blob: ee09c8f3c019d080b34555cdb6e28b91c10a5c51 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
Sanjoy Dasc46bceb2016-09-27 18:01:42 +000064#include "llvm/ADT/ScopeExit.h"
Sanjoy Das17078692016-10-31 03:32:43 +000065#include "llvm/ADT/Sequence.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000066#include "llvm/ADT/SmallPtrSet.h"
67#include "llvm/ADT/Statistic.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000068#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000069#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000070#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000071#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000072#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000073#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000075#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000076#include "llvm/IR/Constants.h"
77#include "llvm/IR/DataLayout.h"
78#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000079#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000080#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000081#include "llvm/IR/GlobalAlias.h"
82#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000083#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000084#include "llvm/IR/Instructions.h"
85#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000086#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000087#include "llvm/IR/Operator.h"
Sanjoy Dasc88f5d32015-10-28 21:27:14 +000088#include "llvm/IR/PatternMatch.h"
Chris Lattner996795b2006-06-28 23:17:24 +000089#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000090#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000091#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000092#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000093#include "llvm/Support/raw_ostream.h"
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +000094#include "llvm/Support/SaveAndRestore.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000095#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000096using namespace llvm;
97
Chandler Carruthf1221bd2014-04-22 02:48:03 +000098#define DEBUG_TYPE "scalar-evolution"
99
Chris Lattner57ef9422006-12-19 22:30:33 +0000100STATISTIC(NumArrayLenItCounts,
101 "Number of trip counts computed with array length");
102STATISTIC(NumTripCountsComputed,
103 "Number of loops with predictable loop counts");
104STATISTIC(NumTripCountsNotComputed,
105 "Number of loops without predictable loop counts");
106STATISTIC(NumBruteForceTripCountsComputed,
107 "Number of loops with trip counts computed by force");
108
Dan Gohmand78c4002008-05-13 00:00:25 +0000109static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000110MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
111 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000112 "symbolically execute a constant "
113 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000114 cl::init(100));
115
Filipe Cabecinhas0da99372016-04-29 15:22:48 +0000116// FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
Benjamin Kramer214935e2012-10-26 17:31:32 +0000117static cl::opt<bool>
118VerifySCEV("verify-scev",
119 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
Wei Mia49559b2016-02-04 01:27:38 +0000120static cl::opt<bool>
121 VerifySCEVMap("verify-scev-maps",
Jeroen Ketemae48e3932016-04-12 23:21:46 +0000122 cl::desc("Verify no dangling value in ScalarEvolution's "
Wei Mia49559b2016-02-04 01:27:38 +0000123 "ExprValueMap (slow)"));
Benjamin Kramer214935e2012-10-26 17:31:32 +0000124
Li Huangfcfe8cd2016-10-20 21:38:39 +0000125static cl::opt<unsigned> MulOpsInlineThreshold(
126 "scev-mulops-inline-threshold", cl::Hidden,
127 cl::desc("Threshold for inlining multiplication operands into a SCEV"),
128 cl::init(1000));
129
Daniil Fukalovb09dac52017-01-26 13:33:17 +0000130static cl::opt<unsigned> AddOpsInlineThreshold(
131 "scev-addops-inline-threshold", cl::Hidden,
132 cl::desc("Threshold for inlining multiplication operands into a SCEV"),
133 cl::init(500));
134
Daniil Fukalov4c3322c2016-11-17 16:07:52 +0000135static cl::opt<unsigned>
136 MaxCompareDepth("scalar-evolution-max-compare-depth", cl::Hidden,
137 cl::desc("Maximum depth of recursive compare complexity"),
138 cl::init(32));
139
Michael Liao468fb742017-01-13 18:28:30 +0000140static cl::opt<unsigned> MaxConstantEvolvingDepth(
141 "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
142 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
143
Chris Lattnerd934c702004-04-02 20:23:17 +0000144//===----------------------------------------------------------------------===//
145// SCEV class definitions
146//===----------------------------------------------------------------------===//
147
148//===----------------------------------------------------------------------===//
149// Implementation of the SCEV class.
150//
Dan Gohman3423e722009-06-30 20:13:32 +0000151
Davide Italiano2071f4c2015-10-25 19:55:24 +0000152LLVM_DUMP_METHOD
153void SCEV::dump() const {
154 print(dbgs());
155 dbgs() << '\n';
156}
157
Dan Gohman534749b2010-11-17 22:27:42 +0000158void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000159 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000160 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000161 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000162 return;
163 case scTruncate: {
164 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
165 const SCEV *Op = Trunc->getOperand();
166 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
167 << *Trunc->getType() << ")";
168 return;
169 }
170 case scZeroExtend: {
171 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
172 const SCEV *Op = ZExt->getOperand();
173 OS << "(zext " << *Op->getType() << " " << *Op << " to "
174 << *ZExt->getType() << ")";
175 return;
176 }
177 case scSignExtend: {
178 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
179 const SCEV *Op = SExt->getOperand();
180 OS << "(sext " << *Op->getType() << " " << *Op << " to "
181 << *SExt->getType() << ")";
182 return;
183 }
184 case scAddRecExpr: {
185 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
186 OS << "{" << *AR->getOperand(0);
187 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
188 OS << ",+," << *AR->getOperand(i);
189 OS << "}<";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000190 if (AR->hasNoUnsignedWrap())
Chris Lattnera337f5e2011-01-09 02:16:18 +0000191 OS << "nuw><";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000192 if (AR->hasNoSignedWrap())
Chris Lattnera337f5e2011-01-09 02:16:18 +0000193 OS << "nsw><";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000194 if (AR->hasNoSelfWrap() &&
Andrew Trick8b55b732011-03-14 16:50:06 +0000195 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
196 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000197 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000198 OS << ">";
199 return;
200 }
201 case scAddExpr:
202 case scMulExpr:
203 case scUMaxExpr:
204 case scSMaxExpr: {
205 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000206 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000207 switch (NAry->getSCEVType()) {
208 case scAddExpr: OpStr = " + "; break;
209 case scMulExpr: OpStr = " * "; break;
210 case scUMaxExpr: OpStr = " umax "; break;
211 case scSMaxExpr: OpStr = " smax "; break;
212 }
213 OS << "(";
214 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
215 I != E; ++I) {
216 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000217 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000218 OS << OpStr;
219 }
220 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000221 switch (NAry->getSCEVType()) {
222 case scAddExpr:
223 case scMulExpr:
Sanjoy Das76c48e02016-02-04 18:21:54 +0000224 if (NAry->hasNoUnsignedWrap())
Andrew Trickd912a5b2011-11-29 02:06:35 +0000225 OS << "<nuw>";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000226 if (NAry->hasNoSignedWrap())
Andrew Trickd912a5b2011-11-29 02:06:35 +0000227 OS << "<nsw>";
228 }
Dan Gohman534749b2010-11-17 22:27:42 +0000229 return;
230 }
231 case scUDivExpr: {
232 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
233 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
234 return;
235 }
236 case scUnknown: {
237 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000238 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000239 if (U->isSizeOf(AllocTy)) {
240 OS << "sizeof(" << *AllocTy << ")";
241 return;
242 }
243 if (U->isAlignOf(AllocTy)) {
244 OS << "alignof(" << *AllocTy << ")";
245 return;
246 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000247
Chris Lattner229907c2011-07-18 04:54:35 +0000248 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000249 Constant *FieldNo;
250 if (U->isOffsetOf(CTy, FieldNo)) {
251 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000252 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000253 OS << ")";
254 return;
255 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000256
Dan Gohman534749b2010-11-17 22:27:42 +0000257 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000258 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000259 return;
260 }
261 case scCouldNotCompute:
262 OS << "***COULDNOTCOMPUTE***";
263 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000264 }
265 llvm_unreachable("Unknown SCEV kind!");
266}
267
Chris Lattner229907c2011-07-18 04:54:35 +0000268Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000269 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000270 case scConstant:
271 return cast<SCEVConstant>(this)->getType();
272 case scTruncate:
273 case scZeroExtend:
274 case scSignExtend:
275 return cast<SCEVCastExpr>(this)->getType();
276 case scAddRecExpr:
277 case scMulExpr:
278 case scUMaxExpr:
279 case scSMaxExpr:
280 return cast<SCEVNAryExpr>(this)->getType();
281 case scAddExpr:
282 return cast<SCEVAddExpr>(this)->getType();
283 case scUDivExpr:
284 return cast<SCEVUDivExpr>(this)->getType();
285 case scUnknown:
286 return cast<SCEVUnknown>(this)->getType();
287 case scCouldNotCompute:
288 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000289 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000290 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000291}
292
Dan Gohmanbe928e32008-06-18 16:23:07 +0000293bool SCEV::isZero() const {
294 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
295 return SC->getValue()->isZero();
296 return false;
297}
298
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000299bool SCEV::isOne() const {
300 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
301 return SC->getValue()->isOne();
302 return false;
303}
Chris Lattnerd934c702004-04-02 20:23:17 +0000304
Dan Gohman18a96bb2009-06-24 00:30:26 +0000305bool SCEV::isAllOnesValue() const {
306 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
307 return SC->getValue()->isAllOnesValue();
308 return false;
309}
310
Andrew Trick881a7762012-01-07 00:27:31 +0000311bool SCEV::isNonConstantNegative() const {
312 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
313 if (!Mul) return false;
314
315 // If there is a constant factor, it will be first.
316 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
317 if (!SC) return false;
318
319 // Return true if the value is negative, this matches things like (-42 * V).
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000320 return SC->getAPInt().isNegative();
Andrew Trick881a7762012-01-07 00:27:31 +0000321}
322
Owen Anderson04052ec2009-06-22 21:57:23 +0000323SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000324 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000325
Chris Lattnerd934c702004-04-02 20:23:17 +0000326bool SCEVCouldNotCompute::classof(const SCEV *S) {
327 return S->getSCEVType() == scCouldNotCompute;
328}
329
Dan Gohmanaf752342009-07-07 17:06:11 +0000330const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000331 FoldingSetNodeID ID;
332 ID.AddInteger(scConstant);
333 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000334 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000335 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000336 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000337 UniqueSCEVs.InsertNode(S, IP);
338 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000339}
Chris Lattnerd934c702004-04-02 20:23:17 +0000340
Nick Lewycky31eaca52014-01-27 10:04:03 +0000341const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000342 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000343}
344
Dan Gohmanaf752342009-07-07 17:06:11 +0000345const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000346ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
347 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000348 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000349}
350
Dan Gohman24ceda82010-06-18 19:54:20 +0000351SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000352 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000353 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000354
Dan Gohman24ceda82010-06-18 19:54:20 +0000355SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000356 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000357 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000358 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
359 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000360 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000361}
Chris Lattnerd934c702004-04-02 20:23:17 +0000362
Dan Gohman24ceda82010-06-18 19:54:20 +0000363SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000364 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000365 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000366 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
367 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000368 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000369}
370
Dan Gohman24ceda82010-06-18 19:54:20 +0000371SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000372 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000373 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000374 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
375 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000376 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000377}
378
Dan Gohman7cac9572010-08-02 23:49:30 +0000379void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000380 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000381 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000382
383 // Remove this SCEVUnknown from the uniquing map.
384 SE->UniqueSCEVs.RemoveNode(this);
385
386 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000387 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000388}
389
390void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000391 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000392 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000393
394 // Remove this SCEVUnknown from the uniquing map.
395 SE->UniqueSCEVs.RemoveNode(this);
396
397 // Update this SCEVUnknown to point to the new value. This is needed
398 // because there may still be outstanding SCEVs which still point to
399 // this SCEVUnknown.
400 setValPtr(New);
401}
402
Chris Lattner229907c2011-07-18 04:54:35 +0000403bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000404 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000405 if (VCE->getOpcode() == Instruction::PtrToInt)
406 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000407 if (CE->getOpcode() == Instruction::GetElementPtr &&
408 CE->getOperand(0)->isNullValue() &&
409 CE->getNumOperands() == 2)
410 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
411 if (CI->isOne()) {
412 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
413 ->getElementType();
414 return true;
415 }
Dan Gohmancf913832010-01-28 02:15:55 +0000416
417 return false;
418}
419
Chris Lattner229907c2011-07-18 04:54:35 +0000420bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000421 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000422 if (VCE->getOpcode() == Instruction::PtrToInt)
423 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000424 if (CE->getOpcode() == Instruction::GetElementPtr &&
425 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000426 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000427 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000428 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000429 if (!STy->isPacked() &&
430 CE->getNumOperands() == 3 &&
431 CE->getOperand(1)->isNullValue()) {
432 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
433 if (CI->isOne() &&
434 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000435 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000436 AllocTy = STy->getElementType(1);
437 return true;
438 }
439 }
440 }
Dan Gohmancf913832010-01-28 02:15:55 +0000441
442 return false;
443}
444
Chris Lattner229907c2011-07-18 04:54:35 +0000445bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000446 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000447 if (VCE->getOpcode() == Instruction::PtrToInt)
448 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
449 if (CE->getOpcode() == Instruction::GetElementPtr &&
450 CE->getNumOperands() == 3 &&
451 CE->getOperand(0)->isNullValue() &&
452 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000453 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000454 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
455 // Ignore vector types here so that ScalarEvolutionExpander doesn't
456 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000457 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000458 CTy = Ty;
459 FieldNo = CE->getOperand(2);
460 return true;
461 }
462 }
463
464 return false;
465}
466
Chris Lattnereb3e8402004-06-20 06:23:15 +0000467//===----------------------------------------------------------------------===//
468// SCEV Utilities
469//===----------------------------------------------------------------------===//
470
Sanjoy Das17078692016-10-31 03:32:43 +0000471/// Compare the two values \p LV and \p RV in terms of their "complexity" where
472/// "complexity" is a partial (and somewhat ad-hoc) relation used to order
473/// operands in SCEV expressions. \p EqCache is a set of pairs of values that
474/// have been previously deemed to be "equally complex" by this routine. It is
475/// intended to avoid exponential time complexity in cases like:
476///
477/// %a = f(%x, %y)
478/// %b = f(%a, %a)
479/// %c = f(%b, %b)
480///
481/// %d = f(%x, %y)
482/// %e = f(%d, %d)
483/// %f = f(%e, %e)
484///
485/// CompareValueComplexity(%f, %c)
486///
487/// Since we do not continue running this routine on expression trees once we
488/// have seen unequal values, there is no need to track them in the cache.
489static int
490CompareValueComplexity(SmallSet<std::pair<Value *, Value *>, 8> &EqCache,
491 const LoopInfo *const LI, Value *LV, Value *RV,
Daniil Fukalov4c3322c2016-11-17 16:07:52 +0000492 unsigned Depth) {
493 if (Depth > MaxCompareDepth || EqCache.count({LV, RV}))
Sanjoy Das507dd402016-10-18 17:45:16 +0000494 return 0;
495
Sanjoy Das9cd877a2016-10-18 17:45:13 +0000496 // Order pointer values after integer values. This helps SCEVExpander form
497 // GEPs.
498 bool LIsPointer = LV->getType()->isPointerTy(),
499 RIsPointer = RV->getType()->isPointerTy();
500 if (LIsPointer != RIsPointer)
501 return (int)LIsPointer - (int)RIsPointer;
502
503 // Compare getValueID values.
504 unsigned LID = LV->getValueID(), RID = RV->getValueID();
505 if (LID != RID)
506 return (int)LID - (int)RID;
507
508 // Sort arguments by their position.
Sanjoy Dasb4830a82016-10-30 23:52:53 +0000509 if (const auto *LA = dyn_cast<Argument>(LV)) {
510 const auto *RA = cast<Argument>(RV);
Sanjoy Das9cd877a2016-10-18 17:45:13 +0000511 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
512 return (int)LArgNo - (int)RArgNo;
513 }
514
Sanjoy Das299e6722016-10-30 23:52:56 +0000515 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
516 const auto *RGV = cast<GlobalValue>(RV);
517
518 const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
519 auto LT = GV->getLinkage();
520 return !(GlobalValue::isPrivateLinkage(LT) ||
521 GlobalValue::isInternalLinkage(LT));
522 };
523
524 // Use the names to distinguish the two values, but only if the
525 // names are semantically important.
526 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
527 return LGV->getName().compare(RGV->getName());
528 }
529
Sanjoy Das9cd877a2016-10-18 17:45:13 +0000530 // For instructions, compare their loop depth, and their operand count. This
531 // is pretty loose.
Sanjoy Dasb4830a82016-10-30 23:52:53 +0000532 if (const auto *LInst = dyn_cast<Instruction>(LV)) {
533 const auto *RInst = cast<Instruction>(RV);
Sanjoy Das9cd877a2016-10-18 17:45:13 +0000534
535 // Compare loop depths.
536 const BasicBlock *LParent = LInst->getParent(),
537 *RParent = RInst->getParent();
538 if (LParent != RParent) {
539 unsigned LDepth = LI->getLoopDepth(LParent),
540 RDepth = LI->getLoopDepth(RParent);
541 if (LDepth != RDepth)
542 return (int)LDepth - (int)RDepth;
543 }
544
545 // Compare the number of operands.
546 unsigned LNumOps = LInst->getNumOperands(),
547 RNumOps = RInst->getNumOperands();
Sanjoy Das17078692016-10-31 03:32:43 +0000548 if (LNumOps != RNumOps)
Sanjoy Das507dd402016-10-18 17:45:16 +0000549 return (int)LNumOps - (int)RNumOps;
550
Sanjoy Das17078692016-10-31 03:32:43 +0000551 for (unsigned Idx : seq(0u, LNumOps)) {
552 int Result =
553 CompareValueComplexity(EqCache, LI, LInst->getOperand(Idx),
Daniil Fukalov4c3322c2016-11-17 16:07:52 +0000554 RInst->getOperand(Idx), Depth + 1);
Sanjoy Das17078692016-10-31 03:32:43 +0000555 if (Result != 0)
Daniil Fukalove8703982016-11-16 16:41:40 +0000556 return Result;
Sanjoy Das17078692016-10-31 03:32:43 +0000557 }
Sanjoy Das9cd877a2016-10-18 17:45:13 +0000558 }
559
Daniil Fukalov4c3322c2016-11-17 16:07:52 +0000560 EqCache.insert({LV, RV});
Sanjoy Das9cd877a2016-10-18 17:45:13 +0000561 return 0;
562}
563
Sanjoy Das237c8452016-09-27 18:01:48 +0000564// Return negative, zero, or positive, if LHS is less than, equal to, or greater
565// than RHS, respectively. A three-way result allows recursive comparisons to be
566// more efficient.
Daniil Fukalov4c3322c2016-11-17 16:07:52 +0000567static int CompareSCEVComplexity(
568 SmallSet<std::pair<const SCEV *, const SCEV *>, 8> &EqCacheSCEV,
569 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
570 unsigned Depth = 0) {
Sanjoy Das237c8452016-09-27 18:01:48 +0000571 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
572 if (LHS == RHS)
573 return 0;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000574
Sanjoy Das237c8452016-09-27 18:01:48 +0000575 // Primarily, sort the SCEVs by their getSCEVType().
576 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
577 if (LType != RType)
578 return (int)LType - (int)RType;
Dan Gohman27065672010-08-27 15:26:01 +0000579
Daniil Fukalov4c3322c2016-11-17 16:07:52 +0000580 if (Depth > MaxCompareDepth || EqCacheSCEV.count({LHS, RHS}))
581 return 0;
Sanjoy Das237c8452016-09-27 18:01:48 +0000582 // Aside from the getSCEVType() ordering, the particular ordering
583 // isn't very important except that it's beneficial to be consistent,
584 // so that (a + b) and (b + a) don't end up as different expressions.
585 switch (static_cast<SCEVTypes>(LType)) {
586 case scUnknown: {
587 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
588 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000589
Sanjoy Das17078692016-10-31 03:32:43 +0000590 SmallSet<std::pair<Value *, Value *>, 8> EqCache;
Daniil Fukalov4c3322c2016-11-17 16:07:52 +0000591 int X = CompareValueComplexity(EqCache, LI, LU->getValue(), RU->getValue(),
592 Depth + 1);
593 if (X == 0)
594 EqCacheSCEV.insert({LHS, RHS});
595 return X;
Sanjoy Das237c8452016-09-27 18:01:48 +0000596 }
Sanjoy Das7881abd2015-12-08 04:32:51 +0000597
Sanjoy Das237c8452016-09-27 18:01:48 +0000598 case scConstant: {
599 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
600 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
601
602 // Compare constant values.
603 const APInt &LA = LC->getAPInt();
604 const APInt &RA = RC->getAPInt();
605 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
606 if (LBitWidth != RBitWidth)
607 return (int)LBitWidth - (int)RBitWidth;
608 return LA.ult(RA) ? -1 : 1;
609 }
610
611 case scAddRecExpr: {
612 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
613 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
614
615 // Compare addrec loop depths.
616 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
617 if (LLoop != RLoop) {
618 unsigned LDepth = LLoop->getLoopDepth(), RDepth = RLoop->getLoopDepth();
619 if (LDepth != RDepth)
620 return (int)LDepth - (int)RDepth;
621 }
622
623 // Addrec complexity grows with operand count.
624 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
625 if (LNumOps != RNumOps)
626 return (int)LNumOps - (int)RNumOps;
627
628 // Lexicographically compare.
629 for (unsigned i = 0; i != LNumOps; ++i) {
Daniil Fukalov4c3322c2016-11-17 16:07:52 +0000630 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LA->getOperand(i),
631 RA->getOperand(i), Depth + 1);
Sanjoy Das7881abd2015-12-08 04:32:51 +0000632 if (X != 0)
633 return X;
Sanjoy Das7881abd2015-12-08 04:32:51 +0000634 }
Daniil Fukalov4c3322c2016-11-17 16:07:52 +0000635 EqCacheSCEV.insert({LHS, RHS});
Sanjoy Das237c8452016-09-27 18:01:48 +0000636 return 0;
Sanjoy Das7881abd2015-12-08 04:32:51 +0000637 }
Sanjoy Das237c8452016-09-27 18:01:48 +0000638
639 case scAddExpr:
640 case scMulExpr:
641 case scSMaxExpr:
642 case scUMaxExpr: {
643 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
644 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
645
646 // Lexicographically compare n-ary expressions.
647 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
648 if (LNumOps != RNumOps)
649 return (int)LNumOps - (int)RNumOps;
650
651 for (unsigned i = 0; i != LNumOps; ++i) {
652 if (i >= RNumOps)
653 return 1;
Daniil Fukalov4c3322c2016-11-17 16:07:52 +0000654 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(i),
655 RC->getOperand(i), Depth + 1);
Sanjoy Das237c8452016-09-27 18:01:48 +0000656 if (X != 0)
657 return X;
658 }
Daniil Fukalov4c3322c2016-11-17 16:07:52 +0000659 EqCacheSCEV.insert({LHS, RHS});
660 return 0;
Sanjoy Das237c8452016-09-27 18:01:48 +0000661 }
662
663 case scUDivExpr: {
664 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
665 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
666
667 // Lexicographically compare udiv expressions.
Daniil Fukalov4c3322c2016-11-17 16:07:52 +0000668 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getLHS(), RC->getLHS(),
669 Depth + 1);
Sanjoy Das237c8452016-09-27 18:01:48 +0000670 if (X != 0)
671 return X;
Daniil Fukalov4c3322c2016-11-17 16:07:52 +0000672 X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getRHS(), RC->getRHS(),
673 Depth + 1);
674 if (X == 0)
675 EqCacheSCEV.insert({LHS, RHS});
676 return X;
Sanjoy Das237c8452016-09-27 18:01:48 +0000677 }
678
679 case scTruncate:
680 case scZeroExtend:
681 case scSignExtend: {
682 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
683 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
684
685 // Compare cast expressions by operand.
Daniil Fukalov4c3322c2016-11-17 16:07:52 +0000686 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(),
687 RC->getOperand(), Depth + 1);
688 if (X == 0)
689 EqCacheSCEV.insert({LHS, RHS});
690 return X;
Sanjoy Das237c8452016-09-27 18:01:48 +0000691 }
692
693 case scCouldNotCompute:
694 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
695 }
696 llvm_unreachable("Unknown SCEV kind!");
697}
Chris Lattnereb3e8402004-06-20 06:23:15 +0000698
Sanjoy Dasf8570812016-05-29 00:38:22 +0000699/// Given a list of SCEV objects, order them by their complexity, and group
700/// objects of the same complexity together by value. When this routine is
701/// finished, we know that any duplicates in the vector are consecutive and that
702/// complexity is monotonically increasing.
Chris Lattnereb3e8402004-06-20 06:23:15 +0000703///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000704/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000705/// results from this routine. In other words, we don't want the results of
706/// this to depend on where the addresses of various SCEV objects happened to
707/// land in memory.
708///
Dan Gohmanaf752342009-07-07 17:06:11 +0000709static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000710 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000711 if (Ops.size() < 2) return; // Noop
Daniil Fukalov4c3322c2016-11-17 16:07:52 +0000712
713 SmallSet<std::pair<const SCEV *, const SCEV *>, 8> EqCache;
Chris Lattnereb3e8402004-06-20 06:23:15 +0000714 if (Ops.size() == 2) {
715 // This is the common case, which also happens to be trivially simple.
716 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000717 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
Daniil Fukalov4c3322c2016-11-17 16:07:52 +0000718 if (CompareSCEVComplexity(EqCache, LI, RHS, LHS) < 0)
Dan Gohman7712d292010-08-29 15:07:13 +0000719 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000720 return;
721 }
722
Dan Gohman24ceda82010-06-18 19:54:20 +0000723 // Do the rough sort by complexity.
Sanjoy Das237c8452016-09-27 18:01:48 +0000724 std::stable_sort(Ops.begin(), Ops.end(),
Daniil Fukalov4c3322c2016-11-17 16:07:52 +0000725 [&EqCache, LI](const SCEV *LHS, const SCEV *RHS) {
726 return CompareSCEVComplexity(EqCache, LI, LHS, RHS) < 0;
Sanjoy Das237c8452016-09-27 18:01:48 +0000727 });
Dan Gohman24ceda82010-06-18 19:54:20 +0000728
729 // Now that we are sorted by complexity, group elements of the same
730 // complexity. Note that this is, at worst, N^2, but the vector is likely to
731 // be extremely short in practice. Note that we take this approach because we
732 // do not want to depend on the addresses of the objects we are grouping.
733 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
734 const SCEV *S = Ops[i];
735 unsigned Complexity = S->getSCEVType();
736
737 // If there are any objects of the same complexity and same value as this
738 // one, group them.
739 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
740 if (Ops[j] == S) { // Found a duplicate.
741 // Move it to immediately after i'th element.
742 std::swap(Ops[i+1], Ops[j]);
743 ++i; // no need to rescan it.
744 if (i == e-2) return; // Done!
745 }
746 }
747 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000748}
749
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000750// Returns the size of the SCEV S.
751static inline int sizeOfSCEV(const SCEV *S) {
Sanjoy Das7d752672015-12-08 04:32:54 +0000752 struct FindSCEVSize {
753 int Size;
754 FindSCEVSize() : Size(0) {}
755
756 bool follow(const SCEV *S) {
757 ++Size;
758 // Keep looking at all operands of S.
759 return true;
760 }
761 bool isDone() const {
762 return false;
763 }
764 };
765
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000766 FindSCEVSize F;
767 SCEVTraversal<FindSCEVSize> ST(F);
768 ST.visitAll(S);
769 return F.Size;
770}
771
772namespace {
773
David Majnemer4e879362014-12-14 09:12:33 +0000774struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000775public:
776 // Computes the Quotient and Remainder of the division of Numerator by
777 // Denominator.
778 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
779 const SCEV *Denominator, const SCEV **Quotient,
780 const SCEV **Remainder) {
781 assert(Numerator && Denominator && "Uninitialized SCEV");
782
David Majnemer4e879362014-12-14 09:12:33 +0000783 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000784
785 // Check for the trivial case here to avoid having to check for it in the
786 // rest of the code.
787 if (Numerator == Denominator) {
788 *Quotient = D.One;
789 *Remainder = D.Zero;
790 return;
791 }
792
793 if (Numerator->isZero()) {
794 *Quotient = D.Zero;
795 *Remainder = D.Zero;
796 return;
797 }
798
Brendon Cahoona57cc8b2015-04-20 16:03:28 +0000799 // A simple case when N/1. The quotient is N.
800 if (Denominator->isOne()) {
801 *Quotient = Numerator;
802 *Remainder = D.Zero;
803 return;
804 }
805
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000806 // Split the Denominator when it is a product.
Sanjoy Dasb277a422016-06-15 06:53:55 +0000807 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000808 const SCEV *Q, *R;
809 *Quotient = Numerator;
810 for (const SCEV *Op : T->operands()) {
811 divide(SE, *Quotient, Op, &Q, &R);
812 *Quotient = Q;
813
814 // Bail out when the Numerator is not divisible by one of the terms of
815 // the Denominator.
816 if (!R->isZero()) {
817 *Quotient = D.Zero;
818 *Remainder = Numerator;
819 return;
820 }
821 }
822 *Remainder = D.Zero;
823 return;
824 }
825
826 D.visit(Numerator);
827 *Quotient = D.Quotient;
828 *Remainder = D.Remainder;
829 }
830
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000831 // Except in the trivial case described above, we do not know how to divide
832 // Expr by Denominator for the following functions with empty implementation.
833 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
834 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
835 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
836 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
837 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
838 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
839 void visitUnknown(const SCEVUnknown *Numerator) {}
840 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
841
David Majnemer4e879362014-12-14 09:12:33 +0000842 void visitConstant(const SCEVConstant *Numerator) {
843 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000844 APInt NumeratorVal = Numerator->getAPInt();
845 APInt DenominatorVal = D->getAPInt();
David Majnemer4e879362014-12-14 09:12:33 +0000846 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
847 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
848
849 if (NumeratorBW > DenominatorBW)
850 DenominatorVal = DenominatorVal.sext(NumeratorBW);
851 else if (NumeratorBW < DenominatorBW)
852 NumeratorVal = NumeratorVal.sext(DenominatorBW);
853
854 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
855 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
856 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
857 Quotient = SE.getConstant(QuotientVal);
858 Remainder = SE.getConstant(RemainderVal);
859 return;
860 }
861 }
862
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000863 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
864 const SCEV *StartQ, *StartR, *StepQ, *StepR;
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000865 if (!Numerator->isAffine())
866 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000867 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
868 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
Brendon Cahoonf9751ad2015-04-22 15:06:40 +0000869 // Bail out if the types do not match.
870 Type *Ty = Denominator->getType();
871 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000872 Ty != StepQ->getType() || Ty != StepR->getType())
873 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000874 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
875 Numerator->getNoWrapFlags());
876 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
877 Numerator->getNoWrapFlags());
878 }
879
880 void visitAddExpr(const SCEVAddExpr *Numerator) {
881 SmallVector<const SCEV *, 2> Qs, Rs;
882 Type *Ty = Denominator->getType();
883
884 for (const SCEV *Op : Numerator->operands()) {
885 const SCEV *Q, *R;
886 divide(SE, Op, Denominator, &Q, &R);
887
888 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000889 if (Ty != Q->getType() || Ty != R->getType())
890 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000891
892 Qs.push_back(Q);
893 Rs.push_back(R);
894 }
895
896 if (Qs.size() == 1) {
897 Quotient = Qs[0];
898 Remainder = Rs[0];
899 return;
900 }
901
902 Quotient = SE.getAddExpr(Qs);
903 Remainder = SE.getAddExpr(Rs);
904 }
905
906 void visitMulExpr(const SCEVMulExpr *Numerator) {
907 SmallVector<const SCEV *, 2> Qs;
908 Type *Ty = Denominator->getType();
909
910 bool FoundDenominatorTerm = false;
911 for (const SCEV *Op : Numerator->operands()) {
912 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000913 if (Ty != Op->getType())
914 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000915
916 if (FoundDenominatorTerm) {
917 Qs.push_back(Op);
918 continue;
919 }
920
921 // Check whether Denominator divides one of the product operands.
922 const SCEV *Q, *R;
923 divide(SE, Op, Denominator, &Q, &R);
924 if (!R->isZero()) {
925 Qs.push_back(Op);
926 continue;
927 }
928
929 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000930 if (Ty != Q->getType())
931 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000932
933 FoundDenominatorTerm = true;
934 Qs.push_back(Q);
935 }
936
937 if (FoundDenominatorTerm) {
938 Remainder = Zero;
939 if (Qs.size() == 1)
940 Quotient = Qs[0];
941 else
942 Quotient = SE.getMulExpr(Qs);
943 return;
944 }
945
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000946 if (!isa<SCEVUnknown>(Denominator))
947 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000948
949 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
950 ValueToValueMap RewriteMap;
951 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
952 cast<SCEVConstant>(Zero)->getValue();
953 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
954
955 if (Remainder->isZero()) {
956 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
957 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
958 cast<SCEVConstant>(One)->getValue();
959 Quotient =
960 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
961 return;
962 }
963
964 // Quotient is (Numerator - Remainder) divided by Denominator.
965 const SCEV *Q, *R;
966 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000967 // This SCEV does not seem to simplify: fail the division here.
968 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
969 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000970 divide(SE, Diff, Denominator, &Q, &R);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000971 if (R != Zero)
972 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000973 Quotient = Q;
974 }
975
976private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000977 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
978 const SCEV *Denominator)
979 : SE(S), Denominator(Denominator) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +0000980 Zero = SE.getZero(Denominator->getType());
981 One = SE.getOne(Denominator->getType());
David Majnemer5d2670c2014-11-17 11:27:45 +0000982
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000983 // We generally do not know how to divide Expr by Denominator. We
984 // initialize the division to a "cannot divide" state to simplify the rest
985 // of the code.
986 cannotDivide(Numerator);
987 }
988
989 // Convenience function for giving up on the division. We set the quotient to
990 // be equal to zero and the remainder to be equal to the numerator.
991 void cannotDivide(const SCEV *Numerator) {
David Majnemer5d2670c2014-11-17 11:27:45 +0000992 Quotient = Zero;
993 Remainder = Numerator;
994 }
995
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000996 ScalarEvolution &SE;
997 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000998};
999
Alexander Kornienkof00654e2015-06-23 09:49:53 +00001000}
Mark Heffernan2beab5f2014-10-10 17:39:11 +00001001
Chris Lattnerd934c702004-04-02 20:23:17 +00001002//===----------------------------------------------------------------------===//
1003// Simple SCEV method implementations
1004//===----------------------------------------------------------------------===//
1005
Sanjoy Dasf8570812016-05-29 00:38:22 +00001006/// Compute BC(It, K). The result has width W. Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +00001007static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +00001008 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +00001009 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +00001010 // Handle the simplest case efficiently.
1011 if (K == 1)
1012 return SE.getTruncateOrZeroExtend(It, ResultTy);
1013
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001014 // We are using the following formula for BC(It, K):
1015 //
1016 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1017 //
Eli Friedman61f67622008-08-04 23:49:06 +00001018 // Suppose, W is the bitwidth of the return value. We must be prepared for
1019 // overflow. Hence, we must assure that the result of our computation is
1020 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
1021 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001022 //
Eli Friedman61f67622008-08-04 23:49:06 +00001023 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +00001024 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +00001025 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1026 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001027 //
Eli Friedman61f67622008-08-04 23:49:06 +00001028 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001029 //
Eli Friedman61f67622008-08-04 23:49:06 +00001030 // This formula is trivially equivalent to the previous formula. However,
1031 // this formula can be implemented much more efficiently. The trick is that
1032 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1033 // arithmetic. To do exact division in modular arithmetic, all we have
1034 // to do is multiply by the inverse. Therefore, this step can be done at
1035 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +00001036 //
Eli Friedman61f67622008-08-04 23:49:06 +00001037 // The next issue is how to safely do the division by 2^T. The way this
1038 // is done is by doing the multiplication step at a width of at least W + T
1039 // bits. This way, the bottom W+T bits of the product are accurate. Then,
1040 // when we perform the division by 2^T (which is equivalent to a right shift
1041 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
1042 // truncated out after the division by 2^T.
1043 //
1044 // In comparison to just directly using the first formula, this technique
1045 // is much more efficient; using the first formula requires W * K bits,
1046 // but this formula less than W + K bits. Also, the first formula requires
1047 // a division step, whereas this formula only requires multiplies and shifts.
1048 //
1049 // It doesn't matter whether the subtraction step is done in the calculation
1050 // width or the input iteration count's width; if the subtraction overflows,
1051 // the result must be zero anyway. We prefer here to do it in the width of
1052 // the induction variable because it helps a lot for certain cases; CodeGen
1053 // isn't smart enough to ignore the overflow, which leads to much less
1054 // efficient code if the width of the subtraction is wider than the native
1055 // register width.
1056 //
1057 // (It's possible to not widen at all by pulling out factors of 2 before
1058 // the multiplication; for example, K=2 can be calculated as
1059 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1060 // extra arithmetic, so it's not an obvious win, and it gets
1061 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001062
Eli Friedman61f67622008-08-04 23:49:06 +00001063 // Protection from insane SCEVs; this bound is conservative,
1064 // but it probably doesn't matter.
1065 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +00001066 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001067
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001068 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001069
Eli Friedman61f67622008-08-04 23:49:06 +00001070 // Calculate K! / 2^T and T; we divide out the factors of two before
1071 // multiplying for calculating K! / 2^T to avoid overflow.
1072 // Other overflow doesn't matter because we only care about the bottom
1073 // W bits of the result.
1074 APInt OddFactorial(W, 1);
1075 unsigned T = 1;
1076 for (unsigned i = 3; i <= K; ++i) {
1077 APInt Mult(W, i);
1078 unsigned TwoFactors = Mult.countTrailingZeros();
1079 T += TwoFactors;
1080 Mult = Mult.lshr(TwoFactors);
1081 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001082 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001083
Eli Friedman61f67622008-08-04 23:49:06 +00001084 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001085 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001086
Dan Gohman8b0a4192010-03-01 17:49:51 +00001087 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001088 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001089
1090 // Calculate the multiplicative inverse of K! / 2^T;
1091 // this multiplication factor will perform the exact division by
1092 // K! / 2^T.
1093 APInt Mod = APInt::getSignedMinValue(W+1);
1094 APInt MultiplyFactor = OddFactorial.zext(W+1);
1095 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1096 MultiplyFactor = MultiplyFactor.trunc(W);
1097
1098 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001099 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001100 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001101 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001102 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001103 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001104 Dividend = SE.getMulExpr(Dividend,
1105 SE.getTruncateOrZeroExtend(S, CalculationTy));
1106 }
1107
1108 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001109 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001110
1111 // Truncate the result, and divide by K! / 2^T.
1112
1113 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1114 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001115}
1116
Sanjoy Dasf8570812016-05-29 00:38:22 +00001117/// Return the value of this chain of recurrences at the specified iteration
1118/// number. We can evaluate this recurrence by multiplying each element in the
1119/// chain by the binomial coefficient corresponding to it. In other words, we
1120/// can evaluate {A,+,B,+,C,+,D} as:
Chris Lattnerd934c702004-04-02 20:23:17 +00001121///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001122/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001123///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001124/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001125///
Dan Gohmanaf752342009-07-07 17:06:11 +00001126const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001127 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001128 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001129 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001130 // The computation is correct in the face of overflow provided that the
1131 // multiplication is performed _after_ the evaluation of the binomial
1132 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001133 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001134 if (isa<SCEVCouldNotCompute>(Coeff))
1135 return Coeff;
1136
1137 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001138 }
1139 return Result;
1140}
1141
Chris Lattnerd934c702004-04-02 20:23:17 +00001142//===----------------------------------------------------------------------===//
1143// SCEV Expression folder implementations
1144//===----------------------------------------------------------------------===//
1145
Dan Gohmanaf752342009-07-07 17:06:11 +00001146const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001147 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001148 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001149 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001150 assert(isSCEVable(Ty) &&
1151 "This is not a conversion to a SCEVable type!");
1152 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001153
Dan Gohman3a302cb2009-07-13 20:50:19 +00001154 FoldingSetNodeID ID;
1155 ID.AddInteger(scTruncate);
1156 ID.AddPointer(Op);
1157 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001158 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001159 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1160
Dan Gohman3423e722009-06-30 20:13:32 +00001161 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001162 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001163 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001164 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001165
Dan Gohman79af8542009-04-22 16:20:48 +00001166 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001167 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001168 return getTruncateExpr(ST->getOperand(), Ty);
1169
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001170 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001171 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001172 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1173
1174 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001175 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001176 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1177
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001178 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
Nick Lewycky2ce28322015-03-20 02:52:23 +00001179 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001180 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1181 SmallVector<const SCEV *, 4> Operands;
1182 bool hasTrunc = false;
1183 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1184 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001185 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1186 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001187 Operands.push_back(S);
1188 }
1189 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001190 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001191 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001192 }
1193
Nick Lewycky5c901f32011-01-19 18:56:00 +00001194 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
Nick Lewyckybe8af482015-03-20 02:25:00 +00001195 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001196 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1197 SmallVector<const SCEV *, 4> Operands;
1198 bool hasTrunc = false;
1199 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1200 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001201 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1202 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5c901f32011-01-19 18:56:00 +00001203 Operands.push_back(S);
1204 }
1205 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001206 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001207 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001208 }
1209
Dan Gohman5a728c92009-06-18 16:24:47 +00001210 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001211 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001212 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00001213 for (const SCEV *Op : AddRec->operands())
1214 Operands.push_back(getTruncateExpr(Op, Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001215 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001216 }
1217
Dan Gohman89dd42a2010-06-25 18:47:08 +00001218 // The cast wasn't folded; create an explicit cast node. We can reuse
1219 // the existing insert position since if we get here, we won't have
1220 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001221 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1222 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001223 UniqueSCEVs.InsertNode(S, IP);
1224 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001225}
1226
Sanjoy Das4153f472015-02-18 01:47:07 +00001227// Get the limit of a recurrence such that incrementing by Step cannot cause
1228// signed overflow as long as the value of the recurrence within the
1229// loop does not exceed this limit before incrementing.
1230static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1231 ICmpInst::Predicate *Pred,
1232 ScalarEvolution *SE) {
1233 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1234 if (SE->isKnownPositive(Step)) {
1235 *Pred = ICmpInst::ICMP_SLT;
1236 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1237 SE->getSignedRange(Step).getSignedMax());
1238 }
1239 if (SE->isKnownNegative(Step)) {
1240 *Pred = ICmpInst::ICMP_SGT;
1241 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1242 SE->getSignedRange(Step).getSignedMin());
1243 }
1244 return nullptr;
1245}
1246
1247// Get the limit of a recurrence such that incrementing by Step cannot cause
1248// unsigned overflow as long as the value of the recurrence within the loop does
1249// not exceed this limit before incrementing.
1250static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1251 ICmpInst::Predicate *Pred,
1252 ScalarEvolution *SE) {
1253 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1254 *Pred = ICmpInst::ICMP_ULT;
1255
1256 return SE->getConstant(APInt::getMinValue(BitWidth) -
1257 SE->getUnsignedRange(Step).getUnsignedMax());
1258}
1259
1260namespace {
1261
1262struct ExtendOpTraitsBase {
1263 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1264};
1265
1266// Used to make code generic over signed and unsigned overflow.
1267template <typename ExtendOp> struct ExtendOpTraits {
1268 // Members present:
1269 //
1270 // static const SCEV::NoWrapFlags WrapType;
1271 //
1272 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1273 //
1274 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1275 // ICmpInst::Predicate *Pred,
1276 // ScalarEvolution *SE);
1277};
1278
1279template <>
1280struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1281 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1282
1283 static const GetExtendExprTy GetExtendExpr;
1284
1285 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1286 ICmpInst::Predicate *Pred,
1287 ScalarEvolution *SE) {
1288 return getSignedOverflowLimitForStep(Step, Pred, SE);
1289 }
1290};
1291
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001292const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001293 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1294
1295template <>
1296struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1297 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1298
1299 static const GetExtendExprTy GetExtendExpr;
1300
1301 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1302 ICmpInst::Predicate *Pred,
1303 ScalarEvolution *SE) {
1304 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1305 }
1306};
1307
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001308const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001309 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
Alexander Kornienkof00654e2015-06-23 09:49:53 +00001310}
Sanjoy Das4153f472015-02-18 01:47:07 +00001311
1312// The recurrence AR has been shown to have no signed/unsigned wrap or something
1313// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1314// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1315// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1316// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1317// expression "Step + sext/zext(PreIncAR)" is congruent with
1318// "sext/zext(PostIncAR)"
1319template <typename ExtendOpTy>
1320static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1321 ScalarEvolution *SE) {
1322 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1323 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1324
1325 const Loop *L = AR->getLoop();
1326 const SCEV *Start = AR->getStart();
1327 const SCEV *Step = AR->getStepRecurrence(*SE);
1328
1329 // Check for a simple looking step prior to loop entry.
1330 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1331 if (!SA)
1332 return nullptr;
1333
1334 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1335 // subtraction is expensive. For this purpose, perform a quick and dirty
1336 // difference, by checking for Step in the operand list.
1337 SmallVector<const SCEV *, 4> DiffOps;
1338 for (const SCEV *Op : SA->operands())
1339 if (Op != Step)
1340 DiffOps.push_back(Op);
1341
1342 if (DiffOps.size() == SA->getNumOperands())
1343 return nullptr;
1344
1345 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1346 // `Step`:
1347
1348 // 1. NSW/NUW flags on the step increment.
Sanjoy Das0714e3e2015-10-23 06:33:47 +00001349 auto PreStartFlags =
1350 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1351 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
Sanjoy Das4153f472015-02-18 01:47:07 +00001352 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1353 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1354
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001355 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1356 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001357 //
1358
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001359 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1360 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1361 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001362 return PreStart;
1363
1364 // 2. Direct overflow check on the step operation's expression.
1365 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1366 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1367 const SCEV *OperandExtendedStart =
1368 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1369 (SE->*GetExtendExpr)(Step, WideTy));
1370 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1371 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1372 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1373 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1374 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1375 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1376 }
1377 return PreStart;
1378 }
1379
1380 // 3. Loop precondition.
1381 ICmpInst::Predicate Pred;
1382 const SCEV *OverflowLimit =
1383 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1384
1385 if (OverflowLimit &&
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001386 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
Sanjoy Das4153f472015-02-18 01:47:07 +00001387 return PreStart;
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001388
Sanjoy Das4153f472015-02-18 01:47:07 +00001389 return nullptr;
1390}
1391
1392// Get the normalized zero or sign extended expression for this AddRec's Start.
1393template <typename ExtendOpTy>
1394static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1395 ScalarEvolution *SE) {
1396 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1397
1398 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1399 if (!PreStart)
1400 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1401
1402 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1403 (SE->*GetExtendExpr)(PreStart, Ty));
1404}
1405
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001406// Try to prove away overflow by looking at "nearby" add recurrences. A
1407// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1408// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1409//
1410// Formally:
1411//
1412// {S,+,X} == {S-T,+,X} + T
1413// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1414//
1415// If ({S-T,+,X} + T) does not overflow ... (1)
1416//
1417// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1418//
1419// If {S-T,+,X} does not overflow ... (2)
1420//
1421// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1422// == {Ext(S-T)+Ext(T),+,Ext(X)}
1423//
1424// If (S-T)+T does not overflow ... (3)
1425//
1426// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1427// == {Ext(S),+,Ext(X)} == LHS
1428//
1429// Thus, if (1), (2) and (3) are true for some T, then
1430// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1431//
1432// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1433// does not overflow" restricted to the 0th iteration. Therefore we only need
1434// to check for (1) and (2).
1435//
1436// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1437// is `Delta` (defined below).
1438//
1439template <typename ExtendOpTy>
1440bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1441 const SCEV *Step,
1442 const Loop *L) {
1443 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1444
1445 // We restrict `Start` to a constant to prevent SCEV from spending too much
1446 // time here. It is correct (but more expensive) to continue with a
1447 // non-constant `Start` and do a general SCEV subtraction to compute
1448 // `PreStart` below.
1449 //
1450 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1451 if (!StartC)
1452 return false;
1453
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001454 APInt StartAI = StartC->getAPInt();
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001455
1456 for (unsigned Delta : {-2, -1, 1, 2}) {
1457 const SCEV *PreStart = getConstant(StartAI - Delta);
1458
Sanjoy Das42801102015-10-23 06:57:21 +00001459 FoldingSetNodeID ID;
1460 ID.AddInteger(scAddRecExpr);
1461 ID.AddPointer(PreStart);
1462 ID.AddPointer(Step);
1463 ID.AddPointer(L);
1464 void *IP = nullptr;
1465 const auto *PreAR =
1466 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1467
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001468 // Give up if we don't already have the add recurrence we need because
1469 // actually constructing an add recurrence is relatively expensive.
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001470 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1471 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1472 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1473 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1474 DeltaS, &Pred, this);
1475 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1476 return true;
1477 }
1478 }
1479
1480 return false;
1481}
1482
Dan Gohmanaf752342009-07-07 17:06:11 +00001483const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001484 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001485 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001486 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001487 assert(isSCEVable(Ty) &&
1488 "This is not a conversion to a SCEVable type!");
1489 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001490
Dan Gohman3423e722009-06-30 20:13:32 +00001491 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001492 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1493 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001494 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001495
Dan Gohman79af8542009-04-22 16:20:48 +00001496 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001497 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001498 return getZeroExtendExpr(SZ->getOperand(), Ty);
1499
Dan Gohman74a0ba12009-07-13 20:55:53 +00001500 // Before doing any expensive analysis, check to see if we've already
1501 // computed a SCEV for this Op and Ty.
1502 FoldingSetNodeID ID;
1503 ID.AddInteger(scZeroExtend);
1504 ID.AddPointer(Op);
1505 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001506 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001507 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1508
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001509 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1510 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1511 // It's possible the bits taken off by the truncate were all zero bits. If
1512 // so, we should be able to simplify this further.
1513 const SCEV *X = ST->getOperand();
1514 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001515 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1516 unsigned NewBits = getTypeSizeInBits(Ty);
1517 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001518 CR.zextOrTrunc(NewBits)))
1519 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001520 }
1521
Dan Gohman76466372009-04-27 20:16:15 +00001522 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001523 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001524 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001525 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001526 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001527 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001528 const SCEV *Start = AR->getStart();
1529 const SCEV *Step = AR->getStepRecurrence(*this);
1530 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1531 const Loop *L = AR->getLoop();
1532
Sanjoy Das724f5cf2016-03-03 18:31:29 +00001533 if (!AR->hasNoUnsignedWrap()) {
1534 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1535 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1536 }
1537
Dan Gohman62ef6a72009-07-25 01:22:26 +00001538 // If we have special knowledge that this addrec won't overflow,
1539 // we don't need to do any further analysis.
Sanjoy Das76c48e02016-02-04 18:21:54 +00001540 if (AR->hasNoUnsignedWrap())
Sanjoy Das4153f472015-02-18 01:47:07 +00001541 return getAddRecExpr(
1542 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1543 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001544
Dan Gohman76466372009-04-27 20:16:15 +00001545 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1546 // Note that this serves two purposes: It filters out loops that are
1547 // simply not analyzable, and it covers the case where this code is
1548 // being called from within backedge-taken count analysis, such that
1549 // attempting to ask for the backedge-taken count would likely result
1550 // in infinite recursion. In the later case, the analysis code will
1551 // cope with a conservative value, and it will take care to purge
1552 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001553 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001554 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001555 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001556 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001557
1558 // Check whether the backedge-taken count can be losslessly casted to
1559 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001560 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001561 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001562 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001563 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1564 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001565 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001566 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001567 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001568 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1569 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1570 const SCEV *WideMaxBECount =
1571 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001572 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001573 getAddExpr(WideStart,
1574 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001575 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001576 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001577 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1578 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001579 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001580 return getAddRecExpr(
1581 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1582 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001583 }
Dan Gohman76466372009-04-27 20:16:15 +00001584 // Similar to above, only this time treat the step value as signed.
1585 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001586 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001587 getAddExpr(WideStart,
1588 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001589 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001590 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001591 // Cache knowledge of AR NW, which is propagated to this AddRec.
1592 // Negative step causes unsigned wrap, but it still can't self-wrap.
1593 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001594 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001595 return getAddRecExpr(
1596 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1597 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001598 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001599 }
Sanjoy Dasf5d40d52016-05-17 17:51:14 +00001600 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001601
Sanjoy Dasf5d40d52016-05-17 17:51:14 +00001602 // Normally, in the cases we can prove no-overflow via a
1603 // backedge guarding condition, we can also compute a backedge
1604 // taken count for the loop. The exceptions are assumptions and
1605 // guards present in the loop -- SCEV is not great at exploiting
1606 // these to compute max backedge taken counts, but can still use
1607 // these to prove lack of overflow. Use this fact to avoid
1608 // doing extra work that may not pay off.
1609 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
Daniel Jasperaec2fa32016-12-19 08:22:17 +00001610 !AC.assumptions().empty()) {
Sanjoy Dasf5d40d52016-05-17 17:51:14 +00001611 // If the backedge is guarded by a comparison with the pre-inc
1612 // value the addrec is safe. Also, if the entry is guarded by
1613 // a comparison with the start value and the backedge is
1614 // guarded by a comparison with the post-inc value, the addrec
1615 // is safe.
Dan Gohmane65c9172009-07-13 21:35:55 +00001616 if (isKnownPositive(Step)) {
1617 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1618 getUnsignedRange(Step).getUnsignedMax());
1619 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001620 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001621 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001622 AR->getPostIncExpr(*this), N))) {
Sanjoy Dasf5d40d52016-05-17 17:51:14 +00001623 // Cache knowledge of AR NUW, which is propagated to this
1624 // AddRec.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001625 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001626 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001627 return getAddRecExpr(
1628 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1629 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001630 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001631 } else if (isKnownNegative(Step)) {
1632 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1633 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001634 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1635 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001636 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001637 AR->getPostIncExpr(*this), N))) {
Sanjoy Dasf5d40d52016-05-17 17:51:14 +00001638 // Cache knowledge of AR NW, which is propagated to this
1639 // AddRec. Negative step causes unsigned wrap, but it
1640 // still can't self-wrap.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001641 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1642 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001643 return getAddRecExpr(
1644 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1645 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001646 }
Dan Gohman76466372009-04-27 20:16:15 +00001647 }
1648 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001649
1650 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1651 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1652 return getAddRecExpr(
1653 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1654 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1655 }
Dan Gohman76466372009-04-27 20:16:15 +00001656 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001657
Sanjoy Daseeca9f62015-10-22 19:57:38 +00001658 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1659 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
Sanjoy Das76c48e02016-02-04 18:21:54 +00001660 if (SA->hasNoUnsignedWrap()) {
Sanjoy Daseeca9f62015-10-22 19:57:38 +00001661 // If the addition does not unsign overflow then we can, by definition,
1662 // commute the zero extension with the addition operation.
1663 SmallVector<const SCEV *, 4> Ops;
1664 for (const auto *Op : SA->operands())
1665 Ops.push_back(getZeroExtendExpr(Op, Ty));
1666 return getAddExpr(Ops, SCEV::FlagNUW);
1667 }
1668 }
1669
Dan Gohman74a0ba12009-07-13 20:55:53 +00001670 // The cast wasn't folded; create an explicit cast node.
1671 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001672 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001673 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1674 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001675 UniqueSCEVs.InsertNode(S, IP);
1676 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001677}
1678
Dan Gohmanaf752342009-07-07 17:06:11 +00001679const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001680 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001681 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001682 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001683 assert(isSCEVable(Ty) &&
1684 "This is not a conversion to a SCEVable type!");
1685 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001686
Dan Gohman3423e722009-06-30 20:13:32 +00001687 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001688 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1689 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001690 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001691
Dan Gohman79af8542009-04-22 16:20:48 +00001692 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001693 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001694 return getSignExtendExpr(SS->getOperand(), Ty);
1695
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001696 // sext(zext(x)) --> zext(x)
1697 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1698 return getZeroExtendExpr(SZ->getOperand(), Ty);
1699
Dan Gohman74a0ba12009-07-13 20:55:53 +00001700 // Before doing any expensive analysis, check to see if we've already
1701 // computed a SCEV for this Op and Ty.
1702 FoldingSetNodeID ID;
1703 ID.AddInteger(scSignExtend);
1704 ID.AddPointer(Op);
1705 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001706 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001707 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1708
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001709 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1710 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1711 // It's possible the bits taken off by the truncate were all sign bits. If
1712 // so, we should be able to simplify this further.
1713 const SCEV *X = ST->getOperand();
1714 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001715 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1716 unsigned NewBits = getTypeSizeInBits(Ty);
1717 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001718 CR.sextOrTrunc(NewBits)))
1719 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001720 }
1721
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001722 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001723 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001724 if (SA->getNumOperands() == 2) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001725 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1726 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001727 if (SMul && SC1) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001728 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001729 const APInt &C1 = SC1->getAPInt();
1730 const APInt &C2 = SC2->getAPInt();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001731 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001732 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001733 return getAddExpr(getSignExtendExpr(SC1, Ty),
1734 getSignExtendExpr(SMul, Ty));
1735 }
1736 }
1737 }
Sanjoy Dasa060e602015-10-22 19:57:25 +00001738
1739 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
Sanjoy Das76c48e02016-02-04 18:21:54 +00001740 if (SA->hasNoSignedWrap()) {
Sanjoy Dasa060e602015-10-22 19:57:25 +00001741 // If the addition does not sign overflow then we can, by definition,
1742 // commute the sign extension with the addition operation.
1743 SmallVector<const SCEV *, 4> Ops;
1744 for (const auto *Op : SA->operands())
1745 Ops.push_back(getSignExtendExpr(Op, Ty));
1746 return getAddExpr(Ops, SCEV::FlagNSW);
1747 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001748 }
Dan Gohman76466372009-04-27 20:16:15 +00001749 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001750 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001751 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001752 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001753 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001754 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001755 const SCEV *Start = AR->getStart();
1756 const SCEV *Step = AR->getStepRecurrence(*this);
1757 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1758 const Loop *L = AR->getLoop();
1759
Sanjoy Das724f5cf2016-03-03 18:31:29 +00001760 if (!AR->hasNoSignedWrap()) {
1761 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1762 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1763 }
1764
Dan Gohman62ef6a72009-07-25 01:22:26 +00001765 // If we have special knowledge that this addrec won't overflow,
1766 // we don't need to do any further analysis.
Sanjoy Das76c48e02016-02-04 18:21:54 +00001767 if (AR->hasNoSignedWrap())
Sanjoy Das4153f472015-02-18 01:47:07 +00001768 return getAddRecExpr(
1769 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1770 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001771
Dan Gohman76466372009-04-27 20:16:15 +00001772 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1773 // Note that this serves two purposes: It filters out loops that are
1774 // simply not analyzable, and it covers the case where this code is
1775 // being called from within backedge-taken count analysis, such that
1776 // attempting to ask for the backedge-taken count would likely result
1777 // in infinite recursion. In the later case, the analysis code will
1778 // cope with a conservative value, and it will take care to purge
1779 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001780 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001781 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001782 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001783 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001784
1785 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001786 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001787 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001788 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001789 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001790 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1791 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001792 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001793 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001794 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001795 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1796 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1797 const SCEV *WideMaxBECount =
1798 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001799 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001800 getAddExpr(WideStart,
1801 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001802 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001803 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001804 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1805 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001806 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001807 return getAddRecExpr(
1808 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1809 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001810 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001811 // Similar to above, only this time treat the step value as unsigned.
1812 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001813 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001814 getAddExpr(WideStart,
1815 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001816 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001817 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001818 // If AR wraps around then
1819 //
1820 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1821 // => SAdd != OperandExtendedAdd
1822 //
1823 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1824 // (SAdd == OperandExtendedAdd => AR is NW)
1825
1826 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1827
Dan Gohman8c129d72009-07-16 17:34:36 +00001828 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001829 return getAddRecExpr(
1830 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1831 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001832 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001833 }
Sanjoy Das787c2462016-05-11 17:41:26 +00001834 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001835
Sanjoy Das787c2462016-05-11 17:41:26 +00001836 // Normally, in the cases we can prove no-overflow via a
1837 // backedge guarding condition, we can also compute a backedge
1838 // taken count for the loop. The exceptions are assumptions and
1839 // guards present in the loop -- SCEV is not great at exploiting
1840 // these to compute max backedge taken counts, but can still use
1841 // these to prove lack of overflow. Use this fact to avoid
1842 // doing extra work that may not pay off.
1843
1844 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
Daniel Jasperaec2fa32016-12-19 08:22:17 +00001845 !AC.assumptions().empty()) {
Sanjoy Das787c2462016-05-11 17:41:26 +00001846 // If the backedge is guarded by a comparison with the pre-inc
1847 // value the addrec is safe. Also, if the entry is guarded by
1848 // a comparison with the start value and the backedge is
1849 // guarded by a comparison with the post-inc value, the addrec
1850 // is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001851 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001852 const SCEV *OverflowLimit =
1853 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001854 if (OverflowLimit &&
1855 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1856 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1857 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1858 OverflowLimit)))) {
1859 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1860 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001861 return getAddRecExpr(
1862 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1863 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001864 }
1865 }
Sanjoy Das787c2462016-05-11 17:41:26 +00001866
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001867 // If Start and Step are constants, check if we can apply this
1868 // transformation:
1869 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001870 auto *SC1 = dyn_cast<SCEVConstant>(Start);
1871 auto *SC2 = dyn_cast<SCEVConstant>(Step);
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001872 if (SC1 && SC2) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001873 const APInt &C1 = SC1->getAPInt();
1874 const APInt &C2 = SC2->getAPInt();
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001875 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1876 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001877 Start = getSignExtendExpr(Start, Ty);
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001878 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1879 AR->getNoWrapFlags());
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001880 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1881 }
1882 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001883
1884 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1885 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1886 return getAddRecExpr(
1887 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1888 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1889 }
Dan Gohman76466372009-04-27 20:16:15 +00001890 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001891
Sanjoy Das11ef6062016-03-03 18:31:23 +00001892 // If the input value is provably positive and we could not simplify
1893 // away the sext build a zext instead.
1894 if (isKnownNonNegative(Op))
1895 return getZeroExtendExpr(Op, Ty);
1896
Dan Gohman74a0ba12009-07-13 20:55:53 +00001897 // The cast wasn't folded; create an explicit cast node.
1898 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001899 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001900 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1901 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001902 UniqueSCEVs.InsertNode(S, IP);
1903 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001904}
1905
Dan Gohman8db2edc2009-06-13 15:56:47 +00001906/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1907/// unspecified bits out to the given type.
1908///
Dan Gohmanaf752342009-07-07 17:06:11 +00001909const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001910 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001911 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1912 "This is not an extending conversion!");
1913 assert(isSCEVable(Ty) &&
1914 "This is not a conversion to a SCEVable type!");
1915 Ty = getEffectiveSCEVType(Ty);
1916
1917 // Sign-extend negative constants.
1918 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001919 if (SC->getAPInt().isNegative())
Dan Gohman8db2edc2009-06-13 15:56:47 +00001920 return getSignExtendExpr(Op, Ty);
1921
1922 // Peel off a truncate cast.
1923 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001924 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001925 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1926 return getAnyExtendExpr(NewOp, Ty);
1927 return getTruncateOrNoop(NewOp, Ty);
1928 }
1929
1930 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001931 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001932 if (!isa<SCEVZeroExtendExpr>(ZExt))
1933 return ZExt;
1934
1935 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001936 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001937 if (!isa<SCEVSignExtendExpr>(SExt))
1938 return SExt;
1939
Dan Gohman51ad99d2010-01-21 02:09:26 +00001940 // Force the cast to be folded into the operands of an addrec.
1941 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1942 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001943 for (const SCEV *Op : AR->operands())
1944 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001945 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001946 }
1947
Dan Gohman8db2edc2009-06-13 15:56:47 +00001948 // If the expression is obviously signed, use the sext cast value.
1949 if (isa<SCEVSMaxExpr>(Op))
1950 return SExt;
1951
1952 // Absent any other information, use the zext cast value.
1953 return ZExt;
1954}
1955
Sanjoy Dasf8570812016-05-29 00:38:22 +00001956/// Process the given Ops list, which is a list of operands to be added under
1957/// the given scale, update the given map. This is a helper function for
1958/// getAddRecExpr. As an example of what it does, given a sequence of operands
1959/// that would form an add expression like this:
Dan Gohman038d02e2009-06-14 22:58:51 +00001960///
Tobias Grosserba49e422014-03-05 10:37:17 +00001961/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001962///
1963/// where A and B are constants, update the map with these values:
1964///
1965/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1966///
1967/// and add 13 + A*B*29 to AccumulatedConstant.
1968/// This will allow getAddRecExpr to produce this:
1969///
1970/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1971///
1972/// This form often exposes folding opportunities that are hidden in
1973/// the original operand list.
1974///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001975/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001976/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1977/// the common case where no interesting opportunities are present, and
1978/// is also used as a check to avoid infinite recursion.
1979///
1980static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001981CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001982 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001983 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001984 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001985 const APInt &Scale,
1986 ScalarEvolution &SE) {
1987 bool Interesting = false;
1988
Dan Gohman45073042010-06-18 19:12:32 +00001989 // Iterate over the add operands. They are sorted, with constants first.
1990 unsigned i = 0;
1991 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1992 ++i;
1993 // Pull a buried constant out to the outside.
1994 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1995 Interesting = true;
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001996 AccumulatedConstant += Scale * C->getAPInt();
Dan Gohman45073042010-06-18 19:12:32 +00001997 }
1998
1999 // Next comes everything else. We're especially interested in multiplies
2000 // here, but they're in the middle, so just visit the rest with one loop.
2001 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00002002 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2003 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2004 APInt NewScale =
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002005 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
Dan Gohman038d02e2009-06-14 22:58:51 +00002006 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2007 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00002008 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00002009 Interesting |=
2010 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002011 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00002012 NewScale, SE);
2013 } else {
2014 // A multiplication of a constant with some other value. Update
2015 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00002016 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2017 const SCEV *Key = SE.getMulExpr(MulOps);
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00002018 auto Pair = M.insert({Key, NewScale});
Dan Gohman038d02e2009-06-14 22:58:51 +00002019 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00002020 NewOps.push_back(Pair.first->first);
2021 } else {
2022 Pair.first->second += NewScale;
2023 // The map already had an entry for this value, which may indicate
2024 // a folding opportunity.
2025 Interesting = true;
2026 }
2027 }
Dan Gohman038d02e2009-06-14 22:58:51 +00002028 } else {
2029 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00002030 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00002031 M.insert({Ops[i], Scale});
Dan Gohman038d02e2009-06-14 22:58:51 +00002032 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00002033 NewOps.push_back(Pair.first->first);
2034 } else {
2035 Pair.first->second += Scale;
2036 // The map already had an entry for this value, which may indicate
2037 // a folding opportunity.
2038 Interesting = true;
2039 }
2040 }
2041 }
2042
2043 return Interesting;
2044}
2045
Sanjoy Das81401d42015-01-10 23:41:24 +00002046// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2047// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
2048// can't-overflow flags for the operation if possible.
2049static SCEV::NoWrapFlags
2050StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2051 const SmallVectorImpl<const SCEV *> &Ops,
Sanjoy Das8f274152015-10-22 19:57:19 +00002052 SCEV::NoWrapFlags Flags) {
Sanjoy Das81401d42015-01-10 23:41:24 +00002053 using namespace std::placeholders;
Sanjoy Das8f274152015-10-22 19:57:19 +00002054 typedef OverflowingBinaryOperator OBO;
Sanjoy Das81401d42015-01-10 23:41:24 +00002055
2056 bool CanAnalyze =
2057 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2058 (void)CanAnalyze;
2059 assert(CanAnalyze && "don't call from other places!");
2060
2061 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2062 SCEV::NoWrapFlags SignOrUnsignWrap =
Sanjoy Das8f274152015-10-22 19:57:19 +00002063 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00002064
2065 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Sanjoy Das9b0015f2015-11-29 23:40:57 +00002066 auto IsKnownNonNegative = [&](const SCEV *S) {
2067 return SE->isKnownNonNegative(S);
2068 };
Sanjoy Das81401d42015-01-10 23:41:24 +00002069
Sanjoy Das3b827c72015-11-29 23:40:53 +00002070 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
Sanjoy Das8f274152015-10-22 19:57:19 +00002071 Flags =
2072 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00002073
Sanjoy Das8f274152015-10-22 19:57:19 +00002074 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2075
2076 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
2077 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
2078
2079 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
2080 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
2081
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002082 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
Sanjoy Das8f274152015-10-22 19:57:19 +00002083 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
Sanjoy Das5079f622016-02-22 16:13:02 +00002084 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2085 Instruction::Add, C, OBO::NoSignedWrap);
Sanjoy Das8f274152015-10-22 19:57:19 +00002086 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2087 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2088 }
2089 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
Sanjoy Das5079f622016-02-22 16:13:02 +00002090 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2091 Instruction::Add, C, OBO::NoUnsignedWrap);
Sanjoy Das8f274152015-10-22 19:57:19 +00002092 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2093 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2094 }
2095 }
2096
2097 return Flags;
Sanjoy Das81401d42015-01-10 23:41:24 +00002098}
2099
Sanjoy Dasf8570812016-05-29 00:38:22 +00002100/// Get a canonical add expression, or something simpler if possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002101const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002102 SCEV::NoWrapFlags Flags) {
2103 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2104 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002105 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00002106 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002107#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002108 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002109 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00002110 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002111 "SCEVAddExpr operand types don't match!");
2112#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002113
2114 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002115 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002116
Sanjoy Das64895612015-10-09 02:44:45 +00002117 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2118
Chris Lattnerd934c702004-04-02 20:23:17 +00002119 // If there are any constants, fold them together.
2120 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002121 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002122 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00002123 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002124 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002125 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002126 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
Dan Gohman011cf682009-06-14 22:53:57 +00002127 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002128 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002129 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002130 }
2131
2132 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002133 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002134 Ops.erase(Ops.begin());
2135 --Idx;
2136 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002137
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002138 if (Ops.size() == 1) return Ops[0];
2139 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002140
Dan Gohman15871f22010-08-27 21:39:59 +00002141 // Okay, check to see if the same value occurs in the operand list more than
Reid Kleckner30422ee2016-12-12 18:52:32 +00002142 // once. If so, merge them together into an multiply expression. Since we
Dan Gohman15871f22010-08-27 21:39:59 +00002143 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00002144 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00002145 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00002146 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00002147 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00002148 // Scan ahead to count how many equal operands there are.
2149 unsigned Count = 2;
2150 while (i+Count != e && Ops[i+Count] == Ops[i])
2151 ++Count;
2152 // Merge the values into a multiply.
2153 const SCEV *Scale = getConstant(Ty, Count);
2154 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2155 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002156 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002157 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002158 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002159 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002160 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002161 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002162 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002163 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002164
Dan Gohman2e55cc52009-05-08 21:03:19 +00002165 // Check for truncates. If all the operands are truncated from the same
2166 // type, see if factoring out the truncate would permit the result to be
2167 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2168 // if the contents of the resulting outer trunc fold to something simple.
2169 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2170 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002171 Type *DstType = Trunc->getType();
2172 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002173 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002174 bool Ok = true;
2175 // Check all the operands to see if they can be represented in the
2176 // source type of the truncate.
2177 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2178 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2179 if (T->getOperand()->getType() != SrcType) {
2180 Ok = false;
2181 break;
2182 }
2183 LargeOps.push_back(T->getOperand());
2184 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002185 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002186 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002187 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002188 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2189 if (const SCEVTruncateExpr *T =
2190 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2191 if (T->getOperand()->getType() != SrcType) {
2192 Ok = false;
2193 break;
2194 }
2195 LargeMulOps.push_back(T->getOperand());
Sanjoy Das63914592015-10-18 00:29:20 +00002196 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002197 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002198 } else {
2199 Ok = false;
2200 break;
2201 }
2202 }
2203 if (Ok)
2204 LargeOps.push_back(getMulExpr(LargeMulOps));
2205 } else {
2206 Ok = false;
2207 break;
2208 }
2209 }
2210 if (Ok) {
2211 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002212 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002213 // If it folds to something simple, use it. Otherwise, don't.
2214 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2215 return getTruncateExpr(Fold, DstType);
2216 }
2217 }
2218
2219 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002220 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2221 ++Idx;
2222
2223 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002224 if (Idx < Ops.size()) {
2225 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002226 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Daniil Fukalovb09dac52017-01-26 13:33:17 +00002227 if (Ops.size() > AddOpsInlineThreshold ||
2228 Add->getNumOperands() > AddOpsInlineThreshold)
2229 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00002230 // If we have an add, expand the add operands onto the end of the operands
2231 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002232 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002233 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002234 DeletedAdd = true;
2235 }
2236
2237 // If we deleted at least one add, we added operands to the end of the list,
2238 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002239 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002240 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002241 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002242 }
2243
2244 // Skip over the add expression until we get to a multiply.
2245 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2246 ++Idx;
2247
Dan Gohman038d02e2009-06-14 22:58:51 +00002248 // Check to see if there are any folding opportunities present with
2249 // operands multiplied by constant values.
2250 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2251 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002252 DenseMap<const SCEV *, APInt> M;
2253 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002254 APInt AccumulatedConstant(BitWidth, 0);
2255 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002256 Ops.data(), Ops.size(),
2257 APInt(BitWidth, 1), *this)) {
Sanjoy Das7d752672015-12-08 04:32:54 +00002258 struct APIntCompare {
2259 bool operator()(const APInt &LHS, const APInt &RHS) const {
2260 return LHS.ult(RHS);
2261 }
2262 };
2263
Dan Gohman038d02e2009-06-14 22:58:51 +00002264 // Some interesting folding opportunity is present, so its worthwhile to
2265 // re-generate the operands list. Group the operands by constant scale,
2266 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002267 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002268 for (const SCEV *NewOp : NewOps)
2269 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
Dan Gohman038d02e2009-06-14 22:58:51 +00002270 // Re-generate the operands list.
2271 Ops.clear();
2272 if (AccumulatedConstant != 0)
2273 Ops.push_back(getConstant(AccumulatedConstant));
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002274 for (auto &MulOp : MulOpLists)
2275 if (MulOp.first != 0)
2276 Ops.push_back(getMulExpr(getConstant(MulOp.first),
2277 getAddExpr(MulOp.second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002278 if (Ops.empty())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002279 return getZero(Ty);
Dan Gohman038d02e2009-06-14 22:58:51 +00002280 if (Ops.size() == 1)
2281 return Ops[0];
2282 return getAddExpr(Ops);
2283 }
2284 }
2285
Chris Lattnerd934c702004-04-02 20:23:17 +00002286 // If we are adding something to a multiply expression, make sure the
2287 // something is not already an operand of the multiply. If so, merge it into
2288 // the multiply.
2289 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002290 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002291 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002292 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002293 if (isa<SCEVConstant>(MulOpSCEV))
2294 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002295 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002296 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002297 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002298 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002299 if (Mul->getNumOperands() != 2) {
2300 // If the multiply has more than two operands, we must get the
2301 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002302 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2303 Mul->op_begin()+MulOp);
2304 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002305 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002306 }
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002307 const SCEV *One = getOne(Ty);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002308 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002309 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002310 if (Ops.size() == 2) return OuterMul;
2311 if (AddOp < Idx) {
2312 Ops.erase(Ops.begin()+AddOp);
2313 Ops.erase(Ops.begin()+Idx-1);
2314 } else {
2315 Ops.erase(Ops.begin()+Idx);
2316 Ops.erase(Ops.begin()+AddOp-1);
2317 }
2318 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002319 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002320 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002321
Chris Lattnerd934c702004-04-02 20:23:17 +00002322 // Check this multiply against other multiplies being added together.
2323 for (unsigned OtherMulIdx = Idx+1;
2324 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2325 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002326 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002327 // If MulOp occurs in OtherMul, we can fold the two multiplies
2328 // together.
2329 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2330 OMulOp != e; ++OMulOp)
2331 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2332 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002333 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002334 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002335 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002336 Mul->op_begin()+MulOp);
2337 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002338 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002339 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002340 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002341 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002342 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002343 OtherMul->op_begin()+OMulOp);
2344 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002345 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002346 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002347 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2348 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002349 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002350 Ops.erase(Ops.begin()+Idx);
2351 Ops.erase(Ops.begin()+OtherMulIdx-1);
2352 Ops.push_back(OuterMul);
2353 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002354 }
2355 }
2356 }
2357 }
2358
2359 // If there are any add recurrences in the operands list, see if any other
2360 // added values are loop invariant. If so, we can fold them into the
2361 // recurrence.
2362 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2363 ++Idx;
2364
2365 // Scan over all recurrences, trying to fold loop invariants into them.
2366 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2367 // Scan all of the other operands to this add and add them to the vector if
2368 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002369 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002370 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002371 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002372 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002373 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002374 LIOps.push_back(Ops[i]);
2375 Ops.erase(Ops.begin()+i);
2376 --i; --e;
2377 }
2378
2379 // If we found some loop invariants, fold them into the recurrence.
2380 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002381 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002382 LIOps.push_back(AddRec->getStart());
2383
Dan Gohmanaf752342009-07-07 17:06:11 +00002384 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002385 AddRec->op_end());
Oleg Ranevskyyeb4ecca2016-05-25 13:01:33 +00002386 // This follows from the fact that the no-wrap flags on the outer add
2387 // expression are applicable on the 0th iteration, when the add recurrence
2388 // will be equal to its start value.
2389 AddRecOps[0] = getAddExpr(LIOps, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002390
Dan Gohman16206132010-06-30 07:16:37 +00002391 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002392 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002393 // Always propagate NW.
2394 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002395 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002396
Chris Lattnerd934c702004-04-02 20:23:17 +00002397 // If all of the other operands were loop invariant, we are done.
2398 if (Ops.size() == 1) return NewRec;
2399
Nick Lewyckydb66b822011-09-06 05:08:09 +00002400 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002401 for (unsigned i = 0;; ++i)
2402 if (Ops[i] == AddRec) {
2403 Ops[i] = NewRec;
2404 break;
2405 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002406 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002407 }
2408
2409 // Okay, if there weren't any loop invariants to be folded, check to see if
2410 // there are multiple AddRec's with the same loop induction variable being
2411 // added together. If so, we can fold them.
2412 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002413 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2414 ++OtherIdx)
2415 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2416 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2417 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2418 AddRec->op_end());
2419 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2420 ++OtherIdx)
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002421 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002422 if (OtherAddRec->getLoop() == AddRecLoop) {
2423 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2424 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002425 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002426 AddRecOps.append(OtherAddRec->op_begin()+i,
2427 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002428 break;
2429 }
Dan Gohman028c1812010-08-29 14:53:34 +00002430 AddRecOps[i] = getAddExpr(AddRecOps[i],
2431 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002432 }
2433 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002434 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002435 // Step size has changed, so we cannot guarantee no self-wraparound.
2436 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002437 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002438 }
2439
2440 // Otherwise couldn't fold anything into this recurrence. Move onto the
2441 // next one.
2442 }
2443
2444 // Okay, it looks like we really DO need an add expr. Check to see if we
2445 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002446 FoldingSetNodeID ID;
2447 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002448 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2449 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002450 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002451 SCEVAddExpr *S =
2452 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2453 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002454 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2455 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002456 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2457 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002458 UniqueSCEVs.InsertNode(S, IP);
2459 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002460 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002461 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002462}
2463
Nick Lewycky287682e2011-10-04 06:51:26 +00002464static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2465 uint64_t k = i*j;
2466 if (j > 1 && k / j != i) Overflow = true;
2467 return k;
2468}
2469
2470/// Compute the result of "n choose k", the binomial coefficient. If an
2471/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002472/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002473static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2474 // We use the multiplicative formula:
2475 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2476 // At each iteration, we take the n-th term of the numeral and divide by the
2477 // (k-n)th term of the denominator. This division will always produce an
2478 // integral result, and helps reduce the chance of overflow in the
2479 // intermediate computations. However, we can still overflow even when the
2480 // final result would fit.
2481
2482 if (n == 0 || n == k) return 1;
2483 if (k > n) return 0;
2484
2485 if (k > n/2)
2486 k = n-k;
2487
2488 uint64_t r = 1;
2489 for (uint64_t i = 1; i <= k; ++i) {
2490 r = umul_ov(r, n-(i-1), Overflow);
2491 r /= i;
2492 }
2493 return r;
2494}
2495
Nick Lewycky05044c22014-12-06 00:45:50 +00002496/// Determine if any of the operands in this SCEV are a constant or if
2497/// any of the add or multiply expressions in this SCEV contain a constant.
2498static bool containsConstantSomewhere(const SCEV *StartExpr) {
2499 SmallVector<const SCEV *, 4> Ops;
2500 Ops.push_back(StartExpr);
2501 while (!Ops.empty()) {
2502 const SCEV *CurrentExpr = Ops.pop_back_val();
2503 if (isa<SCEVConstant>(*CurrentExpr))
2504 return true;
2505
2506 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2507 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002508 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002509 }
2510 }
2511 return false;
2512}
2513
Sanjoy Dasf8570812016-05-29 00:38:22 +00002514/// Get a canonical multiply expression, or something simpler if possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002515const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002516 SCEV::NoWrapFlags Flags) {
2517 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2518 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002519 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002520 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002521#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002522 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002523 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002524 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002525 "SCEVMulExpr operand types don't match!");
2526#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002527
2528 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002529 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002530
Sanjoy Das64895612015-10-09 02:44:45 +00002531 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2532
Chris Lattnerd934c702004-04-02 20:23:17 +00002533 // If there are any constants, fold them together.
2534 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002535 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002536
2537 // C1*(C2+V) -> C1*C2 + C1*V
2538 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002539 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2540 // If any of Add's ops are Adds or Muls with a constant,
2541 // apply this transformation as well.
2542 if (Add->getNumOperands() == 2)
2543 if (containsConstantSomewhere(Add))
2544 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2545 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002546
Chris Lattnerd934c702004-04-02 20:23:17 +00002547 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002548 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002549 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002550 ConstantInt *Fold =
2551 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002552 Ops[0] = getConstant(Fold);
2553 Ops.erase(Ops.begin()+1); // Erase the folded element
2554 if (Ops.size() == 1) return Ops[0];
2555 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002556 }
2557
2558 // If we are left with a constant one being multiplied, strip it off.
2559 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2560 Ops.erase(Ops.begin());
2561 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002562 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002563 // If we have a multiply of zero, it will always be zero.
2564 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002565 } else if (Ops[0]->isAllOnesValue()) {
2566 // If we have a mul by -1 of an add, try distributing the -1 among the
2567 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002568 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002569 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2570 SmallVector<const SCEV *, 4> NewOps;
2571 bool AnyFolded = false;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00002572 for (const SCEV *AddOp : Add->operands()) {
2573 const SCEV *Mul = getMulExpr(Ops[0], AddOp);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002574 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2575 NewOps.push_back(Mul);
2576 }
2577 if (AnyFolded)
2578 return getAddExpr(NewOps);
Sanjoy Das63914592015-10-18 00:29:20 +00002579 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
Andrew Tricke92dcce2011-03-14 17:38:54 +00002580 // Negation preserves a recurrence's no self-wrap property.
2581 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00002582 for (const SCEV *AddRecOp : AddRec->operands())
2583 Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2584
Andrew Tricke92dcce2011-03-14 17:38:54 +00002585 return getAddRecExpr(Operands, AddRec->getLoop(),
2586 AddRec->getNoWrapFlags(SCEV::FlagNW));
2587 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002588 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002589 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002590
2591 if (Ops.size() == 1)
2592 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002593 }
2594
2595 // Skip over the add expression until we get to a multiply.
2596 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2597 ++Idx;
2598
Chris Lattnerd934c702004-04-02 20:23:17 +00002599 // If there are mul operands inline them all into this expression.
2600 if (Idx < Ops.size()) {
2601 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002602 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Li Huangfcfe8cd2016-10-20 21:38:39 +00002603 if (Ops.size() > MulOpsInlineThreshold)
2604 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00002605 // If we have an mul, expand the mul operands onto the end of the operands
2606 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002607 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002608 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002609 DeletedMul = true;
2610 }
2611
2612 // If we deleted at least one mul, we added operands to the end of the list,
2613 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002614 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002615 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002616 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002617 }
2618
2619 // If there are any add recurrences in the operands list, see if any other
2620 // added values are loop invariant. If so, we can fold them into the
2621 // recurrence.
2622 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2623 ++Idx;
2624
2625 // Scan over all recurrences, trying to fold loop invariants into them.
2626 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2627 // Scan all of the other operands to this mul and add them to the vector if
2628 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002629 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002630 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002631 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002632 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002633 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002634 LIOps.push_back(Ops[i]);
2635 Ops.erase(Ops.begin()+i);
2636 --i; --e;
2637 }
2638
2639 // If we found some loop invariants, fold them into the recurrence.
2640 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002641 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002642 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002643 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002644 const SCEV *Scale = getMulExpr(LIOps);
2645 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2646 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002647
Dan Gohman16206132010-06-30 07:16:37 +00002648 // Build the new addrec. Propagate the NUW and NSW flags if both the
2649 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002650 //
2651 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002652 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002653 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2654 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002655
2656 // If all of the other operands were loop invariant, we are done.
2657 if (Ops.size() == 1) return NewRec;
2658
Nick Lewyckydb66b822011-09-06 05:08:09 +00002659 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002660 for (unsigned i = 0;; ++i)
2661 if (Ops[i] == AddRec) {
2662 Ops[i] = NewRec;
2663 break;
2664 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002665 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002666 }
2667
2668 // Okay, if there weren't any loop invariants to be folded, check to see if
2669 // there are multiple AddRec's with the same loop induction variable being
2670 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002671
2672 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2673 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2674 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2675 // ]]],+,...up to x=2n}.
2676 // Note that the arguments to choose() are always integers with values
2677 // known at compile time, never SCEV objects.
2678 //
2679 // The implementation avoids pointless extra computations when the two
2680 // addrec's are of different length (mathematically, it's equivalent to
2681 // an infinite stream of zeros on the right).
2682 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002683 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002684 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002685 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002686 const SCEVAddRecExpr *OtherAddRec =
2687 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2688 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002689 continue;
2690
Nick Lewycky97756402014-09-01 05:17:15 +00002691 bool Overflow = false;
2692 Type *Ty = AddRec->getType();
2693 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2694 SmallVector<const SCEV*, 7> AddRecOps;
2695 for (int x = 0, xe = AddRec->getNumOperands() +
2696 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002697 const SCEV *Term = getZero(Ty);
Nick Lewycky97756402014-09-01 05:17:15 +00002698 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2699 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2700 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2701 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2702 z < ze && !Overflow; ++z) {
2703 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2704 uint64_t Coeff;
2705 if (LargerThan64Bits)
2706 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2707 else
2708 Coeff = Coeff1*Coeff2;
2709 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2710 const SCEV *Term1 = AddRec->getOperand(y-z);
2711 const SCEV *Term2 = OtherAddRec->getOperand(z);
2712 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002713 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002714 }
Nick Lewycky97756402014-09-01 05:17:15 +00002715 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002716 }
Nick Lewycky97756402014-09-01 05:17:15 +00002717 if (!Overflow) {
2718 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2719 SCEV::FlagAnyWrap);
2720 if (Ops.size() == 2) return NewAddRec;
2721 Ops[Idx] = NewAddRec;
2722 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2723 OpsModified = true;
2724 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2725 if (!AddRec)
2726 break;
2727 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002728 }
Nick Lewycky97756402014-09-01 05:17:15 +00002729 if (OpsModified)
2730 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002731
2732 // Otherwise couldn't fold anything into this recurrence. Move onto the
2733 // next one.
2734 }
2735
2736 // Okay, it looks like we really DO need an mul expr. Check to see if we
2737 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002738 FoldingSetNodeID ID;
2739 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002740 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2741 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002742 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002743 SCEVMulExpr *S =
2744 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2745 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002746 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2747 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002748 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2749 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002750 UniqueSCEVs.InsertNode(S, IP);
2751 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002752 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002753 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002754}
2755
Sanjoy Dasf8570812016-05-29 00:38:22 +00002756/// Get a canonical unsigned division expression, or something simpler if
2757/// possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002758const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2759 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002760 assert(getEffectiveSCEVType(LHS->getType()) ==
2761 getEffectiveSCEVType(RHS->getType()) &&
2762 "SCEVUDivExpr operand types don't match!");
2763
Dan Gohmana30370b2009-05-04 22:02:23 +00002764 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002765 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002766 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002767 // If the denominator is zero, the result of the udiv is undefined. Don't
2768 // try to analyze it, because the resolution chosen here may differ from
2769 // the resolution chosen in other parts of the compiler.
2770 if (!RHSC->getValue()->isZero()) {
2771 // Determine if the division can be folded into the operands of
2772 // its operands.
2773 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002774 Type *Ty = LHS->getType();
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002775 unsigned LZ = RHSC->getAPInt().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002776 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002777 // For non-power-of-two values, effectively round the value up to the
2778 // nearest power of two.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002779 if (!RHSC->getAPInt().isPowerOf2())
Dan Gohmanacd700a2010-04-22 01:35:11 +00002780 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002781 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002782 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002783 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2784 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002785 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2786 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002787 const APInt &StepInt = Step->getAPInt();
2788 const APInt &DivInt = RHSC->getAPInt();
Andrew Trick6d45a012011-08-06 07:00:37 +00002789 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002790 getZeroExtendExpr(AR, ExtTy) ==
2791 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2792 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002793 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002794 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002795 for (const SCEV *Op : AR->operands())
2796 Operands.push_back(getUDivExpr(Op, RHS));
2797 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002798 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002799 /// Get a canonical UDivExpr for a recurrence.
2800 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2801 // We can currently only fold X%N if X is constant.
2802 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2803 if (StartC && !DivInt.urem(StepInt) &&
2804 getZeroExtendExpr(AR, ExtTy) ==
2805 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2806 getZeroExtendExpr(Step, ExtTy),
2807 AR->getLoop(), SCEV::FlagAnyWrap)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002808 const APInt &StartInt = StartC->getAPInt();
Andrew Trick6d45a012011-08-06 07:00:37 +00002809 const APInt &StartRem = StartInt.urem(StepInt);
2810 if (StartRem != 0)
2811 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2812 AR->getLoop(), SCEV::FlagNW);
2813 }
2814 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002815 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2816 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2817 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002818 for (const SCEV *Op : M->operands())
2819 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002820 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2821 // Find an operand that's safely divisible.
2822 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2823 const SCEV *Op = M->getOperand(i);
2824 const SCEV *Div = getUDivExpr(Op, RHSC);
2825 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2826 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2827 M->op_end());
2828 Operands[i] = Div;
2829 return getMulExpr(Operands);
2830 }
2831 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002832 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002833 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002834 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002835 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002836 for (const SCEV *Op : A->operands())
2837 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002838 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2839 Operands.clear();
2840 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2841 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2842 if (isa<SCEVUDivExpr>(Op) ||
2843 getMulExpr(Op, RHS) != A->getOperand(i))
2844 break;
2845 Operands.push_back(Op);
2846 }
2847 if (Operands.size() == A->getNumOperands())
2848 return getAddExpr(Operands);
2849 }
2850 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002851
Dan Gohmanacd700a2010-04-22 01:35:11 +00002852 // Fold if both operands are constant.
2853 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2854 Constant *LHSCV = LHSC->getValue();
2855 Constant *RHSCV = RHSC->getValue();
2856 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2857 RHSCV)));
2858 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002859 }
2860 }
2861
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002862 FoldingSetNodeID ID;
2863 ID.AddInteger(scUDivExpr);
2864 ID.AddPointer(LHS);
2865 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002866 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002867 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002868 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2869 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002870 UniqueSCEVs.InsertNode(S, IP);
2871 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002872}
2873
Nick Lewycky31eaca52014-01-27 10:04:03 +00002874static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002875 APInt A = C1->getAPInt().abs();
2876 APInt B = C2->getAPInt().abs();
Nick Lewycky31eaca52014-01-27 10:04:03 +00002877 uint32_t ABW = A.getBitWidth();
2878 uint32_t BBW = B.getBitWidth();
2879
2880 if (ABW > BBW)
2881 B = B.zext(ABW);
2882 else if (ABW < BBW)
2883 A = A.zext(BBW);
2884
2885 return APIntOps::GreatestCommonDivisor(A, B);
2886}
2887
Sanjoy Dasf8570812016-05-29 00:38:22 +00002888/// Get a canonical unsigned division expression, or something simpler if
2889/// possible. There is no representation for an exact udiv in SCEV IR, but we
2890/// can attempt to remove factors from the LHS and RHS. We can't do this when
2891/// it's not exact because the udiv may be clearing bits.
Nick Lewycky31eaca52014-01-27 10:04:03 +00002892const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2893 const SCEV *RHS) {
2894 // TODO: we could try to find factors in all sorts of things, but for now we
2895 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2896 // end of this file for inspiration.
2897
2898 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
Eli Friedmanf1f49c82017-01-18 23:56:42 +00002899 if (!Mul || !Mul->hasNoUnsignedWrap())
Nick Lewycky31eaca52014-01-27 10:04:03 +00002900 return getUDivExpr(LHS, RHS);
2901
2902 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2903 // If the mulexpr multiplies by a constant, then that constant must be the
2904 // first element of the mulexpr.
Sanjoy Das63914592015-10-18 00:29:20 +00002905 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
Nick Lewycky31eaca52014-01-27 10:04:03 +00002906 if (LHSCst == RHSCst) {
2907 SmallVector<const SCEV *, 2> Operands;
2908 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2909 return getMulExpr(Operands);
2910 }
2911
2912 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2913 // that there's a factor provided by one of the other terms. We need to
2914 // check.
2915 APInt Factor = gcd(LHSCst, RHSCst);
2916 if (!Factor.isIntN(1)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002917 LHSCst =
2918 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2919 RHSCst =
2920 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
Nick Lewycky31eaca52014-01-27 10:04:03 +00002921 SmallVector<const SCEV *, 2> Operands;
2922 Operands.push_back(LHSCst);
2923 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2924 LHS = getMulExpr(Operands);
2925 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002926 Mul = dyn_cast<SCEVMulExpr>(LHS);
2927 if (!Mul)
2928 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002929 }
2930 }
2931 }
2932
2933 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2934 if (Mul->getOperand(i) == RHS) {
2935 SmallVector<const SCEV *, 2> Operands;
2936 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2937 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2938 return getMulExpr(Operands);
2939 }
2940 }
2941
2942 return getUDivExpr(LHS, RHS);
2943}
Chris Lattnerd934c702004-04-02 20:23:17 +00002944
Sanjoy Dasf8570812016-05-29 00:38:22 +00002945/// Get an add recurrence expression for the specified loop. Simplify the
2946/// expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002947const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2948 const Loop *L,
2949 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002950 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002951 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002952 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002953 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002954 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002955 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002956 }
2957
2958 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002959 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002960}
2961
Sanjoy Dasf8570812016-05-29 00:38:22 +00002962/// Get an add recurrence expression for the specified loop. Simplify the
2963/// expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002964const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002965ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002966 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002967 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002968#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002969 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002970 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002971 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002972 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002973 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002974 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002975 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002976#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002977
Dan Gohmanbe928e32008-06-18 16:23:07 +00002978 if (Operands.back()->isZero()) {
2979 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002980 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002981 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002982
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002983 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2984 // use that information to infer NUW and NSW flags. However, computing a
2985 // BE count requires calling getAddRecExpr, so we may not yet have a
2986 // meaningful BE count at this point (and if we don't, we'd be stuck
2987 // with a SCEVCouldNotCompute as the cached BE count).
2988
Sanjoy Das81401d42015-01-10 23:41:24 +00002989 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002990
Dan Gohman223a5d22008-08-08 18:33:12 +00002991 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002992 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002993 const Loop *NestedLoop = NestedAR->getLoop();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002994 if (L->contains(NestedLoop)
2995 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2996 : (!NestedLoop->contains(L) &&
2997 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002998 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002999 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00003000 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00003001 // AddRecs require their operands be loop-invariant with respect to their
3002 // loops. Don't perform this transformation if it would break this
3003 // requirement.
Sanjoy Das3b827c72015-11-29 23:40:53 +00003004 bool AllInvariant = all_of(
3005 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00003006
Dan Gohmancc030b72009-06-26 22:36:20 +00003007 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003008 // Create a recurrence for the outer loop with the same step size.
3009 //
Andrew Trick8b55b732011-03-14 16:50:06 +00003010 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3011 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003012 SCEV::NoWrapFlags OuterFlags =
3013 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00003014
3015 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Sanjoy Das3b827c72015-11-29 23:40:53 +00003016 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3017 return isLoopInvariant(Op, NestedLoop);
3018 });
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00003019
Andrew Trick8b55b732011-03-14 16:50:06 +00003020 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00003021 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00003022 //
Andrew Trick8b55b732011-03-14 16:50:06 +00003023 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3024 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003025 SCEV::NoWrapFlags InnerFlags =
3026 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00003027 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3028 }
Dan Gohmancc030b72009-06-26 22:36:20 +00003029 }
3030 // Reset Operands to its original state.
3031 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00003032 }
3033 }
3034
Dan Gohman8d67d2f2010-01-19 22:27:22 +00003035 // Okay, it looks like we really DO need an addrec expr. Check to see if we
3036 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003037 FoldingSetNodeID ID;
3038 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003039 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3040 ID.AddPointer(Operands[i]);
3041 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00003042 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003043 SCEVAddRecExpr *S =
3044 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3045 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00003046 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
3047 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003048 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
3049 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003050 UniqueSCEVs.InsertNode(S, IP);
3051 }
Andrew Trick8b55b732011-03-14 16:50:06 +00003052 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003053 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00003054}
3055
Jingyue Wu2982d4d2015-05-18 17:03:25 +00003056const SCEV *
Peter Collingbourne8dff0392016-11-13 06:59:50 +00003057ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3058 const SmallVectorImpl<const SCEV *> &IndexExprs) {
3059 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
Jingyue Wu2982d4d2015-05-18 17:03:25 +00003060 // getSCEV(Base)->getType() has the same address space as Base->getType()
3061 // because SCEV::getType() preserves the address space.
3062 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
3063 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3064 // instruction to its SCEV, because the Instruction may be guarded by control
3065 // flow and the no-overflow bits may not be valid for the expression in any
Jingyue Wu42f1d672015-07-28 18:22:40 +00003066 // context. This can be fixed similarly to how these flags are handled for
3067 // adds.
Peter Collingbourne8dff0392016-11-13 06:59:50 +00003068 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3069 : SCEV::FlagAnyWrap;
Jingyue Wu2982d4d2015-05-18 17:03:25 +00003070
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00003071 const SCEV *TotalOffset = getZero(IntPtrTy);
Peter Collingbourne45681582016-12-02 03:05:41 +00003072 // The array size is unimportant. The first thing we do on CurTy is getting
Jingyue Wu2982d4d2015-05-18 17:03:25 +00003073 // its element type.
Peter Collingbourne45681582016-12-02 03:05:41 +00003074 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
Jingyue Wu2982d4d2015-05-18 17:03:25 +00003075 for (const SCEV *IndexExpr : IndexExprs) {
3076 // Compute the (potentially symbolic) offset in bytes for this index.
3077 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3078 // For a struct, add the member offset.
3079 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3080 unsigned FieldNo = Index->getZExtValue();
3081 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3082
3083 // Add the field offset to the running total offset.
3084 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3085
3086 // Update CurTy to the type of the field at Index.
3087 CurTy = STy->getTypeAtIndex(Index);
3088 } else {
3089 // Update CurTy to its element type.
3090 CurTy = cast<SequentialType>(CurTy)->getElementType();
3091 // For an array, add the element offset, explicitly scaled.
3092 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3093 // Getelementptr indices are signed.
3094 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3095
3096 // Multiply the index by the element size to compute the element offset.
3097 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3098
3099 // Add the element offset to the running total offset.
3100 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3101 }
3102 }
3103
3104 // Add the total offset from all the GEP indices to the base.
3105 return getAddExpr(BaseExpr, TotalOffset, Wrap);
3106}
3107
Dan Gohmanabd17092009-06-24 14:49:00 +00003108const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3109 const SCEV *RHS) {
Benjamin Kramer3bc1edf2016-07-02 11:41:39 +00003110 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003111 return getSMaxExpr(Ops);
3112}
3113
Dan Gohmanaf752342009-07-07 17:06:11 +00003114const SCEV *
3115ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003116 assert(!Ops.empty() && "Cannot get empty smax!");
3117 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003118#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003119 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003120 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003121 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003122 "SCEVSMaxExpr operand types don't match!");
3123#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003124
3125 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003126 GroupByComplexity(Ops, &LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003127
3128 // If there are any constants, fold them together.
3129 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003130 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003131 ++Idx;
3132 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003133 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003134 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00003135 ConstantInt *Fold = ConstantInt::get(
3136 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003137 Ops[0] = getConstant(Fold);
3138 Ops.erase(Ops.begin()+1); // Erase the folded element
3139 if (Ops.size() == 1) return Ops[0];
3140 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003141 }
3142
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003143 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003144 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3145 Ops.erase(Ops.begin());
3146 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003147 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3148 // If we have an smax with a constant maximum-int, it will always be
3149 // maximum-int.
3150 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003151 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003152
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003153 if (Ops.size() == 1) return Ops[0];
3154 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003155
3156 // Find the first SMax
3157 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3158 ++Idx;
3159
3160 // Check to see if one of the operands is an SMax. If so, expand its operands
3161 // onto our operand list, and recurse to simplify.
3162 if (Idx < Ops.size()) {
3163 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003164 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003165 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003166 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003167 DeletedSMax = true;
3168 }
3169
3170 if (DeletedSMax)
3171 return getSMaxExpr(Ops);
3172 }
3173
3174 // Okay, check to see if the same value occurs in the operand list twice. If
3175 // so, delete one. Since we sorted the list, these values are required to
3176 // be adjacent.
3177 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003178 // X smax Y smax Y --> X smax Y
3179 // X smax Y --> X, if X is always greater than Y
3180 if (Ops[i] == Ops[i+1] ||
3181 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3182 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3183 --i; --e;
3184 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003185 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3186 --i; --e;
3187 }
3188
3189 if (Ops.size() == 1) return Ops[0];
3190
3191 assert(!Ops.empty() && "Reduced smax down to nothing!");
3192
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003193 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003194 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003195 FoldingSetNodeID ID;
3196 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003197 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3198 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003199 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003200 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003201 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3202 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003203 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3204 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003205 UniqueSCEVs.InsertNode(S, IP);
3206 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003207}
3208
Dan Gohmanabd17092009-06-24 14:49:00 +00003209const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3210 const SCEV *RHS) {
Benjamin Kramer3bc1edf2016-07-02 11:41:39 +00003211 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003212 return getUMaxExpr(Ops);
3213}
3214
Dan Gohmanaf752342009-07-07 17:06:11 +00003215const SCEV *
3216ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003217 assert(!Ops.empty() && "Cannot get empty umax!");
3218 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003219#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003220 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003221 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003222 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003223 "SCEVUMaxExpr operand types don't match!");
3224#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003225
3226 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003227 GroupByComplexity(Ops, &LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003228
3229 // If there are any constants, fold them together.
3230 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003231 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003232 ++Idx;
3233 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003234 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003235 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00003236 ConstantInt *Fold = ConstantInt::get(
3237 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003238 Ops[0] = getConstant(Fold);
3239 Ops.erase(Ops.begin()+1); // Erase the folded element
3240 if (Ops.size() == 1) return Ops[0];
3241 LHSC = cast<SCEVConstant>(Ops[0]);
3242 }
3243
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003244 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003245 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3246 Ops.erase(Ops.begin());
3247 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003248 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3249 // If we have an umax with a constant maximum-int, it will always be
3250 // maximum-int.
3251 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003252 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003253
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003254 if (Ops.size() == 1) return Ops[0];
3255 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003256
3257 // Find the first UMax
3258 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3259 ++Idx;
3260
3261 // Check to see if one of the operands is a UMax. If so, expand its operands
3262 // onto our operand list, and recurse to simplify.
3263 if (Idx < Ops.size()) {
3264 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003265 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003266 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003267 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003268 DeletedUMax = true;
3269 }
3270
3271 if (DeletedUMax)
3272 return getUMaxExpr(Ops);
3273 }
3274
3275 // Okay, check to see if the same value occurs in the operand list twice. If
3276 // so, delete one. Since we sorted the list, these values are required to
3277 // be adjacent.
3278 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003279 // X umax Y umax Y --> X umax Y
3280 // X umax Y --> X, if X is always greater than Y
3281 if (Ops[i] == Ops[i+1] ||
3282 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3283 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3284 --i; --e;
3285 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003286 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3287 --i; --e;
3288 }
3289
3290 if (Ops.size() == 1) return Ops[0];
3291
3292 assert(!Ops.empty() && "Reduced umax down to nothing!");
3293
3294 // Okay, it looks like we really DO need a umax expr. Check to see if we
3295 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003296 FoldingSetNodeID ID;
3297 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003298 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3299 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003300 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003301 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003302 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3303 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003304 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3305 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003306 UniqueSCEVs.InsertNode(S, IP);
3307 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003308}
3309
Dan Gohmanabd17092009-06-24 14:49:00 +00003310const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3311 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003312 // ~smax(~x, ~y) == smin(x, y).
3313 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3314}
3315
Dan Gohmanabd17092009-06-24 14:49:00 +00003316const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3317 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003318 // ~umax(~x, ~y) == umin(x, y)
3319 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3320}
3321
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003322const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003323 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003324 // constant expression and then folding it back into a ConstantInt.
3325 // This is just a compile-time optimization.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003326 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003327}
3328
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003329const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3330 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003331 unsigned FieldNo) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003332 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003333 // constant expression and then folding it back into a ConstantInt.
3334 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003335 return getConstant(
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003336 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003337}
3338
Dan Gohmanaf752342009-07-07 17:06:11 +00003339const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003340 // Don't attempt to do anything other than create a SCEVUnknown object
3341 // here. createSCEV only calls getUnknown after checking for all other
3342 // interesting possibilities, and any other code that calls getUnknown
3343 // is doing so in order to hide a value from SCEV canonicalization.
3344
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003345 FoldingSetNodeID ID;
3346 ID.AddInteger(scUnknown);
3347 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003348 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003349 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3350 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3351 "Stale SCEVUnknown in uniquing map!");
3352 return S;
3353 }
3354 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3355 FirstUnknown);
3356 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003357 UniqueSCEVs.InsertNode(S, IP);
3358 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003359}
3360
Chris Lattnerd934c702004-04-02 20:23:17 +00003361//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003362// Basic SCEV Analysis and PHI Idiom Recognition Code
3363//
3364
Sanjoy Dasf8570812016-05-29 00:38:22 +00003365/// Test if values of the given type are analyzable within the SCEV
3366/// framework. This primarily includes integer types, and it can optionally
3367/// include pointer types if the ScalarEvolution class has access to
3368/// target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003369bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003370 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003371 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003372}
3373
Sanjoy Dasf8570812016-05-29 00:38:22 +00003374/// Return the size in bits of the specified type, for which isSCEVable must
3375/// return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003376uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003377 assert(isSCEVable(Ty) && "Type is not SCEVable!");
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003378 return getDataLayout().getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003379}
3380
Sanjoy Dasf8570812016-05-29 00:38:22 +00003381/// Return a type with the same bitwidth as the given type and which represents
3382/// how SCEV will treat the given type, for which isSCEVable must return
3383/// true. For pointer types, this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003384Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003385 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3386
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003387 if (Ty->isIntegerTy())
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003388 return Ty;
3389
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003390 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003391 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003392 return getDataLayout().getIntPtrType(Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003393}
Chris Lattnerd934c702004-04-02 20:23:17 +00003394
Dan Gohmanaf752342009-07-07 17:06:11 +00003395const SCEV *ScalarEvolution::getCouldNotCompute() {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003396 return CouldNotCompute.get();
Dan Gohman31efa302009-04-18 17:58:19 +00003397}
3398
Sanjoy Das7d752672015-12-08 04:32:54 +00003399bool ScalarEvolution::checkValidity(const SCEV *S) const {
Sanjoy Das6b46a0d2016-11-09 18:22:43 +00003400 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3401 auto *SU = dyn_cast<SCEVUnknown>(S);
3402 return SU && SU->getValue() == nullptr;
3403 });
Shuxin Yangefc4c012013-07-08 17:33:13 +00003404
Sanjoy Das6b46a0d2016-11-09 18:22:43 +00003405 return !ContainsNulls;
Shuxin Yangefc4c012013-07-08 17:33:13 +00003406}
3407
Wei Mia49559b2016-02-04 01:27:38 +00003408bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
Sanjoy Dasa2602142016-09-27 18:01:46 +00003409 HasRecMapType::iterator I = HasRecMap.find(S);
Wei Mia49559b2016-02-04 01:27:38 +00003410 if (I != HasRecMap.end())
3411 return I->second;
3412
Sanjoy Das0ae390a2016-11-10 06:33:54 +00003413 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
Sanjoy Das6b46a0d2016-11-09 18:22:43 +00003414 HasRecMap.insert({S, FoundAddRec});
3415 return FoundAddRec;
Wei Mia49559b2016-02-04 01:27:38 +00003416}
3417
Wei Mi785858c2016-08-09 20:37:50 +00003418/// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3419/// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3420/// offset I, then return {S', I}, else return {\p S, nullptr}.
3421static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3422 const auto *Add = dyn_cast<SCEVAddExpr>(S);
3423 if (!Add)
3424 return {S, nullptr};
3425
3426 if (Add->getNumOperands() != 2)
3427 return {S, nullptr};
3428
3429 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3430 if (!ConstOp)
3431 return {S, nullptr};
3432
3433 return {Add->getOperand(1), ConstOp->getValue()};
3434}
3435
3436/// Return the ValueOffsetPair set for \p S. \p S can be represented
3437/// by the value and offset from any ValueOffsetPair in the set.
3438SetVector<ScalarEvolution::ValueOffsetPair> *
3439ScalarEvolution::getSCEVValues(const SCEV *S) {
Wei Mia49559b2016-02-04 01:27:38 +00003440 ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3441 if (SI == ExprValueMap.end())
3442 return nullptr;
3443#ifndef NDEBUG
3444 if (VerifySCEVMap) {
3445 // Check there is no dangling Value in the set returned.
3446 for (const auto &VE : SI->second)
Wei Mi785858c2016-08-09 20:37:50 +00003447 assert(ValueExprMap.count(VE.first));
Wei Mia49559b2016-02-04 01:27:38 +00003448 }
3449#endif
3450 return &SI->second;
3451}
3452
Wei Mi785858c2016-08-09 20:37:50 +00003453/// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3454/// cannot be used separately. eraseValueFromMap should be used to remove
3455/// V from ValueExprMap and ExprValueMap at the same time.
Wei Mia49559b2016-02-04 01:27:38 +00003456void ScalarEvolution::eraseValueFromMap(Value *V) {
3457 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3458 if (I != ValueExprMap.end()) {
3459 const SCEV *S = I->second;
Wei Mi785858c2016-08-09 20:37:50 +00003460 // Remove {V, 0} from the set of ExprValueMap[S]
3461 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3462 SV->remove({V, nullptr});
3463
3464 // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3465 const SCEV *Stripped;
3466 ConstantInt *Offset;
3467 std::tie(Stripped, Offset) = splitAddExpr(S);
3468 if (Offset != nullptr) {
3469 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3470 SV->remove({V, Offset});
3471 }
Wei Mia49559b2016-02-04 01:27:38 +00003472 ValueExprMap.erase(V);
3473 }
3474}
3475
Sanjoy Dasf8570812016-05-29 00:38:22 +00003476/// Return an existing SCEV if it exists, otherwise analyze the expression and
3477/// create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003478const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003479 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003480
Jingyue Wu42f1d672015-07-28 18:22:40 +00003481 const SCEV *S = getExistingSCEV(V);
3482 if (S == nullptr) {
3483 S = createSCEV(V);
Wei Mia49559b2016-02-04 01:27:38 +00003484 // During PHI resolution, it is possible to create two SCEVs for the same
3485 // V, so it is needed to double check whether V->S is inserted into
Wei Mi785858c2016-08-09 20:37:50 +00003486 // ValueExprMap before insert S->{V, 0} into ExprValueMap.
Wei Mia49559b2016-02-04 01:27:38 +00003487 std::pair<ValueExprMapType::iterator, bool> Pair =
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00003488 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
Wei Mi785858c2016-08-09 20:37:50 +00003489 if (Pair.second) {
3490 ExprValueMap[S].insert({V, nullptr});
3491
3492 // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3493 // ExprValueMap.
3494 const SCEV *Stripped = S;
3495 ConstantInt *Offset = nullptr;
3496 std::tie(Stripped, Offset) = splitAddExpr(S);
3497 // If stripped is SCEVUnknown, don't bother to save
3498 // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3499 // increase the complexity of the expansion code.
3500 // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3501 // because it may generate add/sub instead of GEP in SCEV expansion.
3502 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3503 !isa<GetElementPtrInst>(V))
3504 ExprValueMap[Stripped].insert({V, Offset});
3505 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003506 }
3507 return S;
3508}
3509
3510const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3511 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3512
Shuxin Yangefc4c012013-07-08 17:33:13 +00003513 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3514 if (I != ValueExprMap.end()) {
3515 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003516 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003517 return S;
Wei Mi785858c2016-08-09 20:37:50 +00003518 eraseValueFromMap(V);
Wei Mia49559b2016-02-04 01:27:38 +00003519 forgetMemoizedResults(S);
Shuxin Yangefc4c012013-07-08 17:33:13 +00003520 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003521 return nullptr;
Chris Lattnerd934c702004-04-02 20:23:17 +00003522}
3523
Sanjoy Dasf8570812016-05-29 00:38:22 +00003524/// Return a SCEV corresponding to -V = -1*V
Dan Gohman0a40ad92009-04-16 03:18:22 +00003525///
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003526const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3527 SCEV::NoWrapFlags Flags) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003528 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003529 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003530 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003531
Chris Lattner229907c2011-07-18 04:54:35 +00003532 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003533 Ty = getEffectiveSCEVType(Ty);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003534 return getMulExpr(
3535 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003536}
3537
Sanjoy Dasf8570812016-05-29 00:38:22 +00003538/// Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003539const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003540 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003541 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003542 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003543
Chris Lattner229907c2011-07-18 04:54:35 +00003544 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003545 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003546 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003547 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003548 return getMinusSCEV(AllOnes, V);
3549}
3550
Chris Lattnerfc877522011-01-09 22:26:35 +00003551const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003552 SCEV::NoWrapFlags Flags) {
Dan Gohman46f00a22010-07-20 16:53:00 +00003553 // Fast path: X - X --> 0.
3554 if (LHS == RHS)
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00003555 return getZero(LHS->getType());
Dan Gohman46f00a22010-07-20 16:53:00 +00003556
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003557 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3558 // makes it so that we cannot make much use of NUW.
3559 auto AddFlags = SCEV::FlagAnyWrap;
3560 const bool RHSIsNotMinSigned =
3561 !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3562 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3563 // Let M be the minimum representable signed value. Then (-1)*RHS
3564 // signed-wraps if and only if RHS is M. That can happen even for
3565 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3566 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3567 // (-1)*RHS, we need to prove that RHS != M.
3568 //
3569 // If LHS is non-negative and we know that LHS - RHS does not
3570 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3571 // either by proving that RHS > M or that LHS >= 0.
3572 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3573 AddFlags = SCEV::FlagNSW;
3574 }
3575 }
3576
3577 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3578 // RHS is NSW and LHS >= 0.
3579 //
3580 // The difficulty here is that the NSW flag may have been proven
3581 // relative to a loop that is to be found in a recurrence in LHS and
3582 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3583 // larger scope than intended.
3584 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3585
3586 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003587}
3588
Dan Gohmanaf752342009-07-07 17:06:11 +00003589const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003590ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3591 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003592 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3593 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003594 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003595 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003596 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003597 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003598 return getTruncateExpr(V, Ty);
3599 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003600}
3601
Dan Gohmanaf752342009-07-07 17:06:11 +00003602const SCEV *
3603ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003604 Type *Ty) {
3605 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003606 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3607 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003608 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003609 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003610 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003611 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003612 return getTruncateExpr(V, Ty);
3613 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003614}
3615
Dan Gohmanaf752342009-07-07 17:06:11 +00003616const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003617ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3618 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003619 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3620 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003621 "Cannot noop or zero extend with non-integer arguments!");
3622 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3623 "getNoopOrZeroExtend cannot truncate!");
3624 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3625 return V; // No conversion
3626 return getZeroExtendExpr(V, Ty);
3627}
3628
Dan Gohmanaf752342009-07-07 17:06:11 +00003629const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003630ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3631 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003632 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3633 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003634 "Cannot noop or sign extend with non-integer arguments!");
3635 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3636 "getNoopOrSignExtend cannot truncate!");
3637 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3638 return V; // No conversion
3639 return getSignExtendExpr(V, Ty);
3640}
3641
Dan Gohmanaf752342009-07-07 17:06:11 +00003642const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003643ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3644 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003645 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3646 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003647 "Cannot noop or any extend with non-integer arguments!");
3648 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3649 "getNoopOrAnyExtend cannot truncate!");
3650 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3651 return V; // No conversion
3652 return getAnyExtendExpr(V, Ty);
3653}
3654
Dan Gohmanaf752342009-07-07 17:06:11 +00003655const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003656ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3657 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003658 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3659 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003660 "Cannot truncate or noop with non-integer arguments!");
3661 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3662 "getTruncateOrNoop cannot extend!");
3663 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3664 return V; // No conversion
3665 return getTruncateExpr(V, Ty);
3666}
3667
Dan Gohmanabd17092009-06-24 14:49:00 +00003668const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3669 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003670 const SCEV *PromotedLHS = LHS;
3671 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003672
3673 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3674 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3675 else
3676 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3677
3678 return getUMaxExpr(PromotedLHS, PromotedRHS);
3679}
3680
Dan Gohmanabd17092009-06-24 14:49:00 +00003681const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3682 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003683 const SCEV *PromotedLHS = LHS;
3684 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003685
3686 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3687 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3688 else
3689 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3690
3691 return getUMinExpr(PromotedLHS, PromotedRHS);
3692}
3693
Andrew Trick87716c92011-03-17 23:51:11 +00003694const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3695 // A pointer operand may evaluate to a nonpointer expression, such as null.
3696 if (!V->getType()->isPointerTy())
3697 return V;
3698
3699 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3700 return getPointerBase(Cast->getOperand());
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003701 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003702 const SCEV *PtrOp = nullptr;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00003703 for (const SCEV *NAryOp : NAry->operands()) {
3704 if (NAryOp->getType()->isPointerTy()) {
Andrew Trick87716c92011-03-17 23:51:11 +00003705 // Cannot find the base of an expression with multiple pointer operands.
3706 if (PtrOp)
3707 return V;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00003708 PtrOp = NAryOp;
Andrew Trick87716c92011-03-17 23:51:11 +00003709 }
3710 }
3711 if (!PtrOp)
3712 return V;
3713 return getPointerBase(PtrOp);
3714 }
3715 return V;
3716}
3717
Sanjoy Dasf8570812016-05-29 00:38:22 +00003718/// Push users of the given Instruction onto the given Worklist.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003719static void
3720PushDefUseChildren(Instruction *I,
3721 SmallVectorImpl<Instruction *> &Worklist) {
3722 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003723 for (User *U : I->users())
3724 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003725}
3726
Sanjoy Dasf1e9cae02016-03-01 19:28:01 +00003727void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003728 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003729 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003730
Dan Gohman0b89dff2009-07-25 01:13:03 +00003731 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003732 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003733 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003734 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003735 if (!Visited.insert(I).second)
3736 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003737
Sanjoy Das63914592015-10-18 00:29:20 +00003738 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003739 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003740 const SCEV *Old = It->second;
3741
Dan Gohman0b89dff2009-07-25 01:13:03 +00003742 // Short-circuit the def-use traversal if the symbolic name
3743 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003744 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003745 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003746
Dan Gohman0b89dff2009-07-25 01:13:03 +00003747 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003748 // structure, it's a PHI that's in the progress of being computed
3749 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3750 // additional loop trip count information isn't going to change anything.
3751 // In the second case, createNodeForPHI will perform the necessary
3752 // updates on its own when it gets to that point. In the third, we do
3753 // want to forget the SCEVUnknown.
3754 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003755 !isa<SCEVUnknown>(Old) ||
3756 (I != PN && Old == SymName)) {
Wei Mi785858c2016-08-09 20:37:50 +00003757 eraseValueFromMap(It->first);
Dan Gohman7e6b3932010-11-17 23:28:48 +00003758 forgetMemoizedResults(Old);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003759 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003760 }
3761
3762 PushDefUseChildren(I, Worklist);
3763 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003764}
Chris Lattnerd934c702004-04-02 20:23:17 +00003765
Benjamin Kramer83709b12015-11-16 09:01:28 +00003766namespace {
Silviu Barangaf91c8072015-10-30 15:02:28 +00003767class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3768public:
Sanjoy Das807d33d2016-02-20 01:44:10 +00003769 static const SCEV *rewrite(const SCEV *S, const Loop *L,
Silviu Barangaf91c8072015-10-30 15:02:28 +00003770 ScalarEvolution &SE) {
3771 SCEVInitRewriter Rewriter(L, SE);
Sanjoy Das807d33d2016-02-20 01:44:10 +00003772 const SCEV *Result = Rewriter.visit(S);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003773 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3774 }
3775
3776 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3777 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3778
3779 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3780 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3781 Valid = false;
3782 return Expr;
3783 }
3784
3785 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3786 // Only allow AddRecExprs for this loop.
3787 if (Expr->getLoop() == L)
3788 return Expr->getStart();
3789 Valid = false;
3790 return Expr;
3791 }
3792
3793 bool isValid() { return Valid; }
3794
3795private:
3796 const Loop *L;
3797 bool Valid;
3798};
3799
3800class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3801public:
Sanjoy Das807d33d2016-02-20 01:44:10 +00003802 static const SCEV *rewrite(const SCEV *S, const Loop *L,
Silviu Barangaf91c8072015-10-30 15:02:28 +00003803 ScalarEvolution &SE) {
3804 SCEVShiftRewriter Rewriter(L, SE);
Sanjoy Das807d33d2016-02-20 01:44:10 +00003805 const SCEV *Result = Rewriter.visit(S);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003806 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3807 }
3808
3809 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3810 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3811
3812 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3813 // Only allow AddRecExprs for this loop.
3814 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3815 Valid = false;
3816 return Expr;
3817 }
3818
3819 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3820 if (Expr->getLoop() == L && Expr->isAffine())
3821 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3822 Valid = false;
3823 return Expr;
3824 }
3825 bool isValid() { return Valid; }
3826
3827private:
3828 const Loop *L;
3829 bool Valid;
3830};
Benjamin Kramer83709b12015-11-16 09:01:28 +00003831} // end anonymous namespace
Silviu Barangaf91c8072015-10-30 15:02:28 +00003832
Sanjoy Das724f5cf2016-03-03 18:31:29 +00003833SCEV::NoWrapFlags
3834ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
3835 if (!AR->isAffine())
3836 return SCEV::FlagAnyWrap;
3837
3838 typedef OverflowingBinaryOperator OBO;
3839 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
3840
3841 if (!AR->hasNoSignedWrap()) {
3842 ConstantRange AddRecRange = getSignedRange(AR);
3843 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
3844
3845 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3846 Instruction::Add, IncRange, OBO::NoSignedWrap);
3847 if (NSWRegion.contains(AddRecRange))
3848 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
3849 }
3850
3851 if (!AR->hasNoUnsignedWrap()) {
3852 ConstantRange AddRecRange = getUnsignedRange(AR);
3853 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
3854
3855 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3856 Instruction::Add, IncRange, OBO::NoUnsignedWrap);
3857 if (NUWRegion.contains(AddRecRange))
3858 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
3859 }
3860
3861 return Result;
3862}
3863
Sanjoy Das118d9192016-03-31 05:14:22 +00003864namespace {
3865/// Represents an abstract binary operation. This may exist as a
3866/// normal instruction or constant expression, or may have been
3867/// derived from an expression tree.
3868struct BinaryOp {
3869 unsigned Opcode;
3870 Value *LHS;
3871 Value *RHS;
Sanjoy Dase12c0e52016-03-31 05:14:26 +00003872 bool IsNSW;
3873 bool IsNUW;
Sanjoy Das118d9192016-03-31 05:14:22 +00003874
3875 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
3876 /// constant expression.
3877 Operator *Op;
3878
3879 explicit BinaryOp(Operator *Op)
3880 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
Sanjoy Dase12c0e52016-03-31 05:14:26 +00003881 IsNSW(false), IsNUW(false), Op(Op) {
3882 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
3883 IsNSW = OBO->hasNoSignedWrap();
3884 IsNUW = OBO->hasNoUnsignedWrap();
3885 }
3886 }
Sanjoy Das118d9192016-03-31 05:14:22 +00003887
Sanjoy Dase12c0e52016-03-31 05:14:26 +00003888 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
3889 bool IsNUW = false)
3890 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
3891 Op(nullptr) {}
Sanjoy Das118d9192016-03-31 05:14:22 +00003892};
3893}
3894
3895
3896/// Try to map \p V into a BinaryOp, and return \c None on failure.
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003897static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
Sanjoy Das118d9192016-03-31 05:14:22 +00003898 auto *Op = dyn_cast<Operator>(V);
3899 if (!Op)
3900 return None;
3901
3902 // Implementation detail: all the cleverness here should happen without
3903 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
3904 // SCEV expressions when possible, and we should not break that.
3905
3906 switch (Op->getOpcode()) {
3907 case Instruction::Add:
3908 case Instruction::Sub:
3909 case Instruction::Mul:
3910 case Instruction::UDiv:
3911 case Instruction::And:
3912 case Instruction::Or:
3913 case Instruction::AShr:
3914 case Instruction::Shl:
3915 return BinaryOp(Op);
3916
3917 case Instruction::Xor:
3918 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
3919 // If the RHS of the xor is a signbit, then this is just an add.
3920 // Instcombine turns add of signbit into xor as a strength reduction step.
3921 if (RHSC->getValue().isSignBit())
3922 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
3923 return BinaryOp(Op);
3924
3925 case Instruction::LShr:
3926 // Turn logical shift right of a constant into a unsigned divide.
3927 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
3928 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
3929
3930 // If the shift count is not less than the bitwidth, the result of
3931 // the shift is undefined. Don't try to analyze it, because the
3932 // resolution chosen here may differ from the resolution chosen in
3933 // other parts of the compiler.
3934 if (SA->getValue().ult(BitWidth)) {
3935 Constant *X =
3936 ConstantInt::get(SA->getContext(),
3937 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3938 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
3939 }
3940 }
3941 return BinaryOp(Op);
3942
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003943 case Instruction::ExtractValue: {
3944 auto *EVI = cast<ExtractValueInst>(Op);
3945 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
3946 break;
3947
3948 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
3949 if (!CI)
3950 break;
3951
3952 if (auto *F = CI->getCalledFunction())
3953 switch (F->getIntrinsicID()) {
3954 case Intrinsic::sadd_with_overflow:
3955 case Intrinsic::uadd_with_overflow: {
3956 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
3957 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3958 CI->getArgOperand(1));
3959
3960 // Now that we know that all uses of the arithmetic-result component of
3961 // CI are guarded by the overflow check, we can go ahead and pretend
3962 // that the arithmetic is non-overflowing.
3963 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
3964 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3965 CI->getArgOperand(1), /* IsNSW = */ true,
3966 /* IsNUW = */ false);
3967 else
3968 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3969 CI->getArgOperand(1), /* IsNSW = */ false,
3970 /* IsNUW*/ true);
3971 }
3972
3973 case Intrinsic::ssub_with_overflow:
3974 case Intrinsic::usub_with_overflow:
3975 return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
3976 CI->getArgOperand(1));
3977
3978 case Intrinsic::smul_with_overflow:
3979 case Intrinsic::umul_with_overflow:
3980 return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
3981 CI->getArgOperand(1));
3982 default:
3983 break;
3984 }
3985 }
3986
Sanjoy Das118d9192016-03-31 05:14:22 +00003987 default:
3988 break;
3989 }
3990
3991 return None;
3992}
3993
Sanjoy Das55015d22015-10-02 23:09:44 +00003994const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3995 const Loop *L = LI.getLoopFor(PN->getParent());
3996 if (!L || L->getHeader() != PN->getParent())
3997 return nullptr;
3998
3999 // The loop may have multiple entrances or multiple exits; we can analyze
4000 // this phi as an addrec if it has a unique entry value and a unique
4001 // backedge value.
4002 Value *BEValueV = nullptr, *StartValueV = nullptr;
4003 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4004 Value *V = PN->getIncomingValue(i);
4005 if (L->contains(PN->getIncomingBlock(i))) {
4006 if (!BEValueV) {
4007 BEValueV = V;
4008 } else if (BEValueV != V) {
4009 BEValueV = nullptr;
4010 break;
4011 }
4012 } else if (!StartValueV) {
4013 StartValueV = V;
4014 } else if (StartValueV != V) {
4015 StartValueV = nullptr;
4016 break;
4017 }
4018 }
4019 if (BEValueV && StartValueV) {
4020 // While we are analyzing this PHI node, handle its value symbolically.
4021 const SCEV *SymbolicName = getUnknown(PN);
4022 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
4023 "PHI node already processed?");
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00004024 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
Sanjoy Das55015d22015-10-02 23:09:44 +00004025
4026 // Using this symbolic name for the PHI, analyze the value coming around
4027 // the back-edge.
4028 const SCEV *BEValue = getSCEV(BEValueV);
4029
4030 // NOTE: If BEValue is loop invariant, we know that the PHI node just
4031 // has a special value for the first iteration of the loop.
4032
4033 // If the value coming around the backedge is an add with the symbolic
4034 // value we just inserted, then we found a simple induction variable!
4035 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
4036 // If there is a single occurrence of the symbolic value, replace it
4037 // with a recurrence.
4038 unsigned FoundIndex = Add->getNumOperands();
4039 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4040 if (Add->getOperand(i) == SymbolicName)
4041 if (FoundIndex == e) {
4042 FoundIndex = i;
Dan Gohman6635bb22010-04-12 07:49:36 +00004043 break;
4044 }
Sanjoy Das55015d22015-10-02 23:09:44 +00004045
4046 if (FoundIndex != Add->getNumOperands()) {
4047 // Create an add with everything but the specified operand.
4048 SmallVector<const SCEV *, 8> Ops;
4049 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4050 if (i != FoundIndex)
4051 Ops.push_back(Add->getOperand(i));
4052 const SCEV *Accum = getAddExpr(Ops);
4053
4054 // This is not a valid addrec if the step amount is varying each
4055 // loop iteration, but is not itself an addrec in this loop.
4056 if (isLoopInvariant(Accum, L) ||
4057 (isa<SCEVAddRecExpr>(Accum) &&
4058 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
4059 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4060
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004061 if (auto BO = MatchBinaryOp(BEValueV, DT)) {
Sanjoy Dase12c0e52016-03-31 05:14:26 +00004062 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
4063 if (BO->IsNUW)
Sanjoy Das55015d22015-10-02 23:09:44 +00004064 Flags = setFlags(Flags, SCEV::FlagNUW);
Sanjoy Dase12c0e52016-03-31 05:14:26 +00004065 if (BO->IsNSW)
Sanjoy Das55015d22015-10-02 23:09:44 +00004066 Flags = setFlags(Flags, SCEV::FlagNSW);
4067 }
4068 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
4069 // If the increment is an inbounds GEP, then we know the address
4070 // space cannot be wrapped around. We cannot make any guarantee
4071 // about signed or unsigned overflow because pointers are
4072 // unsigned but we may have a negative index from the base
4073 // pointer. We can guarantee that no unsigned wrap occurs if the
4074 // indices form a positive value.
4075 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4076 Flags = setFlags(Flags, SCEV::FlagNW);
4077
4078 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4079 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4080 Flags = setFlags(Flags, SCEV::FlagNUW);
4081 }
4082
4083 // We cannot transfer nuw and nsw flags from subtraction
4084 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4085 // for instance.
4086 }
4087
4088 const SCEV *StartVal = getSCEV(StartValueV);
4089 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4090
Sanjoy Das55015d22015-10-02 23:09:44 +00004091 // Okay, for the entire analysis of this edge we assumed the PHI
4092 // to be symbolic. We now need to go back and purge all of the
4093 // entries for the scalars that use the symbolic expression.
Sanjoy Dasf1e9cae02016-03-01 19:28:01 +00004094 forgetSymbolicName(PN, SymbolicName);
Sanjoy Das55015d22015-10-02 23:09:44 +00004095 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004096
4097 // We can add Flags to the post-inc expression only if we
4098 // know that it us *undefined behavior* for BEValueV to
4099 // overflow.
4100 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4101 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4102 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4103
Sanjoy Das55015d22015-10-02 23:09:44 +00004104 return PHISCEV;
Dan Gohman6635bb22010-04-12 07:49:36 +00004105 }
4106 }
Silviu Barangaf91c8072015-10-30 15:02:28 +00004107 } else {
Sanjoy Das55015d22015-10-02 23:09:44 +00004108 // Otherwise, this could be a loop like this:
4109 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
4110 // In this case, j = {1,+,1} and BEValue is j.
4111 // Because the other in-value of i (0) fits the evolution of BEValue
4112 // i really is an addrec evolution.
Silviu Barangaf91c8072015-10-30 15:02:28 +00004113 //
4114 // We can generalize this saying that i is the shifted value of BEValue
4115 // by one iteration:
4116 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
4117 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4118 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4119 if (Shifted != getCouldNotCompute() &&
4120 Start != getCouldNotCompute()) {
Sanjoy Das55015d22015-10-02 23:09:44 +00004121 const SCEV *StartVal = getSCEV(StartValueV);
Silviu Barangaf91c8072015-10-30 15:02:28 +00004122 if (Start == StartVal) {
Sanjoy Das55015d22015-10-02 23:09:44 +00004123 // Okay, for the entire analysis of this edge we assumed the PHI
4124 // to be symbolic. We now need to go back and purge all of the
4125 // entries for the scalars that use the symbolic expression.
Sanjoy Dasf1e9cae02016-03-01 19:28:01 +00004126 forgetSymbolicName(PN, SymbolicName);
Silviu Barangaf91c8072015-10-30 15:02:28 +00004127 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4128 return Shifted;
Chris Lattnerd934c702004-04-02 20:23:17 +00004129 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004130 }
Dan Gohman6635bb22010-04-12 07:49:36 +00004131 }
Tobias Grosser934fcf42016-02-21 18:50:09 +00004132
4133 // Remove the temporary PHI node SCEV that has been inserted while intending
4134 // to create an AddRecExpr for this PHI node. We can not keep this temporary
4135 // as it will prevent later (possibly simpler) SCEV expressions to be added
4136 // to the ValueExprMap.
Wei Mi785858c2016-08-09 20:37:50 +00004137 eraseValueFromMap(PN);
Sanjoy Das55015d22015-10-02 23:09:44 +00004138 }
4139
4140 return nullptr;
4141}
4142
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004143// Checks if the SCEV S is available at BB. S is considered available at BB
4144// if S can be materialized at BB without introducing a fault.
4145static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4146 BasicBlock *BB) {
4147 struct CheckAvailable {
4148 bool TraversalDone = false;
4149 bool Available = true;
Sanjoy Das55015d22015-10-02 23:09:44 +00004150
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004151 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
4152 BasicBlock *BB = nullptr;
4153 DominatorTree &DT;
Sanjoy Das55015d22015-10-02 23:09:44 +00004154
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004155 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4156 : L(L), BB(BB), DT(DT) {}
Sanjoy Das55015d22015-10-02 23:09:44 +00004157
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004158 bool setUnavailable() {
4159 TraversalDone = true;
4160 Available = false;
Sanjoy Das55015d22015-10-02 23:09:44 +00004161 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00004162 }
4163
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004164 bool follow(const SCEV *S) {
4165 switch (S->getSCEVType()) {
4166 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4167 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
Sanjoy Dasbb5ffc52015-10-24 05:37:28 +00004168 // These expressions are available if their operand(s) is/are.
4169 return true;
Sanjoy Das55015d22015-10-02 23:09:44 +00004170
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004171 case scAddRecExpr: {
4172 // We allow add recurrences that are on the loop BB is in, or some
4173 // outer loop. This guarantees availability because the value of the
4174 // add recurrence at BB is simply the "current" value of the induction
4175 // variable. We can relax this in the future; for instance an add
4176 // recurrence on a sibling dominating loop is also available at BB.
4177 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4178 if (L && (ARLoop == L || ARLoop->contains(L)))
Sanjoy Das55015d22015-10-02 23:09:44 +00004179 return true;
4180
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004181 return setUnavailable();
Sanjoy Das55015d22015-10-02 23:09:44 +00004182 }
4183
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004184 case scUnknown: {
4185 // For SCEVUnknown, we check for simple dominance.
4186 const auto *SU = cast<SCEVUnknown>(S);
4187 Value *V = SU->getValue();
Sanjoy Das55015d22015-10-02 23:09:44 +00004188
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004189 if (isa<Argument>(V))
4190 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00004191
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004192 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4193 return false;
4194
4195 return setUnavailable();
4196 }
4197
4198 case scUDivExpr:
4199 case scCouldNotCompute:
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00004200 // We do not try to smart about these at all.
4201 return setUnavailable();
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004202 }
4203 llvm_unreachable("switch should be fully covered!");
4204 }
4205
4206 bool isDone() { return TraversalDone; }
Sanjoy Das55015d22015-10-02 23:09:44 +00004207 };
4208
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004209 CheckAvailable CA(L, BB, DT);
4210 SCEVTraversal<CheckAvailable> ST(CA);
4211
4212 ST.visitAll(S);
4213 return CA.Available;
4214}
4215
4216// Try to match a control flow sequence that branches out at BI and merges back
4217// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
4218// match.
4219static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4220 Value *&C, Value *&LHS, Value *&RHS) {
4221 C = BI->getCondition();
4222
4223 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4224 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4225
4226 if (!LeftEdge.isSingleEdge())
4227 return false;
4228
4229 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
4230
4231 Use &LeftUse = Merge->getOperandUse(0);
4232 Use &RightUse = Merge->getOperandUse(1);
4233
4234 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4235 LHS = LeftUse;
4236 RHS = RightUse;
4237 return true;
4238 }
4239
4240 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4241 LHS = RightUse;
4242 RHS = LeftUse;
4243 return true;
4244 }
4245
4246 return false;
4247}
4248
4249const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
Sanjoy Dasb0b4e862016-08-05 18:34:14 +00004250 auto IsReachable =
4251 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
4252 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004253 const Loop *L = LI.getLoopFor(PN->getParent());
4254
Sanjoy Das337d4782015-10-31 23:21:40 +00004255 // We don't want to break LCSSA, even in a SCEV expression tree.
4256 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4257 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4258 return nullptr;
4259
Sanjoy Das55015d22015-10-02 23:09:44 +00004260 // Try to match
4261 //
4262 // br %cond, label %left, label %right
4263 // left:
4264 // br label %merge
4265 // right:
4266 // br label %merge
4267 // merge:
4268 // V = phi [ %x, %left ], [ %y, %right ]
4269 //
4270 // as "select %cond, %x, %y"
4271
4272 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4273 assert(IDom && "At least the entry block should dominate PN");
4274
4275 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4276 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4277
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004278 if (BI && BI->isConditional() &&
4279 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4280 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4281 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
Sanjoy Das55015d22015-10-02 23:09:44 +00004282 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4283 }
4284
4285 return nullptr;
4286}
4287
4288const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4289 if (const SCEV *S = createAddRecFromPHI(PN))
4290 return S;
4291
4292 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4293 return S;
Misha Brukman01808ca2005-04-21 21:13:18 +00004294
Dan Gohmana9c205c2010-02-25 06:57:05 +00004295 // If the PHI has a single incoming value, follow that value, unless the
4296 // PHI's incoming blocks are in a different loop, in which case doing so
4297 // risks breaking LCSSA form. Instcombine would normally zap these, but
4298 // it doesn't have DominatorTree information, so it may miss cases.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004299 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004300 if (LI.replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00004301 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00004302
Chris Lattnerd934c702004-04-02 20:23:17 +00004303 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00004304 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00004305}
4306
Sanjoy Das55015d22015-10-02 23:09:44 +00004307const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4308 Value *Cond,
4309 Value *TrueVal,
4310 Value *FalseVal) {
Mehdi Amini044cb342015-10-07 18:14:25 +00004311 // Handle "constant" branch or select. This can occur for instance when a
4312 // loop pass transforms an inner loop and moves on to process the outer loop.
4313 if (auto *CI = dyn_cast<ConstantInt>(Cond))
4314 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4315
Sanjoy Dasd0671342015-10-02 19:39:59 +00004316 // Try to match some simple smax or umax patterns.
4317 auto *ICI = dyn_cast<ICmpInst>(Cond);
4318 if (!ICI)
4319 return getUnknown(I);
4320
4321 Value *LHS = ICI->getOperand(0);
4322 Value *RHS = ICI->getOperand(1);
4323
4324 switch (ICI->getPredicate()) {
4325 case ICmpInst::ICMP_SLT:
4326 case ICmpInst::ICMP_SLE:
4327 std::swap(LHS, RHS);
Justin Bognercd1d5aa2016-08-17 20:30:52 +00004328 LLVM_FALLTHROUGH;
Sanjoy Dasd0671342015-10-02 19:39:59 +00004329 case ICmpInst::ICMP_SGT:
4330 case ICmpInst::ICMP_SGE:
4331 // a >s b ? a+x : b+x -> smax(a, b)+x
4332 // a >s b ? b+x : a+x -> smin(a, b)+x
4333 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4334 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4335 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4336 const SCEV *LA = getSCEV(TrueVal);
4337 const SCEV *RA = getSCEV(FalseVal);
4338 const SCEV *LDiff = getMinusSCEV(LA, LS);
4339 const SCEV *RDiff = getMinusSCEV(RA, RS);
4340 if (LDiff == RDiff)
4341 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4342 LDiff = getMinusSCEV(LA, RS);
4343 RDiff = getMinusSCEV(RA, LS);
4344 if (LDiff == RDiff)
4345 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4346 }
4347 break;
4348 case ICmpInst::ICMP_ULT:
4349 case ICmpInst::ICMP_ULE:
4350 std::swap(LHS, RHS);
Justin Bognercd1d5aa2016-08-17 20:30:52 +00004351 LLVM_FALLTHROUGH;
Sanjoy Dasd0671342015-10-02 19:39:59 +00004352 case ICmpInst::ICMP_UGT:
4353 case ICmpInst::ICMP_UGE:
4354 // a >u b ? a+x : b+x -> umax(a, b)+x
4355 // a >u b ? b+x : a+x -> umin(a, b)+x
4356 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4357 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4358 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4359 const SCEV *LA = getSCEV(TrueVal);
4360 const SCEV *RA = getSCEV(FalseVal);
4361 const SCEV *LDiff = getMinusSCEV(LA, LS);
4362 const SCEV *RDiff = getMinusSCEV(RA, RS);
4363 if (LDiff == RDiff)
4364 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4365 LDiff = getMinusSCEV(LA, RS);
4366 RDiff = getMinusSCEV(RA, LS);
4367 if (LDiff == RDiff)
4368 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4369 }
4370 break;
4371 case ICmpInst::ICMP_NE:
4372 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4373 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4374 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4375 const SCEV *One = getOne(I->getType());
4376 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4377 const SCEV *LA = getSCEV(TrueVal);
4378 const SCEV *RA = getSCEV(FalseVal);
4379 const SCEV *LDiff = getMinusSCEV(LA, LS);
4380 const SCEV *RDiff = getMinusSCEV(RA, One);
4381 if (LDiff == RDiff)
4382 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4383 }
4384 break;
4385 case ICmpInst::ICMP_EQ:
4386 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4387 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4388 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4389 const SCEV *One = getOne(I->getType());
4390 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4391 const SCEV *LA = getSCEV(TrueVal);
4392 const SCEV *RA = getSCEV(FalseVal);
4393 const SCEV *LDiff = getMinusSCEV(LA, One);
4394 const SCEV *RDiff = getMinusSCEV(RA, LS);
4395 if (LDiff == RDiff)
4396 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4397 }
4398 break;
4399 default:
4400 break;
4401 }
4402
4403 return getUnknown(I);
4404}
4405
Sanjoy Dasf8570812016-05-29 00:38:22 +00004406/// Expand GEP instructions into add and multiply operations. This allows them
4407/// to be analyzed by regular SCEV code.
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004408const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman30f24fe2009-05-09 00:14:52 +00004409 // Don't attempt to analyze GEPs over unsized objects.
Eduard Burtescu19eb0312016-01-19 17:28:00 +00004410 if (!GEP->getSourceElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00004411 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00004412
Jingyue Wu2982d4d2015-05-18 17:03:25 +00004413 SmallVector<const SCEV *, 4> IndexExprs;
4414 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4415 IndexExprs.push_back(getSCEV(*Index));
Peter Collingbourne8dff0392016-11-13 06:59:50 +00004416 return getGEPExpr(GEP, IndexExprs);
Dan Gohmanee750d12009-05-08 20:26:55 +00004417}
4418
Dan Gohmanc702fc02009-06-19 23:29:04 +00004419uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00004420ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00004421 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00004422 return C->getAPInt().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00004423
Dan Gohmana30370b2009-05-04 22:02:23 +00004424 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00004425 return std::min(GetMinTrailingZeros(T->getOperand()),
4426 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00004427
Dan Gohmana30370b2009-05-04 22:02:23 +00004428 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004429 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4430 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4431 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004432 }
4433
Dan Gohmana30370b2009-05-04 22:02:23 +00004434 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004435 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4436 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4437 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004438 }
4439
Dan Gohmana30370b2009-05-04 22:02:23 +00004440 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004441 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004442 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004443 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004444 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004445 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004446 }
4447
Dan Gohmana30370b2009-05-04 22:02:23 +00004448 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004449 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004450 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4451 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00004452 for (unsigned i = 1, e = M->getNumOperands();
4453 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004454 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00004455 BitWidth);
4456 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004457 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004458
Dan Gohmana30370b2009-05-04 22:02:23 +00004459 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004460 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004461 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004462 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004463 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004464 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004465 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004466
Dan Gohmana30370b2009-05-04 22:02:23 +00004467 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004468 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004469 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004470 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004471 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004472 return MinOpRes;
4473 }
4474
Dan Gohmana30370b2009-05-04 22:02:23 +00004475 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004476 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004477 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004478 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004479 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004480 return MinOpRes;
4481 }
4482
Dan Gohmanc702fc02009-06-19 23:29:04 +00004483 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4484 // For a SCEVUnknown, ask ValueTracking.
4485 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00004486 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004487 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004488 nullptr, &DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004489 return Zeros.countTrailingOnes();
4490 }
4491
4492 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00004493 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00004494}
Chris Lattnerd934c702004-04-02 20:23:17 +00004495
Sanjoy Dasf8570812016-05-29 00:38:22 +00004496/// Helper method to assign a range to V from metadata present in the IR.
Sanjoy Das1f05c512014-10-10 21:22:34 +00004497static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004498 if (Instruction *I = dyn_cast<Instruction>(V))
4499 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4500 return getConstantRangeFromMetadata(*MD);
Sanjoy Das1f05c512014-10-10 21:22:34 +00004501
4502 return None;
4503}
4504
Sanjoy Dasf8570812016-05-29 00:38:22 +00004505/// Determine the range for a particular SCEV. If SignHint is
Sanjoy Das91b54772015-03-09 21:43:43 +00004506/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4507/// with a "cleaner" unsigned (resp. signed) representation.
Dan Gohmane65c9172009-07-13 21:35:55 +00004508ConstantRange
Sanjoy Das91b54772015-03-09 21:43:43 +00004509ScalarEvolution::getRange(const SCEV *S,
4510 ScalarEvolution::RangeSignHint SignHint) {
4511 DenseMap<const SCEV *, ConstantRange> &Cache =
4512 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4513 : SignedRanges;
4514
Dan Gohman761065e2010-11-17 02:44:44 +00004515 // See if we've computed this range already.
Sanjoy Das91b54772015-03-09 21:43:43 +00004516 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4517 if (I != Cache.end())
Dan Gohman761065e2010-11-17 02:44:44 +00004518 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00004519
4520 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00004521 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004522
Dan Gohman85be4332010-01-26 19:19:05 +00004523 unsigned BitWidth = getTypeSizeInBits(S->getType());
4524 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4525
Sanjoy Das91b54772015-03-09 21:43:43 +00004526 // If the value has known zeros, the maximum value will have those known zeros
4527 // as well.
Dan Gohman85be4332010-01-26 19:19:05 +00004528 uint32_t TZ = GetMinTrailingZeros(S);
Sanjoy Das91b54772015-03-09 21:43:43 +00004529 if (TZ != 0) {
4530 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4531 ConservativeResult =
4532 ConstantRange(APInt::getMinValue(BitWidth),
4533 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4534 else
4535 ConservativeResult = ConstantRange(
4536 APInt::getSignedMinValue(BitWidth),
4537 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4538 }
Dan Gohman85be4332010-01-26 19:19:05 +00004539
Dan Gohmane65c9172009-07-13 21:35:55 +00004540 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004541 ConstantRange X = getRange(Add->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004542 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004543 X = X.add(getRange(Add->getOperand(i), SignHint));
4544 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004545 }
4546
4547 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004548 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004549 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004550 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4551 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004552 }
4553
4554 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004555 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004556 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004557 X = X.smax(getRange(SMax->getOperand(i), SignHint));
4558 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004559 }
4560
4561 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004562 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004563 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004564 X = X.umax(getRange(UMax->getOperand(i), SignHint));
4565 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004566 }
4567
4568 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004569 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4570 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4571 return setRange(UDiv, SignHint,
4572 ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004573 }
4574
4575 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004576 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4577 return setRange(ZExt, SignHint,
4578 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004579 }
4580
4581 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004582 ConstantRange X = getRange(SExt->getOperand(), SignHint);
4583 return setRange(SExt, SignHint,
4584 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004585 }
4586
4587 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004588 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4589 return setRange(Trunc, SignHint,
4590 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004591 }
4592
Dan Gohmane65c9172009-07-13 21:35:55 +00004593 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004594 // If there's no unsigned wrap, the value will never be less than its
4595 // initial value.
Sanjoy Das76c48e02016-02-04 18:21:54 +00004596 if (AddRec->hasNoUnsignedWrap())
Dan Gohman51ad99d2010-01-21 02:09:26 +00004597 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00004598 if (!C->getValue()->isZero())
Sanjoy Das0de2fec2015-12-17 20:28:46 +00004599 ConservativeResult = ConservativeResult.intersectWith(
4600 ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004601
Dan Gohman51ad99d2010-01-21 02:09:26 +00004602 // If there's no signed wrap, and all the operands have the same sign or
4603 // zero, the value won't ever change sign.
Sanjoy Das76c48e02016-02-04 18:21:54 +00004604 if (AddRec->hasNoSignedWrap()) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004605 bool AllNonNeg = true;
4606 bool AllNonPos = true;
4607 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4608 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4609 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4610 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004611 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00004612 ConservativeResult = ConservativeResult.intersectWith(
4613 ConstantRange(APInt(BitWidth, 0),
4614 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004615 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00004616 ConservativeResult = ConservativeResult.intersectWith(
4617 ConstantRange(APInt::getSignedMinValue(BitWidth),
4618 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004619 }
Dan Gohmane65c9172009-07-13 21:35:55 +00004620
4621 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00004622 if (AddRec->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00004623 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00004624 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4625 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Sanjoy Dasb765b632016-03-02 00:57:39 +00004626 auto RangeFromAffine = getRangeForAffineAR(
4627 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4628 BitWidth);
4629 if (!RangeFromAffine.isFullSet())
4630 ConservativeResult =
4631 ConservativeResult.intersectWith(RangeFromAffine);
Sanjoy Dasbf730982016-03-02 00:57:54 +00004632
4633 auto RangeFromFactoring = getRangeViaFactoring(
4634 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4635 BitWidth);
4636 if (!RangeFromFactoring.isFullSet())
4637 ConservativeResult =
4638 ConservativeResult.intersectWith(RangeFromFactoring);
Dan Gohmand261d272009-06-24 01:05:09 +00004639 }
Dan Gohmand261d272009-06-24 01:05:09 +00004640 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004641
Sanjoy Das91b54772015-03-09 21:43:43 +00004642 return setRange(AddRec, SignHint, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004643 }
4644
Dan Gohmanc702fc02009-06-19 23:29:04 +00004645 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004646 // Check if the IR explicitly contains !range metadata.
4647 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4648 if (MDRange.hasValue())
4649 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4650
Sanjoy Das91b54772015-03-09 21:43:43 +00004651 // Split here to avoid paying the compile-time cost of calling both
4652 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4653 // if needed.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004654 const DataLayout &DL = getDataLayout();
Sanjoy Das91b54772015-03-09 21:43:43 +00004655 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4656 // For a SCEVUnknown, ask ValueTracking.
4657 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004658 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
Sanjoy Das91b54772015-03-09 21:43:43 +00004659 if (Ones != ~Zeros + 1)
4660 ConservativeResult =
4661 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4662 } else {
4663 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4664 "generalize as needed!");
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004665 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004666 if (NS > 1)
4667 ConservativeResult = ConservativeResult.intersectWith(
4668 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4669 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
Sanjoy Das91b54772015-03-09 21:43:43 +00004670 }
4671
4672 return setRange(U, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004673 }
4674
Sanjoy Das91b54772015-03-09 21:43:43 +00004675 return setRange(S, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004676}
4677
Sanjoy Dasb765b632016-03-02 00:57:39 +00004678ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
4679 const SCEV *Step,
4680 const SCEV *MaxBECount,
4681 unsigned BitWidth) {
4682 assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
4683 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
4684 "Precondition!");
4685
4686 ConstantRange Result(BitWidth, /* isFullSet = */ true);
4687
4688 // Check for overflow. This must be done with ConstantRange arithmetic
4689 // because we could be called from within the ScalarEvolution overflow
4690 // checking code.
4691
4692 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
4693 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
Michael Zolotukhine909a6e2016-12-20 23:03:42 +00004694 ConstantRange ZExtMaxBECountRange = MaxBECountRange.zextOrTrunc(BitWidth * 2);
Sanjoy Dasb765b632016-03-02 00:57:39 +00004695
4696 ConstantRange StepSRange = getSignedRange(Step);
Michael Zolotukhine909a6e2016-12-20 23:03:42 +00004697 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2);
Sanjoy Dasb765b632016-03-02 00:57:39 +00004698
4699 ConstantRange StartURange = getUnsignedRange(Start);
4700 ConstantRange EndURange =
4701 StartURange.add(MaxBECountRange.multiply(StepSRange));
4702
4703 // Check for unsigned overflow.
Michael Zolotukhine909a6e2016-12-20 23:03:42 +00004704 ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2);
4705 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2);
Sanjoy Dasb765b632016-03-02 00:57:39 +00004706 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4707 ZExtEndURange) {
4708 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4709 EndURange.getUnsignedMin());
4710 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4711 EndURange.getUnsignedMax());
4712 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4713 if (!IsFullRange)
4714 Result =
4715 Result.intersectWith(ConstantRange(Min, Max + 1));
4716 }
4717
4718 ConstantRange StartSRange = getSignedRange(Start);
4719 ConstantRange EndSRange =
4720 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4721
4722 // Check for signed overflow. This must be done with ConstantRange
4723 // arithmetic because we could be called from within the ScalarEvolution
4724 // overflow checking code.
Michael Zolotukhine909a6e2016-12-20 23:03:42 +00004725 ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2);
4726 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2);
Sanjoy Dasb765b632016-03-02 00:57:39 +00004727 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4728 SExtEndSRange) {
4729 APInt Min =
4730 APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin());
4731 APInt Max =
4732 APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax());
4733 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4734 if (!IsFullRange)
4735 Result =
4736 Result.intersectWith(ConstantRange(Min, Max + 1));
4737 }
4738
4739 return Result;
4740}
4741
Sanjoy Dasbf730982016-03-02 00:57:54 +00004742ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
4743 const SCEV *Step,
4744 const SCEV *MaxBECount,
4745 unsigned BitWidth) {
Sanjoy Dasbf730982016-03-02 00:57:54 +00004746 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
4747 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
4748
4749 struct SelectPattern {
4750 Value *Condition = nullptr;
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004751 APInt TrueValue;
4752 APInt FalseValue;
Sanjoy Dasbf730982016-03-02 00:57:54 +00004753
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004754 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
4755 const SCEV *S) {
4756 Optional<unsigned> CastOp;
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004757 APInt Offset(BitWidth, 0);
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004758
4759 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
4760 "Should be!");
4761
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004762 // Peel off a constant offset:
4763 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
4764 // In the future we could consider being smarter here and handle
4765 // {Start+Step,+,Step} too.
4766 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
4767 return;
4768
4769 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
4770 S = SA->getOperand(1);
4771 }
4772
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004773 // Peel off a cast operation
4774 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
4775 CastOp = SCast->getSCEVType();
4776 S = SCast->getOperand();
4777 }
4778
Sanjoy Dasbf730982016-03-02 00:57:54 +00004779 using namespace llvm::PatternMatch;
4780
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004781 auto *SU = dyn_cast<SCEVUnknown>(S);
4782 const APInt *TrueVal, *FalseVal;
4783 if (!SU ||
4784 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
4785 m_APInt(FalseVal)))) {
Sanjoy Dasbf730982016-03-02 00:57:54 +00004786 Condition = nullptr;
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004787 return;
Sanjoy Dasbf730982016-03-02 00:57:54 +00004788 }
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004789
4790 TrueValue = *TrueVal;
4791 FalseValue = *FalseVal;
4792
4793 // Re-apply the cast we peeled off earlier
4794 if (CastOp.hasValue())
4795 switch (*CastOp) {
4796 default:
4797 llvm_unreachable("Unknown SCEV cast type!");
4798
4799 case scTruncate:
4800 TrueValue = TrueValue.trunc(BitWidth);
4801 FalseValue = FalseValue.trunc(BitWidth);
4802 break;
4803 case scZeroExtend:
4804 TrueValue = TrueValue.zext(BitWidth);
4805 FalseValue = FalseValue.zext(BitWidth);
4806 break;
4807 case scSignExtend:
4808 TrueValue = TrueValue.sext(BitWidth);
4809 FalseValue = FalseValue.sext(BitWidth);
4810 break;
4811 }
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004812
4813 // Re-apply the constant offset we peeled off earlier
4814 TrueValue += Offset;
4815 FalseValue += Offset;
Sanjoy Dasbf730982016-03-02 00:57:54 +00004816 }
4817
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004818 bool isRecognized() { return Condition != nullptr; }
Sanjoy Dasbf730982016-03-02 00:57:54 +00004819 };
4820
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004821 SelectPattern StartPattern(*this, BitWidth, Start);
Sanjoy Dasbf730982016-03-02 00:57:54 +00004822 if (!StartPattern.isRecognized())
4823 return ConstantRange(BitWidth, /* isFullSet = */ true);
4824
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004825 SelectPattern StepPattern(*this, BitWidth, Step);
Sanjoy Dasbf730982016-03-02 00:57:54 +00004826 if (!StepPattern.isRecognized())
4827 return ConstantRange(BitWidth, /* isFullSet = */ true);
4828
4829 if (StartPattern.Condition != StepPattern.Condition) {
4830 // We don't handle this case today; but we could, by considering four
4831 // possibilities below instead of two. I'm not sure if there are cases where
4832 // that will help over what getRange already does, though.
4833 return ConstantRange(BitWidth, /* isFullSet = */ true);
4834 }
4835
4836 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
4837 // construct arbitrary general SCEV expressions here. This function is called
4838 // from deep in the call stack, and calling getSCEV (on a sext instruction,
4839 // say) can end up caching a suboptimal value.
4840
Sanjoy Das6b017a12016-03-02 02:56:29 +00004841 // FIXME: without the explicit `this` receiver below, MSVC errors out with
4842 // C2352 and C2512 (otherwise it isn't needed).
4843
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004844 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004845 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004846 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004847 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
Sanjoy Das62a1c332016-03-02 02:15:42 +00004848
Sanjoy Das1168f932016-03-02 02:34:20 +00004849 ConstantRange TrueRange =
Sanjoy Daseca1b532016-03-02 02:44:08 +00004850 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
Sanjoy Das1168f932016-03-02 02:34:20 +00004851 ConstantRange FalseRange =
Sanjoy Daseca1b532016-03-02 02:44:08 +00004852 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
Sanjoy Dasbf730982016-03-02 00:57:54 +00004853
4854 return TrueRange.unionWith(FalseRange);
4855}
4856
Jingyue Wu42f1d672015-07-28 18:22:40 +00004857SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004858 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004859 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4860
4861 // Return early if there are no flags to propagate to the SCEV.
4862 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4863 if (BinOp->hasNoUnsignedWrap())
4864 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4865 if (BinOp->hasNoSignedWrap())
4866 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
Sanjoy Dasdcd3a882016-03-02 04:52:22 +00004867 if (Flags == SCEV::FlagAnyWrap)
Jingyue Wu42f1d672015-07-28 18:22:40 +00004868 return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004869
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004870 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
4871}
4872
4873bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
4874 // Here we check that I is in the header of the innermost loop containing I,
4875 // since we only deal with instructions in the loop header. The actual loop we
4876 // need to check later will come from an add recurrence, but getting that
4877 // requires computing the SCEV of the operands, which can be expensive. This
4878 // check we can do cheaply to rule out some cases early.
4879 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
Sanjoy Dasdcd3a882016-03-02 04:52:22 +00004880 if (InnermostContainingLoop == nullptr ||
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004881 InnermostContainingLoop->getHeader() != I->getParent())
4882 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004883
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004884 // Only proceed if we can prove that I does not yield poison.
4885 if (!isKnownNotFullPoison(I)) return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004886
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004887 // At this point we know that if I is executed, then it does not wrap
4888 // according to at least one of NSW or NUW. If I is not executed, then we do
4889 // not know if the calculation that I represents would wrap. Multiple
4890 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
Jingyue Wu42f1d672015-07-28 18:22:40 +00004891 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4892 // derived from other instructions that map to the same SCEV. We cannot make
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004893 // that guarantee for cases where I is not executed. So we need to find the
4894 // loop that I is considered in relation to and prove that I is executed for
4895 // every iteration of that loop. That implies that the value that I
Jingyue Wu42f1d672015-07-28 18:22:40 +00004896 // calculates does not wrap anywhere in the loop, so then we can apply the
4897 // flags to the SCEV.
4898 //
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004899 // We check isLoopInvariant to disambiguate in case we are adding recurrences
4900 // from different loops, so that we know which loop to prove that I is
4901 // executed in.
4902 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
Hans Wennborg38790352016-08-17 22:50:18 +00004903 // I could be an extractvalue from a call to an overflow intrinsic.
4904 // TODO: We can do better here in some cases.
4905 if (!isSCEVable(I->getOperand(OpIndex)->getType()))
4906 return false;
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004907 const SCEV *Op = getSCEV(I->getOperand(OpIndex));
Jingyue Wu42f1d672015-07-28 18:22:40 +00004908 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004909 bool AllOtherOpsLoopInvariant = true;
4910 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
4911 ++OtherOpIndex) {
4912 if (OtherOpIndex != OpIndex) {
4913 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
4914 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
4915 AllOtherOpsLoopInvariant = false;
4916 break;
4917 }
4918 }
4919 }
4920 if (AllOtherOpsLoopInvariant &&
4921 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
4922 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004923 }
4924 }
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004925 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004926}
4927
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004928bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
4929 // If we know that \c I can never be poison period, then that's enough.
4930 if (isSCEVExprNeverPoison(I))
4931 return true;
4932
4933 // For an add recurrence specifically, we assume that infinite loops without
4934 // side effects are undefined behavior, and then reason as follows:
4935 //
4936 // If the add recurrence is poison in any iteration, it is poison on all
4937 // future iterations (since incrementing poison yields poison). If the result
4938 // of the add recurrence is fed into the loop latch condition and the loop
4939 // does not contain any throws or exiting blocks other than the latch, we now
4940 // have the ability to "choose" whether the backedge is taken or not (by
4941 // choosing a sufficiently evil value for the poison feeding into the branch)
4942 // for every iteration including and after the one in which \p I first became
4943 // poison. There are two possibilities (let's call the iteration in which \p
4944 // I first became poison as K):
4945 //
4946 // 1. In the set of iterations including and after K, the loop body executes
4947 // no side effects. In this case executing the backege an infinte number
4948 // of times will yield undefined behavior.
4949 //
4950 // 2. In the set of iterations including and after K, the loop body executes
4951 // at least one side effect. In this case, that specific instance of side
4952 // effect is control dependent on poison, which also yields undefined
4953 // behavior.
4954
4955 auto *ExitingBB = L->getExitingBlock();
4956 auto *LatchBB = L->getLoopLatch();
4957 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
4958 return false;
4959
4960 SmallPtrSet<const Instruction *, 16> Pushed;
Sanjoy Dasa19edc42016-06-08 17:48:31 +00004961 SmallVector<const Instruction *, 8> PoisonStack;
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004962
Sanjoy Dasa19edc42016-06-08 17:48:31 +00004963 // We start by assuming \c I, the post-inc add recurrence, is poison. Only
4964 // things that are known to be fully poison under that assumption go on the
4965 // PoisonStack.
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004966 Pushed.insert(I);
Sanjoy Dasa19edc42016-06-08 17:48:31 +00004967 PoisonStack.push_back(I);
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004968
4969 bool LatchControlDependentOnPoison = false;
Sanjoy Das2401c982016-06-08 17:48:46 +00004970 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
Sanjoy Dasa19edc42016-06-08 17:48:31 +00004971 const Instruction *Poison = PoisonStack.pop_back_val();
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004972
Sanjoy Dasa19edc42016-06-08 17:48:31 +00004973 for (auto *PoisonUser : Poison->users()) {
4974 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
4975 if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
4976 PoisonStack.push_back(cast<Instruction>(PoisonUser));
4977 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004978 assert(BI->isConditional() && "Only possibility!");
4979 if (BI->getParent() == LatchBB) {
4980 LatchControlDependentOnPoison = true;
4981 break;
4982 }
4983 }
4984 }
4985 }
4986
Sanjoy Das97cd7d52016-06-09 01:13:54 +00004987 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
4988}
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004989
Sanjoy Das5603fc02016-09-26 02:44:07 +00004990ScalarEvolution::LoopProperties
4991ScalarEvolution::getLoopProperties(const Loop *L) {
4992 typedef ScalarEvolution::LoopProperties LoopProperties;
David L Kreitzer8bbabee2016-09-16 14:38:13 +00004993
Sanjoy Das5603fc02016-09-26 02:44:07 +00004994 auto Itr = LoopPropertiesCache.find(L);
4995 if (Itr == LoopPropertiesCache.end()) {
4996 auto HasSideEffects = [](Instruction *I) {
4997 if (auto *SI = dyn_cast<StoreInst>(I))
4998 return !SI->isSimple();
4999
5000 return I->mayHaveSideEffects();
David L Kreitzer8bbabee2016-09-16 14:38:13 +00005001 };
5002
Sanjoy Das5603fc02016-09-26 02:44:07 +00005003 LoopProperties LP = {/* HasNoAbnormalExits */ true,
5004 /*HasNoSideEffects*/ true};
David L Kreitzer8bbabee2016-09-16 14:38:13 +00005005
Sanjoy Das5603fc02016-09-26 02:44:07 +00005006 for (auto *BB : L->getBlocks())
5007 for (auto &I : *BB) {
5008 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5009 LP.HasNoAbnormalExits = false;
5010 if (HasSideEffects(&I))
5011 LP.HasNoSideEffects = false;
5012 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
5013 break; // We're already as pessimistic as we can get.
5014 }
David L Kreitzer8bbabee2016-09-16 14:38:13 +00005015
Sanjoy Das5603fc02016-09-26 02:44:07 +00005016 auto InsertPair = LoopPropertiesCache.insert({L, LP});
Sanjoy Das7e4a6412016-05-29 00:32:17 +00005017 assert(InsertPair.second && "We just checked!");
5018 Itr = InsertPair.first;
5019 }
5020
Sanjoy Das97cd7d52016-06-09 01:13:54 +00005021 return Itr->second;
Sanjoy Das7e4a6412016-05-29 00:32:17 +00005022}
5023
Dan Gohmanaf752342009-07-07 17:06:11 +00005024const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00005025 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005026 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00005027
Dan Gohman69451a02010-03-09 23:46:50 +00005028 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman69451a02010-03-09 23:46:50 +00005029 // Don't attempt to analyze instructions in blocks that aren't
5030 // reachable. Such instructions don't matter, and they aren't required
5031 // to obey basic rules for definitions dominating uses which this
5032 // analysis depends on.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005033 if (!DT.isReachableFromEntry(I->getParent()))
Dan Gohman69451a02010-03-09 23:46:50 +00005034 return getUnknown(V);
Sanjoy Das260ad4d2016-03-29 16:40:39 +00005035 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Dan Gohmanf436bac2009-06-24 00:54:57 +00005036 return getConstant(CI);
5037 else if (isa<ConstantPointerNull>(V))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00005038 return getZero(V->getType());
Dan Gohmanf161e06e2009-08-25 17:49:57 +00005039 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
Sanjoy Das5ce32722016-04-08 00:48:30 +00005040 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
Sanjoy Das260ad4d2016-03-29 16:40:39 +00005041 else if (!isa<ConstantExpr>(V))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005042 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00005043
Dan Gohman80ca01c2009-07-17 20:47:02 +00005044 Operator *U = cast<Operator>(V);
Sanjoy Dasf49ca522016-05-29 00:34:42 +00005045 if (auto BO = MatchBinaryOp(U, DT)) {
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005046 switch (BO->Opcode) {
5047 case Instruction::Add: {
5048 // The simple thing to do would be to just call getSCEV on both operands
5049 // and call getAddExpr with the result. However if we're looking at a
5050 // bunch of things all added together, this can be quite inefficient,
5051 // because it leads to N-1 getAddExpr calls for N ultimate operands.
5052 // Instead, gather up all the operands and make a single getAddExpr call.
5053 // LLVM IR canonical form means we need only traverse the left operands.
5054 SmallVector<const SCEV *, 4> AddOps;
5055 do {
5056 if (BO->Op) {
5057 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5058 AddOps.push_back(OpSCEV);
5059 break;
5060 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00005061
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005062 // If a NUW or NSW flag can be applied to the SCEV for this
5063 // addition, then compute the SCEV for this addition by itself
5064 // with a separate call to getAddExpr. We need to do that
5065 // instead of pushing the operands of the addition onto AddOps,
5066 // since the flags are only known to apply to this particular
5067 // addition - they may not apply to other additions that can be
5068 // formed with operands from AddOps.
5069 const SCEV *RHS = getSCEV(BO->RHS);
5070 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5071 if (Flags != SCEV::FlagAnyWrap) {
5072 const SCEV *LHS = getSCEV(BO->LHS);
5073 if (BO->Opcode == Instruction::Sub)
5074 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
5075 else
5076 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
5077 break;
5078 }
Dan Gohman36bad002009-09-17 18:05:20 +00005079 }
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005080
5081 if (BO->Opcode == Instruction::Sub)
5082 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
5083 else
5084 AddOps.push_back(getSCEV(BO->RHS));
5085
Sanjoy Dasf49ca522016-05-29 00:34:42 +00005086 auto NewBO = MatchBinaryOp(BO->LHS, DT);
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005087 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
5088 NewBO->Opcode != Instruction::Sub)) {
5089 AddOps.push_back(getSCEV(BO->LHS));
5090 break;
5091 }
5092 BO = NewBO;
5093 } while (true);
5094
5095 return getAddExpr(AddOps);
5096 }
5097
5098 case Instruction::Mul: {
5099 SmallVector<const SCEV *, 4> MulOps;
5100 do {
5101 if (BO->Op) {
5102 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5103 MulOps.push_back(OpSCEV);
5104 break;
5105 }
5106
5107 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5108 if (Flags != SCEV::FlagAnyWrap) {
5109 MulOps.push_back(
5110 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
5111 break;
5112 }
5113 }
5114
5115 MulOps.push_back(getSCEV(BO->RHS));
Sanjoy Dasf49ca522016-05-29 00:34:42 +00005116 auto NewBO = MatchBinaryOp(BO->LHS, DT);
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005117 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
5118 MulOps.push_back(getSCEV(BO->LHS));
5119 break;
5120 }
NAKAMURA Takumi940cd932016-07-04 01:26:21 +00005121 BO = NewBO;
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005122 } while (true);
5123
5124 return getMulExpr(MulOps);
5125 }
5126 case Instruction::UDiv:
5127 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
5128 case Instruction::Sub: {
5129 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5130 if (BO->Op)
5131 Flags = getNoWrapFlagsFromUB(BO->Op);
5132 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
5133 }
5134 case Instruction::And:
5135 // For an expression like x&255 that merely masks off the high bits,
5136 // use zext(trunc(x)) as the SCEV expression.
5137 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5138 if (CI->isNullValue())
5139 return getSCEV(BO->RHS);
5140 if (CI->isAllOnesValue())
5141 return getSCEV(BO->LHS);
5142 const APInt &A = CI->getValue();
5143
5144 // Instcombine's ShrinkDemandedConstant may strip bits out of
5145 // constants, obscuring what would otherwise be a low-bits mask.
5146 // Use computeKnownBits to compute what ShrinkDemandedConstant
5147 // knew about to reconstruct a low-bits mask value.
5148 unsigned LZ = A.countLeadingZeros();
5149 unsigned TZ = A.countTrailingZeros();
5150 unsigned BitWidth = A.getBitWidth();
5151 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5152 computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00005153 0, &AC, nullptr, &DT);
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005154
5155 APInt EffectiveMask =
5156 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
5157 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
Eli Friedmanf1f49c82017-01-18 23:56:42 +00005158 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
5159 const SCEV *LHS = getSCEV(BO->LHS);
5160 const SCEV *ShiftedLHS = nullptr;
5161 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
5162 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
5163 // For an expression like (x * 8) & 8, simplify the multiply.
5164 unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
5165 unsigned GCD = std::min(MulZeros, TZ);
5166 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
5167 SmallVector<const SCEV*, 4> MulOps;
5168 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
5169 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
5170 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
5171 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
5172 }
5173 }
5174 if (!ShiftedLHS)
5175 ShiftedLHS = getUDivExpr(LHS, MulCount);
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005176 return getMulExpr(
5177 getZeroExtendExpr(
Eli Friedmanf1f49c82017-01-18 23:56:42 +00005178 getTruncateExpr(ShiftedLHS,
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005179 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
5180 BO->LHS->getType()),
5181 MulCount);
5182 }
Dan Gohman36bad002009-09-17 18:05:20 +00005183 }
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005184 break;
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00005185
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005186 case Instruction::Or:
5187 // If the RHS of the Or is a constant, we may have something like:
5188 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
5189 // optimizations will transparently handle this case.
5190 //
5191 // In order for this transformation to be safe, the LHS must be of the
5192 // form X*(2^n) and the Or constant must be less than 2^n.
5193 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5194 const SCEV *LHS = getSCEV(BO->LHS);
5195 const APInt &CIVal = CI->getValue();
5196 if (GetMinTrailingZeros(LHS) >=
5197 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
5198 // Build a plain add SCEV.
5199 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
5200 // If the LHS of the add was an addrec and it has no-wrap flags,
5201 // transfer the no-wrap flags, since an or won't introduce a wrap.
5202 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
5203 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
5204 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
5205 OldAR->getNoWrapFlags());
5206 }
5207 return S;
5208 }
5209 }
5210 break;
Dan Gohman6350296e2009-05-18 16:29:04 +00005211
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005212 case Instruction::Xor:
5213 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5214 // If the RHS of xor is -1, then this is a not operation.
5215 if (CI->isAllOnesValue())
5216 return getNotSCEV(getSCEV(BO->LHS));
Dan Gohmaneddf7712009-06-18 00:00:20 +00005217
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005218 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
5219 // This is a variant of the check for xor with -1, and it handles
5220 // the case where instcombine has trimmed non-demanded bits out
5221 // of an xor with -1.
5222 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
5223 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5224 if (LBO->getOpcode() == Instruction::And &&
5225 LCI->getValue() == CI->getValue())
5226 if (const SCEVZeroExtendExpr *Z =
5227 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5228 Type *UTy = BO->LHS->getType();
5229 const SCEV *Z0 = Z->getOperand();
5230 Type *Z0Ty = Z0->getType();
5231 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
Dan Gohmaneddf7712009-06-18 00:00:20 +00005232
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005233 // If C is a low-bits mask, the zero extend is serving to
5234 // mask off the high bits. Complement the operand and
5235 // re-apply the zext.
5236 if (APIntOps::isMask(Z0TySize, CI->getValue()))
5237 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5238
5239 // If C is a single bit, it may be in the sign-bit position
5240 // before the zero-extend. In this case, represent the xor
5241 // using an add, which is equivalent, and re-apply the zext.
5242 APInt Trunc = CI->getValue().trunc(Z0TySize);
5243 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5244 Trunc.isSignBit())
5245 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5246 UTy);
5247 }
5248 }
5249 break;
Dan Gohman05e89732008-06-22 19:56:46 +00005250
5251 case Instruction::Shl:
5252 // Turn shift left of a constant amount into a multiply.
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005253 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
5254 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00005255
5256 // If the shift count is not less than the bitwidth, the result of
5257 // the shift is undefined. Don't try to analyze it, because the
5258 // resolution chosen here may differ from the resolution chosen in
5259 // other parts of the compiler.
5260 if (SA->getValue().uge(BitWidth))
5261 break;
5262
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00005263 // It is currently not resolved how to interpret NSW for left
5264 // shift by BitWidth - 1, so we avoid applying flags in that
5265 // case. Remove this check (or this comment) once the situation
5266 // is resolved. See
5267 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
5268 // and http://reviews.llvm.org/D8890 .
5269 auto Flags = SCEV::FlagAnyWrap;
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005270 if (BO->Op && SA->getValue().ult(BitWidth - 1))
5271 Flags = getNoWrapFlagsFromUB(BO->Op);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00005272
Owen Andersonedb4a702009-07-24 23:12:02 +00005273 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00005274 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005275 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
Dan Gohman05e89732008-06-22 19:56:46 +00005276 }
5277 break;
5278
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005279 case Instruction::AShr:
5280 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
5281 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS))
5282 if (Operator *L = dyn_cast<Operator>(BO->LHS))
5283 if (L->getOpcode() == Instruction::Shl &&
5284 L->getOperand(1) == BO->RHS) {
5285 uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType());
Dan Gohmanacd700a2010-04-22 01:35:11 +00005286
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005287 // If the shift count is not less than the bitwidth, the result of
5288 // the shift is undefined. Don't try to analyze it, because the
5289 // resolution chosen here may differ from the resolution chosen in
5290 // other parts of the compiler.
5291 if (CI->getValue().uge(BitWidth))
5292 break;
Dan Gohmanacd700a2010-04-22 01:35:11 +00005293
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005294 uint64_t Amt = BitWidth - CI->getZExtValue();
5295 if (Amt == BitWidth)
5296 return getSCEV(L->getOperand(0)); // shift by zero --> noop
5297 return getSignExtendExpr(
5298 getTruncateExpr(getSCEV(L->getOperand(0)),
5299 IntegerType::get(getContext(), Amt)),
5300 BO->LHS->getType());
5301 }
5302 break;
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00005303 }
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005304 }
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00005305
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005306 switch (U->getOpcode()) {
Dan Gohman05e89732008-06-22 19:56:46 +00005307 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00005308 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00005309
5310 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00005311 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00005312
5313 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00005314 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00005315
5316 case Instruction::BitCast:
5317 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00005318 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00005319 return getSCEV(U->getOperand(0));
5320 break;
5321
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00005322 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
5323 // lead to pointer expressions which cannot safely be expanded to GEPs,
5324 // because ScalarEvolution doesn't respect the GEP aliasing rules when
5325 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00005326
Dan Gohmanee750d12009-05-08 20:26:55 +00005327 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00005328 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00005329
Dan Gohman05e89732008-06-22 19:56:46 +00005330 case Instruction::PHI:
5331 return createNodeForPHI(cast<PHINode>(U));
5332
5333 case Instruction::Select:
Sanjoy Dasd0671342015-10-02 19:39:59 +00005334 // U can also be a select constant expr, which let fall through. Since
5335 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
5336 // constant expressions cannot have instructions as operands, we'd have
5337 // returned getUnknown for a select constant expressions anyway.
5338 if (isa<Instruction>(U))
Sanjoy Das55015d22015-10-02 23:09:44 +00005339 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
5340 U->getOperand(1), U->getOperand(2));
Hal Finkele186deb2016-07-11 02:48:23 +00005341 break;
5342
5343 case Instruction::Call:
5344 case Instruction::Invoke:
5345 if (Value *RV = CallSite(U).getReturnedArgOperand())
5346 return getSCEV(RV);
5347 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005348 }
5349
Dan Gohmanc8e23622009-04-21 23:15:49 +00005350 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00005351}
5352
5353
5354
5355//===----------------------------------------------------------------------===//
5356// Iteration Count Computation Code
5357//
5358
Haicheng Wu1ef17e92016-10-12 21:29:38 +00005359static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
5360 if (!ExitCount)
5361 return 0;
5362
5363 ConstantInt *ExitConst = ExitCount->getValue();
5364
5365 // Guard against huge trip counts.
5366 if (ExitConst->getValue().getActiveBits() > 32)
5367 return 0;
5368
5369 // In case of integer overflow, this returns 0, which is correct.
5370 return ((unsigned)ExitConst->getZExtValue()) + 1;
5371}
5372
Chandler Carruth6666c272014-10-11 00:12:11 +00005373unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
5374 if (BasicBlock *ExitingBB = L->getExitingBlock())
5375 return getSmallConstantTripCount(L, ExitingBB);
5376
5377 // No trip count information for multiple exits.
5378 return 0;
5379}
5380
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005381unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
5382 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00005383 assert(ExitingBlock && "Must pass a non-null exiting block!");
5384 assert(L->isLoopExiting(ExitingBlock) &&
5385 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00005386 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005387 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Haicheng Wu1ef17e92016-10-12 21:29:38 +00005388 return getConstantTripCount(ExitCount);
5389}
Andrew Trick2b6860f2011-08-11 23:36:16 +00005390
Haicheng Wu1ef17e92016-10-12 21:29:38 +00005391unsigned ScalarEvolution::getSmallConstantMaxTripCount(Loop *L) {
5392 const auto *MaxExitCount =
5393 dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L));
5394 return getConstantTripCount(MaxExitCount);
Andrew Trick2b6860f2011-08-11 23:36:16 +00005395}
5396
Chandler Carruth6666c272014-10-11 00:12:11 +00005397unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
5398 if (BasicBlock *ExitingBB = L->getExitingBlock())
5399 return getSmallConstantTripMultiple(L, ExitingBB);
5400
5401 // No trip multiple information for multiple exits.
5402 return 0;
5403}
5404
Sanjoy Dasf8570812016-05-29 00:38:22 +00005405/// Returns the largest constant divisor of the trip count of this loop as a
5406/// normal unsigned value, if possible. This means that the actual trip count is
5407/// always a multiple of the returned value (don't forget the trip count could
5408/// very well be zero as well!).
Andrew Trick2b6860f2011-08-11 23:36:16 +00005409///
5410/// Returns 1 if the trip count is unknown or not guaranteed to be the
5411/// multiple of a constant (which is also the case if the trip count is simply
5412/// constant, use getSmallConstantTripCount for that case), Will also return 1
5413/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00005414///
5415/// As explained in the comments for getSmallConstantTripCount, this assumes
5416/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005417unsigned
5418ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
5419 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00005420 assert(ExitingBlock && "Must pass a non-null exiting block!");
5421 assert(L->isLoopExiting(ExitingBlock) &&
5422 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005423 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00005424 if (ExitCount == getCouldNotCompute())
5425 return 1;
5426
5427 // Get the trip count from the BE count by adding 1.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00005428 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
Andrew Trick2b6860f2011-08-11 23:36:16 +00005429 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
5430 // to factor simple cases.
5431 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
5432 TCMul = Mul->getOperand(0);
5433
5434 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
5435 if (!MulC)
5436 return 1;
5437
5438 ConstantInt *Result = MulC->getValue();
5439
Hal Finkel30bd9342012-10-24 19:46:44 +00005440 // Guard against huge trip counts (this requires checking
5441 // for zero to handle the case where the trip count == -1 and the
5442 // addition wraps).
5443 if (!Result || Result->getValue().getActiveBits() > 32 ||
5444 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00005445 return 1;
5446
5447 return (unsigned)Result->getZExtValue();
5448}
5449
Sanjoy Dasf8570812016-05-29 00:38:22 +00005450/// Get the expression for the number of loop iterations for which this loop is
5451/// guaranteed not to exit via ExitingBlock. Otherwise return
5452/// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00005453const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
5454 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005455}
5456
Silviu Baranga6f444df2016-04-08 14:29:09 +00005457const SCEV *
5458ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
5459 SCEVUnionPredicate &Preds) {
5460 return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
5461}
5462
Dan Gohmanaf752342009-07-07 17:06:11 +00005463const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005464 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00005465}
5466
Sanjoy Dasf8570812016-05-29 00:38:22 +00005467/// Similar to getBackedgeTakenCount, except return the least SCEV value that is
5468/// known never to be less than the actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00005469const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005470 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00005471}
5472
John Brawn84b21832016-10-21 11:08:48 +00005473bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
5474 return getBackedgeTakenInfo(L).isMaxOrZero(this);
5475}
5476
Sanjoy Dasf8570812016-05-29 00:38:22 +00005477/// Push PHI nodes in the header of the given loop onto the given Worklist.
Dan Gohmandc191042009-07-08 19:23:34 +00005478static void
5479PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5480 BasicBlock *Header = L->getHeader();
5481
5482 // Push all Loop-header PHIs onto the Worklist stack.
5483 for (BasicBlock::iterator I = Header->begin();
5484 PHINode *PN = dyn_cast<PHINode>(I); ++I)
5485 Worklist.push_back(PN);
5486}
5487
Dan Gohman2b8da352009-04-30 20:47:05 +00005488const ScalarEvolution::BackedgeTakenInfo &
Silviu Baranga6f444df2016-04-08 14:29:09 +00005489ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
5490 auto &BTI = getBackedgeTakenInfo(L);
5491 if (BTI.hasFullInfo())
5492 return BTI;
5493
5494 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5495
5496 if (!Pair.second)
5497 return Pair.first->second;
5498
5499 BackedgeTakenInfo Result =
5500 computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
5501
Sanjoy Dasc9bbf562016-09-25 23:12:04 +00005502 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
Silviu Baranga6f444df2016-04-08 14:29:09 +00005503}
5504
5505const ScalarEvolution::BackedgeTakenInfo &
Dan Gohman2b8da352009-04-30 20:47:05 +00005506ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005507 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00005508 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00005509 // update the value. The temporary CouldNotCompute value tells SCEV
5510 // code elsewhere that it shouldn't attempt to request a new
5511 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00005512 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00005513 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
Chris Lattnera337f5e2011-01-09 02:16:18 +00005514 if (!Pair.second)
5515 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00005516
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005517 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
Andrew Trick3ca3f982011-07-26 17:19:55 +00005518 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5519 // must be cleared in this scope.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005520 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005521
5522 if (Result.getExact(this) != getCouldNotCompute()) {
5523 assert(isLoopInvariant(Result.getExact(this), L) &&
5524 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00005525 "Computed backedge-taken count isn't loop invariant for loop!");
5526 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005527 }
5528 else if (Result.getMax(this) == getCouldNotCompute() &&
5529 isa<PHINode>(L->getHeader()->begin())) {
5530 // Only count loops that have phi nodes as not being computable.
5531 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00005532 }
Dan Gohman2b8da352009-04-30 20:47:05 +00005533
Chris Lattnera337f5e2011-01-09 02:16:18 +00005534 // Now that we know more about the trip count for this loop, forget any
5535 // existing SCEV values for PHI nodes in this loop since they are only
5536 // conservative estimates made without the benefit of trip count
5537 // information. This is similar to the code in forgetLoop, except that
5538 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005539 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00005540 SmallVector<Instruction *, 16> Worklist;
5541 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00005542
Chris Lattnera337f5e2011-01-09 02:16:18 +00005543 SmallPtrSet<Instruction *, 8> Visited;
5544 while (!Worklist.empty()) {
5545 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005546 if (!Visited.insert(I).second)
5547 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00005548
Chris Lattnera337f5e2011-01-09 02:16:18 +00005549 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005550 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00005551 if (It != ValueExprMap.end()) {
5552 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00005553
Chris Lattnera337f5e2011-01-09 02:16:18 +00005554 // SCEVUnknown for a PHI either means that it has an unrecognized
5555 // structure, or it's a PHI that's in the progress of being computed
5556 // by createNodeForPHI. In the former case, additional loop trip
5557 // count information isn't going to change anything. In the later
5558 // case, createNodeForPHI will perform the necessary updates on its
5559 // own when it gets to that point.
5560 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
Wei Mi785858c2016-08-09 20:37:50 +00005561 eraseValueFromMap(It->first);
Chris Lattnera337f5e2011-01-09 02:16:18 +00005562 forgetMemoizedResults(Old);
Dan Gohmandc191042009-07-08 19:23:34 +00005563 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00005564 if (PHINode *PN = dyn_cast<PHINode>(I))
5565 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00005566 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00005567
5568 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00005569 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005570 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00005571
5572 // Re-lookup the insert position, since the call to
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005573 // computeBackedgeTakenCount above could result in a
Dan Gohman6acd95b2011-04-25 22:48:29 +00005574 // recusive call to getBackedgeTakenInfo (on a different
5575 // loop), which would invalidate the iterator computed
5576 // earlier.
Sanjoy Dasc9bbf562016-09-25 23:12:04 +00005577 return BackedgeTakenCounts.find(L)->second = std::move(Result);
Chris Lattnerd934c702004-04-02 20:23:17 +00005578}
5579
Dan Gohman880c92a2009-10-31 15:04:55 +00005580void ScalarEvolution::forgetLoop(const Loop *L) {
5581 // Drop any stored trip count value.
Silviu Baranga6f444df2016-04-08 14:29:09 +00005582 auto RemoveLoopFromBackedgeMap =
5583 [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
5584 auto BTCPos = Map.find(L);
5585 if (BTCPos != Map.end()) {
5586 BTCPos->second.clear();
5587 Map.erase(BTCPos);
5588 }
5589 };
5590
5591 RemoveLoopFromBackedgeMap(BackedgeTakenCounts);
5592 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts);
Dan Gohmanf1505722009-05-02 17:43:35 +00005593
Dan Gohman880c92a2009-10-31 15:04:55 +00005594 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00005595 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00005596 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00005597
Dan Gohmandc191042009-07-08 19:23:34 +00005598 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00005599 while (!Worklist.empty()) {
5600 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005601 if (!Visited.insert(I).second)
5602 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00005603
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005604 ValueExprMapType::iterator It =
5605 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005606 if (It != ValueExprMap.end()) {
Wei Mi785858c2016-08-09 20:37:50 +00005607 eraseValueFromMap(It->first);
Dan Gohman7e6b3932010-11-17 23:28:48 +00005608 forgetMemoizedResults(It->second);
Dan Gohmandc191042009-07-08 19:23:34 +00005609 if (PHINode *PN = dyn_cast<PHINode>(I))
5610 ConstantEvolutionLoopExitValue.erase(PN);
5611 }
5612
5613 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00005614 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00005615
5616 // Forget all contained loops too, to avoid dangling entries in the
5617 // ValuesAtScopes map.
Benjamin Krameraa209152016-06-26 17:27:42 +00005618 for (Loop *I : *L)
5619 forgetLoop(I);
Sanjoy Das7e4a6412016-05-29 00:32:17 +00005620
Sanjoy Das5603fc02016-09-26 02:44:07 +00005621 LoopPropertiesCache.erase(L);
Dan Gohman43300342009-02-17 20:49:49 +00005622}
5623
Eric Christopheref6d5932010-07-29 01:25:38 +00005624void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005625 Instruction *I = dyn_cast<Instruction>(V);
5626 if (!I) return;
5627
5628 // Drop information about expressions based on loop-header PHIs.
5629 SmallVector<Instruction *, 16> Worklist;
5630 Worklist.push_back(I);
5631
5632 SmallPtrSet<Instruction *, 8> Visited;
5633 while (!Worklist.empty()) {
5634 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005635 if (!Visited.insert(I).second)
5636 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005637
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005638 ValueExprMapType::iterator It =
5639 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005640 if (It != ValueExprMap.end()) {
Wei Mi785858c2016-08-09 20:37:50 +00005641 eraseValueFromMap(It->first);
Dan Gohman7e6b3932010-11-17 23:28:48 +00005642 forgetMemoizedResults(It->second);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005643 if (PHINode *PN = dyn_cast<PHINode>(I))
5644 ConstantEvolutionLoopExitValue.erase(PN);
5645 }
5646
5647 PushDefUseChildren(I, Worklist);
5648 }
5649}
5650
Sanjoy Dasf8570812016-05-29 00:38:22 +00005651/// Get the exact loop backedge taken count considering all loop exits. A
5652/// computable result can only be returned for loops with a single exit.
5653/// Returning the minimum taken count among all exits is incorrect because one
5654/// of the loop's exit limit's may have been skipped. howFarToZero assumes that
5655/// the limit of each loop test is never skipped. This is a valid assumption as
5656/// long as the loop exits via that test. For precise results, it is the
5657/// caller's responsibility to specify the relevant loop exit using
Andrew Trick90c7a102011-11-16 00:52:40 +00005658/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00005659const SCEV *
Sanjoy Dasd1eb62a2016-09-25 23:12:00 +00005660ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE,
5661 SCEVUnionPredicate *Preds) const {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005662 // If any exits were not computable, the loop is not computable.
Sanjoy Dasd1eb62a2016-09-25 23:12:00 +00005663 if (!isComplete() || ExitNotTaken.empty())
5664 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005665
Craig Topper9f008862014-04-15 04:59:12 +00005666 const SCEV *BECount = nullptr;
Silviu Baranga6f444df2016-04-08 14:29:09 +00005667 for (auto &ENT : ExitNotTaken) {
5668 assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005669
5670 if (!BECount)
Silviu Baranga6f444df2016-04-08 14:29:09 +00005671 BECount = ENT.ExactNotTaken;
5672 else if (BECount != ENT.ExactNotTaken)
Andrew Trick90c7a102011-11-16 00:52:40 +00005673 return SE->getCouldNotCompute();
Sanjoy Dasc9bbf562016-09-25 23:12:04 +00005674 if (Preds && !ENT.hasAlwaysTruePredicate())
5675 Preds->add(ENT.Predicate.get());
Silviu Baranga6f444df2016-04-08 14:29:09 +00005676
Sanjoy Dasd1eb62a2016-09-25 23:12:00 +00005677 assert((Preds || ENT.hasAlwaysTruePredicate()) &&
Silviu Baranga6f444df2016-04-08 14:29:09 +00005678 "Predicate should be always true!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005679 }
Silviu Baranga6f444df2016-04-08 14:29:09 +00005680
Andrew Trickbbb226a2011-09-02 21:20:46 +00005681 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005682 return BECount;
5683}
5684
Sanjoy Dasf8570812016-05-29 00:38:22 +00005685/// Get the exact not taken count for this loop exit.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005686const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00005687ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005688 ScalarEvolution *SE) const {
Silviu Baranga6f444df2016-04-08 14:29:09 +00005689 for (auto &ENT : ExitNotTaken)
Sanjoy Dasd1eb62a2016-09-25 23:12:00 +00005690 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
Silviu Baranga6f444df2016-04-08 14:29:09 +00005691 return ENT.ExactNotTaken;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005692
Andrew Trick3ca3f982011-07-26 17:19:55 +00005693 return SE->getCouldNotCompute();
5694}
5695
5696/// getMax - Get the max backedge taken count for the loop.
5697const SCEV *
5698ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
Sanjoy Das73268612016-09-26 01:10:22 +00005699 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
5700 return !ENT.hasAlwaysTruePredicate();
5701 };
Silviu Baranga6f444df2016-04-08 14:29:09 +00005702
Sanjoy Das73268612016-09-26 01:10:22 +00005703 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
5704 return SE->getCouldNotCompute();
5705
5706 return getMax();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005707}
5708
John Brawn84b21832016-10-21 11:08:48 +00005709bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
5710 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
5711 return !ENT.hasAlwaysTruePredicate();
5712 };
5713 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
5714}
5715
Andrew Trick9093e152013-03-26 03:14:53 +00005716bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5717 ScalarEvolution *SE) const {
Sanjoy Dasd1eb62a2016-09-25 23:12:00 +00005718 if (getMax() && getMax() != SE->getCouldNotCompute() &&
5719 SE->hasOperand(getMax(), S))
Andrew Trick9093e152013-03-26 03:14:53 +00005720 return true;
5721
Silviu Baranga6f444df2016-04-08 14:29:09 +00005722 for (auto &ENT : ExitNotTaken)
5723 if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
5724 SE->hasOperand(ENT.ExactNotTaken, S))
Silviu Barangaa393baf2016-04-06 14:06:32 +00005725 return true;
Silviu Baranga6f444df2016-04-08 14:29:09 +00005726
Andrew Trick9093e152013-03-26 03:14:53 +00005727 return false;
5728}
5729
Andrew Trick3ca3f982011-07-26 17:19:55 +00005730/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5731/// computable exit into a persistent ExitNotTakenInfo array.
5732ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
Sanjoy Das5c4869b2016-09-26 01:10:27 +00005733 SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
5734 &&ExitCounts,
John Brawn84b21832016-10-21 11:08:48 +00005735 bool Complete, const SCEV *MaxCount, bool MaxOrZero)
5736 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
Sanjoy Das6b76cdf2016-09-26 01:10:25 +00005737 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo;
Sanjoy Dase935c772016-09-25 23:12:08 +00005738 ExitNotTaken.reserve(ExitCounts.size());
Sanjoy Dasc9bbf562016-09-25 23:12:04 +00005739 std::transform(
5740 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
Sanjoy Das6b76cdf2016-09-26 01:10:25 +00005741 [&](const EdgeExitInfo &EEI) {
Sanjoy Dasc9bbf562016-09-25 23:12:04 +00005742 BasicBlock *ExitBB = EEI.first;
5743 const ExitLimit &EL = EEI.second;
Sanjoy Dasf0022122016-09-28 17:14:58 +00005744 if (EL.Predicates.empty())
Sanjoy Dasc9bbf562016-09-25 23:12:04 +00005745 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
Sanjoy Dasf0022122016-09-28 17:14:58 +00005746
5747 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
5748 for (auto *Pred : EL.Predicates)
5749 Predicate->add(Pred);
5750
5751 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
Sanjoy Dasc9bbf562016-09-25 23:12:04 +00005752 });
Andrew Trick3ca3f982011-07-26 17:19:55 +00005753}
5754
Sanjoy Dasf8570812016-05-29 00:38:22 +00005755/// Invalidate this result and free the ExitNotTakenInfo array.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005756void ScalarEvolution::BackedgeTakenInfo::clear() {
Sanjoy Dasd1eb62a2016-09-25 23:12:00 +00005757 ExitNotTaken.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005758}
5759
Sanjoy Dasf8570812016-05-29 00:38:22 +00005760/// Compute the number of times the backedge of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00005761ScalarEvolution::BackedgeTakenInfo
Silviu Baranga6f444df2016-04-08 14:29:09 +00005762ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
5763 bool AllowPredicates) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00005764 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00005765 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00005766
Sanjoy Das6b76cdf2016-09-26 01:10:25 +00005767 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo;
5768
5769 SmallVector<EdgeExitInfo, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005770 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005771 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00005772 const SCEV *MustExitMaxBECount = nullptr;
5773 const SCEV *MayExitMaxBECount = nullptr;
John Brawn84b21832016-10-21 11:08:48 +00005774 bool MustExitMaxOrZero = false;
Andrew Trick839e30b2014-05-23 19:47:13 +00005775
5776 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5777 // and compute maxBECount.
Silviu Baranga6f444df2016-04-08 14:29:09 +00005778 // Do a union of all the predicates here.
Dan Gohman96212b62009-06-22 00:31:57 +00005779 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005780 BasicBlock *ExitBB = ExitingBlocks[i];
Silviu Baranga6f444df2016-04-08 14:29:09 +00005781 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
5782
Sanjoy Dasf0022122016-09-28 17:14:58 +00005783 assert((AllowPredicates || EL.Predicates.empty()) &&
Silviu Baranga6f444df2016-04-08 14:29:09 +00005784 "Predicated exit limit when predicates are not allowed!");
Andrew Trick839e30b2014-05-23 19:47:13 +00005785
5786 // 1. For each exit that can be computed, add an entry to ExitCounts.
5787 // CouldComputeBECount is true only if all exits can be computed.
Sanjoy Das89eea6b2016-09-25 23:11:57 +00005788 if (EL.ExactNotTaken == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00005789 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00005790 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005791 CouldComputeBECount = false;
5792 else
Sanjoy Dasbdd97102016-09-25 23:11:55 +00005793 ExitCounts.emplace_back(ExitBB, EL);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005794
Andrew Trick839e30b2014-05-23 19:47:13 +00005795 // 2. Derive the loop's MaxBECount from each exit's max number of
5796 // non-exiting iterations. Partition the loop exits into two kinds:
5797 // LoopMustExits and LoopMayExits.
5798 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005799 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5800 // is a LoopMayExit. If any computable LoopMustExit is found, then
Sanjoy Das89eea6b2016-09-25 23:11:57 +00005801 // MaxBECount is the minimum EL.MaxNotTaken of computable
5802 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
5803 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
5804 // computable EL.MaxNotTaken.
5805 if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005806 DT.dominates(ExitBB, Latch)) {
John Brawn84b21832016-10-21 11:08:48 +00005807 if (!MustExitMaxBECount) {
Sanjoy Das89eea6b2016-09-25 23:11:57 +00005808 MustExitMaxBECount = EL.MaxNotTaken;
John Brawn84b21832016-10-21 11:08:48 +00005809 MustExitMaxOrZero = EL.MaxOrZero;
5810 } else {
Andrew Trick839e30b2014-05-23 19:47:13 +00005811 MustExitMaxBECount =
Sanjoy Das89eea6b2016-09-25 23:11:57 +00005812 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
Andrew Tricke2553592014-05-22 00:37:03 +00005813 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005814 } else if (MayExitMaxBECount != getCouldNotCompute()) {
Sanjoy Das89eea6b2016-09-25 23:11:57 +00005815 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
5816 MayExitMaxBECount = EL.MaxNotTaken;
Andrew Trick839e30b2014-05-23 19:47:13 +00005817 else {
5818 MayExitMaxBECount =
Sanjoy Das89eea6b2016-09-25 23:11:57 +00005819 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
Andrew Trick839e30b2014-05-23 19:47:13 +00005820 }
Andrew Trick90c7a102011-11-16 00:52:40 +00005821 }
Dan Gohman96212b62009-06-22 00:31:57 +00005822 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005823 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5824 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
John Brawn84b21832016-10-21 11:08:48 +00005825 // The loop backedge will be taken the maximum or zero times if there's
5826 // a single exit that must be taken the maximum or zero times.
5827 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
Sanjoy Das5c4869b2016-09-26 01:10:27 +00005828 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
John Brawn84b21832016-10-21 11:08:48 +00005829 MaxBECount, MaxOrZero);
Dan Gohman96212b62009-06-22 00:31:57 +00005830}
5831
Andrew Trick3ca3f982011-07-26 17:19:55 +00005832ScalarEvolution::ExitLimit
Silviu Baranga6f444df2016-04-08 14:29:09 +00005833ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
5834 bool AllowPredicates) {
Dan Gohman96212b62009-06-22 00:31:57 +00005835
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005836 // Okay, we've chosen an exiting block. See what condition causes us to exit
5837 // at this block and remember the exit block and whether all other targets
Benjamin Kramer5a188542014-02-11 15:44:32 +00005838 // lead to the loop header.
5839 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00005840 BasicBlock *Exit = nullptr;
Sanjoy Das0ff07872016-01-19 20:53:46 +00005841 for (auto *SBB : successors(ExitingBlock))
5842 if (!L->contains(SBB)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005843 if (Exit) // Multiple exit successors.
5844 return getCouldNotCompute();
Sanjoy Das0ff07872016-01-19 20:53:46 +00005845 Exit = SBB;
5846 } else if (SBB != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005847 MustExecuteLoopHeader = false;
5848 }
Dan Gohmance973df2009-06-24 04:48:43 +00005849
Chris Lattner18954852007-01-07 02:24:26 +00005850 // At this point, we know we have a conditional branch that determines whether
5851 // the loop is exited. However, we don't know if the branch is executed each
5852 // time through the loop. If not, then the execution count of the branch will
5853 // not be equal to the trip count of the loop.
5854 //
5855 // Currently we check for this by checking to see if the Exit branch goes to
5856 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00005857 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00005858 // loop header. This is common for un-rotated loops.
5859 //
5860 // If both of those tests fail, walk up the unique predecessor chain to the
5861 // header, stopping if there is an edge that doesn't exit the loop. If the
5862 // header is reached, the execution count of the branch will be equal to the
5863 // trip count of the loop.
5864 //
5865 // More extensive analysis could be done to handle more cases here.
5866 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00005867 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005868 // The simple checks failed, try climbing the unique predecessor chain
5869 // up to the header.
5870 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00005871 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00005872 BasicBlock *Pred = BB->getUniquePredecessor();
5873 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005874 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005875 TerminatorInst *PredTerm = Pred->getTerminator();
Pete Cooperebcd7482015-08-06 20:22:46 +00005876 for (const BasicBlock *PredSucc : PredTerm->successors()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005877 if (PredSucc == BB)
5878 continue;
5879 // If the predecessor has a successor that isn't BB and isn't
5880 // outside the loop, assume the worst.
5881 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005882 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005883 }
5884 if (Pred == L->getHeader()) {
5885 Ok = true;
5886 break;
5887 }
5888 BB = Pred;
5889 }
5890 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005891 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005892 }
5893
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005894 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005895 TerminatorInst *Term = ExitingBlock->getTerminator();
5896 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5897 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5898 // Proceed to the next level to examine the exit condition expression.
Silviu Baranga6f444df2016-04-08 14:29:09 +00005899 return computeExitLimitFromCond(
5900 L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
5901 /*ControlsExit=*/IsOnlyExit, AllowPredicates);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005902 }
5903
5904 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005905 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005906 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005907
5908 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005909}
5910
Andrew Trick3ca3f982011-07-26 17:19:55 +00005911ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005912ScalarEvolution::computeExitLimitFromCond(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005913 Value *ExitCond,
5914 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005915 BasicBlock *FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005916 bool ControlsExit,
5917 bool AllowPredicates) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00005918 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00005919 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5920 if (BO->getOpcode() == Instruction::And) {
5921 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00005922 bool EitherMayExit = L->contains(TBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005923 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005924 ControlsExit && !EitherMayExit,
5925 AllowPredicates);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005926 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005927 ControlsExit && !EitherMayExit,
5928 AllowPredicates);
Dan Gohmanaf752342009-07-07 17:06:11 +00005929 const SCEV *BECount = getCouldNotCompute();
5930 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005931 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005932 // Both conditions must be true for the loop to continue executing.
5933 // Choose the less conservative count.
Sanjoy Das89eea6b2016-09-25 23:11:57 +00005934 if (EL0.ExactNotTaken == getCouldNotCompute() ||
5935 EL1.ExactNotTaken == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005936 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005937 else
Sanjoy Das89eea6b2016-09-25 23:11:57 +00005938 BECount =
5939 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
5940 if (EL0.MaxNotTaken == getCouldNotCompute())
5941 MaxBECount = EL1.MaxNotTaken;
5942 else if (EL1.MaxNotTaken == getCouldNotCompute())
5943 MaxBECount = EL0.MaxNotTaken;
Dan Gohmaned627382009-06-22 15:09:28 +00005944 else
Sanjoy Das89eea6b2016-09-25 23:11:57 +00005945 MaxBECount =
5946 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
Dan Gohman96212b62009-06-22 00:31:57 +00005947 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005948 // Both conditions must be true at the same time for the loop to exit.
5949 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005950 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Sanjoy Das89eea6b2016-09-25 23:11:57 +00005951 if (EL0.MaxNotTaken == EL1.MaxNotTaken)
5952 MaxBECount = EL0.MaxNotTaken;
5953 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
5954 BECount = EL0.ExactNotTaken;
Dan Gohman96212b62009-06-22 00:31:57 +00005955 }
5956
Sanjoy Das29a4b5d2016-01-19 20:53:51 +00005957 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5958 // to be more aggressive when computing BECount than when computing
Sanjoy Das89eea6b2016-09-25 23:11:57 +00005959 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
5960 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
5961 // to not.
Sanjoy Das29a4b5d2016-01-19 20:53:51 +00005962 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5963 !isa<SCEVCouldNotCompute>(BECount))
5964 MaxBECount = BECount;
5965
John Brawn84b21832016-10-21 11:08:48 +00005966 return ExitLimit(BECount, MaxBECount, false,
5967 {&EL0.Predicates, &EL1.Predicates});
Dan Gohman96212b62009-06-22 00:31:57 +00005968 }
5969 if (BO->getOpcode() == Instruction::Or) {
5970 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005971 bool EitherMayExit = L->contains(FBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005972 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005973 ControlsExit && !EitherMayExit,
5974 AllowPredicates);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005975 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005976 ControlsExit && !EitherMayExit,
5977 AllowPredicates);
Dan Gohmanaf752342009-07-07 17:06:11 +00005978 const SCEV *BECount = getCouldNotCompute();
5979 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005980 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005981 // Both conditions must be false for the loop to continue executing.
5982 // Choose the less conservative count.
Sanjoy Das89eea6b2016-09-25 23:11:57 +00005983 if (EL0.ExactNotTaken == getCouldNotCompute() ||
5984 EL1.ExactNotTaken == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005985 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005986 else
Sanjoy Das89eea6b2016-09-25 23:11:57 +00005987 BECount =
5988 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
5989 if (EL0.MaxNotTaken == getCouldNotCompute())
5990 MaxBECount = EL1.MaxNotTaken;
5991 else if (EL1.MaxNotTaken == getCouldNotCompute())
5992 MaxBECount = EL0.MaxNotTaken;
Dan Gohmaned627382009-06-22 15:09:28 +00005993 else
Sanjoy Das89eea6b2016-09-25 23:11:57 +00005994 MaxBECount =
5995 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
Dan Gohman96212b62009-06-22 00:31:57 +00005996 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005997 // Both conditions must be false at the same time for the loop to exit.
5998 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005999 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Sanjoy Das89eea6b2016-09-25 23:11:57 +00006000 if (EL0.MaxNotTaken == EL1.MaxNotTaken)
6001 MaxBECount = EL0.MaxNotTaken;
6002 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
6003 BECount = EL0.ExactNotTaken;
Dan Gohman96212b62009-06-22 00:31:57 +00006004 }
6005
John Brawn84b21832016-10-21 11:08:48 +00006006 return ExitLimit(BECount, MaxBECount, false,
6007 {&EL0.Predicates, &EL1.Predicates});
Dan Gohman96212b62009-06-22 00:31:57 +00006008 }
6009 }
6010
6011 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00006012 // Proceed to the next level to examine the icmp.
Silviu Baranga6f444df2016-04-08 14:29:09 +00006013 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
6014 ExitLimit EL =
6015 computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
6016 if (EL.hasFullInfo() || !AllowPredicates)
6017 return EL;
6018
6019 // Try again, but use SCEV predicates this time.
6020 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
6021 /*AllowPredicates=*/true);
6022 }
Reid Spencer266e42b2006-12-23 06:05:41 +00006023
Dan Gohman6b1e2a82010-02-19 18:12:07 +00006024 // Check for a constant condition. These are normally stripped out by
6025 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
6026 // preserve the CFG and is temporarily leaving constant conditions
6027 // in place.
6028 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
6029 if (L->contains(FBB) == !CI->getZExtValue())
6030 // The backedge is always taken.
6031 return getCouldNotCompute();
6032 else
6033 // The backedge is never taken.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00006034 return getZero(CI->getType());
Dan Gohman6b1e2a82010-02-19 18:12:07 +00006035 }
6036
Eli Friedmanebf98b02009-05-09 12:32:42 +00006037 // If it's not an integer or pointer comparison then compute it the hard way.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006038 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00006039}
6040
Andrew Trick3ca3f982011-07-26 17:19:55 +00006041ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006042ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00006043 ICmpInst *ExitCond,
6044 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00006045 BasicBlock *FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00006046 bool ControlsExit,
6047 bool AllowPredicates) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006048
Reid Spencer266e42b2006-12-23 06:05:41 +00006049 // If the condition was exit on true, convert the condition to exit on false
6050 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00006051 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00006052 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006053 else
Reid Spencer266e42b2006-12-23 06:05:41 +00006054 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006055
6056 // Handle common loops like: for (X = "string"; *X; ++X)
6057 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
6058 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00006059 ExitLimit ItCnt =
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006060 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00006061 if (ItCnt.hasAnyInfo())
6062 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00006063 }
6064
Dan Gohmanaf752342009-07-07 17:06:11 +00006065 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
6066 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00006067
6068 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00006069 LHS = getSCEVAtScope(LHS, L);
6070 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006071
Dan Gohmance973df2009-06-24 04:48:43 +00006072 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00006073 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00006074 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00006075 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00006076 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00006077 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00006078 }
6079
Dan Gohman81585c12010-05-03 16:35:17 +00006080 // Simplify the operands before analyzing them.
6081 (void)SimplifyICmpOperands(Cond, LHS, RHS);
6082
Chris Lattnerd934c702004-04-02 20:23:17 +00006083 // If we have a comparison of a chrec against a constant, try to use value
6084 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00006085 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
6086 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00006087 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00006088 // Form the constant range.
Sanjoy Das1f7b8132016-10-02 00:09:57 +00006089 ConstantRange CompRange =
6090 ConstantRange::makeExactICmpRegion(Cond, RHSC->getAPInt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006091
Dan Gohmanaf752342009-07-07 17:06:11 +00006092 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00006093 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00006094 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006095
Chris Lattnerd934c702004-04-02 20:23:17 +00006096 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00006097 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00006098 // Convert to: while (X-Y != 0)
Sanjoy Das108fcf22016-05-29 00:38:00 +00006099 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
Silviu Baranga6f444df2016-04-08 14:29:09 +00006100 AllowPredicates);
Andrew Trick3ca3f982011-07-26 17:19:55 +00006101 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00006102 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00006103 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00006104 case ICmpInst::ICMP_EQ: { // while (X == Y)
6105 // Convert to: while (X-Y == 0)
Sanjoy Das108fcf22016-05-29 00:38:00 +00006106 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
Andrew Trick3ca3f982011-07-26 17:19:55 +00006107 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00006108 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00006109 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006110 case ICmpInst::ICMP_SLT:
6111 case ICmpInst::ICMP_ULT: { // while (X < Y)
6112 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Sanjoy Das108fcf22016-05-29 00:38:00 +00006113 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
Silviu Baranga6f444df2016-04-08 14:29:09 +00006114 AllowPredicates);
Andrew Trick3ca3f982011-07-26 17:19:55 +00006115 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00006116 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00006117 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006118 case ICmpInst::ICMP_SGT:
6119 case ICmpInst::ICMP_UGT: { // while (X > Y)
6120 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Silviu Baranga6f444df2016-04-08 14:29:09 +00006121 ExitLimit EL =
Sanjoy Das108fcf22016-05-29 00:38:00 +00006122 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
Silviu Baranga6f444df2016-04-08 14:29:09 +00006123 AllowPredicates);
Andrew Trick3ca3f982011-07-26 17:19:55 +00006124 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00006125 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00006126 }
Chris Lattnerd934c702004-04-02 20:23:17 +00006127 default:
Chris Lattner0defaa12004-04-03 00:43:03 +00006128 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00006129 }
Sanjoy Das0da2d142016-06-30 02:47:28 +00006130
6131 auto *ExhaustiveCount =
6132 computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
6133
6134 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
6135 return ExhaustiveCount;
6136
6137 return computeShiftCompareExitLimit(ExitCond->getOperand(0),
6138 ExitCond->getOperand(1), L, Cond);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006139}
6140
Benjamin Kramer5a188542014-02-11 15:44:32 +00006141ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006142ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
Benjamin Kramer5a188542014-02-11 15:44:32 +00006143 SwitchInst *Switch,
6144 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006145 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00006146 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
6147
6148 // Give up if the exit is the default dest of a switch.
6149 if (Switch->getDefaultDest() == ExitingBlock)
6150 return getCouldNotCompute();
6151
6152 assert(L->contains(Switch->getDefaultDest()) &&
6153 "Default case must not exit the loop!");
6154 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
6155 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
6156
6157 // while (X != Y) --> while (X-Y != 0)
Sanjoy Das108fcf22016-05-29 00:38:00 +00006158 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00006159 if (EL.hasAnyInfo())
6160 return EL;
6161
6162 return getCouldNotCompute();
6163}
6164
Chris Lattnerec901cc2004-10-12 01:49:27 +00006165static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00006166EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
6167 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006168 const SCEV *InVal = SE.getConstant(C);
6169 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00006170 assert(isa<SCEVConstant>(Val) &&
6171 "Evaluation of SCEV at constant didn't fold correctly?");
6172 return cast<SCEVConstant>(Val)->getValue();
6173}
6174
Sanjoy Dasf8570812016-05-29 00:38:22 +00006175/// Given an exit condition of 'icmp op load X, cst', try to see if we can
6176/// compute the backedge execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006177ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006178ScalarEvolution::computeLoadConstantCompareExitLimit(
Andrew Trick3ca3f982011-07-26 17:19:55 +00006179 LoadInst *LI,
6180 Constant *RHS,
6181 const Loop *L,
6182 ICmpInst::Predicate predicate) {
6183
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006184 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006185
6186 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00006187 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00006188 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006189 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006190
6191 // Make sure that it is really a constant global we are gepping, with an
6192 // initializer, and make sure the first IDX is really 0.
6193 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00006194 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00006195 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
6196 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006197 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006198
6199 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00006200 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00006201 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00006202 unsigned VarIdxNum = 0;
6203 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
6204 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
6205 Indexes.push_back(CI);
6206 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006207 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00006208 VarIdx = GEP->getOperand(i);
6209 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00006210 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00006211 }
6212
Andrew Trick7004e4b2012-03-26 22:33:59 +00006213 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
6214 if (!VarIdx)
6215 return getCouldNotCompute();
6216
Chris Lattnerec901cc2004-10-12 01:49:27 +00006217 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
6218 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006219 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00006220 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00006221
6222 // We can only recognize very limited forms of loop index expressions, in
6223 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00006224 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00006225 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00006226 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
6227 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006228 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006229
6230 unsigned MaxSteps = MaxBruteForceIterations;
6231 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00006232 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00006233 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00006234 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00006235
6236 // Form the GEP offset.
6237 Indexes[VarIdxNum] = Val;
6238
Chris Lattnere166a852012-01-24 05:49:24 +00006239 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
6240 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00006241 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00006242
6243 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00006244 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00006245 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00006246 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00006247 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00006248 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00006249 }
6250 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006251 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006252}
6253
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00006254ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
6255 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
6256 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
6257 if (!RHS)
6258 return getCouldNotCompute();
6259
6260 const BasicBlock *Latch = L->getLoopLatch();
6261 if (!Latch)
6262 return getCouldNotCompute();
6263
6264 const BasicBlock *Predecessor = L->getLoopPredecessor();
6265 if (!Predecessor)
6266 return getCouldNotCompute();
6267
6268 // Return true if V is of the form "LHS `shift_op` <positive constant>".
6269 // Return LHS in OutLHS and shift_opt in OutOpCode.
6270 auto MatchPositiveShift =
6271 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
6272
6273 using namespace PatternMatch;
6274
6275 ConstantInt *ShiftAmt;
6276 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6277 OutOpCode = Instruction::LShr;
6278 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6279 OutOpCode = Instruction::AShr;
6280 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6281 OutOpCode = Instruction::Shl;
6282 else
6283 return false;
6284
6285 return ShiftAmt->getValue().isStrictlyPositive();
6286 };
6287
6288 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
6289 //
6290 // loop:
6291 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
6292 // %iv.shifted = lshr i32 %iv, <positive constant>
6293 //
Simon Pilgrimf2fbf432016-11-20 13:47:59 +00006294 // Return true on a successful match. Return the corresponding PHI node (%iv
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00006295 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
6296 auto MatchShiftRecurrence =
6297 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
6298 Optional<Instruction::BinaryOps> PostShiftOpCode;
6299
6300 {
6301 Instruction::BinaryOps OpC;
6302 Value *V;
6303
6304 // If we encounter a shift instruction, "peel off" the shift operation,
6305 // and remember that we did so. Later when we inspect %iv's backedge
6306 // value, we will make sure that the backedge value uses the same
6307 // operation.
6308 //
6309 // Note: the peeled shift operation does not have to be the same
6310 // instruction as the one feeding into the PHI's backedge value. We only
6311 // really care about it being the same *kind* of shift instruction --
6312 // that's all that is required for our later inferences to hold.
6313 if (MatchPositiveShift(LHS, V, OpC)) {
6314 PostShiftOpCode = OpC;
6315 LHS = V;
6316 }
6317 }
6318
6319 PNOut = dyn_cast<PHINode>(LHS);
6320 if (!PNOut || PNOut->getParent() != L->getHeader())
6321 return false;
6322
6323 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
6324 Value *OpLHS;
6325
6326 return
6327 // The backedge value for the PHI node must be a shift by a positive
6328 // amount
6329 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
6330
6331 // of the PHI node itself
6332 OpLHS == PNOut &&
6333
6334 // and the kind of shift should be match the kind of shift we peeled
6335 // off, if any.
6336 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
6337 };
6338
6339 PHINode *PN;
6340 Instruction::BinaryOps OpCode;
6341 if (!MatchShiftRecurrence(LHS, PN, OpCode))
6342 return getCouldNotCompute();
6343
6344 const DataLayout &DL = getDataLayout();
6345
6346 // The key rationale for this optimization is that for some kinds of shift
6347 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
6348 // within a finite number of iterations. If the condition guarding the
6349 // backedge (in the sense that the backedge is taken if the condition is true)
6350 // is false for the value the shift recurrence stabilizes to, then we know
6351 // that the backedge is taken only a finite number of times.
6352
6353 ConstantInt *StableValue = nullptr;
6354 switch (OpCode) {
6355 default:
6356 llvm_unreachable("Impossible case!");
6357
6358 case Instruction::AShr: {
6359 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
6360 // bitwidth(K) iterations.
6361 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
6362 bool KnownZero, KnownOne;
Daniel Jasperaec2fa32016-12-19 08:22:17 +00006363 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00006364 Predecessor->getTerminator(), &DT);
6365 auto *Ty = cast<IntegerType>(RHS->getType());
6366 if (KnownZero)
6367 StableValue = ConstantInt::get(Ty, 0);
6368 else if (KnownOne)
6369 StableValue = ConstantInt::get(Ty, -1, true);
6370 else
6371 return getCouldNotCompute();
6372
6373 break;
6374 }
6375 case Instruction::LShr:
6376 case Instruction::Shl:
6377 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
6378 // stabilize to 0 in at most bitwidth(K) iterations.
6379 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
6380 break;
6381 }
6382
6383 auto *Result =
6384 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
6385 assert(Result->getType()->isIntegerTy(1) &&
6386 "Otherwise cannot be an operand to a branch instruction");
6387
6388 if (Result->isZeroValue()) {
6389 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6390 const SCEV *UpperBound =
6391 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
John Brawn84b21832016-10-21 11:08:48 +00006392 return ExitLimit(getCouldNotCompute(), UpperBound, false);
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00006393 }
6394
6395 return getCouldNotCompute();
6396}
Chris Lattnerec901cc2004-10-12 01:49:27 +00006397
Sanjoy Dasf8570812016-05-29 00:38:22 +00006398/// Return true if we can constant fold an instruction of the specified type,
6399/// assuming that all operands were constants.
Chris Lattnerdd730472004-04-17 22:58:41 +00006400static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00006401 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00006402 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6403 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00006404 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00006405
Chris Lattnerdd730472004-04-17 22:58:41 +00006406 if (const CallInst *CI = dyn_cast<CallInst>(I))
6407 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00006408 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00006409 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00006410}
6411
Andrew Trick3a86ba72011-10-05 03:25:31 +00006412/// Determine whether this instruction can constant evolve within this loop
6413/// assuming its operands can all constant evolve.
6414static bool canConstantEvolve(Instruction *I, const Loop *L) {
6415 // An instruction outside of the loop can't be derived from a loop PHI.
6416 if (!L->contains(I)) return false;
6417
6418 if (isa<PHINode>(I)) {
David Blaikie19ef0d32015-03-24 16:33:19 +00006419 // We don't currently keep track of the control flow needed to evaluate
6420 // PHIs, so we cannot handle PHIs inside of loops.
6421 return L->getHeader() == I->getParent();
Andrew Trick3a86ba72011-10-05 03:25:31 +00006422 }
6423
6424 // If we won't be able to constant fold this expression even if the operands
6425 // are constants, bail early.
6426 return CanConstantFold(I);
6427}
6428
6429/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
6430/// recursing through each instruction operand until reaching a loop header phi.
6431static PHINode *
6432getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Michael Liao468fb742017-01-13 18:28:30 +00006433 DenseMap<Instruction *, PHINode *> &PHIMap,
6434 unsigned Depth) {
6435 if (Depth > MaxConstantEvolvingDepth)
6436 return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00006437
6438 // Otherwise, we can evaluate this instruction if all of its operands are
6439 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00006440 PHINode *PHI = nullptr;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00006441 for (Value *Op : UseInst->operands()) {
6442 if (isa<Constant>(Op)) continue;
Andrew Trick3a86ba72011-10-05 03:25:31 +00006443
Sanjoy Dasd87e4352015-12-08 22:53:36 +00006444 Instruction *OpInst = dyn_cast<Instruction>(Op);
Craig Topper9f008862014-04-15 04:59:12 +00006445 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00006446
6447 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00006448 if (!P)
6449 // If this operand is already visited, reuse the prior result.
6450 // We may have P != PHI if this is the deepest point at which the
6451 // inconsistent paths meet.
6452 P = PHIMap.lookup(OpInst);
6453 if (!P) {
6454 // Recurse and memoize the results, whether a phi is found or not.
6455 // This recursive call invalidates pointers into PHIMap.
Michael Liao468fb742017-01-13 18:28:30 +00006456 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
Andrew Trick3e8a5762011-10-05 22:06:53 +00006457 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00006458 }
Craig Topper9f008862014-04-15 04:59:12 +00006459 if (!P)
6460 return nullptr; // Not evolving from PHI
6461 if (PHI && PHI != P)
6462 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00006463 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00006464 }
6465 // This is a expression evolving from a constant PHI!
6466 return PHI;
6467}
6468
Chris Lattnerdd730472004-04-17 22:58:41 +00006469/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
6470/// in the loop that V is derived from. We allow arbitrary operations along the
6471/// way, but the operands of an operation must either be constants or a value
6472/// derived from a constant PHI. If this expression does not fit with these
6473/// constraints, return null.
6474static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006475 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00006476 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00006477
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00006478 if (PHINode *PN = dyn_cast<PHINode>(I))
Andrew Trick3a86ba72011-10-05 03:25:31 +00006479 return PN;
Chris Lattnerdd730472004-04-17 22:58:41 +00006480
Andrew Trick3a86ba72011-10-05 03:25:31 +00006481 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00006482 DenseMap<Instruction *, PHINode *> PHIMap;
Michael Liao468fb742017-01-13 18:28:30 +00006483 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
Chris Lattnerdd730472004-04-17 22:58:41 +00006484}
6485
6486/// EvaluateExpression - Given an expression that passes the
6487/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
6488/// in the loop has the value PHIVal. If we can't fold this expression for some
6489/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00006490static Constant *EvaluateExpression(Value *V, const Loop *L,
6491 DenseMap<Instruction *, Constant *> &Vals,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006492 const DataLayout &DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00006493 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00006494 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00006495 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006496 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00006497 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00006498
Andrew Trick3a86ba72011-10-05 03:25:31 +00006499 if (Constant *C = Vals.lookup(I)) return C;
6500
Nick Lewyckya6674c72011-10-22 19:58:20 +00006501 // An instruction inside the loop depends on a value outside the loop that we
6502 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00006503 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006504
6505 // An unmapped PHI can be due to a branch or another loop inside this loop,
6506 // or due to this not being the initial iteration through a loop where we
6507 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00006508 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00006509
Dan Gohmanf820bd32010-06-22 13:15:46 +00006510 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00006511
6512 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00006513 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
6514 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00006515 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006516 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00006517 continue;
6518 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00006519 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00006520 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00006521 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00006522 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00006523 }
6524
Nick Lewyckya6674c72011-10-22 19:58:20 +00006525 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00006526 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00006527 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006528 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6529 if (!LI->isVolatile())
Eduard Burtescu14239212016-01-22 01:17:26 +00006530 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006531 }
Manuel Jacobe9024592016-01-21 06:33:22 +00006532 return ConstantFoldInstOperands(I, Operands, DL, TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00006533}
6534
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006535
6536// If every incoming value to PN except the one for BB is a specific Constant,
6537// return that, else return nullptr.
6538static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6539 Constant *IncomingVal = nullptr;
6540
6541 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6542 if (PN->getIncomingBlock(i) == BB)
6543 continue;
6544
6545 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6546 if (!CurrentVal)
6547 return nullptr;
6548
6549 if (IncomingVal != CurrentVal) {
6550 if (IncomingVal)
6551 return nullptr;
6552 IncomingVal = CurrentVal;
6553 }
6554 }
6555
6556 return IncomingVal;
6557}
6558
Chris Lattnerdd730472004-04-17 22:58:41 +00006559/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6560/// in the header of its containing loop, we know the loop executes a
6561/// constant number of times, and the PHI node is just a recurrence
6562/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00006563Constant *
6564ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00006565 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00006566 const Loop *L) {
Sanjoy Das4493b402015-10-07 17:38:25 +00006567 auto I = ConstantEvolutionLoopExitValue.find(PN);
Chris Lattnerdd730472004-04-17 22:58:41 +00006568 if (I != ConstantEvolutionLoopExitValue.end())
6569 return I->second;
6570
Dan Gohman4ce1fb12010-04-08 23:03:40 +00006571 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00006572 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00006573
6574 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6575
Andrew Trick3a86ba72011-10-05 03:25:31 +00006576 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006577 BasicBlock *Header = L->getHeader();
6578 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00006579
Sanjoy Dasdd709962015-10-08 18:28:36 +00006580 BasicBlock *Latch = L->getLoopLatch();
6581 if (!Latch)
6582 return nullptr;
6583
Sanjoy Das4493b402015-10-07 17:38:25 +00006584 for (auto &I : *Header) {
6585 PHINode *PHI = dyn_cast<PHINode>(&I);
6586 if (!PHI) break;
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006587 auto *StartCST = getOtherIncomingValue(PHI, Latch);
Craig Topper9f008862014-04-15 04:59:12 +00006588 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006589 CurrentIterVals[PHI] = StartCST;
6590 }
6591 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00006592 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00006593
Sanjoy Dasdd709962015-10-08 18:28:36 +00006594 Value *BEValue = PN->getIncomingValueForBlock(Latch);
Chris Lattnerdd730472004-04-17 22:58:41 +00006595
6596 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00006597 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00006598 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00006599
Dan Gohman0bddac12009-02-24 18:55:53 +00006600 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00006601 unsigned IterationNum = 0;
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006602 const DataLayout &DL = getDataLayout();
Andrew Trick3a86ba72011-10-05 03:25:31 +00006603 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006604 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00006605 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00006606
Nick Lewyckya6674c72011-10-22 19:58:20 +00006607 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00006608 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006609 DenseMap<Instruction *, Constant *> NextIterVals;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006610 Constant *NextPHI =
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006611 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Craig Topper9f008862014-04-15 04:59:12 +00006612 if (!NextPHI)
6613 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00006614 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006615
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006616 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6617
Nick Lewyckya6674c72011-10-22 19:58:20 +00006618 // Also evaluate the other PHI nodes. However, we don't get to stop if we
6619 // cease to be able to evaluate one of them or if they stop evolving,
6620 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006621 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00006622 for (const auto &I : CurrentIterVals) {
6623 PHINode *PHI = dyn_cast<PHINode>(I.first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00006624 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Sanjoy Das4493b402015-10-07 17:38:25 +00006625 PHIsToCompute.emplace_back(PHI, I.second);
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006626 }
6627 // We use two distinct loops because EvaluateExpression may invalidate any
6628 // iterators into CurrentIterVals.
Sanjoy Das4493b402015-10-07 17:38:25 +00006629 for (const auto &I : PHIsToCompute) {
6630 PHINode *PHI = I.first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006631 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006632 if (!NextPHI) { // Not already computed.
Sanjoy Dasdd709962015-10-08 18:28:36 +00006633 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006634 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006635 }
Sanjoy Das4493b402015-10-07 17:38:25 +00006636 if (NextPHI != I.second)
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006637 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006638 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006639
6640 // If all entries in CurrentIterVals == NextIterVals then we can stop
6641 // iterating, the loop can't continue to change.
6642 if (StoppedEvolving)
6643 return RetVal = CurrentIterVals[PN];
6644
Andrew Trick3a86ba72011-10-05 03:25:31 +00006645 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00006646 }
6647}
6648
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006649const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
Nick Lewyckya6674c72011-10-22 19:58:20 +00006650 Value *Cond,
6651 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00006652 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00006653 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00006654
Dan Gohman866971e2010-06-19 14:17:24 +00006655 // If the loop is canonicalized, the PHI will have exactly two entries.
6656 // That's the only form we support here.
6657 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6658
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006659 DenseMap<Instruction *, Constant *> CurrentIterVals;
6660 BasicBlock *Header = L->getHeader();
6661 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6662
Sanjoy Dasdd709962015-10-08 18:28:36 +00006663 BasicBlock *Latch = L->getLoopLatch();
6664 assert(Latch && "Should follow from NumIncomingValues == 2!");
6665
Sanjoy Das4493b402015-10-07 17:38:25 +00006666 for (auto &I : *Header) {
6667 PHINode *PHI = dyn_cast<PHINode>(&I);
6668 if (!PHI)
6669 break;
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006670 auto *StartCST = getOtherIncomingValue(PHI, Latch);
Craig Topper9f008862014-04-15 04:59:12 +00006671 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006672 CurrentIterVals[PHI] = StartCST;
6673 }
6674 if (!CurrentIterVals.count(PN))
6675 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00006676
6677 // Okay, we find a PHI node that defines the trip count of this loop. Execute
6678 // the loop symbolically to determine when the condition gets a value of
6679 // "ExitWhen".
Andrew Trick90c7a102011-11-16 00:52:40 +00006680 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006681 const DataLayout &DL = getDataLayout();
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006682 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Sanjoy Das4493b402015-10-07 17:38:25 +00006683 auto *CondVal = dyn_cast_or_null<ConstantInt>(
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006684 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00006685
Zhou Sheng75b871f2007-01-11 12:24:14 +00006686 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006687 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00006688
Reid Spencer983e3b32007-03-01 07:25:48 +00006689 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00006690 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00006691 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006692 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006693
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006694 // Update all the PHI nodes for the next iteration.
6695 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006696
6697 // Create a list of which PHIs we need to compute. We want to do this before
6698 // calling EvaluateExpression on them because that may invalidate iterators
6699 // into CurrentIterVals.
6700 SmallVector<PHINode *, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00006701 for (const auto &I : CurrentIterVals) {
6702 PHINode *PHI = dyn_cast<PHINode>(I.first);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006703 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006704 PHIsToCompute.push_back(PHI);
6705 }
Sanjoy Das4493b402015-10-07 17:38:25 +00006706 for (PHINode *PHI : PHIsToCompute) {
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006707 Constant *&NextPHI = NextIterVals[PHI];
6708 if (NextPHI) continue; // Already computed!
6709
Sanjoy Dasdd709962015-10-08 18:28:36 +00006710 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006711 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006712 }
6713 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006714 }
6715
6716 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006717 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006718}
6719
Dan Gohmanaf752342009-07-07 17:06:11 +00006720const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Sanjoy Das01947432015-11-22 21:20:13 +00006721 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6722 ValuesAtScopes[V];
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006723 // Check to see if we've folded this expression at this loop before.
Sanjoy Das01947432015-11-22 21:20:13 +00006724 for (auto &LS : Values)
6725 if (LS.first == L)
6726 return LS.second ? LS.second : V;
6727
6728 Values.emplace_back(L, nullptr);
6729
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006730 // Otherwise compute it.
6731 const SCEV *C = computeSCEVAtScope(V, L);
Sanjoy Das01947432015-11-22 21:20:13 +00006732 for (auto &LS : reverse(ValuesAtScopes[V]))
6733 if (LS.first == L) {
6734 LS.second = C;
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00006735 break;
6736 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006737 return C;
6738}
6739
Nick Lewyckya6674c72011-10-22 19:58:20 +00006740/// This builds up a Constant using the ConstantExpr interface. That way, we
6741/// will return Constants for objects which aren't represented by a
6742/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6743/// Returns NULL if the SCEV isn't representable as a Constant.
6744static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00006745 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00006746 case scCouldNotCompute:
6747 case scAddRecExpr:
6748 break;
6749 case scConstant:
6750 return cast<SCEVConstant>(V)->getValue();
6751 case scUnknown:
6752 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6753 case scSignExtend: {
6754 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6755 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6756 return ConstantExpr::getSExt(CastOp, SS->getType());
6757 break;
6758 }
6759 case scZeroExtend: {
6760 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6761 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6762 return ConstantExpr::getZExt(CastOp, SZ->getType());
6763 break;
6764 }
6765 case scTruncate: {
6766 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6767 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6768 return ConstantExpr::getTrunc(CastOp, ST->getType());
6769 break;
6770 }
6771 case scAddExpr: {
6772 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6773 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006774 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6775 unsigned AS = PTy->getAddressSpace();
6776 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6777 C = ConstantExpr::getBitCast(C, DestPtrTy);
6778 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00006779 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6780 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006781 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006782
6783 // First pointer!
6784 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006785 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00006786 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006787 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006788 // The offsets have been converted to bytes. We can add bytes to an
6789 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006790 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006791 }
6792
6793 // Don't bother trying to sum two pointers. We probably can't
6794 // statically compute a load that results from it anyway.
6795 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00006796 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006797
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006798 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6799 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00006800 C2 = ConstantExpr::getIntegerCast(
6801 C2, Type::getInt32Ty(C->getContext()), true);
David Blaikie4a2e73b2015-04-02 18:55:32 +00006802 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006803 } else
6804 C = ConstantExpr::getAdd(C, C2);
6805 }
6806 return C;
6807 }
6808 break;
6809 }
6810 case scMulExpr: {
6811 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6812 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6813 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00006814 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006815 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6816 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006817 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006818 C = ConstantExpr::getMul(C, C2);
6819 }
6820 return C;
6821 }
6822 break;
6823 }
6824 case scUDivExpr: {
6825 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6826 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6827 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6828 if (LHS->getType() == RHS->getType())
6829 return ConstantExpr::getUDiv(LHS, RHS);
6830 break;
6831 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00006832 case scSMaxExpr:
6833 case scUMaxExpr:
6834 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006835 }
Craig Topper9f008862014-04-15 04:59:12 +00006836 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006837}
6838
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006839const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006840 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00006841
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006842 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00006843 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00006844 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006845 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006846 const Loop *LI = this->LI[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00006847 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
6848 if (PHINode *PN = dyn_cast<PHINode>(I))
6849 if (PN->getParent() == LI->getHeader()) {
6850 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00006851 // to see if the loop that contains it has a known backedge-taken
6852 // count. If so, we may be able to force computation of the exit
6853 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00006854 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00006855 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00006856 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006857 // Okay, we know how many times the containing loop executes. If
6858 // this is a constant evolving PHI node, get the final value at
6859 // the specified iteration number.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006860 Constant *RV =
6861 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00006862 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00006863 }
6864 }
6865
Reid Spencere6328ca2006-12-04 21:33:23 +00006866 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00006867 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00006868 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00006869 // result. This is particularly useful for computing loop exit values.
6870 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006871 SmallVector<Constant *, 4> Operands;
6872 bool MadeImprovement = false;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00006873 for (Value *Op : I->operands()) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006874 if (Constant *C = dyn_cast<Constant>(Op)) {
6875 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006876 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00006877 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006878
6879 // If any of the operands is non-constant and if they are
6880 // non-integer and non-pointer, don't even try to analyze them
6881 // with scev techniques.
6882 if (!isSCEVable(Op->getType()))
6883 return V;
6884
6885 const SCEV *OrigV = getSCEV(Op);
6886 const SCEV *OpV = getSCEVAtScope(OrigV, L);
6887 MadeImprovement |= OrigV != OpV;
6888
Nick Lewyckya6674c72011-10-22 19:58:20 +00006889 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006890 if (!C) return V;
6891 if (C->getType() != Op->getType())
6892 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6893 Op->getType(),
6894 false),
6895 C, Op->getType());
6896 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00006897 }
Dan Gohmance973df2009-06-24 04:48:43 +00006898
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006899 // Check to see if getSCEVAtScope actually made an improvement.
6900 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00006901 Constant *C = nullptr;
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006902 const DataLayout &DL = getDataLayout();
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006903 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006904 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006905 Operands[1], DL, &TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006906 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6907 if (!LI->isVolatile())
Eduard Burtescu14239212016-01-22 01:17:26 +00006908 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006909 } else
Manuel Jacobe9024592016-01-21 06:33:22 +00006910 C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006911 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00006912 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006913 }
Chris Lattnerdd730472004-04-17 22:58:41 +00006914 }
6915 }
6916
6917 // This is some other type of SCEVUnknown, just return it.
6918 return V;
6919 }
6920
Dan Gohmana30370b2009-05-04 22:02:23 +00006921 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006922 // Avoid performing the look-up in the common case where the specified
6923 // expression has no loop-variant portions.
6924 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006925 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006926 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006927 // Okay, at least one of these operands is loop variant but might be
6928 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00006929 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6930 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00006931 NewOps.push_back(OpAtScope);
6932
6933 for (++i; i != e; ++i) {
6934 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006935 NewOps.push_back(OpAtScope);
6936 }
6937 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006938 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006939 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006940 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006941 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006942 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006943 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006944 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00006945 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006946 }
6947 }
6948 // If we got here, all operands are loop invariant.
6949 return Comm;
6950 }
6951
Dan Gohmana30370b2009-05-04 22:02:23 +00006952 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006953 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6954 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00006955 if (LHS == Div->getLHS() && RHS == Div->getRHS())
6956 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00006957 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00006958 }
6959
6960 // If this is a loop recurrence for a loop that does not contain L, then we
6961 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00006962 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006963 // First, attempt to evaluate each operand.
6964 // Avoid performing the look-up in the common case where the specified
6965 // expression has no loop-variant portions.
6966 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6967 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6968 if (OpAtScope == AddRec->getOperand(i))
6969 continue;
6970
6971 // Okay, at least one of these operands is loop variant but might be
6972 // foldable. Build a new instance of the folded commutative expression.
6973 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6974 AddRec->op_begin()+i);
6975 NewOps.push_back(OpAtScope);
6976 for (++i; i != e; ++i)
6977 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6978
Andrew Trick759ba082011-04-27 01:21:25 +00006979 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00006980 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00006981 AddRec->getNoWrapFlags(SCEV::FlagNW));
6982 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00006983 // The addrec may be folded to a nonrecurrence, for example, if the
6984 // induction variable is multiplied by zero after constant folding. Go
6985 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00006986 if (!AddRec)
6987 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006988 break;
6989 }
6990
6991 // If the scope is outside the addrec's loop, evaluate it by using the
6992 // loop exit value of the addrec.
6993 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006994 // To evaluate this recurrence, we need to know how many times the AddRec
6995 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006996 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006997 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00006998
Eli Friedman61f67622008-08-04 23:49:06 +00006999 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00007000 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00007001 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00007002
Dan Gohman8ca08852009-05-24 23:25:42 +00007003 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00007004 }
7005
Dan Gohmana30370b2009-05-04 22:02:23 +00007006 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00007007 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00007008 if (Op == Cast->getOperand())
7009 return Cast; // must be loop invariant
7010 return getZeroExtendExpr(Op, Cast->getType());
7011 }
7012
Dan Gohmana30370b2009-05-04 22:02:23 +00007013 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00007014 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00007015 if (Op == Cast->getOperand())
7016 return Cast; // must be loop invariant
7017 return getSignExtendExpr(Op, Cast->getType());
7018 }
7019
Dan Gohmana30370b2009-05-04 22:02:23 +00007020 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00007021 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00007022 if (Op == Cast->getOperand())
7023 return Cast; // must be loop invariant
7024 return getTruncateExpr(Op, Cast->getType());
7025 }
7026
Torok Edwinfbcc6632009-07-14 16:55:14 +00007027 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00007028}
7029
Dan Gohmanaf752342009-07-07 17:06:11 +00007030const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00007031 return getSCEVAtScope(getSCEV(V), L);
7032}
7033
Sanjoy Dasf8570812016-05-29 00:38:22 +00007034/// Finds the minimum unsigned root of the following equation:
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00007035///
7036/// A * X = B (mod N)
7037///
7038/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
7039/// A and B isn't important.
7040///
7041/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00007042static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00007043 ScalarEvolution &SE) {
7044 uint32_t BW = A.getBitWidth();
7045 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
7046 assert(A != 0 && "A must be non-zero.");
7047
7048 // 1. D = gcd(A, N)
7049 //
7050 // The gcd of A and N may have only one prime factor: 2. The number of
7051 // trailing zeros in A is its multiplicity
7052 uint32_t Mult2 = A.countTrailingZeros();
7053 // D = 2^Mult2
7054
7055 // 2. Check if B is divisible by D.
7056 //
7057 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
7058 // is not less than multiplicity of this prime factor for D.
7059 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00007060 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00007061
7062 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
7063 // modulo (N / D).
7064 //
Eli Friedmanb5c3a0d2017-01-12 20:21:00 +00007065 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
7066 // (N / D) in general. The inverse itself always fits into BW bits, though,
7067 // so we immediately truncate it.
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00007068 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
7069 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00007070 Mod.setBit(BW - Mult2); // Mod = N / D
Eli Friedmanb5c3a0d2017-01-12 20:21:00 +00007071 APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00007072
7073 // 4. Compute the minimum unsigned root of the equation:
7074 // I * (B / D) mod (N / D)
Eli Friedmanb5c3a0d2017-01-12 20:21:00 +00007075 // To simplify the computation, we factor out the divide by D:
7076 // (I * B mod N) / D
7077 APInt Result = (I * B).lshr(Mult2);
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00007078
Eli Friedmanb5c3a0d2017-01-12 20:21:00 +00007079 return SE.getConstant(Result);
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00007080}
Chris Lattnerd934c702004-04-02 20:23:17 +00007081
Sanjoy Dasf8570812016-05-29 00:38:22 +00007082/// Find the roots of the quadratic equation for the given quadratic chrec
7083/// {L,+,M,+,N}. This returns either the two roots (which might be the same) or
7084/// two SCEVCouldNotCompute objects.
Chris Lattnerd934c702004-04-02 20:23:17 +00007085///
Sanjoy Das5a3d8932016-06-15 04:37:47 +00007086static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>>
Dan Gohmana37eaf22007-10-22 18:31:58 +00007087SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007088 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00007089 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
7090 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
7091 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00007092
Chris Lattnerd934c702004-04-02 20:23:17 +00007093 // We currently can only solve this if the coefficients are constants.
Sanjoy Das5a3d8932016-06-15 04:37:47 +00007094 if (!LC || !MC || !NC)
7095 return None;
Chris Lattnerd934c702004-04-02 20:23:17 +00007096
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007097 uint32_t BitWidth = LC->getAPInt().getBitWidth();
7098 const APInt &L = LC->getAPInt();
7099 const APInt &M = MC->getAPInt();
7100 const APInt &N = NC->getAPInt();
Reid Spencer983e3b32007-03-01 07:25:48 +00007101 APInt Two(BitWidth, 2);
7102 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00007103
Dan Gohmance973df2009-06-24 04:48:43 +00007104 {
Reid Spencer983e3b32007-03-01 07:25:48 +00007105 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00007106 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00007107 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
7108 // The B coefficient is M-N/2
7109 APInt B(M);
7110 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00007111
Reid Spencer983e3b32007-03-01 07:25:48 +00007112 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00007113 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00007114
Reid Spencer983e3b32007-03-01 07:25:48 +00007115 // Compute the B^2-4ac term.
7116 APInt SqrtTerm(B);
7117 SqrtTerm *= B;
7118 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00007119
Nick Lewyckyfb780832012-08-01 09:14:36 +00007120 if (SqrtTerm.isNegative()) {
7121 // The loop is provably infinite.
Sanjoy Das5a3d8932016-06-15 04:37:47 +00007122 return None;
Nick Lewyckyfb780832012-08-01 09:14:36 +00007123 }
7124
Reid Spencer983e3b32007-03-01 07:25:48 +00007125 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
7126 // integer value or else APInt::sqrt() will assert.
7127 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00007128
Dan Gohmance973df2009-06-24 04:48:43 +00007129 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00007130 // The divisions must be performed as signed divisions.
7131 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00007132 APInt TwoA(A << 1);
Sanjoy Das5a3d8932016-06-15 04:37:47 +00007133 if (TwoA.isMinValue())
7134 return None;
Nick Lewycky7b14e202008-11-03 02:43:49 +00007135
Owen Anderson47db9412009-07-22 00:24:57 +00007136 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00007137
7138 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00007139 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00007140 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00007141 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00007142
Sanjoy Das5a3d8932016-06-15 04:37:47 +00007143 return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)),
7144 cast<SCEVConstant>(SE.getConstant(Solution2)));
Nick Lewycky31555522011-10-03 07:10:45 +00007145 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00007146}
7147
Andrew Trick3ca3f982011-07-26 17:19:55 +00007148ScalarEvolution::ExitLimit
Sanjoy Das108fcf22016-05-29 00:38:00 +00007149ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
Silviu Baranga6f444df2016-04-08 14:29:09 +00007150 bool AllowPredicates) {
Sanjoy Dasf8570812016-05-29 00:38:22 +00007151
7152 // This is only used for loops with a "x != y" exit test. The exit condition
7153 // is now expressed as a single expression, V = x-y. So the exit test is
7154 // effectively V != 0. We know and take advantage of the fact that this
7155 // expression only being used in a comparison by zero context.
7156
Sanjoy Dasf0022122016-09-28 17:14:58 +00007157 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
Chris Lattnerd934c702004-04-02 20:23:17 +00007158 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00007159 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007160 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00007161 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007162 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00007163 }
7164
Dan Gohman48f82222009-05-04 22:30:44 +00007165 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Silviu Baranga6f444df2016-04-08 14:29:09 +00007166 if (!AddRec && AllowPredicates)
7167 // Try to make this an AddRec using runtime tests, in the first X
7168 // iterations of this loop, where X is the SCEV expression found by the
7169 // algorithm below.
Sanjoy Dasf0022122016-09-28 17:14:58 +00007170 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
Silviu Baranga6f444df2016-04-08 14:29:09 +00007171
Chris Lattnerd934c702004-04-02 20:23:17 +00007172 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007173 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007174
Chris Lattnerdff679f2011-01-09 22:39:48 +00007175 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
7176 // the quadratic equation to solve it.
7177 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Sanjoy Das5a3d8932016-06-15 04:37:47 +00007178 if (auto Roots = SolveQuadraticEquation(AddRec, *this)) {
7179 const SCEVConstant *R1 = Roots->first;
7180 const SCEVConstant *R2 = Roots->second;
Chris Lattnerd934c702004-04-02 20:23:17 +00007181 // Pick the smallest positive root value.
Sanjoy Das0e392d52016-06-15 04:37:50 +00007182 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
7183 CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00007184 if (!CB->getZExtValue())
Sanjoy Das0e392d52016-06-15 04:37:50 +00007185 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00007186
Chris Lattnerd934c702004-04-02 20:23:17 +00007187 // We can only use this value if the chrec ends up with an exact zero
7188 // value at this index. When solving for "X*X != 5", for example, we
7189 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00007190 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00007191 if (Val->isZero())
John Brawn84b21832016-10-21 11:08:48 +00007192 // We found a quadratic root!
7193 return ExitLimit(R1, R1, false, Predicates);
Chris Lattnerd934c702004-04-02 20:23:17 +00007194 }
7195 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00007196 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007197 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007198
Chris Lattnerdff679f2011-01-09 22:39:48 +00007199 // Otherwise we can only handle this if it is affine.
7200 if (!AddRec->isAffine())
7201 return getCouldNotCompute();
7202
7203 // If this is an affine expression, the execution count of this branch is
7204 // the minimum unsigned root of the following equation:
7205 //
7206 // Start + Step*N = 0 (mod 2^BW)
7207 //
7208 // equivalent to:
7209 //
7210 // Step*N = -Start (mod 2^BW)
7211 //
7212 // where BW is the common bit width of Start and Step.
7213
7214 // Get the initial value for the loop.
7215 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
7216 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
7217
7218 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00007219 //
7220 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
7221 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
7222 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
7223 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00007224 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00007225 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00007226 return getCouldNotCompute();
7227
Andrew Trick8b55b732011-03-14 16:50:06 +00007228 // For positive steps (counting up until unsigned overflow):
7229 // N = -Start/Step (as unsigned)
7230 // For negative steps (counting down to zero):
7231 // N = Start/-Step
7232 // First compute the unsigned distance from zero in the direction of Step.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007233 bool CountDown = StepC->getAPInt().isNegative();
Andrew Trickf1781db2011-03-14 17:28:02 +00007234 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00007235
7236 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00007237 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
7238 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00007239 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
Eli Friedman83962652017-01-11 20:55:48 +00007240 APInt MaxBECount = getUnsignedRange(Distance).getUnsignedMax();
Eli Friedmanbd6deda2017-01-11 21:07:15 +00007241
7242 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
7243 // we end up with a loop whose backedge-taken count is n - 1. Detect this
7244 // case, and see if we can improve the bound.
7245 //
7246 // Explicitly handling this here is necessary because getUnsignedRange
7247 // isn't context-sensitive; it doesn't know that we only care about the
7248 // range inside the loop.
7249 const SCEV *Zero = getZero(Distance->getType());
7250 const SCEV *One = getOne(Distance->getType());
7251 const SCEV *DistancePlusOne = getAddExpr(Distance, One);
7252 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
7253 // If Distance + 1 doesn't overflow, we can compute the maximum distance
7254 // as "unsigned_max(Distance + 1) - 1".
7255 ConstantRange CR = getUnsignedRange(DistancePlusOne);
7256 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
7257 }
Eli Friedman83962652017-01-11 20:55:48 +00007258 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
Nick Lewycky31555522011-10-03 07:10:45 +00007259 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00007260
Mark Heffernanacbed5e2014-12-15 21:19:53 +00007261 // As a special case, handle the instance where Step is a positive power of
7262 // two. In this case, determining whether Step divides Distance evenly can be
7263 // done by counting and comparing the number of trailing zeros of Step and
7264 // Distance.
7265 if (!CountDown) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007266 const APInt &StepV = StepC->getAPInt();
Mark Heffernanacbed5e2014-12-15 21:19:53 +00007267 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
7268 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
7269 // case is not handled as this code is guarded by !CountDown.
7270 if (StepV.isPowerOf2() &&
Sanjoy Dasf3132d32015-09-10 05:27:38 +00007271 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
7272 // Here we've constrained the equation to be of the form
7273 //
7274 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
7275 //
7276 // where we're operating on a W bit wide integer domain and k is
7277 // non-negative. The smallest unsigned solution for X is the trip count.
7278 //
7279 // (0) is equivalent to:
7280 //
7281 // 2^(N + k) * Distance' - 2^N * X = L * 2^W
7282 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
7283 // <=> 2^k * Distance' - X = L * 2^(W - N)
7284 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
7285 //
7286 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
7287 // by 2^(W - N).
7288 //
7289 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
7290 //
7291 // E.g. say we're solving
7292 //
7293 // 2 * Val = 2 * X (in i8) ... (3)
7294 //
7295 // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
7296 //
7297 // Note: It is tempting to solve (3) by setting X = Val, but Val is not
7298 // necessarily the smallest unsigned value of X that satisfies (3).
7299 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
7300 // is i8 1, not i8 -127
7301
Eli Friedmanf1f49c82017-01-18 23:56:42 +00007302 const auto *Limit = getUDivExactExpr(Distance, Step);
John Brawn84b21832016-10-21 11:08:48 +00007303 return ExitLimit(Limit, Limit, false, Predicates);
Sanjoy Dasf3132d32015-09-10 05:27:38 +00007304 }
Mark Heffernanacbed5e2014-12-15 21:19:53 +00007305 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00007306
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007307 // If the condition controls loop exit (the loop exits only if the expression
7308 // is true) and the addition is no-wrap we can use unsigned divide to
7309 // compute the backedge count. In this case, the step may not divide the
7310 // distance, but we don't care because if the condition is "missed" the loop
7311 // will have undefined behavior due to wrapping.
Sanjoy Dasc7f69b92016-06-09 01:13:59 +00007312 if (ControlsExit && AddRec->hasNoSelfWrap() &&
7313 loopHasNoAbnormalExits(AddRec->getLoop())) {
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007314 const SCEV *Exact =
7315 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
John Brawn84b21832016-10-21 11:08:48 +00007316 return ExitLimit(Exact, Exact, false, Predicates);
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007317 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00007318
Chris Lattnerdff679f2011-01-09 22:39:48 +00007319 // Then, try to solve the above equation provided that Start is constant.
Silviu Baranga6f444df2016-04-08 14:29:09 +00007320 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
7321 const SCEV *E = SolveLinEquationWithOverflow(
7322 StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this);
John Brawn84b21832016-10-21 11:08:48 +00007323 return ExitLimit(E, E, false, Predicates);
Silviu Baranga6f444df2016-04-08 14:29:09 +00007324 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007325 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007326}
7327
Andrew Trick3ca3f982011-07-26 17:19:55 +00007328ScalarEvolution::ExitLimit
Sanjoy Das108fcf22016-05-29 00:38:00 +00007329ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007330 // Loops that look like: while (X == 0) are very strange indeed. We don't
7331 // handle them yet except for the trivial case. This could be expanded in the
7332 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00007333
Chris Lattnerd934c702004-04-02 20:23:17 +00007334 // If the value is a constant, check to see if it is known to be non-zero
7335 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00007336 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00007337 if (!C->getValue()->isNullValue())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00007338 return getZero(C->getType());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007339 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00007340 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007341
Chris Lattnerd934c702004-04-02 20:23:17 +00007342 // We could implement others, but I really doubt anyone writes loops like
7343 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007344 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007345}
7346
Dan Gohman4e3c1132010-04-15 16:19:08 +00007347std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00007348ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00007349 // If the block has a unique predecessor, then there is no path from the
7350 // predecessor to the block that does not go through the direct edge
7351 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00007352 if (BasicBlock *Pred = BB->getSinglePredecessor())
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00007353 return {Pred, BB};
Dan Gohmanf9081a22008-09-15 22:18:04 +00007354
7355 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007356 // If the header has a unique predecessor outside the loop, it must be
7357 // a block that has exactly one successor that can reach the loop.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007358 if (Loop *L = LI.getLoopFor(BB))
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00007359 return {L->getLoopPredecessor(), L->getHeader()};
Dan Gohmanf9081a22008-09-15 22:18:04 +00007360
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00007361 return {nullptr, nullptr};
Dan Gohmanf9081a22008-09-15 22:18:04 +00007362}
7363
Sanjoy Dasf8570812016-05-29 00:38:22 +00007364/// SCEV structural equivalence is usually sufficient for testing whether two
7365/// expressions are equal, however for the purposes of looking for a condition
7366/// guarding a loop, it can be useful to be a little more general, since a
7367/// front-end may have replicated the controlling expression.
Dan Gohman450f4e02009-06-20 00:35:32 +00007368///
Dan Gohmanaf752342009-07-07 17:06:11 +00007369static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00007370 // Quick check to see if they are the same SCEV.
7371 if (A == B) return true;
7372
Sanjoy Dasf1090b62015-09-27 21:09:48 +00007373 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
7374 // Not all instructions that are "identical" compute the same value. For
7375 // instance, two distinct alloca instructions allocating the same type are
7376 // identical and do not read memory; but compute distinct values.
7377 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
7378 };
7379
Dan Gohman450f4e02009-06-20 00:35:32 +00007380 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
7381 // two different instructions with the same value. Check for this case.
7382 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
7383 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
7384 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
7385 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Sanjoy Dasf1090b62015-09-27 21:09:48 +00007386 if (ComputesEqualValues(AI, BI))
Dan Gohman450f4e02009-06-20 00:35:32 +00007387 return true;
7388
7389 // Otherwise assume they may have a different value.
7390 return false;
7391}
7392
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007393bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007394 const SCEV *&LHS, const SCEV *&RHS,
7395 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007396 bool Changed = false;
7397
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007398 // If we hit the max recursion limit bail out.
7399 if (Depth >= 3)
7400 return false;
7401
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007402 // Canonicalize a constant to the right side.
7403 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
7404 // Check for both operands constant.
7405 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
7406 if (ConstantExpr::getICmp(Pred,
7407 LHSC->getValue(),
7408 RHSC->getValue())->isNullValue())
7409 goto trivially_false;
7410 else
7411 goto trivially_true;
7412 }
7413 // Otherwise swap the operands to put the constant on the right.
7414 std::swap(LHS, RHS);
7415 Pred = ICmpInst::getSwappedPredicate(Pred);
7416 Changed = true;
7417 }
7418
7419 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00007420 // addrec's loop, put the addrec on the left. Also make a dominance check,
7421 // as both operands could be addrecs loop-invariant in each other's loop.
7422 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
7423 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00007424 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007425 std::swap(LHS, RHS);
7426 Pred = ICmpInst::getSwappedPredicate(Pred);
7427 Changed = true;
7428 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00007429 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007430
7431 // If there's a constant operand, canonicalize comparisons with boundary
7432 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
7433 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007434 const APInt &RA = RC->getAPInt();
Sanjoy Das4aeb0f22016-10-02 20:59:10 +00007435
7436 bool SimplifiedByConstantRange = false;
7437
7438 if (!ICmpInst::isEquality(Pred)) {
7439 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
7440 if (ExactCR.isFullSet())
7441 goto trivially_true;
7442 else if (ExactCR.isEmptySet())
7443 goto trivially_false;
7444
7445 APInt NewRHS;
7446 CmpInst::Predicate NewPred;
7447 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
7448 ICmpInst::isEquality(NewPred)) {
7449 // We were able to convert an inequality to an equality.
7450 Pred = NewPred;
7451 RHS = getConstant(NewRHS);
7452 Changed = SimplifiedByConstantRange = true;
7453 }
7454 }
7455
7456 if (!SimplifiedByConstantRange) {
7457 switch (Pred) {
7458 default:
7459 break;
7460 case ICmpInst::ICMP_EQ:
7461 case ICmpInst::ICMP_NE:
7462 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
7463 if (!RA)
7464 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
7465 if (const SCEVMulExpr *ME =
7466 dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
7467 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
7468 ME->getOperand(0)->isAllOnesValue()) {
7469 RHS = AE->getOperand(1);
7470 LHS = ME->getOperand(1);
7471 Changed = true;
7472 }
7473 break;
7474
7475
7476 // The "Should have been caught earlier!" messages refer to the fact
7477 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
7478 // should have fired on the corresponding cases, and canonicalized the
7479 // check to trivially_true or trivially_false.
7480
7481 case ICmpInst::ICMP_UGE:
7482 assert(!RA.isMinValue() && "Should have been caught earlier!");
7483 Pred = ICmpInst::ICMP_UGT;
Sanjoy Dasf230b0a2016-10-02 02:40:27 +00007484 RHS = getConstant(RA - 1);
7485 Changed = true;
7486 break;
Sanjoy Das4aeb0f22016-10-02 20:59:10 +00007487 case ICmpInst::ICMP_ULE:
7488 assert(!RA.isMaxValue() && "Should have been caught earlier!");
7489 Pred = ICmpInst::ICMP_ULT;
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007490 RHS = getConstant(RA + 1);
7491 Changed = true;
7492 break;
Sanjoy Das4aeb0f22016-10-02 20:59:10 +00007493 case ICmpInst::ICMP_SGE:
7494 assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
7495 Pred = ICmpInst::ICMP_SGT;
Sanjoy Dasf230b0a2016-10-02 02:40:27 +00007496 RHS = getConstant(RA - 1);
7497 Changed = true;
7498 break;
Sanjoy Das4aeb0f22016-10-02 20:59:10 +00007499 case ICmpInst::ICMP_SLE:
7500 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
7501 Pred = ICmpInst::ICMP_SLT;
Sanjoy Dasf230b0a2016-10-02 02:40:27 +00007502 RHS = getConstant(RA + 1);
7503 Changed = true;
7504 break;
7505 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007506 }
7507 }
7508
7509 // Check for obvious equality.
7510 if (HasSameValue(LHS, RHS)) {
7511 if (ICmpInst::isTrueWhenEqual(Pred))
7512 goto trivially_true;
7513 if (ICmpInst::isFalseWhenEqual(Pred))
7514 goto trivially_false;
7515 }
7516
Dan Gohman81585c12010-05-03 16:35:17 +00007517 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7518 // adding or subtracting 1 from one of the operands.
7519 switch (Pred) {
7520 case ICmpInst::ICMP_SLE:
7521 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7522 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007523 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007524 Pred = ICmpInst::ICMP_SLT;
7525 Changed = true;
7526 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007527 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007528 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007529 Pred = ICmpInst::ICMP_SLT;
7530 Changed = true;
7531 }
7532 break;
7533 case ICmpInst::ICMP_SGE:
7534 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007535 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007536 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007537 Pred = ICmpInst::ICMP_SGT;
7538 Changed = true;
7539 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7540 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007541 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007542 Pred = ICmpInst::ICMP_SGT;
7543 Changed = true;
7544 }
7545 break;
7546 case ICmpInst::ICMP_ULE:
7547 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007548 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007549 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007550 Pred = ICmpInst::ICMP_ULT;
7551 Changed = true;
7552 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Peter Collingbournec85f4ce2015-11-20 01:26:13 +00007553 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
Dan Gohman81585c12010-05-03 16:35:17 +00007554 Pred = ICmpInst::ICMP_ULT;
7555 Changed = true;
7556 }
7557 break;
7558 case ICmpInst::ICMP_UGE:
7559 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Peter Collingbournec85f4ce2015-11-20 01:26:13 +00007560 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
Dan Gohman81585c12010-05-03 16:35:17 +00007561 Pred = ICmpInst::ICMP_UGT;
7562 Changed = true;
7563 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007564 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007565 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007566 Pred = ICmpInst::ICMP_UGT;
7567 Changed = true;
7568 }
7569 break;
7570 default:
7571 break;
7572 }
7573
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007574 // TODO: More simplifications are possible here.
7575
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007576 // Recursively simplify until we either hit a recursion limit or nothing
7577 // changes.
7578 if (Changed)
7579 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7580
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007581 return Changed;
7582
7583trivially_true:
7584 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00007585 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007586 Pred = ICmpInst::ICMP_EQ;
7587 return true;
7588
7589trivially_false:
7590 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00007591 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007592 Pred = ICmpInst::ICMP_NE;
7593 return true;
7594}
7595
Dan Gohmane65c9172009-07-13 21:35:55 +00007596bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7597 return getSignedRange(S).getSignedMax().isNegative();
7598}
7599
7600bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7601 return getSignedRange(S).getSignedMin().isStrictlyPositive();
7602}
7603
7604bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7605 return !getSignedRange(S).getSignedMin().isNegative();
7606}
7607
7608bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7609 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7610}
7611
7612bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7613 return isKnownNegative(S) || isKnownPositive(S);
7614}
7615
7616bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7617 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00007618 // Canonicalize the inputs first.
7619 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7620
Dan Gohman07591692010-04-11 22:16:48 +00007621 // If LHS or RHS is an addrec, check to see if the condition is true in
7622 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00007623 // If LHS and RHS are both addrec, both conditions must be true in
7624 // every iteration of the loop.
7625 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7626 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7627 bool LeftGuarded = false;
7628 bool RightGuarded = false;
7629 if (LAR) {
7630 const Loop *L = LAR->getLoop();
7631 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7632 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7633 if (!RAR) return true;
7634 LeftGuarded = true;
7635 }
7636 }
7637 if (RAR) {
7638 const Loop *L = RAR->getLoop();
7639 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7640 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7641 if (!LAR) return true;
7642 RightGuarded = true;
7643 }
7644 }
7645 if (LeftGuarded && RightGuarded)
7646 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007647
Sanjoy Das7d910f22015-10-02 18:50:30 +00007648 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7649 return true;
7650
Dan Gohman07591692010-04-11 22:16:48 +00007651 // Otherwise see what can be done with known constant ranges.
Sanjoy Das401e6312016-02-01 20:48:10 +00007652 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
Dan Gohman07591692010-04-11 22:16:48 +00007653}
7654
Sanjoy Das5dab2052015-07-27 21:42:49 +00007655bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7656 ICmpInst::Predicate Pred,
7657 bool &Increasing) {
7658 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7659
7660#ifndef NDEBUG
7661 // Verify an invariant: inverting the predicate should turn a monotonically
7662 // increasing change to a monotonically decreasing one, and vice versa.
7663 bool IncreasingSwapped;
7664 bool ResultSwapped = isMonotonicPredicateImpl(
7665 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7666
7667 assert(Result == ResultSwapped && "should be able to analyze both!");
7668 if (ResultSwapped)
7669 assert(Increasing == !IncreasingSwapped &&
7670 "monotonicity should flip as we flip the predicate");
7671#endif
7672
7673 return Result;
7674}
7675
7676bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7677 ICmpInst::Predicate Pred,
7678 bool &Increasing) {
Sanjoy Das5dab2052015-07-27 21:42:49 +00007679
7680 // A zero step value for LHS means the induction variable is essentially a
7681 // loop invariant value. We don't really depend on the predicate actually
7682 // flipping from false to true (for increasing predicates, and the other way
7683 // around for decreasing predicates), all we care about is that *if* the
7684 // predicate changes then it only changes from false to true.
7685 //
7686 // A zero step value in itself is not very useful, but there may be places
7687 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7688 // as general as possible.
7689
Sanjoy Das366acc12015-08-06 20:43:41 +00007690 switch (Pred) {
7691 default:
7692 return false; // Conservative answer
7693
7694 case ICmpInst::ICMP_UGT:
7695 case ICmpInst::ICMP_UGE:
7696 case ICmpInst::ICMP_ULT:
7697 case ICmpInst::ICMP_ULE:
Sanjoy Das76c48e02016-02-04 18:21:54 +00007698 if (!LHS->hasNoUnsignedWrap())
Sanjoy Das366acc12015-08-06 20:43:41 +00007699 return false;
7700
7701 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007702 return true;
Sanjoy Das366acc12015-08-06 20:43:41 +00007703
7704 case ICmpInst::ICMP_SGT:
7705 case ICmpInst::ICMP_SGE:
7706 case ICmpInst::ICMP_SLT:
7707 case ICmpInst::ICMP_SLE: {
Sanjoy Das76c48e02016-02-04 18:21:54 +00007708 if (!LHS->hasNoSignedWrap())
Sanjoy Das366acc12015-08-06 20:43:41 +00007709 return false;
7710
7711 const SCEV *Step = LHS->getStepRecurrence(*this);
7712
7713 if (isKnownNonNegative(Step)) {
7714 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7715 return true;
7716 }
7717
7718 if (isKnownNonPositive(Step)) {
7719 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7720 return true;
7721 }
7722
7723 return false;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007724 }
7725
Sanjoy Das5dab2052015-07-27 21:42:49 +00007726 }
7727
Sanjoy Das366acc12015-08-06 20:43:41 +00007728 llvm_unreachable("switch has default clause!");
Sanjoy Das5dab2052015-07-27 21:42:49 +00007729}
7730
7731bool ScalarEvolution::isLoopInvariantPredicate(
7732 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7733 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7734 const SCEV *&InvariantRHS) {
7735
7736 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7737 if (!isLoopInvariant(RHS, L)) {
7738 if (!isLoopInvariant(LHS, L))
7739 return false;
7740
7741 std::swap(LHS, RHS);
7742 Pred = ICmpInst::getSwappedPredicate(Pred);
7743 }
7744
7745 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7746 if (!ArLHS || ArLHS->getLoop() != L)
7747 return false;
7748
7749 bool Increasing;
7750 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7751 return false;
7752
7753 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7754 // true as the loop iterates, and the backedge is control dependent on
7755 // "ArLHS `Pred` RHS" == true then we can reason as follows:
7756 //
7757 // * if the predicate was false in the first iteration then the predicate
7758 // is never evaluated again, since the loop exits without taking the
7759 // backedge.
7760 // * if the predicate was true in the first iteration then it will
7761 // continue to be true for all future iterations since it is
7762 // monotonically increasing.
7763 //
7764 // For both the above possibilities, we can replace the loop varying
7765 // predicate with its value on the first iteration of the loop (which is
7766 // loop invariant).
7767 //
7768 // A similar reasoning applies for a monotonically decreasing predicate, by
7769 // replacing true with false and false with true in the above two bullets.
7770
7771 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7772
7773 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7774 return false;
7775
7776 InvariantPred = Pred;
7777 InvariantLHS = ArLHS->getStart();
7778 InvariantRHS = RHS;
7779 return true;
7780}
7781
Sanjoy Das401e6312016-02-01 20:48:10 +00007782bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7783 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007784 if (HasSameValue(LHS, RHS))
7785 return ICmpInst::isTrueWhenEqual(Pred);
7786
Dan Gohman07591692010-04-11 22:16:48 +00007787 // This code is split out from isKnownPredicate because it is called from
7788 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00007789
Sanjoy Das4c7b6d72016-02-01 20:48:14 +00007790 auto CheckRanges =
7791 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7792 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7793 .contains(RangeLHS);
7794 };
7795
7796 // The check at the top of the function catches the case where the values are
7797 // known to be equal.
7798 if (Pred == CmpInst::ICMP_EQ)
7799 return false;
7800
7801 if (Pred == CmpInst::ICMP_NE)
7802 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7803 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7804 isKnownNonZero(getMinusSCEV(LHS, RHS));
7805
7806 if (CmpInst::isSigned(Pred))
7807 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7808
7809 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
Dan Gohmane65c9172009-07-13 21:35:55 +00007810}
7811
Sanjoy Dasc1a29772015-11-05 23:45:38 +00007812bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7813 const SCEV *LHS,
7814 const SCEV *RHS) {
7815
7816 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7817 // Return Y via OutY.
7818 auto MatchBinaryAddToConst =
7819 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7820 SCEV::NoWrapFlags ExpectedFlags) {
7821 const SCEV *NonConstOp, *ConstOp;
7822 SCEV::NoWrapFlags FlagsPresent;
7823
7824 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7825 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7826 return false;
7827
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007828 OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
Sanjoy Dasc1a29772015-11-05 23:45:38 +00007829 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7830 };
7831
7832 APInt C;
7833
7834 switch (Pred) {
7835 default:
7836 break;
7837
7838 case ICmpInst::ICMP_SGE:
7839 std::swap(LHS, RHS);
7840 case ICmpInst::ICMP_SLE:
7841 // X s<= (X + C)<nsw> if C >= 0
7842 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7843 return true;
7844
7845 // (X + C)<nsw> s<= X if C <= 0
7846 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7847 !C.isStrictlyPositive())
7848 return true;
7849 break;
7850
7851 case ICmpInst::ICMP_SGT:
7852 std::swap(LHS, RHS);
7853 case ICmpInst::ICMP_SLT:
7854 // X s< (X + C)<nsw> if C > 0
7855 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7856 C.isStrictlyPositive())
7857 return true;
7858
7859 // (X + C)<nsw> s< X if C < 0
7860 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7861 return true;
7862 break;
7863 }
7864
7865 return false;
7866}
7867
Sanjoy Das7d910f22015-10-02 18:50:30 +00007868bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7869 const SCEV *LHS,
7870 const SCEV *RHS) {
Sanjoy Das10dffcb2015-10-08 03:46:00 +00007871 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
Sanjoy Das7d910f22015-10-02 18:50:30 +00007872 return false;
7873
7874 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7875 // the stack can result in exponential time complexity.
7876 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7877
7878 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7879 //
7880 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7881 // isKnownPredicate. isKnownPredicate is more powerful, but also more
7882 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7883 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
7884 // use isKnownPredicate later if needed.
Alexander Kornienko484e48e32015-11-05 21:07:12 +00007885 return isKnownNonNegative(RHS) &&
7886 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7887 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
Sanjoy Das7d910f22015-10-02 18:50:30 +00007888}
7889
Sanjoy Das2512d0c2016-05-10 00:31:49 +00007890bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
7891 ICmpInst::Predicate Pred,
7892 const SCEV *LHS, const SCEV *RHS) {
7893 // No need to even try if we know the module has no guards.
7894 if (!HasGuards)
7895 return false;
7896
7897 return any_of(*BB, [&](Instruction &I) {
7898 using namespace llvm::PatternMatch;
7899
7900 Value *Condition;
7901 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
7902 m_Value(Condition))) &&
7903 isImpliedCond(Pred, LHS, RHS, Condition, false);
7904 });
7905}
7906
Dan Gohmane65c9172009-07-13 21:35:55 +00007907/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7908/// protected by a conditional between LHS and RHS. This is used to
7909/// to eliminate casts.
7910bool
7911ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7912 ICmpInst::Predicate Pred,
7913 const SCEV *LHS, const SCEV *RHS) {
7914 // Interpret a null as meaning no loop, where there is obviously no guard
7915 // (interprocedural conditions notwithstanding).
7916 if (!L) return true;
7917
Sanjoy Das401e6312016-02-01 20:48:10 +00007918 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7919 return true;
Sanjoy Das1f05c512014-10-10 21:22:34 +00007920
Dan Gohmane65c9172009-07-13 21:35:55 +00007921 BasicBlock *Latch = L->getLoopLatch();
7922 if (!Latch)
7923 return false;
7924
7925 BranchInst *LoopContinuePredicate =
7926 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007927 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7928 isImpliedCond(Pred, LHS, RHS,
7929 LoopContinuePredicate->getCondition(),
7930 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7931 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007932
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007933 // We don't want more than one activation of the following loops on the stack
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007934 // -- that can lead to O(n!) time complexity.
7935 if (WalkingBEDominatingConds)
7936 return false;
7937
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +00007938 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007939
Sanjoy Dasb174f9a2015-09-25 23:53:50 +00007940 // See if we can exploit a trip count to prove the predicate.
7941 const auto &BETakenInfo = getBackedgeTakenInfo(L);
7942 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7943 if (LatchBECount != getCouldNotCompute()) {
7944 // We know that Latch branches back to the loop header exactly
7945 // LatchBECount times. This means the backdege condition at Latch is
7946 // equivalent to "{0,+,1} u< LatchBECount".
7947 Type *Ty = LatchBECount->getType();
7948 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7949 const SCEV *LoopCounter =
7950 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7951 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7952 LatchBECount))
7953 return true;
7954 }
7955
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007956 // Check conditions due to any @llvm.assume intrinsics.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00007957 for (auto &AssumeVH : AC.assumptions()) {
7958 if (!AssumeVH)
7959 continue;
7960 auto *CI = cast<CallInst>(AssumeVH);
7961 if (!DT.dominates(CI, Latch->getTerminator()))
7962 continue;
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007963
Daniel Jasperaec2fa32016-12-19 08:22:17 +00007964 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7965 return true;
7966 }
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007967
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007968 // If the loop is not reachable from the entry block, we risk running into an
7969 // infinite loop as we walk up into the dom tree. These loops do not matter
7970 // anyway, so we just return a conservative answer when we see them.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007971 if (!DT.isReachableFromEntry(L->getHeader()))
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007972 return false;
7973
Sanjoy Das2512d0c2016-05-10 00:31:49 +00007974 if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
7975 return true;
7976
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007977 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7978 DTN != HeaderDTN; DTN = DTN->getIDom()) {
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007979
7980 assert(DTN && "should reach the loop header before reaching the root!");
7981
7982 BasicBlock *BB = DTN->getBlock();
Sanjoy Das2512d0c2016-05-10 00:31:49 +00007983 if (isImpliedViaGuard(BB, Pred, LHS, RHS))
7984 return true;
7985
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007986 BasicBlock *PBB = BB->getSinglePredecessor();
7987 if (!PBB)
7988 continue;
7989
7990 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7991 if (!ContinuePredicate || !ContinuePredicate->isConditional())
7992 continue;
7993
7994 Value *Condition = ContinuePredicate->getCondition();
7995
7996 // If we have an edge `E` within the loop body that dominates the only
7997 // latch, the condition guarding `E` also guards the backedge. This
7998 // reasoning works only for loops with a single latch.
7999
8000 BasicBlockEdge DominatingEdge(PBB, BB);
8001 if (DominatingEdge.isSingleEdge()) {
8002 // We're constructively (and conservatively) enumerating edges within the
8003 // loop body that dominate the latch. The dominator tree better agree
8004 // with us on this:
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008005 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00008006
8007 if (isImpliedCond(Pred, LHS, RHS, Condition,
8008 BB != ContinuePredicate->getSuccessor(0)))
8009 return true;
8010 }
8011 }
8012
Hal Finkelcebf0cc2014-09-07 21:37:59 +00008013 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00008014}
8015
Dan Gohmane65c9172009-07-13 21:35:55 +00008016bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00008017ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
8018 ICmpInst::Predicate Pred,
8019 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00008020 // Interpret a null as meaning no loop, where there is obviously no guard
8021 // (interprocedural conditions notwithstanding).
8022 if (!L) return false;
8023
Sanjoy Das401e6312016-02-01 20:48:10 +00008024 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
8025 return true;
Sanjoy Das1f05c512014-10-10 21:22:34 +00008026
Dan Gohman8c77f1a2009-05-18 15:36:09 +00008027 // Starting at the loop predecessor, climb up the predecessor chain, as long
8028 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00008029 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00008030 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00008031 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00008032 Pair.first;
8033 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00008034
Sanjoy Das2512d0c2016-05-10 00:31:49 +00008035 if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS))
8036 return true;
8037
Dan Gohman2a62fd92008-08-12 20:17:31 +00008038 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00008039 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00008040 if (!LoopEntryPredicate ||
8041 LoopEntryPredicate->isUnconditional())
8042 continue;
8043
Dan Gohmane18c2d62010-08-10 23:46:30 +00008044 if (isImpliedCond(Pred, LHS, RHS,
8045 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00008046 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00008047 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00008048 }
8049
Hal Finkelcebf0cc2014-09-07 21:37:59 +00008050 // Check conditions due to any @llvm.assume intrinsics.
Daniel Jasperaec2fa32016-12-19 08:22:17 +00008051 for (auto &AssumeVH : AC.assumptions()) {
8052 if (!AssumeVH)
8053 continue;
8054 auto *CI = cast<CallInst>(AssumeVH);
8055 if (!DT.dominates(CI, L->getHeader()))
8056 continue;
Hal Finkelcebf0cc2014-09-07 21:37:59 +00008057
Daniel Jasperaec2fa32016-12-19 08:22:17 +00008058 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
8059 return true;
8060 }
Hal Finkelcebf0cc2014-09-07 21:37:59 +00008061
Dan Gohman2a62fd92008-08-12 20:17:31 +00008062 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00008063}
8064
Dan Gohmane18c2d62010-08-10 23:46:30 +00008065bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00008066 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00008067 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00008068 bool Inverse) {
Sanjoy Dasc46bceb2016-09-27 18:01:42 +00008069 if (!PendingLoopPredicates.insert(FoundCondValue).second)
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00008070 return false;
8071
Sanjoy Dasc46bceb2016-09-27 18:01:42 +00008072 auto ClearOnExit =
8073 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
8074
Dan Gohman8b0a4192010-03-01 17:49:51 +00008075 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00008076 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008077 if (BO->getOpcode() == Instruction::And) {
8078 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00008079 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8080 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008081 } else if (BO->getOpcode() == Instruction::Or) {
8082 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00008083 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8084 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008085 }
8086 }
8087
Dan Gohmane18c2d62010-08-10 23:46:30 +00008088 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008089 if (!ICI) return false;
8090
Andrew Trickfa594032012-11-29 18:35:13 +00008091 // Now that we found a conditional branch that dominates the loop or controls
8092 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00008093 ICmpInst::Predicate FoundPred;
8094 if (Inverse)
8095 FoundPred = ICI->getInversePredicate();
8096 else
8097 FoundPred = ICI->getPredicate();
8098
8099 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
8100 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00008101
Sanjoy Dasdf1635d2015-09-25 19:59:52 +00008102 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
8103}
8104
8105bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
8106 const SCEV *RHS,
8107 ICmpInst::Predicate FoundPred,
8108 const SCEV *FoundLHS,
8109 const SCEV *FoundRHS) {
Sanjoy Das14598832015-03-26 17:28:26 +00008110 // Balance the types.
8111 if (getTypeSizeInBits(LHS->getType()) <
8112 getTypeSizeInBits(FoundLHS->getType())) {
8113 if (CmpInst::isSigned(Pred)) {
8114 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
8115 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
8116 } else {
8117 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
8118 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
8119 }
8120 } else if (getTypeSizeInBits(LHS->getType()) >
Dan Gohmane65c9172009-07-13 21:35:55 +00008121 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00008122 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00008123 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
8124 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
8125 } else {
8126 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
8127 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
8128 }
8129 }
8130
Dan Gohman430f0cc2009-07-21 23:03:19 +00008131 // Canonicalize the query to match the way instcombine will have
8132 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00008133 if (SimplifyICmpOperands(Pred, LHS, RHS))
8134 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00008135 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00008136 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
8137 if (FoundLHS == FoundRHS)
8138 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00008139
8140 // Check to see if we can make the LHS or RHS match.
8141 if (LHS == FoundRHS || RHS == FoundLHS) {
8142 if (isa<SCEVConstant>(RHS)) {
8143 std::swap(FoundLHS, FoundRHS);
8144 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
8145 } else {
8146 std::swap(LHS, RHS);
8147 Pred = ICmpInst::getSwappedPredicate(Pred);
8148 }
8149 }
8150
8151 // Check whether the found predicate is the same as the desired predicate.
8152 if (FoundPred == Pred)
8153 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8154
8155 // Check whether swapping the found predicate makes it the same as the
8156 // desired predicate.
8157 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
8158 if (isa<SCEVConstant>(RHS))
8159 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
8160 else
8161 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
8162 RHS, LHS, FoundLHS, FoundRHS);
8163 }
8164
Sanjoy Das6e78b172015-10-22 19:57:34 +00008165 // Unsigned comparison is the same as signed comparison when both the operands
8166 // are non-negative.
8167 if (CmpInst::isUnsigned(FoundPred) &&
8168 CmpInst::getSignedPredicate(FoundPred) == Pred &&
8169 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
8170 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8171
Sanjoy Dasc5676df2014-11-13 00:00:58 +00008172 // Check if we can make progress by sharpening ranges.
8173 if (FoundPred == ICmpInst::ICMP_NE &&
8174 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
8175
8176 const SCEVConstant *C = nullptr;
8177 const SCEV *V = nullptr;
8178
8179 if (isa<SCEVConstant>(FoundLHS)) {
8180 C = cast<SCEVConstant>(FoundLHS);
8181 V = FoundRHS;
8182 } else {
8183 C = cast<SCEVConstant>(FoundRHS);
8184 V = FoundLHS;
8185 }
8186
8187 // The guarding predicate tells us that C != V. If the known range
8188 // of V is [C, t), we can sharpen the range to [C + 1, t). The
8189 // range we consider has to correspond to same signedness as the
8190 // predicate we're interested in folding.
8191
8192 APInt Min = ICmpInst::isSigned(Pred) ?
8193 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
8194
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008195 if (Min == C->getAPInt()) {
Sanjoy Dasc5676df2014-11-13 00:00:58 +00008196 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
8197 // This is true even if (Min + 1) wraps around -- in case of
8198 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
8199
8200 APInt SharperMin = Min + 1;
8201
8202 switch (Pred) {
8203 case ICmpInst::ICMP_SGE:
8204 case ICmpInst::ICMP_UGE:
8205 // We know V `Pred` SharperMin. If this implies LHS `Pred`
8206 // RHS, we're done.
8207 if (isImpliedCondOperands(Pred, LHS, RHS, V,
8208 getConstant(SharperMin)))
8209 return true;
8210
8211 case ICmpInst::ICMP_SGT:
8212 case ICmpInst::ICMP_UGT:
8213 // We know from the range information that (V `Pred` Min ||
8214 // V == Min). We know from the guarding condition that !(V
8215 // == Min). This gives us
8216 //
8217 // V `Pred` Min || V == Min && !(V == Min)
8218 // => V `Pred` Min
8219 //
8220 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
8221
8222 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
8223 return true;
8224
8225 default:
8226 // No change
8227 break;
8228 }
8229 }
8230 }
8231
Dan Gohman430f0cc2009-07-21 23:03:19 +00008232 // Check whether the actual condition is beyond sufficient.
8233 if (FoundPred == ICmpInst::ICMP_EQ)
8234 if (ICmpInst::isTrueWhenEqual(Pred))
8235 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
8236 return true;
8237 if (Pred == ICmpInst::ICMP_NE)
8238 if (!ICmpInst::isTrueWhenEqual(FoundPred))
8239 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
8240 return true;
8241
8242 // Otherwise assume the worst.
8243 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00008244}
8245
Sanjoy Das1ed69102015-10-13 02:53:27 +00008246bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
8247 const SCEV *&L, const SCEV *&R,
8248 SCEV::NoWrapFlags &Flags) {
8249 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
8250 if (!AE || AE->getNumOperands() != 2)
8251 return false;
8252
8253 L = AE->getOperand(0);
8254 R = AE->getOperand(1);
8255 Flags = AE->getNoWrapFlags();
8256 return true;
8257}
8258
Sanjoy Das0b1af852016-07-23 00:28:56 +00008259Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
8260 const SCEV *Less) {
Sanjoy Das96709c42015-09-25 23:53:45 +00008261 // We avoid subtracting expressions here because this function is usually
8262 // fairly deep in the call stack (i.e. is called many times).
8263
Sanjoy Das96709c42015-09-25 23:53:45 +00008264 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
8265 const auto *LAR = cast<SCEVAddRecExpr>(Less);
8266 const auto *MAR = cast<SCEVAddRecExpr>(More);
8267
8268 if (LAR->getLoop() != MAR->getLoop())
Sanjoy Das0b1af852016-07-23 00:28:56 +00008269 return None;
Sanjoy Das96709c42015-09-25 23:53:45 +00008270
8271 // We look at affine expressions only; not for correctness but to keep
8272 // getStepRecurrence cheap.
8273 if (!LAR->isAffine() || !MAR->isAffine())
Sanjoy Das0b1af852016-07-23 00:28:56 +00008274 return None;
Sanjoy Das96709c42015-09-25 23:53:45 +00008275
Sanjoy Das1ed69102015-10-13 02:53:27 +00008276 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
Sanjoy Das0b1af852016-07-23 00:28:56 +00008277 return None;
Sanjoy Das96709c42015-09-25 23:53:45 +00008278
8279 Less = LAR->getStart();
8280 More = MAR->getStart();
8281
8282 // fall through
8283 }
8284
8285 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008286 const auto &M = cast<SCEVConstant>(More)->getAPInt();
8287 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
Sanjoy Das0b1af852016-07-23 00:28:56 +00008288 return M - L;
Sanjoy Das96709c42015-09-25 23:53:45 +00008289 }
8290
8291 const SCEV *L, *R;
Sanjoy Das1ed69102015-10-13 02:53:27 +00008292 SCEV::NoWrapFlags Flags;
8293 if (splitBinaryAdd(Less, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00008294 if (const auto *LC = dyn_cast<SCEVConstant>(L))
Sanjoy Das0b1af852016-07-23 00:28:56 +00008295 if (R == More)
8296 return -(LC->getAPInt());
Sanjoy Das96709c42015-09-25 23:53:45 +00008297
Sanjoy Das1ed69102015-10-13 02:53:27 +00008298 if (splitBinaryAdd(More, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00008299 if (const auto *LC = dyn_cast<SCEVConstant>(L))
Sanjoy Das0b1af852016-07-23 00:28:56 +00008300 if (R == Less)
8301 return LC->getAPInt();
Sanjoy Das96709c42015-09-25 23:53:45 +00008302
Sanjoy Das0b1af852016-07-23 00:28:56 +00008303 return None;
Sanjoy Das96709c42015-09-25 23:53:45 +00008304}
8305
8306bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
8307 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
8308 const SCEV *FoundLHS, const SCEV *FoundRHS) {
8309 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
8310 return false;
8311
8312 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8313 if (!AddRecLHS)
8314 return false;
8315
8316 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
8317 if (!AddRecFoundLHS)
8318 return false;
8319
8320 // We'd like to let SCEV reason about control dependencies, so we constrain
8321 // both the inequalities to be about add recurrences on the same loop. This
8322 // way we can use isLoopEntryGuardedByCond later.
8323
8324 const Loop *L = AddRecFoundLHS->getLoop();
8325 if (L != AddRecLHS->getLoop())
8326 return false;
8327
8328 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
8329 //
8330 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
8331 // ... (2)
8332 //
8333 // Informal proof for (2), assuming (1) [*]:
8334 //
8335 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
8336 //
8337 // Then
8338 //
8339 // FoundLHS s< FoundRHS s< INT_MIN - C
8340 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
8341 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
8342 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
8343 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
8344 // <=> FoundLHS + C s< FoundRHS + C
8345 //
8346 // [*]: (1) can be proved by ruling out overflow.
8347 //
8348 // [**]: This can be proved by analyzing all the four possibilities:
8349 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
8350 // (A s>= 0, B s>= 0).
8351 //
8352 // Note:
8353 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
8354 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
8355 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
8356 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
8357 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
8358 // C)".
8359
Sanjoy Das0b1af852016-07-23 00:28:56 +00008360 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
8361 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
8362 if (!LDiff || !RDiff || *LDiff != *RDiff)
Sanjoy Das96709c42015-09-25 23:53:45 +00008363 return false;
8364
Sanjoy Das0b1af852016-07-23 00:28:56 +00008365 if (LDiff->isMinValue())
Sanjoy Das96709c42015-09-25 23:53:45 +00008366 return true;
8367
Sanjoy Das96709c42015-09-25 23:53:45 +00008368 APInt FoundRHSLimit;
8369
8370 if (Pred == CmpInst::ICMP_ULT) {
Sanjoy Das0b1af852016-07-23 00:28:56 +00008371 FoundRHSLimit = -(*RDiff);
Sanjoy Das96709c42015-09-25 23:53:45 +00008372 } else {
8373 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
Sanjoy Das0b1af852016-07-23 00:28:56 +00008374 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
Sanjoy Das96709c42015-09-25 23:53:45 +00008375 }
8376
8377 // Try to prove (1) or (2), as needed.
8378 return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
8379 getConstant(FoundRHSLimit));
8380}
8381
Dan Gohman430f0cc2009-07-21 23:03:19 +00008382bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
8383 const SCEV *LHS, const SCEV *RHS,
8384 const SCEV *FoundLHS,
8385 const SCEV *FoundRHS) {
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008386 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
8387 return true;
8388
Sanjoy Das96709c42015-09-25 23:53:45 +00008389 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
8390 return true;
8391
Dan Gohman430f0cc2009-07-21 23:03:19 +00008392 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
8393 FoundLHS, FoundRHS) ||
8394 // ~x < ~y --> x > y
8395 isImpliedCondOperandsHelper(Pred, LHS, RHS,
8396 getNotSCEV(FoundRHS),
8397 getNotSCEV(FoundLHS));
8398}
8399
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008400
8401/// If Expr computes ~A, return A else return nullptr
8402static const SCEV *MatchNotExpr(const SCEV *Expr) {
8403 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
Sanjoy Das16e7ff12015-10-13 23:28:31 +00008404 if (!Add || Add->getNumOperands() != 2 ||
8405 !Add->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008406 return nullptr;
8407
8408 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
Sanjoy Das16e7ff12015-10-13 23:28:31 +00008409 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
8410 !AddRHS->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008411 return nullptr;
8412
8413 return AddRHS->getOperand(1);
8414}
8415
8416
8417/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
8418template<typename MaxExprType>
8419static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
8420 const SCEV *Candidate) {
8421 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
8422 if (!MaxExpr) return false;
8423
Sanjoy Das347d2722015-12-01 07:49:27 +00008424 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008425}
8426
8427
8428/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8429template<typename MaxExprType>
8430static bool IsMinConsistingOf(ScalarEvolution &SE,
8431 const SCEV *MaybeMinExpr,
8432 const SCEV *Candidate) {
8433 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8434 if (!MaybeMaxExpr)
8435 return false;
8436
8437 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8438}
8439
Hal Finkela8d205f2015-08-19 01:51:51 +00008440static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8441 ICmpInst::Predicate Pred,
8442 const SCEV *LHS, const SCEV *RHS) {
8443
8444 // If both sides are affine addrecs for the same loop, with equal
8445 // steps, and we know the recurrences don't wrap, then we only
8446 // need to check the predicate on the starting values.
8447
8448 if (!ICmpInst::isRelational(Pred))
8449 return false;
8450
8451 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8452 if (!LAR)
8453 return false;
8454 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8455 if (!RAR)
8456 return false;
8457 if (LAR->getLoop() != RAR->getLoop())
8458 return false;
8459 if (!LAR->isAffine() || !RAR->isAffine())
8460 return false;
8461
8462 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8463 return false;
8464
Hal Finkelff08a2e2015-08-19 17:26:07 +00008465 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8466 SCEV::FlagNSW : SCEV::FlagNUW;
8467 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
Hal Finkela8d205f2015-08-19 01:51:51 +00008468 return false;
8469
8470 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8471}
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008472
8473/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8474/// expression?
8475static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8476 ICmpInst::Predicate Pred,
8477 const SCEV *LHS, const SCEV *RHS) {
8478 switch (Pred) {
8479 default:
8480 return false;
8481
8482 case ICmpInst::ICMP_SGE:
8483 std::swap(LHS, RHS);
Justin Bognercd1d5aa2016-08-17 20:30:52 +00008484 LLVM_FALLTHROUGH;
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008485 case ICmpInst::ICMP_SLE:
8486 return
8487 // min(A, ...) <= A
8488 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8489 // A <= max(A, ...)
8490 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8491
8492 case ICmpInst::ICMP_UGE:
8493 std::swap(LHS, RHS);
Justin Bognercd1d5aa2016-08-17 20:30:52 +00008494 LLVM_FALLTHROUGH;
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008495 case ICmpInst::ICMP_ULE:
8496 return
8497 // min(A, ...) <= A
8498 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8499 // A <= max(A, ...)
8500 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8501 }
8502
8503 llvm_unreachable("covered switch fell through?!");
8504}
8505
Dan Gohmane65c9172009-07-13 21:35:55 +00008506bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00008507ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8508 const SCEV *LHS, const SCEV *RHS,
8509 const SCEV *FoundLHS,
8510 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008511 auto IsKnownPredicateFull =
8512 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
Sanjoy Das401e6312016-02-01 20:48:10 +00008513 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
Sanjoy Das11231482015-10-22 19:57:29 +00008514 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
Sanjoy Dasc1a29772015-11-05 23:45:38 +00008515 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8516 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008517 };
8518
Dan Gohmane65c9172009-07-13 21:35:55 +00008519 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00008520 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8521 case ICmpInst::ICMP_EQ:
8522 case ICmpInst::ICMP_NE:
8523 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8524 return true;
8525 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00008526 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008527 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008528 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8529 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008530 return true;
8531 break;
8532 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008533 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008534 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8535 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008536 return true;
8537 break;
8538 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008539 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008540 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8541 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008542 return true;
8543 break;
8544 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008545 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008546 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8547 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008548 return true;
8549 break;
8550 }
8551
8552 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008553}
8554
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008555bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8556 const SCEV *LHS,
8557 const SCEV *RHS,
8558 const SCEV *FoundLHS,
8559 const SCEV *FoundRHS) {
8560 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8561 // The restriction on `FoundRHS` be lifted easily -- it exists only to
8562 // reduce the compile time impact of this optimization.
8563 return false;
8564
Sanjoy Dasa7d9ec82016-07-23 00:54:36 +00008565 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
Sanjoy Das095f5b22016-07-22 20:47:55 +00008566 if (!Addend)
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008567 return false;
8568
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008569 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008570
8571 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8572 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8573 ConstantRange FoundLHSRange =
8574 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8575
Sanjoy Das095f5b22016-07-22 20:47:55 +00008576 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
8577 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008578
8579 // We can also compute the range of values for `LHS` that satisfy the
8580 // consequent, "`LHS` `Pred` `RHS`":
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008581 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008582 ConstantRange SatisfyingLHSRange =
8583 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8584
8585 // The antecedent implies the consequent if every value of `LHS` that
8586 // satisfies the antecedent also satisfies the consequent.
8587 return SatisfyingLHSRange.contains(LHSRange);
8588}
8589
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008590bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8591 bool IsSigned, bool NoWrap) {
David L Kreitzer8bbabee2016-09-16 14:38:13 +00008592 assert(isKnownPositive(Stride) && "Positive stride expected!");
8593
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008594 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00008595
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008596 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008597 const SCEV *One = getOne(Stride->getType());
Andrew Trick2afa3252011-03-09 17:29:58 +00008598
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008599 if (IsSigned) {
8600 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8601 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8602 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8603 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00008604
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008605 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8606 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00008607 }
Dan Gohman01048422009-06-21 23:46:38 +00008608
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008609 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8610 APInt MaxValue = APInt::getMaxValue(BitWidth);
8611 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8612 .getUnsignedMax();
8613
8614 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8615 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8616}
8617
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008618bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8619 bool IsSigned, bool NoWrap) {
8620 if (NoWrap) return false;
8621
8622 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008623 const SCEV *One = getOne(Stride->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008624
8625 if (IsSigned) {
8626 APInt MinRHS = getSignedRange(RHS).getSignedMin();
8627 APInt MinValue = APInt::getSignedMinValue(BitWidth);
8628 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8629 .getSignedMax();
8630
8631 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8632 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8633 }
8634
8635 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8636 APInt MinValue = APInt::getMinValue(BitWidth);
8637 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8638 .getUnsignedMax();
8639
8640 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8641 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8642}
8643
Johannes Doerfert2683e562015-02-09 12:34:23 +00008644const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008645 bool Equality) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008646 const SCEV *One = getOne(Step->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008647 Delta = Equality ? getAddExpr(Delta, Step)
8648 : getAddExpr(Delta, getMinusSCEV(Step, One));
8649 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00008650}
8651
Andrew Trick3ca3f982011-07-26 17:19:55 +00008652ScalarEvolution::ExitLimit
Sanjoy Das108fcf22016-05-29 00:38:00 +00008653ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008654 const Loop *L, bool IsSigned,
Silviu Baranga6f444df2016-04-08 14:29:09 +00008655 bool ControlsExit, bool AllowPredicates) {
Sanjoy Dasf0022122016-09-28 17:14:58 +00008656 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008657 // We handle only IV < Invariant
8658 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00008659 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008660
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008661 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
David L Kreitzer8bbabee2016-09-16 14:38:13 +00008662 bool PredicatedIV = false;
8663
8664 if (!IV && AllowPredicates) {
Silviu Baranga6f444df2016-04-08 14:29:09 +00008665 // Try to make this an AddRec using runtime tests, in the first X
8666 // iterations of this loop, where X is the SCEV expression found by the
8667 // algorithm below.
Sanjoy Dasf0022122016-09-28 17:14:58 +00008668 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
David L Kreitzer8bbabee2016-09-16 14:38:13 +00008669 PredicatedIV = true;
8670 }
Dan Gohman2b8da352009-04-30 20:47:05 +00008671
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008672 // Avoid weird loops
8673 if (!IV || IV->getLoop() != L || !IV->isAffine())
8674 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008675
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008676 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008677 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008678
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008679 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008680
David L Kreitzer8bbabee2016-09-16 14:38:13 +00008681 bool PositiveStride = isKnownPositive(Stride);
Dan Gohman2b8da352009-04-30 20:47:05 +00008682
David L Kreitzer8bbabee2016-09-16 14:38:13 +00008683 // Avoid negative or zero stride values.
8684 if (!PositiveStride) {
8685 // We can compute the correct backedge taken count for loops with unknown
8686 // strides if we can prove that the loop is not an infinite loop with side
8687 // effects. Here's the loop structure we are trying to handle -
8688 //
8689 // i = start
8690 // do {
8691 // A[i] = i;
8692 // i += s;
8693 // } while (i < end);
8694 //
8695 // The backedge taken count for such loops is evaluated as -
8696 // (max(end, start + stride) - start - 1) /u stride
8697 //
8698 // The additional preconditions that we need to check to prove correctness
8699 // of the above formula is as follows -
8700 //
8701 // a) IV is either nuw or nsw depending upon signedness (indicated by the
8702 // NoWrap flag).
8703 // b) loop is single exit with no side effects.
8704 //
8705 //
8706 // Precondition a) implies that if the stride is negative, this is a single
8707 // trip loop. The backedge taken count formula reduces to zero in this case.
8708 //
8709 // Precondition b) implies that the unknown stride cannot be zero otherwise
8710 // we have UB.
8711 //
8712 // The positive stride case is the same as isKnownPositive(Stride) returning
8713 // true (original behavior of the function).
8714 //
8715 // We want to make sure that the stride is truly unknown as there are edge
8716 // cases where ScalarEvolution propagates no wrap flags to the
8717 // post-increment/decrement IV even though the increment/decrement operation
8718 // itself is wrapping. The computed backedge taken count may be wrong in
8719 // such cases. This is prevented by checking that the stride is not known to
8720 // be either positive or non-positive. For example, no wrap flags are
8721 // propagated to the post-increment IV of this loop with a trip count of 2 -
8722 //
8723 // unsigned char i;
8724 // for(i=127; i<128; i+=129)
8725 // A[i] = i;
8726 //
8727 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
8728 !loopHasNoSideEffects(L))
8729 return getCouldNotCompute();
8730
8731 } else if (!Stride->isOne() &&
8732 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8733 // Avoid proven overflow cases: this will ensure that the backedge taken
8734 // count will not generate any unsigned overflow. Relaxed no-overflow
8735 // conditions exploit NoWrapFlags, allowing to optimize in presence of
8736 // undefined behaviors like the case of C language.
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008737 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008738
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008739 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8740 : ICmpInst::ICMP_ULT;
8741 const SCEV *Start = IV->getStart();
8742 const SCEV *End = RHS;
John Brawnecf79302016-10-18 10:10:53 +00008743 // If the backedge is taken at least once, then it will be taken
8744 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
8745 // is the LHS value of the less-than comparison the first time it is evaluated
8746 // and End is the RHS.
8747 const SCEV *BECountIfBackedgeTaken =
8748 computeBECount(getMinusSCEV(End, Start), Stride, false);
8749 // If the loop entry is guarded by the result of the backedge test of the
8750 // first loop iteration, then we know the backedge will be taken at least
8751 // once and so the backedge taken count is as above. If not then we use the
8752 // expression (max(End,Start)-Start)/Stride to describe the backedge count,
8753 // as if the backedge is taken at least once max(End,Start) is End and so the
8754 // result is as above, and if not max(End,Start) is Start so we get a backedge
8755 // count of zero.
8756 const SCEV *BECount;
8757 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
8758 BECount = BECountIfBackedgeTaken;
8759 else {
Sanjoy Dase8fd9562016-06-18 04:38:31 +00008760 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
John Brawnecf79302016-10-18 10:10:53 +00008761 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
8762 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008763
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00008764 const SCEV *MaxBECount;
John Brawn84b21832016-10-21 11:08:48 +00008765 bool MaxOrZero = false;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008766 if (isa<SCEVConstant>(BECount))
8767 MaxBECount = BECount;
John Brawn84b21832016-10-21 11:08:48 +00008768 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
John Brawnecf79302016-10-18 10:10:53 +00008769 // If we know exactly how many times the backedge will be taken if it's
8770 // taken at least once, then the backedge count will either be that or
8771 // zero.
8772 MaxBECount = BECountIfBackedgeTaken;
John Brawn84b21832016-10-21 11:08:48 +00008773 MaxOrZero = true;
8774 } else {
John Brawnecf79302016-10-18 10:10:53 +00008775 // Calculate the maximum backedge count based on the range of values
8776 // permitted by Start, End, and Stride.
8777 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8778 : getUnsignedRange(Start).getUnsignedMin();
8779
8780 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8781
8782 APInt StrideForMaxBECount;
8783
8784 if (PositiveStride)
8785 StrideForMaxBECount =
8786 IsSigned ? getSignedRange(Stride).getSignedMin()
8787 : getUnsignedRange(Stride).getUnsignedMin();
8788 else
8789 // Using a stride of 1 is safe when computing max backedge taken count for
8790 // a loop with unknown stride.
8791 StrideForMaxBECount = APInt(BitWidth, 1, IsSigned);
8792
8793 APInt Limit =
8794 IsSigned ? APInt::getSignedMaxValue(BitWidth) - (StrideForMaxBECount - 1)
8795 : APInt::getMaxValue(BitWidth) - (StrideForMaxBECount - 1);
8796
8797 // Although End can be a MAX expression we estimate MaxEnd considering only
8798 // the case End = RHS. This is safe because in the other case (End - Start)
8799 // is zero, leading to a zero maximum backedge taken count.
8800 APInt MaxEnd =
8801 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8802 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8803
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008804 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
David L Kreitzer8bbabee2016-09-16 14:38:13 +00008805 getConstant(StrideForMaxBECount), false);
John Brawnecf79302016-10-18 10:10:53 +00008806 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008807
8808 if (isa<SCEVCouldNotCompute>(MaxBECount))
8809 MaxBECount = BECount;
8810
John Brawn84b21832016-10-21 11:08:48 +00008811 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008812}
8813
8814ScalarEvolution::ExitLimit
Sanjoy Das108fcf22016-05-29 00:38:00 +00008815ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008816 const Loop *L, bool IsSigned,
Silviu Baranga6f444df2016-04-08 14:29:09 +00008817 bool ControlsExit, bool AllowPredicates) {
Sanjoy Dasf0022122016-09-28 17:14:58 +00008818 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008819 // We handle only IV > Invariant
8820 if (!isLoopInvariant(RHS, L))
8821 return getCouldNotCompute();
8822
8823 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Silviu Baranga6f444df2016-04-08 14:29:09 +00008824 if (!IV && AllowPredicates)
8825 // Try to make this an AddRec using runtime tests, in the first X
8826 // iterations of this loop, where X is the SCEV expression found by the
8827 // algorithm below.
Sanjoy Dasf0022122016-09-28 17:14:58 +00008828 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008829
8830 // Avoid weird loops
8831 if (!IV || IV->getLoop() != L || !IV->isAffine())
8832 return getCouldNotCompute();
8833
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008834 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008835 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8836
8837 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8838
8839 // Avoid negative or zero stride values
8840 if (!isKnownPositive(Stride))
8841 return getCouldNotCompute();
8842
8843 // Avoid proven overflow cases: this will ensure that the backedge taken count
8844 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008845 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008846 // behaviors like the case of C language.
8847 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8848 return getCouldNotCompute();
8849
8850 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8851 : ICmpInst::ICMP_UGT;
8852
8853 const SCEV *Start = IV->getStart();
8854 const SCEV *End = RHS;
Sanjoy Dase8fd9562016-06-18 04:38:31 +00008855 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
8856 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008857
8858 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8859
8860 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8861 : getUnsignedRange(Start).getUnsignedMax();
8862
8863 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8864 : getUnsignedRange(Stride).getUnsignedMin();
8865
8866 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8867 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8868 : APInt::getMinValue(BitWidth) + (MinStride - 1);
8869
8870 // Although End can be a MIN expression we estimate MinEnd considering only
8871 // the case End = RHS. This is safe because in the other case (Start - End)
8872 // is zero, leading to a zero maximum backedge taken count.
8873 APInt MinEnd =
8874 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8875 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8876
8877
8878 const SCEV *MaxBECount = getCouldNotCompute();
8879 if (isa<SCEVConstant>(BECount))
8880 MaxBECount = BECount;
8881 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00008882 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008883 getConstant(MinStride), false);
8884
8885 if (isa<SCEVCouldNotCompute>(MaxBECount))
8886 MaxBECount = BECount;
8887
John Brawn84b21832016-10-21 11:08:48 +00008888 return ExitLimit(BECount, MaxBECount, false, Predicates);
Chris Lattner587a75b2005-08-15 23:33:51 +00008889}
8890
Benjamin Kramerc321e532016-06-08 19:09:22 +00008891const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
Dan Gohmance973df2009-06-24 04:48:43 +00008892 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00008893 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00008894 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008895
8896 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00008897 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00008898 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00008899 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008900 Operands[0] = SE.getZero(SC->getType());
Andrew Trick8b55b732011-03-14 16:50:06 +00008901 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00008902 getNoWrapFlags(FlagNW));
Sanjoy Das63914592015-10-18 00:29:20 +00008903 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00008904 return ShiftedAddRec->getNumIterationsInRange(
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008905 Range.subtract(SC->getAPInt()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00008906 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00008907 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008908 }
8909
8910 // The only time we can solve this is when we have all constant indices.
8911 // Otherwise, we cannot determine the overflow conditions.
Sanjoy Dasff3b8b42015-12-01 07:49:23 +00008912 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00008913 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008914
8915 // Okay at this point we know that all elements of the chrec are constants and
8916 // that the start element is zero.
8917
8918 // First check to see if the range contains zero. If not, the first
8919 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00008920 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00008921 if (!Range.contains(APInt(BitWidth, 0)))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008922 return SE.getZero(getType());
Misha Brukman01808ca2005-04-21 21:13:18 +00008923
Chris Lattnerd934c702004-04-02 20:23:17 +00008924 if (isAffine()) {
8925 // If this is an affine expression then we have this situation:
8926 // Solve {0,+,A} in Range === Ax in Range
8927
Nick Lewycky52460262007-07-16 02:08:00 +00008928 // We know that zero is in the range. If A is positive then we know that
8929 // the upper value of the range must be the first possible exit value.
8930 // If A is negative then the lower of the range is the last possible loop
8931 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00008932 APInt One(BitWidth,1);
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008933 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
Nick Lewycky52460262007-07-16 02:08:00 +00008934 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00008935
Nick Lewycky52460262007-07-16 02:08:00 +00008936 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00008937 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00008938 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00008939
8940 // Evaluate at the exit value. If we really did fall out of the valid
8941 // range, then we computed our trip count, otherwise wrap around or other
8942 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00008943 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008944 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00008945 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008946
8947 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00008948 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00008949 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00008950 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00008951 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00008952 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00008953 } else if (isQuadratic()) {
8954 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8955 // quadratic equation to solve it. To do this, we must frame our problem in
8956 // terms of figuring out when zero is crossed, instead of when
8957 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00008958 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00008959 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Sanjoy Das54e6a212016-10-02 00:09:45 +00008960 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00008961
8962 // Next, solve the constructed addrec
Sanjoy Das0e392d52016-06-15 04:37:50 +00008963 if (auto Roots =
8964 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) {
Sanjoy Das5a3d8932016-06-15 04:37:47 +00008965 const SCEVConstant *R1 = Roots->first;
8966 const SCEVConstant *R2 = Roots->second;
Chris Lattnerd934c702004-04-02 20:23:17 +00008967 // Pick the smallest positive root value.
Sanjoy Das01947432015-11-22 21:20:13 +00008968 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8969 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00008970 if (!CB->getZExtValue())
Sanjoy Das0e392d52016-06-15 04:37:50 +00008971 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00008972
Chris Lattnerd934c702004-04-02 20:23:17 +00008973 // Make sure the root is not off by one. The returned iteration should
8974 // not be in the range, but the previous one should be. When solving
8975 // for "X*X < 5", for example, we should not return a root of 2.
Sanjoy Das0e392d52016-06-15 04:37:50 +00008976 ConstantInt *R1Val =
8977 EvaluateConstantChrecAtConstant(this, R1->getValue(), SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008978 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008979 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00008980 ConstantInt *NextVal =
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008981 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
Misha Brukman01808ca2005-04-21 21:13:18 +00008982
Dan Gohmana37eaf22007-10-22 18:31:58 +00008983 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008984 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00008985 return SE.getConstant(NextVal);
Sanjoy Das0e392d52016-06-15 04:37:50 +00008986 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008987 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008988
Chris Lattnerd934c702004-04-02 20:23:17 +00008989 // If R1 was not in the range, then it is a good return value. Make
8990 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00008991 ConstantInt *NextVal =
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008992 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00008993 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008994 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00008995 return R1;
Sanjoy Das0e392d52016-06-15 04:37:50 +00008996 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008997 }
8998 }
8999 }
9000
Dan Gohman31efa302009-04-18 17:58:19 +00009001 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00009002}
9003
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00009004// Return true when S contains at least an undef value.
Sanjoy Das6b46a0d2016-11-09 18:22:43 +00009005static inline bool containsUndefs(const SCEV *S) {
9006 return SCEVExprContains(S, [](const SCEV *S) {
9007 if (const auto *SU = dyn_cast<SCEVUnknown>(S))
9008 return isa<UndefValue>(SU->getValue());
9009 else if (const auto *SC = dyn_cast<SCEVConstant>(S))
9010 return isa<UndefValue>(SC->getValue());
9011 return false;
9012 });
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00009013}
9014
9015namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00009016// Collect all steps of SCEV expressions.
9017struct SCEVCollectStrides {
9018 ScalarEvolution &SE;
9019 SmallVectorImpl<const SCEV *> &Strides;
9020
9021 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
9022 : SE(SE), Strides(S) {}
9023
9024 bool follow(const SCEV *S) {
9025 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
9026 Strides.push_back(AR->getStepRecurrence(SE));
9027 return true;
9028 }
9029 bool isDone() const { return false; }
9030};
9031
9032// Collect all SCEVUnknown and SCEVMulExpr expressions.
9033struct SCEVCollectTerms {
9034 SmallVectorImpl<const SCEV *> &Terms;
9035
9036 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
9037 : Terms(T) {}
9038
9039 bool follow(const SCEV *S) {
Tobias Grosser2bbec0e2016-10-17 11:56:26 +00009040 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
9041 isa<SCEVSignExtendExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00009042 if (!containsUndefs(S))
9043 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00009044
9045 // Stop recursion: once we collected a term, do not walk its operands.
9046 return false;
9047 }
9048
9049 // Keep looking.
9050 return true;
9051 }
9052 bool isDone() const { return false; }
9053};
Tobias Grosser374bce02015-10-12 08:02:00 +00009054
9055// Check if a SCEV contains an AddRecExpr.
9056struct SCEVHasAddRec {
9057 bool &ContainsAddRec;
9058
9059 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
9060 ContainsAddRec = false;
9061 }
9062
9063 bool follow(const SCEV *S) {
9064 if (isa<SCEVAddRecExpr>(S)) {
9065 ContainsAddRec = true;
9066
9067 // Stop recursion: once we collected a term, do not walk its operands.
9068 return false;
9069 }
9070
9071 // Keep looking.
9072 return true;
9073 }
9074 bool isDone() const { return false; }
9075};
9076
9077// Find factors that are multiplied with an expression that (possibly as a
9078// subexpression) contains an AddRecExpr. In the expression:
9079//
9080// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
9081//
9082// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
9083// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
9084// parameters as they form a product with an induction variable.
9085//
9086// This collector expects all array size parameters to be in the same MulExpr.
9087// It might be necessary to later add support for collecting parameters that are
9088// spread over different nested MulExpr.
9089struct SCEVCollectAddRecMultiplies {
9090 SmallVectorImpl<const SCEV *> &Terms;
9091 ScalarEvolution &SE;
9092
9093 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
9094 : Terms(T), SE(SE) {}
9095
9096 bool follow(const SCEV *S) {
9097 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
9098 bool HasAddRec = false;
9099 SmallVector<const SCEV *, 0> Operands;
9100 for (auto Op : Mul->operands()) {
9101 if (isa<SCEVUnknown>(Op)) {
9102 Operands.push_back(Op);
9103 } else {
9104 bool ContainsAddRec;
9105 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
9106 visitAll(Op, ContiansAddRec);
9107 HasAddRec |= ContainsAddRec;
9108 }
9109 }
9110 if (Operands.size() == 0)
9111 return true;
9112
9113 if (!HasAddRec)
9114 return false;
9115
9116 Terms.push_back(SE.getMulExpr(Operands));
9117 // Stop recursion: once we collected a term, do not walk its operands.
9118 return false;
9119 }
9120
9121 // Keep looking.
9122 return true;
9123 }
9124 bool isDone() const { return false; }
9125};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00009126}
Sebastian Pop448712b2014-05-07 18:01:20 +00009127
Tobias Grosser374bce02015-10-12 08:02:00 +00009128/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
9129/// two places:
9130/// 1) The strides of AddRec expressions.
9131/// 2) Unknowns that are multiplied with AddRec expressions.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009132void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
9133 SmallVectorImpl<const SCEV *> &Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009134 SmallVector<const SCEV *, 4> Strides;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009135 SCEVCollectStrides StrideCollector(*this, Strides);
9136 visitAll(Expr, StrideCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00009137
9138 DEBUG({
9139 dbgs() << "Strides:\n";
9140 for (const SCEV *S : Strides)
9141 dbgs() << *S << "\n";
9142 });
9143
9144 for (const SCEV *S : Strides) {
9145 SCEVCollectTerms TermCollector(Terms);
9146 visitAll(S, TermCollector);
9147 }
9148
9149 DEBUG({
9150 dbgs() << "Terms:\n";
9151 for (const SCEV *T : Terms)
9152 dbgs() << *T << "\n";
9153 });
Tobias Grosser374bce02015-10-12 08:02:00 +00009154
9155 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
9156 visitAll(Expr, MulCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00009157}
9158
Sebastian Popb1a548f2014-05-12 19:01:53 +00009159static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00009160 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00009161 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00009162 int Last = Terms.size() - 1;
9163 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00009164
Sebastian Pop448712b2014-05-07 18:01:20 +00009165 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00009166 if (Last == 0) {
9167 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009168 SmallVector<const SCEV *, 2> Qs;
9169 for (const SCEV *Op : M->operands())
9170 if (!isa<SCEVConstant>(Op))
9171 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00009172
Sebastian Pope30bd352014-05-27 22:41:56 +00009173 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00009174 }
9175
Sebastian Pope30bd352014-05-27 22:41:56 +00009176 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00009177 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00009178 }
9179
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00009180 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009181 // Normalize the terms before the next call to findArrayDimensionsRec.
9182 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00009183 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00009184
9185 // Bail out when GCD does not evenly divide one of the terms.
9186 if (!R->isZero())
9187 return false;
9188
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00009189 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00009190 }
9191
Tobias Grosser3080cf12014-05-08 07:55:34 +00009192 // Remove all SCEVConstants.
David Majnemerc7004902016-08-12 04:32:37 +00009193 Terms.erase(
9194 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
9195 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00009196
Sebastian Pop448712b2014-05-07 18:01:20 +00009197 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00009198 if (!findArrayDimensionsRec(SE, Terms, Sizes))
9199 return false;
9200
Sebastian Pope30bd352014-05-27 22:41:56 +00009201 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00009202 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00009203}
Sebastian Popc62c6792013-11-12 22:47:20 +00009204
Sebastian Pop448712b2014-05-07 18:01:20 +00009205
9206// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
Sanjoy Das6b46a0d2016-11-09 18:22:43 +00009207static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009208 for (const SCEV *T : Terms)
Sanjoy Das0ae390a2016-11-10 06:33:54 +00009209 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
Sebastian Pop448712b2014-05-07 18:01:20 +00009210 return true;
9211 return false;
9212}
9213
9214// Return the number of product terms in S.
9215static inline int numberOfTerms(const SCEV *S) {
9216 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
9217 return Expr->getNumOperands();
9218 return 1;
9219}
9220
Sebastian Popa6e58602014-05-27 22:41:45 +00009221static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
9222 if (isa<SCEVConstant>(T))
9223 return nullptr;
9224
9225 if (isa<SCEVUnknown>(T))
9226 return T;
9227
9228 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
9229 SmallVector<const SCEV *, 2> Factors;
9230 for (const SCEV *Op : M->operands())
9231 if (!isa<SCEVConstant>(Op))
9232 Factors.push_back(Op);
9233
9234 return SE.getMulExpr(Factors);
9235 }
9236
9237 return T;
9238}
9239
9240/// Return the size of an element read or written by Inst.
9241const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
9242 Type *Ty;
9243 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
9244 Ty = Store->getValueOperand()->getType();
9245 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00009246 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00009247 else
9248 return nullptr;
9249
9250 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
9251 return getSizeOfExpr(ETy, Ty);
9252}
9253
Sebastian Popa6e58602014-05-27 22:41:45 +00009254void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
9255 SmallVectorImpl<const SCEV *> &Sizes,
9256 const SCEV *ElementSize) const {
Sebastian Pop53524082014-05-29 19:44:05 +00009257 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00009258 return;
9259
9260 // Early return when Terms do not contain parameters: we do not delinearize
9261 // non parametric SCEVs.
9262 if (!containsParameters(Terms))
9263 return;
9264
9265 DEBUG({
9266 dbgs() << "Terms:\n";
9267 for (const SCEV *T : Terms)
9268 dbgs() << *T << "\n";
9269 });
9270
9271 // Remove duplicates.
9272 std::sort(Terms.begin(), Terms.end());
9273 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
9274
9275 // Put larger terms first.
9276 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
9277 return numberOfTerms(LHS) > numberOfTerms(RHS);
9278 });
9279
Sebastian Popa6e58602014-05-27 22:41:45 +00009280 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9281
Tobias Grosser374bce02015-10-12 08:02:00 +00009282 // Try to divide all terms by the element size. If term is not divisible by
9283 // element size, proceed with the original term.
Sebastian Popa6e58602014-05-27 22:41:45 +00009284 for (const SCEV *&Term : Terms) {
9285 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00009286 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Tobias Grosser374bce02015-10-12 08:02:00 +00009287 if (!Q->isZero())
9288 Term = Q;
Sebastian Popa6e58602014-05-27 22:41:45 +00009289 }
9290
9291 SmallVector<const SCEV *, 4> NewTerms;
9292
9293 // Remove constant factors.
9294 for (const SCEV *T : Terms)
9295 if (const SCEV *NewT = removeConstantFactors(SE, T))
9296 NewTerms.push_back(NewT);
9297
Sebastian Pop448712b2014-05-07 18:01:20 +00009298 DEBUG({
9299 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00009300 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00009301 dbgs() << *T << "\n";
9302 });
9303
Sebastian Popa6e58602014-05-27 22:41:45 +00009304 if (NewTerms.empty() ||
9305 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00009306 Sizes.clear();
9307 return;
9308 }
Sebastian Pop448712b2014-05-07 18:01:20 +00009309
Sebastian Popa6e58602014-05-27 22:41:45 +00009310 // The last element to be pushed into Sizes is the size of an element.
9311 Sizes.push_back(ElementSize);
9312
Sebastian Pop448712b2014-05-07 18:01:20 +00009313 DEBUG({
9314 dbgs() << "Sizes:\n";
9315 for (const SCEV *S : Sizes)
9316 dbgs() << *S << "\n";
9317 });
9318}
9319
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009320void ScalarEvolution::computeAccessFunctions(
9321 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
9322 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009323
Sebastian Popb1a548f2014-05-12 19:01:53 +00009324 // Early exit in case this SCEV is not an affine multivariate function.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009325 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00009326 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009327
Sanjoy Das1195dbe2015-10-08 03:45:58 +00009328 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009329 if (!AR->isAffine())
9330 return;
9331
9332 const SCEV *Res = Expr;
Sebastian Pop448712b2014-05-07 18:01:20 +00009333 int Last = Sizes.size() - 1;
9334 for (int i = Last; i >= 0; i--) {
9335 const SCEV *Q, *R;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009336 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00009337
9338 DEBUG({
9339 dbgs() << "Res: " << *Res << "\n";
9340 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
9341 dbgs() << "Res divided by Sizes[i]:\n";
9342 dbgs() << "Quotient: " << *Q << "\n";
9343 dbgs() << "Remainder: " << *R << "\n";
9344 });
9345
9346 Res = Q;
9347
Sebastian Popa6e58602014-05-27 22:41:45 +00009348 // Do not record the last subscript corresponding to the size of elements in
9349 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00009350 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00009351
9352 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00009353 if (isa<SCEVAddRecExpr>(R)) {
9354 Subscripts.clear();
9355 Sizes.clear();
9356 return;
9357 }
Sebastian Popa6e58602014-05-27 22:41:45 +00009358
Sebastian Pop448712b2014-05-07 18:01:20 +00009359 continue;
9360 }
9361
9362 // Record the access function for the current subscript.
9363 Subscripts.push_back(R);
9364 }
9365
9366 // Also push in last position the remainder of the last division: it will be
9367 // the access function of the innermost dimension.
9368 Subscripts.push_back(Res);
9369
9370 std::reverse(Subscripts.begin(), Subscripts.end());
9371
9372 DEBUG({
9373 dbgs() << "Subscripts:\n";
9374 for (const SCEV *S : Subscripts)
9375 dbgs() << *S << "\n";
9376 });
Sebastian Pop448712b2014-05-07 18:01:20 +00009377}
9378
Sebastian Popc62c6792013-11-12 22:47:20 +00009379/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
9380/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00009381/// is the offset start of the array. The SCEV->delinearize algorithm computes
9382/// the multiples of SCEV coefficients: that is a pattern matching of sub
9383/// expressions in the stride and base of a SCEV corresponding to the
9384/// computation of a GCD (greatest common divisor) of base and stride. When
9385/// SCEV->delinearize fails, it returns the SCEV unchanged.
9386///
9387/// For example: when analyzing the memory access A[i][j][k] in this loop nest
9388///
9389/// void foo(long n, long m, long o, double A[n][m][o]) {
9390///
9391/// for (long i = 0; i < n; i++)
9392/// for (long j = 0; j < m; j++)
9393/// for (long k = 0; k < o; k++)
9394/// A[i][j][k] = 1.0;
9395/// }
9396///
9397/// the delinearization input is the following AddRec SCEV:
9398///
9399/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
9400///
9401/// From this SCEV, we are able to say that the base offset of the access is %A
9402/// because it appears as an offset that does not divide any of the strides in
9403/// the loops:
9404///
9405/// CHECK: Base offset: %A
9406///
9407/// and then SCEV->delinearize determines the size of some of the dimensions of
9408/// the array as these are the multiples by which the strides are happening:
9409///
9410/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
9411///
9412/// Note that the outermost dimension remains of UnknownSize because there are
9413/// no strides that would help identifying the size of the last dimension: when
9414/// the array has been statically allocated, one could compute the size of that
9415/// dimension by dividing the overall size of the array by the size of the known
9416/// dimensions: %m * %o * 8.
9417///
9418/// Finally delinearize provides the access functions for the array reference
9419/// that does correspond to A[i][j][k] of the above C testcase:
9420///
9421/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9422///
9423/// The testcases are checking the output of a function pass:
9424/// DelinearizationPass that walks through all loads and stores of a function
9425/// asking for the SCEV of the memory access with respect to all enclosing
9426/// loops, calling SCEV->delinearize on that and printing the results.
9427
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009428void ScalarEvolution::delinearize(const SCEV *Expr,
Sebastian Pop28e6b972014-05-27 22:41:51 +00009429 SmallVectorImpl<const SCEV *> &Subscripts,
9430 SmallVectorImpl<const SCEV *> &Sizes,
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009431 const SCEV *ElementSize) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009432 // First step: collect parametric terms.
9433 SmallVector<const SCEV *, 4> Terms;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009434 collectParametricTerms(Expr, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00009435
Sebastian Popb1a548f2014-05-12 19:01:53 +00009436 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00009437 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009438
Sebastian Pop448712b2014-05-07 18:01:20 +00009439 // Second step: find subscript sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009440 findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00009441
Sebastian Popb1a548f2014-05-12 19:01:53 +00009442 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00009443 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009444
Sebastian Pop448712b2014-05-07 18:01:20 +00009445 // Third step: compute the access functions for each subscript.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009446 computeAccessFunctions(Expr, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00009447
Sebastian Pop28e6b972014-05-27 22:41:51 +00009448 if (Subscripts.empty())
9449 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009450
Sebastian Pop448712b2014-05-07 18:01:20 +00009451 DEBUG({
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009452 dbgs() << "succeeded to delinearize " << *Expr << "\n";
Sebastian Pop448712b2014-05-07 18:01:20 +00009453 dbgs() << "ArrayDecl[UnknownSize]";
9454 for (const SCEV *S : Sizes)
9455 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00009456
Sebastian Pop444621a2014-05-09 22:45:02 +00009457 dbgs() << "\nArrayRef";
9458 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00009459 dbgs() << "[" << *S << "]";
9460 dbgs() << "\n";
9461 });
Sebastian Popc62c6792013-11-12 22:47:20 +00009462}
Chris Lattnerd934c702004-04-02 20:23:17 +00009463
9464//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00009465// SCEVCallbackVH Class Implementation
9466//===----------------------------------------------------------------------===//
9467
Dan Gohmand33a0902009-05-19 19:22:47 +00009468void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00009469 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00009470 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9471 SE->ConstantEvolutionLoopExitValue.erase(PN);
Wei Mia49559b2016-02-04 01:27:38 +00009472 SE->eraseValueFromMap(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00009473 // this now dangles!
9474}
9475
Dan Gohman7a066722010-07-28 01:09:07 +00009476void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00009477 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00009478
Dan Gohman48f82222009-05-04 22:30:44 +00009479 // Forget all the expressions associated with users of the old value,
9480 // so that future queries will recompute the expressions using the new
9481 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00009482 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00009483 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00009484 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00009485 while (!Worklist.empty()) {
9486 User *U = Worklist.pop_back_val();
9487 // Deleting the Old value will cause this to dangle. Postpone
9488 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009489 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00009490 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00009491 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00009492 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00009493 if (PHINode *PN = dyn_cast<PHINode>(U))
9494 SE->ConstantEvolutionLoopExitValue.erase(PN);
Wei Mia49559b2016-02-04 01:27:38 +00009495 SE->eraseValueFromMap(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00009496 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00009497 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009498 // Delete the Old value.
9499 if (PHINode *PN = dyn_cast<PHINode>(Old))
9500 SE->ConstantEvolutionLoopExitValue.erase(PN);
Wei Mia49559b2016-02-04 01:27:38 +00009501 SE->eraseValueFromMap(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009502 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00009503}
9504
Dan Gohmand33a0902009-05-19 19:22:47 +00009505ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00009506 : CallbackVH(V), SE(se) {}
9507
9508//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00009509// ScalarEvolution Class Implementation
9510//===----------------------------------------------------------------------===//
9511
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009512ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00009513 AssumptionCache &AC, DominatorTree &DT,
9514 LoopInfo &LI)
9515 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009516 CouldNotCompute(new SCEVCouldNotCompute()),
Sanjoy Das7d910f22015-10-02 18:50:30 +00009517 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9518 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
Sanjoy Das2512d0c2016-05-10 00:31:49 +00009519 FirstUnknown(nullptr) {
9520
9521 // To use guards for proving predicates, we need to scan every instruction in
9522 // relevant basic blocks, and not just terminators. Doing this is a waste of
9523 // time if the IR does not actually contain any calls to
9524 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
9525 //
9526 // This pessimizes the case where a pass that preserves ScalarEvolution wants
9527 // to _add_ guards to the module when there weren't any before, and wants
9528 // ScalarEvolution to optimize based on those guards. For now we prefer to be
9529 // efficient in lieu of being smart in that rather obscure case.
9530
9531 auto *GuardDecl = F.getParent()->getFunction(
9532 Intrinsic::getName(Intrinsic::experimental_guard));
9533 HasGuards = GuardDecl && !GuardDecl->use_empty();
9534}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009535
9536ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
Daniel Jasperaec2fa32016-12-19 08:22:17 +00009537 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
Sanjoy Das2512d0c2016-05-10 00:31:49 +00009538 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009539 ValueExprMap(std::move(Arg.ValueExprMap)),
Sanjoy Dasdb933752016-09-27 18:01:38 +00009540 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
Sanjoy Das7d910f22015-10-02 18:50:30 +00009541 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009542 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
Silviu Baranga6f444df2016-04-08 14:29:09 +00009543 PredicatedBackedgeTakenCounts(
9544 std::move(Arg.PredicatedBackedgeTakenCounts)),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009545 ConstantEvolutionLoopExitValue(
9546 std::move(Arg.ConstantEvolutionLoopExitValue)),
9547 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9548 LoopDispositions(std::move(Arg.LoopDispositions)),
Sanjoy Das5cb11b62016-09-26 02:44:10 +00009549 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
Chandler Carruth68abda52016-09-26 04:49:58 +00009550 BlockDispositions(std::move(Arg.BlockDispositions)),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009551 UnsignedRanges(std::move(Arg.UnsignedRanges)),
9552 SignedRanges(std::move(Arg.SignedRanges)),
9553 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
Silviu Barangae3c05342015-11-02 14:41:02 +00009554 UniquePreds(std::move(Arg.UniquePreds)),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009555 SCEVAllocator(std::move(Arg.SCEVAllocator)),
9556 FirstUnknown(Arg.FirstUnknown) {
9557 Arg.FirstUnknown = nullptr;
Dan Gohmanc8e23622009-04-21 23:15:49 +00009558}
9559
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009560ScalarEvolution::~ScalarEvolution() {
Dan Gohman7cac9572010-08-02 23:49:30 +00009561 // Iterate through all the SCEVUnknown instances and call their
9562 // destructors, so that they release their references to their values.
Naomi Musgravef90c1be2015-09-16 23:46:40 +00009563 for (SCEVUnknown *U = FirstUnknown; U;) {
9564 SCEVUnknown *Tmp = U;
9565 U = U->Next;
9566 Tmp->~SCEVUnknown();
9567 }
Craig Topper9f008862014-04-15 04:59:12 +00009568 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00009569
Wei Mia49559b2016-02-04 01:27:38 +00009570 ExprValueMap.clear();
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009571 ValueExprMap.clear();
Wei Mia49559b2016-02-04 01:27:38 +00009572 HasRecMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00009573
9574 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9575 // that a loop had multiple computable exits.
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009576 for (auto &BTCI : BackedgeTakenCounts)
9577 BTCI.second.clear();
Silviu Baranga6f444df2016-04-08 14:29:09 +00009578 for (auto &BTCI : PredicatedBackedgeTakenCounts)
9579 BTCI.second.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00009580
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00009581 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00009582 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
Sanjoy Das7d910f22015-10-02 18:50:30 +00009583 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
Dan Gohman0a40ad92009-04-16 03:18:22 +00009584}
9585
Dan Gohmanc8e23622009-04-21 23:15:49 +00009586bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00009587 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00009588}
9589
Dan Gohmanc8e23622009-04-21 23:15:49 +00009590static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00009591 const Loop *L) {
9592 // Print all inner loops first
Benjamin Krameraa209152016-06-26 17:27:42 +00009593 for (Loop *I : *L)
9594 PrintLoopInfo(OS, SE, I);
Misha Brukman01808ca2005-04-21 21:13:18 +00009595
Dan Gohmanbc694912010-01-09 18:17:45 +00009596 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00009597 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009598 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00009599
Dan Gohmancb0efec2009-12-18 01:14:11 +00009600 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00009601 L->getExitBlocks(ExitBlocks);
9602 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00009603 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00009604
Dan Gohman0bddac12009-02-24 18:55:53 +00009605 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9606 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00009607 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00009608 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00009609 }
9610
Dan Gohmanbc694912010-01-09 18:17:45 +00009611 OS << "\n"
9612 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00009613 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009614 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00009615
9616 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9617 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
John Brawn84b21832016-10-21 11:08:48 +00009618 if (SE->isBackedgeTakenCountMaxOrZero(L))
9619 OS << ", actual taken count either this or zero.";
Dan Gohman69942932009-06-24 00:33:16 +00009620 } else {
9621 OS << "Unpredictable max backedge-taken count. ";
9622 }
9623
Silviu Baranga6f444df2016-04-08 14:29:09 +00009624 OS << "\n"
9625 "Loop ";
9626 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9627 OS << ": ";
9628
9629 SCEVUnionPredicate Pred;
9630 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
9631 if (!isa<SCEVCouldNotCompute>(PBT)) {
9632 OS << "Predicated backedge-taken count is " << *PBT << "\n";
9633 OS << " Predicates:\n";
9634 Pred.print(OS, 4);
9635 } else {
9636 OS << "Unpredictable predicated backedge-taken count. ";
9637 }
Dan Gohman69942932009-06-24 00:33:16 +00009638 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00009639}
9640
Sanjoy Dasf2f00fb12016-05-01 04:51:05 +00009641static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
9642 switch (LD) {
9643 case ScalarEvolution::LoopVariant:
9644 return "Variant";
9645 case ScalarEvolution::LoopInvariant:
9646 return "Invariant";
9647 case ScalarEvolution::LoopComputable:
9648 return "Computable";
9649 }
Simon Pilgrim33ae13d2016-05-01 15:52:31 +00009650 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
Sanjoy Dasf2f00fb12016-05-01 04:51:05 +00009651}
9652
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009653void ScalarEvolution::print(raw_ostream &OS) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00009654 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00009655 // out SCEV values of all instructions that are interesting. Doing
9656 // this potentially causes it to create new SCEV objects though,
9657 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00009658 // observable from outside the class though, so casting away the
9659 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00009660 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00009661
Dan Gohmanbc694912010-01-09 18:17:45 +00009662 OS << "Classifying expressions for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009663 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009664 OS << "\n";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009665 for (Instruction &I : instructions(F))
9666 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9667 OS << I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00009668 OS << " --> ";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009669 const SCEV *SV = SE.getSCEV(&I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009670 SV->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009671 if (!isa<SCEVCouldNotCompute>(SV)) {
9672 OS << " U: ";
9673 SE.getUnsignedRange(SV).print(OS);
9674 OS << " S: ";
9675 SE.getSignedRange(SV).print(OS);
9676 }
Misha Brukman01808ca2005-04-21 21:13:18 +00009677
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009678 const Loop *L = LI.getLoopFor(I.getParent());
Dan Gohmanb9063a82009-06-19 17:49:54 +00009679
Dan Gohmanaf752342009-07-07 17:06:11 +00009680 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00009681 if (AtUse != SV) {
9682 OS << " --> ";
9683 AtUse->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009684 if (!isa<SCEVCouldNotCompute>(AtUse)) {
9685 OS << " U: ";
9686 SE.getUnsignedRange(AtUse).print(OS);
9687 OS << " S: ";
9688 SE.getSignedRange(AtUse).print(OS);
9689 }
Dan Gohmanb9063a82009-06-19 17:49:54 +00009690 }
9691
9692 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00009693 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00009694 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00009695 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00009696 OS << "<<Unknown>>";
9697 } else {
9698 OS << *ExitValue;
9699 }
Sanjoy Dasf2f00fb12016-05-01 04:51:05 +00009700
9701 bool First = true;
9702 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
9703 if (First) {
Sanjoy Das013a4ac2016-05-03 17:49:57 +00009704 OS << "\t\t" "LoopDispositions: { ";
Sanjoy Dasf2f00fb12016-05-01 04:51:05 +00009705 First = false;
9706 } else {
9707 OS << ", ";
9708 }
9709
Sanjoy Das013a4ac2016-05-03 17:49:57 +00009710 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9711 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
Sanjoy Dasf2f00fb12016-05-01 04:51:05 +00009712 }
9713
Sanjoy Das013a4ac2016-05-03 17:49:57 +00009714 for (auto *InnerL : depth_first(L)) {
9715 if (InnerL == L)
9716 continue;
9717 if (First) {
9718 OS << "\t\t" "LoopDispositions: { ";
9719 First = false;
9720 } else {
9721 OS << ", ";
9722 }
9723
9724 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9725 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
9726 }
9727
9728 OS << " }";
Chris Lattnerd934c702004-04-02 20:23:17 +00009729 }
9730
Chris Lattnerd934c702004-04-02 20:23:17 +00009731 OS << "\n";
9732 }
9733
Dan Gohmanbc694912010-01-09 18:17:45 +00009734 OS << "Determining loop execution counts for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009735 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009736 OS << "\n";
Benjamin Krameraa209152016-06-26 17:27:42 +00009737 for (Loop *I : LI)
9738 PrintLoopInfo(OS, &SE, I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009739}
Dan Gohmane20f8242009-04-21 00:47:46 +00009740
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009741ScalarEvolution::LoopDisposition
9742ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009743 auto &Values = LoopDispositions[S];
9744 for (auto &V : Values) {
9745 if (V.getPointer() == L)
9746 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009747 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009748 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009749 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009750 auto &Values2 = LoopDispositions[S];
9751 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9752 if (V.getPointer() == L) {
9753 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009754 break;
9755 }
9756 }
9757 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009758}
9759
9760ScalarEvolution::LoopDisposition
9761ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009762 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009763 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009764 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009765 case scTruncate:
9766 case scZeroExtend:
9767 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009768 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00009769 case scAddRecExpr: {
9770 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9771
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009772 // If L is the addrec's loop, it's computable.
9773 if (AR->getLoop() == L)
9774 return LoopComputable;
9775
Dan Gohmanafd6db92010-11-17 21:23:15 +00009776 // Add recurrences are never invariant in the function-body (null loop).
9777 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009778 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009779
9780 // This recurrence is variant w.r.t. L if L contains AR's loop.
9781 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009782 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009783
9784 // This recurrence is invariant w.r.t. L if AR's loop contains L.
9785 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009786 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009787
9788 // This recurrence is variant w.r.t. L if any of its operands
9789 // are variant.
Sanjoy Das01947432015-11-22 21:20:13 +00009790 for (auto *Op : AR->operands())
9791 if (!isLoopInvariant(Op, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009792 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009793
9794 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009795 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009796 }
9797 case scAddExpr:
9798 case scMulExpr:
9799 case scUMaxExpr:
9800 case scSMaxExpr: {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009801 bool HasVarying = false;
Sanjoy Das01947432015-11-22 21:20:13 +00009802 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9803 LoopDisposition D = getLoopDisposition(Op, L);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009804 if (D == LoopVariant)
9805 return LoopVariant;
9806 if (D == LoopComputable)
9807 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009808 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009809 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009810 }
9811 case scUDivExpr: {
9812 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009813 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9814 if (LD == LoopVariant)
9815 return LoopVariant;
9816 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9817 if (RD == LoopVariant)
9818 return LoopVariant;
9819 return (LD == LoopInvariant && RD == LoopInvariant) ?
9820 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009821 }
9822 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009823 // All non-instruction values are loop invariant. All instructions are loop
9824 // invariant if they are not contained in the specified loop.
9825 // Instructions are never considered invariant in the function body
9826 // (null loop) because they are defined within the "loop".
Sanjoy Das01947432015-11-22 21:20:13 +00009827 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009828 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9829 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009830 case scCouldNotCompute:
9831 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00009832 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009833 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009834}
9835
9836bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9837 return getLoopDisposition(S, L) == LoopInvariant;
9838}
9839
9840bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9841 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009842}
Dan Gohman20d9ce22010-11-17 21:41:58 +00009843
Dan Gohman8ea83d82010-11-18 00:34:22 +00009844ScalarEvolution::BlockDisposition
9845ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009846 auto &Values = BlockDispositions[S];
9847 for (auto &V : Values) {
9848 if (V.getPointer() == BB)
9849 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009850 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009851 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009852 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009853 auto &Values2 = BlockDispositions[S];
9854 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9855 if (V.getPointer() == BB) {
9856 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009857 break;
9858 }
9859 }
9860 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009861}
9862
Dan Gohman8ea83d82010-11-18 00:34:22 +00009863ScalarEvolution::BlockDisposition
9864ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009865 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00009866 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009867 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009868 case scTruncate:
9869 case scZeroExtend:
9870 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009871 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00009872 case scAddRecExpr: {
9873 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00009874 // to test for proper dominance too, because the instruction which
9875 // produces the addrec's value is a PHI, and a PHI effectively properly
9876 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00009877 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009878 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009879 return DoesNotDominateBlock;
Justin Bognercd1d5aa2016-08-17 20:30:52 +00009880
9881 // Fall through into SCEVNAryExpr handling.
9882 LLVM_FALLTHROUGH;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009883 }
Dan Gohman20d9ce22010-11-17 21:41:58 +00009884 case scAddExpr:
9885 case scMulExpr:
9886 case scUMaxExpr:
9887 case scSMaxExpr: {
9888 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009889 bool Proper = true;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00009890 for (const SCEV *NAryOp : NAry->operands()) {
9891 BlockDisposition D = getBlockDisposition(NAryOp, BB);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009892 if (D == DoesNotDominateBlock)
9893 return DoesNotDominateBlock;
9894 if (D == DominatesBlock)
9895 Proper = false;
9896 }
9897 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009898 }
9899 case scUDivExpr: {
9900 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009901 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9902 BlockDisposition LD = getBlockDisposition(LHS, BB);
9903 if (LD == DoesNotDominateBlock)
9904 return DoesNotDominateBlock;
9905 BlockDisposition RD = getBlockDisposition(RHS, BB);
9906 if (RD == DoesNotDominateBlock)
9907 return DoesNotDominateBlock;
9908 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9909 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009910 }
9911 case scUnknown:
9912 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00009913 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9914 if (I->getParent() == BB)
9915 return DominatesBlock;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009916 if (DT.properlyDominates(I->getParent(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009917 return ProperlyDominatesBlock;
9918 return DoesNotDominateBlock;
9919 }
9920 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009921 case scCouldNotCompute:
9922 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00009923 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009924 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00009925}
9926
9927bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9928 return getBlockDisposition(S, BB) >= DominatesBlock;
9929}
9930
9931bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9932 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009933}
Dan Gohman534749b2010-11-17 22:27:42 +00009934
9935bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Sanjoy Das6b46a0d2016-11-09 18:22:43 +00009936 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
Dan Gohman534749b2010-11-17 22:27:42 +00009937}
Dan Gohman7e6b3932010-11-17 23:28:48 +00009938
9939void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9940 ValuesAtScopes.erase(S);
9941 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009942 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00009943 UnsignedRanges.erase(S);
9944 SignedRanges.erase(S);
Wei Mia49559b2016-02-04 01:27:38 +00009945 ExprValueMap.erase(S);
9946 HasRecMap.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00009947
Silviu Baranga6f444df2016-04-08 14:29:09 +00009948 auto RemoveSCEVFromBackedgeMap =
9949 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
9950 for (auto I = Map.begin(), E = Map.end(); I != E;) {
9951 BackedgeTakenInfo &BEInfo = I->second;
9952 if (BEInfo.hasOperand(S, this)) {
9953 BEInfo.clear();
9954 Map.erase(I++);
9955 } else
9956 ++I;
9957 }
9958 };
9959
9960 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
9961 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
Dan Gohman7e6b3932010-11-17 23:28:48 +00009962}
Benjamin Kramer214935e2012-10-26 17:31:32 +00009963
9964typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009965
Alp Tokercb402912014-01-24 17:20:08 +00009966/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009967static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9968 size_t Pos = 0;
9969 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9970 Str.replace(Pos, From.size(), To.data(), To.size());
9971 Pos += To.size();
9972 }
9973}
9974
Benjamin Kramer214935e2012-10-26 17:31:32 +00009975/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9976static void
9977getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
Sanjoy Das2fbfb252015-12-23 17:48:14 +00009978 std::string &S = Map[L];
9979 if (S.empty()) {
9980 raw_string_ostream OS(S);
9981 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer214935e2012-10-26 17:31:32 +00009982
Sanjoy Das2fbfb252015-12-23 17:48:14 +00009983 // false and 0 are semantically equivalent. This can happen in dead loops.
9984 replaceSubString(OS.str(), "false", "0");
9985 // Remove wrap flags, their use in SCEV is highly fragile.
9986 // FIXME: Remove this when SCEV gets smarter about them.
9987 replaceSubString(OS.str(), "<nw>", "");
9988 replaceSubString(OS.str(), "<nsw>", "");
9989 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00009990 }
Sanjoy Das2fbfb252015-12-23 17:48:14 +00009991
JF Bastien61ad8b32015-12-23 18:18:53 +00009992 for (auto *R : reverse(*L))
9993 getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
Benjamin Kramer214935e2012-10-26 17:31:32 +00009994}
9995
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009996void ScalarEvolution::verify() const {
Benjamin Kramer214935e2012-10-26 17:31:32 +00009997 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9998
9999 // Gather stringified backedge taken counts for all loops using SCEV's caches.
10000 // FIXME: It would be much better to store actual values instead of strings,
10001 // but SCEV pointers will change if we drop the caches.
10002 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010003 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
Benjamin Kramer214935e2012-10-26 17:31:32 +000010004 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
10005
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010006 // Gather stringified backedge taken counts for all loops using a fresh
10007 // ScalarEvolution object.
Daniel Jasperaec2fa32016-12-19 08:22:17 +000010008 ScalarEvolution SE2(F, TLI, AC, DT, LI);
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010009 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
10010 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
Benjamin Kramer214935e2012-10-26 17:31:32 +000010011
10012 // Now compare whether they're the same with and without caches. This allows
10013 // verifying that no pass changed the cache.
10014 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
10015 "New loops suddenly appeared!");
10016
10017 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
10018 OldE = BackedgeDumpsOld.end(),
10019 NewI = BackedgeDumpsNew.begin();
10020 OldI != OldE; ++OldI, ++NewI) {
10021 assert(OldI->first == NewI->first && "Loop order changed!");
10022
10023 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
10024 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +000010025 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +000010026 // means that a pass is buggy or SCEV has to learn a new pattern but is
10027 // usually not harmful.
10028 if (OldI->second != NewI->second &&
10029 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +000010030 NewI->second.find("undef") == std::string::npos &&
10031 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +000010032 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +000010033 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +000010034 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +000010035 << "' changed from '" << OldI->second
10036 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +000010037 std::abort();
10038 }
10039 }
10040
10041 // TODO: Verify more things.
10042}
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010043
Chandler Carruth082c1832017-01-09 07:44:34 +000010044bool ScalarEvolution::invalidate(
10045 Function &F, const PreservedAnalyses &PA,
10046 FunctionAnalysisManager::Invalidator &Inv) {
10047 // Invalidate the ScalarEvolution object whenever it isn't preserved or one
10048 // of its dependencies is invalidated.
10049 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
10050 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
10051 Inv.invalidate<AssumptionAnalysis>(F, PA) ||
10052 Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
10053 Inv.invalidate<LoopAnalysis>(F, PA);
10054}
10055
Chandler Carruthdab4eae2016-11-23 17:53:26 +000010056AnalysisKey ScalarEvolutionAnalysis::Key;
NAKAMURA Takumidf0cd722016-02-28 17:17:00 +000010057
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010058ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
Sean Silva36e0d012016-08-09 00:28:15 +000010059 FunctionAnalysisManager &AM) {
Chandler Carruthb47f8012016-03-11 11:05:24 +000010060 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
Daniel Jasperaec2fa32016-12-19 08:22:17 +000010061 AM.getResult<AssumptionAnalysis>(F),
Chandler Carruthb47f8012016-03-11 11:05:24 +000010062 AM.getResult<DominatorTreeAnalysis>(F),
10063 AM.getResult<LoopAnalysis>(F));
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010064}
10065
10066PreservedAnalyses
Sean Silva36e0d012016-08-09 00:28:15 +000010067ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
Chandler Carruthb47f8012016-03-11 11:05:24 +000010068 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010069 return PreservedAnalyses::all();
10070}
10071
10072INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
10073 "Scalar Evolution Analysis", false, true)
Daniel Jasperaec2fa32016-12-19 08:22:17 +000010074INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010075INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
10076INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
10077INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
10078INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
10079 "Scalar Evolution Analysis", false, true)
10080char ScalarEvolutionWrapperPass::ID = 0;
10081
10082ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
10083 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
10084}
10085
10086bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
10087 SE.reset(new ScalarEvolution(
10088 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
Daniel Jasperaec2fa32016-12-19 08:22:17 +000010089 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010090 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
10091 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
10092 return false;
10093}
10094
10095void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
10096
10097void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
10098 SE->print(OS);
10099}
10100
10101void ScalarEvolutionWrapperPass::verifyAnalysis() const {
10102 if (!VerifySCEV)
10103 return;
10104
10105 SE->verify();
10106}
10107
10108void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
10109 AU.setPreservesAll();
Daniel Jasperaec2fa32016-12-19 08:22:17 +000010110 AU.addRequiredTransitive<AssumptionCacheTracker>();
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010111 AU.addRequiredTransitive<LoopInfoWrapperPass>();
10112 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
10113 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
10114}
Silviu Barangae3c05342015-11-02 14:41:02 +000010115
10116const SCEVPredicate *
10117ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
10118 const SCEVConstant *RHS) {
10119 FoldingSetNodeID ID;
10120 // Unique this node based on the arguments
10121 ID.AddInteger(SCEVPredicate::P_Equal);
10122 ID.AddPointer(LHS);
10123 ID.AddPointer(RHS);
10124 void *IP = nullptr;
10125 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10126 return S;
10127 SCEVEqualPredicate *Eq = new (SCEVAllocator)
10128 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
10129 UniquePreds.InsertNode(Eq, IP);
10130 return Eq;
10131}
10132
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010133const SCEVPredicate *ScalarEvolution::getWrapPredicate(
10134 const SCEVAddRecExpr *AR,
10135 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10136 FoldingSetNodeID ID;
10137 // Unique this node based on the arguments
10138 ID.AddInteger(SCEVPredicate::P_Wrap);
10139 ID.AddPointer(AR);
10140 ID.AddInteger(AddedFlags);
10141 void *IP = nullptr;
10142 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10143 return S;
10144 auto *OF = new (SCEVAllocator)
10145 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
10146 UniquePreds.InsertNode(OF, IP);
10147 return OF;
10148}
10149
Benjamin Kramer83709b12015-11-16 09:01:28 +000010150namespace {
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010151
Silviu Barangae3c05342015-11-02 14:41:02 +000010152class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
10153public:
Sanjoy Dasf0022122016-09-28 17:14:58 +000010154 /// Rewrites \p S in the context of a loop L and the SCEV predication
10155 /// infrastructure.
10156 ///
10157 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
10158 /// equivalences present in \p Pred.
10159 ///
10160 /// If \p NewPreds is non-null, rewrite is free to add further predicates to
10161 /// \p NewPreds such that the result will be an AddRecExpr.
Sanjoy Das807d33d2016-02-20 01:44:10 +000010162 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
Sanjoy Dasf0022122016-09-28 17:14:58 +000010163 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
10164 SCEVUnionPredicate *Pred) {
10165 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
Sanjoy Das807d33d2016-02-20 01:44:10 +000010166 return Rewriter.visit(S);
Silviu Barangae3c05342015-11-02 14:41:02 +000010167 }
10168
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010169 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
Sanjoy Dasf0022122016-09-28 17:14:58 +000010170 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
10171 SCEVUnionPredicate *Pred)
10172 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
Silviu Barangae3c05342015-11-02 14:41:02 +000010173
10174 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
Sanjoy Dasf0022122016-09-28 17:14:58 +000010175 if (Pred) {
10176 auto ExprPreds = Pred->getPredicatesForExpr(Expr);
10177 for (auto *Pred : ExprPreds)
10178 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
10179 if (IPred->getLHS() == Expr)
10180 return IPred->getRHS();
10181 }
Silviu Barangae3c05342015-11-02 14:41:02 +000010182
10183 return Expr;
10184 }
10185
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010186 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
10187 const SCEV *Operand = visit(Expr->getOperand());
Sanjoy Dasb277a422016-06-15 06:53:55 +000010188 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010189 if (AR && AR->getLoop() == L && AR->isAffine()) {
10190 // This couldn't be folded because the operand didn't have the nuw
10191 // flag. Add the nusw flag as an assumption that we could make.
10192 const SCEV *Step = AR->getStepRecurrence(SE);
10193 Type *Ty = Expr->getType();
10194 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
10195 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
10196 SE.getSignExtendExpr(Step, Ty), L,
10197 AR->getNoWrapFlags());
10198 }
10199 return SE.getZeroExtendExpr(Operand, Expr->getType());
10200 }
10201
10202 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
10203 const SCEV *Operand = visit(Expr->getOperand());
Sanjoy Dasb277a422016-06-15 06:53:55 +000010204 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010205 if (AR && AR->getLoop() == L && AR->isAffine()) {
10206 // This couldn't be folded because the operand didn't have the nsw
10207 // flag. Add the nssw flag as an assumption that we could make.
10208 const SCEV *Step = AR->getStepRecurrence(SE);
10209 Type *Ty = Expr->getType();
10210 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
10211 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
10212 SE.getSignExtendExpr(Step, Ty), L,
10213 AR->getNoWrapFlags());
10214 }
10215 return SE.getSignExtendExpr(Operand, Expr->getType());
10216 }
10217
Silviu Barangae3c05342015-11-02 14:41:02 +000010218private:
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010219 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
10220 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10221 auto *A = SE.getWrapPredicate(AR, AddedFlags);
Sanjoy Dasf0022122016-09-28 17:14:58 +000010222 if (!NewPreds) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010223 // Check if we've already made this assumption.
Sanjoy Dasf0022122016-09-28 17:14:58 +000010224 return Pred && Pred->implies(A);
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010225 }
Sanjoy Dasf0022122016-09-28 17:14:58 +000010226 NewPreds->insert(A);
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010227 return true;
10228 }
10229
Sanjoy Dasf0022122016-09-28 17:14:58 +000010230 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
10231 SCEVUnionPredicate *Pred;
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010232 const Loop *L;
Silviu Barangae3c05342015-11-02 14:41:02 +000010233};
Benjamin Kramer83709b12015-11-16 09:01:28 +000010234} // end anonymous namespace
Silviu Barangae3c05342015-11-02 14:41:02 +000010235
Sanjoy Das807d33d2016-02-20 01:44:10 +000010236const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
Silviu Barangae3c05342015-11-02 14:41:02 +000010237 SCEVUnionPredicate &Preds) {
Sanjoy Dasf0022122016-09-28 17:14:58 +000010238 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010239}
10240
Sanjoy Dasf0022122016-09-28 17:14:58 +000010241const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
10242 const SCEV *S, const Loop *L,
10243 SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
10244
10245 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
10246 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
Silviu Barangad68ed852016-03-23 15:29:30 +000010247 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
10248
10249 if (!AddRec)
10250 return nullptr;
10251
10252 // Since the transformation was successful, we can now transfer the SCEV
10253 // predicates.
Sanjoy Dasf0022122016-09-28 17:14:58 +000010254 for (auto *P : TransformPreds)
10255 Preds.insert(P);
10256
Silviu Barangad68ed852016-03-23 15:29:30 +000010257 return AddRec;
Silviu Barangae3c05342015-11-02 14:41:02 +000010258}
10259
10260/// SCEV predicates
10261SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
10262 SCEVPredicateKind Kind)
10263 : FastID(ID), Kind(Kind) {}
10264
10265SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
10266 const SCEVUnknown *LHS,
10267 const SCEVConstant *RHS)
10268 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
10269
10270bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
Sanjoy Dasb277a422016-06-15 06:53:55 +000010271 const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
Silviu Barangae3c05342015-11-02 14:41:02 +000010272
10273 if (!Op)
10274 return false;
10275
10276 return Op->LHS == LHS && Op->RHS == RHS;
10277}
10278
10279bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
10280
10281const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
10282
10283void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
10284 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
10285}
10286
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010287SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
10288 const SCEVAddRecExpr *AR,
10289 IncrementWrapFlags Flags)
10290 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
10291
10292const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
10293
10294bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
10295 const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
10296
10297 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
10298}
10299
10300bool SCEVWrapPredicate::isAlwaysTrue() const {
10301 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
10302 IncrementWrapFlags IFlags = Flags;
10303
10304 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
10305 IFlags = clearFlags(IFlags, IncrementNSSW);
10306
10307 return IFlags == IncrementAnyWrap;
10308}
10309
10310void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
10311 OS.indent(Depth) << *getExpr() << " Added Flags: ";
10312 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
10313 OS << "<nusw>";
10314 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
10315 OS << "<nssw>";
10316 OS << "\n";
10317}
10318
10319SCEVWrapPredicate::IncrementWrapFlags
10320SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
10321 ScalarEvolution &SE) {
10322 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
10323 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
10324
10325 // We can safely transfer the NSW flag as NSSW.
10326 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
10327 ImpliedFlags = IncrementNSSW;
10328
10329 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
10330 // If the increment is positive, the SCEV NUW flag will also imply the
10331 // WrapPredicate NUSW flag.
10332 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
10333 if (Step->getValue()->getValue().isNonNegative())
10334 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
10335 }
10336
10337 return ImpliedFlags;
10338}
10339
Silviu Barangae3c05342015-11-02 14:41:02 +000010340/// Union predicates don't get cached so create a dummy set ID for it.
10341SCEVUnionPredicate::SCEVUnionPredicate()
10342 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
10343
10344bool SCEVUnionPredicate::isAlwaysTrue() const {
Sanjoy Das3b827c72015-11-29 23:40:53 +000010345 return all_of(Preds,
10346 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
Silviu Barangae3c05342015-11-02 14:41:02 +000010347}
10348
10349ArrayRef<const SCEVPredicate *>
10350SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
10351 auto I = SCEVToPreds.find(Expr);
10352 if (I == SCEVToPreds.end())
10353 return ArrayRef<const SCEVPredicate *>();
10354 return I->second;
10355}
10356
10357bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
Sanjoy Dasb277a422016-06-15 06:53:55 +000010358 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
Sanjoy Das3b827c72015-11-29 23:40:53 +000010359 return all_of(Set->Preds,
10360 [this](const SCEVPredicate *I) { return this->implies(I); });
Silviu Barangae3c05342015-11-02 14:41:02 +000010361
10362 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
10363 if (ScevPredsIt == SCEVToPreds.end())
10364 return false;
10365 auto &SCEVPreds = ScevPredsIt->second;
10366
Sanjoy Dasff3b8b42015-12-01 07:49:23 +000010367 return any_of(SCEVPreds,
10368 [N](const SCEVPredicate *I) { return I->implies(N); });
Silviu Barangae3c05342015-11-02 14:41:02 +000010369}
10370
10371const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
10372
10373void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
10374 for (auto Pred : Preds)
10375 Pred->print(OS, Depth);
10376}
10377
10378void SCEVUnionPredicate::add(const SCEVPredicate *N) {
Sanjoy Dasb277a422016-06-15 06:53:55 +000010379 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
Silviu Barangae3c05342015-11-02 14:41:02 +000010380 for (auto Pred : Set->Preds)
10381 add(Pred);
10382 return;
10383 }
10384
10385 if (implies(N))
10386 return;
10387
10388 const SCEV *Key = N->getExpr();
10389 assert(Key && "Only SCEVUnionPredicate doesn't have an "
10390 " associated expression!");
10391
10392 SCEVToPreds[Key].push_back(N);
10393 Preds.push_back(N);
10394}
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010395
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010396PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
10397 Loop &L)
Silviu Baranga6f444df2016-04-08 14:29:09 +000010398 : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {}
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010399
10400const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
10401 const SCEV *Expr = SE.getSCEV(V);
10402 RewriteEntry &Entry = RewriteMap[Expr];
10403
10404 // If we already have an entry and the version matches, return it.
10405 if (Entry.second && Generation == Entry.first)
10406 return Entry.second;
10407
10408 // We found an entry but it's stale. Rewrite the stale entry
Simon Pilgrimf2fbf432016-11-20 13:47:59 +000010409 // according to the current predicate.
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010410 if (Entry.second)
10411 Expr = Entry.second;
10412
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010413 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010414 Entry = {Generation, NewSCEV};
10415
10416 return NewSCEV;
10417}
10418
Silviu Baranga6f444df2016-04-08 14:29:09 +000010419const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
10420 if (!BackedgeCount) {
10421 SCEVUnionPredicate BackedgePred;
10422 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
10423 addPredicate(BackedgePred);
10424 }
10425 return BackedgeCount;
10426}
10427
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010428void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
10429 if (Preds.implies(&Pred))
10430 return;
10431 Preds.add(&Pred);
10432 updateGeneration();
10433}
10434
10435const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
10436 return Preds;
10437}
10438
10439void PredicatedScalarEvolution::updateGeneration() {
10440 // If the generation number wrapped recompute everything.
10441 if (++Generation == 0) {
10442 for (auto &II : RewriteMap) {
10443 const SCEV *Rewritten = II.second.second;
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010444 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010445 }
10446 }
10447}
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010448
10449void PredicatedScalarEvolution::setNoOverflow(
10450 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10451 const SCEV *Expr = getSCEV(V);
10452 const auto *AR = cast<SCEVAddRecExpr>(Expr);
10453
10454 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
10455
10456 // Clear the statically implied flags.
10457 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
10458 addPredicate(*SE.getWrapPredicate(AR, Flags));
10459
10460 auto II = FlagsMap.insert({V, Flags});
10461 if (!II.second)
10462 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
10463}
10464
10465bool PredicatedScalarEvolution::hasNoOverflow(
10466 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10467 const SCEV *Expr = getSCEV(V);
10468 const auto *AR = cast<SCEVAddRecExpr>(Expr);
10469
10470 Flags = SCEVWrapPredicate::clearFlags(
10471 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
10472
10473 auto II = FlagsMap.find(V);
10474
10475 if (II != FlagsMap.end())
10476 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
10477
10478 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
10479}
10480
Silviu Barangad68ed852016-03-23 15:29:30 +000010481const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010482 const SCEV *Expr = this->getSCEV(V);
Sanjoy Dasf0022122016-09-28 17:14:58 +000010483 SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
10484 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
Silviu Barangad68ed852016-03-23 15:29:30 +000010485
10486 if (!New)
10487 return nullptr;
10488
Sanjoy Dasf0022122016-09-28 17:14:58 +000010489 for (auto *P : NewPreds)
10490 Preds.add(P);
10491
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010492 updateGeneration();
10493 RewriteMap[SE.getSCEV(V)] = {Generation, New};
10494 return New;
10495}
10496
Silviu Baranga6f444df2016-04-08 14:29:09 +000010497PredicatedScalarEvolution::PredicatedScalarEvolution(
10498 const PredicatedScalarEvolution &Init)
10499 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
10500 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
Benjamin Krameraa209152016-06-26 17:27:42 +000010501 for (const auto &I : Init.FlagsMap)
10502 FlagsMap.insert(I);
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010503}
Silviu Barangab77365b2016-04-14 16:08:45 +000010504
10505void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
10506 // For each block.
10507 for (auto *BB : L.getBlocks())
10508 for (auto &I : *BB) {
10509 if (!SE.isSCEVable(I.getType()))
10510 continue;
10511
10512 auto *Expr = SE.getSCEV(&I);
10513 auto II = RewriteMap.find(Expr);
10514
10515 if (II == RewriteMap.end())
10516 continue;
10517
10518 // Don't print things that are not interesting.
10519 if (II->second.second == Expr)
10520 continue;
10521
10522 OS.indent(Depth) << "[PSE]" << I << ":\n";
10523 OS.indent(Depth + 2) << *Expr << "\n";
10524 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
10525 }
10526}