only used within the current shared library.
479``initialexec``
480 For variables in modules that will not be loaded dynamically.
481``localexec``
482 For variables defined in the executable and only used within it.
483
484If no explicit model is given, the "general dynamic" model is used.
485
486The models correspond to the ELF TLS models; see `ELF Handling For
487Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
488more information on under which circumstances the different models may
489be used. The target may choose a different TLS model if the specified
490model is not supported, or if a better choice of model can be made.
491
492A model can also be specified in a alias, but then it only governs how
493the alias is accessed. It will not have any effect in the aliasee.
494
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000495.. _namedtypes:
496
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000497Structure Types
498---------------
Sean Silvab084af42012-12-07 10:36:55 +0000499
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000500LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
501types <t_struct>`. Literal types are uniqued structurally, but identified types
502are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
503to forward declare a type which is not yet available.
504
505An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000506
507.. code-block:: llvm
508
509 %mytype = type { %mytype*, i32 }
510
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000511Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
512literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000513
514.. _globalvars:
515
516Global Variables
517----------------
518
519Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000520instead of run-time.
521
Bob Wilson85b24f22014-06-12 20:40:33 +0000522Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000523
524Global variables in other translation units can also be declared, in which
525case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000526
Bob Wilson85b24f22014-06-12 20:40:33 +0000527Either global variable definitions or declarations may have an explicit section
528to be placed in and may have an optional explicit alignment specified.
529
Michael Gottesman006039c2013-01-31 05:48:48 +0000530A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000531the contents of the variable will **never** be modified (enabling better
532optimization, allowing the global data to be placed in the read-only
533section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000534initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000535variable.
536
537LLVM explicitly allows *declarations* of global variables to be marked
538constant, even if the final definition of the global is not. This
539capability can be used to enable slightly better optimization of the
540program, but requires the language definition to guarantee that
541optimizations based on the 'constantness' are valid for the translation
542units that do not include the definition.
543
544As SSA values, global variables define pointer values that are in scope
545(i.e. they dominate) all basic blocks in the program. Global variables
546always define a pointer to their "content" type because they describe a
547region of memory, and all memory objects in LLVM are accessed through
548pointers.
549
550Global variables can be marked with ``unnamed_addr`` which indicates
551that the address is not significant, only the content. Constants marked
552like this can be merged with other constants if they have the same
553initializer. Note that a constant with significant address *can* be
554merged with a ``unnamed_addr`` constant, the result being a constant
555whose address is significant.
556
557A global variable may be declared to reside in a target-specific
558numbered address space. For targets that support them, address spaces
559may affect how optimizations are performed and/or what target
560instructions are used to access the variable. The default address space
561is zero. The address space qualifier must precede any other attributes.
562
563LLVM allows an explicit section to be specified for globals. If the
564target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000565Additionally, the global can placed in a comdat if the target has the necessary
566support.
Sean Silvab084af42012-12-07 10:36:55 +0000567
Michael Gottesmane743a302013-02-04 03:22:00 +0000568By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000569variables defined within the module are not modified from their
570initial values before the start of the global initializer. This is
571true even for variables potentially accessible from outside the
572module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000573``@llvm.used`` or dllexported variables. This assumption may be suppressed
574by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000575
Sean Silvab084af42012-12-07 10:36:55 +0000576An explicit alignment may be specified for a global, which must be a
577power of 2. If not present, or if the alignment is set to zero, the
578alignment of the global is set by the target to whatever it feels
579convenient. If an explicit alignment is specified, the global is forced
580to have exactly that alignment. Targets and optimizers are not allowed
581to over-align the global if the global has an assigned section. In this
582case, the extra alignment could be observable: for example, code could
583assume that the globals are densely packed in their section and try to
584iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000585iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000586
Nico Rieck7157bb72014-01-14 15:22:47 +0000587Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
588
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000589Variables and aliasaes can have a
590:ref:`Thread Local Storage Model <tls_model>`.
591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Syntax::
593
594 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000595 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000596 <global | constant> <Type> [<InitializerConstant>]
597 [, section "name"] [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000598
Sean Silvab084af42012-12-07 10:36:55 +0000599For example, the following defines a global in a numbered address space
600with an initializer, section, and alignment:
601
602.. code-block:: llvm
603
604 @G = addrspace(5) constant float 1.0, section "foo", align 4
605
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000606The following example just declares a global variable
607
608.. code-block:: llvm
609
610 @G = external global i32
611
Sean Silvab084af42012-12-07 10:36:55 +0000612The following example defines a thread-local global with the
613``initialexec`` TLS model:
614
615.. code-block:: llvm
616
617 @G = thread_local(initialexec) global i32 0, align 4
618
619.. _functionstructure:
620
621Functions
622---------
623
624LLVM function definitions consist of the "``define``" keyword, an
625optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000626style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
627an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000628an optional ``unnamed_addr`` attribute, a return type, an optional
629:ref:`parameter attribute <paramattrs>` for the return type, a function
630name, a (possibly empty) argument list (each with optional :ref:`parameter
631attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000632an optional section, an optional alignment,
633an optional :ref:`comdat <langref_comdats>`,
634an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000635curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000636
637LLVM function declarations consist of the "``declare``" keyword, an
638optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000639style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
640an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000641an optional ``unnamed_addr`` attribute, a return type, an optional
642:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000643name, a possibly empty list of arguments, an optional alignment, an optional
644:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000645
Bill Wendling6822ecb2013-10-27 05:09:12 +0000646A function definition contains a list of basic blocks, forming the CFG (Control
647Flow Graph) for the function. Each basic block may optionally start with a label
648(giving the basic block a symbol table entry), contains a list of instructions,
649and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
650function return). If an explicit label is not provided, a block is assigned an
651implicit numbered label, using the next value from the same counter as used for
652unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
653entry block does not have an explicit label, it will be assigned label "%0",
654then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000655
656The first basic block in a function is special in two ways: it is
657immediately executed on entrance to the function, and it is not allowed
658to have predecessor basic blocks (i.e. there can not be any branches to
659the entry block of a function). Because the block can have no
660predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
661
662LLVM allows an explicit section to be specified for functions. If the
663target supports it, it will emit functions to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000664Additionally, the function can placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000665
666An explicit alignment may be specified for a function. If not present,
667or if the alignment is set to zero, the alignment of the function is set
668by the target to whatever it feels convenient. If an explicit alignment
669is specified, the function is forced to have at least that much
670alignment. All alignments must be a power of 2.
671
672If the ``unnamed_addr`` attribute is given, the address is know to not
673be significant and two identical functions can be merged.
674
675Syntax::
676
Nico Rieck7157bb72014-01-14 15:22:47 +0000677 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000678 [cconv] [ret attrs]
679 <ResultType> @<FunctionName> ([argument list])
David Majnemerdad0a642014-06-27 18:19:56 +0000680 [unnamed_addr] [fn Attrs] [section "name"] [comdat $<ComdatName>]
681 [align N] [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000682
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000683.. _langref_aliases:
684
Sean Silvab084af42012-12-07 10:36:55 +0000685Aliases
686-------
687
Rafael Espindola64c1e182014-06-03 02:41:57 +0000688Aliases, unlike function or variables, don't create any new data. They
689are just a new symbol and metadata for an existing position.
690
691Aliases have a name and an aliasee that is either a global value or a
692constant expression.
693
Nico Rieck7157bb72014-01-14 15:22:47 +0000694Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000695:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
696<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000697
698Syntax::
699
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000700 @<Name> = [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000701
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000702The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000703``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000704might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000705
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000706Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000707the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
708to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000709
Rafael Espindola64c1e182014-06-03 02:41:57 +0000710Since aliases are only a second name, some restrictions apply, of which
711some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000712
Rafael Espindola64c1e182014-06-03 02:41:57 +0000713* The expression defining the aliasee must be computable at assembly
714 time. Since it is just a name, no relocations can be used.
715
716* No alias in the expression can be weak as the possibility of the
717 intermediate alias being overridden cannot be represented in an
718 object file.
719
720* No global value in the expression can be a declaration, since that
721 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000722
David Majnemerdad0a642014-06-27 18:19:56 +0000723.. _langref_comdats:
724
725Comdats
726-------
727
728Comdat IR provides access to COFF and ELF object file COMDAT functionality.
729
730Comdats have a name which represents the COMDAT key. All global objects which
731specify this key will only end up in the final object file if the linker chooses
732that key over some other key. Aliases are placed in the same COMDAT that their
733aliasee computes to, if any.
734
735Comdats have a selection kind to provide input on how the linker should
736choose between keys in two different object files.
737
738Syntax::
739
740 $<Name> = comdat SelectionKind
741
742The selection kind must be one of the following:
743
744``any``
745 The linker may choose any COMDAT key, the choice is arbitrary.
746``exactmatch``
747 The linker may choose any COMDAT key but the sections must contain the
748 same data.
749``largest``
750 The linker will choose the section containing the largest COMDAT key.
751``noduplicates``
752 The linker requires that only section with this COMDAT key exist.
753``samesize``
754 The linker may choose any COMDAT key but the sections must contain the
755 same amount of data.
756
757Note that the Mach-O platform doesn't support COMDATs and ELF only supports
758``any`` as a selection kind.
759
760Here is an example of a COMDAT group where a function will only be selected if
761the COMDAT key's section is the largest:
762
763.. code-block:: llvm
764
765 $foo = comdat largest
766 @foo = global i32 2, comdat $foo
767
768 define void @bar() comdat $foo {
769 ret void
770 }
771
772In a COFF object file, this will create a COMDAT section with selection kind
773``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
774and another COMDAT section with selection kind
775``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
776section and contains the contents of the ``@baz`` symbol.
777
778There are some restrictions on the properties of the global object.
779It, or an alias to it, must have the same name as the COMDAT group when
780targeting COFF.
781The contents and size of this object may be used during link-time to determine
782which COMDAT groups get selected depending on the selection kind.
783Because the name of the object must match the name of the COMDAT group, the
784linkage of the global object must not be local; local symbols can get renamed
785if a collision occurs in the symbol table.
786
787The combined use of COMDATS and section attributes may yield surprising results.
788For example:
789
790.. code-block:: llvm
791
792 $foo = comdat any
793 $bar = comdat any
794 @g1 = global i32 42, section "sec", comdat $foo
795 @g2 = global i32 42, section "sec", comdat $bar
796
797From the object file perspective, this requires the creation of two sections
798with the same name. This is necessary because both globals belong to different
799COMDAT groups and COMDATs, at the object file level, are represented by
800sections.
801
802Note that certain IR constructs like global variables and functions may create
803COMDATs in the object file in addition to any which are specified using COMDAT
804IR. This arises, for example, when a global variable has linkonce_odr linkage.
805
Sean Silvab084af42012-12-07 10:36:55 +0000806.. _namedmetadatastructure:
807
808Named Metadata
809--------------
810
811Named metadata is a collection of metadata. :ref:`Metadata
812nodes <metadata>` (but not metadata strings) are the only valid
813operands for a named metadata.
814
815Syntax::
816
817 ; Some unnamed metadata nodes, which are referenced by the named metadata.
818 !0 = metadata !{metadata !"zero"}
819 !1 = metadata !{metadata !"one"}
820 !2 = metadata !{metadata !"two"}
821 ; A named metadata.
822 !name = !{!0, !1, !2}
823
824.. _paramattrs:
825
826Parameter Attributes
827--------------------
828
829The return type and each parameter of a function type may have a set of
830*parameter attributes* associated with them. Parameter attributes are
831used to communicate additional information about the result or
832parameters of a function. Parameter attributes are considered to be part
833of the function, not of the function type, so functions with different
834parameter attributes can have the same function type.
835
836Parameter attributes are simple keywords that follow the type specified.
837If multiple parameter attributes are needed, they are space separated.
838For example:
839
840.. code-block:: llvm
841
842 declare i32 @printf(i8* noalias nocapture, ...)
843 declare i32 @atoi(i8 zeroext)
844 declare signext i8 @returns_signed_char()
845
846Note that any attributes for the function result (``nounwind``,
847``readonly``) come immediately after the argument list.
848
849Currently, only the following parameter attributes are defined:
850
851``zeroext``
852 This indicates to the code generator that the parameter or return
853 value should be zero-extended to the extent required by the target's
854 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
855 the caller (for a parameter) or the callee (for a return value).
856``signext``
857 This indicates to the code generator that the parameter or return
858 value should be sign-extended to the extent required by the target's
859 ABI (which is usually 32-bits) by the caller (for a parameter) or
860 the callee (for a return value).
861``inreg``
862 This indicates that this parameter or return value should be treated
863 in a special target-dependent fashion during while emitting code for
864 a function call or return (usually, by putting it in a register as
865 opposed to memory, though some targets use it to distinguish between
866 two different kinds of registers). Use of this attribute is
867 target-specific.
868``byval``
869 This indicates that the pointer parameter should really be passed by
870 value to the function. The attribute implies that a hidden copy of
871 the pointee is made between the caller and the callee, so the callee
872 is unable to modify the value in the caller. This attribute is only
873 valid on LLVM pointer arguments. It is generally used to pass
874 structs and arrays by value, but is also valid on pointers to
875 scalars. The copy is considered to belong to the caller not the
876 callee (for example, ``readonly`` functions should not write to
877 ``byval`` parameters). This is not a valid attribute for return
878 values.
879
880 The byval attribute also supports specifying an alignment with the
881 align attribute. It indicates the alignment of the stack slot to
882 form and the known alignment of the pointer specified to the call
883 site. If the alignment is not specified, then the code generator
884 makes a target-specific assumption.
885
Reid Klecknera534a382013-12-19 02:14:12 +0000886.. _attr_inalloca:
887
888``inalloca``
889
Reid Kleckner60d3a832014-01-16 22:59:24 +0000890 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000891 address of outgoing stack arguments. An ``inalloca`` argument must
892 be a pointer to stack memory produced by an ``alloca`` instruction.
893 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000894 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000895 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000896
Reid Kleckner436c42e2014-01-17 23:58:17 +0000897 An argument allocation may be used by a call at most once because
898 the call may deallocate it. The ``inalloca`` attribute cannot be
899 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000900 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
901 ``inalloca`` attribute also disables LLVM's implicit lowering of
902 large aggregate return values, which means that frontend authors
903 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000904
Reid Kleckner60d3a832014-01-16 22:59:24 +0000905 When the call site is reached, the argument allocation must have
906 been the most recent stack allocation that is still live, or the
907 results are undefined. It is possible to allocate additional stack
908 space after an argument allocation and before its call site, but it
909 must be cleared off with :ref:`llvm.stackrestore
910 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000911
912 See :doc:`InAlloca` for more information on how to use this
913 attribute.
914
Sean Silvab084af42012-12-07 10:36:55 +0000915``sret``
916 This indicates that the pointer parameter specifies the address of a
917 structure that is the return value of the function in the source
918 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000919 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000920 not to trap and to be properly aligned. This may only be applied to
921 the first parameter. This is not a valid attribute for return
922 values.
Sean Silva1703e702014-04-08 21:06:22 +0000923
924.. _noalias:
925
Sean Silvab084af42012-12-07 10:36:55 +0000926``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000927 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000928 the argument or return value do not alias pointer values which are
929 not *based* on it, ignoring certain "irrelevant" dependencies. For a
930 call to the parent function, dependencies between memory references
931 from before or after the call and from those during the call are
932 "irrelevant" to the ``noalias`` keyword for the arguments and return
933 value used in that call. The caller shares the responsibility with
934 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000935 details, please see the discussion of the NoAlias response in :ref:`alias
936 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000937
938 Note that this definition of ``noalias`` is intentionally similar
939 to the definition of ``restrict`` in C99 for function arguments,
940 though it is slightly weaker.
941
942 For function return values, C99's ``restrict`` is not meaningful,
943 while LLVM's ``noalias`` is.
944``nocapture``
945 This indicates that the callee does not make any copies of the
946 pointer that outlive the callee itself. This is not a valid
947 attribute for return values.
948
949.. _nest:
950
951``nest``
952 This indicates that the pointer parameter can be excised using the
953 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000954 attribute for return values and can only be applied to one parameter.
955
956``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000957 This indicates that the function always returns the argument as its return
958 value. This is an optimization hint to the code generator when generating
959 the caller, allowing tail call optimization and omission of register saves
960 and restores in some cases; it is not checked or enforced when generating
961 the callee. The parameter and the function return type must be valid
962 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
963 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000964
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000965``nonnull``
966 This indicates that the parameter or return pointer is not null. This
967 attribute may only be applied to pointer typed parameters. This is not
968 checked or enforced by LLVM, the caller must ensure that the pointer
969 passed in is non-null, or the callee must ensure that the returned pointer
970 is non-null.
971
Hal Finkelb0407ba2014-07-18 15:51:28 +0000972``dereferenceable(<n>)``
973 This indicates that the parameter or return pointer is dereferenceable. This
974 attribute may only be applied to pointer typed parameters. A pointer that
975 is dereferenceable can be loaded from speculatively without a risk of
976 trapping. The number of bytes known to be dereferenceable must be provided
977 in parentheses. It is legal for the number of bytes to be less than the
978 size of the pointee type. The ``nonnull`` attribute does not imply
979 dereferenceability (consider a pointer to one element past the end of an
980 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
981 ``addrspace(0)`` (which is the default address space).
982
Sean Silvab084af42012-12-07 10:36:55 +0000983.. _gc:
984
985Garbage Collector Names
986-----------------------
987
988Each function may specify a garbage collector name, which is simply a
989string:
990
991.. code-block:: llvm
992
993 define void @f() gc "name" { ... }
994
995The compiler declares the supported values of *name*. Specifying a
996collector which will cause the compiler to alter its output in order to
997support the named garbage collection algorithm.
998
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000999.. _prefixdata:
1000
1001Prefix Data
1002-----------
1003
1004Prefix data is data associated with a function which the code generator
1005will emit immediately before the function body. The purpose of this feature
1006is to allow frontends to associate language-specific runtime metadata with
1007specific functions and make it available through the function pointer while
1008still allowing the function pointer to be called. To access the data for a
1009given function, a program may bitcast the function pointer to a pointer to
1010the constant's type. This implies that the IR symbol points to the start
1011of the prefix data.
1012
1013To maintain the semantics of ordinary function calls, the prefix data must
1014have a particular format. Specifically, it must begin with a sequence of
1015bytes which decode to a sequence of machine instructions, valid for the
1016module's target, which transfer control to the point immediately succeeding
1017the prefix data, without performing any other visible action. This allows
1018the inliner and other passes to reason about the semantics of the function
1019definition without needing to reason about the prefix data. Obviously this
1020makes the format of the prefix data highly target dependent.
1021
Peter Collingbourne213358a2013-09-23 20:14:21 +00001022Prefix data is laid out as if it were an initializer for a global variable
1023of the prefix data's type. No padding is automatically placed between the
1024prefix data and the function body. If padding is required, it must be part
1025of the prefix data.
1026
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001027A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
1028which encodes the ``nop`` instruction:
1029
1030.. code-block:: llvm
1031
1032 define void @f() prefix i8 144 { ... }
1033
1034Generally prefix data can be formed by encoding a relative branch instruction
1035which skips the metadata, as in this example of valid prefix data for the
1036x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1037
1038.. code-block:: llvm
1039
1040 %0 = type <{ i8, i8, i8* }>
1041
1042 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
1043
1044A function may have prefix data but no body. This has similar semantics
1045to the ``available_externally`` linkage in that the data may be used by the
1046optimizers but will not be emitted in the object file.
1047
Bill Wendling63b88192013-02-06 06:52:58 +00001048.. _attrgrp:
1049
1050Attribute Groups
1051----------------
1052
1053Attribute groups are groups of attributes that are referenced by objects within
1054the IR. They are important for keeping ``.ll`` files readable, because a lot of
1055functions will use the same set of attributes. In the degenerative case of a
1056``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1057group will capture the important command line flags used to build that file.
1058
1059An attribute group is a module-level object. To use an attribute group, an
1060object references the attribute group's ID (e.g. ``#37``). An object may refer
1061to more than one attribute group. In that situation, the attributes from the
1062different groups are merged.
1063
1064Here is an example of attribute groups for a function that should always be
1065inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1066
1067.. code-block:: llvm
1068
1069 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001070 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001071
1072 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001073 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001074
1075 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1076 define void @f() #0 #1 { ... }
1077
Sean Silvab084af42012-12-07 10:36:55 +00001078.. _fnattrs:
1079
1080Function Attributes
1081-------------------
1082
1083Function attributes are set to communicate additional information about
1084a function. Function attributes are considered to be part of the
1085function, not of the function type, so functions with different function
1086attributes can have the same function type.
1087
1088Function attributes are simple keywords that follow the type specified.
1089If multiple attributes are needed, they are space separated. For
1090example:
1091
1092.. code-block:: llvm
1093
1094 define void @f() noinline { ... }
1095 define void @f() alwaysinline { ... }
1096 define void @f() alwaysinline optsize { ... }
1097 define void @f() optsize { ... }
1098
Sean Silvab084af42012-12-07 10:36:55 +00001099``alignstack(<n>)``
1100 This attribute indicates that, when emitting the prologue and
1101 epilogue, the backend should forcibly align the stack pointer.
1102 Specify the desired alignment, which must be a power of two, in
1103 parentheses.
1104``alwaysinline``
1105 This attribute indicates that the inliner should attempt to inline
1106 this function into callers whenever possible, ignoring any active
1107 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001108``builtin``
1109 This indicates that the callee function at a call site should be
1110 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001111 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +00001112 direct calls to functions which are declared with the ``nobuiltin``
1113 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001114``cold``
1115 This attribute indicates that this function is rarely called. When
1116 computing edge weights, basic blocks post-dominated by a cold
1117 function call are also considered to be cold; and, thus, given low
1118 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001119``inlinehint``
1120 This attribute indicates that the source code contained a hint that
1121 inlining this function is desirable (such as the "inline" keyword in
1122 C/C++). It is just a hint; it imposes no requirements on the
1123 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001124``jumptable``
1125 This attribute indicates that the function should be added to a
1126 jump-instruction table at code-generation time, and that all address-taken
1127 references to this function should be replaced with a reference to the
1128 appropriate jump-instruction-table function pointer. Note that this creates
1129 a new pointer for the original function, which means that code that depends
1130 on function-pointer identity can break. So, any function annotated with
1131 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001132``minsize``
1133 This attribute suggests that optimization passes and code generator
1134 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001135 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001136 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001137``naked``
1138 This attribute disables prologue / epilogue emission for the
1139 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001140``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001141 This indicates that the callee function at a call site is not recognized as
1142 a built-in function. LLVM will retain the original call and not replace it
1143 with equivalent code based on the semantics of the built-in function, unless
1144 the call site uses the ``builtin`` attribute. This is valid at call sites
1145 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001146``noduplicate``
1147 This attribute indicates that calls to the function cannot be
1148 duplicated. A call to a ``noduplicate`` function may be moved
1149 within its parent function, but may not be duplicated within
1150 its parent function.
1151
1152 A function containing a ``noduplicate`` call may still
1153 be an inlining candidate, provided that the call is not
1154 duplicated by inlining. That implies that the function has
1155 internal linkage and only has one call site, so the original
1156 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001157``noimplicitfloat``
1158 This attributes disables implicit floating point instructions.
1159``noinline``
1160 This attribute indicates that the inliner should never inline this
1161 function in any situation. This attribute may not be used together
1162 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001163``nonlazybind``
1164 This attribute suppresses lazy symbol binding for the function. This
1165 may make calls to the function faster, at the cost of extra program
1166 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001167``noredzone``
1168 This attribute indicates that the code generator should not use a
1169 red zone, even if the target-specific ABI normally permits it.
1170``noreturn``
1171 This function attribute indicates that the function never returns
1172 normally. This produces undefined behavior at runtime if the
1173 function ever does dynamically return.
1174``nounwind``
1175 This function attribute indicates that the function never returns
1176 with an unwind or exceptional control flow. If the function does
1177 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001178``optnone``
1179 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001180 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001181 exception of interprocedural optimization passes.
1182 This attribute cannot be used together with the ``alwaysinline``
1183 attribute; this attribute is also incompatible
1184 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001185
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001186 This attribute requires the ``noinline`` attribute to be specified on
1187 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001188 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001189 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001190``optsize``
1191 This attribute suggests that optimization passes and code generator
1192 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001193 and otherwise do optimizations specifically to reduce code size as
1194 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001195``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001196 On a function, this attribute indicates that the function computes its
1197 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001198 without dereferencing any pointer arguments or otherwise accessing
1199 any mutable state (e.g. memory, control registers, etc) visible to
1200 caller functions. It does not write through any pointer arguments
1201 (including ``byval`` arguments) and never changes any state visible
1202 to callers. This means that it cannot unwind exceptions by calling
1203 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001204
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001205 On an argument, this attribute indicates that the function does not
1206 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001207 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001208``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001209 On a function, this attribute indicates that the function does not write
1210 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001211 modify any state (e.g. memory, control registers, etc) visible to
1212 caller functions. It may dereference pointer arguments and read
1213 state that may be set in the caller. A readonly function always
1214 returns the same value (or unwinds an exception identically) when
1215 called with the same set of arguments and global state. It cannot
1216 unwind an exception by calling the ``C++`` exception throwing
1217 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001218
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001219 On an argument, this attribute indicates that the function does not write
1220 through this pointer argument, even though it may write to the memory that
1221 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001222``returns_twice``
1223 This attribute indicates that this function can return twice. The C
1224 ``setjmp`` is an example of such a function. The compiler disables
1225 some optimizations (like tail calls) in the caller of these
1226 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001227``sanitize_address``
1228 This attribute indicates that AddressSanitizer checks
1229 (dynamic address safety analysis) are enabled for this function.
1230``sanitize_memory``
1231 This attribute indicates that MemorySanitizer checks (dynamic detection
1232 of accesses to uninitialized memory) are enabled for this function.
1233``sanitize_thread``
1234 This attribute indicates that ThreadSanitizer checks
1235 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001236``ssp``
1237 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001238 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001239 placed on the stack before the local variables that's checked upon
1240 return from the function to see if it has been overwritten. A
1241 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001242 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001243
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001244 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1245 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1246 - Calls to alloca() with variable sizes or constant sizes greater than
1247 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001248
Josh Magee24c7f062014-02-01 01:36:16 +00001249 Variables that are identified as requiring a protector will be arranged
1250 on the stack such that they are adjacent to the stack protector guard.
1251
Sean Silvab084af42012-12-07 10:36:55 +00001252 If a function that has an ``ssp`` attribute is inlined into a
1253 function that doesn't have an ``ssp`` attribute, then the resulting
1254 function will have an ``ssp`` attribute.
1255``sspreq``
1256 This attribute indicates that the function should *always* emit a
1257 stack smashing protector. This overrides the ``ssp`` function
1258 attribute.
1259
Josh Magee24c7f062014-02-01 01:36:16 +00001260 Variables that are identified as requiring a protector will be arranged
1261 on the stack such that they are adjacent to the stack protector guard.
1262 The specific layout rules are:
1263
1264 #. Large arrays and structures containing large arrays
1265 (``>= ssp-buffer-size``) are closest to the stack protector.
1266 #. Small arrays and structures containing small arrays
1267 (``< ssp-buffer-size``) are 2nd closest to the protector.
1268 #. Variables that have had their address taken are 3rd closest to the
1269 protector.
1270
Sean Silvab084af42012-12-07 10:36:55 +00001271 If a function that has an ``sspreq`` attribute is inlined into a
1272 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001273 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1274 an ``sspreq`` attribute.
1275``sspstrong``
1276 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001277 protector. This attribute causes a strong heuristic to be used when
1278 determining if a function needs stack protectors. The strong heuristic
1279 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001280
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001281 - Arrays of any size and type
1282 - Aggregates containing an array of any size and type.
1283 - Calls to alloca().
1284 - Local variables that have had their address taken.
1285
Josh Magee24c7f062014-02-01 01:36:16 +00001286 Variables that are identified as requiring a protector will be arranged
1287 on the stack such that they are adjacent to the stack protector guard.
1288 The specific layout rules are:
1289
1290 #. Large arrays and structures containing large arrays
1291 (``>= ssp-buffer-size``) are closest to the stack protector.
1292 #. Small arrays and structures containing small arrays
1293 (``< ssp-buffer-size``) are 2nd closest to the protector.
1294 #. Variables that have had their address taken are 3rd closest to the
1295 protector.
1296
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001297 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001298
1299 If a function that has an ``sspstrong`` attribute is inlined into a
1300 function that doesn't have an ``sspstrong`` attribute, then the
1301 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001302``uwtable``
1303 This attribute indicates that the ABI being targeted requires that
1304 an unwind table entry be produce for this function even if we can
1305 show that no exceptions passes by it. This is normally the case for
1306 the ELF x86-64 abi, but it can be disabled for some compilation
1307 units.
Sean Silvab084af42012-12-07 10:36:55 +00001308
1309.. _moduleasm:
1310
1311Module-Level Inline Assembly
1312----------------------------
1313
1314Modules may contain "module-level inline asm" blocks, which corresponds
1315to the GCC "file scope inline asm" blocks. These blocks are internally
1316concatenated by LLVM and treated as a single unit, but may be separated
1317in the ``.ll`` file if desired. The syntax is very simple:
1318
1319.. code-block:: llvm
1320
1321 module asm "inline asm code goes here"
1322 module asm "more can go here"
1323
1324The strings can contain any character by escaping non-printable
1325characters. The escape sequence used is simply "\\xx" where "xx" is the
1326two digit hex code for the number.
1327
1328The inline asm code is simply printed to the machine code .s file when
1329assembly code is generated.
1330
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001331.. _langref_datalayout:
1332
Sean Silvab084af42012-12-07 10:36:55 +00001333Data Layout
1334-----------
1335
1336A module may specify a target specific data layout string that specifies
1337how data is to be laid out in memory. The syntax for the data layout is
1338simply:
1339
1340.. code-block:: llvm
1341
1342 target datalayout = "layout specification"
1343
1344The *layout specification* consists of a list of specifications
1345separated by the minus sign character ('-'). Each specification starts
1346with a letter and may include other information after the letter to
1347define some aspect of the data layout. The specifications accepted are
1348as follows:
1349
1350``E``
1351 Specifies that the target lays out data in big-endian form. That is,
1352 the bits with the most significance have the lowest address
1353 location.
1354``e``
1355 Specifies that the target lays out data in little-endian form. That
1356 is, the bits with the least significance have the lowest address
1357 location.
1358``S<size>``
1359 Specifies the natural alignment of the stack in bits. Alignment
1360 promotion of stack variables is limited to the natural stack
1361 alignment to avoid dynamic stack realignment. The stack alignment
1362 must be a multiple of 8-bits. If omitted, the natural stack
1363 alignment defaults to "unspecified", which does not prevent any
1364 alignment promotions.
1365``p[n]:<size>:<abi>:<pref>``
1366 This specifies the *size* of a pointer and its ``<abi>`` and
1367 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001368 bits. The address space, ``n`` is optional, and if not specified,
1369 denotes the default address space 0. The value of ``n`` must be
1370 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001371``i<size>:<abi>:<pref>``
1372 This specifies the alignment for an integer type of a given bit
1373 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1374``v<size>:<abi>:<pref>``
1375 This specifies the alignment for a vector type of a given bit
1376 ``<size>``.
1377``f<size>:<abi>:<pref>``
1378 This specifies the alignment for a floating point type of a given bit
1379 ``<size>``. Only values of ``<size>`` that are supported by the target
1380 will work. 32 (float) and 64 (double) are supported on all targets; 80
1381 or 128 (different flavors of long double) are also supported on some
1382 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001383``a:<abi>:<pref>``
1384 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001385``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001386 If present, specifies that llvm names are mangled in the output. The
1387 options are
1388
1389 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1390 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1391 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1392 symbols get a ``_`` prefix.
1393 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1394 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001395``n<size1>:<size2>:<size3>...``
1396 This specifies a set of native integer widths for the target CPU in
1397 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1398 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1399 this set are considered to support most general arithmetic operations
1400 efficiently.
1401
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001402On every specification that takes a ``<abi>:<pref>``, specifying the
1403``<pref>`` alignment is optional. If omitted, the preceding ``:``
1404should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1405
Sean Silvab084af42012-12-07 10:36:55 +00001406When constructing the data layout for a given target, LLVM starts with a
1407default set of specifications which are then (possibly) overridden by
1408the specifications in the ``datalayout`` keyword. The default
1409specifications are given in this list:
1410
1411- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001412- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1413- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1414 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001415- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001416- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1417- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1418- ``i16:16:16`` - i16 is 16-bit aligned
1419- ``i32:32:32`` - i32 is 32-bit aligned
1420- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1421 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001422- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001423- ``f32:32:32`` - float is 32-bit aligned
1424- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001425- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001426- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1427- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001428- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001429
1430When LLVM is determining the alignment for a given type, it uses the
1431following rules:
1432
1433#. If the type sought is an exact match for one of the specifications,
1434 that specification is used.
1435#. If no match is found, and the type sought is an integer type, then
1436 the smallest integer type that is larger than the bitwidth of the
1437 sought type is used. If none of the specifications are larger than
1438 the bitwidth then the largest integer type is used. For example,
1439 given the default specifications above, the i7 type will use the
1440 alignment of i8 (next largest) while both i65 and i256 will use the
1441 alignment of i64 (largest specified).
1442#. If no match is found, and the type sought is a vector type, then the
1443 largest vector type that is smaller than the sought vector type will
1444 be used as a fall back. This happens because <128 x double> can be
1445 implemented in terms of 64 <2 x double>, for example.
1446
1447The function of the data layout string may not be what you expect.
1448Notably, this is not a specification from the frontend of what alignment
1449the code generator should use.
1450
1451Instead, if specified, the target data layout is required to match what
1452the ultimate *code generator* expects. This string is used by the
1453mid-level optimizers to improve code, and this only works if it matches
1454what the ultimate code generator uses. If you would like to generate IR
1455that does not embed this target-specific detail into the IR, then you
1456don't have to specify the string. This will disable some optimizations
1457that require precise layout information, but this also prevents those
1458optimizations from introducing target specificity into the IR.
1459
Bill Wendling5cc90842013-10-18 23:41:25 +00001460.. _langref_triple:
1461
1462Target Triple
1463-------------
1464
1465A module may specify a target triple string that describes the target
1466host. The syntax for the target triple is simply:
1467
1468.. code-block:: llvm
1469
1470 target triple = "x86_64-apple-macosx10.7.0"
1471
1472The *target triple* string consists of a series of identifiers delimited
1473by the minus sign character ('-'). The canonical forms are:
1474
1475::
1476
1477 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1478 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1479
1480This information is passed along to the backend so that it generates
1481code for the proper architecture. It's possible to override this on the
1482command line with the ``-mtriple`` command line option.
1483
Sean Silvab084af42012-12-07 10:36:55 +00001484.. _pointeraliasing:
1485
1486Pointer Aliasing Rules
1487----------------------
1488
1489Any memory access must be done through a pointer value associated with
1490an address range of the memory access, otherwise the behavior is
1491undefined. Pointer values are associated with address ranges according
1492to the following rules:
1493
1494- A pointer value is associated with the addresses associated with any
1495 value it is *based* on.
1496- An address of a global variable is associated with the address range
1497 of the variable's storage.
1498- The result value of an allocation instruction is associated with the
1499 address range of the allocated storage.
1500- A null pointer in the default address-space is associated with no
1501 address.
1502- An integer constant other than zero or a pointer value returned from
1503 a function not defined within LLVM may be associated with address
1504 ranges allocated through mechanisms other than those provided by
1505 LLVM. Such ranges shall not overlap with any ranges of addresses
1506 allocated by mechanisms provided by LLVM.
1507
1508A pointer value is *based* on another pointer value according to the
1509following rules:
1510
1511- A pointer value formed from a ``getelementptr`` operation is *based*
1512 on the first operand of the ``getelementptr``.
1513- The result value of a ``bitcast`` is *based* on the operand of the
1514 ``bitcast``.
1515- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1516 values that contribute (directly or indirectly) to the computation of
1517 the pointer's value.
1518- The "*based* on" relationship is transitive.
1519
1520Note that this definition of *"based"* is intentionally similar to the
1521definition of *"based"* in C99, though it is slightly weaker.
1522
1523LLVM IR does not associate types with memory. The result type of a
1524``load`` merely indicates the size and alignment of the memory from
1525which to load, as well as the interpretation of the value. The first
1526operand type of a ``store`` similarly only indicates the size and
1527alignment of the store.
1528
1529Consequently, type-based alias analysis, aka TBAA, aka
1530``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1531:ref:`Metadata <metadata>` may be used to encode additional information
1532which specialized optimization passes may use to implement type-based
1533alias analysis.
1534
1535.. _volatile:
1536
1537Volatile Memory Accesses
1538------------------------
1539
1540Certain memory accesses, such as :ref:`load <i_load>`'s,
1541:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1542marked ``volatile``. The optimizers must not change the number of
1543volatile operations or change their order of execution relative to other
1544volatile operations. The optimizers *may* change the order of volatile
1545operations relative to non-volatile operations. This is not Java's
1546"volatile" and has no cross-thread synchronization behavior.
1547
Andrew Trick89fc5a62013-01-30 21:19:35 +00001548IR-level volatile loads and stores cannot safely be optimized into
1549llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1550flagged volatile. Likewise, the backend should never split or merge
1551target-legal volatile load/store instructions.
1552
Andrew Trick7e6f9282013-01-31 00:49:39 +00001553.. admonition:: Rationale
1554
1555 Platforms may rely on volatile loads and stores of natively supported
1556 data width to be executed as single instruction. For example, in C
1557 this holds for an l-value of volatile primitive type with native
1558 hardware support, but not necessarily for aggregate types. The
1559 frontend upholds these expectations, which are intentionally
1560 unspecified in the IR. The rules above ensure that IR transformation
1561 do not violate the frontend's contract with the language.
1562
Sean Silvab084af42012-12-07 10:36:55 +00001563.. _memmodel:
1564
1565Memory Model for Concurrent Operations
1566--------------------------------------
1567
1568The LLVM IR does not define any way to start parallel threads of
1569execution or to register signal handlers. Nonetheless, there are
1570platform-specific ways to create them, and we define LLVM IR's behavior
1571in their presence. This model is inspired by the C++0x memory model.
1572
1573For a more informal introduction to this model, see the :doc:`Atomics`.
1574
1575We define a *happens-before* partial order as the least partial order
1576that
1577
1578- Is a superset of single-thread program order, and
1579- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1580 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1581 techniques, like pthread locks, thread creation, thread joining,
1582 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1583 Constraints <ordering>`).
1584
1585Note that program order does not introduce *happens-before* edges
1586between a thread and signals executing inside that thread.
1587
1588Every (defined) read operation (load instructions, memcpy, atomic
1589loads/read-modify-writes, etc.) R reads a series of bytes written by
1590(defined) write operations (store instructions, atomic
1591stores/read-modify-writes, memcpy, etc.). For the purposes of this
1592section, initialized globals are considered to have a write of the
1593initializer which is atomic and happens before any other read or write
1594of the memory in question. For each byte of a read R, R\ :sub:`byte`
1595may see any write to the same byte, except:
1596
1597- If write\ :sub:`1` happens before write\ :sub:`2`, and
1598 write\ :sub:`2` happens before R\ :sub:`byte`, then
1599 R\ :sub:`byte` does not see write\ :sub:`1`.
1600- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1601 R\ :sub:`byte` does not see write\ :sub:`3`.
1602
1603Given that definition, R\ :sub:`byte` is defined as follows:
1604
1605- If R is volatile, the result is target-dependent. (Volatile is
1606 supposed to give guarantees which can support ``sig_atomic_t`` in
1607 C/C++, and may be used for accesses to addresses which do not behave
1608 like normal memory. It does not generally provide cross-thread
1609 synchronization.)
1610- Otherwise, if there is no write to the same byte that happens before
1611 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1612- Otherwise, if R\ :sub:`byte` may see exactly one write,
1613 R\ :sub:`byte` returns the value written by that write.
1614- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1615 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1616 Memory Ordering Constraints <ordering>` section for additional
1617 constraints on how the choice is made.
1618- Otherwise R\ :sub:`byte` returns ``undef``.
1619
1620R returns the value composed of the series of bytes it read. This
1621implies that some bytes within the value may be ``undef`` **without**
1622the entire value being ``undef``. Note that this only defines the
1623semantics of the operation; it doesn't mean that targets will emit more
1624than one instruction to read the series of bytes.
1625
1626Note that in cases where none of the atomic intrinsics are used, this
1627model places only one restriction on IR transformations on top of what
1628is required for single-threaded execution: introducing a store to a byte
1629which might not otherwise be stored is not allowed in general.
1630(Specifically, in the case where another thread might write to and read
1631from an address, introducing a store can change a load that may see
1632exactly one write into a load that may see multiple writes.)
1633
1634.. _ordering:
1635
1636Atomic Memory Ordering Constraints
1637----------------------------------
1638
1639Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1640:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1641:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001642ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001643the same address they *synchronize with*. These semantics are borrowed
1644from Java and C++0x, but are somewhat more colloquial. If these
1645descriptions aren't precise enough, check those specs (see spec
1646references in the :doc:`atomics guide <Atomics>`).
1647:ref:`fence <i_fence>` instructions treat these orderings somewhat
1648differently since they don't take an address. See that instruction's
1649documentation for details.
1650
1651For a simpler introduction to the ordering constraints, see the
1652:doc:`Atomics`.
1653
1654``unordered``
1655 The set of values that can be read is governed by the happens-before
1656 partial order. A value cannot be read unless some operation wrote
1657 it. This is intended to provide a guarantee strong enough to model
1658 Java's non-volatile shared variables. This ordering cannot be
1659 specified for read-modify-write operations; it is not strong enough
1660 to make them atomic in any interesting way.
1661``monotonic``
1662 In addition to the guarantees of ``unordered``, there is a single
1663 total order for modifications by ``monotonic`` operations on each
1664 address. All modification orders must be compatible with the
1665 happens-before order. There is no guarantee that the modification
1666 orders can be combined to a global total order for the whole program
1667 (and this often will not be possible). The read in an atomic
1668 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1669 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1670 order immediately before the value it writes. If one atomic read
1671 happens before another atomic read of the same address, the later
1672 read must see the same value or a later value in the address's
1673 modification order. This disallows reordering of ``monotonic`` (or
1674 stronger) operations on the same address. If an address is written
1675 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1676 read that address repeatedly, the other threads must eventually see
1677 the write. This corresponds to the C++0x/C1x
1678 ``memory_order_relaxed``.
1679``acquire``
1680 In addition to the guarantees of ``monotonic``, a
1681 *synchronizes-with* edge may be formed with a ``release`` operation.
1682 This is intended to model C++'s ``memory_order_acquire``.
1683``release``
1684 In addition to the guarantees of ``monotonic``, if this operation
1685 writes a value which is subsequently read by an ``acquire``
1686 operation, it *synchronizes-with* that operation. (This isn't a
1687 complete description; see the C++0x definition of a release
1688 sequence.) This corresponds to the C++0x/C1x
1689 ``memory_order_release``.
1690``acq_rel`` (acquire+release)
1691 Acts as both an ``acquire`` and ``release`` operation on its
1692 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1693``seq_cst`` (sequentially consistent)
1694 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1695 operation which only reads, ``release`` for an operation which only
1696 writes), there is a global total order on all
1697 sequentially-consistent operations on all addresses, which is
1698 consistent with the *happens-before* partial order and with the
1699 modification orders of all the affected addresses. Each
1700 sequentially-consistent read sees the last preceding write to the
1701 same address in this global order. This corresponds to the C++0x/C1x
1702 ``memory_order_seq_cst`` and Java volatile.
1703
1704.. _singlethread:
1705
1706If an atomic operation is marked ``singlethread``, it only *synchronizes
1707with* or participates in modification and seq\_cst total orderings with
1708other operations running in the same thread (for example, in signal
1709handlers).
1710
1711.. _fastmath:
1712
1713Fast-Math Flags
1714---------------
1715
1716LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1717:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1718:ref:`frem <i_frem>`) have the following flags that can set to enable
1719otherwise unsafe floating point operations
1720
1721``nnan``
1722 No NaNs - Allow optimizations to assume the arguments and result are not
1723 NaN. Such optimizations are required to retain defined behavior over
1724 NaNs, but the value of the result is undefined.
1725
1726``ninf``
1727 No Infs - Allow optimizations to assume the arguments and result are not
1728 +/-Inf. Such optimizations are required to retain defined behavior over
1729 +/-Inf, but the value of the result is undefined.
1730
1731``nsz``
1732 No Signed Zeros - Allow optimizations to treat the sign of a zero
1733 argument or result as insignificant.
1734
1735``arcp``
1736 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1737 argument rather than perform division.
1738
1739``fast``
1740 Fast - Allow algebraically equivalent transformations that may
1741 dramatically change results in floating point (e.g. reassociate). This
1742 flag implies all the others.
1743
1744.. _typesystem:
1745
1746Type System
1747===========
1748
1749The LLVM type system is one of the most important features of the
1750intermediate representation. Being typed enables a number of
1751optimizations to be performed on the intermediate representation
1752directly, without having to do extra analyses on the side before the
1753transformation. A strong type system makes it easier to read the
1754generated code and enables novel analyses and transformations that are
1755not feasible to perform on normal three address code representations.
1756
Rafael Espindola08013342013-12-07 19:34:20 +00001757.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001758
Rafael Espindola08013342013-12-07 19:34:20 +00001759Void Type
1760---------
Sean Silvab084af42012-12-07 10:36:55 +00001761
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001762:Overview:
1763
Rafael Espindola08013342013-12-07 19:34:20 +00001764
1765The void type does not represent any value and has no size.
1766
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001767:Syntax:
1768
Rafael Espindola08013342013-12-07 19:34:20 +00001769
1770::
1771
1772 void
Sean Silvab084af42012-12-07 10:36:55 +00001773
1774
Rafael Espindola08013342013-12-07 19:34:20 +00001775.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001776
Rafael Espindola08013342013-12-07 19:34:20 +00001777Function Type
1778-------------
Sean Silvab084af42012-12-07 10:36:55 +00001779
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001780:Overview:
1781
Sean Silvab084af42012-12-07 10:36:55 +00001782
Rafael Espindola08013342013-12-07 19:34:20 +00001783The function type can be thought of as a function signature. It consists of a
1784return type and a list of formal parameter types. The return type of a function
1785type is a void type or first class type --- except for :ref:`label <t_label>`
1786and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001787
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001788:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001789
Rafael Espindola08013342013-12-07 19:34:20 +00001790::
Sean Silvab084af42012-12-07 10:36:55 +00001791
Rafael Espindola08013342013-12-07 19:34:20 +00001792 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001793
Rafael Espindola08013342013-12-07 19:34:20 +00001794...where '``<parameter list>``' is a comma-separated list of type
1795specifiers. Optionally, the parameter list may include a type ``...``, which
1796indicates that the function takes a variable number of arguments. Variable
1797argument functions can access their arguments with the :ref:`variable argument
1798handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1799except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001800
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001801:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001802
Rafael Espindola08013342013-12-07 19:34:20 +00001803+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1804| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1805+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1806| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1807+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1808| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1809+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1810| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1811+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1812
1813.. _t_firstclass:
1814
1815First Class Types
1816-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001817
1818The :ref:`first class <t_firstclass>` types are perhaps the most important.
1819Values of these types are the only ones which can be produced by
1820instructions.
1821
Rafael Espindola08013342013-12-07 19:34:20 +00001822.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001823
Rafael Espindola08013342013-12-07 19:34:20 +00001824Single Value Types
1825^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001826
Rafael Espindola08013342013-12-07 19:34:20 +00001827These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001828
1829.. _t_integer:
1830
1831Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001832""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001833
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001834:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001835
1836The integer type is a very simple type that simply specifies an
1837arbitrary bit width for the integer type desired. Any bit width from 1
1838bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1839
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001840:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001841
1842::
1843
1844 iN
1845
1846The number of bits the integer will occupy is specified by the ``N``
1847value.
1848
1849Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001850*********
Sean Silvab084af42012-12-07 10:36:55 +00001851
1852+----------------+------------------------------------------------+
1853| ``i1`` | a single-bit integer. |
1854+----------------+------------------------------------------------+
1855| ``i32`` | a 32-bit integer. |
1856+----------------+------------------------------------------------+
1857| ``i1942652`` | a really big integer of over 1 million bits. |
1858+----------------+------------------------------------------------+
1859
1860.. _t_floating:
1861
1862Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001863""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001864
1865.. list-table::
1866 :header-rows: 1
1867
1868 * - Type
1869 - Description
1870
1871 * - ``half``
1872 - 16-bit floating point value
1873
1874 * - ``float``
1875 - 32-bit floating point value
1876
1877 * - ``double``
1878 - 64-bit floating point value
1879
1880 * - ``fp128``
1881 - 128-bit floating point value (112-bit mantissa)
1882
1883 * - ``x86_fp80``
1884 - 80-bit floating point value (X87)
1885
1886 * - ``ppc_fp128``
1887 - 128-bit floating point value (two 64-bits)
1888
Reid Kleckner9a16d082014-03-05 02:41:37 +00001889X86_mmx Type
1890""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001891
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001892:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001893
Reid Kleckner9a16d082014-03-05 02:41:37 +00001894The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001895machine. The operations allowed on it are quite limited: parameters and
1896return values, load and store, and bitcast. User-specified MMX
1897instructions are represented as intrinsic or asm calls with arguments
1898and/or results of this type. There are no arrays, vectors or constants
1899of this type.
1900
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001901:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001902
1903::
1904
Reid Kleckner9a16d082014-03-05 02:41:37 +00001905 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001906
Sean Silvab084af42012-12-07 10:36:55 +00001907
Rafael Espindola08013342013-12-07 19:34:20 +00001908.. _t_pointer:
1909
1910Pointer Type
1911""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001912
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001913:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001914
Rafael Espindola08013342013-12-07 19:34:20 +00001915The pointer type is used to specify memory locations. Pointers are
1916commonly used to reference objects in memory.
1917
1918Pointer types may have an optional address space attribute defining the
1919numbered address space where the pointed-to object resides. The default
1920address space is number zero. The semantics of non-zero address spaces
1921are target-specific.
1922
1923Note that LLVM does not permit pointers to void (``void*``) nor does it
1924permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001925
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001926:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001927
1928::
1929
Rafael Espindola08013342013-12-07 19:34:20 +00001930 <type> *
1931
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001932:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001933
1934+-------------------------+--------------------------------------------------------------------------------------------------------------+
1935| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1936+-------------------------+--------------------------------------------------------------------------------------------------------------+
1937| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1938+-------------------------+--------------------------------------------------------------------------------------------------------------+
1939| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1940+-------------------------+--------------------------------------------------------------------------------------------------------------+
1941
1942.. _t_vector:
1943
1944Vector Type
1945"""""""""""
1946
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001947:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001948
1949A vector type is a simple derived type that represents a vector of
1950elements. Vector types are used when multiple primitive data are
1951operated in parallel using a single instruction (SIMD). A vector type
1952requires a size (number of elements) and an underlying primitive data
1953type. Vector types are considered :ref:`first class <t_firstclass>`.
1954
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001955:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001956
1957::
1958
1959 < <# elements> x <elementtype> >
1960
1961The number of elements is a constant integer value larger than 0;
1962elementtype may be any integer or floating point type, or a pointer to
1963these types. Vectors of size zero are not allowed.
1964
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001965:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001966
1967+-------------------+--------------------------------------------------+
1968| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1969+-------------------+--------------------------------------------------+
1970| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1971+-------------------+--------------------------------------------------+
1972| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1973+-------------------+--------------------------------------------------+
1974| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1975+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001976
1977.. _t_label:
1978
1979Label Type
1980^^^^^^^^^^
1981
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001982:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001983
1984The label type represents code labels.
1985
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001986:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001987
1988::
1989
1990 label
1991
1992.. _t_metadata:
1993
1994Metadata Type
1995^^^^^^^^^^^^^
1996
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001997:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001998
1999The metadata type represents embedded metadata. No derived types may be
2000created from metadata except for :ref:`function <t_function>` arguments.
2001
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002002:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002003
2004::
2005
2006 metadata
2007
Sean Silvab084af42012-12-07 10:36:55 +00002008.. _t_aggregate:
2009
2010Aggregate Types
2011^^^^^^^^^^^^^^^
2012
2013Aggregate Types are a subset of derived types that can contain multiple
2014member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2015aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2016aggregate types.
2017
2018.. _t_array:
2019
2020Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002021""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002022
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002023:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002024
2025The array type is a very simple derived type that arranges elements
2026sequentially in memory. The array type requires a size (number of
2027elements) and an underlying data type.
2028
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002029:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002030
2031::
2032
2033 [<# elements> x <elementtype>]
2034
2035The number of elements is a constant integer value; ``elementtype`` may
2036be any type with a size.
2037
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002038:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002039
2040+------------------+--------------------------------------+
2041| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2042+------------------+--------------------------------------+
2043| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2044+------------------+--------------------------------------+
2045| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2046+------------------+--------------------------------------+
2047
2048Here are some examples of multidimensional arrays:
2049
2050+-----------------------------+----------------------------------------------------------+
2051| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2052+-----------------------------+----------------------------------------------------------+
2053| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2054+-----------------------------+----------------------------------------------------------+
2055| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2056+-----------------------------+----------------------------------------------------------+
2057
2058There is no restriction on indexing beyond the end of the array implied
2059by a static type (though there are restrictions on indexing beyond the
2060bounds of an allocated object in some cases). This means that
2061single-dimension 'variable sized array' addressing can be implemented in
2062LLVM with a zero length array type. An implementation of 'pascal style
2063arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2064example.
2065
Sean Silvab084af42012-12-07 10:36:55 +00002066.. _t_struct:
2067
2068Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002069""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002070
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002071:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002072
2073The structure type is used to represent a collection of data members
2074together in memory. The elements of a structure may be any type that has
2075a size.
2076
2077Structures in memory are accessed using '``load``' and '``store``' by
2078getting a pointer to a field with the '``getelementptr``' instruction.
2079Structures in registers are accessed using the '``extractvalue``' and
2080'``insertvalue``' instructions.
2081
2082Structures may optionally be "packed" structures, which indicate that
2083the alignment of the struct is one byte, and that there is no padding
2084between the elements. In non-packed structs, padding between field types
2085is inserted as defined by the DataLayout string in the module, which is
2086required to match what the underlying code generator expects.
2087
2088Structures can either be "literal" or "identified". A literal structure
2089is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2090identified types are always defined at the top level with a name.
2091Literal types are uniqued by their contents and can never be recursive
2092or opaque since there is no way to write one. Identified types can be
2093recursive, can be opaqued, and are never uniqued.
2094
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002095:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002096
2097::
2098
2099 %T1 = type { <type list> } ; Identified normal struct type
2100 %T2 = type <{ <type list> }> ; Identified packed struct type
2101
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002102:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002103
2104+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2105| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2106+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002107| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002108+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2109| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2110+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2111
2112.. _t_opaque:
2113
2114Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002115""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002116
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002117:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002118
2119Opaque structure types are used to represent named structure types that
2120do not have a body specified. This corresponds (for example) to the C
2121notion of a forward declared structure.
2122
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002123:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002124
2125::
2126
2127 %X = type opaque
2128 %52 = type opaque
2129
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002130:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002131
2132+--------------+-------------------+
2133| ``opaque`` | An opaque type. |
2134+--------------+-------------------+
2135
Sean Silva1703e702014-04-08 21:06:22 +00002136.. _constants:
2137
Sean Silvab084af42012-12-07 10:36:55 +00002138Constants
2139=========
2140
2141LLVM has several different basic types of constants. This section
2142describes them all and their syntax.
2143
2144Simple Constants
2145----------------
2146
2147**Boolean constants**
2148 The two strings '``true``' and '``false``' are both valid constants
2149 of the ``i1`` type.
2150**Integer constants**
2151 Standard integers (such as '4') are constants of the
2152 :ref:`integer <t_integer>` type. Negative numbers may be used with
2153 integer types.
2154**Floating point constants**
2155 Floating point constants use standard decimal notation (e.g.
2156 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2157 hexadecimal notation (see below). The assembler requires the exact
2158 decimal value of a floating-point constant. For example, the
2159 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2160 decimal in binary. Floating point constants must have a :ref:`floating
2161 point <t_floating>` type.
2162**Null pointer constants**
2163 The identifier '``null``' is recognized as a null pointer constant
2164 and must be of :ref:`pointer type <t_pointer>`.
2165
2166The one non-intuitive notation for constants is the hexadecimal form of
2167floating point constants. For example, the form
2168'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2169than) '``double 4.5e+15``'. The only time hexadecimal floating point
2170constants are required (and the only time that they are generated by the
2171disassembler) is when a floating point constant must be emitted but it
2172cannot be represented as a decimal floating point number in a reasonable
2173number of digits. For example, NaN's, infinities, and other special
2174values are represented in their IEEE hexadecimal format so that assembly
2175and disassembly do not cause any bits to change in the constants.
2176
2177When using the hexadecimal form, constants of types half, float, and
2178double are represented using the 16-digit form shown above (which
2179matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002180must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002181precision, respectively. Hexadecimal format is always used for long
2182double, and there are three forms of long double. The 80-bit format used
2183by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2184128-bit format used by PowerPC (two adjacent doubles) is represented by
2185``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002186represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2187will only work if they match the long double format on your target.
2188The IEEE 16-bit format (half precision) is represented by ``0xH``
2189followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2190(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002191
Reid Kleckner9a16d082014-03-05 02:41:37 +00002192There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002193
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002194.. _complexconstants:
2195
Sean Silvab084af42012-12-07 10:36:55 +00002196Complex Constants
2197-----------------
2198
2199Complex constants are a (potentially recursive) combination of simple
2200constants and smaller complex constants.
2201
2202**Structure constants**
2203 Structure constants are represented with notation similar to
2204 structure type definitions (a comma separated list of elements,
2205 surrounded by braces (``{}``)). For example:
2206 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2207 "``@G = external global i32``". Structure constants must have
2208 :ref:`structure type <t_struct>`, and the number and types of elements
2209 must match those specified by the type.
2210**Array constants**
2211 Array constants are represented with notation similar to array type
2212 definitions (a comma separated list of elements, surrounded by
2213 square brackets (``[]``)). For example:
2214 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2215 :ref:`array type <t_array>`, and the number and types of elements must
2216 match those specified by the type.
2217**Vector constants**
2218 Vector constants are represented with notation similar to vector
2219 type definitions (a comma separated list of elements, surrounded by
2220 less-than/greater-than's (``<>``)). For example:
2221 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2222 must have :ref:`vector type <t_vector>`, and the number and types of
2223 elements must match those specified by the type.
2224**Zero initialization**
2225 The string '``zeroinitializer``' can be used to zero initialize a
2226 value to zero of *any* type, including scalar and
2227 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2228 having to print large zero initializers (e.g. for large arrays) and
2229 is always exactly equivalent to using explicit zero initializers.
2230**Metadata node**
2231 A metadata node is a structure-like constant with :ref:`metadata
2232 type <t_metadata>`. For example:
2233 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2234 constants that are meant to be interpreted as part of the
2235 instruction stream, metadata is a place to attach additional
2236 information such as debug info.
2237
2238Global Variable and Function Addresses
2239--------------------------------------
2240
2241The addresses of :ref:`global variables <globalvars>` and
2242:ref:`functions <functionstructure>` are always implicitly valid
2243(link-time) constants. These constants are explicitly referenced when
2244the :ref:`identifier for the global <identifiers>` is used and always have
2245:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2246file:
2247
2248.. code-block:: llvm
2249
2250 @X = global i32 17
2251 @Y = global i32 42
2252 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2253
2254.. _undefvalues:
2255
2256Undefined Values
2257----------------
2258
2259The string '``undef``' can be used anywhere a constant is expected, and
2260indicates that the user of the value may receive an unspecified
2261bit-pattern. Undefined values may be of any type (other than '``label``'
2262or '``void``') and be used anywhere a constant is permitted.
2263
2264Undefined values are useful because they indicate to the compiler that
2265the program is well defined no matter what value is used. This gives the
2266compiler more freedom to optimize. Here are some examples of
2267(potentially surprising) transformations that are valid (in pseudo IR):
2268
2269.. code-block:: llvm
2270
2271 %A = add %X, undef
2272 %B = sub %X, undef
2273 %C = xor %X, undef
2274 Safe:
2275 %A = undef
2276 %B = undef
2277 %C = undef
2278
2279This is safe because all of the output bits are affected by the undef
2280bits. Any output bit can have a zero or one depending on the input bits.
2281
2282.. code-block:: llvm
2283
2284 %A = or %X, undef
2285 %B = and %X, undef
2286 Safe:
2287 %A = -1
2288 %B = 0
2289 Unsafe:
2290 %A = undef
2291 %B = undef
2292
2293These logical operations have bits that are not always affected by the
2294input. For example, if ``%X`` has a zero bit, then the output of the
2295'``and``' operation will always be a zero for that bit, no matter what
2296the corresponding bit from the '``undef``' is. As such, it is unsafe to
2297optimize or assume that the result of the '``and``' is '``undef``'.
2298However, it is safe to assume that all bits of the '``undef``' could be
22990, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2300all the bits of the '``undef``' operand to the '``or``' could be set,
2301allowing the '``or``' to be folded to -1.
2302
2303.. code-block:: llvm
2304
2305 %A = select undef, %X, %Y
2306 %B = select undef, 42, %Y
2307 %C = select %X, %Y, undef
2308 Safe:
2309 %A = %X (or %Y)
2310 %B = 42 (or %Y)
2311 %C = %Y
2312 Unsafe:
2313 %A = undef
2314 %B = undef
2315 %C = undef
2316
2317This set of examples shows that undefined '``select``' (and conditional
2318branch) conditions can go *either way*, but they have to come from one
2319of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2320both known to have a clear low bit, then ``%A`` would have to have a
2321cleared low bit. However, in the ``%C`` example, the optimizer is
2322allowed to assume that the '``undef``' operand could be the same as
2323``%Y``, allowing the whole '``select``' to be eliminated.
2324
2325.. code-block:: llvm
2326
2327 %A = xor undef, undef
2328
2329 %B = undef
2330 %C = xor %B, %B
2331
2332 %D = undef
2333 %E = icmp lt %D, 4
2334 %F = icmp gte %D, 4
2335
2336 Safe:
2337 %A = undef
2338 %B = undef
2339 %C = undef
2340 %D = undef
2341 %E = undef
2342 %F = undef
2343
2344This example points out that two '``undef``' operands are not
2345necessarily the same. This can be surprising to people (and also matches
2346C semantics) where they assume that "``X^X``" is always zero, even if
2347``X`` is undefined. This isn't true for a number of reasons, but the
2348short answer is that an '``undef``' "variable" can arbitrarily change
2349its value over its "live range". This is true because the variable
2350doesn't actually *have a live range*. Instead, the value is logically
2351read from arbitrary registers that happen to be around when needed, so
2352the value is not necessarily consistent over time. In fact, ``%A`` and
2353``%C`` need to have the same semantics or the core LLVM "replace all
2354uses with" concept would not hold.
2355
2356.. code-block:: llvm
2357
2358 %A = fdiv undef, %X
2359 %B = fdiv %X, undef
2360 Safe:
2361 %A = undef
2362 b: unreachable
2363
2364These examples show the crucial difference between an *undefined value*
2365and *undefined behavior*. An undefined value (like '``undef``') is
2366allowed to have an arbitrary bit-pattern. This means that the ``%A``
2367operation can be constant folded to '``undef``', because the '``undef``'
2368could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2369However, in the second example, we can make a more aggressive
2370assumption: because the ``undef`` is allowed to be an arbitrary value,
2371we are allowed to assume that it could be zero. Since a divide by zero
2372has *undefined behavior*, we are allowed to assume that the operation
2373does not execute at all. This allows us to delete the divide and all
2374code after it. Because the undefined operation "can't happen", the
2375optimizer can assume that it occurs in dead code.
2376
2377.. code-block:: llvm
2378
2379 a: store undef -> %X
2380 b: store %X -> undef
2381 Safe:
2382 a: <deleted>
2383 b: unreachable
2384
2385These examples reiterate the ``fdiv`` example: a store *of* an undefined
2386value can be assumed to not have any effect; we can assume that the
2387value is overwritten with bits that happen to match what was already
2388there. However, a store *to* an undefined location could clobber
2389arbitrary memory, therefore, it has undefined behavior.
2390
2391.. _poisonvalues:
2392
2393Poison Values
2394-------------
2395
2396Poison values are similar to :ref:`undef values <undefvalues>`, however
2397they also represent the fact that an instruction or constant expression
2398which cannot evoke side effects has nevertheless detected a condition
2399which results in undefined behavior.
2400
2401There is currently no way of representing a poison value in the IR; they
2402only exist when produced by operations such as :ref:`add <i_add>` with
2403the ``nsw`` flag.
2404
2405Poison value behavior is defined in terms of value *dependence*:
2406
2407- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2408- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2409 their dynamic predecessor basic block.
2410- Function arguments depend on the corresponding actual argument values
2411 in the dynamic callers of their functions.
2412- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2413 instructions that dynamically transfer control back to them.
2414- :ref:`Invoke <i_invoke>` instructions depend on the
2415 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2416 call instructions that dynamically transfer control back to them.
2417- Non-volatile loads and stores depend on the most recent stores to all
2418 of the referenced memory addresses, following the order in the IR
2419 (including loads and stores implied by intrinsics such as
2420 :ref:`@llvm.memcpy <int_memcpy>`.)
2421- An instruction with externally visible side effects depends on the
2422 most recent preceding instruction with externally visible side
2423 effects, following the order in the IR. (This includes :ref:`volatile
2424 operations <volatile>`.)
2425- An instruction *control-depends* on a :ref:`terminator
2426 instruction <terminators>` if the terminator instruction has
2427 multiple successors and the instruction is always executed when
2428 control transfers to one of the successors, and may not be executed
2429 when control is transferred to another.
2430- Additionally, an instruction also *control-depends* on a terminator
2431 instruction if the set of instructions it otherwise depends on would
2432 be different if the terminator had transferred control to a different
2433 successor.
2434- Dependence is transitive.
2435
2436Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2437with the additional affect that any instruction which has a *dependence*
2438on a poison value has undefined behavior.
2439
2440Here are some examples:
2441
2442.. code-block:: llvm
2443
2444 entry:
2445 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2446 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2447 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2448 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2449
2450 store i32 %poison, i32* @g ; Poison value stored to memory.
2451 %poison2 = load i32* @g ; Poison value loaded back from memory.
2452
2453 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2454
2455 %narrowaddr = bitcast i32* @g to i16*
2456 %wideaddr = bitcast i32* @g to i64*
2457 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2458 %poison4 = load i64* %wideaddr ; Returns a poison value.
2459
2460 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2461 br i1 %cmp, label %true, label %end ; Branch to either destination.
2462
2463 true:
2464 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2465 ; it has undefined behavior.
2466 br label %end
2467
2468 end:
2469 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2470 ; Both edges into this PHI are
2471 ; control-dependent on %cmp, so this
2472 ; always results in a poison value.
2473
2474 store volatile i32 0, i32* @g ; This would depend on the store in %true
2475 ; if %cmp is true, or the store in %entry
2476 ; otherwise, so this is undefined behavior.
2477
2478 br i1 %cmp, label %second_true, label %second_end
2479 ; The same branch again, but this time the
2480 ; true block doesn't have side effects.
2481
2482 second_true:
2483 ; No side effects!
2484 ret void
2485
2486 second_end:
2487 store volatile i32 0, i32* @g ; This time, the instruction always depends
2488 ; on the store in %end. Also, it is
2489 ; control-equivalent to %end, so this is
2490 ; well-defined (ignoring earlier undefined
2491 ; behavior in this example).
2492
2493.. _blockaddress:
2494
2495Addresses of Basic Blocks
2496-------------------------
2497
2498``blockaddress(@function, %block)``
2499
2500The '``blockaddress``' constant computes the address of the specified
2501basic block in the specified function, and always has an ``i8*`` type.
2502Taking the address of the entry block is illegal.
2503
2504This value only has defined behavior when used as an operand to the
2505':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2506against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002507undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002508no label is equal to the null pointer. This may be passed around as an
2509opaque pointer sized value as long as the bits are not inspected. This
2510allows ``ptrtoint`` and arithmetic to be performed on these values so
2511long as the original value is reconstituted before the ``indirectbr``
2512instruction.
2513
2514Finally, some targets may provide defined semantics when using the value
2515as the operand to an inline assembly, but that is target specific.
2516
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002517.. _constantexprs:
2518
Sean Silvab084af42012-12-07 10:36:55 +00002519Constant Expressions
2520--------------------
2521
2522Constant expressions are used to allow expressions involving other
2523constants to be used as constants. Constant expressions may be of any
2524:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2525that does not have side effects (e.g. load and call are not supported).
2526The following is the syntax for constant expressions:
2527
2528``trunc (CST to TYPE)``
2529 Truncate a constant to another type. The bit size of CST must be
2530 larger than the bit size of TYPE. Both types must be integers.
2531``zext (CST to TYPE)``
2532 Zero extend a constant to another type. The bit size of CST must be
2533 smaller than the bit size of TYPE. Both types must be integers.
2534``sext (CST to TYPE)``
2535 Sign extend a constant to another type. The bit size of CST must be
2536 smaller than the bit size of TYPE. Both types must be integers.
2537``fptrunc (CST to TYPE)``
2538 Truncate a floating point constant to another floating point type.
2539 The size of CST must be larger than the size of TYPE. Both types
2540 must be floating point.
2541``fpext (CST to TYPE)``
2542 Floating point extend a constant to another type. The size of CST
2543 must be smaller or equal to the size of TYPE. Both types must be
2544 floating point.
2545``fptoui (CST to TYPE)``
2546 Convert a floating point constant to the corresponding unsigned
2547 integer constant. TYPE must be a scalar or vector integer type. CST
2548 must be of scalar or vector floating point type. Both CST and TYPE
2549 must be scalars, or vectors of the same number of elements. If the
2550 value won't fit in the integer type, the results are undefined.
2551``fptosi (CST to TYPE)``
2552 Convert a floating point constant to the corresponding signed
2553 integer constant. TYPE must be a scalar or vector integer type. CST
2554 must be of scalar or vector floating point type. Both CST and TYPE
2555 must be scalars, or vectors of the same number of elements. If the
2556 value won't fit in the integer type, the results are undefined.
2557``uitofp (CST to TYPE)``
2558 Convert an unsigned integer constant to the corresponding floating
2559 point constant. TYPE must be a scalar or vector floating point type.
2560 CST must be of scalar or vector integer type. Both CST and TYPE must
2561 be scalars, or vectors of the same number of elements. If the value
2562 won't fit in the floating point type, the results are undefined.
2563``sitofp (CST to TYPE)``
2564 Convert a signed integer constant to the corresponding floating
2565 point constant. TYPE must be a scalar or vector floating point type.
2566 CST must be of scalar or vector integer type. Both CST and TYPE must
2567 be scalars, or vectors of the same number of elements. If the value
2568 won't fit in the floating point type, the results are undefined.
2569``ptrtoint (CST to TYPE)``
2570 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002571 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002572 pointer type. The ``CST`` value is zero extended, truncated, or
2573 unchanged to make it fit in ``TYPE``.
2574``inttoptr (CST to TYPE)``
2575 Convert an integer constant to a pointer constant. TYPE must be a
2576 pointer type. CST must be of integer type. The CST value is zero
2577 extended, truncated, or unchanged to make it fit in a pointer size.
2578 This one is *really* dangerous!
2579``bitcast (CST to TYPE)``
2580 Convert a constant, CST, to another TYPE. The constraints of the
2581 operands are the same as those for the :ref:`bitcast
2582 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002583``addrspacecast (CST to TYPE)``
2584 Convert a constant pointer or constant vector of pointer, CST, to another
2585 TYPE in a different address space. The constraints of the operands are the
2586 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002587``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2588 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2589 constants. As with the :ref:`getelementptr <i_getelementptr>`
2590 instruction, the index list may have zero or more indexes, which are
2591 required to make sense for the type of "CSTPTR".
2592``select (COND, VAL1, VAL2)``
2593 Perform the :ref:`select operation <i_select>` on constants.
2594``icmp COND (VAL1, VAL2)``
2595 Performs the :ref:`icmp operation <i_icmp>` on constants.
2596``fcmp COND (VAL1, VAL2)``
2597 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2598``extractelement (VAL, IDX)``
2599 Perform the :ref:`extractelement operation <i_extractelement>` on
2600 constants.
2601``insertelement (VAL, ELT, IDX)``
2602 Perform the :ref:`insertelement operation <i_insertelement>` on
2603 constants.
2604``shufflevector (VEC1, VEC2, IDXMASK)``
2605 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2606 constants.
2607``extractvalue (VAL, IDX0, IDX1, ...)``
2608 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2609 constants. The index list is interpreted in a similar manner as
2610 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2611 least one index value must be specified.
2612``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2613 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2614 The index list is interpreted in a similar manner as indices in a
2615 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2616 value must be specified.
2617``OPCODE (LHS, RHS)``
2618 Perform the specified operation of the LHS and RHS constants. OPCODE
2619 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2620 binary <bitwiseops>` operations. The constraints on operands are
2621 the same as those for the corresponding instruction (e.g. no bitwise
2622 operations on floating point values are allowed).
2623
2624Other Values
2625============
2626
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002627.. _inlineasmexprs:
2628
Sean Silvab084af42012-12-07 10:36:55 +00002629Inline Assembler Expressions
2630----------------------------
2631
2632LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2633Inline Assembly <moduleasm>`) through the use of a special value. This
2634value represents the inline assembler as a string (containing the
2635instructions to emit), a list of operand constraints (stored as a
2636string), a flag that indicates whether or not the inline asm expression
2637has side effects, and a flag indicating whether the function containing
2638the asm needs to align its stack conservatively. An example inline
2639assembler expression is:
2640
2641.. code-block:: llvm
2642
2643 i32 (i32) asm "bswap $0", "=r,r"
2644
2645Inline assembler expressions may **only** be used as the callee operand
2646of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2647Thus, typically we have:
2648
2649.. code-block:: llvm
2650
2651 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2652
2653Inline asms with side effects not visible in the constraint list must be
2654marked as having side effects. This is done through the use of the
2655'``sideeffect``' keyword, like so:
2656
2657.. code-block:: llvm
2658
2659 call void asm sideeffect "eieio", ""()
2660
2661In some cases inline asms will contain code that will not work unless
2662the stack is aligned in some way, such as calls or SSE instructions on
2663x86, yet will not contain code that does that alignment within the asm.
2664The compiler should make conservative assumptions about what the asm
2665might contain and should generate its usual stack alignment code in the
2666prologue if the '``alignstack``' keyword is present:
2667
2668.. code-block:: llvm
2669
2670 call void asm alignstack "eieio", ""()
2671
2672Inline asms also support using non-standard assembly dialects. The
2673assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2674the inline asm is using the Intel dialect. Currently, ATT and Intel are
2675the only supported dialects. An example is:
2676
2677.. code-block:: llvm
2678
2679 call void asm inteldialect "eieio", ""()
2680
2681If multiple keywords appear the '``sideeffect``' keyword must come
2682first, the '``alignstack``' keyword second and the '``inteldialect``'
2683keyword last.
2684
2685Inline Asm Metadata
2686^^^^^^^^^^^^^^^^^^^
2687
2688The call instructions that wrap inline asm nodes may have a
2689"``!srcloc``" MDNode attached to it that contains a list of constant
2690integers. If present, the code generator will use the integer as the
2691location cookie value when report errors through the ``LLVMContext``
2692error reporting mechanisms. This allows a front-end to correlate backend
2693errors that occur with inline asm back to the source code that produced
2694it. For example:
2695
2696.. code-block:: llvm
2697
2698 call void asm sideeffect "something bad", ""(), !srcloc !42
2699 ...
2700 !42 = !{ i32 1234567 }
2701
2702It is up to the front-end to make sense of the magic numbers it places
2703in the IR. If the MDNode contains multiple constants, the code generator
2704will use the one that corresponds to the line of the asm that the error
2705occurs on.
2706
2707.. _metadata:
2708
2709Metadata Nodes and Metadata Strings
2710-----------------------------------
2711
2712LLVM IR allows metadata to be attached to instructions in the program
2713that can convey extra information about the code to the optimizers and
2714code generator. One example application of metadata is source-level
2715debug information. There are two metadata primitives: strings and nodes.
2716All metadata has the ``metadata`` type and is identified in syntax by a
2717preceding exclamation point ('``!``').
2718
2719A metadata string is a string surrounded by double quotes. It can
2720contain any character by escaping non-printable characters with
2721"``\xx``" where "``xx``" is the two digit hex code. For example:
2722"``!"test\00"``".
2723
2724Metadata nodes are represented with notation similar to structure
2725constants (a comma separated list of elements, surrounded by braces and
2726preceded by an exclamation point). Metadata nodes can have any values as
2727their operand. For example:
2728
2729.. code-block:: llvm
2730
2731 !{ metadata !"test\00", i32 10}
2732
2733A :ref:`named metadata <namedmetadatastructure>` is a collection of
2734metadata nodes, which can be looked up in the module symbol table. For
2735example:
2736
2737.. code-block:: llvm
2738
2739 !foo = metadata !{!4, !3}
2740
2741Metadata can be used as function arguments. Here ``llvm.dbg.value``
2742function is using two metadata arguments:
2743
2744.. code-block:: llvm
2745
2746 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2747
2748Metadata can be attached with an instruction. Here metadata ``!21`` is
2749attached to the ``add`` instruction using the ``!dbg`` identifier:
2750
2751.. code-block:: llvm
2752
2753 %indvar.next = add i64 %indvar, 1, !dbg !21
2754
2755More information about specific metadata nodes recognized by the
2756optimizers and code generator is found below.
2757
2758'``tbaa``' Metadata
2759^^^^^^^^^^^^^^^^^^^
2760
2761In LLVM IR, memory does not have types, so LLVM's own type system is not
2762suitable for doing TBAA. Instead, metadata is added to the IR to
2763describe a type system of a higher level language. This can be used to
2764implement typical C/C++ TBAA, but it can also be used to implement
2765custom alias analysis behavior for other languages.
2766
2767The current metadata format is very simple. TBAA metadata nodes have up
2768to three fields, e.g.:
2769
2770.. code-block:: llvm
2771
2772 !0 = metadata !{ metadata !"an example type tree" }
2773 !1 = metadata !{ metadata !"int", metadata !0 }
2774 !2 = metadata !{ metadata !"float", metadata !0 }
2775 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2776
2777The first field is an identity field. It can be any value, usually a
2778metadata string, which uniquely identifies the type. The most important
2779name in the tree is the name of the root node. Two trees with different
2780root node names are entirely disjoint, even if they have leaves with
2781common names.
2782
2783The second field identifies the type's parent node in the tree, or is
2784null or omitted for a root node. A type is considered to alias all of
2785its descendants and all of its ancestors in the tree. Also, a type is
2786considered to alias all types in other trees, so that bitcode produced
2787from multiple front-ends is handled conservatively.
2788
2789If the third field is present, it's an integer which if equal to 1
2790indicates that the type is "constant" (meaning
2791``pointsToConstantMemory`` should return true; see `other useful
2792AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2793
2794'``tbaa.struct``' Metadata
2795^^^^^^^^^^^^^^^^^^^^^^^^^^
2796
2797The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2798aggregate assignment operations in C and similar languages, however it
2799is defined to copy a contiguous region of memory, which is more than
2800strictly necessary for aggregate types which contain holes due to
2801padding. Also, it doesn't contain any TBAA information about the fields
2802of the aggregate.
2803
2804``!tbaa.struct`` metadata can describe which memory subregions in a
2805memcpy are padding and what the TBAA tags of the struct are.
2806
2807The current metadata format is very simple. ``!tbaa.struct`` metadata
2808nodes are a list of operands which are in conceptual groups of three.
2809For each group of three, the first operand gives the byte offset of a
2810field in bytes, the second gives its size in bytes, and the third gives
2811its tbaa tag. e.g.:
2812
2813.. code-block:: llvm
2814
2815 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2816
2817This describes a struct with two fields. The first is at offset 0 bytes
2818with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2819and has size 4 bytes and has tbaa tag !2.
2820
2821Note that the fields need not be contiguous. In this example, there is a
28224 byte gap between the two fields. This gap represents padding which
2823does not carry useful data and need not be preserved.
2824
2825'``fpmath``' Metadata
2826^^^^^^^^^^^^^^^^^^^^^
2827
2828``fpmath`` metadata may be attached to any instruction of floating point
2829type. It can be used to express the maximum acceptable error in the
2830result of that instruction, in ULPs, thus potentially allowing the
2831compiler to use a more efficient but less accurate method of computing
2832it. ULP is defined as follows:
2833
2834 If ``x`` is a real number that lies between two finite consecutive
2835 floating-point numbers ``a`` and ``b``, without being equal to one
2836 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2837 distance between the two non-equal finite floating-point numbers
2838 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2839
2840The metadata node shall consist of a single positive floating point
2841number representing the maximum relative error, for example:
2842
2843.. code-block:: llvm
2844
2845 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2846
2847'``range``' Metadata
2848^^^^^^^^^^^^^^^^^^^^
2849
Jingyue Wu37fcb592014-06-19 16:50:16 +00002850``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
2851integer types. It expresses the possible ranges the loaded value or the value
2852returned by the called function at this call site is in. The ranges are
2853represented with a flattened list of integers. The loaded value or the value
2854returned is known to be in the union of the ranges defined by each consecutive
2855pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00002856
2857- The type must match the type loaded by the instruction.
2858- The pair ``a,b`` represents the range ``[a,b)``.
2859- Both ``a`` and ``b`` are constants.
2860- The range is allowed to wrap.
2861- The range should not represent the full or empty set. That is,
2862 ``a!=b``.
2863
2864In addition, the pairs must be in signed order of the lower bound and
2865they must be non-contiguous.
2866
2867Examples:
2868
2869.. code-block:: llvm
2870
2871 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2872 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00002873 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
2874 %d = invoke i8 @bar() to label %cont
2875 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00002876 ...
2877 !0 = metadata !{ i8 0, i8 2 }
2878 !1 = metadata !{ i8 255, i8 2 }
2879 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2880 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2881
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002882'``llvm.loop``'
2883^^^^^^^^^^^^^^^
2884
2885It is sometimes useful to attach information to loop constructs. Currently,
2886loop metadata is implemented as metadata attached to the branch instruction
2887in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002888guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002889specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002890
2891The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002892itself to avoid merging it with any other identifier metadata, e.g.,
2893during module linkage or function inlining. That is, each loop should refer
2894to their own identification metadata even if they reside in separate functions.
2895The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002896constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002897
2898.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002899
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002900 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002901 !1 = metadata !{ metadata !1 }
2902
Paul Redmond5fdf8362013-05-28 20:00:34 +00002903The loop identifier metadata can be used to specify additional per-loop
2904metadata. Any operands after the first operand can be treated as user-defined
Eli Bendersky5d5e18d2014-06-25 15:41:00 +00002905metadata. For example the ``llvm.loop.vectorize.unroll`` metadata is understood
Paul Redmond5fdf8362013-05-28 20:00:34 +00002906by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002907
Paul Redmond5fdf8362013-05-28 20:00:34 +00002908.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002909
Paul Redmond5fdf8362013-05-28 20:00:34 +00002910 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2911 ...
2912 !0 = metadata !{ metadata !0, metadata !1 }
Eli Bendersky5d5e18d2014-06-25 15:41:00 +00002913 !1 = metadata !{ metadata !"llvm.loop.vectorize.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002914
2915'``llvm.mem``'
2916^^^^^^^^^^^^^^^
2917
2918Metadata types used to annotate memory accesses with information helpful
2919for optimizations are prefixed with ``llvm.mem``.
2920
2921'``llvm.mem.parallel_loop_access``' Metadata
2922^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2923
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00002924The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
2925or metadata containing a list of loop identifiers for nested loops.
2926The metadata is attached to memory accessing instructions and denotes that
2927no loop carried memory dependence exist between it and other instructions denoted
2928with the same loop identifier.
2929
2930Precisely, given two instructions ``m1`` and ``m2`` that both have the
2931``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
2932set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00002933carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00002934``L2``.
2935
2936As a special case, if all memory accessing instructions in a loop have
2937``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
2938loop has no loop carried memory dependences and is considered to be a parallel
2939loop.
2940
2941Note that if not all memory access instructions have such metadata referring to
2942the loop, then the loop is considered not being trivially parallel. Additional
2943memory dependence analysis is required to make that determination. As a fail
2944safe mechanism, this causes loops that were originally parallel to be considered
2945sequential (if optimization passes that are unaware of the parallel semantics
2946insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002947
2948Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002949both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002950metadata types that refer to the same loop identifier metadata.
2951
2952.. code-block:: llvm
2953
2954 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002955 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002956 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002957 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002958 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002959 ...
2960 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002961
2962 for.end:
2963 ...
2964 !0 = metadata !{ metadata !0 }
2965
2966It is also possible to have nested parallel loops. In that case the
2967memory accesses refer to a list of loop identifier metadata nodes instead of
2968the loop identifier metadata node directly:
2969
2970.. code-block:: llvm
2971
2972 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002973 ...
2974 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
2975 ...
2976 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002977
2978 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002979 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002980 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002981 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002982 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002983 ...
2984 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002985
2986 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002987 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002988 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00002989 ...
2990 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002991
2992 outer.for.end: ; preds = %for.body
2993 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002994 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2995 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2996 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002997
Eli Bendersky5d5e18d2014-06-25 15:41:00 +00002998'``llvm.loop.vectorize``'
2999^^^^^^^^^^^^^^^^^^^^^^^^^
Paul Redmond5fdf8362013-05-28 20:00:34 +00003000
Eli Bendersky5d5e18d2014-06-25 15:41:00 +00003001Metadata prefixed with ``llvm.loop.vectorize`` is used to control per-loop
Paul Redmond5fdf8362013-05-28 20:00:34 +00003002vectorization parameters such as vectorization factor and unroll factor.
3003
Eli Bendersky5d5e18d2014-06-25 15:41:00 +00003004``llvm.loop.vectorize`` metadata should be used in conjunction with
3005``llvm.loop`` loop identification metadata.
Paul Redmond5fdf8362013-05-28 20:00:34 +00003006
Eli Bendersky5d5e18d2014-06-25 15:41:00 +00003007'``llvm.loop.vectorize.unroll``' Metadata
3008^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Paul Redmond5fdf8362013-05-28 20:00:34 +00003009
3010This metadata instructs the loop vectorizer to unroll the specified
3011loop exactly ``N`` times.
3012
Eli Bendersky5d5e18d2014-06-25 15:41:00 +00003013The first operand is the string ``llvm.loop.vectorize.unroll`` and the second
Paul Redmond5fdf8362013-05-28 20:00:34 +00003014operand is an integer specifying the unroll factor. For example:
3015
3016.. code-block:: llvm
3017
Eli Bendersky5d5e18d2014-06-25 15:41:00 +00003018 !0 = metadata !{ metadata !"llvm.loop.vectorize.unroll", i32 4 }
Paul Redmond5fdf8362013-05-28 20:00:34 +00003019
Eli Bendersky5d5e18d2014-06-25 15:41:00 +00003020Note that setting ``llvm.loop.vectorize.unroll`` to 1 disables
3021unrolling of the loop.
Paul Redmond5fdf8362013-05-28 20:00:34 +00003022
Eli Bendersky5d5e18d2014-06-25 15:41:00 +00003023If ``llvm.loop.vectorize.unroll`` is set to 0 then the amount of
3024unrolling will be determined automatically.
Paul Redmond5fdf8362013-05-28 20:00:34 +00003025
Eli Bendersky5d5e18d2014-06-25 15:41:00 +00003026'``llvm.loop.vectorize.width``' Metadata
3027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Paul Redmond5fdf8362013-05-28 20:00:34 +00003028
Paul Redmondeccbb322013-05-30 17:22:46 +00003029This metadata sets the target width of the vectorizer to ``N``. Without
3030this metadata, the vectorizer will choose a width automatically.
3031Regardless of this metadata, the vectorizer will only vectorize loops if
3032it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00003033
Eli Bendersky5d5e18d2014-06-25 15:41:00 +00003034The first operand is the string ``llvm.loop.vectorize.width`` and the
3035second operand is an integer specifying the width. For example:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003036
3037.. code-block:: llvm
3038
Eli Bendersky5d5e18d2014-06-25 15:41:00 +00003039 !0 = metadata !{ metadata !"llvm.loop.vectorize.width", i32 4 }
Paul Redmond5fdf8362013-05-28 20:00:34 +00003040
Eli Bendersky5d5e18d2014-06-25 15:41:00 +00003041Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3042vectorization of the loop.
Paul Redmond5fdf8362013-05-28 20:00:34 +00003043
Eli Bendersky5d5e18d2014-06-25 15:41:00 +00003044If ``llvm.loop.vectorize.width`` is set to 0 then the width will be
3045determined automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003046
Sean Silvab084af42012-12-07 10:36:55 +00003047Module Flags Metadata
3048=====================
3049
3050Information about the module as a whole is difficult to convey to LLVM's
3051subsystems. The LLVM IR isn't sufficient to transmit this information.
3052The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003053this. These flags are in the form of key / value pairs --- much like a
3054dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003055look it up.
3056
3057The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3058Each triplet has the following form:
3059
3060- The first element is a *behavior* flag, which specifies the behavior
3061 when two (or more) modules are merged together, and it encounters two
3062 (or more) metadata with the same ID. The supported behaviors are
3063 described below.
3064- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003065 metadata. Each module may only have one flag entry for each unique ID (not
3066 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003067- The third element is the value of the flag.
3068
3069When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003070``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3071each unique metadata ID string, there will be exactly one entry in the merged
3072modules ``llvm.module.flags`` metadata table, and the value for that entry will
3073be determined by the merge behavior flag, as described below. The only exception
3074is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003075
3076The following behaviors are supported:
3077
3078.. list-table::
3079 :header-rows: 1
3080 :widths: 10 90
3081
3082 * - Value
3083 - Behavior
3084
3085 * - 1
3086 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003087 Emits an error if two values disagree, otherwise the resulting value
3088 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003089
3090 * - 2
3091 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003092 Emits a warning if two values disagree. The result value will be the
3093 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003094
3095 * - 3
3096 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003097 Adds a requirement that another module flag be present and have a
3098 specified value after linking is performed. The value must be a
3099 metadata pair, where the first element of the pair is the ID of the
3100 module flag to be restricted, and the second element of the pair is
3101 the value the module flag should be restricted to. This behavior can
3102 be used to restrict the allowable results (via triggering of an
3103 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003104
3105 * - 4
3106 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003107 Uses the specified value, regardless of the behavior or value of the
3108 other module. If both modules specify **Override**, but the values
3109 differ, an error will be emitted.
3110
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003111 * - 5
3112 - **Append**
3113 Appends the two values, which are required to be metadata nodes.
3114
3115 * - 6
3116 - **AppendUnique**
3117 Appends the two values, which are required to be metadata
3118 nodes. However, duplicate entries in the second list are dropped
3119 during the append operation.
3120
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003121It is an error for a particular unique flag ID to have multiple behaviors,
3122except in the case of **Require** (which adds restrictions on another metadata
3123value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003124
3125An example of module flags:
3126
3127.. code-block:: llvm
3128
3129 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3130 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3131 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3132 !3 = metadata !{ i32 3, metadata !"qux",
3133 metadata !{
3134 metadata !"foo", i32 1
3135 }
3136 }
3137 !llvm.module.flags = !{ !0, !1, !2, !3 }
3138
3139- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3140 if two or more ``!"foo"`` flags are seen is to emit an error if their
3141 values are not equal.
3142
3143- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3144 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003145 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003146
3147- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3148 behavior if two or more ``!"qux"`` flags are seen is to emit a
3149 warning if their values are not equal.
3150
3151- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3152
3153 ::
3154
3155 metadata !{ metadata !"foo", i32 1 }
3156
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003157 The behavior is to emit an error if the ``llvm.module.flags`` does not
3158 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3159 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003160
3161Objective-C Garbage Collection Module Flags Metadata
3162----------------------------------------------------
3163
3164On the Mach-O platform, Objective-C stores metadata about garbage
3165collection in a special section called "image info". The metadata
3166consists of a version number and a bitmask specifying what types of
3167garbage collection are supported (if any) by the file. If two or more
3168modules are linked together their garbage collection metadata needs to
3169be merged rather than appended together.
3170
3171The Objective-C garbage collection module flags metadata consists of the
3172following key-value pairs:
3173
3174.. list-table::
3175 :header-rows: 1
3176 :widths: 30 70
3177
3178 * - Key
3179 - Value
3180
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003181 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003182 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003183
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003184 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003185 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003186 always 0.
3187
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003188 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003189 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003190 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3191 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3192 Objective-C ABI version 2.
3193
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003194 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003195 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003196 not. Valid values are 0, for no garbage collection, and 2, for garbage
3197 collection supported.
3198
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003199 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003200 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003201 If present, its value must be 6. This flag requires that the
3202 ``Objective-C Garbage Collection`` flag have the value 2.
3203
3204Some important flag interactions:
3205
3206- If a module with ``Objective-C Garbage Collection`` set to 0 is
3207 merged with a module with ``Objective-C Garbage Collection`` set to
3208 2, then the resulting module has the
3209 ``Objective-C Garbage Collection`` flag set to 0.
3210- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3211 merged with a module with ``Objective-C GC Only`` set to 6.
3212
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003213Automatic Linker Flags Module Flags Metadata
3214--------------------------------------------
3215
3216Some targets support embedding flags to the linker inside individual object
3217files. Typically this is used in conjunction with language extensions which
3218allow source files to explicitly declare the libraries they depend on, and have
3219these automatically be transmitted to the linker via object files.
3220
3221These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003222using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003223to be ``AppendUnique``, and the value for the key is expected to be a metadata
3224node which should be a list of other metadata nodes, each of which should be a
3225list of metadata strings defining linker options.
3226
3227For example, the following metadata section specifies two separate sets of
3228linker options, presumably to link against ``libz`` and the ``Cocoa``
3229framework::
3230
Michael Liaoa7699082013-03-06 18:24:34 +00003231 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003232 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003233 metadata !{ metadata !"-lz" },
3234 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003235 !llvm.module.flags = !{ !0 }
3236
3237The metadata encoding as lists of lists of options, as opposed to a collapsed
3238list of options, is chosen so that the IR encoding can use multiple option
3239strings to specify e.g., a single library, while still having that specifier be
3240preserved as an atomic element that can be recognized by a target specific
3241assembly writer or object file emitter.
3242
3243Each individual option is required to be either a valid option for the target's
3244linker, or an option that is reserved by the target specific assembly writer or
3245object file emitter. No other aspect of these options is defined by the IR.
3246
Oliver Stannard5dc29342014-06-20 10:08:11 +00003247C type width Module Flags Metadata
3248----------------------------------
3249
3250The ARM backend emits a section into each generated object file describing the
3251options that it was compiled with (in a compiler-independent way) to prevent
3252linking incompatible objects, and to allow automatic library selection. Some
3253of these options are not visible at the IR level, namely wchar_t width and enum
3254width.
3255
3256To pass this information to the backend, these options are encoded in module
3257flags metadata, using the following key-value pairs:
3258
3259.. list-table::
3260 :header-rows: 1
3261 :widths: 30 70
3262
3263 * - Key
3264 - Value
3265
3266 * - short_wchar
3267 - * 0 --- sizeof(wchar_t) == 4
3268 * 1 --- sizeof(wchar_t) == 2
3269
3270 * - short_enum
3271 - * 0 --- Enums are at least as large as an ``int``.
3272 * 1 --- Enums are stored in the smallest integer type which can
3273 represent all of its values.
3274
3275For example, the following metadata section specifies that the module was
3276compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3277enum is the smallest type which can represent all of its values::
3278
3279 !llvm.module.flags = !{!0, !1}
3280 !0 = metadata !{i32 1, metadata !"short_wchar", i32 1}
3281 !1 = metadata !{i32 1, metadata !"short_enum", i32 0}
3282
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003283.. _intrinsicglobalvariables:
3284
Sean Silvab084af42012-12-07 10:36:55 +00003285Intrinsic Global Variables
3286==========================
3287
3288LLVM has a number of "magic" global variables that contain data that
3289affect code generation or other IR semantics. These are documented here.
3290All globals of this sort should have a section specified as
3291"``llvm.metadata``". This section and all globals that start with
3292"``llvm.``" are reserved for use by LLVM.
3293
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003294.. _gv_llvmused:
3295
Sean Silvab084af42012-12-07 10:36:55 +00003296The '``llvm.used``' Global Variable
3297-----------------------------------
3298
Rafael Espindola74f2e462013-04-22 14:58:02 +00003299The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003300:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003301pointers to named global variables, functions and aliases which may optionally
3302have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003303use of it is:
3304
3305.. code-block:: llvm
3306
3307 @X = global i8 4
3308 @Y = global i32 123
3309
3310 @llvm.used = appending global [2 x i8*] [
3311 i8* @X,
3312 i8* bitcast (i32* @Y to i8*)
3313 ], section "llvm.metadata"
3314
Rafael Espindola74f2e462013-04-22 14:58:02 +00003315If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3316and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003317symbol that it cannot see (which is why they have to be named). For example, if
3318a variable has internal linkage and no references other than that from the
3319``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3320references from inline asms and other things the compiler cannot "see", and
3321corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003322
3323On some targets, the code generator must emit a directive to the
3324assembler or object file to prevent the assembler and linker from
3325molesting the symbol.
3326
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003327.. _gv_llvmcompilerused:
3328
Sean Silvab084af42012-12-07 10:36:55 +00003329The '``llvm.compiler.used``' Global Variable
3330--------------------------------------------
3331
3332The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3333directive, except that it only prevents the compiler from touching the
3334symbol. On targets that support it, this allows an intelligent linker to
3335optimize references to the symbol without being impeded as it would be
3336by ``@llvm.used``.
3337
3338This is a rare construct that should only be used in rare circumstances,
3339and should not be exposed to source languages.
3340
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003341.. _gv_llvmglobalctors:
3342
Sean Silvab084af42012-12-07 10:36:55 +00003343The '``llvm.global_ctors``' Global Variable
3344-------------------------------------------
3345
3346.. code-block:: llvm
3347
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003348 %0 = type { i32, void ()*, i8* }
3349 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003350
3351The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003352functions, priorities, and an optional associated global or function.
3353The functions referenced by this array will be called in ascending order
3354of priority (i.e. lowest first) when the module is loaded. The order of
3355functions with the same priority is not defined.
3356
3357If the third field is present, non-null, and points to a global variable
3358or function, the initializer function will only run if the associated
3359data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003360
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003361.. _llvmglobaldtors:
3362
Sean Silvab084af42012-12-07 10:36:55 +00003363The '``llvm.global_dtors``' Global Variable
3364-------------------------------------------
3365
3366.. code-block:: llvm
3367
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003368 %0 = type { i32, void ()*, i8* }
3369 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003370
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003371The ``@llvm.global_dtors`` array contains a list of destructor
3372functions, priorities, and an optional associated global or function.
3373The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003374order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003375order of functions with the same priority is not defined.
3376
3377If the third field is present, non-null, and points to a global variable
3378or function, the destructor function will only run if the associated
3379data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003380
3381Instruction Reference
3382=====================
3383
3384The LLVM instruction set consists of several different classifications
3385of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3386instructions <binaryops>`, :ref:`bitwise binary
3387instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3388:ref:`other instructions <otherops>`.
3389
3390.. _terminators:
3391
3392Terminator Instructions
3393-----------------------
3394
3395As mentioned :ref:`previously <functionstructure>`, every basic block in a
3396program ends with a "Terminator" instruction, which indicates which
3397block should be executed after the current block is finished. These
3398terminator instructions typically yield a '``void``' value: they produce
3399control flow, not values (the one exception being the
3400':ref:`invoke <i_invoke>`' instruction).
3401
3402The terminator instructions are: ':ref:`ret <i_ret>`',
3403':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3404':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3405':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3406
3407.. _i_ret:
3408
3409'``ret``' Instruction
3410^^^^^^^^^^^^^^^^^^^^^
3411
3412Syntax:
3413"""""""
3414
3415::
3416
3417 ret <type> <value> ; Return a value from a non-void function
3418 ret void ; Return from void function
3419
3420Overview:
3421"""""""""
3422
3423The '``ret``' instruction is used to return control flow (and optionally
3424a value) from a function back to the caller.
3425
3426There are two forms of the '``ret``' instruction: one that returns a
3427value and then causes control flow, and one that just causes control
3428flow to occur.
3429
3430Arguments:
3431""""""""""
3432
3433The '``ret``' instruction optionally accepts a single argument, the
3434return value. The type of the return value must be a ':ref:`first
3435class <t_firstclass>`' type.
3436
3437A function is not :ref:`well formed <wellformed>` if it it has a non-void
3438return type and contains a '``ret``' instruction with no return value or
3439a return value with a type that does not match its type, or if it has a
3440void return type and contains a '``ret``' instruction with a return
3441value.
3442
3443Semantics:
3444""""""""""
3445
3446When the '``ret``' instruction is executed, control flow returns back to
3447the calling function's context. If the caller is a
3448":ref:`call <i_call>`" instruction, execution continues at the
3449instruction after the call. If the caller was an
3450":ref:`invoke <i_invoke>`" instruction, execution continues at the
3451beginning of the "normal" destination block. If the instruction returns
3452a value, that value shall set the call or invoke instruction's return
3453value.
3454
3455Example:
3456""""""""
3457
3458.. code-block:: llvm
3459
3460 ret i32 5 ; Return an integer value of 5
3461 ret void ; Return from a void function
3462 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3463
3464.. _i_br:
3465
3466'``br``' Instruction
3467^^^^^^^^^^^^^^^^^^^^
3468
3469Syntax:
3470"""""""
3471
3472::
3473
3474 br i1 <cond>, label <iftrue>, label <iffalse>
3475 br label <dest> ; Unconditional branch
3476
3477Overview:
3478"""""""""
3479
3480The '``br``' instruction is used to cause control flow to transfer to a
3481different basic block in the current function. There are two forms of
3482this instruction, corresponding to a conditional branch and an
3483unconditional branch.
3484
3485Arguments:
3486""""""""""
3487
3488The conditional branch form of the '``br``' instruction takes a single
3489'``i1``' value and two '``label``' values. The unconditional form of the
3490'``br``' instruction takes a single '``label``' value as a target.
3491
3492Semantics:
3493""""""""""
3494
3495Upon execution of a conditional '``br``' instruction, the '``i1``'
3496argument is evaluated. If the value is ``true``, control flows to the
3497'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3498to the '``iffalse``' ``label`` argument.
3499
3500Example:
3501""""""""
3502
3503.. code-block:: llvm
3504
3505 Test:
3506 %cond = icmp eq i32 %a, %b
3507 br i1 %cond, label %IfEqual, label %IfUnequal
3508 IfEqual:
3509 ret i32 1
3510 IfUnequal:
3511 ret i32 0
3512
3513.. _i_switch:
3514
3515'``switch``' Instruction
3516^^^^^^^^^^^^^^^^^^^^^^^^
3517
3518Syntax:
3519"""""""
3520
3521::
3522
3523 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3524
3525Overview:
3526"""""""""
3527
3528The '``switch``' instruction is used to transfer control flow to one of
3529several different places. It is a generalization of the '``br``'
3530instruction, allowing a branch to occur to one of many possible
3531destinations.
3532
3533Arguments:
3534""""""""""
3535
3536The '``switch``' instruction uses three parameters: an integer
3537comparison value '``value``', a default '``label``' destination, and an
3538array of pairs of comparison value constants and '``label``'s. The table
3539is not allowed to contain duplicate constant entries.
3540
3541Semantics:
3542""""""""""
3543
3544The ``switch`` instruction specifies a table of values and destinations.
3545When the '``switch``' instruction is executed, this table is searched
3546for the given value. If the value is found, control flow is transferred
3547to the corresponding destination; otherwise, control flow is transferred
3548to the default destination.
3549
3550Implementation:
3551"""""""""""""""
3552
3553Depending on properties of the target machine and the particular
3554``switch`` instruction, this instruction may be code generated in
3555different ways. For example, it could be generated as a series of
3556chained conditional branches or with a lookup table.
3557
3558Example:
3559""""""""
3560
3561.. code-block:: llvm
3562
3563 ; Emulate a conditional br instruction
3564 %Val = zext i1 %value to i32
3565 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3566
3567 ; Emulate an unconditional br instruction
3568 switch i32 0, label %dest [ ]
3569
3570 ; Implement a jump table:
3571 switch i32 %val, label %otherwise [ i32 0, label %onzero
3572 i32 1, label %onone
3573 i32 2, label %ontwo ]
3574
3575.. _i_indirectbr:
3576
3577'``indirectbr``' Instruction
3578^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3579
3580Syntax:
3581"""""""
3582
3583::
3584
3585 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3586
3587Overview:
3588"""""""""
3589
3590The '``indirectbr``' instruction implements an indirect branch to a
3591label within the current function, whose address is specified by
3592"``address``". Address must be derived from a
3593:ref:`blockaddress <blockaddress>` constant.
3594
3595Arguments:
3596""""""""""
3597
3598The '``address``' argument is the address of the label to jump to. The
3599rest of the arguments indicate the full set of possible destinations
3600that the address may point to. Blocks are allowed to occur multiple
3601times in the destination list, though this isn't particularly useful.
3602
3603This destination list is required so that dataflow analysis has an
3604accurate understanding of the CFG.
3605
3606Semantics:
3607""""""""""
3608
3609Control transfers to the block specified in the address argument. All
3610possible destination blocks must be listed in the label list, otherwise
3611this instruction has undefined behavior. This implies that jumps to
3612labels defined in other functions have undefined behavior as well.
3613
3614Implementation:
3615"""""""""""""""
3616
3617This is typically implemented with a jump through a register.
3618
3619Example:
3620""""""""
3621
3622.. code-block:: llvm
3623
3624 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3625
3626.. _i_invoke:
3627
3628'``invoke``' Instruction
3629^^^^^^^^^^^^^^^^^^^^^^^^
3630
3631Syntax:
3632"""""""
3633
3634::
3635
3636 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3637 to label <normal label> unwind label <exception label>
3638
3639Overview:
3640"""""""""
3641
3642The '``invoke``' instruction causes control to transfer to a specified
3643function, with the possibility of control flow transfer to either the
3644'``normal``' label or the '``exception``' label. If the callee function
3645returns with the "``ret``" instruction, control flow will return to the
3646"normal" label. If the callee (or any indirect callees) returns via the
3647":ref:`resume <i_resume>`" instruction or other exception handling
3648mechanism, control is interrupted and continued at the dynamically
3649nearest "exception" label.
3650
3651The '``exception``' label is a `landing
3652pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3653'``exception``' label is required to have the
3654":ref:`landingpad <i_landingpad>`" instruction, which contains the
3655information about the behavior of the program after unwinding happens,
3656as its first non-PHI instruction. The restrictions on the
3657"``landingpad``" instruction's tightly couples it to the "``invoke``"
3658instruction, so that the important information contained within the
3659"``landingpad``" instruction can't be lost through normal code motion.
3660
3661Arguments:
3662""""""""""
3663
3664This instruction requires several arguments:
3665
3666#. The optional "cconv" marker indicates which :ref:`calling
3667 convention <callingconv>` the call should use. If none is
3668 specified, the call defaults to using C calling conventions.
3669#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3670 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3671 are valid here.
3672#. '``ptr to function ty``': shall be the signature of the pointer to
3673 function value being invoked. In most cases, this is a direct
3674 function invocation, but indirect ``invoke``'s are just as possible,
3675 branching off an arbitrary pointer to function value.
3676#. '``function ptr val``': An LLVM value containing a pointer to a
3677 function to be invoked.
3678#. '``function args``': argument list whose types match the function
3679 signature argument types and parameter attributes. All arguments must
3680 be of :ref:`first class <t_firstclass>` type. If the function signature
3681 indicates the function accepts a variable number of arguments, the
3682 extra arguments can be specified.
3683#. '``normal label``': the label reached when the called function
3684 executes a '``ret``' instruction.
3685#. '``exception label``': the label reached when a callee returns via
3686 the :ref:`resume <i_resume>` instruction or other exception handling
3687 mechanism.
3688#. The optional :ref:`function attributes <fnattrs>` list. Only
3689 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3690 attributes are valid here.
3691
3692Semantics:
3693""""""""""
3694
3695This instruction is designed to operate as a standard '``call``'
3696instruction in most regards. The primary difference is that it
3697establishes an association with a label, which is used by the runtime
3698library to unwind the stack.
3699
3700This instruction is used in languages with destructors to ensure that
3701proper cleanup is performed in the case of either a ``longjmp`` or a
3702thrown exception. Additionally, this is important for implementation of
3703'``catch``' clauses in high-level languages that support them.
3704
3705For the purposes of the SSA form, the definition of the value returned
3706by the '``invoke``' instruction is deemed to occur on the edge from the
3707current block to the "normal" label. If the callee unwinds then no
3708return value is available.
3709
3710Example:
3711""""""""
3712
3713.. code-block:: llvm
3714
3715 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003716 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003717 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003718 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003719
3720.. _i_resume:
3721
3722'``resume``' Instruction
3723^^^^^^^^^^^^^^^^^^^^^^^^
3724
3725Syntax:
3726"""""""
3727
3728::
3729
3730 resume <type> <value>
3731
3732Overview:
3733"""""""""
3734
3735The '``resume``' instruction is a terminator instruction that has no
3736successors.
3737
3738Arguments:
3739""""""""""
3740
3741The '``resume``' instruction requires one argument, which must have the
3742same type as the result of any '``landingpad``' instruction in the same
3743function.
3744
3745Semantics:
3746""""""""""
3747
3748The '``resume``' instruction resumes propagation of an existing
3749(in-flight) exception whose unwinding was interrupted with a
3750:ref:`landingpad <i_landingpad>` instruction.
3751
3752Example:
3753""""""""
3754
3755.. code-block:: llvm
3756
3757 resume { i8*, i32 } %exn
3758
3759.. _i_unreachable:
3760
3761'``unreachable``' Instruction
3762^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3763
3764Syntax:
3765"""""""
3766
3767::
3768
3769 unreachable
3770
3771Overview:
3772"""""""""
3773
3774The '``unreachable``' instruction has no defined semantics. This
3775instruction is used to inform the optimizer that a particular portion of
3776the code is not reachable. This can be used to indicate that the code
3777after a no-return function cannot be reached, and other facts.
3778
3779Semantics:
3780""""""""""
3781
3782The '``unreachable``' instruction has no defined semantics.
3783
3784.. _binaryops:
3785
3786Binary Operations
3787-----------------
3788
3789Binary operators are used to do most of the computation in a program.
3790They require two operands of the same type, execute an operation on
3791them, and produce a single value. The operands might represent multiple
3792data, as is the case with the :ref:`vector <t_vector>` data type. The
3793result value has the same type as its operands.
3794
3795There are several different binary operators:
3796
3797.. _i_add:
3798
3799'``add``' Instruction
3800^^^^^^^^^^^^^^^^^^^^^
3801
3802Syntax:
3803"""""""
3804
3805::
3806
Tim Northover675a0962014-06-13 14:24:23 +00003807 <result> = add <ty> <op1>, <op2> ; yields ty:result
3808 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
3809 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
3810 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003811
3812Overview:
3813"""""""""
3814
3815The '``add``' instruction returns the sum of its two operands.
3816
3817Arguments:
3818""""""""""
3819
3820The two arguments to the '``add``' instruction must be
3821:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3822arguments must have identical types.
3823
3824Semantics:
3825""""""""""
3826
3827The value produced is the integer sum of the two operands.
3828
3829If the sum has unsigned overflow, the result returned is the
3830mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3831the result.
3832
3833Because LLVM integers use a two's complement representation, this
3834instruction is appropriate for both signed and unsigned integers.
3835
3836``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3837respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3838result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3839unsigned and/or signed overflow, respectively, occurs.
3840
3841Example:
3842""""""""
3843
3844.. code-block:: llvm
3845
Tim Northover675a0962014-06-13 14:24:23 +00003846 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00003847
3848.. _i_fadd:
3849
3850'``fadd``' Instruction
3851^^^^^^^^^^^^^^^^^^^^^^
3852
3853Syntax:
3854"""""""
3855
3856::
3857
Tim Northover675a0962014-06-13 14:24:23 +00003858 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003859
3860Overview:
3861"""""""""
3862
3863The '``fadd``' instruction returns the sum of its two operands.
3864
3865Arguments:
3866""""""""""
3867
3868The two arguments to the '``fadd``' instruction must be :ref:`floating
3869point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3870Both arguments must have identical types.
3871
3872Semantics:
3873""""""""""
3874
3875The value produced is the floating point sum of the two operands. This
3876instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3877which are optimization hints to enable otherwise unsafe floating point
3878optimizations:
3879
3880Example:
3881""""""""
3882
3883.. code-block:: llvm
3884
Tim Northover675a0962014-06-13 14:24:23 +00003885 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00003886
3887'``sub``' Instruction
3888^^^^^^^^^^^^^^^^^^^^^
3889
3890Syntax:
3891"""""""
3892
3893::
3894
Tim Northover675a0962014-06-13 14:24:23 +00003895 <result> = sub <ty> <op1>, <op2> ; yields ty:result
3896 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
3897 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
3898 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003899
3900Overview:
3901"""""""""
3902
3903The '``sub``' instruction returns the difference of its two operands.
3904
3905Note that the '``sub``' instruction is used to represent the '``neg``'
3906instruction present in most other intermediate representations.
3907
3908Arguments:
3909""""""""""
3910
3911The two arguments to the '``sub``' instruction must be
3912:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3913arguments must have identical types.
3914
3915Semantics:
3916""""""""""
3917
3918The value produced is the integer difference of the two operands.
3919
3920If the difference has unsigned overflow, the result returned is the
3921mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3922the result.
3923
3924Because LLVM integers use a two's complement representation, this
3925instruction is appropriate for both signed and unsigned integers.
3926
3927``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3928respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3929result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3930unsigned and/or signed overflow, respectively, occurs.
3931
3932Example:
3933""""""""
3934
3935.. code-block:: llvm
3936
Tim Northover675a0962014-06-13 14:24:23 +00003937 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
3938 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00003939
3940.. _i_fsub:
3941
3942'``fsub``' Instruction
3943^^^^^^^^^^^^^^^^^^^^^^
3944
3945Syntax:
3946"""""""
3947
3948::
3949
Tim Northover675a0962014-06-13 14:24:23 +00003950 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003951
3952Overview:
3953"""""""""
3954
3955The '``fsub``' instruction returns the difference of its two operands.
3956
3957Note that the '``fsub``' instruction is used to represent the '``fneg``'
3958instruction present in most other intermediate representations.
3959
3960Arguments:
3961""""""""""
3962
3963The two arguments to the '``fsub``' instruction must be :ref:`floating
3964point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3965Both arguments must have identical types.
3966
3967Semantics:
3968""""""""""
3969
3970The value produced is the floating point difference of the two operands.
3971This instruction can also take any number of :ref:`fast-math
3972flags <fastmath>`, which are optimization hints to enable otherwise
3973unsafe floating point optimizations:
3974
3975Example:
3976""""""""
3977
3978.. code-block:: llvm
3979
Tim Northover675a0962014-06-13 14:24:23 +00003980 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
3981 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00003982
3983'``mul``' Instruction
3984^^^^^^^^^^^^^^^^^^^^^
3985
3986Syntax:
3987"""""""
3988
3989::
3990
Tim Northover675a0962014-06-13 14:24:23 +00003991 <result> = mul <ty> <op1>, <op2> ; yields ty:result
3992 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
3993 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
3994 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003995
3996Overview:
3997"""""""""
3998
3999The '``mul``' instruction returns the product of its two operands.
4000
4001Arguments:
4002""""""""""
4003
4004The two arguments to the '``mul``' instruction must be
4005:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4006arguments must have identical types.
4007
4008Semantics:
4009""""""""""
4010
4011The value produced is the integer product of the two operands.
4012
4013If the result of the multiplication has unsigned overflow, the result
4014returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4015bit width of the result.
4016
4017Because LLVM integers use a two's complement representation, and the
4018result is the same width as the operands, this instruction returns the
4019correct result for both signed and unsigned integers. If a full product
4020(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4021sign-extended or zero-extended as appropriate to the width of the full
4022product.
4023
4024``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4025respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4026result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4027unsigned and/or signed overflow, respectively, occurs.
4028
4029Example:
4030""""""""
4031
4032.. code-block:: llvm
4033
Tim Northover675a0962014-06-13 14:24:23 +00004034 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004035
4036.. _i_fmul:
4037
4038'``fmul``' Instruction
4039^^^^^^^^^^^^^^^^^^^^^^
4040
4041Syntax:
4042"""""""
4043
4044::
4045
Tim Northover675a0962014-06-13 14:24:23 +00004046 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004047
4048Overview:
4049"""""""""
4050
4051The '``fmul``' instruction returns the product of its two operands.
4052
4053Arguments:
4054""""""""""
4055
4056The two arguments to the '``fmul``' instruction must be :ref:`floating
4057point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4058Both arguments must have identical types.
4059
4060Semantics:
4061""""""""""
4062
4063The value produced is the floating point product of the two operands.
4064This instruction can also take any number of :ref:`fast-math
4065flags <fastmath>`, which are optimization hints to enable otherwise
4066unsafe floating point optimizations:
4067
4068Example:
4069""""""""
4070
4071.. code-block:: llvm
4072
Tim Northover675a0962014-06-13 14:24:23 +00004073 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004074
4075'``udiv``' Instruction
4076^^^^^^^^^^^^^^^^^^^^^^
4077
4078Syntax:
4079"""""""
4080
4081::
4082
Tim Northover675a0962014-06-13 14:24:23 +00004083 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4084 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004085
4086Overview:
4087"""""""""
4088
4089The '``udiv``' instruction returns the quotient of its two operands.
4090
4091Arguments:
4092""""""""""
4093
4094The two arguments to the '``udiv``' instruction must be
4095:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4096arguments must have identical types.
4097
4098Semantics:
4099""""""""""
4100
4101The value produced is the unsigned integer quotient of the two operands.
4102
4103Note that unsigned integer division and signed integer division are
4104distinct operations; for signed integer division, use '``sdiv``'.
4105
4106Division by zero leads to undefined behavior.
4107
4108If the ``exact`` keyword is present, the result value of the ``udiv`` is
4109a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4110such, "((a udiv exact b) mul b) == a").
4111
4112Example:
4113""""""""
4114
4115.. code-block:: llvm
4116
Tim Northover675a0962014-06-13 14:24:23 +00004117 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004118
4119'``sdiv``' Instruction
4120^^^^^^^^^^^^^^^^^^^^^^
4121
4122Syntax:
4123"""""""
4124
4125::
4126
Tim Northover675a0962014-06-13 14:24:23 +00004127 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4128 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004129
4130Overview:
4131"""""""""
4132
4133The '``sdiv``' instruction returns the quotient of its two operands.
4134
4135Arguments:
4136""""""""""
4137
4138The two arguments to the '``sdiv``' instruction must be
4139:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4140arguments must have identical types.
4141
4142Semantics:
4143""""""""""
4144
4145The value produced is the signed integer quotient of the two operands
4146rounded towards zero.
4147
4148Note that signed integer division and unsigned integer division are
4149distinct operations; for unsigned integer division, use '``udiv``'.
4150
4151Division by zero leads to undefined behavior. Overflow also leads to
4152undefined behavior; this is a rare case, but can occur, for example, by
4153doing a 32-bit division of -2147483648 by -1.
4154
4155If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4156a :ref:`poison value <poisonvalues>` if the result would be rounded.
4157
4158Example:
4159""""""""
4160
4161.. code-block:: llvm
4162
Tim Northover675a0962014-06-13 14:24:23 +00004163 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004164
4165.. _i_fdiv:
4166
4167'``fdiv``' Instruction
4168^^^^^^^^^^^^^^^^^^^^^^
4169
4170Syntax:
4171"""""""
4172
4173::
4174
Tim Northover675a0962014-06-13 14:24:23 +00004175 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004176
4177Overview:
4178"""""""""
4179
4180The '``fdiv``' instruction returns the quotient of its two operands.
4181
4182Arguments:
4183""""""""""
4184
4185The two arguments to the '``fdiv``' instruction must be :ref:`floating
4186point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4187Both arguments must have identical types.
4188
4189Semantics:
4190""""""""""
4191
4192The value produced is the floating point quotient of the two operands.
4193This instruction can also take any number of :ref:`fast-math
4194flags <fastmath>`, which are optimization hints to enable otherwise
4195unsafe floating point optimizations:
4196
4197Example:
4198""""""""
4199
4200.. code-block:: llvm
4201
Tim Northover675a0962014-06-13 14:24:23 +00004202 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004203
4204'``urem``' Instruction
4205^^^^^^^^^^^^^^^^^^^^^^
4206
4207Syntax:
4208"""""""
4209
4210::
4211
Tim Northover675a0962014-06-13 14:24:23 +00004212 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004213
4214Overview:
4215"""""""""
4216
4217The '``urem``' instruction returns the remainder from the unsigned
4218division of its two arguments.
4219
4220Arguments:
4221""""""""""
4222
4223The two arguments to the '``urem``' instruction must be
4224:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4225arguments must have identical types.
4226
4227Semantics:
4228""""""""""
4229
4230This instruction returns the unsigned integer *remainder* of a division.
4231This instruction always performs an unsigned division to get the
4232remainder.
4233
4234Note that unsigned integer remainder and signed integer remainder are
4235distinct operations; for signed integer remainder, use '``srem``'.
4236
4237Taking the remainder of a division by zero leads to undefined behavior.
4238
4239Example:
4240""""""""
4241
4242.. code-block:: llvm
4243
Tim Northover675a0962014-06-13 14:24:23 +00004244 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004245
4246'``srem``' Instruction
4247^^^^^^^^^^^^^^^^^^^^^^
4248
4249Syntax:
4250"""""""
4251
4252::
4253
Tim Northover675a0962014-06-13 14:24:23 +00004254 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004255
4256Overview:
4257"""""""""
4258
4259The '``srem``' instruction returns the remainder from the signed
4260division of its two operands. This instruction can also take
4261:ref:`vector <t_vector>` versions of the values in which case the elements
4262must be integers.
4263
4264Arguments:
4265""""""""""
4266
4267The two arguments to the '``srem``' instruction must be
4268:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4269arguments must have identical types.
4270
4271Semantics:
4272""""""""""
4273
4274This instruction returns the *remainder* of a division (where the result
4275is either zero or has the same sign as the dividend, ``op1``), not the
4276*modulo* operator (where the result is either zero or has the same sign
4277as the divisor, ``op2``) of a value. For more information about the
4278difference, see `The Math
4279Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4280table of how this is implemented in various languages, please see
4281`Wikipedia: modulo
4282operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4283
4284Note that signed integer remainder and unsigned integer remainder are
4285distinct operations; for unsigned integer remainder, use '``urem``'.
4286
4287Taking the remainder of a division by zero leads to undefined behavior.
4288Overflow also leads to undefined behavior; this is a rare case, but can
4289occur, for example, by taking the remainder of a 32-bit division of
4290-2147483648 by -1. (The remainder doesn't actually overflow, but this
4291rule lets srem be implemented using instructions that return both the
4292result of the division and the remainder.)
4293
4294Example:
4295""""""""
4296
4297.. code-block:: llvm
4298
Tim Northover675a0962014-06-13 14:24:23 +00004299 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004300
4301.. _i_frem:
4302
4303'``frem``' Instruction
4304^^^^^^^^^^^^^^^^^^^^^^
4305
4306Syntax:
4307"""""""
4308
4309::
4310
Tim Northover675a0962014-06-13 14:24:23 +00004311 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004312
4313Overview:
4314"""""""""
4315
4316The '``frem``' instruction returns the remainder from the division of
4317its two operands.
4318
4319Arguments:
4320""""""""""
4321
4322The two arguments to the '``frem``' instruction must be :ref:`floating
4323point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4324Both arguments must have identical types.
4325
4326Semantics:
4327""""""""""
4328
4329This instruction returns the *remainder* of a division. The remainder
4330has the same sign as the dividend. This instruction can also take any
4331number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4332to enable otherwise unsafe floating point optimizations:
4333
4334Example:
4335""""""""
4336
4337.. code-block:: llvm
4338
Tim Northover675a0962014-06-13 14:24:23 +00004339 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004340
4341.. _bitwiseops:
4342
4343Bitwise Binary Operations
4344-------------------------
4345
4346Bitwise binary operators are used to do various forms of bit-twiddling
4347in a program. They are generally very efficient instructions and can
4348commonly be strength reduced from other instructions. They require two
4349operands of the same type, execute an operation on them, and produce a
4350single value. The resulting value is the same type as its operands.
4351
4352'``shl``' Instruction
4353^^^^^^^^^^^^^^^^^^^^^
4354
4355Syntax:
4356"""""""
4357
4358::
4359
Tim Northover675a0962014-06-13 14:24:23 +00004360 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4361 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4362 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4363 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004364
4365Overview:
4366"""""""""
4367
4368The '``shl``' instruction returns the first operand shifted to the left
4369a specified number of bits.
4370
4371Arguments:
4372""""""""""
4373
4374Both arguments to the '``shl``' instruction must be the same
4375:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4376'``op2``' is treated as an unsigned value.
4377
4378Semantics:
4379""""""""""
4380
4381The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4382where ``n`` is the width of the result. If ``op2`` is (statically or
4383dynamically) negative or equal to or larger than the number of bits in
4384``op1``, the result is undefined. If the arguments are vectors, each
4385vector element of ``op1`` is shifted by the corresponding shift amount
4386in ``op2``.
4387
4388If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4389value <poisonvalues>` if it shifts out any non-zero bits. If the
4390``nsw`` keyword is present, then the shift produces a :ref:`poison
4391value <poisonvalues>` if it shifts out any bits that disagree with the
4392resultant sign bit. As such, NUW/NSW have the same semantics as they
4393would if the shift were expressed as a mul instruction with the same
4394nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4395
4396Example:
4397""""""""
4398
4399.. code-block:: llvm
4400
Tim Northover675a0962014-06-13 14:24:23 +00004401 <result> = shl i32 4, %var ; yields i32: 4 << %var
4402 <result> = shl i32 4, 2 ; yields i32: 16
4403 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004404 <result> = shl i32 1, 32 ; undefined
4405 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4406
4407'``lshr``' Instruction
4408^^^^^^^^^^^^^^^^^^^^^^
4409
4410Syntax:
4411"""""""
4412
4413::
4414
Tim Northover675a0962014-06-13 14:24:23 +00004415 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4416 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004417
4418Overview:
4419"""""""""
4420
4421The '``lshr``' instruction (logical shift right) returns the first
4422operand shifted to the right a specified number of bits with zero fill.
4423
4424Arguments:
4425""""""""""
4426
4427Both arguments to the '``lshr``' instruction must be the same
4428:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4429'``op2``' is treated as an unsigned value.
4430
4431Semantics:
4432""""""""""
4433
4434This instruction always performs a logical shift right operation. The
4435most significant bits of the result will be filled with zero bits after
4436the shift. If ``op2`` is (statically or dynamically) equal to or larger
4437than the number of bits in ``op1``, the result is undefined. If the
4438arguments are vectors, each vector element of ``op1`` is shifted by the
4439corresponding shift amount in ``op2``.
4440
4441If the ``exact`` keyword is present, the result value of the ``lshr`` is
4442a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4443non-zero.
4444
4445Example:
4446""""""""
4447
4448.. code-block:: llvm
4449
Tim Northover675a0962014-06-13 14:24:23 +00004450 <result> = lshr i32 4, 1 ; yields i32:result = 2
4451 <result> = lshr i32 4, 2 ; yields i32:result = 1
4452 <result> = lshr i8 4, 3 ; yields i8:result = 0
4453 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004454 <result> = lshr i32 1, 32 ; undefined
4455 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4456
4457'``ashr``' Instruction
4458^^^^^^^^^^^^^^^^^^^^^^
4459
4460Syntax:
4461"""""""
4462
4463::
4464
Tim Northover675a0962014-06-13 14:24:23 +00004465 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4466 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004467
4468Overview:
4469"""""""""
4470
4471The '``ashr``' instruction (arithmetic shift right) returns the first
4472operand shifted to the right a specified number of bits with sign
4473extension.
4474
4475Arguments:
4476""""""""""
4477
4478Both arguments to the '``ashr``' instruction must be the same
4479:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4480'``op2``' is treated as an unsigned value.
4481
4482Semantics:
4483""""""""""
4484
4485This instruction always performs an arithmetic shift right operation,
4486The most significant bits of the result will be filled with the sign bit
4487of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4488than the number of bits in ``op1``, the result is undefined. If the
4489arguments are vectors, each vector element of ``op1`` is shifted by the
4490corresponding shift amount in ``op2``.
4491
4492If the ``exact`` keyword is present, the result value of the ``ashr`` is
4493a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4494non-zero.
4495
4496Example:
4497""""""""
4498
4499.. code-block:: llvm
4500
Tim Northover675a0962014-06-13 14:24:23 +00004501 <result> = ashr i32 4, 1 ; yields i32:result = 2
4502 <result> = ashr i32 4, 2 ; yields i32:result = 1
4503 <result> = ashr i8 4, 3 ; yields i8:result = 0
4504 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004505 <result> = ashr i32 1, 32 ; undefined
4506 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4507
4508'``and``' Instruction
4509^^^^^^^^^^^^^^^^^^^^^
4510
4511Syntax:
4512"""""""
4513
4514::
4515
Tim Northover675a0962014-06-13 14:24:23 +00004516 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004517
4518Overview:
4519"""""""""
4520
4521The '``and``' instruction returns the bitwise logical and of its two
4522operands.
4523
4524Arguments:
4525""""""""""
4526
4527The two arguments to the '``and``' instruction must be
4528:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4529arguments must have identical types.
4530
4531Semantics:
4532""""""""""
4533
4534The truth table used for the '``and``' instruction is:
4535
4536+-----+-----+-----+
4537| In0 | In1 | Out |
4538+-----+-----+-----+
4539| 0 | 0 | 0 |
4540+-----+-----+-----+
4541| 0 | 1 | 0 |
4542+-----+-----+-----+
4543| 1 | 0 | 0 |
4544+-----+-----+-----+
4545| 1 | 1 | 1 |
4546+-----+-----+-----+
4547
4548Example:
4549""""""""
4550
4551.. code-block:: llvm
4552
Tim Northover675a0962014-06-13 14:24:23 +00004553 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4554 <result> = and i32 15, 40 ; yields i32:result = 8
4555 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004556
4557'``or``' Instruction
4558^^^^^^^^^^^^^^^^^^^^
4559
4560Syntax:
4561"""""""
4562
4563::
4564
Tim Northover675a0962014-06-13 14:24:23 +00004565 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004566
4567Overview:
4568"""""""""
4569
4570The '``or``' instruction returns the bitwise logical inclusive or of its
4571two operands.
4572
4573Arguments:
4574""""""""""
4575
4576The two arguments to the '``or``' instruction must be
4577:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4578arguments must have identical types.
4579
4580Semantics:
4581""""""""""
4582
4583The truth table used for the '``or``' instruction is:
4584
4585+-----+-----+-----+
4586| In0 | In1 | Out |
4587+-----+-----+-----+
4588| 0 | 0 | 0 |
4589+-----+-----+-----+
4590| 0 | 1 | 1 |
4591+-----+-----+-----+
4592| 1 | 0 | 1 |
4593+-----+-----+-----+
4594| 1 | 1 | 1 |
4595+-----+-----+-----+
4596
4597Example:
4598""""""""
4599
4600::
4601
Tim Northover675a0962014-06-13 14:24:23 +00004602 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4603 <result> = or i32 15, 40 ; yields i32:result = 47
4604 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004605
4606'``xor``' Instruction
4607^^^^^^^^^^^^^^^^^^^^^
4608
4609Syntax:
4610"""""""
4611
4612::
4613
Tim Northover675a0962014-06-13 14:24:23 +00004614 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004615
4616Overview:
4617"""""""""
4618
4619The '``xor``' instruction returns the bitwise logical exclusive or of
4620its two operands. The ``xor`` is used to implement the "one's
4621complement" operation, which is the "~" operator in C.
4622
4623Arguments:
4624""""""""""
4625
4626The two arguments to the '``xor``' instruction must be
4627:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4628arguments must have identical types.
4629
4630Semantics:
4631""""""""""
4632
4633The truth table used for the '``xor``' instruction is:
4634
4635+-----+-----+-----+
4636| In0 | In1 | Out |
4637+-----+-----+-----+
4638| 0 | 0 | 0 |
4639+-----+-----+-----+
4640| 0 | 1 | 1 |
4641+-----+-----+-----+
4642| 1 | 0 | 1 |
4643+-----+-----+-----+
4644| 1 | 1 | 0 |
4645+-----+-----+-----+
4646
4647Example:
4648""""""""
4649
4650.. code-block:: llvm
4651
Tim Northover675a0962014-06-13 14:24:23 +00004652 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4653 <result> = xor i32 15, 40 ; yields i32:result = 39
4654 <result> = xor i32 4, 8 ; yields i32:result = 12
4655 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004656
4657Vector Operations
4658-----------------
4659
4660LLVM supports several instructions to represent vector operations in a
4661target-independent manner. These instructions cover the element-access
4662and vector-specific operations needed to process vectors effectively.
4663While LLVM does directly support these vector operations, many
4664sophisticated algorithms will want to use target-specific intrinsics to
4665take full advantage of a specific target.
4666
4667.. _i_extractelement:
4668
4669'``extractelement``' Instruction
4670^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4671
4672Syntax:
4673"""""""
4674
4675::
4676
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004677 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004678
4679Overview:
4680"""""""""
4681
4682The '``extractelement``' instruction extracts a single scalar element
4683from a vector at a specified index.
4684
4685Arguments:
4686""""""""""
4687
4688The first operand of an '``extractelement``' instruction is a value of
4689:ref:`vector <t_vector>` type. The second operand is an index indicating
4690the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004691variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004692
4693Semantics:
4694""""""""""
4695
4696The result is a scalar of the same type as the element type of ``val``.
4697Its value is the value at position ``idx`` of ``val``. If ``idx``
4698exceeds the length of ``val``, the results are undefined.
4699
4700Example:
4701""""""""
4702
4703.. code-block:: llvm
4704
4705 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4706
4707.. _i_insertelement:
4708
4709'``insertelement``' Instruction
4710^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4711
4712Syntax:
4713"""""""
4714
4715::
4716
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004717 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004718
4719Overview:
4720"""""""""
4721
4722The '``insertelement``' instruction inserts a scalar element into a
4723vector at a specified index.
4724
4725Arguments:
4726""""""""""
4727
4728The first operand of an '``insertelement``' instruction is a value of
4729:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4730type must equal the element type of the first operand. The third operand
4731is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004732index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004733
4734Semantics:
4735""""""""""
4736
4737The result is a vector of the same type as ``val``. Its element values
4738are those of ``val`` except at position ``idx``, where it gets the value
4739``elt``. If ``idx`` exceeds the length of ``val``, the results are
4740undefined.
4741
4742Example:
4743""""""""
4744
4745.. code-block:: llvm
4746
4747 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4748
4749.. _i_shufflevector:
4750
4751'``shufflevector``' Instruction
4752^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4753
4754Syntax:
4755"""""""
4756
4757::
4758
4759 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4760
4761Overview:
4762"""""""""
4763
4764The '``shufflevector``' instruction constructs a permutation of elements
4765from two input vectors, returning a vector with the same element type as
4766the input and length that is the same as the shuffle mask.
4767
4768Arguments:
4769""""""""""
4770
4771The first two operands of a '``shufflevector``' instruction are vectors
4772with the same type. The third argument is a shuffle mask whose element
4773type is always 'i32'. The result of the instruction is a vector whose
4774length is the same as the shuffle mask and whose element type is the
4775same as the element type of the first two operands.
4776
4777The shuffle mask operand is required to be a constant vector with either
4778constant integer or undef values.
4779
4780Semantics:
4781""""""""""
4782
4783The elements of the two input vectors are numbered from left to right
4784across both of the vectors. The shuffle mask operand specifies, for each
4785element of the result vector, which element of the two input vectors the
4786result element gets. The element selector may be undef (meaning "don't
4787care") and the second operand may be undef if performing a shuffle from
4788only one vector.
4789
4790Example:
4791""""""""
4792
4793.. code-block:: llvm
4794
4795 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4796 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4797 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4798 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4799 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4800 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4801 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4802 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4803
4804Aggregate Operations
4805--------------------
4806
4807LLVM supports several instructions for working with
4808:ref:`aggregate <t_aggregate>` values.
4809
4810.. _i_extractvalue:
4811
4812'``extractvalue``' Instruction
4813^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4814
4815Syntax:
4816"""""""
4817
4818::
4819
4820 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4821
4822Overview:
4823"""""""""
4824
4825The '``extractvalue``' instruction extracts the value of a member field
4826from an :ref:`aggregate <t_aggregate>` value.
4827
4828Arguments:
4829""""""""""
4830
4831The first operand of an '``extractvalue``' instruction is a value of
4832:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4833constant indices to specify which value to extract in a similar manner
4834as indices in a '``getelementptr``' instruction.
4835
4836The major differences to ``getelementptr`` indexing are:
4837
4838- Since the value being indexed is not a pointer, the first index is
4839 omitted and assumed to be zero.
4840- At least one index must be specified.
4841- Not only struct indices but also array indices must be in bounds.
4842
4843Semantics:
4844""""""""""
4845
4846The result is the value at the position in the aggregate specified by
4847the index operands.
4848
4849Example:
4850""""""""
4851
4852.. code-block:: llvm
4853
4854 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4855
4856.. _i_insertvalue:
4857
4858'``insertvalue``' Instruction
4859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4860
4861Syntax:
4862"""""""
4863
4864::
4865
4866 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4867
4868Overview:
4869"""""""""
4870
4871The '``insertvalue``' instruction inserts a value into a member field in
4872an :ref:`aggregate <t_aggregate>` value.
4873
4874Arguments:
4875""""""""""
4876
4877The first operand of an '``insertvalue``' instruction is a value of
4878:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4879a first-class value to insert. The following operands are constant
4880indices indicating the position at which to insert the value in a
4881similar manner as indices in a '``extractvalue``' instruction. The value
4882to insert must have the same type as the value identified by the
4883indices.
4884
4885Semantics:
4886""""""""""
4887
4888The result is an aggregate of the same type as ``val``. Its value is
4889that of ``val`` except that the value at the position specified by the
4890indices is that of ``elt``.
4891
4892Example:
4893""""""""
4894
4895.. code-block:: llvm
4896
4897 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4898 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4899 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4900
4901.. _memoryops:
4902
4903Memory Access and Addressing Operations
4904---------------------------------------
4905
4906A key design point of an SSA-based representation is how it represents
4907memory. In LLVM, no memory locations are in SSA form, which makes things
4908very simple. This section describes how to read, write, and allocate
4909memory in LLVM.
4910
4911.. _i_alloca:
4912
4913'``alloca``' Instruction
4914^^^^^^^^^^^^^^^^^^^^^^^^
4915
4916Syntax:
4917"""""""
4918
4919::
4920
Tim Northover675a0962014-06-13 14:24:23 +00004921 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00004922
4923Overview:
4924"""""""""
4925
4926The '``alloca``' instruction allocates memory on the stack frame of the
4927currently executing function, to be automatically released when this
4928function returns to its caller. The object is always allocated in the
4929generic address space (address space zero).
4930
4931Arguments:
4932""""""""""
4933
4934The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4935bytes of memory on the runtime stack, returning a pointer of the
4936appropriate type to the program. If "NumElements" is specified, it is
4937the number of elements allocated, otherwise "NumElements" is defaulted
4938to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00004939allocation is guaranteed to be aligned to at least that boundary. The
4940alignment may not be greater than ``1 << 29``. If not specified, or if
4941zero, the target can choose to align the allocation on any convenient
4942boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00004943
4944'``type``' may be any sized type.
4945
4946Semantics:
4947""""""""""
4948
4949Memory is allocated; a pointer is returned. The operation is undefined
4950if there is insufficient stack space for the allocation. '``alloca``'d
4951memory is automatically released when the function returns. The
4952'``alloca``' instruction is commonly used to represent automatic
4953variables that must have an address available. When the function returns
4954(either with the ``ret`` or ``resume`` instructions), the memory is
4955reclaimed. Allocating zero bytes is legal, but the result is undefined.
4956The order in which memory is allocated (ie., which way the stack grows)
4957is not specified.
4958
4959Example:
4960""""""""
4961
4962.. code-block:: llvm
4963
Tim Northover675a0962014-06-13 14:24:23 +00004964 %ptr = alloca i32 ; yields i32*:ptr
4965 %ptr = alloca i32, i32 4 ; yields i32*:ptr
4966 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
4967 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00004968
4969.. _i_load:
4970
4971'``load``' Instruction
4972^^^^^^^^^^^^^^^^^^^^^^
4973
4974Syntax:
4975"""""""
4976
4977::
4978
4979 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4980 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4981 !<index> = !{ i32 1 }
4982
4983Overview:
4984"""""""""
4985
4986The '``load``' instruction is used to read from memory.
4987
4988Arguments:
4989""""""""""
4990
Eli Bendersky239a78b2013-04-17 20:17:08 +00004991The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004992from which to load. The pointer must point to a :ref:`first
4993class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4994then the optimizer is not allowed to modify the number or order of
4995execution of this ``load`` with other :ref:`volatile
4996operations <volatile>`.
4997
4998If the ``load`` is marked as ``atomic``, it takes an extra
4999:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5000``release`` and ``acq_rel`` orderings are not valid on ``load``
5001instructions. Atomic loads produce :ref:`defined <memmodel>` results
5002when they may see multiple atomic stores. The type of the pointee must
5003be an integer type whose bit width is a power of two greater than or
5004equal to eight and less than or equal to a target-specific size limit.
5005``align`` must be explicitly specified on atomic loads, and the load has
5006undefined behavior if the alignment is not set to a value which is at
5007least the size in bytes of the pointee. ``!nontemporal`` does not have
5008any defined semantics for atomic loads.
5009
5010The optional constant ``align`` argument specifies the alignment of the
5011operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005012or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005013alignment for the target. It is the responsibility of the code emitter
5014to ensure that the alignment information is correct. Overestimating the
5015alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005016may produce less efficient code. An alignment of 1 is always safe. The
5017maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005018
5019The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005020metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005021``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005022metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005023that this load is not expected to be reused in the cache. The code
5024generator may select special instructions to save cache bandwidth, such
5025as the ``MOVNT`` instruction on x86.
5026
5027The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005028metadata name ``<index>`` corresponding to a metadata node with no
5029entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00005030instruction tells the optimizer and code generator that this load
5031address points to memory which does not change value during program
5032execution. The optimizer may then move this load around, for example, by
5033hoisting it out of loops using loop invariant code motion.
5034
5035Semantics:
5036""""""""""
5037
5038The location of memory pointed to is loaded. If the value being loaded
5039is of scalar type then the number of bytes read does not exceed the
5040minimum number of bytes needed to hold all bits of the type. For
5041example, loading an ``i24`` reads at most three bytes. When loading a
5042value of a type like ``i20`` with a size that is not an integral number
5043of bytes, the result is undefined if the value was not originally
5044written using a store of the same type.
5045
5046Examples:
5047"""""""""
5048
5049.. code-block:: llvm
5050
Tim Northover675a0962014-06-13 14:24:23 +00005051 %ptr = alloca i32 ; yields i32*:ptr
5052 store i32 3, i32* %ptr ; yields void
5053 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005054
5055.. _i_store:
5056
5057'``store``' Instruction
5058^^^^^^^^^^^^^^^^^^^^^^^
5059
5060Syntax:
5061"""""""
5062
5063::
5064
Tim Northover675a0962014-06-13 14:24:23 +00005065 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5066 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005067
5068Overview:
5069"""""""""
5070
5071The '``store``' instruction is used to write to memory.
5072
5073Arguments:
5074""""""""""
5075
Eli Benderskyca380842013-04-17 17:17:20 +00005076There are two arguments to the ``store`` instruction: a value to store
5077and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005078operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005079the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005080then the optimizer is not allowed to modify the number or order of
5081execution of this ``store`` with other :ref:`volatile
5082operations <volatile>`.
5083
5084If the ``store`` is marked as ``atomic``, it takes an extra
5085:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5086``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5087instructions. Atomic loads produce :ref:`defined <memmodel>` results
5088when they may see multiple atomic stores. The type of the pointee must
5089be an integer type whose bit width is a power of two greater than or
5090equal to eight and less than or equal to a target-specific size limit.
5091``align`` must be explicitly specified on atomic stores, and the store
5092has undefined behavior if the alignment is not set to a value which is
5093at least the size in bytes of the pointee. ``!nontemporal`` does not
5094have any defined semantics for atomic stores.
5095
Eli Benderskyca380842013-04-17 17:17:20 +00005096The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005097operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005098or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005099alignment for the target. It is the responsibility of the code emitter
5100to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005101alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005102alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005103safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005104
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005105The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005106name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005107value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005108tells the optimizer and code generator that this load is not expected to
5109be reused in the cache. The code generator may select special
5110instructions to save cache bandwidth, such as the MOVNT instruction on
5111x86.
5112
5113Semantics:
5114""""""""""
5115
Eli Benderskyca380842013-04-17 17:17:20 +00005116The contents of memory are updated to contain ``<value>`` at the
5117location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005118of scalar type then the number of bytes written does not exceed the
5119minimum number of bytes needed to hold all bits of the type. For
5120example, storing an ``i24`` writes at most three bytes. When writing a
5121value of a type like ``i20`` with a size that is not an integral number
5122of bytes, it is unspecified what happens to the extra bits that do not
5123belong to the type, but they will typically be overwritten.
5124
5125Example:
5126""""""""
5127
5128.. code-block:: llvm
5129
Tim Northover675a0962014-06-13 14:24:23 +00005130 %ptr = alloca i32 ; yields i32*:ptr
5131 store i32 3, i32* %ptr ; yields void
5132 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005133
5134.. _i_fence:
5135
5136'``fence``' Instruction
5137^^^^^^^^^^^^^^^^^^^^^^^
5138
5139Syntax:
5140"""""""
5141
5142::
5143
Tim Northover675a0962014-06-13 14:24:23 +00005144 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005145
5146Overview:
5147"""""""""
5148
5149The '``fence``' instruction is used to introduce happens-before edges
5150between operations.
5151
5152Arguments:
5153""""""""""
5154
5155'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5156defines what *synchronizes-with* edges they add. They can only be given
5157``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5158
5159Semantics:
5160""""""""""
5161
5162A fence A which has (at least) ``release`` ordering semantics
5163*synchronizes with* a fence B with (at least) ``acquire`` ordering
5164semantics if and only if there exist atomic operations X and Y, both
5165operating on some atomic object M, such that A is sequenced before X, X
5166modifies M (either directly or through some side effect of a sequence
5167headed by X), Y is sequenced before B, and Y observes M. This provides a
5168*happens-before* dependency between A and B. Rather than an explicit
5169``fence``, one (but not both) of the atomic operations X or Y might
5170provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5171still *synchronize-with* the explicit ``fence`` and establish the
5172*happens-before* edge.
5173
5174A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5175``acquire`` and ``release`` semantics specified above, participates in
5176the global program order of other ``seq_cst`` operations and/or fences.
5177
5178The optional ":ref:`singlethread <singlethread>`" argument specifies
5179that the fence only synchronizes with other fences in the same thread.
5180(This is useful for interacting with signal handlers.)
5181
5182Example:
5183""""""""
5184
5185.. code-block:: llvm
5186
Tim Northover675a0962014-06-13 14:24:23 +00005187 fence acquire ; yields void
5188 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005189
5190.. _i_cmpxchg:
5191
5192'``cmpxchg``' Instruction
5193^^^^^^^^^^^^^^^^^^^^^^^^^
5194
5195Syntax:
5196"""""""
5197
5198::
5199
Tim Northover675a0962014-06-13 14:24:23 +00005200 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005201
5202Overview:
5203"""""""""
5204
5205The '``cmpxchg``' instruction is used to atomically modify memory. It
5206loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005207equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005208
5209Arguments:
5210""""""""""
5211
5212There are three arguments to the '``cmpxchg``' instruction: an address
5213to operate on, a value to compare to the value currently be at that
5214address, and a new value to place at that address if the compared values
5215are equal. The type of '<cmp>' must be an integer type whose bit width
5216is a power of two greater than or equal to eight and less than or equal
5217to a target-specific size limit. '<cmp>' and '<new>' must have the same
5218type, and the type of '<pointer>' must be a pointer to that type. If the
5219``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5220to modify the number or order of execution of this ``cmpxchg`` with
5221other :ref:`volatile operations <volatile>`.
5222
Tim Northovere94a5182014-03-11 10:48:52 +00005223The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005224``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5225must be at least ``monotonic``, the ordering constraint on failure must be no
5226stronger than that on success, and the failure ordering cannot be either
5227``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005228
5229The optional "``singlethread``" argument declares that the ``cmpxchg``
5230is only atomic with respect to code (usually signal handlers) running in
5231the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5232respect to all other code in the system.
5233
5234The pointer passed into cmpxchg must have alignment greater than or
5235equal to the size in memory of the operand.
5236
5237Semantics:
5238""""""""""
5239
Tim Northover420a2162014-06-13 14:24:07 +00005240The contents of memory at the location specified by the '``<pointer>``' operand
5241is read and compared to '``<cmp>``'; if the read value is the equal, the
5242'``<new>``' is written. The original value at the location is returned, together
5243with a flag indicating success (true) or failure (false).
5244
5245If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5246permitted: the operation may not write ``<new>`` even if the comparison
5247matched.
5248
5249If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5250if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005251
Tim Northovere94a5182014-03-11 10:48:52 +00005252A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5253identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5254load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005255
5256Example:
5257""""""""
5258
5259.. code-block:: llvm
5260
5261 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005262 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005263 br label %loop
5264
5265 loop:
5266 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5267 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005268 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005269 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5270 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005271 br i1 %success, label %done, label %loop
5272
5273 done:
5274 ...
5275
5276.. _i_atomicrmw:
5277
5278'``atomicrmw``' Instruction
5279^^^^^^^^^^^^^^^^^^^^^^^^^^^
5280
5281Syntax:
5282"""""""
5283
5284::
5285
Tim Northover675a0962014-06-13 14:24:23 +00005286 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005287
5288Overview:
5289"""""""""
5290
5291The '``atomicrmw``' instruction is used to atomically modify memory.
5292
5293Arguments:
5294""""""""""
5295
5296There are three arguments to the '``atomicrmw``' instruction: an
5297operation to apply, an address whose value to modify, an argument to the
5298operation. The operation must be one of the following keywords:
5299
5300- xchg
5301- add
5302- sub
5303- and
5304- nand
5305- or
5306- xor
5307- max
5308- min
5309- umax
5310- umin
5311
5312The type of '<value>' must be an integer type whose bit width is a power
5313of two greater than or equal to eight and less than or equal to a
5314target-specific size limit. The type of the '``<pointer>``' operand must
5315be a pointer to that type. If the ``atomicrmw`` is marked as
5316``volatile``, then the optimizer is not allowed to modify the number or
5317order of execution of this ``atomicrmw`` with other :ref:`volatile
5318operations <volatile>`.
5319
5320Semantics:
5321""""""""""
5322
5323The contents of memory at the location specified by the '``<pointer>``'
5324operand are atomically read, modified, and written back. The original
5325value at the location is returned. The modification is specified by the
5326operation argument:
5327
5328- xchg: ``*ptr = val``
5329- add: ``*ptr = *ptr + val``
5330- sub: ``*ptr = *ptr - val``
5331- and: ``*ptr = *ptr & val``
5332- nand: ``*ptr = ~(*ptr & val)``
5333- or: ``*ptr = *ptr | val``
5334- xor: ``*ptr = *ptr ^ val``
5335- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5336- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5337- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5338 comparison)
5339- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5340 comparison)
5341
5342Example:
5343""""""""
5344
5345.. code-block:: llvm
5346
Tim Northover675a0962014-06-13 14:24:23 +00005347 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005348
5349.. _i_getelementptr:
5350
5351'``getelementptr``' Instruction
5352^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5353
5354Syntax:
5355"""""""
5356
5357::
5358
5359 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5360 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5361 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5362
5363Overview:
5364"""""""""
5365
5366The '``getelementptr``' instruction is used to get the address of a
5367subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5368address calculation only and does not access memory.
5369
5370Arguments:
5371""""""""""
5372
5373The first argument is always a pointer or a vector of pointers, and
5374forms the basis of the calculation. The remaining arguments are indices
5375that indicate which of the elements of the aggregate object are indexed.
5376The interpretation of each index is dependent on the type being indexed
5377into. The first index always indexes the pointer value given as the
5378first argument, the second index indexes a value of the type pointed to
5379(not necessarily the value directly pointed to, since the first index
5380can be non-zero), etc. The first type indexed into must be a pointer
5381value, subsequent types can be arrays, vectors, and structs. Note that
5382subsequent types being indexed into can never be pointers, since that
5383would require loading the pointer before continuing calculation.
5384
5385The type of each index argument depends on the type it is indexing into.
5386When indexing into a (optionally packed) structure, only ``i32`` integer
5387**constants** are allowed (when using a vector of indices they must all
5388be the **same** ``i32`` integer constant). When indexing into an array,
5389pointer or vector, integers of any width are allowed, and they are not
5390required to be constant. These integers are treated as signed values
5391where relevant.
5392
5393For example, let's consider a C code fragment and how it gets compiled
5394to LLVM:
5395
5396.. code-block:: c
5397
5398 struct RT {
5399 char A;
5400 int B[10][20];
5401 char C;
5402 };
5403 struct ST {
5404 int X;
5405 double Y;
5406 struct RT Z;
5407 };
5408
5409 int *foo(struct ST *s) {
5410 return &s[1].Z.B[5][13];
5411 }
5412
5413The LLVM code generated by Clang is:
5414
5415.. code-block:: llvm
5416
5417 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5418 %struct.ST = type { i32, double, %struct.RT }
5419
5420 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5421 entry:
5422 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5423 ret i32* %arrayidx
5424 }
5425
5426Semantics:
5427""""""""""
5428
5429In the example above, the first index is indexing into the
5430'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5431= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5432indexes into the third element of the structure, yielding a
5433'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5434structure. The third index indexes into the second element of the
5435structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5436dimensions of the array are subscripted into, yielding an '``i32``'
5437type. The '``getelementptr``' instruction returns a pointer to this
5438element, thus computing a value of '``i32*``' type.
5439
5440Note that it is perfectly legal to index partially through a structure,
5441returning a pointer to an inner element. Because of this, the LLVM code
5442for the given testcase is equivalent to:
5443
5444.. code-block:: llvm
5445
5446 define i32* @foo(%struct.ST* %s) {
5447 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5448 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5449 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5450 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5451 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5452 ret i32* %t5
5453 }
5454
5455If the ``inbounds`` keyword is present, the result value of the
5456``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5457pointer is not an *in bounds* address of an allocated object, or if any
5458of the addresses that would be formed by successive addition of the
5459offsets implied by the indices to the base address with infinitely
5460precise signed arithmetic are not an *in bounds* address of that
5461allocated object. The *in bounds* addresses for an allocated object are
5462all the addresses that point into the object, plus the address one byte
5463past the end. In cases where the base is a vector of pointers the
5464``inbounds`` keyword applies to each of the computations element-wise.
5465
5466If the ``inbounds`` keyword is not present, the offsets are added to the
5467base address with silently-wrapping two's complement arithmetic. If the
5468offsets have a different width from the pointer, they are sign-extended
5469or truncated to the width of the pointer. The result value of the
5470``getelementptr`` may be outside the object pointed to by the base
5471pointer. The result value may not necessarily be used to access memory
5472though, even if it happens to point into allocated storage. See the
5473:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5474information.
5475
5476The getelementptr instruction is often confusing. For some more insight
5477into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5478
5479Example:
5480""""""""
5481
5482.. code-block:: llvm
5483
5484 ; yields [12 x i8]*:aptr
5485 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5486 ; yields i8*:vptr
5487 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5488 ; yields i8*:eptr
5489 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5490 ; yields i32*:iptr
5491 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5492
5493In cases where the pointer argument is a vector of pointers, each index
5494must be a vector with the same number of elements. For example:
5495
5496.. code-block:: llvm
5497
5498 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5499
5500Conversion Operations
5501---------------------
5502
5503The instructions in this category are the conversion instructions
5504(casting) which all take a single operand and a type. They perform
5505various bit conversions on the operand.
5506
5507'``trunc .. to``' Instruction
5508^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5509
5510Syntax:
5511"""""""
5512
5513::
5514
5515 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5516
5517Overview:
5518"""""""""
5519
5520The '``trunc``' instruction truncates its operand to the type ``ty2``.
5521
5522Arguments:
5523""""""""""
5524
5525The '``trunc``' instruction takes a value to trunc, and a type to trunc
5526it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5527of the same number of integers. The bit size of the ``value`` must be
5528larger than the bit size of the destination type, ``ty2``. Equal sized
5529types are not allowed.
5530
5531Semantics:
5532""""""""""
5533
5534The '``trunc``' instruction truncates the high order bits in ``value``
5535and converts the remaining bits to ``ty2``. Since the source size must
5536be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5537It will always truncate bits.
5538
5539Example:
5540""""""""
5541
5542.. code-block:: llvm
5543
5544 %X = trunc i32 257 to i8 ; yields i8:1
5545 %Y = trunc i32 123 to i1 ; yields i1:true
5546 %Z = trunc i32 122 to i1 ; yields i1:false
5547 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5548
5549'``zext .. to``' Instruction
5550^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5551
5552Syntax:
5553"""""""
5554
5555::
5556
5557 <result> = zext <ty> <value> to <ty2> ; yields ty2
5558
5559Overview:
5560"""""""""
5561
5562The '``zext``' instruction zero extends its operand to type ``ty2``.
5563
5564Arguments:
5565""""""""""
5566
5567The '``zext``' instruction takes a value to cast, and a type to cast it
5568to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5569the same number of integers. The bit size of the ``value`` must be
5570smaller than the bit size of the destination type, ``ty2``.
5571
5572Semantics:
5573""""""""""
5574
5575The ``zext`` fills the high order bits of the ``value`` with zero bits
5576until it reaches the size of the destination type, ``ty2``.
5577
5578When zero extending from i1, the result will always be either 0 or 1.
5579
5580Example:
5581""""""""
5582
5583.. code-block:: llvm
5584
5585 %X = zext i32 257 to i64 ; yields i64:257
5586 %Y = zext i1 true to i32 ; yields i32:1
5587 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5588
5589'``sext .. to``' Instruction
5590^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5591
5592Syntax:
5593"""""""
5594
5595::
5596
5597 <result> = sext <ty> <value> to <ty2> ; yields ty2
5598
5599Overview:
5600"""""""""
5601
5602The '``sext``' sign extends ``value`` to the type ``ty2``.
5603
5604Arguments:
5605""""""""""
5606
5607The '``sext``' instruction takes a value to cast, and a type to cast it
5608to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5609the same number of integers. The bit size of the ``value`` must be
5610smaller than the bit size of the destination type, ``ty2``.
5611
5612Semantics:
5613""""""""""
5614
5615The '``sext``' instruction performs a sign extension by copying the sign
5616bit (highest order bit) of the ``value`` until it reaches the bit size
5617of the type ``ty2``.
5618
5619When sign extending from i1, the extension always results in -1 or 0.
5620
5621Example:
5622""""""""
5623
5624.. code-block:: llvm
5625
5626 %X = sext i8 -1 to i16 ; yields i16 :65535
5627 %Y = sext i1 true to i32 ; yields i32:-1
5628 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5629
5630'``fptrunc .. to``' Instruction
5631^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5632
5633Syntax:
5634"""""""
5635
5636::
5637
5638 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5639
5640Overview:
5641"""""""""
5642
5643The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5644
5645Arguments:
5646""""""""""
5647
5648The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5649value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5650The size of ``value`` must be larger than the size of ``ty2``. This
5651implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5652
5653Semantics:
5654""""""""""
5655
5656The '``fptrunc``' instruction truncates a ``value`` from a larger
5657:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5658point <t_floating>` type. If the value cannot fit within the
5659destination type, ``ty2``, then the results are undefined.
5660
5661Example:
5662""""""""
5663
5664.. code-block:: llvm
5665
5666 %X = fptrunc double 123.0 to float ; yields float:123.0
5667 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5668
5669'``fpext .. to``' Instruction
5670^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5671
5672Syntax:
5673"""""""
5674
5675::
5676
5677 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5678
5679Overview:
5680"""""""""
5681
5682The '``fpext``' extends a floating point ``value`` to a larger floating
5683point value.
5684
5685Arguments:
5686""""""""""
5687
5688The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5689``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5690to. The source type must be smaller than the destination type.
5691
5692Semantics:
5693""""""""""
5694
5695The '``fpext``' instruction extends the ``value`` from a smaller
5696:ref:`floating point <t_floating>` type to a larger :ref:`floating
5697point <t_floating>` type. The ``fpext`` cannot be used to make a
5698*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5699*no-op cast* for a floating point cast.
5700
5701Example:
5702""""""""
5703
5704.. code-block:: llvm
5705
5706 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5707 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5708
5709'``fptoui .. to``' Instruction
5710^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5711
5712Syntax:
5713"""""""
5714
5715::
5716
5717 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5718
5719Overview:
5720"""""""""
5721
5722The '``fptoui``' converts a floating point ``value`` to its unsigned
5723integer equivalent of type ``ty2``.
5724
5725Arguments:
5726""""""""""
5727
5728The '``fptoui``' instruction takes a value to cast, which must be a
5729scalar or vector :ref:`floating point <t_floating>` value, and a type to
5730cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5731``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5732type with the same number of elements as ``ty``
5733
5734Semantics:
5735""""""""""
5736
5737The '``fptoui``' instruction converts its :ref:`floating
5738point <t_floating>` operand into the nearest (rounding towards zero)
5739unsigned integer value. If the value cannot fit in ``ty2``, the results
5740are undefined.
5741
5742Example:
5743""""""""
5744
5745.. code-block:: llvm
5746
5747 %X = fptoui double 123.0 to i32 ; yields i32:123
5748 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5749 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5750
5751'``fptosi .. to``' Instruction
5752^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5753
5754Syntax:
5755"""""""
5756
5757::
5758
5759 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5760
5761Overview:
5762"""""""""
5763
5764The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5765``value`` to type ``ty2``.
5766
5767Arguments:
5768""""""""""
5769
5770The '``fptosi``' instruction takes a value to cast, which must be a
5771scalar or vector :ref:`floating point <t_floating>` value, and a type to
5772cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5773``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5774type with the same number of elements as ``ty``
5775
5776Semantics:
5777""""""""""
5778
5779The '``fptosi``' instruction converts its :ref:`floating
5780point <t_floating>` operand into the nearest (rounding towards zero)
5781signed integer value. If the value cannot fit in ``ty2``, the results
5782are undefined.
5783
5784Example:
5785""""""""
5786
5787.. code-block:: llvm
5788
5789 %X = fptosi double -123.0 to i32 ; yields i32:-123
5790 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5791 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5792
5793'``uitofp .. to``' Instruction
5794^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5795
5796Syntax:
5797"""""""
5798
5799::
5800
5801 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5802
5803Overview:
5804"""""""""
5805
5806The '``uitofp``' instruction regards ``value`` as an unsigned integer
5807and converts that value to the ``ty2`` type.
5808
5809Arguments:
5810""""""""""
5811
5812The '``uitofp``' instruction takes a value to cast, which must be a
5813scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5814``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5815``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5816type with the same number of elements as ``ty``
5817
5818Semantics:
5819""""""""""
5820
5821The '``uitofp``' instruction interprets its operand as an unsigned
5822integer quantity and converts it to the corresponding floating point
5823value. If the value cannot fit in the floating point value, the results
5824are undefined.
5825
5826Example:
5827""""""""
5828
5829.. code-block:: llvm
5830
5831 %X = uitofp i32 257 to float ; yields float:257.0
5832 %Y = uitofp i8 -1 to double ; yields double:255.0
5833
5834'``sitofp .. to``' Instruction
5835^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5836
5837Syntax:
5838"""""""
5839
5840::
5841
5842 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5843
5844Overview:
5845"""""""""
5846
5847The '``sitofp``' instruction regards ``value`` as a signed integer and
5848converts that value to the ``ty2`` type.
5849
5850Arguments:
5851""""""""""
5852
5853The '``sitofp``' instruction takes a value to cast, which must be a
5854scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5855``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5856``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5857type with the same number of elements as ``ty``
5858
5859Semantics:
5860""""""""""
5861
5862The '``sitofp``' instruction interprets its operand as a signed integer
5863quantity and converts it to the corresponding floating point value. If
5864the value cannot fit in the floating point value, the results are
5865undefined.
5866
5867Example:
5868""""""""
5869
5870.. code-block:: llvm
5871
5872 %X = sitofp i32 257 to float ; yields float:257.0
5873 %Y = sitofp i8 -1 to double ; yields double:-1.0
5874
5875.. _i_ptrtoint:
5876
5877'``ptrtoint .. to``' Instruction
5878^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5879
5880Syntax:
5881"""""""
5882
5883::
5884
5885 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5886
5887Overview:
5888"""""""""
5889
5890The '``ptrtoint``' instruction converts the pointer or a vector of
5891pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5892
5893Arguments:
5894""""""""""
5895
5896The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5897a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5898type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5899a vector of integers type.
5900
5901Semantics:
5902""""""""""
5903
5904The '``ptrtoint``' instruction converts ``value`` to integer type
5905``ty2`` by interpreting the pointer value as an integer and either
5906truncating or zero extending that value to the size of the integer type.
5907If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5908``value`` is larger than ``ty2`` then a truncation is done. If they are
5909the same size, then nothing is done (*no-op cast*) other than a type
5910change.
5911
5912Example:
5913""""""""
5914
5915.. code-block:: llvm
5916
5917 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5918 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5919 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5920
5921.. _i_inttoptr:
5922
5923'``inttoptr .. to``' Instruction
5924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5925
5926Syntax:
5927"""""""
5928
5929::
5930
5931 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5932
5933Overview:
5934"""""""""
5935
5936The '``inttoptr``' instruction converts an integer ``value`` to a
5937pointer type, ``ty2``.
5938
5939Arguments:
5940""""""""""
5941
5942The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5943cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5944type.
5945
5946Semantics:
5947""""""""""
5948
5949The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5950applying either a zero extension or a truncation depending on the size
5951of the integer ``value``. If ``value`` is larger than the size of a
5952pointer then a truncation is done. If ``value`` is smaller than the size
5953of a pointer then a zero extension is done. If they are the same size,
5954nothing is done (*no-op cast*).
5955
5956Example:
5957""""""""
5958
5959.. code-block:: llvm
5960
5961 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5962 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5963 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5964 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5965
5966.. _i_bitcast:
5967
5968'``bitcast .. to``' Instruction
5969^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5970
5971Syntax:
5972"""""""
5973
5974::
5975
5976 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5977
5978Overview:
5979"""""""""
5980
5981The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5982changing any bits.
5983
5984Arguments:
5985""""""""""
5986
5987The '``bitcast``' instruction takes a value to cast, which must be a
5988non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005989also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5990bit sizes of ``value`` and the destination type, ``ty2``, must be
5991identical. If the source type is a pointer, the destination type must
5992also be a pointer of the same size. This instruction supports bitwise
5993conversion of vectors to integers and to vectors of other types (as
5994long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005995
5996Semantics:
5997""""""""""
5998
Matt Arsenault24b49c42013-07-31 17:49:08 +00005999The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6000is always a *no-op cast* because no bits change with this
6001conversion. The conversion is done as if the ``value`` had been stored
6002to memory and read back as type ``ty2``. Pointer (or vector of
6003pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006004pointers) types with the same address space through this instruction.
6005To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6006or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006007
6008Example:
6009""""""""
6010
6011.. code-block:: llvm
6012
6013 %X = bitcast i8 255 to i8 ; yields i8 :-1
6014 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6015 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6016 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6017
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006018.. _i_addrspacecast:
6019
6020'``addrspacecast .. to``' Instruction
6021^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6022
6023Syntax:
6024"""""""
6025
6026::
6027
6028 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6029
6030Overview:
6031"""""""""
6032
6033The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6034address space ``n`` to type ``pty2`` in address space ``m``.
6035
6036Arguments:
6037""""""""""
6038
6039The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6040to cast and a pointer type to cast it to, which must have a different
6041address space.
6042
6043Semantics:
6044""""""""""
6045
6046The '``addrspacecast``' instruction converts the pointer value
6047``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006048value modification, depending on the target and the address space
6049pair. Pointer conversions within the same address space must be
6050performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006051conversion is legal then both result and operand refer to the same memory
6052location.
6053
6054Example:
6055""""""""
6056
6057.. code-block:: llvm
6058
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006059 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6060 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6061 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006062
Sean Silvab084af42012-12-07 10:36:55 +00006063.. _otherops:
6064
6065Other Operations
6066----------------
6067
6068The instructions in this category are the "miscellaneous" instructions,
6069which defy better classification.
6070
6071.. _i_icmp:
6072
6073'``icmp``' Instruction
6074^^^^^^^^^^^^^^^^^^^^^^
6075
6076Syntax:
6077"""""""
6078
6079::
6080
Tim Northover675a0962014-06-13 14:24:23 +00006081 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006082
6083Overview:
6084"""""""""
6085
6086The '``icmp``' instruction returns a boolean value or a vector of
6087boolean values based on comparison of its two integer, integer vector,
6088pointer, or pointer vector operands.
6089
6090Arguments:
6091""""""""""
6092
6093The '``icmp``' instruction takes three operands. The first operand is
6094the condition code indicating the kind of comparison to perform. It is
6095not a value, just a keyword. The possible condition code are:
6096
6097#. ``eq``: equal
6098#. ``ne``: not equal
6099#. ``ugt``: unsigned greater than
6100#. ``uge``: unsigned greater or equal
6101#. ``ult``: unsigned less than
6102#. ``ule``: unsigned less or equal
6103#. ``sgt``: signed greater than
6104#. ``sge``: signed greater or equal
6105#. ``slt``: signed less than
6106#. ``sle``: signed less or equal
6107
6108The remaining two arguments must be :ref:`integer <t_integer>` or
6109:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6110must also be identical types.
6111
6112Semantics:
6113""""""""""
6114
6115The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6116code given as ``cond``. The comparison performed always yields either an
6117:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6118
6119#. ``eq``: yields ``true`` if the operands are equal, ``false``
6120 otherwise. No sign interpretation is necessary or performed.
6121#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6122 otherwise. No sign interpretation is necessary or performed.
6123#. ``ugt``: interprets the operands as unsigned values and yields
6124 ``true`` if ``op1`` is greater than ``op2``.
6125#. ``uge``: interprets the operands as unsigned values and yields
6126 ``true`` if ``op1`` is greater than or equal to ``op2``.
6127#. ``ult``: interprets the operands as unsigned values and yields
6128 ``true`` if ``op1`` is less than ``op2``.
6129#. ``ule``: interprets the operands as unsigned values and yields
6130 ``true`` if ``op1`` is less than or equal to ``op2``.
6131#. ``sgt``: interprets the operands as signed values and yields ``true``
6132 if ``op1`` is greater than ``op2``.
6133#. ``sge``: interprets the operands as signed values and yields ``true``
6134 if ``op1`` is greater than or equal to ``op2``.
6135#. ``slt``: interprets the operands as signed values and yields ``true``
6136 if ``op1`` is less than ``op2``.
6137#. ``sle``: interprets the operands as signed values and yields ``true``
6138 if ``op1`` is less than or equal to ``op2``.
6139
6140If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6141are compared as if they were integers.
6142
6143If the operands are integer vectors, then they are compared element by
6144element. The result is an ``i1`` vector with the same number of elements
6145as the values being compared. Otherwise, the result is an ``i1``.
6146
6147Example:
6148""""""""
6149
6150.. code-block:: llvm
6151
6152 <result> = icmp eq i32 4, 5 ; yields: result=false
6153 <result> = icmp ne float* %X, %X ; yields: result=false
6154 <result> = icmp ult i16 4, 5 ; yields: result=true
6155 <result> = icmp sgt i16 4, 5 ; yields: result=false
6156 <result> = icmp ule i16 -4, 5 ; yields: result=false
6157 <result> = icmp sge i16 4, 5 ; yields: result=false
6158
6159Note that the code generator does not yet support vector types with the
6160``icmp`` instruction.
6161
6162.. _i_fcmp:
6163
6164'``fcmp``' Instruction
6165^^^^^^^^^^^^^^^^^^^^^^
6166
6167Syntax:
6168"""""""
6169
6170::
6171
Tim Northover675a0962014-06-13 14:24:23 +00006172 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006173
6174Overview:
6175"""""""""
6176
6177The '``fcmp``' instruction returns a boolean value or vector of boolean
6178values based on comparison of its operands.
6179
6180If the operands are floating point scalars, then the result type is a
6181boolean (:ref:`i1 <t_integer>`).
6182
6183If the operands are floating point vectors, then the result type is a
6184vector of boolean with the same number of elements as the operands being
6185compared.
6186
6187Arguments:
6188""""""""""
6189
6190The '``fcmp``' instruction takes three operands. The first operand is
6191the condition code indicating the kind of comparison to perform. It is
6192not a value, just a keyword. The possible condition code are:
6193
6194#. ``false``: no comparison, always returns false
6195#. ``oeq``: ordered and equal
6196#. ``ogt``: ordered and greater than
6197#. ``oge``: ordered and greater than or equal
6198#. ``olt``: ordered and less than
6199#. ``ole``: ordered and less than or equal
6200#. ``one``: ordered and not equal
6201#. ``ord``: ordered (no nans)
6202#. ``ueq``: unordered or equal
6203#. ``ugt``: unordered or greater than
6204#. ``uge``: unordered or greater than or equal
6205#. ``ult``: unordered or less than
6206#. ``ule``: unordered or less than or equal
6207#. ``une``: unordered or not equal
6208#. ``uno``: unordered (either nans)
6209#. ``true``: no comparison, always returns true
6210
6211*Ordered* means that neither operand is a QNAN while *unordered* means
6212that either operand may be a QNAN.
6213
6214Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6215point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6216type. They must have identical types.
6217
6218Semantics:
6219""""""""""
6220
6221The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6222condition code given as ``cond``. If the operands are vectors, then the
6223vectors are compared element by element. Each comparison performed
6224always yields an :ref:`i1 <t_integer>` result, as follows:
6225
6226#. ``false``: always yields ``false``, regardless of operands.
6227#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6228 is equal to ``op2``.
6229#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6230 is greater than ``op2``.
6231#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6232 is greater than or equal to ``op2``.
6233#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6234 is less than ``op2``.
6235#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6236 is less than or equal to ``op2``.
6237#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6238 is not equal to ``op2``.
6239#. ``ord``: yields ``true`` if both operands are not a QNAN.
6240#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6241 equal to ``op2``.
6242#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6243 greater than ``op2``.
6244#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6245 greater than or equal to ``op2``.
6246#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6247 less than ``op2``.
6248#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6249 less than or equal to ``op2``.
6250#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6251 not equal to ``op2``.
6252#. ``uno``: yields ``true`` if either operand is a QNAN.
6253#. ``true``: always yields ``true``, regardless of operands.
6254
6255Example:
6256""""""""
6257
6258.. code-block:: llvm
6259
6260 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6261 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6262 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6263 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6264
6265Note that the code generator does not yet support vector types with the
6266``fcmp`` instruction.
6267
6268.. _i_phi:
6269
6270'``phi``' Instruction
6271^^^^^^^^^^^^^^^^^^^^^
6272
6273Syntax:
6274"""""""
6275
6276::
6277
6278 <result> = phi <ty> [ <val0>, <label0>], ...
6279
6280Overview:
6281"""""""""
6282
6283The '``phi``' instruction is used to implement the φ node in the SSA
6284graph representing the function.
6285
6286Arguments:
6287""""""""""
6288
6289The type of the incoming values is specified with the first type field.
6290After this, the '``phi``' instruction takes a list of pairs as
6291arguments, with one pair for each predecessor basic block of the current
6292block. Only values of :ref:`first class <t_firstclass>` type may be used as
6293the value arguments to the PHI node. Only labels may be used as the
6294label arguments.
6295
6296There must be no non-phi instructions between the start of a basic block
6297and the PHI instructions: i.e. PHI instructions must be first in a basic
6298block.
6299
6300For the purposes of the SSA form, the use of each incoming value is
6301deemed to occur on the edge from the corresponding predecessor block to
6302the current block (but after any definition of an '``invoke``'
6303instruction's return value on the same edge).
6304
6305Semantics:
6306""""""""""
6307
6308At runtime, the '``phi``' instruction logically takes on the value
6309specified by the pair corresponding to the predecessor basic block that
6310executed just prior to the current block.
6311
6312Example:
6313""""""""
6314
6315.. code-block:: llvm
6316
6317 Loop: ; Infinite loop that counts from 0 on up...
6318 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6319 %nextindvar = add i32 %indvar, 1
6320 br label %Loop
6321
6322.. _i_select:
6323
6324'``select``' Instruction
6325^^^^^^^^^^^^^^^^^^^^^^^^
6326
6327Syntax:
6328"""""""
6329
6330::
6331
6332 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6333
6334 selty is either i1 or {<N x i1>}
6335
6336Overview:
6337"""""""""
6338
6339The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006340condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006341
6342Arguments:
6343""""""""""
6344
6345The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6346values indicating the condition, and two values of the same :ref:`first
6347class <t_firstclass>` type. If the val1/val2 are vectors and the
6348condition is a scalar, then entire vectors are selected, not individual
6349elements.
6350
6351Semantics:
6352""""""""""
6353
6354If the condition is an i1 and it evaluates to 1, the instruction returns
6355the first value argument; otherwise, it returns the second value
6356argument.
6357
6358If the condition is a vector of i1, then the value arguments must be
6359vectors of the same size, and the selection is done element by element.
6360
6361Example:
6362""""""""
6363
6364.. code-block:: llvm
6365
6366 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6367
6368.. _i_call:
6369
6370'``call``' Instruction
6371^^^^^^^^^^^^^^^^^^^^^^
6372
6373Syntax:
6374"""""""
6375
6376::
6377
Reid Kleckner5772b772014-04-24 20:14:34 +00006378 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006379
6380Overview:
6381"""""""""
6382
6383The '``call``' instruction represents a simple function call.
6384
6385Arguments:
6386""""""""""
6387
6388This instruction requires several arguments:
6389
Reid Kleckner5772b772014-04-24 20:14:34 +00006390#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6391 should perform tail call optimization. The ``tail`` marker is a hint that
6392 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6393 means that the call must be tail call optimized in order for the program to
6394 be correct. The ``musttail`` marker provides these guarantees:
6395
6396 #. The call will not cause unbounded stack growth if it is part of a
6397 recursive cycle in the call graph.
6398 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6399 forwarded in place.
6400
6401 Both markers imply that the callee does not access allocas or varargs from
6402 the caller. Calls marked ``musttail`` must obey the following additional
6403 rules:
6404
6405 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6406 or a pointer bitcast followed by a ret instruction.
6407 - The ret instruction must return the (possibly bitcasted) value
6408 produced by the call or void.
6409 - The caller and callee prototypes must match. Pointer types of
6410 parameters or return types may differ in pointee type, but not
6411 in address space.
6412 - The calling conventions of the caller and callee must match.
6413 - All ABI-impacting function attributes, such as sret, byval, inreg,
6414 returned, and inalloca, must match.
6415
6416 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6417 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006418
6419 - Caller and callee both have the calling convention ``fastcc``.
6420 - The call is in tail position (ret immediately follows call and ret
6421 uses value of call or is void).
6422 - Option ``-tailcallopt`` is enabled, or
6423 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006424 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006425 met. <CodeGenerator.html#tailcallopt>`_
6426
6427#. The optional "cconv" marker indicates which :ref:`calling
6428 convention <callingconv>` the call should use. If none is
6429 specified, the call defaults to using C calling conventions. The
6430 calling convention of the call must match the calling convention of
6431 the target function, or else the behavior is undefined.
6432#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6433 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6434 are valid here.
6435#. '``ty``': the type of the call instruction itself which is also the
6436 type of the return value. Functions that return no value are marked
6437 ``void``.
6438#. '``fnty``': shall be the signature of the pointer to function value
6439 being invoked. The argument types must match the types implied by
6440 this signature. This type can be omitted if the function is not
6441 varargs and if the function type does not return a pointer to a
6442 function.
6443#. '``fnptrval``': An LLVM value containing a pointer to a function to
6444 be invoked. In most cases, this is a direct function invocation, but
6445 indirect ``call``'s are just as possible, calling an arbitrary pointer
6446 to function value.
6447#. '``function args``': argument list whose types match the function
6448 signature argument types and parameter attributes. All arguments must
6449 be of :ref:`first class <t_firstclass>` type. If the function signature
6450 indicates the function accepts a variable number of arguments, the
6451 extra arguments can be specified.
6452#. The optional :ref:`function attributes <fnattrs>` list. Only
6453 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6454 attributes are valid here.
6455
6456Semantics:
6457""""""""""
6458
6459The '``call``' instruction is used to cause control flow to transfer to
6460a specified function, with its incoming arguments bound to the specified
6461values. Upon a '``ret``' instruction in the called function, control
6462flow continues with the instruction after the function call, and the
6463return value of the function is bound to the result argument.
6464
6465Example:
6466""""""""
6467
6468.. code-block:: llvm
6469
6470 %retval = call i32 @test(i32 %argc)
6471 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6472 %X = tail call i32 @foo() ; yields i32
6473 %Y = tail call fastcc i32 @foo() ; yields i32
6474 call void %foo(i8 97 signext)
6475
6476 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006477 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006478 %gr = extractvalue %struct.A %r, 0 ; yields i32
6479 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6480 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6481 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6482
6483llvm treats calls to some functions with names and arguments that match
6484the standard C99 library as being the C99 library functions, and may
6485perform optimizations or generate code for them under that assumption.
6486This is something we'd like to change in the future to provide better
6487support for freestanding environments and non-C-based languages.
6488
6489.. _i_va_arg:
6490
6491'``va_arg``' Instruction
6492^^^^^^^^^^^^^^^^^^^^^^^^
6493
6494Syntax:
6495"""""""
6496
6497::
6498
6499 <resultval> = va_arg <va_list*> <arglist>, <argty>
6500
6501Overview:
6502"""""""""
6503
6504The '``va_arg``' instruction is used to access arguments passed through
6505the "variable argument" area of a function call. It is used to implement
6506the ``va_arg`` macro in C.
6507
6508Arguments:
6509""""""""""
6510
6511This instruction takes a ``va_list*`` value and the type of the
6512argument. It returns a value of the specified argument type and
6513increments the ``va_list`` to point to the next argument. The actual
6514type of ``va_list`` is target specific.
6515
6516Semantics:
6517""""""""""
6518
6519The '``va_arg``' instruction loads an argument of the specified type
6520from the specified ``va_list`` and causes the ``va_list`` to point to
6521the next argument. For more information, see the variable argument
6522handling :ref:`Intrinsic Functions <int_varargs>`.
6523
6524It is legal for this instruction to be called in a function which does
6525not take a variable number of arguments, for example, the ``vfprintf``
6526function.
6527
6528``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6529function <intrinsics>` because it takes a type as an argument.
6530
6531Example:
6532""""""""
6533
6534See the :ref:`variable argument processing <int_varargs>` section.
6535
6536Note that the code generator does not yet fully support va\_arg on many
6537targets. Also, it does not currently support va\_arg with aggregate
6538types on any target.
6539
6540.. _i_landingpad:
6541
6542'``landingpad``' Instruction
6543^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6544
6545Syntax:
6546"""""""
6547
6548::
6549
6550 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6551 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6552
6553 <clause> := catch <type> <value>
6554 <clause> := filter <array constant type> <array constant>
6555
6556Overview:
6557"""""""""
6558
6559The '``landingpad``' instruction is used by `LLVM's exception handling
6560system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006561is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006562code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6563defines values supplied by the personality function (``pers_fn``) upon
6564re-entry to the function. The ``resultval`` has the type ``resultty``.
6565
6566Arguments:
6567""""""""""
6568
6569This instruction takes a ``pers_fn`` value. This is the personality
6570function associated with the unwinding mechanism. The optional
6571``cleanup`` flag indicates that the landing pad block is a cleanup.
6572
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006573A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006574contains the global variable representing the "type" that may be caught
6575or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6576clause takes an array constant as its argument. Use
6577"``[0 x i8**] undef``" for a filter which cannot throw. The
6578'``landingpad``' instruction must contain *at least* one ``clause`` or
6579the ``cleanup`` flag.
6580
6581Semantics:
6582""""""""""
6583
6584The '``landingpad``' instruction defines the values which are set by the
6585personality function (``pers_fn``) upon re-entry to the function, and
6586therefore the "result type" of the ``landingpad`` instruction. As with
6587calling conventions, how the personality function results are
6588represented in LLVM IR is target specific.
6589
6590The clauses are applied in order from top to bottom. If two
6591``landingpad`` instructions are merged together through inlining, the
6592clauses from the calling function are appended to the list of clauses.
6593When the call stack is being unwound due to an exception being thrown,
6594the exception is compared against each ``clause`` in turn. If it doesn't
6595match any of the clauses, and the ``cleanup`` flag is not set, then
6596unwinding continues further up the call stack.
6597
6598The ``landingpad`` instruction has several restrictions:
6599
6600- A landing pad block is a basic block which is the unwind destination
6601 of an '``invoke``' instruction.
6602- A landing pad block must have a '``landingpad``' instruction as its
6603 first non-PHI instruction.
6604- There can be only one '``landingpad``' instruction within the landing
6605 pad block.
6606- A basic block that is not a landing pad block may not include a
6607 '``landingpad``' instruction.
6608- All '``landingpad``' instructions in a function must have the same
6609 personality function.
6610
6611Example:
6612""""""""
6613
6614.. code-block:: llvm
6615
6616 ;; A landing pad which can catch an integer.
6617 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6618 catch i8** @_ZTIi
6619 ;; A landing pad that is a cleanup.
6620 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6621 cleanup
6622 ;; A landing pad which can catch an integer and can only throw a double.
6623 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6624 catch i8** @_ZTIi
6625 filter [1 x i8**] [@_ZTId]
6626
6627.. _intrinsics:
6628
6629Intrinsic Functions
6630===================
6631
6632LLVM supports the notion of an "intrinsic function". These functions
6633have well known names and semantics and are required to follow certain
6634restrictions. Overall, these intrinsics represent an extension mechanism
6635for the LLVM language that does not require changing all of the
6636transformations in LLVM when adding to the language (or the bitcode
6637reader/writer, the parser, etc...).
6638
6639Intrinsic function names must all start with an "``llvm.``" prefix. This
6640prefix is reserved in LLVM for intrinsic names; thus, function names may
6641not begin with this prefix. Intrinsic functions must always be external
6642functions: you cannot define the body of intrinsic functions. Intrinsic
6643functions may only be used in call or invoke instructions: it is illegal
6644to take the address of an intrinsic function. Additionally, because
6645intrinsic functions are part of the LLVM language, it is required if any
6646are added that they be documented here.
6647
6648Some intrinsic functions can be overloaded, i.e., the intrinsic
6649represents a family of functions that perform the same operation but on
6650different data types. Because LLVM can represent over 8 million
6651different integer types, overloading is used commonly to allow an
6652intrinsic function to operate on any integer type. One or more of the
6653argument types or the result type can be overloaded to accept any
6654integer type. Argument types may also be defined as exactly matching a
6655previous argument's type or the result type. This allows an intrinsic
6656function which accepts multiple arguments, but needs all of them to be
6657of the same type, to only be overloaded with respect to a single
6658argument or the result.
6659
6660Overloaded intrinsics will have the names of its overloaded argument
6661types encoded into its function name, each preceded by a period. Only
6662those types which are overloaded result in a name suffix. Arguments
6663whose type is matched against another type do not. For example, the
6664``llvm.ctpop`` function can take an integer of any width and returns an
6665integer of exactly the same integer width. This leads to a family of
6666functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6667``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6668overloaded, and only one type suffix is required. Because the argument's
6669type is matched against the return type, it does not require its own
6670name suffix.
6671
6672To learn how to add an intrinsic function, please see the `Extending
6673LLVM Guide <ExtendingLLVM.html>`_.
6674
6675.. _int_varargs:
6676
6677Variable Argument Handling Intrinsics
6678-------------------------------------
6679
6680Variable argument support is defined in LLVM with the
6681:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6682functions. These functions are related to the similarly named macros
6683defined in the ``<stdarg.h>`` header file.
6684
6685All of these functions operate on arguments that use a target-specific
6686value type "``va_list``". The LLVM assembly language reference manual
6687does not define what this type is, so all transformations should be
6688prepared to handle these functions regardless of the type used.
6689
6690This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6691variable argument handling intrinsic functions are used.
6692
6693.. code-block:: llvm
6694
6695 define i32 @test(i32 %X, ...) {
6696 ; Initialize variable argument processing
6697 %ap = alloca i8*
6698 %ap2 = bitcast i8** %ap to i8*
6699 call void @llvm.va_start(i8* %ap2)
6700
6701 ; Read a single integer argument
6702 %tmp = va_arg i8** %ap, i32
6703
6704 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6705 %aq = alloca i8*
6706 %aq2 = bitcast i8** %aq to i8*
6707 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6708 call void @llvm.va_end(i8* %aq2)
6709
6710 ; Stop processing of arguments.
6711 call void @llvm.va_end(i8* %ap2)
6712 ret i32 %tmp
6713 }
6714
6715 declare void @llvm.va_start(i8*)
6716 declare void @llvm.va_copy(i8*, i8*)
6717 declare void @llvm.va_end(i8*)
6718
6719.. _int_va_start:
6720
6721'``llvm.va_start``' Intrinsic
6722^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6723
6724Syntax:
6725"""""""
6726
6727::
6728
Nick Lewycky04f6de02013-09-11 22:04:52 +00006729 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006730
6731Overview:
6732"""""""""
6733
6734The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6735subsequent use by ``va_arg``.
6736
6737Arguments:
6738""""""""""
6739
6740The argument is a pointer to a ``va_list`` element to initialize.
6741
6742Semantics:
6743""""""""""
6744
6745The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6746available in C. In a target-dependent way, it initializes the
6747``va_list`` element to which the argument points, so that the next call
6748to ``va_arg`` will produce the first variable argument passed to the
6749function. Unlike the C ``va_start`` macro, this intrinsic does not need
6750to know the last argument of the function as the compiler can figure
6751that out.
6752
6753'``llvm.va_end``' Intrinsic
6754^^^^^^^^^^^^^^^^^^^^^^^^^^^
6755
6756Syntax:
6757"""""""
6758
6759::
6760
6761 declare void @llvm.va_end(i8* <arglist>)
6762
6763Overview:
6764"""""""""
6765
6766The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6767initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6768
6769Arguments:
6770""""""""""
6771
6772The argument is a pointer to a ``va_list`` to destroy.
6773
6774Semantics:
6775""""""""""
6776
6777The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6778available in C. In a target-dependent way, it destroys the ``va_list``
6779element to which the argument points. Calls to
6780:ref:`llvm.va_start <int_va_start>` and
6781:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6782``llvm.va_end``.
6783
6784.. _int_va_copy:
6785
6786'``llvm.va_copy``' Intrinsic
6787^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6788
6789Syntax:
6790"""""""
6791
6792::
6793
6794 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6795
6796Overview:
6797"""""""""
6798
6799The '``llvm.va_copy``' intrinsic copies the current argument position
6800from the source argument list to the destination argument list.
6801
6802Arguments:
6803""""""""""
6804
6805The first argument is a pointer to a ``va_list`` element to initialize.
6806The second argument is a pointer to a ``va_list`` element to copy from.
6807
6808Semantics:
6809""""""""""
6810
6811The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6812available in C. In a target-dependent way, it copies the source
6813``va_list`` element into the destination ``va_list`` element. This
6814intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6815arbitrarily complex and require, for example, memory allocation.
6816
6817Accurate Garbage Collection Intrinsics
6818--------------------------------------
6819
6820LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6821(GC) requires the implementation and generation of these intrinsics.
6822These intrinsics allow identification of :ref:`GC roots on the
6823stack <int_gcroot>`, as well as garbage collector implementations that
6824require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6825Front-ends for type-safe garbage collected languages should generate
6826these intrinsics to make use of the LLVM garbage collectors. For more
6827details, see `Accurate Garbage Collection with
6828LLVM <GarbageCollection.html>`_.
6829
6830The garbage collection intrinsics only operate on objects in the generic
6831address space (address space zero).
6832
6833.. _int_gcroot:
6834
6835'``llvm.gcroot``' Intrinsic
6836^^^^^^^^^^^^^^^^^^^^^^^^^^^
6837
6838Syntax:
6839"""""""
6840
6841::
6842
6843 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6844
6845Overview:
6846"""""""""
6847
6848The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6849the code generator, and allows some metadata to be associated with it.
6850
6851Arguments:
6852""""""""""
6853
6854The first argument specifies the address of a stack object that contains
6855the root pointer. The second pointer (which must be either a constant or
6856a global value address) contains the meta-data to be associated with the
6857root.
6858
6859Semantics:
6860""""""""""
6861
6862At runtime, a call to this intrinsic stores a null pointer into the
6863"ptrloc" location. At compile-time, the code generator generates
6864information to allow the runtime to find the pointer at GC safe points.
6865The '``llvm.gcroot``' intrinsic may only be used in a function which
6866:ref:`specifies a GC algorithm <gc>`.
6867
6868.. _int_gcread:
6869
6870'``llvm.gcread``' Intrinsic
6871^^^^^^^^^^^^^^^^^^^^^^^^^^^
6872
6873Syntax:
6874"""""""
6875
6876::
6877
6878 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6879
6880Overview:
6881"""""""""
6882
6883The '``llvm.gcread``' intrinsic identifies reads of references from heap
6884locations, allowing garbage collector implementations that require read
6885barriers.
6886
6887Arguments:
6888""""""""""
6889
6890The second argument is the address to read from, which should be an
6891address allocated from the garbage collector. The first object is a
6892pointer to the start of the referenced object, if needed by the language
6893runtime (otherwise null).
6894
6895Semantics:
6896""""""""""
6897
6898The '``llvm.gcread``' intrinsic has the same semantics as a load
6899instruction, but may be replaced with substantially more complex code by
6900the garbage collector runtime, as needed. The '``llvm.gcread``'
6901intrinsic may only be used in a function which :ref:`specifies a GC
6902algorithm <gc>`.
6903
6904.. _int_gcwrite:
6905
6906'``llvm.gcwrite``' Intrinsic
6907^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6908
6909Syntax:
6910"""""""
6911
6912::
6913
6914 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6915
6916Overview:
6917"""""""""
6918
6919The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6920locations, allowing garbage collector implementations that require write
6921barriers (such as generational or reference counting collectors).
6922
6923Arguments:
6924""""""""""
6925
6926The first argument is the reference to store, the second is the start of
6927the object to store it to, and the third is the address of the field of
6928Obj to store to. If the runtime does not require a pointer to the
6929object, Obj may be null.
6930
6931Semantics:
6932""""""""""
6933
6934The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6935instruction, but may be replaced with substantially more complex code by
6936the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6937intrinsic may only be used in a function which :ref:`specifies a GC
6938algorithm <gc>`.
6939
6940Code Generator Intrinsics
6941-------------------------
6942
6943These intrinsics are provided by LLVM to expose special features that
6944may only be implemented with code generator support.
6945
6946'``llvm.returnaddress``' Intrinsic
6947^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6948
6949Syntax:
6950"""""""
6951
6952::
6953
6954 declare i8 *@llvm.returnaddress(i32 <level>)
6955
6956Overview:
6957"""""""""
6958
6959The '``llvm.returnaddress``' intrinsic attempts to compute a
6960target-specific value indicating the return address of the current
6961function or one of its callers.
6962
6963Arguments:
6964""""""""""
6965
6966The argument to this intrinsic indicates which function to return the
6967address for. Zero indicates the calling function, one indicates its
6968caller, etc. The argument is **required** to be a constant integer
6969value.
6970
6971Semantics:
6972""""""""""
6973
6974The '``llvm.returnaddress``' intrinsic either returns a pointer
6975indicating the return address of the specified call frame, or zero if it
6976cannot be identified. The value returned by this intrinsic is likely to
6977be incorrect or 0 for arguments other than zero, so it should only be
6978used for debugging purposes.
6979
6980Note that calling this intrinsic does not prevent function inlining or
6981other aggressive transformations, so the value returned may not be that
6982of the obvious source-language caller.
6983
6984'``llvm.frameaddress``' Intrinsic
6985^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6986
6987Syntax:
6988"""""""
6989
6990::
6991
6992 declare i8* @llvm.frameaddress(i32 <level>)
6993
6994Overview:
6995"""""""""
6996
6997The '``llvm.frameaddress``' intrinsic attempts to return the
6998target-specific frame pointer value for the specified stack frame.
6999
7000Arguments:
7001""""""""""
7002
7003The argument to this intrinsic indicates which function to return the
7004frame pointer for. Zero indicates the calling function, one indicates
7005its caller, etc. The argument is **required** to be a constant integer
7006value.
7007
7008Semantics:
7009""""""""""
7010
7011The '``llvm.frameaddress``' intrinsic either returns a pointer
7012indicating the frame address of the specified call frame, or zero if it
7013cannot be identified. The value returned by this intrinsic is likely to
7014be incorrect or 0 for arguments other than zero, so it should only be
7015used for debugging purposes.
7016
7017Note that calling this intrinsic does not prevent function inlining or
7018other aggressive transformations, so the value returned may not be that
7019of the obvious source-language caller.
7020
Renato Golinc7aea402014-05-06 16:51:25 +00007021.. _int_read_register:
7022.. _int_write_register:
7023
7024'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7026
7027Syntax:
7028"""""""
7029
7030::
7031
7032 declare i32 @llvm.read_register.i32(metadata)
7033 declare i64 @llvm.read_register.i64(metadata)
7034 declare void @llvm.write_register.i32(metadata, i32 @value)
7035 declare void @llvm.write_register.i64(metadata, i64 @value)
7036 !0 = metadata !{metadata !"sp\00"}
7037
7038Overview:
7039"""""""""
7040
7041The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7042provides access to the named register. The register must be valid on
7043the architecture being compiled to. The type needs to be compatible
7044with the register being read.
7045
7046Semantics:
7047""""""""""
7048
7049The '``llvm.read_register``' intrinsic returns the current value of the
7050register, where possible. The '``llvm.write_register``' intrinsic sets
7051the current value of the register, where possible.
7052
7053This is useful to implement named register global variables that need
7054to always be mapped to a specific register, as is common practice on
7055bare-metal programs including OS kernels.
7056
7057The compiler doesn't check for register availability or use of the used
7058register in surrounding code, including inline assembly. Because of that,
7059allocatable registers are not supported.
7060
7061Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007062architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007063work is needed to support other registers and even more so, allocatable
7064registers.
7065
Sean Silvab084af42012-12-07 10:36:55 +00007066.. _int_stacksave:
7067
7068'``llvm.stacksave``' Intrinsic
7069^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7070
7071Syntax:
7072"""""""
7073
7074::
7075
7076 declare i8* @llvm.stacksave()
7077
7078Overview:
7079"""""""""
7080
7081The '``llvm.stacksave``' intrinsic is used to remember the current state
7082of the function stack, for use with
7083:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7084implementing language features like scoped automatic variable sized
7085arrays in C99.
7086
7087Semantics:
7088""""""""""
7089
7090This intrinsic returns a opaque pointer value that can be passed to
7091:ref:`llvm.stackrestore <int_stackrestore>`. When an
7092``llvm.stackrestore`` intrinsic is executed with a value saved from
7093``llvm.stacksave``, it effectively restores the state of the stack to
7094the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7095practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7096were allocated after the ``llvm.stacksave`` was executed.
7097
7098.. _int_stackrestore:
7099
7100'``llvm.stackrestore``' Intrinsic
7101^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7102
7103Syntax:
7104"""""""
7105
7106::
7107
7108 declare void @llvm.stackrestore(i8* %ptr)
7109
7110Overview:
7111"""""""""
7112
7113The '``llvm.stackrestore``' intrinsic is used to restore the state of
7114the function stack to the state it was in when the corresponding
7115:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7116useful for implementing language features like scoped automatic variable
7117sized arrays in C99.
7118
7119Semantics:
7120""""""""""
7121
7122See the description for :ref:`llvm.stacksave <int_stacksave>`.
7123
7124'``llvm.prefetch``' Intrinsic
7125^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7126
7127Syntax:
7128"""""""
7129
7130::
7131
7132 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7133
7134Overview:
7135"""""""""
7136
7137The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7138insert a prefetch instruction if supported; otherwise, it is a noop.
7139Prefetches have no effect on the behavior of the program but can change
7140its performance characteristics.
7141
7142Arguments:
7143""""""""""
7144
7145``address`` is the address to be prefetched, ``rw`` is the specifier
7146determining if the fetch should be for a read (0) or write (1), and
7147``locality`` is a temporal locality specifier ranging from (0) - no
7148locality, to (3) - extremely local keep in cache. The ``cache type``
7149specifies whether the prefetch is performed on the data (1) or
7150instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7151arguments must be constant integers.
7152
7153Semantics:
7154""""""""""
7155
7156This intrinsic does not modify the behavior of the program. In
7157particular, prefetches cannot trap and do not produce a value. On
7158targets that support this intrinsic, the prefetch can provide hints to
7159the processor cache for better performance.
7160
7161'``llvm.pcmarker``' Intrinsic
7162^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7163
7164Syntax:
7165"""""""
7166
7167::
7168
7169 declare void @llvm.pcmarker(i32 <id>)
7170
7171Overview:
7172"""""""""
7173
7174The '``llvm.pcmarker``' intrinsic is a method to export a Program
7175Counter (PC) in a region of code to simulators and other tools. The
7176method is target specific, but it is expected that the marker will use
7177exported symbols to transmit the PC of the marker. The marker makes no
7178guarantees that it will remain with any specific instruction after
7179optimizations. It is possible that the presence of a marker will inhibit
7180optimizations. The intended use is to be inserted after optimizations to
7181allow correlations of simulation runs.
7182
7183Arguments:
7184""""""""""
7185
7186``id`` is a numerical id identifying the marker.
7187
7188Semantics:
7189""""""""""
7190
7191This intrinsic does not modify the behavior of the program. Backends
7192that do not support this intrinsic may ignore it.
7193
7194'``llvm.readcyclecounter``' Intrinsic
7195^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7196
7197Syntax:
7198"""""""
7199
7200::
7201
7202 declare i64 @llvm.readcyclecounter()
7203
7204Overview:
7205"""""""""
7206
7207The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7208counter register (or similar low latency, high accuracy clocks) on those
7209targets that support it. On X86, it should map to RDTSC. On Alpha, it
7210should map to RPCC. As the backing counters overflow quickly (on the
7211order of 9 seconds on alpha), this should only be used for small
7212timings.
7213
7214Semantics:
7215""""""""""
7216
7217When directly supported, reading the cycle counter should not modify any
7218memory. Implementations are allowed to either return a application
7219specific value or a system wide value. On backends without support, this
7220is lowered to a constant 0.
7221
Tim Northoverbc933082013-05-23 19:11:20 +00007222Note that runtime support may be conditional on the privilege-level code is
7223running at and the host platform.
7224
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007225'``llvm.clear_cache``' Intrinsic
7226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7227
7228Syntax:
7229"""""""
7230
7231::
7232
7233 declare void @llvm.clear_cache(i8*, i8*)
7234
7235Overview:
7236"""""""""
7237
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007238The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7239in the specified range to the execution unit of the processor. On
7240targets with non-unified instruction and data cache, the implementation
7241flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007242
7243Semantics:
7244""""""""""
7245
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007246On platforms with coherent instruction and data caches (e.g. x86), this
7247intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007248cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007249instructions or a system call, if cache flushing requires special
7250privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007251
Sean Silvad02bf3e2014-04-07 22:29:53 +00007252The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007253time library.
Renato Golin93010e62014-03-26 14:01:32 +00007254
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007255This instrinsic does *not* empty the instruction pipeline. Modifications
7256of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007257
Sean Silvab084af42012-12-07 10:36:55 +00007258Standard C Library Intrinsics
7259-----------------------------
7260
7261LLVM provides intrinsics for a few important standard C library
7262functions. These intrinsics allow source-language front-ends to pass
7263information about the alignment of the pointer arguments to the code
7264generator, providing opportunity for more efficient code generation.
7265
7266.. _int_memcpy:
7267
7268'``llvm.memcpy``' Intrinsic
7269^^^^^^^^^^^^^^^^^^^^^^^^^^^
7270
7271Syntax:
7272"""""""
7273
7274This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7275integer bit width and for different address spaces. Not all targets
7276support all bit widths however.
7277
7278::
7279
7280 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7281 i32 <len>, i32 <align>, i1 <isvolatile>)
7282 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7283 i64 <len>, i32 <align>, i1 <isvolatile>)
7284
7285Overview:
7286"""""""""
7287
7288The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7289source location to the destination location.
7290
7291Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7292intrinsics do not return a value, takes extra alignment/isvolatile
7293arguments and the pointers can be in specified address spaces.
7294
7295Arguments:
7296""""""""""
7297
7298The first argument is a pointer to the destination, the second is a
7299pointer to the source. The third argument is an integer argument
7300specifying the number of bytes to copy, the fourth argument is the
7301alignment of the source and destination locations, and the fifth is a
7302boolean indicating a volatile access.
7303
7304If the call to this intrinsic has an alignment value that is not 0 or 1,
7305then the caller guarantees that both the source and destination pointers
7306are aligned to that boundary.
7307
7308If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7309a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7310very cleanly specified and it is unwise to depend on it.
7311
7312Semantics:
7313""""""""""
7314
7315The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7316source location to the destination location, which are not allowed to
7317overlap. It copies "len" bytes of memory over. If the argument is known
7318to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007319argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007320
7321'``llvm.memmove``' Intrinsic
7322^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7323
7324Syntax:
7325"""""""
7326
7327This is an overloaded intrinsic. You can use llvm.memmove on any integer
7328bit width and for different address space. Not all targets support all
7329bit widths however.
7330
7331::
7332
7333 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7334 i32 <len>, i32 <align>, i1 <isvolatile>)
7335 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7336 i64 <len>, i32 <align>, i1 <isvolatile>)
7337
7338Overview:
7339"""""""""
7340
7341The '``llvm.memmove.*``' intrinsics move a block of memory from the
7342source location to the destination location. It is similar to the
7343'``llvm.memcpy``' intrinsic but allows the two memory locations to
7344overlap.
7345
7346Note that, unlike the standard libc function, the ``llvm.memmove.*``
7347intrinsics do not return a value, takes extra alignment/isvolatile
7348arguments and the pointers can be in specified address spaces.
7349
7350Arguments:
7351""""""""""
7352
7353The first argument is a pointer to the destination, the second is a
7354pointer to the source. The third argument is an integer argument
7355specifying the number of bytes to copy, the fourth argument is the
7356alignment of the source and destination locations, and the fifth is a
7357boolean indicating a volatile access.
7358
7359If the call to this intrinsic has an alignment value that is not 0 or 1,
7360then the caller guarantees that the source and destination pointers are
7361aligned to that boundary.
7362
7363If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7364is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7365not very cleanly specified and it is unwise to depend on it.
7366
7367Semantics:
7368""""""""""
7369
7370The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7371source location to the destination location, which may overlap. It
7372copies "len" bytes of memory over. If the argument is known to be
7373aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007374otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007375
7376'``llvm.memset.*``' Intrinsics
7377^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7378
7379Syntax:
7380"""""""
7381
7382This is an overloaded intrinsic. You can use llvm.memset on any integer
7383bit width and for different address spaces. However, not all targets
7384support all bit widths.
7385
7386::
7387
7388 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7389 i32 <len>, i32 <align>, i1 <isvolatile>)
7390 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7391 i64 <len>, i32 <align>, i1 <isvolatile>)
7392
7393Overview:
7394"""""""""
7395
7396The '``llvm.memset.*``' intrinsics fill a block of memory with a
7397particular byte value.
7398
7399Note that, unlike the standard libc function, the ``llvm.memset``
7400intrinsic does not return a value and takes extra alignment/volatile
7401arguments. Also, the destination can be in an arbitrary address space.
7402
7403Arguments:
7404""""""""""
7405
7406The first argument is a pointer to the destination to fill, the second
7407is the byte value with which to fill it, the third argument is an
7408integer argument specifying the number of bytes to fill, and the fourth
7409argument is the known alignment of the destination location.
7410
7411If the call to this intrinsic has an alignment value that is not 0 or 1,
7412then the caller guarantees that the destination pointer is aligned to
7413that boundary.
7414
7415If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7416a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7417very cleanly specified and it is unwise to depend on it.
7418
7419Semantics:
7420""""""""""
7421
7422The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7423at the destination location. If the argument is known to be aligned to
7424some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007425it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007426
7427'``llvm.sqrt.*``' Intrinsic
7428^^^^^^^^^^^^^^^^^^^^^^^^^^^
7429
7430Syntax:
7431"""""""
7432
7433This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7434floating point or vector of floating point type. Not all targets support
7435all types however.
7436
7437::
7438
7439 declare float @llvm.sqrt.f32(float %Val)
7440 declare double @llvm.sqrt.f64(double %Val)
7441 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7442 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7443 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7444
7445Overview:
7446"""""""""
7447
7448The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7449returning the same value as the libm '``sqrt``' functions would. Unlike
7450``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7451negative numbers other than -0.0 (which allows for better optimization,
7452because there is no need to worry about errno being set).
7453``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7454
7455Arguments:
7456""""""""""
7457
7458The argument and return value are floating point numbers of the same
7459type.
7460
7461Semantics:
7462""""""""""
7463
7464This function returns the sqrt of the specified operand if it is a
7465nonnegative floating point number.
7466
7467'``llvm.powi.*``' Intrinsic
7468^^^^^^^^^^^^^^^^^^^^^^^^^^^
7469
7470Syntax:
7471"""""""
7472
7473This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7474floating point or vector of floating point type. Not all targets support
7475all types however.
7476
7477::
7478
7479 declare float @llvm.powi.f32(float %Val, i32 %power)
7480 declare double @llvm.powi.f64(double %Val, i32 %power)
7481 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7482 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7483 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7484
7485Overview:
7486"""""""""
7487
7488The '``llvm.powi.*``' intrinsics return the first operand raised to the
7489specified (positive or negative) power. The order of evaluation of
7490multiplications is not defined. When a vector of floating point type is
7491used, the second argument remains a scalar integer value.
7492
7493Arguments:
7494""""""""""
7495
7496The second argument is an integer power, and the first is a value to
7497raise to that power.
7498
7499Semantics:
7500""""""""""
7501
7502This function returns the first value raised to the second power with an
7503unspecified sequence of rounding operations.
7504
7505'``llvm.sin.*``' Intrinsic
7506^^^^^^^^^^^^^^^^^^^^^^^^^^
7507
7508Syntax:
7509"""""""
7510
7511This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7512floating point or vector of floating point type. Not all targets support
7513all types however.
7514
7515::
7516
7517 declare float @llvm.sin.f32(float %Val)
7518 declare double @llvm.sin.f64(double %Val)
7519 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7520 declare fp128 @llvm.sin.f128(fp128 %Val)
7521 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7522
7523Overview:
7524"""""""""
7525
7526The '``llvm.sin.*``' intrinsics return the sine of the operand.
7527
7528Arguments:
7529""""""""""
7530
7531The argument and return value are floating point numbers of the same
7532type.
7533
7534Semantics:
7535""""""""""
7536
7537This function returns the sine of the specified operand, returning the
7538same values as the libm ``sin`` functions would, and handles error
7539conditions in the same way.
7540
7541'``llvm.cos.*``' Intrinsic
7542^^^^^^^^^^^^^^^^^^^^^^^^^^
7543
7544Syntax:
7545"""""""
7546
7547This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7548floating point or vector of floating point type. Not all targets support
7549all types however.
7550
7551::
7552
7553 declare float @llvm.cos.f32(float %Val)
7554 declare double @llvm.cos.f64(double %Val)
7555 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7556 declare fp128 @llvm.cos.f128(fp128 %Val)
7557 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7558
7559Overview:
7560"""""""""
7561
7562The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7563
7564Arguments:
7565""""""""""
7566
7567The argument and return value are floating point numbers of the same
7568type.
7569
7570Semantics:
7571""""""""""
7572
7573This function returns the cosine of the specified operand, returning the
7574same values as the libm ``cos`` functions would, and handles error
7575conditions in the same way.
7576
7577'``llvm.pow.*``' Intrinsic
7578^^^^^^^^^^^^^^^^^^^^^^^^^^
7579
7580Syntax:
7581"""""""
7582
7583This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7584floating point or vector of floating point type. Not all targets support
7585all types however.
7586
7587::
7588
7589 declare float @llvm.pow.f32(float %Val, float %Power)
7590 declare double @llvm.pow.f64(double %Val, double %Power)
7591 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7592 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7593 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7594
7595Overview:
7596"""""""""
7597
7598The '``llvm.pow.*``' intrinsics return the first operand raised to the
7599specified (positive or negative) power.
7600
7601Arguments:
7602""""""""""
7603
7604The second argument is a floating point power, and the first is a value
7605to raise to that power.
7606
7607Semantics:
7608""""""""""
7609
7610This function returns the first value raised to the second power,
7611returning the same values as the libm ``pow`` functions would, and
7612handles error conditions in the same way.
7613
7614'``llvm.exp.*``' Intrinsic
7615^^^^^^^^^^^^^^^^^^^^^^^^^^
7616
7617Syntax:
7618"""""""
7619
7620This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7621floating point or vector of floating point type. Not all targets support
7622all types however.
7623
7624::
7625
7626 declare float @llvm.exp.f32(float %Val)
7627 declare double @llvm.exp.f64(double %Val)
7628 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7629 declare fp128 @llvm.exp.f128(fp128 %Val)
7630 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7631
7632Overview:
7633"""""""""
7634
7635The '``llvm.exp.*``' intrinsics perform the exp function.
7636
7637Arguments:
7638""""""""""
7639
7640The argument and return value are floating point numbers of the same
7641type.
7642
7643Semantics:
7644""""""""""
7645
7646This function returns the same values as the libm ``exp`` functions
7647would, and handles error conditions in the same way.
7648
7649'``llvm.exp2.*``' Intrinsic
7650^^^^^^^^^^^^^^^^^^^^^^^^^^^
7651
7652Syntax:
7653"""""""
7654
7655This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7656floating point or vector of floating point type. Not all targets support
7657all types however.
7658
7659::
7660
7661 declare float @llvm.exp2.f32(float %Val)
7662 declare double @llvm.exp2.f64(double %Val)
7663 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7664 declare fp128 @llvm.exp2.f128(fp128 %Val)
7665 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7666
7667Overview:
7668"""""""""
7669
7670The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7671
7672Arguments:
7673""""""""""
7674
7675The argument and return value are floating point numbers of the same
7676type.
7677
7678Semantics:
7679""""""""""
7680
7681This function returns the same values as the libm ``exp2`` functions
7682would, and handles error conditions in the same way.
7683
7684'``llvm.log.*``' Intrinsic
7685^^^^^^^^^^^^^^^^^^^^^^^^^^
7686
7687Syntax:
7688"""""""
7689
7690This is an overloaded intrinsic. You can use ``llvm.log`` on any
7691floating point or vector of floating point type. Not all targets support
7692all types however.
7693
7694::
7695
7696 declare float @llvm.log.f32(float %Val)
7697 declare double @llvm.log.f64(double %Val)
7698 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7699 declare fp128 @llvm.log.f128(fp128 %Val)
7700 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7701
7702Overview:
7703"""""""""
7704
7705The '``llvm.log.*``' intrinsics perform the log function.
7706
7707Arguments:
7708""""""""""
7709
7710The argument and return value are floating point numbers of the same
7711type.
7712
7713Semantics:
7714""""""""""
7715
7716This function returns the same values as the libm ``log`` functions
7717would, and handles error conditions in the same way.
7718
7719'``llvm.log10.*``' Intrinsic
7720^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7721
7722Syntax:
7723"""""""
7724
7725This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7726floating point or vector of floating point type. Not all targets support
7727all types however.
7728
7729::
7730
7731 declare float @llvm.log10.f32(float %Val)
7732 declare double @llvm.log10.f64(double %Val)
7733 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7734 declare fp128 @llvm.log10.f128(fp128 %Val)
7735 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7736
7737Overview:
7738"""""""""
7739
7740The '``llvm.log10.*``' intrinsics perform the log10 function.
7741
7742Arguments:
7743""""""""""
7744
7745The argument and return value are floating point numbers of the same
7746type.
7747
7748Semantics:
7749""""""""""
7750
7751This function returns the same values as the libm ``log10`` functions
7752would, and handles error conditions in the same way.
7753
7754'``llvm.log2.*``' Intrinsic
7755^^^^^^^^^^^^^^^^^^^^^^^^^^^
7756
7757Syntax:
7758"""""""
7759
7760This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7761floating point or vector of floating point type. Not all targets support
7762all types however.
7763
7764::
7765
7766 declare float @llvm.log2.f32(float %Val)
7767 declare double @llvm.log2.f64(double %Val)
7768 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7769 declare fp128 @llvm.log2.f128(fp128 %Val)
7770 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7771
7772Overview:
7773"""""""""
7774
7775The '``llvm.log2.*``' intrinsics perform the log2 function.
7776
7777Arguments:
7778""""""""""
7779
7780The argument and return value are floating point numbers of the same
7781type.
7782
7783Semantics:
7784""""""""""
7785
7786This function returns the same values as the libm ``log2`` functions
7787would, and handles error conditions in the same way.
7788
7789'``llvm.fma.*``' Intrinsic
7790^^^^^^^^^^^^^^^^^^^^^^^^^^
7791
7792Syntax:
7793"""""""
7794
7795This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7796floating point or vector of floating point type. Not all targets support
7797all types however.
7798
7799::
7800
7801 declare float @llvm.fma.f32(float %a, float %b, float %c)
7802 declare double @llvm.fma.f64(double %a, double %b, double %c)
7803 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7804 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7805 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7806
7807Overview:
7808"""""""""
7809
7810The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7811operation.
7812
7813Arguments:
7814""""""""""
7815
7816The argument and return value are floating point numbers of the same
7817type.
7818
7819Semantics:
7820""""""""""
7821
7822This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007823would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007824
7825'``llvm.fabs.*``' Intrinsic
7826^^^^^^^^^^^^^^^^^^^^^^^^^^^
7827
7828Syntax:
7829"""""""
7830
7831This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7832floating point or vector of floating point type. Not all targets support
7833all types however.
7834
7835::
7836
7837 declare float @llvm.fabs.f32(float %Val)
7838 declare double @llvm.fabs.f64(double %Val)
7839 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7840 declare fp128 @llvm.fabs.f128(fp128 %Val)
7841 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7842
7843Overview:
7844"""""""""
7845
7846The '``llvm.fabs.*``' intrinsics return the absolute value of the
7847operand.
7848
7849Arguments:
7850""""""""""
7851
7852The argument and return value are floating point numbers of the same
7853type.
7854
7855Semantics:
7856""""""""""
7857
7858This function returns the same values as the libm ``fabs`` functions
7859would, and handles error conditions in the same way.
7860
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007861'``llvm.copysign.*``' Intrinsic
7862^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7863
7864Syntax:
7865"""""""
7866
7867This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7868floating point or vector of floating point type. Not all targets support
7869all types however.
7870
7871::
7872
7873 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7874 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7875 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7876 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7877 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7878
7879Overview:
7880"""""""""
7881
7882The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7883first operand and the sign of the second operand.
7884
7885Arguments:
7886""""""""""
7887
7888The arguments and return value are floating point numbers of the same
7889type.
7890
7891Semantics:
7892""""""""""
7893
7894This function returns the same values as the libm ``copysign``
7895functions would, and handles error conditions in the same way.
7896
Sean Silvab084af42012-12-07 10:36:55 +00007897'``llvm.floor.*``' Intrinsic
7898^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7899
7900Syntax:
7901"""""""
7902
7903This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7904floating point or vector of floating point type. Not all targets support
7905all types however.
7906
7907::
7908
7909 declare float @llvm.floor.f32(float %Val)
7910 declare double @llvm.floor.f64(double %Val)
7911 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7912 declare fp128 @llvm.floor.f128(fp128 %Val)
7913 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7914
7915Overview:
7916"""""""""
7917
7918The '``llvm.floor.*``' intrinsics return the floor of the operand.
7919
7920Arguments:
7921""""""""""
7922
7923The argument and return value are floating point numbers of the same
7924type.
7925
7926Semantics:
7927""""""""""
7928
7929This function returns the same values as the libm ``floor`` functions
7930would, and handles error conditions in the same way.
7931
7932'``llvm.ceil.*``' Intrinsic
7933^^^^^^^^^^^^^^^^^^^^^^^^^^^
7934
7935Syntax:
7936"""""""
7937
7938This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7939floating point or vector of floating point type. Not all targets support
7940all types however.
7941
7942::
7943
7944 declare float @llvm.ceil.f32(float %Val)
7945 declare double @llvm.ceil.f64(double %Val)
7946 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7947 declare fp128 @llvm.ceil.f128(fp128 %Val)
7948 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7949
7950Overview:
7951"""""""""
7952
7953The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7954
7955Arguments:
7956""""""""""
7957
7958The argument and return value are floating point numbers of the same
7959type.
7960
7961Semantics:
7962""""""""""
7963
7964This function returns the same values as the libm ``ceil`` functions
7965would, and handles error conditions in the same way.
7966
7967'``llvm.trunc.*``' Intrinsic
7968^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7969
7970Syntax:
7971"""""""
7972
7973This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7974floating point or vector of floating point type. Not all targets support
7975all types however.
7976
7977::
7978
7979 declare float @llvm.trunc.f32(float %Val)
7980 declare double @llvm.trunc.f64(double %Val)
7981 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7982 declare fp128 @llvm.trunc.f128(fp128 %Val)
7983 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7984
7985Overview:
7986"""""""""
7987
7988The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7989nearest integer not larger in magnitude than the operand.
7990
7991Arguments:
7992""""""""""
7993
7994The argument and return value are floating point numbers of the same
7995type.
7996
7997Semantics:
7998""""""""""
7999
8000This function returns the same values as the libm ``trunc`` functions
8001would, and handles error conditions in the same way.
8002
8003'``llvm.rint.*``' Intrinsic
8004^^^^^^^^^^^^^^^^^^^^^^^^^^^
8005
8006Syntax:
8007"""""""
8008
8009This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8010floating point or vector of floating point type. Not all targets support
8011all types however.
8012
8013::
8014
8015 declare float @llvm.rint.f32(float %Val)
8016 declare double @llvm.rint.f64(double %Val)
8017 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8018 declare fp128 @llvm.rint.f128(fp128 %Val)
8019 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8020
8021Overview:
8022"""""""""
8023
8024The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8025nearest integer. It may raise an inexact floating-point exception if the
8026operand isn't an integer.
8027
8028Arguments:
8029""""""""""
8030
8031The argument and return value are floating point numbers of the same
8032type.
8033
8034Semantics:
8035""""""""""
8036
8037This function returns the same values as the libm ``rint`` functions
8038would, and handles error conditions in the same way.
8039
8040'``llvm.nearbyint.*``' Intrinsic
8041^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8042
8043Syntax:
8044"""""""
8045
8046This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8047floating point or vector of floating point type. Not all targets support
8048all types however.
8049
8050::
8051
8052 declare float @llvm.nearbyint.f32(float %Val)
8053 declare double @llvm.nearbyint.f64(double %Val)
8054 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8055 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8056 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8057
8058Overview:
8059"""""""""
8060
8061The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8062nearest integer.
8063
8064Arguments:
8065""""""""""
8066
8067The argument and return value are floating point numbers of the same
8068type.
8069
8070Semantics:
8071""""""""""
8072
8073This function returns the same values as the libm ``nearbyint``
8074functions would, and handles error conditions in the same way.
8075
Hal Finkel171817e2013-08-07 22:49:12 +00008076'``llvm.round.*``' Intrinsic
8077^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8078
8079Syntax:
8080"""""""
8081
8082This is an overloaded intrinsic. You can use ``llvm.round`` on any
8083floating point or vector of floating point type. Not all targets support
8084all types however.
8085
8086::
8087
8088 declare float @llvm.round.f32(float %Val)
8089 declare double @llvm.round.f64(double %Val)
8090 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8091 declare fp128 @llvm.round.f128(fp128 %Val)
8092 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8093
8094Overview:
8095"""""""""
8096
8097The '``llvm.round.*``' intrinsics returns the operand rounded to the
8098nearest integer.
8099
8100Arguments:
8101""""""""""
8102
8103The argument and return value are floating point numbers of the same
8104type.
8105
8106Semantics:
8107""""""""""
8108
8109This function returns the same values as the libm ``round``
8110functions would, and handles error conditions in the same way.
8111
Sean Silvab084af42012-12-07 10:36:55 +00008112Bit Manipulation Intrinsics
8113---------------------------
8114
8115LLVM provides intrinsics for a few important bit manipulation
8116operations. These allow efficient code generation for some algorithms.
8117
8118'``llvm.bswap.*``' Intrinsics
8119^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8120
8121Syntax:
8122"""""""
8123
8124This is an overloaded intrinsic function. You can use bswap on any
8125integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8126
8127::
8128
8129 declare i16 @llvm.bswap.i16(i16 <id>)
8130 declare i32 @llvm.bswap.i32(i32 <id>)
8131 declare i64 @llvm.bswap.i64(i64 <id>)
8132
8133Overview:
8134"""""""""
8135
8136The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8137values with an even number of bytes (positive multiple of 16 bits).
8138These are useful for performing operations on data that is not in the
8139target's native byte order.
8140
8141Semantics:
8142""""""""""
8143
8144The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8145and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8146intrinsic returns an i32 value that has the four bytes of the input i32
8147swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8148returned i32 will have its bytes in 3, 2, 1, 0 order. The
8149``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8150concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8151respectively).
8152
8153'``llvm.ctpop.*``' Intrinsic
8154^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8155
8156Syntax:
8157"""""""
8158
8159This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8160bit width, or on any vector with integer elements. Not all targets
8161support all bit widths or vector types, however.
8162
8163::
8164
8165 declare i8 @llvm.ctpop.i8(i8 <src>)
8166 declare i16 @llvm.ctpop.i16(i16 <src>)
8167 declare i32 @llvm.ctpop.i32(i32 <src>)
8168 declare i64 @llvm.ctpop.i64(i64 <src>)
8169 declare i256 @llvm.ctpop.i256(i256 <src>)
8170 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8171
8172Overview:
8173"""""""""
8174
8175The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8176in a value.
8177
8178Arguments:
8179""""""""""
8180
8181The only argument is the value to be counted. The argument may be of any
8182integer type, or a vector with integer elements. The return type must
8183match the argument type.
8184
8185Semantics:
8186""""""""""
8187
8188The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8189each element of a vector.
8190
8191'``llvm.ctlz.*``' Intrinsic
8192^^^^^^^^^^^^^^^^^^^^^^^^^^^
8193
8194Syntax:
8195"""""""
8196
8197This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8198integer bit width, or any vector whose elements are integers. Not all
8199targets support all bit widths or vector types, however.
8200
8201::
8202
8203 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8204 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8205 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8206 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8207 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8208 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8209
8210Overview:
8211"""""""""
8212
8213The '``llvm.ctlz``' family of intrinsic functions counts the number of
8214leading zeros in a variable.
8215
8216Arguments:
8217""""""""""
8218
8219The first argument is the value to be counted. This argument may be of
8220any integer type, or a vectory with integer element type. The return
8221type must match the first argument type.
8222
8223The second argument must be a constant and is a flag to indicate whether
8224the intrinsic should ensure that a zero as the first argument produces a
8225defined result. Historically some architectures did not provide a
8226defined result for zero values as efficiently, and many algorithms are
8227now predicated on avoiding zero-value inputs.
8228
8229Semantics:
8230""""""""""
8231
8232The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8233zeros in a variable, or within each element of the vector. If
8234``src == 0`` then the result is the size in bits of the type of ``src``
8235if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8236``llvm.ctlz(i32 2) = 30``.
8237
8238'``llvm.cttz.*``' Intrinsic
8239^^^^^^^^^^^^^^^^^^^^^^^^^^^
8240
8241Syntax:
8242"""""""
8243
8244This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8245integer bit width, or any vector of integer elements. Not all targets
8246support all bit widths or vector types, however.
8247
8248::
8249
8250 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8251 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8252 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8253 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8254 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8255 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8256
8257Overview:
8258"""""""""
8259
8260The '``llvm.cttz``' family of intrinsic functions counts the number of
8261trailing zeros.
8262
8263Arguments:
8264""""""""""
8265
8266The first argument is the value to be counted. This argument may be of
8267any integer type, or a vectory with integer element type. The return
8268type must match the first argument type.
8269
8270The second argument must be a constant and is a flag to indicate whether
8271the intrinsic should ensure that a zero as the first argument produces a
8272defined result. Historically some architectures did not provide a
8273defined result for zero values as efficiently, and many algorithms are
8274now predicated on avoiding zero-value inputs.
8275
8276Semantics:
8277""""""""""
8278
8279The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8280zeros in a variable, or within each element of a vector. If ``src == 0``
8281then the result is the size in bits of the type of ``src`` if
8282``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8283``llvm.cttz(2) = 1``.
8284
8285Arithmetic with Overflow Intrinsics
8286-----------------------------------
8287
8288LLVM provides intrinsics for some arithmetic with overflow operations.
8289
8290'``llvm.sadd.with.overflow.*``' Intrinsics
8291^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8292
8293Syntax:
8294"""""""
8295
8296This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8297on any integer bit width.
8298
8299::
8300
8301 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8302 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8303 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8304
8305Overview:
8306"""""""""
8307
8308The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8309a signed addition of the two arguments, and indicate whether an overflow
8310occurred during the signed summation.
8311
8312Arguments:
8313""""""""""
8314
8315The arguments (%a and %b) and the first element of the result structure
8316may be of integer types of any bit width, but they must have the same
8317bit width. The second element of the result structure must be of type
8318``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8319addition.
8320
8321Semantics:
8322""""""""""
8323
8324The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008325a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008326first element of which is the signed summation, and the second element
8327of which is a bit specifying if the signed summation resulted in an
8328overflow.
8329
8330Examples:
8331"""""""""
8332
8333.. code-block:: llvm
8334
8335 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8336 %sum = extractvalue {i32, i1} %res, 0
8337 %obit = extractvalue {i32, i1} %res, 1
8338 br i1 %obit, label %overflow, label %normal
8339
8340'``llvm.uadd.with.overflow.*``' Intrinsics
8341^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8342
8343Syntax:
8344"""""""
8345
8346This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8347on any integer bit width.
8348
8349::
8350
8351 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8352 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8353 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8354
8355Overview:
8356"""""""""
8357
8358The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8359an unsigned addition of the two arguments, and indicate whether a carry
8360occurred during the unsigned summation.
8361
8362Arguments:
8363""""""""""
8364
8365The arguments (%a and %b) and the first element of the result structure
8366may be of integer types of any bit width, but they must have the same
8367bit width. The second element of the result structure must be of type
8368``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8369addition.
8370
8371Semantics:
8372""""""""""
8373
8374The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008375an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008376first element of which is the sum, and the second element of which is a
8377bit specifying if the unsigned summation resulted in a carry.
8378
8379Examples:
8380"""""""""
8381
8382.. code-block:: llvm
8383
8384 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8385 %sum = extractvalue {i32, i1} %res, 0
8386 %obit = extractvalue {i32, i1} %res, 1
8387 br i1 %obit, label %carry, label %normal
8388
8389'``llvm.ssub.with.overflow.*``' Intrinsics
8390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8391
8392Syntax:
8393"""""""
8394
8395This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8396on any integer bit width.
8397
8398::
8399
8400 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8401 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8402 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8403
8404Overview:
8405"""""""""
8406
8407The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8408a signed subtraction of the two arguments, and indicate whether an
8409overflow occurred during the signed subtraction.
8410
8411Arguments:
8412""""""""""
8413
8414The arguments (%a and %b) and the first element of the result structure
8415may be of integer types of any bit width, but they must have the same
8416bit width. The second element of the result structure must be of type
8417``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8418subtraction.
8419
8420Semantics:
8421""""""""""
8422
8423The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008424a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008425first element of which is the subtraction, and the second element of
8426which is a bit specifying if the signed subtraction resulted in an
8427overflow.
8428
8429Examples:
8430"""""""""
8431
8432.. code-block:: llvm
8433
8434 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8435 %sum = extractvalue {i32, i1} %res, 0
8436 %obit = extractvalue {i32, i1} %res, 1
8437 br i1 %obit, label %overflow, label %normal
8438
8439'``llvm.usub.with.overflow.*``' Intrinsics
8440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8441
8442Syntax:
8443"""""""
8444
8445This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8446on any integer bit width.
8447
8448::
8449
8450 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8451 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8452 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8453
8454Overview:
8455"""""""""
8456
8457The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8458an unsigned subtraction of the two arguments, and indicate whether an
8459overflow occurred during the unsigned subtraction.
8460
8461Arguments:
8462""""""""""
8463
8464The arguments (%a and %b) and the first element of the result structure
8465may be of integer types of any bit width, but they must have the same
8466bit width. The second element of the result structure must be of type
8467``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8468subtraction.
8469
8470Semantics:
8471""""""""""
8472
8473The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008474an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008475the first element of which is the subtraction, and the second element of
8476which is a bit specifying if the unsigned subtraction resulted in an
8477overflow.
8478
8479Examples:
8480"""""""""
8481
8482.. code-block:: llvm
8483
8484 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8485 %sum = extractvalue {i32, i1} %res, 0
8486 %obit = extractvalue {i32, i1} %res, 1
8487 br i1 %obit, label %overflow, label %normal
8488
8489'``llvm.smul.with.overflow.*``' Intrinsics
8490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8491
8492Syntax:
8493"""""""
8494
8495This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8496on any integer bit width.
8497
8498::
8499
8500 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8501 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8502 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8503
8504Overview:
8505"""""""""
8506
8507The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8508a signed multiplication of the two arguments, and indicate whether an
8509overflow occurred during the signed multiplication.
8510
8511Arguments:
8512""""""""""
8513
8514The arguments (%a and %b) and the first element of the result structure
8515may be of integer types of any bit width, but they must have the same
8516bit width. The second element of the result structure must be of type
8517``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8518multiplication.
8519
8520Semantics:
8521""""""""""
8522
8523The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008524a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008525the first element of which is the multiplication, and the second element
8526of which is a bit specifying if the signed multiplication resulted in an
8527overflow.
8528
8529Examples:
8530"""""""""
8531
8532.. code-block:: llvm
8533
8534 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8535 %sum = extractvalue {i32, i1} %res, 0
8536 %obit = extractvalue {i32, i1} %res, 1
8537 br i1 %obit, label %overflow, label %normal
8538
8539'``llvm.umul.with.overflow.*``' Intrinsics
8540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8541
8542Syntax:
8543"""""""
8544
8545This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8546on any integer bit width.
8547
8548::
8549
8550 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8551 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8552 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8553
8554Overview:
8555"""""""""
8556
8557The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8558a unsigned multiplication of the two arguments, and indicate whether an
8559overflow occurred during the unsigned multiplication.
8560
8561Arguments:
8562""""""""""
8563
8564The arguments (%a and %b) and the first element of the result structure
8565may be of integer types of any bit width, but they must have the same
8566bit width. The second element of the result structure must be of type
8567``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8568multiplication.
8569
8570Semantics:
8571""""""""""
8572
8573The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008574an unsigned multiplication of the two arguments. They return a structure ---
8575the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008576element of which is a bit specifying if the unsigned multiplication
8577resulted in an overflow.
8578
8579Examples:
8580"""""""""
8581
8582.. code-block:: llvm
8583
8584 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8585 %sum = extractvalue {i32, i1} %res, 0
8586 %obit = extractvalue {i32, i1} %res, 1
8587 br i1 %obit, label %overflow, label %normal
8588
8589Specialised Arithmetic Intrinsics
8590---------------------------------
8591
8592'``llvm.fmuladd.*``' Intrinsic
8593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8594
8595Syntax:
8596"""""""
8597
8598::
8599
8600 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8601 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8602
8603Overview:
8604"""""""""
8605
8606The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008607expressions that can be fused if the code generator determines that (a) the
8608target instruction set has support for a fused operation, and (b) that the
8609fused operation is more efficient than the equivalent, separate pair of mul
8610and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008611
8612Arguments:
8613""""""""""
8614
8615The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8616multiplicands, a and b, and an addend c.
8617
8618Semantics:
8619""""""""""
8620
8621The expression:
8622
8623::
8624
8625 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8626
8627is equivalent to the expression a \* b + c, except that rounding will
8628not be performed between the multiplication and addition steps if the
8629code generator fuses the operations. Fusion is not guaranteed, even if
8630the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008631corresponding llvm.fma.\* intrinsic function should be used
8632instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008633
8634Examples:
8635"""""""""
8636
8637.. code-block:: llvm
8638
Tim Northover675a0962014-06-13 14:24:23 +00008639 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00008640
8641Half Precision Floating Point Intrinsics
8642----------------------------------------
8643
8644For most target platforms, half precision floating point is a
8645storage-only format. This means that it is a dense encoding (in memory)
8646but does not support computation in the format.
8647
8648This means that code must first load the half-precision floating point
8649value as an i16, then convert it to float with
8650:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8651then be performed on the float value (including extending to double
8652etc). To store the value back to memory, it is first converted to float
8653if needed, then converted to i16 with
8654:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8655i16 value.
8656
8657.. _int_convert_to_fp16:
8658
8659'``llvm.convert.to.fp16``' Intrinsic
8660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8661
8662Syntax:
8663"""""""
8664
8665::
8666
Tim Northoverfd7e4242014-07-17 10:51:23 +00008667 declare i16 @llvm.convert.to.fp16.f32(float %a)
8668 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00008669
8670Overview:
8671"""""""""
8672
Tim Northoverfd7e4242014-07-17 10:51:23 +00008673The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8674conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00008675
8676Arguments:
8677""""""""""
8678
8679The intrinsic function contains single argument - the value to be
8680converted.
8681
8682Semantics:
8683""""""""""
8684
Tim Northoverfd7e4242014-07-17 10:51:23 +00008685The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8686conventional floating point format to half precision floating point format. The
8687return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00008688
8689Examples:
8690"""""""""
8691
8692.. code-block:: llvm
8693
Tim Northoverfd7e4242014-07-17 10:51:23 +00008694 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00008695 store i16 %res, i16* @x, align 2
8696
8697.. _int_convert_from_fp16:
8698
8699'``llvm.convert.from.fp16``' Intrinsic
8700^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8701
8702Syntax:
8703"""""""
8704
8705::
8706
Tim Northoverfd7e4242014-07-17 10:51:23 +00008707 declare float @llvm.convert.from.fp16.f32(i16 %a)
8708 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008709
8710Overview:
8711"""""""""
8712
8713The '``llvm.convert.from.fp16``' intrinsic function performs a
8714conversion from half precision floating point format to single precision
8715floating point format.
8716
8717Arguments:
8718""""""""""
8719
8720The intrinsic function contains single argument - the value to be
8721converted.
8722
8723Semantics:
8724""""""""""
8725
8726The '``llvm.convert.from.fp16``' intrinsic function performs a
8727conversion from half single precision floating point format to single
8728precision floating point format. The input half-float value is
8729represented by an ``i16`` value.
8730
8731Examples:
8732"""""""""
8733
8734.. code-block:: llvm
8735
8736 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00008737 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008738
8739Debugger Intrinsics
8740-------------------
8741
8742The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8743prefix), are described in the `LLVM Source Level
8744Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8745document.
8746
8747Exception Handling Intrinsics
8748-----------------------------
8749
8750The LLVM exception handling intrinsics (which all start with
8751``llvm.eh.`` prefix), are described in the `LLVM Exception
8752Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8753
8754.. _int_trampoline:
8755
8756Trampoline Intrinsics
8757---------------------
8758
8759These intrinsics make it possible to excise one parameter, marked with
8760the :ref:`nest <nest>` attribute, from a function. The result is a
8761callable function pointer lacking the nest parameter - the caller does
8762not need to provide a value for it. Instead, the value to use is stored
8763in advance in a "trampoline", a block of memory usually allocated on the
8764stack, which also contains code to splice the nest value into the
8765argument list. This is used to implement the GCC nested function address
8766extension.
8767
8768For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8769then the resulting function pointer has signature ``i32 (i32, i32)*``.
8770It can be created as follows:
8771
8772.. code-block:: llvm
8773
8774 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8775 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8776 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8777 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8778 %fp = bitcast i8* %p to i32 (i32, i32)*
8779
8780The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8781``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8782
8783.. _int_it:
8784
8785'``llvm.init.trampoline``' Intrinsic
8786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8787
8788Syntax:
8789"""""""
8790
8791::
8792
8793 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8794
8795Overview:
8796"""""""""
8797
8798This fills the memory pointed to by ``tramp`` with executable code,
8799turning it into a trampoline.
8800
8801Arguments:
8802""""""""""
8803
8804The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8805pointers. The ``tramp`` argument must point to a sufficiently large and
8806sufficiently aligned block of memory; this memory is written to by the
8807intrinsic. Note that the size and the alignment are target-specific -
8808LLVM currently provides no portable way of determining them, so a
8809front-end that generates this intrinsic needs to have some
8810target-specific knowledge. The ``func`` argument must hold a function
8811bitcast to an ``i8*``.
8812
8813Semantics:
8814""""""""""
8815
8816The block of memory pointed to by ``tramp`` is filled with target
8817dependent code, turning it into a function. Then ``tramp`` needs to be
8818passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8819be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8820function's signature is the same as that of ``func`` with any arguments
8821marked with the ``nest`` attribute removed. At most one such ``nest``
8822argument is allowed, and it must be of pointer type. Calling the new
8823function is equivalent to calling ``func`` with the same argument list,
8824but with ``nval`` used for the missing ``nest`` argument. If, after
8825calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8826modified, then the effect of any later call to the returned function
8827pointer is undefined.
8828
8829.. _int_at:
8830
8831'``llvm.adjust.trampoline``' Intrinsic
8832^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8833
8834Syntax:
8835"""""""
8836
8837::
8838
8839 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8840
8841Overview:
8842"""""""""
8843
8844This performs any required machine-specific adjustment to the address of
8845a trampoline (passed as ``tramp``).
8846
8847Arguments:
8848""""""""""
8849
8850``tramp`` must point to a block of memory which already has trampoline
8851code filled in by a previous call to
8852:ref:`llvm.init.trampoline <int_it>`.
8853
8854Semantics:
8855""""""""""
8856
8857On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00008858different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00008859intrinsic returns the executable address corresponding to ``tramp``
8860after performing the required machine specific adjustments. The pointer
8861returned can then be :ref:`bitcast and executed <int_trampoline>`.
8862
8863Memory Use Markers
8864------------------
8865
Sanjay Patel69bf48e2014-07-04 19:40:43 +00008866This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00008867memory objects and ranges where variables are immutable.
8868
Reid Klecknera534a382013-12-19 02:14:12 +00008869.. _int_lifestart:
8870
Sean Silvab084af42012-12-07 10:36:55 +00008871'``llvm.lifetime.start``' Intrinsic
8872^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8873
8874Syntax:
8875"""""""
8876
8877::
8878
8879 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8880
8881Overview:
8882"""""""""
8883
8884The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8885object's lifetime.
8886
8887Arguments:
8888""""""""""
8889
8890The first argument is a constant integer representing the size of the
8891object, or -1 if it is variable sized. The second argument is a pointer
8892to the object.
8893
8894Semantics:
8895""""""""""
8896
8897This intrinsic indicates that before this point in the code, the value
8898of the memory pointed to by ``ptr`` is dead. This means that it is known
8899to never be used and has an undefined value. A load from the pointer
8900that precedes this intrinsic can be replaced with ``'undef'``.
8901
Reid Klecknera534a382013-12-19 02:14:12 +00008902.. _int_lifeend:
8903
Sean Silvab084af42012-12-07 10:36:55 +00008904'``llvm.lifetime.end``' Intrinsic
8905^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8906
8907Syntax:
8908"""""""
8909
8910::
8911
8912 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8913
8914Overview:
8915"""""""""
8916
8917The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8918object's lifetime.
8919
8920Arguments:
8921""""""""""
8922
8923The first argument is a constant integer representing the size of the
8924object, or -1 if it is variable sized. The second argument is a pointer
8925to the object.
8926
8927Semantics:
8928""""""""""
8929
8930This intrinsic indicates that after this point in the code, the value of
8931the memory pointed to by ``ptr`` is dead. This means that it is known to
8932never be used and has an undefined value. Any stores into the memory
8933object following this intrinsic may be removed as dead.
8934
8935'``llvm.invariant.start``' Intrinsic
8936^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8937
8938Syntax:
8939"""""""
8940
8941::
8942
8943 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8944
8945Overview:
8946"""""""""
8947
8948The '``llvm.invariant.start``' intrinsic specifies that the contents of
8949a memory object will not change.
8950
8951Arguments:
8952""""""""""
8953
8954The first argument is a constant integer representing the size of the
8955object, or -1 if it is variable sized. The second argument is a pointer
8956to the object.
8957
8958Semantics:
8959""""""""""
8960
8961This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8962the return value, the referenced memory location is constant and
8963unchanging.
8964
8965'``llvm.invariant.end``' Intrinsic
8966^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8967
8968Syntax:
8969"""""""
8970
8971::
8972
8973 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8974
8975Overview:
8976"""""""""
8977
8978The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8979memory object are mutable.
8980
8981Arguments:
8982""""""""""
8983
8984The first argument is the matching ``llvm.invariant.start`` intrinsic.
8985The second argument is a constant integer representing the size of the
8986object, or -1 if it is variable sized and the third argument is a
8987pointer to the object.
8988
8989Semantics:
8990""""""""""
8991
8992This intrinsic indicates that the memory is mutable again.
8993
8994General Intrinsics
8995------------------
8996
8997This class of intrinsics is designed to be generic and has no specific
8998purpose.
8999
9000'``llvm.var.annotation``' Intrinsic
9001^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9002
9003Syntax:
9004"""""""
9005
9006::
9007
9008 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9009
9010Overview:
9011"""""""""
9012
9013The '``llvm.var.annotation``' intrinsic.
9014
9015Arguments:
9016""""""""""
9017
9018The first argument is a pointer to a value, the second is a pointer to a
9019global string, the third is a pointer to a global string which is the
9020source file name, and the last argument is the line number.
9021
9022Semantics:
9023""""""""""
9024
9025This intrinsic allows annotation of local variables with arbitrary
9026strings. This can be useful for special purpose optimizations that want
9027to look for these annotations. These have no other defined use; they are
9028ignored by code generation and optimization.
9029
Michael Gottesman88d18832013-03-26 00:34:27 +00009030'``llvm.ptr.annotation.*``' Intrinsic
9031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9032
9033Syntax:
9034"""""""
9035
9036This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9037pointer to an integer of any width. *NOTE* you must specify an address space for
9038the pointer. The identifier for the default address space is the integer
9039'``0``'.
9040
9041::
9042
9043 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9044 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9045 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9046 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9047 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9048
9049Overview:
9050"""""""""
9051
9052The '``llvm.ptr.annotation``' intrinsic.
9053
9054Arguments:
9055""""""""""
9056
9057The first argument is a pointer to an integer value of arbitrary bitwidth
9058(result of some expression), the second is a pointer to a global string, the
9059third is a pointer to a global string which is the source file name, and the
9060last argument is the line number. It returns the value of the first argument.
9061
9062Semantics:
9063""""""""""
9064
9065This intrinsic allows annotation of a pointer to an integer with arbitrary
9066strings. This can be useful for special purpose optimizations that want to look
9067for these annotations. These have no other defined use; they are ignored by code
9068generation and optimization.
9069
Sean Silvab084af42012-12-07 10:36:55 +00009070'``llvm.annotation.*``' Intrinsic
9071^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9072
9073Syntax:
9074"""""""
9075
9076This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9077any integer bit width.
9078
9079::
9080
9081 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9082 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9083 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9084 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9085 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9086
9087Overview:
9088"""""""""
9089
9090The '``llvm.annotation``' intrinsic.
9091
9092Arguments:
9093""""""""""
9094
9095The first argument is an integer value (result of some expression), the
9096second is a pointer to a global string, the third is a pointer to a
9097global string which is the source file name, and the last argument is
9098the line number. It returns the value of the first argument.
9099
9100Semantics:
9101""""""""""
9102
9103This intrinsic allows annotations to be put on arbitrary expressions
9104with arbitrary strings. This can be useful for special purpose
9105optimizations that want to look for these annotations. These have no
9106other defined use; they are ignored by code generation and optimization.
9107
9108'``llvm.trap``' Intrinsic
9109^^^^^^^^^^^^^^^^^^^^^^^^^
9110
9111Syntax:
9112"""""""
9113
9114::
9115
9116 declare void @llvm.trap() noreturn nounwind
9117
9118Overview:
9119"""""""""
9120
9121The '``llvm.trap``' intrinsic.
9122
9123Arguments:
9124""""""""""
9125
9126None.
9127
9128Semantics:
9129""""""""""
9130
9131This intrinsic is lowered to the target dependent trap instruction. If
9132the target does not have a trap instruction, this intrinsic will be
9133lowered to a call of the ``abort()`` function.
9134
9135'``llvm.debugtrap``' Intrinsic
9136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9137
9138Syntax:
9139"""""""
9140
9141::
9142
9143 declare void @llvm.debugtrap() nounwind
9144
9145Overview:
9146"""""""""
9147
9148The '``llvm.debugtrap``' intrinsic.
9149
9150Arguments:
9151""""""""""
9152
9153None.
9154
9155Semantics:
9156""""""""""
9157
9158This intrinsic is lowered to code which is intended to cause an
9159execution trap with the intention of requesting the attention of a
9160debugger.
9161
9162'``llvm.stackprotector``' Intrinsic
9163^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9164
9165Syntax:
9166"""""""
9167
9168::
9169
9170 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9171
9172Overview:
9173"""""""""
9174
9175The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9176onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9177is placed on the stack before local variables.
9178
9179Arguments:
9180""""""""""
9181
9182The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9183The first argument is the value loaded from the stack guard
9184``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9185enough space to hold the value of the guard.
9186
9187Semantics:
9188""""""""""
9189
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009190This intrinsic causes the prologue/epilogue inserter to force the position of
9191the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9192to ensure that if a local variable on the stack is overwritten, it will destroy
9193the value of the guard. When the function exits, the guard on the stack is
9194checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9195different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9196calling the ``__stack_chk_fail()`` function.
9197
9198'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009199^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009200
9201Syntax:
9202"""""""
9203
9204::
9205
9206 declare void @llvm.stackprotectorcheck(i8** <guard>)
9207
9208Overview:
9209"""""""""
9210
9211The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009212created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009213``__stack_chk_fail()`` function.
9214
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009215Arguments:
9216""""""""""
9217
9218The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9219the variable ``@__stack_chk_guard``.
9220
9221Semantics:
9222""""""""""
9223
9224This intrinsic is provided to perform the stack protector check by comparing
9225``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9226values do not match call the ``__stack_chk_fail()`` function.
9227
9228The reason to provide this as an IR level intrinsic instead of implementing it
9229via other IR operations is that in order to perform this operation at the IR
9230level without an intrinsic, one would need to create additional basic blocks to
9231handle the success/failure cases. This makes it difficult to stop the stack
9232protector check from disrupting sibling tail calls in Codegen. With this
9233intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009234codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009235
Sean Silvab084af42012-12-07 10:36:55 +00009236'``llvm.objectsize``' Intrinsic
9237^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9238
9239Syntax:
9240"""""""
9241
9242::
9243
9244 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9245 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9246
9247Overview:
9248"""""""""
9249
9250The ``llvm.objectsize`` intrinsic is designed to provide information to
9251the optimizers to determine at compile time whether a) an operation
9252(like memcpy) will overflow a buffer that corresponds to an object, or
9253b) that a runtime check for overflow isn't necessary. An object in this
9254context means an allocation of a specific class, structure, array, or
9255other object.
9256
9257Arguments:
9258""""""""""
9259
9260The ``llvm.objectsize`` intrinsic takes two arguments. The first
9261argument is a pointer to or into the ``object``. The second argument is
9262a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9263or -1 (if false) when the object size is unknown. The second argument
9264only accepts constants.
9265
9266Semantics:
9267""""""""""
9268
9269The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9270the size of the object concerned. If the size cannot be determined at
9271compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9272on the ``min`` argument).
9273
9274'``llvm.expect``' Intrinsic
9275^^^^^^^^^^^^^^^^^^^^^^^^^^^
9276
9277Syntax:
9278"""""""
9279
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009280This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9281integer bit width.
9282
Sean Silvab084af42012-12-07 10:36:55 +00009283::
9284
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009285 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009286 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9287 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9288
9289Overview:
9290"""""""""
9291
9292The ``llvm.expect`` intrinsic provides information about expected (the
9293most probable) value of ``val``, which can be used by optimizers.
9294
9295Arguments:
9296""""""""""
9297
9298The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9299a value. The second argument is an expected value, this needs to be a
9300constant value, variables are not allowed.
9301
9302Semantics:
9303""""""""""
9304
9305This intrinsic is lowered to the ``val``.
9306
9307'``llvm.donothing``' Intrinsic
9308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9309
9310Syntax:
9311"""""""
9312
9313::
9314
9315 declare void @llvm.donothing() nounwind readnone
9316
9317Overview:
9318"""""""""
9319
9320The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9321only intrinsic that can be called with an invoke instruction.
9322
9323Arguments:
9324""""""""""
9325
9326None.
9327
9328Semantics:
9329""""""""""
9330
9331This intrinsic does nothing, and it's removed by optimizers and ignored
9332by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009333
9334Stack Map Intrinsics
9335--------------------
9336
9337LLVM provides experimental intrinsics to support runtime patching
9338mechanisms commonly desired in dynamic language JITs. These intrinsics
9339are described in :doc:`StackMaps`.