blob: 867b0515003d5f29f6f36fff69d9ad97f580ada4 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Sanjoy Dasc88f5d32015-10-28 21:27:14 +000086#include "llvm/IR/PatternMatch.h"
Chris Lattner996795b2006-06-28 23:17:24 +000087#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000088#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000089#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000090#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000091#include "llvm/Support/raw_ostream.h"
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +000092#include "llvm/Support/SaveAndRestore.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000093#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000094using namespace llvm;
95
Chandler Carruthf1221bd2014-04-22 02:48:03 +000096#define DEBUG_TYPE "scalar-evolution"
97
Chris Lattner57ef9422006-12-19 22:30:33 +000098STATISTIC(NumArrayLenItCounts,
99 "Number of trip counts computed with array length");
100STATISTIC(NumTripCountsComputed,
101 "Number of loops with predictable loop counts");
102STATISTIC(NumTripCountsNotComputed,
103 "Number of loops without predictable loop counts");
104STATISTIC(NumBruteForceTripCountsComputed,
105 "Number of loops with trip counts computed by force");
106
Dan Gohmand78c4002008-05-13 00:00:25 +0000107static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000108MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000110 "symbolically execute a constant "
111 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000112 cl::init(100));
113
Filipe Cabecinhas0da99372016-04-29 15:22:48 +0000114// FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
Benjamin Kramer214935e2012-10-26 17:31:32 +0000115static cl::opt<bool>
116VerifySCEV("verify-scev",
117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
Wei Mia49559b2016-02-04 01:27:38 +0000118static cl::opt<bool>
119 VerifySCEVMap("verify-scev-maps",
Jeroen Ketemae48e3932016-04-12 23:21:46 +0000120 cl::desc("Verify no dangling value in ScalarEvolution's "
Wei Mia49559b2016-02-04 01:27:38 +0000121 "ExprValueMap (slow)"));
Benjamin Kramer214935e2012-10-26 17:31:32 +0000122
Chris Lattnerd934c702004-04-02 20:23:17 +0000123//===----------------------------------------------------------------------===//
124// SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
Dan Gohman3423e722009-06-30 20:13:32 +0000130
Davide Italiano2071f4c2015-10-25 19:55:24 +0000131LLVM_DUMP_METHOD
132void SCEV::dump() const {
133 print(dbgs());
134 dbgs() << '\n';
135}
136
Dan Gohman534749b2010-11-17 22:27:42 +0000137void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000138 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000139 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000140 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000141 return;
142 case scTruncate: {
143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144 const SCEV *Op = Trunc->getOperand();
145 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146 << *Trunc->getType() << ")";
147 return;
148 }
149 case scZeroExtend: {
150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151 const SCEV *Op = ZExt->getOperand();
152 OS << "(zext " << *Op->getType() << " " << *Op << " to "
153 << *ZExt->getType() << ")";
154 return;
155 }
156 case scSignExtend: {
157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158 const SCEV *Op = SExt->getOperand();
159 OS << "(sext " << *Op->getType() << " " << *Op << " to "
160 << *SExt->getType() << ")";
161 return;
162 }
163 case scAddRecExpr: {
164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165 OS << "{" << *AR->getOperand(0);
166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167 OS << ",+," << *AR->getOperand(i);
168 OS << "}<";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000169 if (AR->hasNoUnsignedWrap())
Chris Lattnera337f5e2011-01-09 02:16:18 +0000170 OS << "nuw><";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000171 if (AR->hasNoSignedWrap())
Chris Lattnera337f5e2011-01-09 02:16:18 +0000172 OS << "nsw><";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000173 if (AR->hasNoSelfWrap() &&
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000176 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000177 OS << ">";
178 return;
179 }
180 case scAddExpr:
181 case scMulExpr:
182 case scUMaxExpr:
183 case scSMaxExpr: {
184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000185 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000186 switch (NAry->getSCEVType()) {
187 case scAddExpr: OpStr = " + "; break;
188 case scMulExpr: OpStr = " * "; break;
189 case scUMaxExpr: OpStr = " umax "; break;
190 case scSMaxExpr: OpStr = " smax "; break;
191 }
192 OS << "(";
193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194 I != E; ++I) {
195 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000196 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000197 OS << OpStr;
198 }
199 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000200 switch (NAry->getSCEVType()) {
201 case scAddExpr:
202 case scMulExpr:
Sanjoy Das76c48e02016-02-04 18:21:54 +0000203 if (NAry->hasNoUnsignedWrap())
Andrew Trickd912a5b2011-11-29 02:06:35 +0000204 OS << "<nuw>";
Sanjoy Das76c48e02016-02-04 18:21:54 +0000205 if (NAry->hasNoSignedWrap())
Andrew Trickd912a5b2011-11-29 02:06:35 +0000206 OS << "<nsw>";
207 }
Dan Gohman534749b2010-11-17 22:27:42 +0000208 return;
209 }
210 case scUDivExpr: {
211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213 return;
214 }
215 case scUnknown: {
216 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000217 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000218 if (U->isSizeOf(AllocTy)) {
219 OS << "sizeof(" << *AllocTy << ")";
220 return;
221 }
222 if (U->isAlignOf(AllocTy)) {
223 OS << "alignof(" << *AllocTy << ")";
224 return;
225 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000226
Chris Lattner229907c2011-07-18 04:54:35 +0000227 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000228 Constant *FieldNo;
229 if (U->isOffsetOf(CTy, FieldNo)) {
230 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000231 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000232 OS << ")";
233 return;
234 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000235
Dan Gohman534749b2010-11-17 22:27:42 +0000236 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000237 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000238 return;
239 }
240 case scCouldNotCompute:
241 OS << "***COULDNOTCOMPUTE***";
242 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000243 }
244 llvm_unreachable("Unknown SCEV kind!");
245}
246
Chris Lattner229907c2011-07-18 04:54:35 +0000247Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000248 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000249 case scConstant:
250 return cast<SCEVConstant>(this)->getType();
251 case scTruncate:
252 case scZeroExtend:
253 case scSignExtend:
254 return cast<SCEVCastExpr>(this)->getType();
255 case scAddRecExpr:
256 case scMulExpr:
257 case scUMaxExpr:
258 case scSMaxExpr:
259 return cast<SCEVNAryExpr>(this)->getType();
260 case scAddExpr:
261 return cast<SCEVAddExpr>(this)->getType();
262 case scUDivExpr:
263 return cast<SCEVUDivExpr>(this)->getType();
264 case scUnknown:
265 return cast<SCEVUnknown>(this)->getType();
266 case scCouldNotCompute:
267 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000268 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000269 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000270}
271
Dan Gohmanbe928e32008-06-18 16:23:07 +0000272bool SCEV::isZero() const {
273 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
274 return SC->getValue()->isZero();
275 return false;
276}
277
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000278bool SCEV::isOne() const {
279 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
280 return SC->getValue()->isOne();
281 return false;
282}
Chris Lattnerd934c702004-04-02 20:23:17 +0000283
Dan Gohman18a96bb2009-06-24 00:30:26 +0000284bool SCEV::isAllOnesValue() const {
285 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
286 return SC->getValue()->isAllOnesValue();
287 return false;
288}
289
Andrew Trick881a7762012-01-07 00:27:31 +0000290bool SCEV::isNonConstantNegative() const {
291 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
292 if (!Mul) return false;
293
294 // If there is a constant factor, it will be first.
295 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
296 if (!SC) return false;
297
298 // Return true if the value is negative, this matches things like (-42 * V).
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000299 return SC->getAPInt().isNegative();
Andrew Trick881a7762012-01-07 00:27:31 +0000300}
301
Owen Anderson04052ec2009-06-22 21:57:23 +0000302SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000303 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000304
Chris Lattnerd934c702004-04-02 20:23:17 +0000305bool SCEVCouldNotCompute::classof(const SCEV *S) {
306 return S->getSCEVType() == scCouldNotCompute;
307}
308
Dan Gohmanaf752342009-07-07 17:06:11 +0000309const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000310 FoldingSetNodeID ID;
311 ID.AddInteger(scConstant);
312 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000313 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000314 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000315 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000316 UniqueSCEVs.InsertNode(S, IP);
317 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000318}
Chris Lattnerd934c702004-04-02 20:23:17 +0000319
Nick Lewycky31eaca52014-01-27 10:04:03 +0000320const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000321 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000322}
323
Dan Gohmanaf752342009-07-07 17:06:11 +0000324const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000325ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
326 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000327 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000328}
329
Dan Gohman24ceda82010-06-18 19:54:20 +0000330SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000331 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000332 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000333
Dan Gohman24ceda82010-06-18 19:54:20 +0000334SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000335 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000336 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000337 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
338 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000339 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000340}
Chris Lattnerd934c702004-04-02 20:23:17 +0000341
Dan Gohman24ceda82010-06-18 19:54:20 +0000342SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000343 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000344 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000345 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
346 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000347 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000348}
349
Dan Gohman24ceda82010-06-18 19:54:20 +0000350SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000351 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000352 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000353 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
354 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000355 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000356}
357
Dan Gohman7cac9572010-08-02 23:49:30 +0000358void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000359 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000360 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000361
362 // Remove this SCEVUnknown from the uniquing map.
363 SE->UniqueSCEVs.RemoveNode(this);
364
365 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000366 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000367}
368
369void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000370 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000371 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000372
373 // Remove this SCEVUnknown from the uniquing map.
374 SE->UniqueSCEVs.RemoveNode(this);
375
376 // Update this SCEVUnknown to point to the new value. This is needed
377 // because there may still be outstanding SCEVs which still point to
378 // this SCEVUnknown.
379 setValPtr(New);
380}
381
Chris Lattner229907c2011-07-18 04:54:35 +0000382bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000383 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000384 if (VCE->getOpcode() == Instruction::PtrToInt)
385 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000386 if (CE->getOpcode() == Instruction::GetElementPtr &&
387 CE->getOperand(0)->isNullValue() &&
388 CE->getNumOperands() == 2)
389 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
390 if (CI->isOne()) {
391 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
392 ->getElementType();
393 return true;
394 }
Dan Gohmancf913832010-01-28 02:15:55 +0000395
396 return false;
397}
398
Chris Lattner229907c2011-07-18 04:54:35 +0000399bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000400 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000401 if (VCE->getOpcode() == Instruction::PtrToInt)
402 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000403 if (CE->getOpcode() == Instruction::GetElementPtr &&
404 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000405 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000406 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000407 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000408 if (!STy->isPacked() &&
409 CE->getNumOperands() == 3 &&
410 CE->getOperand(1)->isNullValue()) {
411 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
412 if (CI->isOne() &&
413 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000414 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000415 AllocTy = STy->getElementType(1);
416 return true;
417 }
418 }
419 }
Dan Gohmancf913832010-01-28 02:15:55 +0000420
421 return false;
422}
423
Chris Lattner229907c2011-07-18 04:54:35 +0000424bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000425 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000426 if (VCE->getOpcode() == Instruction::PtrToInt)
427 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
428 if (CE->getOpcode() == Instruction::GetElementPtr &&
429 CE->getNumOperands() == 3 &&
430 CE->getOperand(0)->isNullValue() &&
431 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000432 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000433 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
434 // Ignore vector types here so that ScalarEvolutionExpander doesn't
435 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000436 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000437 CTy = Ty;
438 FieldNo = CE->getOperand(2);
439 return true;
440 }
441 }
442
443 return false;
444}
445
Chris Lattnereb3e8402004-06-20 06:23:15 +0000446//===----------------------------------------------------------------------===//
447// SCEV Utilities
448//===----------------------------------------------------------------------===//
449
450namespace {
Sanjoy Das7881abd2015-12-08 04:32:51 +0000451/// SCEVComplexityCompare - Return true if the complexity of the LHS is less
452/// than the complexity of the RHS. This comparator is used to canonicalize
453/// expressions.
454class SCEVComplexityCompare {
455 const LoopInfo *const LI;
456public:
457 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000458
Sanjoy Das7881abd2015-12-08 04:32:51 +0000459 // Return true or false if LHS is less than, or at least RHS, respectively.
460 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
461 return compare(LHS, RHS) < 0;
462 }
Dan Gohman27065672010-08-27 15:26:01 +0000463
Sanjoy Das7881abd2015-12-08 04:32:51 +0000464 // Return negative, zero, or positive, if LHS is less than, equal to, or
465 // greater than RHS, respectively. A three-way result allows recursive
466 // comparisons to be more efficient.
467 int compare(const SCEV *LHS, const SCEV *RHS) const {
468 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
469 if (LHS == RHS)
470 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000471
Sanjoy Das7881abd2015-12-08 04:32:51 +0000472 // Primarily, sort the SCEVs by their getSCEVType().
473 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
474 if (LType != RType)
475 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000476
Sanjoy Das7881abd2015-12-08 04:32:51 +0000477 // Aside from the getSCEVType() ordering, the particular ordering
478 // isn't very important except that it's beneficial to be consistent,
479 // so that (a + b) and (b + a) don't end up as different expressions.
480 switch (static_cast<SCEVTypes>(LType)) {
481 case scUnknown: {
482 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
483 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000484
Sanjoy Das7881abd2015-12-08 04:32:51 +0000485 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
486 // not as complete as it could be.
487 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000488
Sanjoy Das7881abd2015-12-08 04:32:51 +0000489 // Order pointer values after integer values. This helps SCEVExpander
490 // form GEPs.
491 bool LIsPointer = LV->getType()->isPointerTy(),
492 RIsPointer = RV->getType()->isPointerTy();
493 if (LIsPointer != RIsPointer)
494 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000495
Sanjoy Das7881abd2015-12-08 04:32:51 +0000496 // Compare getValueID values.
497 unsigned LID = LV->getValueID(),
498 RID = RV->getValueID();
499 if (LID != RID)
500 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000501
Sanjoy Das7881abd2015-12-08 04:32:51 +0000502 // Sort arguments by their position.
503 if (const Argument *LA = dyn_cast<Argument>(LV)) {
504 const Argument *RA = cast<Argument>(RV);
505 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
506 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000507 }
508
Sanjoy Das7881abd2015-12-08 04:32:51 +0000509 // For instructions, compare their loop depth, and their operand
510 // count. This is pretty loose.
511 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
512 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000513
Sanjoy Das7881abd2015-12-08 04:32:51 +0000514 // Compare loop depths.
515 const BasicBlock *LParent = LInst->getParent(),
516 *RParent = RInst->getParent();
517 if (LParent != RParent) {
518 unsigned LDepth = LI->getLoopDepth(LParent),
519 RDepth = LI->getLoopDepth(RParent);
Dan Gohman0c436ab2010-08-13 21:24:58 +0000520 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000521 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000522 }
Dan Gohman27065672010-08-27 15:26:01 +0000523
Sanjoy Das7881abd2015-12-08 04:32:51 +0000524 // Compare the number of operands.
525 unsigned LNumOps = LInst->getNumOperands(),
526 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000527 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000528 }
529
Sanjoy Das7881abd2015-12-08 04:32:51 +0000530 return 0;
531 }
Dan Gohman27065672010-08-27 15:26:01 +0000532
Sanjoy Das7881abd2015-12-08 04:32:51 +0000533 case scConstant: {
534 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
535 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
536
537 // Compare constant values.
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000538 const APInt &LA = LC->getAPInt();
539 const APInt &RA = RC->getAPInt();
Sanjoy Das7881abd2015-12-08 04:32:51 +0000540 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
541 if (LBitWidth != RBitWidth)
542 return (int)LBitWidth - (int)RBitWidth;
543 return LA.ult(RA) ? -1 : 1;
544 }
545
546 case scAddRecExpr: {
547 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
548 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
549
550 // Compare addrec loop depths.
551 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
552 if (LLoop != RLoop) {
553 unsigned LDepth = LLoop->getLoopDepth(),
554 RDepth = RLoop->getLoopDepth();
555 if (LDepth != RDepth)
556 return (int)LDepth - (int)RDepth;
557 }
558
559 // Addrec complexity grows with operand count.
560 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
561 if (LNumOps != RNumOps)
562 return (int)LNumOps - (int)RNumOps;
563
564 // Lexicographically compare.
565 for (unsigned i = 0; i != LNumOps; ++i) {
566 long X = compare(LA->getOperand(i), RA->getOperand(i));
Dan Gohman27065672010-08-27 15:26:01 +0000567 if (X != 0)
568 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000569 }
570
Sanjoy Das7881abd2015-12-08 04:32:51 +0000571 return 0;
Chris Lattnereb3e8402004-06-20 06:23:15 +0000572 }
Sanjoy Das7881abd2015-12-08 04:32:51 +0000573
574 case scAddExpr:
575 case scMulExpr:
576 case scSMaxExpr:
577 case scUMaxExpr: {
578 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
579 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
580
581 // Lexicographically compare n-ary expressions.
582 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
583 if (LNumOps != RNumOps)
584 return (int)LNumOps - (int)RNumOps;
585
586 for (unsigned i = 0; i != LNumOps; ++i) {
587 if (i >= RNumOps)
588 return 1;
589 long X = compare(LC->getOperand(i), RC->getOperand(i));
590 if (X != 0)
591 return X;
592 }
593 return (int)LNumOps - (int)RNumOps;
594 }
595
596 case scUDivExpr: {
597 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
598 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
599
600 // Lexicographically compare udiv expressions.
601 long X = compare(LC->getLHS(), RC->getLHS());
602 if (X != 0)
603 return X;
604 return compare(LC->getRHS(), RC->getRHS());
605 }
606
607 case scTruncate:
608 case scZeroExtend:
609 case scSignExtend: {
610 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
611 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
612
613 // Compare cast expressions by operand.
614 return compare(LC->getOperand(), RC->getOperand());
615 }
616
617 case scCouldNotCompute:
618 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
619 }
620 llvm_unreachable("Unknown SCEV kind!");
621 }
622};
623} // end anonymous namespace
Chris Lattnereb3e8402004-06-20 06:23:15 +0000624
Sanjoy Dasf8570812016-05-29 00:38:22 +0000625/// Given a list of SCEV objects, order them by their complexity, and group
626/// objects of the same complexity together by value. When this routine is
627/// finished, we know that any duplicates in the vector are consecutive and that
628/// complexity is monotonically increasing.
Chris Lattnereb3e8402004-06-20 06:23:15 +0000629///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000630/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000631/// results from this routine. In other words, we don't want the results of
632/// this to depend on where the addresses of various SCEV objects happened to
633/// land in memory.
634///
Dan Gohmanaf752342009-07-07 17:06:11 +0000635static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000636 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000637 if (Ops.size() < 2) return; // Noop
638 if (Ops.size() == 2) {
639 // This is the common case, which also happens to be trivially simple.
640 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000641 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
642 if (SCEVComplexityCompare(LI)(RHS, LHS))
643 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000644 return;
645 }
646
Dan Gohman24ceda82010-06-18 19:54:20 +0000647 // Do the rough sort by complexity.
648 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
649
650 // Now that we are sorted by complexity, group elements of the same
651 // complexity. Note that this is, at worst, N^2, but the vector is likely to
652 // be extremely short in practice. Note that we take this approach because we
653 // do not want to depend on the addresses of the objects we are grouping.
654 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
655 const SCEV *S = Ops[i];
656 unsigned Complexity = S->getSCEVType();
657
658 // If there are any objects of the same complexity and same value as this
659 // one, group them.
660 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
661 if (Ops[j] == S) { // Found a duplicate.
662 // Move it to immediately after i'th element.
663 std::swap(Ops[i+1], Ops[j]);
664 ++i; // no need to rescan it.
665 if (i == e-2) return; // Done!
666 }
667 }
668 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000669}
670
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000671// Returns the size of the SCEV S.
672static inline int sizeOfSCEV(const SCEV *S) {
Sanjoy Das7d752672015-12-08 04:32:54 +0000673 struct FindSCEVSize {
674 int Size;
675 FindSCEVSize() : Size(0) {}
676
677 bool follow(const SCEV *S) {
678 ++Size;
679 // Keep looking at all operands of S.
680 return true;
681 }
682 bool isDone() const {
683 return false;
684 }
685 };
686
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000687 FindSCEVSize F;
688 SCEVTraversal<FindSCEVSize> ST(F);
689 ST.visitAll(S);
690 return F.Size;
691}
692
693namespace {
694
David Majnemer4e879362014-12-14 09:12:33 +0000695struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000696public:
697 // Computes the Quotient and Remainder of the division of Numerator by
698 // Denominator.
699 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
700 const SCEV *Denominator, const SCEV **Quotient,
701 const SCEV **Remainder) {
702 assert(Numerator && Denominator && "Uninitialized SCEV");
703
David Majnemer4e879362014-12-14 09:12:33 +0000704 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000705
706 // Check for the trivial case here to avoid having to check for it in the
707 // rest of the code.
708 if (Numerator == Denominator) {
709 *Quotient = D.One;
710 *Remainder = D.Zero;
711 return;
712 }
713
714 if (Numerator->isZero()) {
715 *Quotient = D.Zero;
716 *Remainder = D.Zero;
717 return;
718 }
719
Brendon Cahoona57cc8b2015-04-20 16:03:28 +0000720 // A simple case when N/1. The quotient is N.
721 if (Denominator->isOne()) {
722 *Quotient = Numerator;
723 *Remainder = D.Zero;
724 return;
725 }
726
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000727 // Split the Denominator when it is a product.
728 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
729 const SCEV *Q, *R;
730 *Quotient = Numerator;
731 for (const SCEV *Op : T->operands()) {
732 divide(SE, *Quotient, Op, &Q, &R);
733 *Quotient = Q;
734
735 // Bail out when the Numerator is not divisible by one of the terms of
736 // the Denominator.
737 if (!R->isZero()) {
738 *Quotient = D.Zero;
739 *Remainder = Numerator;
740 return;
741 }
742 }
743 *Remainder = D.Zero;
744 return;
745 }
746
747 D.visit(Numerator);
748 *Quotient = D.Quotient;
749 *Remainder = D.Remainder;
750 }
751
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000752 // Except in the trivial case described above, we do not know how to divide
753 // Expr by Denominator for the following functions with empty implementation.
754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
760 void visitUnknown(const SCEVUnknown *Numerator) {}
761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
762
David Majnemer4e879362014-12-14 09:12:33 +0000763 void visitConstant(const SCEVConstant *Numerator) {
764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000765 APInt NumeratorVal = Numerator->getAPInt();
766 APInt DenominatorVal = D->getAPInt();
David Majnemer4e879362014-12-14 09:12:33 +0000767 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
768 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
769
770 if (NumeratorBW > DenominatorBW)
771 DenominatorVal = DenominatorVal.sext(NumeratorBW);
772 else if (NumeratorBW < DenominatorBW)
773 NumeratorVal = NumeratorVal.sext(DenominatorBW);
774
775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
778 Quotient = SE.getConstant(QuotientVal);
779 Remainder = SE.getConstant(RemainderVal);
780 return;
781 }
782 }
783
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
785 const SCEV *StartQ, *StartR, *StepQ, *StepR;
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000786 if (!Numerator->isAffine())
787 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
Brendon Cahoonf9751ad2015-04-22 15:06:40 +0000790 // Bail out if the types do not match.
791 Type *Ty = Denominator->getType();
792 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000793 Ty != StepQ->getType() || Ty != StepR->getType())
794 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
796 Numerator->getNoWrapFlags());
797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
798 Numerator->getNoWrapFlags());
799 }
800
801 void visitAddExpr(const SCEVAddExpr *Numerator) {
802 SmallVector<const SCEV *, 2> Qs, Rs;
803 Type *Ty = Denominator->getType();
804
805 for (const SCEV *Op : Numerator->operands()) {
806 const SCEV *Q, *R;
807 divide(SE, Op, Denominator, &Q, &R);
808
809 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000810 if (Ty != Q->getType() || Ty != R->getType())
811 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000812
813 Qs.push_back(Q);
814 Rs.push_back(R);
815 }
816
817 if (Qs.size() == 1) {
818 Quotient = Qs[0];
819 Remainder = Rs[0];
820 return;
821 }
822
823 Quotient = SE.getAddExpr(Qs);
824 Remainder = SE.getAddExpr(Rs);
825 }
826
827 void visitMulExpr(const SCEVMulExpr *Numerator) {
828 SmallVector<const SCEV *, 2> Qs;
829 Type *Ty = Denominator->getType();
830
831 bool FoundDenominatorTerm = false;
832 for (const SCEV *Op : Numerator->operands()) {
833 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000834 if (Ty != Op->getType())
835 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000836
837 if (FoundDenominatorTerm) {
838 Qs.push_back(Op);
839 continue;
840 }
841
842 // Check whether Denominator divides one of the product operands.
843 const SCEV *Q, *R;
844 divide(SE, Op, Denominator, &Q, &R);
845 if (!R->isZero()) {
846 Qs.push_back(Op);
847 continue;
848 }
849
850 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000851 if (Ty != Q->getType())
852 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000853
854 FoundDenominatorTerm = true;
855 Qs.push_back(Q);
856 }
857
858 if (FoundDenominatorTerm) {
859 Remainder = Zero;
860 if (Qs.size() == 1)
861 Quotient = Qs[0];
862 else
863 Quotient = SE.getMulExpr(Qs);
864 return;
865 }
866
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000867 if (!isa<SCEVUnknown>(Denominator))
868 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000869
870 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
871 ValueToValueMap RewriteMap;
872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
873 cast<SCEVConstant>(Zero)->getValue();
874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
875
876 if (Remainder->isZero()) {
877 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
879 cast<SCEVConstant>(One)->getValue();
880 Quotient =
881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
882 return;
883 }
884
885 // Quotient is (Numerator - Remainder) divided by Denominator.
886 const SCEV *Q, *R;
887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000888 // This SCEV does not seem to simplify: fail the division here.
889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
890 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000891 divide(SE, Diff, Denominator, &Q, &R);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000892 if (R != Zero)
893 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000894 Quotient = Q;
895 }
896
897private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
899 const SCEV *Denominator)
900 : SE(S), Denominator(Denominator) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +0000901 Zero = SE.getZero(Denominator->getType());
902 One = SE.getOne(Denominator->getType());
David Majnemer5d2670c2014-11-17 11:27:45 +0000903
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000904 // We generally do not know how to divide Expr by Denominator. We
905 // initialize the division to a "cannot divide" state to simplify the rest
906 // of the code.
907 cannotDivide(Numerator);
908 }
909
910 // Convenience function for giving up on the division. We set the quotient to
911 // be equal to zero and the remainder to be equal to the numerator.
912 void cannotDivide(const SCEV *Numerator) {
David Majnemer5d2670c2014-11-17 11:27:45 +0000913 Quotient = Zero;
914 Remainder = Numerator;
915 }
916
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000917 ScalarEvolution &SE;
918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000919};
920
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000921}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000922
Chris Lattnerd934c702004-04-02 20:23:17 +0000923//===----------------------------------------------------------------------===//
924// Simple SCEV method implementations
925//===----------------------------------------------------------------------===//
926
Sanjoy Dasf8570812016-05-29 00:38:22 +0000927/// Compute BC(It, K). The result has width W. Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000928static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000929 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000930 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000931 // Handle the simplest case efficiently.
932 if (K == 1)
933 return SE.getTruncateOrZeroExtend(It, ResultTy);
934
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000935 // We are using the following formula for BC(It, K):
936 //
937 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
938 //
Eli Friedman61f67622008-08-04 23:49:06 +0000939 // Suppose, W is the bitwidth of the return value. We must be prepared for
940 // overflow. Hence, we must assure that the result of our computation is
941 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
942 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000943 //
Eli Friedman61f67622008-08-04 23:49:06 +0000944 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000945 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000946 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
947 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000948 //
Eli Friedman61f67622008-08-04 23:49:06 +0000949 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000950 //
Eli Friedman61f67622008-08-04 23:49:06 +0000951 // This formula is trivially equivalent to the previous formula. However,
952 // this formula can be implemented much more efficiently. The trick is that
953 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
954 // arithmetic. To do exact division in modular arithmetic, all we have
955 // to do is multiply by the inverse. Therefore, this step can be done at
956 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000957 //
Eli Friedman61f67622008-08-04 23:49:06 +0000958 // The next issue is how to safely do the division by 2^T. The way this
959 // is done is by doing the multiplication step at a width of at least W + T
960 // bits. This way, the bottom W+T bits of the product are accurate. Then,
961 // when we perform the division by 2^T (which is equivalent to a right shift
962 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
963 // truncated out after the division by 2^T.
964 //
965 // In comparison to just directly using the first formula, this technique
966 // is much more efficient; using the first formula requires W * K bits,
967 // but this formula less than W + K bits. Also, the first formula requires
968 // a division step, whereas this formula only requires multiplies and shifts.
969 //
970 // It doesn't matter whether the subtraction step is done in the calculation
971 // width or the input iteration count's width; if the subtraction overflows,
972 // the result must be zero anyway. We prefer here to do it in the width of
973 // the induction variable because it helps a lot for certain cases; CodeGen
974 // isn't smart enough to ignore the overflow, which leads to much less
975 // efficient code if the width of the subtraction is wider than the native
976 // register width.
977 //
978 // (It's possible to not widen at all by pulling out factors of 2 before
979 // the multiplication; for example, K=2 can be calculated as
980 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
981 // extra arithmetic, so it's not an obvious win, and it gets
982 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000983
Eli Friedman61f67622008-08-04 23:49:06 +0000984 // Protection from insane SCEVs; this bound is conservative,
985 // but it probably doesn't matter.
986 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000987 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000988
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000989 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000990
Eli Friedman61f67622008-08-04 23:49:06 +0000991 // Calculate K! / 2^T and T; we divide out the factors of two before
992 // multiplying for calculating K! / 2^T to avoid overflow.
993 // Other overflow doesn't matter because we only care about the bottom
994 // W bits of the result.
995 APInt OddFactorial(W, 1);
996 unsigned T = 1;
997 for (unsigned i = 3; i <= K; ++i) {
998 APInt Mult(W, i);
999 unsigned TwoFactors = Mult.countTrailingZeros();
1000 T += TwoFactors;
1001 Mult = Mult.lshr(TwoFactors);
1002 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001003 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001004
Eli Friedman61f67622008-08-04 23:49:06 +00001005 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001006 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001007
Dan Gohman8b0a4192010-03-01 17:49:51 +00001008 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001009 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001010
1011 // Calculate the multiplicative inverse of K! / 2^T;
1012 // this multiplication factor will perform the exact division by
1013 // K! / 2^T.
1014 APInt Mod = APInt::getSignedMinValue(W+1);
1015 APInt MultiplyFactor = OddFactorial.zext(W+1);
1016 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1017 MultiplyFactor = MultiplyFactor.trunc(W);
1018
1019 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001020 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001021 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001022 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001023 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001024 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001025 Dividend = SE.getMulExpr(Dividend,
1026 SE.getTruncateOrZeroExtend(S, CalculationTy));
1027 }
1028
1029 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001030 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001031
1032 // Truncate the result, and divide by K! / 2^T.
1033
1034 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1035 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001036}
1037
Sanjoy Dasf8570812016-05-29 00:38:22 +00001038/// Return the value of this chain of recurrences at the specified iteration
1039/// number. We can evaluate this recurrence by multiplying each element in the
1040/// chain by the binomial coefficient corresponding to it. In other words, we
1041/// can evaluate {A,+,B,+,C,+,D} as:
Chris Lattnerd934c702004-04-02 20:23:17 +00001042///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001043/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001044///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001045/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001046///
Dan Gohmanaf752342009-07-07 17:06:11 +00001047const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001048 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001049 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001050 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001051 // The computation is correct in the face of overflow provided that the
1052 // multiplication is performed _after_ the evaluation of the binomial
1053 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001054 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001055 if (isa<SCEVCouldNotCompute>(Coeff))
1056 return Coeff;
1057
1058 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001059 }
1060 return Result;
1061}
1062
Chris Lattnerd934c702004-04-02 20:23:17 +00001063//===----------------------------------------------------------------------===//
1064// SCEV Expression folder implementations
1065//===----------------------------------------------------------------------===//
1066
Dan Gohmanaf752342009-07-07 17:06:11 +00001067const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001068 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001069 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001070 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001071 assert(isSCEVable(Ty) &&
1072 "This is not a conversion to a SCEVable type!");
1073 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001074
Dan Gohman3a302cb2009-07-13 20:50:19 +00001075 FoldingSetNodeID ID;
1076 ID.AddInteger(scTruncate);
1077 ID.AddPointer(Op);
1078 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001079 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001080 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1081
Dan Gohman3423e722009-06-30 20:13:32 +00001082 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001083 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001084 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001085 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001086
Dan Gohman79af8542009-04-22 16:20:48 +00001087 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001088 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001089 return getTruncateExpr(ST->getOperand(), Ty);
1090
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001091 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001092 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001093 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1094
1095 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001096 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001097 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1098
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001099 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
Nick Lewycky2ce28322015-03-20 02:52:23 +00001100 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001101 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1102 SmallVector<const SCEV *, 4> Operands;
1103 bool hasTrunc = false;
1104 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1105 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001106 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1107 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001108 Operands.push_back(S);
1109 }
1110 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001111 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001112 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001113 }
1114
Nick Lewycky5c901f32011-01-19 18:56:00 +00001115 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
Nick Lewyckybe8af482015-03-20 02:25:00 +00001116 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001117 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1118 SmallVector<const SCEV *, 4> Operands;
1119 bool hasTrunc = false;
1120 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1121 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001122 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1123 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5c901f32011-01-19 18:56:00 +00001124 Operands.push_back(S);
1125 }
1126 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001127 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001128 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001129 }
1130
Dan Gohman5a728c92009-06-18 16:24:47 +00001131 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001132 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001133 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00001134 for (const SCEV *Op : AddRec->operands())
1135 Operands.push_back(getTruncateExpr(Op, Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001136 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001137 }
1138
Dan Gohman89dd42a2010-06-25 18:47:08 +00001139 // The cast wasn't folded; create an explicit cast node. We can reuse
1140 // the existing insert position since if we get here, we won't have
1141 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001142 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1143 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001144 UniqueSCEVs.InsertNode(S, IP);
1145 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001146}
1147
Sanjoy Das4153f472015-02-18 01:47:07 +00001148// Get the limit of a recurrence such that incrementing by Step cannot cause
1149// signed overflow as long as the value of the recurrence within the
1150// loop does not exceed this limit before incrementing.
1151static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1152 ICmpInst::Predicate *Pred,
1153 ScalarEvolution *SE) {
1154 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1155 if (SE->isKnownPositive(Step)) {
1156 *Pred = ICmpInst::ICMP_SLT;
1157 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1158 SE->getSignedRange(Step).getSignedMax());
1159 }
1160 if (SE->isKnownNegative(Step)) {
1161 *Pred = ICmpInst::ICMP_SGT;
1162 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1163 SE->getSignedRange(Step).getSignedMin());
1164 }
1165 return nullptr;
1166}
1167
1168// Get the limit of a recurrence such that incrementing by Step cannot cause
1169// unsigned overflow as long as the value of the recurrence within the loop does
1170// not exceed this limit before incrementing.
1171static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1172 ICmpInst::Predicate *Pred,
1173 ScalarEvolution *SE) {
1174 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1175 *Pred = ICmpInst::ICMP_ULT;
1176
1177 return SE->getConstant(APInt::getMinValue(BitWidth) -
1178 SE->getUnsignedRange(Step).getUnsignedMax());
1179}
1180
1181namespace {
1182
1183struct ExtendOpTraitsBase {
1184 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1185};
1186
1187// Used to make code generic over signed and unsigned overflow.
1188template <typename ExtendOp> struct ExtendOpTraits {
1189 // Members present:
1190 //
1191 // static const SCEV::NoWrapFlags WrapType;
1192 //
1193 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1194 //
1195 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1196 // ICmpInst::Predicate *Pred,
1197 // ScalarEvolution *SE);
1198};
1199
1200template <>
1201struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1202 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1203
1204 static const GetExtendExprTy GetExtendExpr;
1205
1206 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1207 ICmpInst::Predicate *Pred,
1208 ScalarEvolution *SE) {
1209 return getSignedOverflowLimitForStep(Step, Pred, SE);
1210 }
1211};
1212
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001213const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001214 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1215
1216template <>
1217struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1218 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1219
1220 static const GetExtendExprTy GetExtendExpr;
1221
1222 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1223 ICmpInst::Predicate *Pred,
1224 ScalarEvolution *SE) {
1225 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1226 }
1227};
1228
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001229const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001230 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
Alexander Kornienkof00654e2015-06-23 09:49:53 +00001231}
Sanjoy Das4153f472015-02-18 01:47:07 +00001232
1233// The recurrence AR has been shown to have no signed/unsigned wrap or something
1234// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1235// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1236// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1237// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1238// expression "Step + sext/zext(PreIncAR)" is congruent with
1239// "sext/zext(PostIncAR)"
1240template <typename ExtendOpTy>
1241static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1242 ScalarEvolution *SE) {
1243 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1244 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1245
1246 const Loop *L = AR->getLoop();
1247 const SCEV *Start = AR->getStart();
1248 const SCEV *Step = AR->getStepRecurrence(*SE);
1249
1250 // Check for a simple looking step prior to loop entry.
1251 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1252 if (!SA)
1253 return nullptr;
1254
1255 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1256 // subtraction is expensive. For this purpose, perform a quick and dirty
1257 // difference, by checking for Step in the operand list.
1258 SmallVector<const SCEV *, 4> DiffOps;
1259 for (const SCEV *Op : SA->operands())
1260 if (Op != Step)
1261 DiffOps.push_back(Op);
1262
1263 if (DiffOps.size() == SA->getNumOperands())
1264 return nullptr;
1265
1266 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1267 // `Step`:
1268
1269 // 1. NSW/NUW flags on the step increment.
Sanjoy Das0714e3e2015-10-23 06:33:47 +00001270 auto PreStartFlags =
1271 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1272 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
Sanjoy Das4153f472015-02-18 01:47:07 +00001273 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1274 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1275
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001276 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1277 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001278 //
1279
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001280 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1281 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1282 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001283 return PreStart;
1284
1285 // 2. Direct overflow check on the step operation's expression.
1286 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1287 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1288 const SCEV *OperandExtendedStart =
1289 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1290 (SE->*GetExtendExpr)(Step, WideTy));
1291 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1292 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1293 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1294 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1295 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1296 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1297 }
1298 return PreStart;
1299 }
1300
1301 // 3. Loop precondition.
1302 ICmpInst::Predicate Pred;
1303 const SCEV *OverflowLimit =
1304 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1305
1306 if (OverflowLimit &&
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001307 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
Sanjoy Das4153f472015-02-18 01:47:07 +00001308 return PreStart;
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001309
Sanjoy Das4153f472015-02-18 01:47:07 +00001310 return nullptr;
1311}
1312
1313// Get the normalized zero or sign extended expression for this AddRec's Start.
1314template <typename ExtendOpTy>
1315static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1316 ScalarEvolution *SE) {
1317 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1318
1319 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1320 if (!PreStart)
1321 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1322
1323 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1324 (SE->*GetExtendExpr)(PreStart, Ty));
1325}
1326
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001327// Try to prove away overflow by looking at "nearby" add recurrences. A
1328// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1329// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1330//
1331// Formally:
1332//
1333// {S,+,X} == {S-T,+,X} + T
1334// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1335//
1336// If ({S-T,+,X} + T) does not overflow ... (1)
1337//
1338// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1339//
1340// If {S-T,+,X} does not overflow ... (2)
1341//
1342// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1343// == {Ext(S-T)+Ext(T),+,Ext(X)}
1344//
1345// If (S-T)+T does not overflow ... (3)
1346//
1347// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1348// == {Ext(S),+,Ext(X)} == LHS
1349//
1350// Thus, if (1), (2) and (3) are true for some T, then
1351// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1352//
1353// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1354// does not overflow" restricted to the 0th iteration. Therefore we only need
1355// to check for (1) and (2).
1356//
1357// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1358// is `Delta` (defined below).
1359//
1360template <typename ExtendOpTy>
1361bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1362 const SCEV *Step,
1363 const Loop *L) {
1364 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1365
1366 // We restrict `Start` to a constant to prevent SCEV from spending too much
1367 // time here. It is correct (but more expensive) to continue with a
1368 // non-constant `Start` and do a general SCEV subtraction to compute
1369 // `PreStart` below.
1370 //
1371 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1372 if (!StartC)
1373 return false;
1374
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001375 APInt StartAI = StartC->getAPInt();
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001376
1377 for (unsigned Delta : {-2, -1, 1, 2}) {
1378 const SCEV *PreStart = getConstant(StartAI - Delta);
1379
Sanjoy Das42801102015-10-23 06:57:21 +00001380 FoldingSetNodeID ID;
1381 ID.AddInteger(scAddRecExpr);
1382 ID.AddPointer(PreStart);
1383 ID.AddPointer(Step);
1384 ID.AddPointer(L);
1385 void *IP = nullptr;
1386 const auto *PreAR =
1387 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1388
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001389 // Give up if we don't already have the add recurrence we need because
1390 // actually constructing an add recurrence is relatively expensive.
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001391 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1392 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1393 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1394 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1395 DeltaS, &Pred, this);
1396 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1397 return true;
1398 }
1399 }
1400
1401 return false;
1402}
1403
Dan Gohmanaf752342009-07-07 17:06:11 +00001404const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001405 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001406 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001407 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001408 assert(isSCEVable(Ty) &&
1409 "This is not a conversion to a SCEVable type!");
1410 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001411
Dan Gohman3423e722009-06-30 20:13:32 +00001412 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001413 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1414 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001415 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001416
Dan Gohman79af8542009-04-22 16:20:48 +00001417 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001418 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001419 return getZeroExtendExpr(SZ->getOperand(), Ty);
1420
Dan Gohman74a0ba12009-07-13 20:55:53 +00001421 // Before doing any expensive analysis, check to see if we've already
1422 // computed a SCEV for this Op and Ty.
1423 FoldingSetNodeID ID;
1424 ID.AddInteger(scZeroExtend);
1425 ID.AddPointer(Op);
1426 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001427 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001428 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1429
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001430 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1431 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1432 // It's possible the bits taken off by the truncate were all zero bits. If
1433 // so, we should be able to simplify this further.
1434 const SCEV *X = ST->getOperand();
1435 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001436 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1437 unsigned NewBits = getTypeSizeInBits(Ty);
1438 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001439 CR.zextOrTrunc(NewBits)))
1440 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001441 }
1442
Dan Gohman76466372009-04-27 20:16:15 +00001443 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001444 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001445 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001446 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001447 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001448 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001449 const SCEV *Start = AR->getStart();
1450 const SCEV *Step = AR->getStepRecurrence(*this);
1451 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1452 const Loop *L = AR->getLoop();
1453
Sanjoy Das724f5cf2016-03-03 18:31:29 +00001454 if (!AR->hasNoUnsignedWrap()) {
1455 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1456 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1457 }
1458
Dan Gohman62ef6a72009-07-25 01:22:26 +00001459 // If we have special knowledge that this addrec won't overflow,
1460 // we don't need to do any further analysis.
Sanjoy Das76c48e02016-02-04 18:21:54 +00001461 if (AR->hasNoUnsignedWrap())
Sanjoy Das4153f472015-02-18 01:47:07 +00001462 return getAddRecExpr(
1463 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1464 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001465
Dan Gohman76466372009-04-27 20:16:15 +00001466 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1467 // Note that this serves two purposes: It filters out loops that are
1468 // simply not analyzable, and it covers the case where this code is
1469 // being called from within backedge-taken count analysis, such that
1470 // attempting to ask for the backedge-taken count would likely result
1471 // in infinite recursion. In the later case, the analysis code will
1472 // cope with a conservative value, and it will take care to purge
1473 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001474 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001475 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001476 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001477 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001478
1479 // Check whether the backedge-taken count can be losslessly casted to
1480 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001481 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001482 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001483 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001484 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1485 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001486 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001487 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001488 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001489 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1490 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1491 const SCEV *WideMaxBECount =
1492 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001493 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001494 getAddExpr(WideStart,
1495 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001496 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001497 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001498 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1499 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001500 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001501 return getAddRecExpr(
1502 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1503 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001504 }
Dan Gohman76466372009-04-27 20:16:15 +00001505 // Similar to above, only this time treat the step value as signed.
1506 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001507 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001508 getAddExpr(WideStart,
1509 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001510 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001511 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001512 // Cache knowledge of AR NW, which is propagated to this AddRec.
1513 // Negative step causes unsigned wrap, but it still can't self-wrap.
1514 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001515 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001516 return getAddRecExpr(
1517 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1518 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001519 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001520 }
Sanjoy Dasf5d40d52016-05-17 17:51:14 +00001521 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001522
Sanjoy Dasf5d40d52016-05-17 17:51:14 +00001523 // Normally, in the cases we can prove no-overflow via a
1524 // backedge guarding condition, we can also compute a backedge
1525 // taken count for the loop. The exceptions are assumptions and
1526 // guards present in the loop -- SCEV is not great at exploiting
1527 // these to compute max backedge taken counts, but can still use
1528 // these to prove lack of overflow. Use this fact to avoid
1529 // doing extra work that may not pay off.
1530 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1531 !AC.assumptions().empty()) {
1532 // If the backedge is guarded by a comparison with the pre-inc
1533 // value the addrec is safe. Also, if the entry is guarded by
1534 // a comparison with the start value and the backedge is
1535 // guarded by a comparison with the post-inc value, the addrec
1536 // is safe.
Dan Gohmane65c9172009-07-13 21:35:55 +00001537 if (isKnownPositive(Step)) {
1538 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1539 getUnsignedRange(Step).getUnsignedMax());
1540 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001541 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001542 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001543 AR->getPostIncExpr(*this), N))) {
Sanjoy Dasf5d40d52016-05-17 17:51:14 +00001544 // Cache knowledge of AR NUW, which is propagated to this
1545 // AddRec.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001546 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001547 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001548 return getAddRecExpr(
1549 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1550 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001551 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001552 } else if (isKnownNegative(Step)) {
1553 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1554 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001555 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1556 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001557 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001558 AR->getPostIncExpr(*this), N))) {
Sanjoy Dasf5d40d52016-05-17 17:51:14 +00001559 // Cache knowledge of AR NW, which is propagated to this
1560 // AddRec. Negative step causes unsigned wrap, but it
1561 // still can't self-wrap.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001562 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1563 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001564 return getAddRecExpr(
1565 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1566 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001567 }
Dan Gohman76466372009-04-27 20:16:15 +00001568 }
1569 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001570
1571 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1572 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1573 return getAddRecExpr(
1574 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1575 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1576 }
Dan Gohman76466372009-04-27 20:16:15 +00001577 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001578
Sanjoy Daseeca9f62015-10-22 19:57:38 +00001579 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1580 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
Sanjoy Das76c48e02016-02-04 18:21:54 +00001581 if (SA->hasNoUnsignedWrap()) {
Sanjoy Daseeca9f62015-10-22 19:57:38 +00001582 // If the addition does not unsign overflow then we can, by definition,
1583 // commute the zero extension with the addition operation.
1584 SmallVector<const SCEV *, 4> Ops;
1585 for (const auto *Op : SA->operands())
1586 Ops.push_back(getZeroExtendExpr(Op, Ty));
1587 return getAddExpr(Ops, SCEV::FlagNUW);
1588 }
1589 }
1590
Dan Gohman74a0ba12009-07-13 20:55:53 +00001591 // The cast wasn't folded; create an explicit cast node.
1592 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001593 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001594 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1595 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001596 UniqueSCEVs.InsertNode(S, IP);
1597 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001598}
1599
Dan Gohmanaf752342009-07-07 17:06:11 +00001600const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001601 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001602 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001603 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001604 assert(isSCEVable(Ty) &&
1605 "This is not a conversion to a SCEVable type!");
1606 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001607
Dan Gohman3423e722009-06-30 20:13:32 +00001608 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001609 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1610 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001611 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001612
Dan Gohman79af8542009-04-22 16:20:48 +00001613 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001614 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001615 return getSignExtendExpr(SS->getOperand(), Ty);
1616
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001617 // sext(zext(x)) --> zext(x)
1618 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1619 return getZeroExtendExpr(SZ->getOperand(), Ty);
1620
Dan Gohman74a0ba12009-07-13 20:55:53 +00001621 // Before doing any expensive analysis, check to see if we've already
1622 // computed a SCEV for this Op and Ty.
1623 FoldingSetNodeID ID;
1624 ID.AddInteger(scSignExtend);
1625 ID.AddPointer(Op);
1626 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001627 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001628 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1629
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001630 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1631 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1632 // It's possible the bits taken off by the truncate were all sign bits. If
1633 // so, we should be able to simplify this further.
1634 const SCEV *X = ST->getOperand();
1635 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001636 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1637 unsigned NewBits = getTypeSizeInBits(Ty);
1638 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001639 CR.sextOrTrunc(NewBits)))
1640 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001641 }
1642
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001643 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001644 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001645 if (SA->getNumOperands() == 2) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001646 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1647 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001648 if (SMul && SC1) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001649 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001650 const APInt &C1 = SC1->getAPInt();
1651 const APInt &C2 = SC2->getAPInt();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001652 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001653 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001654 return getAddExpr(getSignExtendExpr(SC1, Ty),
1655 getSignExtendExpr(SMul, Ty));
1656 }
1657 }
1658 }
Sanjoy Dasa060e602015-10-22 19:57:25 +00001659
1660 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
Sanjoy Das76c48e02016-02-04 18:21:54 +00001661 if (SA->hasNoSignedWrap()) {
Sanjoy Dasa060e602015-10-22 19:57:25 +00001662 // If the addition does not sign overflow then we can, by definition,
1663 // commute the sign extension with the addition operation.
1664 SmallVector<const SCEV *, 4> Ops;
1665 for (const auto *Op : SA->operands())
1666 Ops.push_back(getSignExtendExpr(Op, Ty));
1667 return getAddExpr(Ops, SCEV::FlagNSW);
1668 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001669 }
Dan Gohman76466372009-04-27 20:16:15 +00001670 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001671 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001672 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001673 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001674 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001675 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001676 const SCEV *Start = AR->getStart();
1677 const SCEV *Step = AR->getStepRecurrence(*this);
1678 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1679 const Loop *L = AR->getLoop();
1680
Sanjoy Das724f5cf2016-03-03 18:31:29 +00001681 if (!AR->hasNoSignedWrap()) {
1682 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1683 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1684 }
1685
Dan Gohman62ef6a72009-07-25 01:22:26 +00001686 // If we have special knowledge that this addrec won't overflow,
1687 // we don't need to do any further analysis.
Sanjoy Das76c48e02016-02-04 18:21:54 +00001688 if (AR->hasNoSignedWrap())
Sanjoy Das4153f472015-02-18 01:47:07 +00001689 return getAddRecExpr(
1690 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1691 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001692
Dan Gohman76466372009-04-27 20:16:15 +00001693 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1694 // Note that this serves two purposes: It filters out loops that are
1695 // simply not analyzable, and it covers the case where this code is
1696 // being called from within backedge-taken count analysis, such that
1697 // attempting to ask for the backedge-taken count would likely result
1698 // in infinite recursion. In the later case, the analysis code will
1699 // cope with a conservative value, and it will take care to purge
1700 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001701 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001702 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001703 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001704 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001705
1706 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001707 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001708 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001709 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001710 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001711 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1712 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001713 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001714 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001715 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001716 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1717 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1718 const SCEV *WideMaxBECount =
1719 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001720 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001721 getAddExpr(WideStart,
1722 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001723 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001724 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001725 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1726 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001727 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001728 return getAddRecExpr(
1729 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1730 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001731 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001732 // Similar to above, only this time treat the step value as unsigned.
1733 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001734 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001735 getAddExpr(WideStart,
1736 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001737 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001738 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001739 // If AR wraps around then
1740 //
1741 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1742 // => SAdd != OperandExtendedAdd
1743 //
1744 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1745 // (SAdd == OperandExtendedAdd => AR is NW)
1746
1747 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1748
Dan Gohman8c129d72009-07-16 17:34:36 +00001749 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001750 return getAddRecExpr(
1751 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1752 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001753 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001754 }
Sanjoy Das787c2462016-05-11 17:41:26 +00001755 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001756
Sanjoy Das787c2462016-05-11 17:41:26 +00001757 // Normally, in the cases we can prove no-overflow via a
1758 // backedge guarding condition, we can also compute a backedge
1759 // taken count for the loop. The exceptions are assumptions and
1760 // guards present in the loop -- SCEV is not great at exploiting
1761 // these to compute max backedge taken counts, but can still use
1762 // these to prove lack of overflow. Use this fact to avoid
1763 // doing extra work that may not pay off.
1764
1765 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1766 !AC.assumptions().empty()) {
1767 // If the backedge is guarded by a comparison with the pre-inc
1768 // value the addrec is safe. Also, if the entry is guarded by
1769 // a comparison with the start value and the backedge is
1770 // guarded by a comparison with the post-inc value, the addrec
1771 // is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001772 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001773 const SCEV *OverflowLimit =
1774 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001775 if (OverflowLimit &&
1776 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1777 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1778 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1779 OverflowLimit)))) {
1780 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1781 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001782 return getAddRecExpr(
1783 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1784 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001785 }
1786 }
Sanjoy Das787c2462016-05-11 17:41:26 +00001787
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001788 // If Start and Step are constants, check if we can apply this
1789 // transformation:
1790 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001791 auto *SC1 = dyn_cast<SCEVConstant>(Start);
1792 auto *SC2 = dyn_cast<SCEVConstant>(Step);
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001793 if (SC1 && SC2) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001794 const APInt &C1 = SC1->getAPInt();
1795 const APInt &C2 = SC2->getAPInt();
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001796 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1797 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001798 Start = getSignExtendExpr(Start, Ty);
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001799 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1800 AR->getNoWrapFlags());
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001801 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1802 }
1803 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001804
1805 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1806 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1807 return getAddRecExpr(
1808 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1809 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1810 }
Dan Gohman76466372009-04-27 20:16:15 +00001811 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001812
Sanjoy Das11ef6062016-03-03 18:31:23 +00001813 // If the input value is provably positive and we could not simplify
1814 // away the sext build a zext instead.
1815 if (isKnownNonNegative(Op))
1816 return getZeroExtendExpr(Op, Ty);
1817
Dan Gohman74a0ba12009-07-13 20:55:53 +00001818 // The cast wasn't folded; create an explicit cast node.
1819 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001820 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001821 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1822 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001823 UniqueSCEVs.InsertNode(S, IP);
1824 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001825}
1826
Dan Gohman8db2edc2009-06-13 15:56:47 +00001827/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1828/// unspecified bits out to the given type.
1829///
Dan Gohmanaf752342009-07-07 17:06:11 +00001830const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001831 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001832 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1833 "This is not an extending conversion!");
1834 assert(isSCEVable(Ty) &&
1835 "This is not a conversion to a SCEVable type!");
1836 Ty = getEffectiveSCEVType(Ty);
1837
1838 // Sign-extend negative constants.
1839 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001840 if (SC->getAPInt().isNegative())
Dan Gohman8db2edc2009-06-13 15:56:47 +00001841 return getSignExtendExpr(Op, Ty);
1842
1843 // Peel off a truncate cast.
1844 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001845 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001846 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1847 return getAnyExtendExpr(NewOp, Ty);
1848 return getTruncateOrNoop(NewOp, Ty);
1849 }
1850
1851 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001852 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001853 if (!isa<SCEVZeroExtendExpr>(ZExt))
1854 return ZExt;
1855
1856 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001857 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001858 if (!isa<SCEVSignExtendExpr>(SExt))
1859 return SExt;
1860
Dan Gohman51ad99d2010-01-21 02:09:26 +00001861 // Force the cast to be folded into the operands of an addrec.
1862 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1863 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001864 for (const SCEV *Op : AR->operands())
1865 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001866 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001867 }
1868
Dan Gohman8db2edc2009-06-13 15:56:47 +00001869 // If the expression is obviously signed, use the sext cast value.
1870 if (isa<SCEVSMaxExpr>(Op))
1871 return SExt;
1872
1873 // Absent any other information, use the zext cast value.
1874 return ZExt;
1875}
1876
Sanjoy Dasf8570812016-05-29 00:38:22 +00001877/// Process the given Ops list, which is a list of operands to be added under
1878/// the given scale, update the given map. This is a helper function for
1879/// getAddRecExpr. As an example of what it does, given a sequence of operands
1880/// that would form an add expression like this:
Dan Gohman038d02e2009-06-14 22:58:51 +00001881///
Tobias Grosserba49e422014-03-05 10:37:17 +00001882/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001883///
1884/// where A and B are constants, update the map with these values:
1885///
1886/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1887///
1888/// and add 13 + A*B*29 to AccumulatedConstant.
1889/// This will allow getAddRecExpr to produce this:
1890///
1891/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1892///
1893/// This form often exposes folding opportunities that are hidden in
1894/// the original operand list.
1895///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001896/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001897/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1898/// the common case where no interesting opportunities are present, and
1899/// is also used as a check to avoid infinite recursion.
1900///
1901static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001902CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001903 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001904 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001905 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001906 const APInt &Scale,
1907 ScalarEvolution &SE) {
1908 bool Interesting = false;
1909
Dan Gohman45073042010-06-18 19:12:32 +00001910 // Iterate over the add operands. They are sorted, with constants first.
1911 unsigned i = 0;
1912 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1913 ++i;
1914 // Pull a buried constant out to the outside.
1915 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1916 Interesting = true;
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001917 AccumulatedConstant += Scale * C->getAPInt();
Dan Gohman45073042010-06-18 19:12:32 +00001918 }
1919
1920 // Next comes everything else. We're especially interested in multiplies
1921 // here, but they're in the middle, so just visit the rest with one loop.
1922 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001923 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1924 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1925 APInt NewScale =
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001926 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
Dan Gohman038d02e2009-06-14 22:58:51 +00001927 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1928 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001929 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001930 Interesting |=
1931 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001932 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001933 NewScale, SE);
1934 } else {
1935 // A multiplication of a constant with some other value. Update
1936 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001937 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1938 const SCEV *Key = SE.getMulExpr(MulOps);
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00001939 auto Pair = M.insert({Key, NewScale});
Dan Gohman038d02e2009-06-14 22:58:51 +00001940 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001941 NewOps.push_back(Pair.first->first);
1942 } else {
1943 Pair.first->second += NewScale;
1944 // The map already had an entry for this value, which may indicate
1945 // a folding opportunity.
1946 Interesting = true;
1947 }
1948 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001949 } else {
1950 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001951 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00001952 M.insert({Ops[i], Scale});
Dan Gohman038d02e2009-06-14 22:58:51 +00001953 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001954 NewOps.push_back(Pair.first->first);
1955 } else {
1956 Pair.first->second += Scale;
1957 // The map already had an entry for this value, which may indicate
1958 // a folding opportunity.
1959 Interesting = true;
1960 }
1961 }
1962 }
1963
1964 return Interesting;
1965}
1966
Sanjoy Das81401d42015-01-10 23:41:24 +00001967// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1968// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1969// can't-overflow flags for the operation if possible.
1970static SCEV::NoWrapFlags
1971StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1972 const SmallVectorImpl<const SCEV *> &Ops,
Sanjoy Das8f274152015-10-22 19:57:19 +00001973 SCEV::NoWrapFlags Flags) {
Sanjoy Das81401d42015-01-10 23:41:24 +00001974 using namespace std::placeholders;
Sanjoy Das8f274152015-10-22 19:57:19 +00001975 typedef OverflowingBinaryOperator OBO;
Sanjoy Das81401d42015-01-10 23:41:24 +00001976
1977 bool CanAnalyze =
1978 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1979 (void)CanAnalyze;
1980 assert(CanAnalyze && "don't call from other places!");
1981
1982 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1983 SCEV::NoWrapFlags SignOrUnsignWrap =
Sanjoy Das8f274152015-10-22 19:57:19 +00001984 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001985
1986 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Sanjoy Das9b0015f2015-11-29 23:40:57 +00001987 auto IsKnownNonNegative = [&](const SCEV *S) {
1988 return SE->isKnownNonNegative(S);
1989 };
Sanjoy Das81401d42015-01-10 23:41:24 +00001990
Sanjoy Das3b827c72015-11-29 23:40:53 +00001991 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
Sanjoy Das8f274152015-10-22 19:57:19 +00001992 Flags =
1993 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001994
Sanjoy Das8f274152015-10-22 19:57:19 +00001995 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1996
1997 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1998 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1999
2000 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
2001 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
2002
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002003 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
Sanjoy Das8f274152015-10-22 19:57:19 +00002004 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
Sanjoy Das5079f622016-02-22 16:13:02 +00002005 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2006 Instruction::Add, C, OBO::NoSignedWrap);
Sanjoy Das8f274152015-10-22 19:57:19 +00002007 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2008 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2009 }
2010 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
Sanjoy Das5079f622016-02-22 16:13:02 +00002011 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2012 Instruction::Add, C, OBO::NoUnsignedWrap);
Sanjoy Das8f274152015-10-22 19:57:19 +00002013 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2014 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2015 }
2016 }
2017
2018 return Flags;
Sanjoy Das81401d42015-01-10 23:41:24 +00002019}
2020
Sanjoy Dasf8570812016-05-29 00:38:22 +00002021/// Get a canonical add expression, or something simpler if possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002022const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002023 SCEV::NoWrapFlags Flags) {
2024 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2025 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002026 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00002027 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002028#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002029 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002030 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00002031 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002032 "SCEVAddExpr operand types don't match!");
2033#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002034
2035 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002036 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002037
Sanjoy Das64895612015-10-09 02:44:45 +00002038 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2039
Chris Lattnerd934c702004-04-02 20:23:17 +00002040 // If there are any constants, fold them together.
2041 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002042 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002043 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00002044 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002045 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002046 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002047 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
Dan Gohman011cf682009-06-14 22:53:57 +00002048 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002049 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002050 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002051 }
2052
2053 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002054 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002055 Ops.erase(Ops.begin());
2056 --Idx;
2057 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002058
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002059 if (Ops.size() == 1) return Ops[0];
2060 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002061
Dan Gohman15871f22010-08-27 21:39:59 +00002062 // Okay, check to see if the same value occurs in the operand list more than
2063 // once. If so, merge them together into an multiply expression. Since we
2064 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00002065 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00002066 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00002067 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00002068 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00002069 // Scan ahead to count how many equal operands there are.
2070 unsigned Count = 2;
2071 while (i+Count != e && Ops[i+Count] == Ops[i])
2072 ++Count;
2073 // Merge the values into a multiply.
2074 const SCEV *Scale = getConstant(Ty, Count);
2075 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2076 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002077 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002078 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002079 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002080 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002081 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002082 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002083 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002084 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002085
Dan Gohman2e55cc52009-05-08 21:03:19 +00002086 // Check for truncates. If all the operands are truncated from the same
2087 // type, see if factoring out the truncate would permit the result to be
2088 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2089 // if the contents of the resulting outer trunc fold to something simple.
2090 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2091 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002092 Type *DstType = Trunc->getType();
2093 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002094 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002095 bool Ok = true;
2096 // Check all the operands to see if they can be represented in the
2097 // source type of the truncate.
2098 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2099 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2100 if (T->getOperand()->getType() != SrcType) {
2101 Ok = false;
2102 break;
2103 }
2104 LargeOps.push_back(T->getOperand());
2105 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002106 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002107 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002108 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002109 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2110 if (const SCEVTruncateExpr *T =
2111 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2112 if (T->getOperand()->getType() != SrcType) {
2113 Ok = false;
2114 break;
2115 }
2116 LargeMulOps.push_back(T->getOperand());
Sanjoy Das63914592015-10-18 00:29:20 +00002117 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002118 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002119 } else {
2120 Ok = false;
2121 break;
2122 }
2123 }
2124 if (Ok)
2125 LargeOps.push_back(getMulExpr(LargeMulOps));
2126 } else {
2127 Ok = false;
2128 break;
2129 }
2130 }
2131 if (Ok) {
2132 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002133 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002134 // If it folds to something simple, use it. Otherwise, don't.
2135 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2136 return getTruncateExpr(Fold, DstType);
2137 }
2138 }
2139
2140 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002141 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2142 ++Idx;
2143
2144 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002145 if (Idx < Ops.size()) {
2146 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002147 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002148 // If we have an add, expand the add operands onto the end of the operands
2149 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002150 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002151 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002152 DeletedAdd = true;
2153 }
2154
2155 // If we deleted at least one add, we added operands to the end of the list,
2156 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002157 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002158 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002159 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002160 }
2161
2162 // Skip over the add expression until we get to a multiply.
2163 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2164 ++Idx;
2165
Dan Gohman038d02e2009-06-14 22:58:51 +00002166 // Check to see if there are any folding opportunities present with
2167 // operands multiplied by constant values.
2168 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2169 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002170 DenseMap<const SCEV *, APInt> M;
2171 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002172 APInt AccumulatedConstant(BitWidth, 0);
2173 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002174 Ops.data(), Ops.size(),
2175 APInt(BitWidth, 1), *this)) {
Sanjoy Das7d752672015-12-08 04:32:54 +00002176 struct APIntCompare {
2177 bool operator()(const APInt &LHS, const APInt &RHS) const {
2178 return LHS.ult(RHS);
2179 }
2180 };
2181
Dan Gohman038d02e2009-06-14 22:58:51 +00002182 // Some interesting folding opportunity is present, so its worthwhile to
2183 // re-generate the operands list. Group the operands by constant scale,
2184 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002185 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002186 for (const SCEV *NewOp : NewOps)
2187 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
Dan Gohman038d02e2009-06-14 22:58:51 +00002188 // Re-generate the operands list.
2189 Ops.clear();
2190 if (AccumulatedConstant != 0)
2191 Ops.push_back(getConstant(AccumulatedConstant));
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002192 for (auto &MulOp : MulOpLists)
2193 if (MulOp.first != 0)
2194 Ops.push_back(getMulExpr(getConstant(MulOp.first),
2195 getAddExpr(MulOp.second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002196 if (Ops.empty())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002197 return getZero(Ty);
Dan Gohman038d02e2009-06-14 22:58:51 +00002198 if (Ops.size() == 1)
2199 return Ops[0];
2200 return getAddExpr(Ops);
2201 }
2202 }
2203
Chris Lattnerd934c702004-04-02 20:23:17 +00002204 // If we are adding something to a multiply expression, make sure the
2205 // something is not already an operand of the multiply. If so, merge it into
2206 // the multiply.
2207 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002208 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002209 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002210 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002211 if (isa<SCEVConstant>(MulOpSCEV))
2212 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002213 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002214 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002215 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002216 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002217 if (Mul->getNumOperands() != 2) {
2218 // If the multiply has more than two operands, we must get the
2219 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002220 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2221 Mul->op_begin()+MulOp);
2222 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002223 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002224 }
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002225 const SCEV *One = getOne(Ty);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002226 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002227 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002228 if (Ops.size() == 2) return OuterMul;
2229 if (AddOp < Idx) {
2230 Ops.erase(Ops.begin()+AddOp);
2231 Ops.erase(Ops.begin()+Idx-1);
2232 } else {
2233 Ops.erase(Ops.begin()+Idx);
2234 Ops.erase(Ops.begin()+AddOp-1);
2235 }
2236 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002237 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002238 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002239
Chris Lattnerd934c702004-04-02 20:23:17 +00002240 // Check this multiply against other multiplies being added together.
2241 for (unsigned OtherMulIdx = Idx+1;
2242 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2243 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002244 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002245 // If MulOp occurs in OtherMul, we can fold the two multiplies
2246 // together.
2247 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2248 OMulOp != e; ++OMulOp)
2249 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2250 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002251 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002252 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002253 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002254 Mul->op_begin()+MulOp);
2255 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002256 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002257 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002258 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002259 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002260 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002261 OtherMul->op_begin()+OMulOp);
2262 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002263 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002264 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002265 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2266 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002267 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002268 Ops.erase(Ops.begin()+Idx);
2269 Ops.erase(Ops.begin()+OtherMulIdx-1);
2270 Ops.push_back(OuterMul);
2271 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002272 }
2273 }
2274 }
2275 }
2276
2277 // If there are any add recurrences in the operands list, see if any other
2278 // added values are loop invariant. If so, we can fold them into the
2279 // recurrence.
2280 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2281 ++Idx;
2282
2283 // Scan over all recurrences, trying to fold loop invariants into them.
2284 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2285 // Scan all of the other operands to this add and add them to the vector if
2286 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002287 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002288 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002289 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002290 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002291 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002292 LIOps.push_back(Ops[i]);
2293 Ops.erase(Ops.begin()+i);
2294 --i; --e;
2295 }
2296
2297 // If we found some loop invariants, fold them into the recurrence.
2298 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002299 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002300 LIOps.push_back(AddRec->getStart());
2301
Dan Gohmanaf752342009-07-07 17:06:11 +00002302 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002303 AddRec->op_end());
Oleg Ranevskyyeb4ecca2016-05-25 13:01:33 +00002304 // This follows from the fact that the no-wrap flags on the outer add
2305 // expression are applicable on the 0th iteration, when the add recurrence
2306 // will be equal to its start value.
2307 AddRecOps[0] = getAddExpr(LIOps, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002308
Dan Gohman16206132010-06-30 07:16:37 +00002309 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002310 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002311 // Always propagate NW.
2312 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002313 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002314
Chris Lattnerd934c702004-04-02 20:23:17 +00002315 // If all of the other operands were loop invariant, we are done.
2316 if (Ops.size() == 1) return NewRec;
2317
Nick Lewyckydb66b822011-09-06 05:08:09 +00002318 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002319 for (unsigned i = 0;; ++i)
2320 if (Ops[i] == AddRec) {
2321 Ops[i] = NewRec;
2322 break;
2323 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002324 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002325 }
2326
2327 // Okay, if there weren't any loop invariants to be folded, check to see if
2328 // there are multiple AddRec's with the same loop induction variable being
2329 // added together. If so, we can fold them.
2330 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002331 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2332 ++OtherIdx)
2333 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2334 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2335 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2336 AddRec->op_end());
2337 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2338 ++OtherIdx)
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002339 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002340 if (OtherAddRec->getLoop() == AddRecLoop) {
2341 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2342 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002343 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002344 AddRecOps.append(OtherAddRec->op_begin()+i,
2345 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002346 break;
2347 }
Dan Gohman028c1812010-08-29 14:53:34 +00002348 AddRecOps[i] = getAddExpr(AddRecOps[i],
2349 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002350 }
2351 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002352 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002353 // Step size has changed, so we cannot guarantee no self-wraparound.
2354 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002355 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002356 }
2357
2358 // Otherwise couldn't fold anything into this recurrence. Move onto the
2359 // next one.
2360 }
2361
2362 // Okay, it looks like we really DO need an add expr. Check to see if we
2363 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002364 FoldingSetNodeID ID;
2365 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002366 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2367 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002368 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002369 SCEVAddExpr *S =
2370 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2371 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002372 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2373 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002374 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2375 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002376 UniqueSCEVs.InsertNode(S, IP);
2377 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002378 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002379 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002380}
2381
Nick Lewycky287682e2011-10-04 06:51:26 +00002382static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2383 uint64_t k = i*j;
2384 if (j > 1 && k / j != i) Overflow = true;
2385 return k;
2386}
2387
2388/// Compute the result of "n choose k", the binomial coefficient. If an
2389/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002390/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002391static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2392 // We use the multiplicative formula:
2393 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2394 // At each iteration, we take the n-th term of the numeral and divide by the
2395 // (k-n)th term of the denominator. This division will always produce an
2396 // integral result, and helps reduce the chance of overflow in the
2397 // intermediate computations. However, we can still overflow even when the
2398 // final result would fit.
2399
2400 if (n == 0 || n == k) return 1;
2401 if (k > n) return 0;
2402
2403 if (k > n/2)
2404 k = n-k;
2405
2406 uint64_t r = 1;
2407 for (uint64_t i = 1; i <= k; ++i) {
2408 r = umul_ov(r, n-(i-1), Overflow);
2409 r /= i;
2410 }
2411 return r;
2412}
2413
Nick Lewycky05044c22014-12-06 00:45:50 +00002414/// Determine if any of the operands in this SCEV are a constant or if
2415/// any of the add or multiply expressions in this SCEV contain a constant.
2416static bool containsConstantSomewhere(const SCEV *StartExpr) {
2417 SmallVector<const SCEV *, 4> Ops;
2418 Ops.push_back(StartExpr);
2419 while (!Ops.empty()) {
2420 const SCEV *CurrentExpr = Ops.pop_back_val();
2421 if (isa<SCEVConstant>(*CurrentExpr))
2422 return true;
2423
2424 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2425 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002426 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002427 }
2428 }
2429 return false;
2430}
2431
Sanjoy Dasf8570812016-05-29 00:38:22 +00002432/// Get a canonical multiply expression, or something simpler if possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002433const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002434 SCEV::NoWrapFlags Flags) {
2435 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2436 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002437 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002438 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002439#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002440 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002441 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002442 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002443 "SCEVMulExpr operand types don't match!");
2444#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002445
2446 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002447 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002448
Sanjoy Das64895612015-10-09 02:44:45 +00002449 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2450
Chris Lattnerd934c702004-04-02 20:23:17 +00002451 // If there are any constants, fold them together.
2452 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002453 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002454
2455 // C1*(C2+V) -> C1*C2 + C1*V
2456 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002457 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2458 // If any of Add's ops are Adds or Muls with a constant,
2459 // apply this transformation as well.
2460 if (Add->getNumOperands() == 2)
2461 if (containsConstantSomewhere(Add))
2462 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2463 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002464
Chris Lattnerd934c702004-04-02 20:23:17 +00002465 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002466 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002467 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002468 ConstantInt *Fold =
2469 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002470 Ops[0] = getConstant(Fold);
2471 Ops.erase(Ops.begin()+1); // Erase the folded element
2472 if (Ops.size() == 1) return Ops[0];
2473 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002474 }
2475
2476 // If we are left with a constant one being multiplied, strip it off.
2477 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2478 Ops.erase(Ops.begin());
2479 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002480 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002481 // If we have a multiply of zero, it will always be zero.
2482 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002483 } else if (Ops[0]->isAllOnesValue()) {
2484 // If we have a mul by -1 of an add, try distributing the -1 among the
2485 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002486 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002487 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2488 SmallVector<const SCEV *, 4> NewOps;
2489 bool AnyFolded = false;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00002490 for (const SCEV *AddOp : Add->operands()) {
2491 const SCEV *Mul = getMulExpr(Ops[0], AddOp);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002492 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2493 NewOps.push_back(Mul);
2494 }
2495 if (AnyFolded)
2496 return getAddExpr(NewOps);
Sanjoy Das63914592015-10-18 00:29:20 +00002497 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
Andrew Tricke92dcce2011-03-14 17:38:54 +00002498 // Negation preserves a recurrence's no self-wrap property.
2499 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00002500 for (const SCEV *AddRecOp : AddRec->operands())
2501 Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2502
Andrew Tricke92dcce2011-03-14 17:38:54 +00002503 return getAddRecExpr(Operands, AddRec->getLoop(),
2504 AddRec->getNoWrapFlags(SCEV::FlagNW));
2505 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002506 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002507 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002508
2509 if (Ops.size() == 1)
2510 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002511 }
2512
2513 // Skip over the add expression until we get to a multiply.
2514 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2515 ++Idx;
2516
Chris Lattnerd934c702004-04-02 20:23:17 +00002517 // If there are mul operands inline them all into this expression.
2518 if (Idx < Ops.size()) {
2519 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002520 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002521 // If we have an mul, expand the mul operands onto the end of the operands
2522 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002523 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002524 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002525 DeletedMul = true;
2526 }
2527
2528 // If we deleted at least one mul, we added operands to the end of the list,
2529 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002530 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002531 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002532 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002533 }
2534
2535 // If there are any add recurrences in the operands list, see if any other
2536 // added values are loop invariant. If so, we can fold them into the
2537 // recurrence.
2538 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2539 ++Idx;
2540
2541 // Scan over all recurrences, trying to fold loop invariants into them.
2542 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2543 // Scan all of the other operands to this mul and add them to the vector if
2544 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002545 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002546 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002547 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002548 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002549 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002550 LIOps.push_back(Ops[i]);
2551 Ops.erase(Ops.begin()+i);
2552 --i; --e;
2553 }
2554
2555 // If we found some loop invariants, fold them into the recurrence.
2556 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002557 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002558 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002559 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002560 const SCEV *Scale = getMulExpr(LIOps);
2561 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2562 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002563
Dan Gohman16206132010-06-30 07:16:37 +00002564 // Build the new addrec. Propagate the NUW and NSW flags if both the
2565 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002566 //
2567 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002568 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002569 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2570 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002571
2572 // If all of the other operands were loop invariant, we are done.
2573 if (Ops.size() == 1) return NewRec;
2574
Nick Lewyckydb66b822011-09-06 05:08:09 +00002575 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002576 for (unsigned i = 0;; ++i)
2577 if (Ops[i] == AddRec) {
2578 Ops[i] = NewRec;
2579 break;
2580 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002581 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002582 }
2583
2584 // Okay, if there weren't any loop invariants to be folded, check to see if
2585 // there are multiple AddRec's with the same loop induction variable being
2586 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002587
2588 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2589 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2590 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2591 // ]]],+,...up to x=2n}.
2592 // Note that the arguments to choose() are always integers with values
2593 // known at compile time, never SCEV objects.
2594 //
2595 // The implementation avoids pointless extra computations when the two
2596 // addrec's are of different length (mathematically, it's equivalent to
2597 // an infinite stream of zeros on the right).
2598 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002599 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002600 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002601 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002602 const SCEVAddRecExpr *OtherAddRec =
2603 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2604 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002605 continue;
2606
Nick Lewycky97756402014-09-01 05:17:15 +00002607 bool Overflow = false;
2608 Type *Ty = AddRec->getType();
2609 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2610 SmallVector<const SCEV*, 7> AddRecOps;
2611 for (int x = 0, xe = AddRec->getNumOperands() +
2612 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002613 const SCEV *Term = getZero(Ty);
Nick Lewycky97756402014-09-01 05:17:15 +00002614 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2615 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2616 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2617 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2618 z < ze && !Overflow; ++z) {
2619 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2620 uint64_t Coeff;
2621 if (LargerThan64Bits)
2622 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2623 else
2624 Coeff = Coeff1*Coeff2;
2625 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2626 const SCEV *Term1 = AddRec->getOperand(y-z);
2627 const SCEV *Term2 = OtherAddRec->getOperand(z);
2628 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002629 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002630 }
Nick Lewycky97756402014-09-01 05:17:15 +00002631 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002632 }
Nick Lewycky97756402014-09-01 05:17:15 +00002633 if (!Overflow) {
2634 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2635 SCEV::FlagAnyWrap);
2636 if (Ops.size() == 2) return NewAddRec;
2637 Ops[Idx] = NewAddRec;
2638 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2639 OpsModified = true;
2640 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2641 if (!AddRec)
2642 break;
2643 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002644 }
Nick Lewycky97756402014-09-01 05:17:15 +00002645 if (OpsModified)
2646 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002647
2648 // Otherwise couldn't fold anything into this recurrence. Move onto the
2649 // next one.
2650 }
2651
2652 // Okay, it looks like we really DO need an mul expr. Check to see if we
2653 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002654 FoldingSetNodeID ID;
2655 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002656 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2657 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002658 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002659 SCEVMulExpr *S =
2660 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2661 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002662 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2663 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002664 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2665 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002666 UniqueSCEVs.InsertNode(S, IP);
2667 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002668 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002669 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002670}
2671
Sanjoy Dasf8570812016-05-29 00:38:22 +00002672/// Get a canonical unsigned division expression, or something simpler if
2673/// possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002674const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2675 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002676 assert(getEffectiveSCEVType(LHS->getType()) ==
2677 getEffectiveSCEVType(RHS->getType()) &&
2678 "SCEVUDivExpr operand types don't match!");
2679
Dan Gohmana30370b2009-05-04 22:02:23 +00002680 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002681 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002682 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002683 // If the denominator is zero, the result of the udiv is undefined. Don't
2684 // try to analyze it, because the resolution chosen here may differ from
2685 // the resolution chosen in other parts of the compiler.
2686 if (!RHSC->getValue()->isZero()) {
2687 // Determine if the division can be folded into the operands of
2688 // its operands.
2689 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002690 Type *Ty = LHS->getType();
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002691 unsigned LZ = RHSC->getAPInt().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002692 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002693 // For non-power-of-two values, effectively round the value up to the
2694 // nearest power of two.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002695 if (!RHSC->getAPInt().isPowerOf2())
Dan Gohmanacd700a2010-04-22 01:35:11 +00002696 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002697 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002698 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002699 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2700 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002701 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2702 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002703 const APInt &StepInt = Step->getAPInt();
2704 const APInt &DivInt = RHSC->getAPInt();
Andrew Trick6d45a012011-08-06 07:00:37 +00002705 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002706 getZeroExtendExpr(AR, ExtTy) ==
2707 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2708 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002709 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002710 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002711 for (const SCEV *Op : AR->operands())
2712 Operands.push_back(getUDivExpr(Op, RHS));
2713 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002714 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002715 /// Get a canonical UDivExpr for a recurrence.
2716 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2717 // We can currently only fold X%N if X is constant.
2718 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2719 if (StartC && !DivInt.urem(StepInt) &&
2720 getZeroExtendExpr(AR, ExtTy) ==
2721 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2722 getZeroExtendExpr(Step, ExtTy),
2723 AR->getLoop(), SCEV::FlagAnyWrap)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002724 const APInt &StartInt = StartC->getAPInt();
Andrew Trick6d45a012011-08-06 07:00:37 +00002725 const APInt &StartRem = StartInt.urem(StepInt);
2726 if (StartRem != 0)
2727 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2728 AR->getLoop(), SCEV::FlagNW);
2729 }
2730 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002731 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2732 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2733 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002734 for (const SCEV *Op : M->operands())
2735 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002736 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2737 // Find an operand that's safely divisible.
2738 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2739 const SCEV *Op = M->getOperand(i);
2740 const SCEV *Div = getUDivExpr(Op, RHSC);
2741 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2742 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2743 M->op_end());
2744 Operands[i] = Div;
2745 return getMulExpr(Operands);
2746 }
2747 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002748 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002749 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002750 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002751 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002752 for (const SCEV *Op : A->operands())
2753 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002754 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2755 Operands.clear();
2756 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2757 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2758 if (isa<SCEVUDivExpr>(Op) ||
2759 getMulExpr(Op, RHS) != A->getOperand(i))
2760 break;
2761 Operands.push_back(Op);
2762 }
2763 if (Operands.size() == A->getNumOperands())
2764 return getAddExpr(Operands);
2765 }
2766 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002767
Dan Gohmanacd700a2010-04-22 01:35:11 +00002768 // Fold if both operands are constant.
2769 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2770 Constant *LHSCV = LHSC->getValue();
2771 Constant *RHSCV = RHSC->getValue();
2772 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2773 RHSCV)));
2774 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002775 }
2776 }
2777
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002778 FoldingSetNodeID ID;
2779 ID.AddInteger(scUDivExpr);
2780 ID.AddPointer(LHS);
2781 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002782 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002783 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002784 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2785 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002786 UniqueSCEVs.InsertNode(S, IP);
2787 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002788}
2789
Nick Lewycky31eaca52014-01-27 10:04:03 +00002790static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002791 APInt A = C1->getAPInt().abs();
2792 APInt B = C2->getAPInt().abs();
Nick Lewycky31eaca52014-01-27 10:04:03 +00002793 uint32_t ABW = A.getBitWidth();
2794 uint32_t BBW = B.getBitWidth();
2795
2796 if (ABW > BBW)
2797 B = B.zext(ABW);
2798 else if (ABW < BBW)
2799 A = A.zext(BBW);
2800
2801 return APIntOps::GreatestCommonDivisor(A, B);
2802}
2803
Sanjoy Dasf8570812016-05-29 00:38:22 +00002804/// Get a canonical unsigned division expression, or something simpler if
2805/// possible. There is no representation for an exact udiv in SCEV IR, but we
2806/// can attempt to remove factors from the LHS and RHS. We can't do this when
2807/// it's not exact because the udiv may be clearing bits.
Nick Lewycky31eaca52014-01-27 10:04:03 +00002808const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2809 const SCEV *RHS) {
2810 // TODO: we could try to find factors in all sorts of things, but for now we
2811 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2812 // end of this file for inspiration.
2813
2814 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2815 if (!Mul)
2816 return getUDivExpr(LHS, RHS);
2817
2818 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2819 // If the mulexpr multiplies by a constant, then that constant must be the
2820 // first element of the mulexpr.
Sanjoy Das63914592015-10-18 00:29:20 +00002821 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
Nick Lewycky31eaca52014-01-27 10:04:03 +00002822 if (LHSCst == RHSCst) {
2823 SmallVector<const SCEV *, 2> Operands;
2824 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2825 return getMulExpr(Operands);
2826 }
2827
2828 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2829 // that there's a factor provided by one of the other terms. We need to
2830 // check.
2831 APInt Factor = gcd(LHSCst, RHSCst);
2832 if (!Factor.isIntN(1)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002833 LHSCst =
2834 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2835 RHSCst =
2836 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
Nick Lewycky31eaca52014-01-27 10:04:03 +00002837 SmallVector<const SCEV *, 2> Operands;
2838 Operands.push_back(LHSCst);
2839 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2840 LHS = getMulExpr(Operands);
2841 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002842 Mul = dyn_cast<SCEVMulExpr>(LHS);
2843 if (!Mul)
2844 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002845 }
2846 }
2847 }
2848
2849 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2850 if (Mul->getOperand(i) == RHS) {
2851 SmallVector<const SCEV *, 2> Operands;
2852 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2853 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2854 return getMulExpr(Operands);
2855 }
2856 }
2857
2858 return getUDivExpr(LHS, RHS);
2859}
Chris Lattnerd934c702004-04-02 20:23:17 +00002860
Sanjoy Dasf8570812016-05-29 00:38:22 +00002861/// Get an add recurrence expression for the specified loop. Simplify the
2862/// expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002863const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2864 const Loop *L,
2865 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002866 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002867 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002868 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002869 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002870 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002871 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002872 }
2873
2874 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002875 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002876}
2877
Sanjoy Dasf8570812016-05-29 00:38:22 +00002878/// Get an add recurrence expression for the specified loop. Simplify the
2879/// expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002880const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002881ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002882 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002883 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002884#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002885 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002886 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002887 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002888 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002889 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002890 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002891 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002892#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002893
Dan Gohmanbe928e32008-06-18 16:23:07 +00002894 if (Operands.back()->isZero()) {
2895 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002896 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002897 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002898
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002899 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2900 // use that information to infer NUW and NSW flags. However, computing a
2901 // BE count requires calling getAddRecExpr, so we may not yet have a
2902 // meaningful BE count at this point (and if we don't, we'd be stuck
2903 // with a SCEVCouldNotCompute as the cached BE count).
2904
Sanjoy Das81401d42015-01-10 23:41:24 +00002905 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002906
Dan Gohman223a5d22008-08-08 18:33:12 +00002907 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002908 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002909 const Loop *NestedLoop = NestedAR->getLoop();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002910 if (L->contains(NestedLoop)
2911 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2912 : (!NestedLoop->contains(L) &&
2913 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002914 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002915 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002916 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002917 // AddRecs require their operands be loop-invariant with respect to their
2918 // loops. Don't perform this transformation if it would break this
2919 // requirement.
Sanjoy Das3b827c72015-11-29 23:40:53 +00002920 bool AllInvariant = all_of(
2921 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002922
Dan Gohmancc030b72009-06-26 22:36:20 +00002923 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002924 // Create a recurrence for the outer loop with the same step size.
2925 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002926 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2927 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002928 SCEV::NoWrapFlags OuterFlags =
2929 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002930
2931 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Sanjoy Das3b827c72015-11-29 23:40:53 +00002932 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2933 return isLoopInvariant(Op, NestedLoop);
2934 });
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002935
Andrew Trick8b55b732011-03-14 16:50:06 +00002936 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002937 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002938 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002939 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2940 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002941 SCEV::NoWrapFlags InnerFlags =
2942 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002943 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2944 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002945 }
2946 // Reset Operands to its original state.
2947 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002948 }
2949 }
2950
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002951 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2952 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002953 FoldingSetNodeID ID;
2954 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002955 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2956 ID.AddPointer(Operands[i]);
2957 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002958 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002959 SCEVAddRecExpr *S =
2960 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2961 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002962 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2963 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002964 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2965 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002966 UniqueSCEVs.InsertNode(S, IP);
2967 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002968 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002969 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002970}
2971
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002972const SCEV *
2973ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2974 const SmallVectorImpl<const SCEV *> &IndexExprs,
2975 bool InBounds) {
2976 // getSCEV(Base)->getType() has the same address space as Base->getType()
2977 // because SCEV::getType() preserves the address space.
2978 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2979 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2980 // instruction to its SCEV, because the Instruction may be guarded by control
2981 // flow and the no-overflow bits may not be valid for the expression in any
Jingyue Wu42f1d672015-07-28 18:22:40 +00002982 // context. This can be fixed similarly to how these flags are handled for
2983 // adds.
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002984 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2985
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002986 const SCEV *TotalOffset = getZero(IntPtrTy);
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002987 // The address space is unimportant. The first thing we do on CurTy is getting
2988 // its element type.
2989 Type *CurTy = PointerType::getUnqual(PointeeType);
2990 for (const SCEV *IndexExpr : IndexExprs) {
2991 // Compute the (potentially symbolic) offset in bytes for this index.
2992 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2993 // For a struct, add the member offset.
2994 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2995 unsigned FieldNo = Index->getZExtValue();
2996 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2997
2998 // Add the field offset to the running total offset.
2999 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3000
3001 // Update CurTy to the type of the field at Index.
3002 CurTy = STy->getTypeAtIndex(Index);
3003 } else {
3004 // Update CurTy to its element type.
3005 CurTy = cast<SequentialType>(CurTy)->getElementType();
3006 // For an array, add the element offset, explicitly scaled.
3007 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3008 // Getelementptr indices are signed.
3009 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3010
3011 // Multiply the index by the element size to compute the element offset.
3012 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3013
3014 // Add the element offset to the running total offset.
3015 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3016 }
3017 }
3018
3019 // Add the total offset from all the GEP indices to the base.
3020 return getAddExpr(BaseExpr, TotalOffset, Wrap);
3021}
3022
Dan Gohmanabd17092009-06-24 14:49:00 +00003023const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3024 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003025 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003026 Ops.push_back(LHS);
3027 Ops.push_back(RHS);
3028 return getSMaxExpr(Ops);
3029}
3030
Dan Gohmanaf752342009-07-07 17:06:11 +00003031const SCEV *
3032ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003033 assert(!Ops.empty() && "Cannot get empty smax!");
3034 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003035#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003036 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003037 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003038 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003039 "SCEVSMaxExpr operand types don't match!");
3040#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003041
3042 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003043 GroupByComplexity(Ops, &LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003044
3045 // If there are any constants, fold them together.
3046 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003047 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003048 ++Idx;
3049 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003050 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003051 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00003052 ConstantInt *Fold = ConstantInt::get(
3053 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003054 Ops[0] = getConstant(Fold);
3055 Ops.erase(Ops.begin()+1); // Erase the folded element
3056 if (Ops.size() == 1) return Ops[0];
3057 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003058 }
3059
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003060 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003061 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3062 Ops.erase(Ops.begin());
3063 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003064 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3065 // If we have an smax with a constant maximum-int, it will always be
3066 // maximum-int.
3067 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003068 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003069
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003070 if (Ops.size() == 1) return Ops[0];
3071 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003072
3073 // Find the first SMax
3074 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3075 ++Idx;
3076
3077 // Check to see if one of the operands is an SMax. If so, expand its operands
3078 // onto our operand list, and recurse to simplify.
3079 if (Idx < Ops.size()) {
3080 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003081 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003082 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003083 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003084 DeletedSMax = true;
3085 }
3086
3087 if (DeletedSMax)
3088 return getSMaxExpr(Ops);
3089 }
3090
3091 // Okay, check to see if the same value occurs in the operand list twice. If
3092 // so, delete one. Since we sorted the list, these values are required to
3093 // be adjacent.
3094 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003095 // X smax Y smax Y --> X smax Y
3096 // X smax Y --> X, if X is always greater than Y
3097 if (Ops[i] == Ops[i+1] ||
3098 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3099 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3100 --i; --e;
3101 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003102 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3103 --i; --e;
3104 }
3105
3106 if (Ops.size() == 1) return Ops[0];
3107
3108 assert(!Ops.empty() && "Reduced smax down to nothing!");
3109
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003110 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003111 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003112 FoldingSetNodeID ID;
3113 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003114 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3115 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003116 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003117 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003118 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3119 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003120 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3121 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003122 UniqueSCEVs.InsertNode(S, IP);
3123 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003124}
3125
Dan Gohmanabd17092009-06-24 14:49:00 +00003126const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3127 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003128 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003129 Ops.push_back(LHS);
3130 Ops.push_back(RHS);
3131 return getUMaxExpr(Ops);
3132}
3133
Dan Gohmanaf752342009-07-07 17:06:11 +00003134const SCEV *
3135ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003136 assert(!Ops.empty() && "Cannot get empty umax!");
3137 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003138#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003139 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003140 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003141 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003142 "SCEVUMaxExpr operand types don't match!");
3143#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003144
3145 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003146 GroupByComplexity(Ops, &LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003147
3148 // If there are any constants, fold them together.
3149 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003150 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003151 ++Idx;
3152 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003153 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003154 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00003155 ConstantInt *Fold = ConstantInt::get(
3156 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003157 Ops[0] = getConstant(Fold);
3158 Ops.erase(Ops.begin()+1); // Erase the folded element
3159 if (Ops.size() == 1) return Ops[0];
3160 LHSC = cast<SCEVConstant>(Ops[0]);
3161 }
3162
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003163 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003164 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3165 Ops.erase(Ops.begin());
3166 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003167 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3168 // If we have an umax with a constant maximum-int, it will always be
3169 // maximum-int.
3170 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003171 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003172
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003173 if (Ops.size() == 1) return Ops[0];
3174 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003175
3176 // Find the first UMax
3177 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3178 ++Idx;
3179
3180 // Check to see if one of the operands is a UMax. If so, expand its operands
3181 // onto our operand list, and recurse to simplify.
3182 if (Idx < Ops.size()) {
3183 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003184 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003185 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003186 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003187 DeletedUMax = true;
3188 }
3189
3190 if (DeletedUMax)
3191 return getUMaxExpr(Ops);
3192 }
3193
3194 // Okay, check to see if the same value occurs in the operand list twice. If
3195 // so, delete one. Since we sorted the list, these values are required to
3196 // be adjacent.
3197 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003198 // X umax Y umax Y --> X umax Y
3199 // X umax Y --> X, if X is always greater than Y
3200 if (Ops[i] == Ops[i+1] ||
3201 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3202 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3203 --i; --e;
3204 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003205 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3206 --i; --e;
3207 }
3208
3209 if (Ops.size() == 1) return Ops[0];
3210
3211 assert(!Ops.empty() && "Reduced umax down to nothing!");
3212
3213 // Okay, it looks like we really DO need a umax expr. Check to see if we
3214 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003215 FoldingSetNodeID ID;
3216 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003217 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3218 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003219 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003220 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003221 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3222 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003223 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3224 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003225 UniqueSCEVs.InsertNode(S, IP);
3226 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003227}
3228
Dan Gohmanabd17092009-06-24 14:49:00 +00003229const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3230 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003231 // ~smax(~x, ~y) == smin(x, y).
3232 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3233}
3234
Dan Gohmanabd17092009-06-24 14:49:00 +00003235const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3236 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003237 // ~umax(~x, ~y) == umin(x, y)
3238 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3239}
3240
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003241const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003242 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003243 // constant expression and then folding it back into a ConstantInt.
3244 // This is just a compile-time optimization.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003245 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003246}
3247
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003248const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3249 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003250 unsigned FieldNo) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003251 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003252 // constant expression and then folding it back into a ConstantInt.
3253 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003254 return getConstant(
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003255 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003256}
3257
Dan Gohmanaf752342009-07-07 17:06:11 +00003258const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003259 // Don't attempt to do anything other than create a SCEVUnknown object
3260 // here. createSCEV only calls getUnknown after checking for all other
3261 // interesting possibilities, and any other code that calls getUnknown
3262 // is doing so in order to hide a value from SCEV canonicalization.
3263
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003264 FoldingSetNodeID ID;
3265 ID.AddInteger(scUnknown);
3266 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003267 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003268 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3269 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3270 "Stale SCEVUnknown in uniquing map!");
3271 return S;
3272 }
3273 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3274 FirstUnknown);
3275 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003276 UniqueSCEVs.InsertNode(S, IP);
3277 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003278}
3279
Chris Lattnerd934c702004-04-02 20:23:17 +00003280//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003281// Basic SCEV Analysis and PHI Idiom Recognition Code
3282//
3283
Sanjoy Dasf8570812016-05-29 00:38:22 +00003284/// Test if values of the given type are analyzable within the SCEV
3285/// framework. This primarily includes integer types, and it can optionally
3286/// include pointer types if the ScalarEvolution class has access to
3287/// target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003288bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003289 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003290 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003291}
3292
Sanjoy Dasf8570812016-05-29 00:38:22 +00003293/// Return the size in bits of the specified type, for which isSCEVable must
3294/// return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003295uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003296 assert(isSCEVable(Ty) && "Type is not SCEVable!");
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003297 return getDataLayout().getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003298}
3299
Sanjoy Dasf8570812016-05-29 00:38:22 +00003300/// Return a type with the same bitwidth as the given type and which represents
3301/// how SCEV will treat the given type, for which isSCEVable must return
3302/// true. For pointer types, this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003303Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003304 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3305
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003306 if (Ty->isIntegerTy())
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003307 return Ty;
3308
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003309 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003310 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003311 return getDataLayout().getIntPtrType(Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003312}
Chris Lattnerd934c702004-04-02 20:23:17 +00003313
Dan Gohmanaf752342009-07-07 17:06:11 +00003314const SCEV *ScalarEvolution::getCouldNotCompute() {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003315 return CouldNotCompute.get();
Dan Gohman31efa302009-04-18 17:58:19 +00003316}
3317
Sanjoy Das7d752672015-12-08 04:32:54 +00003318
3319bool ScalarEvolution::checkValidity(const SCEV *S) const {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003320 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3321 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3322 // is set iff if find such SCEVUnknown.
3323 //
3324 struct FindInvalidSCEVUnknown {
3325 bool FindOne;
3326 FindInvalidSCEVUnknown() { FindOne = false; }
3327 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003328 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003329 case scConstant:
3330 return false;
3331 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003332 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003333 FindOne = true;
3334 return false;
3335 default:
3336 return true;
3337 }
3338 }
3339 bool isDone() const { return FindOne; }
3340 };
Shuxin Yangefc4c012013-07-08 17:33:13 +00003341
Shuxin Yangefc4c012013-07-08 17:33:13 +00003342 FindInvalidSCEVUnknown F;
3343 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3344 ST.visitAll(S);
3345
3346 return !F.FindOne;
3347}
3348
Wei Mia49559b2016-02-04 01:27:38 +00003349namespace {
3350// Helper class working with SCEVTraversal to figure out if a SCEV contains
3351// a sub SCEV of scAddRecExpr type. FindInvalidSCEVUnknown::FoundOne is set
3352// iff if such sub scAddRecExpr type SCEV is found.
3353struct FindAddRecurrence {
3354 bool FoundOne;
3355 FindAddRecurrence() : FoundOne(false) {}
3356
3357 bool follow(const SCEV *S) {
3358 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3359 case scAddRecExpr:
3360 FoundOne = true;
3361 case scConstant:
3362 case scUnknown:
3363 case scCouldNotCompute:
3364 return false;
3365 default:
3366 return true;
3367 }
3368 }
3369 bool isDone() const { return FoundOne; }
3370};
3371}
3372
3373bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3374 HasRecMapType::iterator I = HasRecMap.find_as(S);
3375 if (I != HasRecMap.end())
3376 return I->second;
3377
3378 FindAddRecurrence F;
3379 SCEVTraversal<FindAddRecurrence> ST(F);
3380 ST.visitAll(S);
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00003381 HasRecMap.insert({S, F.FoundOne});
Wei Mia49559b2016-02-04 01:27:38 +00003382 return F.FoundOne;
3383}
3384
Sanjoy Dasf8570812016-05-29 00:38:22 +00003385/// Return the Value set from S.
Wei Mia49559b2016-02-04 01:27:38 +00003386SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) {
3387 ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3388 if (SI == ExprValueMap.end())
3389 return nullptr;
3390#ifndef NDEBUG
3391 if (VerifySCEVMap) {
3392 // Check there is no dangling Value in the set returned.
3393 for (const auto &VE : SI->second)
3394 assert(ValueExprMap.count(VE));
3395 }
3396#endif
3397 return &SI->second;
3398}
3399
Sanjoy Dasf8570812016-05-29 00:38:22 +00003400/// Erase Value from ValueExprMap and ExprValueMap. If ValueExprMap.erase(V) is
3401/// not used together with forgetMemoizedResults(S), eraseValueFromMap should be
3402/// used instead to ensure whenever V->S is removed from ValueExprMap, V is also
3403/// removed from the set of ExprValueMap[S].
Wei Mia49559b2016-02-04 01:27:38 +00003404void ScalarEvolution::eraseValueFromMap(Value *V) {
3405 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3406 if (I != ValueExprMap.end()) {
3407 const SCEV *S = I->second;
3408 SetVector<Value *> *SV = getSCEVValues(S);
3409 // Remove V from the set of ExprValueMap[S]
3410 if (SV)
3411 SV->remove(V);
3412 ValueExprMap.erase(V);
3413 }
3414}
3415
Sanjoy Dasf8570812016-05-29 00:38:22 +00003416/// Return an existing SCEV if it exists, otherwise analyze the expression and
3417/// create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003418const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003419 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003420
Jingyue Wu42f1d672015-07-28 18:22:40 +00003421 const SCEV *S = getExistingSCEV(V);
3422 if (S == nullptr) {
3423 S = createSCEV(V);
Wei Mia49559b2016-02-04 01:27:38 +00003424 // During PHI resolution, it is possible to create two SCEVs for the same
3425 // V, so it is needed to double check whether V->S is inserted into
3426 // ValueExprMap before insert S->V into ExprValueMap.
3427 std::pair<ValueExprMapType::iterator, bool> Pair =
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00003428 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
Wei Mia49559b2016-02-04 01:27:38 +00003429 if (Pair.second)
3430 ExprValueMap[S].insert(V);
Jingyue Wu42f1d672015-07-28 18:22:40 +00003431 }
3432 return S;
3433}
3434
3435const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3436 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3437
Shuxin Yangefc4c012013-07-08 17:33:13 +00003438 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3439 if (I != ValueExprMap.end()) {
3440 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003441 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003442 return S;
Wei Mia49559b2016-02-04 01:27:38 +00003443 forgetMemoizedResults(S);
Jingyue Wu42f1d672015-07-28 18:22:40 +00003444 ValueExprMap.erase(I);
Shuxin Yangefc4c012013-07-08 17:33:13 +00003445 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003446 return nullptr;
Chris Lattnerd934c702004-04-02 20:23:17 +00003447}
3448
Sanjoy Dasf8570812016-05-29 00:38:22 +00003449/// Return a SCEV corresponding to -V = -1*V
Dan Gohman0a40ad92009-04-16 03:18:22 +00003450///
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003451const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3452 SCEV::NoWrapFlags Flags) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003453 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003454 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003455 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003456
Chris Lattner229907c2011-07-18 04:54:35 +00003457 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003458 Ty = getEffectiveSCEVType(Ty);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003459 return getMulExpr(
3460 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003461}
3462
Sanjoy Dasf8570812016-05-29 00:38:22 +00003463/// Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003464const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003465 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003466 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003467 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003468
Chris Lattner229907c2011-07-18 04:54:35 +00003469 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003470 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003471 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003472 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003473 return getMinusSCEV(AllOnes, V);
3474}
3475
Chris Lattnerfc877522011-01-09 22:26:35 +00003476const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003477 SCEV::NoWrapFlags Flags) {
Dan Gohman46f00a22010-07-20 16:53:00 +00003478 // Fast path: X - X --> 0.
3479 if (LHS == RHS)
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00003480 return getZero(LHS->getType());
Dan Gohman46f00a22010-07-20 16:53:00 +00003481
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003482 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3483 // makes it so that we cannot make much use of NUW.
3484 auto AddFlags = SCEV::FlagAnyWrap;
3485 const bool RHSIsNotMinSigned =
3486 !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3487 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3488 // Let M be the minimum representable signed value. Then (-1)*RHS
3489 // signed-wraps if and only if RHS is M. That can happen even for
3490 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3491 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3492 // (-1)*RHS, we need to prove that RHS != M.
3493 //
3494 // If LHS is non-negative and we know that LHS - RHS does not
3495 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3496 // either by proving that RHS > M or that LHS >= 0.
3497 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3498 AddFlags = SCEV::FlagNSW;
3499 }
3500 }
3501
3502 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3503 // RHS is NSW and LHS >= 0.
3504 //
3505 // The difficulty here is that the NSW flag may have been proven
3506 // relative to a loop that is to be found in a recurrence in LHS and
3507 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3508 // larger scope than intended.
3509 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3510
3511 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003512}
3513
Dan Gohmanaf752342009-07-07 17:06:11 +00003514const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003515ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3516 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003517 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3518 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003519 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003520 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003521 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003522 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003523 return getTruncateExpr(V, Ty);
3524 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003525}
3526
Dan Gohmanaf752342009-07-07 17:06:11 +00003527const SCEV *
3528ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003529 Type *Ty) {
3530 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003531 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3532 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003533 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003534 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003535 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003536 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003537 return getTruncateExpr(V, Ty);
3538 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003539}
3540
Dan Gohmanaf752342009-07-07 17:06:11 +00003541const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003542ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3543 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003544 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3545 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003546 "Cannot noop or zero extend with non-integer arguments!");
3547 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3548 "getNoopOrZeroExtend cannot truncate!");
3549 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3550 return V; // No conversion
3551 return getZeroExtendExpr(V, Ty);
3552}
3553
Dan Gohmanaf752342009-07-07 17:06:11 +00003554const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003555ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3556 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003557 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3558 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003559 "Cannot noop or sign extend with non-integer arguments!");
3560 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3561 "getNoopOrSignExtend cannot truncate!");
3562 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3563 return V; // No conversion
3564 return getSignExtendExpr(V, Ty);
3565}
3566
Dan Gohmanaf752342009-07-07 17:06:11 +00003567const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003568ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3569 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003570 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3571 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003572 "Cannot noop or any extend with non-integer arguments!");
3573 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3574 "getNoopOrAnyExtend cannot truncate!");
3575 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3576 return V; // No conversion
3577 return getAnyExtendExpr(V, Ty);
3578}
3579
Dan Gohmanaf752342009-07-07 17:06:11 +00003580const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003581ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3582 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003583 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3584 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003585 "Cannot truncate or noop with non-integer arguments!");
3586 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3587 "getTruncateOrNoop cannot extend!");
3588 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3589 return V; // No conversion
3590 return getTruncateExpr(V, Ty);
3591}
3592
Dan Gohmanabd17092009-06-24 14:49:00 +00003593const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3594 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003595 const SCEV *PromotedLHS = LHS;
3596 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003597
3598 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3599 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3600 else
3601 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3602
3603 return getUMaxExpr(PromotedLHS, PromotedRHS);
3604}
3605
Dan Gohmanabd17092009-06-24 14:49:00 +00003606const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3607 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003608 const SCEV *PromotedLHS = LHS;
3609 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003610
3611 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3612 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3613 else
3614 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3615
3616 return getUMinExpr(PromotedLHS, PromotedRHS);
3617}
3618
Andrew Trick87716c92011-03-17 23:51:11 +00003619const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3620 // A pointer operand may evaluate to a nonpointer expression, such as null.
3621 if (!V->getType()->isPointerTy())
3622 return V;
3623
3624 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3625 return getPointerBase(Cast->getOperand());
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003626 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003627 const SCEV *PtrOp = nullptr;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00003628 for (const SCEV *NAryOp : NAry->operands()) {
3629 if (NAryOp->getType()->isPointerTy()) {
Andrew Trick87716c92011-03-17 23:51:11 +00003630 // Cannot find the base of an expression with multiple pointer operands.
3631 if (PtrOp)
3632 return V;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00003633 PtrOp = NAryOp;
Andrew Trick87716c92011-03-17 23:51:11 +00003634 }
3635 }
3636 if (!PtrOp)
3637 return V;
3638 return getPointerBase(PtrOp);
3639 }
3640 return V;
3641}
3642
Sanjoy Dasf8570812016-05-29 00:38:22 +00003643/// Push users of the given Instruction onto the given Worklist.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003644static void
3645PushDefUseChildren(Instruction *I,
3646 SmallVectorImpl<Instruction *> &Worklist) {
3647 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003648 for (User *U : I->users())
3649 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003650}
3651
Sanjoy Dasf1e9cae02016-03-01 19:28:01 +00003652void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003653 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003654 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003655
Dan Gohman0b89dff2009-07-25 01:13:03 +00003656 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003657 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003658 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003659 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003660 if (!Visited.insert(I).second)
3661 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003662
Sanjoy Das63914592015-10-18 00:29:20 +00003663 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003664 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003665 const SCEV *Old = It->second;
3666
Dan Gohman0b89dff2009-07-25 01:13:03 +00003667 // Short-circuit the def-use traversal if the symbolic name
3668 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003669 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003670 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003671
Dan Gohman0b89dff2009-07-25 01:13:03 +00003672 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003673 // structure, it's a PHI that's in the progress of being computed
3674 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3675 // additional loop trip count information isn't going to change anything.
3676 // In the second case, createNodeForPHI will perform the necessary
3677 // updates on its own when it gets to that point. In the third, we do
3678 // want to forget the SCEVUnknown.
3679 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003680 !isa<SCEVUnknown>(Old) ||
3681 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003682 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003683 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003684 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003685 }
3686
3687 PushDefUseChildren(I, Worklist);
3688 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003689}
Chris Lattnerd934c702004-04-02 20:23:17 +00003690
Benjamin Kramer83709b12015-11-16 09:01:28 +00003691namespace {
Silviu Barangaf91c8072015-10-30 15:02:28 +00003692class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3693public:
Sanjoy Das807d33d2016-02-20 01:44:10 +00003694 static const SCEV *rewrite(const SCEV *S, const Loop *L,
Silviu Barangaf91c8072015-10-30 15:02:28 +00003695 ScalarEvolution &SE) {
3696 SCEVInitRewriter Rewriter(L, SE);
Sanjoy Das807d33d2016-02-20 01:44:10 +00003697 const SCEV *Result = Rewriter.visit(S);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003698 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3699 }
3700
3701 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3702 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3703
3704 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3705 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3706 Valid = false;
3707 return Expr;
3708 }
3709
3710 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3711 // Only allow AddRecExprs for this loop.
3712 if (Expr->getLoop() == L)
3713 return Expr->getStart();
3714 Valid = false;
3715 return Expr;
3716 }
3717
3718 bool isValid() { return Valid; }
3719
3720private:
3721 const Loop *L;
3722 bool Valid;
3723};
3724
3725class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3726public:
Sanjoy Das807d33d2016-02-20 01:44:10 +00003727 static const SCEV *rewrite(const SCEV *S, const Loop *L,
Silviu Barangaf91c8072015-10-30 15:02:28 +00003728 ScalarEvolution &SE) {
3729 SCEVShiftRewriter Rewriter(L, SE);
Sanjoy Das807d33d2016-02-20 01:44:10 +00003730 const SCEV *Result = Rewriter.visit(S);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003731 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3732 }
3733
3734 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3735 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3736
3737 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3738 // Only allow AddRecExprs for this loop.
3739 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3740 Valid = false;
3741 return Expr;
3742 }
3743
3744 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3745 if (Expr->getLoop() == L && Expr->isAffine())
3746 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3747 Valid = false;
3748 return Expr;
3749 }
3750 bool isValid() { return Valid; }
3751
3752private:
3753 const Loop *L;
3754 bool Valid;
3755};
Benjamin Kramer83709b12015-11-16 09:01:28 +00003756} // end anonymous namespace
Silviu Barangaf91c8072015-10-30 15:02:28 +00003757
Sanjoy Das724f5cf2016-03-03 18:31:29 +00003758SCEV::NoWrapFlags
3759ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
3760 if (!AR->isAffine())
3761 return SCEV::FlagAnyWrap;
3762
3763 typedef OverflowingBinaryOperator OBO;
3764 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
3765
3766 if (!AR->hasNoSignedWrap()) {
3767 ConstantRange AddRecRange = getSignedRange(AR);
3768 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
3769
3770 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3771 Instruction::Add, IncRange, OBO::NoSignedWrap);
3772 if (NSWRegion.contains(AddRecRange))
3773 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
3774 }
3775
3776 if (!AR->hasNoUnsignedWrap()) {
3777 ConstantRange AddRecRange = getUnsignedRange(AR);
3778 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
3779
3780 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3781 Instruction::Add, IncRange, OBO::NoUnsignedWrap);
3782 if (NUWRegion.contains(AddRecRange))
3783 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
3784 }
3785
3786 return Result;
3787}
3788
Sanjoy Das118d9192016-03-31 05:14:22 +00003789namespace {
3790/// Represents an abstract binary operation. This may exist as a
3791/// normal instruction or constant expression, or may have been
3792/// derived from an expression tree.
3793struct BinaryOp {
3794 unsigned Opcode;
3795 Value *LHS;
3796 Value *RHS;
Sanjoy Dase12c0e52016-03-31 05:14:26 +00003797 bool IsNSW;
3798 bool IsNUW;
Sanjoy Das118d9192016-03-31 05:14:22 +00003799
3800 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
3801 /// constant expression.
3802 Operator *Op;
3803
3804 explicit BinaryOp(Operator *Op)
3805 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
Sanjoy Dase12c0e52016-03-31 05:14:26 +00003806 IsNSW(false), IsNUW(false), Op(Op) {
3807 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
3808 IsNSW = OBO->hasNoSignedWrap();
3809 IsNUW = OBO->hasNoUnsignedWrap();
3810 }
3811 }
Sanjoy Das118d9192016-03-31 05:14:22 +00003812
Sanjoy Dase12c0e52016-03-31 05:14:26 +00003813 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
3814 bool IsNUW = false)
3815 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
3816 Op(nullptr) {}
Sanjoy Das118d9192016-03-31 05:14:22 +00003817};
3818}
3819
3820
3821/// Try to map \p V into a BinaryOp, and return \c None on failure.
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003822static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
Sanjoy Das118d9192016-03-31 05:14:22 +00003823 auto *Op = dyn_cast<Operator>(V);
3824 if (!Op)
3825 return None;
3826
3827 // Implementation detail: all the cleverness here should happen without
3828 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
3829 // SCEV expressions when possible, and we should not break that.
3830
3831 switch (Op->getOpcode()) {
3832 case Instruction::Add:
3833 case Instruction::Sub:
3834 case Instruction::Mul:
3835 case Instruction::UDiv:
3836 case Instruction::And:
3837 case Instruction::Or:
3838 case Instruction::AShr:
3839 case Instruction::Shl:
3840 return BinaryOp(Op);
3841
3842 case Instruction::Xor:
3843 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
3844 // If the RHS of the xor is a signbit, then this is just an add.
3845 // Instcombine turns add of signbit into xor as a strength reduction step.
3846 if (RHSC->getValue().isSignBit())
3847 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
3848 return BinaryOp(Op);
3849
3850 case Instruction::LShr:
3851 // Turn logical shift right of a constant into a unsigned divide.
3852 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
3853 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
3854
3855 // If the shift count is not less than the bitwidth, the result of
3856 // the shift is undefined. Don't try to analyze it, because the
3857 // resolution chosen here may differ from the resolution chosen in
3858 // other parts of the compiler.
3859 if (SA->getValue().ult(BitWidth)) {
3860 Constant *X =
3861 ConstantInt::get(SA->getContext(),
3862 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3863 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
3864 }
3865 }
3866 return BinaryOp(Op);
3867
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003868 case Instruction::ExtractValue: {
3869 auto *EVI = cast<ExtractValueInst>(Op);
3870 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
3871 break;
3872
3873 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
3874 if (!CI)
3875 break;
3876
3877 if (auto *F = CI->getCalledFunction())
3878 switch (F->getIntrinsicID()) {
3879 case Intrinsic::sadd_with_overflow:
3880 case Intrinsic::uadd_with_overflow: {
3881 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
3882 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3883 CI->getArgOperand(1));
3884
3885 // Now that we know that all uses of the arithmetic-result component of
3886 // CI are guarded by the overflow check, we can go ahead and pretend
3887 // that the arithmetic is non-overflowing.
3888 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
3889 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3890 CI->getArgOperand(1), /* IsNSW = */ true,
3891 /* IsNUW = */ false);
3892 else
3893 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3894 CI->getArgOperand(1), /* IsNSW = */ false,
3895 /* IsNUW*/ true);
3896 }
3897
3898 case Intrinsic::ssub_with_overflow:
3899 case Intrinsic::usub_with_overflow:
3900 return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
3901 CI->getArgOperand(1));
3902
3903 case Intrinsic::smul_with_overflow:
3904 case Intrinsic::umul_with_overflow:
3905 return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
3906 CI->getArgOperand(1));
3907 default:
3908 break;
3909 }
3910 }
3911
Sanjoy Das118d9192016-03-31 05:14:22 +00003912 default:
3913 break;
3914 }
3915
3916 return None;
3917}
3918
Sanjoy Das55015d22015-10-02 23:09:44 +00003919const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3920 const Loop *L = LI.getLoopFor(PN->getParent());
3921 if (!L || L->getHeader() != PN->getParent())
3922 return nullptr;
3923
3924 // The loop may have multiple entrances or multiple exits; we can analyze
3925 // this phi as an addrec if it has a unique entry value and a unique
3926 // backedge value.
3927 Value *BEValueV = nullptr, *StartValueV = nullptr;
3928 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3929 Value *V = PN->getIncomingValue(i);
3930 if (L->contains(PN->getIncomingBlock(i))) {
3931 if (!BEValueV) {
3932 BEValueV = V;
3933 } else if (BEValueV != V) {
3934 BEValueV = nullptr;
3935 break;
3936 }
3937 } else if (!StartValueV) {
3938 StartValueV = V;
3939 } else if (StartValueV != V) {
3940 StartValueV = nullptr;
3941 break;
3942 }
3943 }
3944 if (BEValueV && StartValueV) {
3945 // While we are analyzing this PHI node, handle its value symbolically.
3946 const SCEV *SymbolicName = getUnknown(PN);
3947 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3948 "PHI node already processed?");
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00003949 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
Sanjoy Das55015d22015-10-02 23:09:44 +00003950
3951 // Using this symbolic name for the PHI, analyze the value coming around
3952 // the back-edge.
3953 const SCEV *BEValue = getSCEV(BEValueV);
3954
3955 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3956 // has a special value for the first iteration of the loop.
3957
3958 // If the value coming around the backedge is an add with the symbolic
3959 // value we just inserted, then we found a simple induction variable!
3960 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3961 // If there is a single occurrence of the symbolic value, replace it
3962 // with a recurrence.
3963 unsigned FoundIndex = Add->getNumOperands();
3964 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3965 if (Add->getOperand(i) == SymbolicName)
3966 if (FoundIndex == e) {
3967 FoundIndex = i;
Dan Gohman6635bb22010-04-12 07:49:36 +00003968 break;
3969 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003970
3971 if (FoundIndex != Add->getNumOperands()) {
3972 // Create an add with everything but the specified operand.
3973 SmallVector<const SCEV *, 8> Ops;
3974 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3975 if (i != FoundIndex)
3976 Ops.push_back(Add->getOperand(i));
3977 const SCEV *Accum = getAddExpr(Ops);
3978
3979 // This is not a valid addrec if the step amount is varying each
3980 // loop iteration, but is not itself an addrec in this loop.
3981 if (isLoopInvariant(Accum, L) ||
3982 (isa<SCEVAddRecExpr>(Accum) &&
3983 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3984 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3985
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003986 if (auto BO = MatchBinaryOp(BEValueV, DT)) {
Sanjoy Dase12c0e52016-03-31 05:14:26 +00003987 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
3988 if (BO->IsNUW)
Sanjoy Das55015d22015-10-02 23:09:44 +00003989 Flags = setFlags(Flags, SCEV::FlagNUW);
Sanjoy Dase12c0e52016-03-31 05:14:26 +00003990 if (BO->IsNSW)
Sanjoy Das55015d22015-10-02 23:09:44 +00003991 Flags = setFlags(Flags, SCEV::FlagNSW);
3992 }
3993 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3994 // If the increment is an inbounds GEP, then we know the address
3995 // space cannot be wrapped around. We cannot make any guarantee
3996 // about signed or unsigned overflow because pointers are
3997 // unsigned but we may have a negative index from the base
3998 // pointer. We can guarantee that no unsigned wrap occurs if the
3999 // indices form a positive value.
4000 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4001 Flags = setFlags(Flags, SCEV::FlagNW);
4002
4003 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4004 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4005 Flags = setFlags(Flags, SCEV::FlagNUW);
4006 }
4007
4008 // We cannot transfer nuw and nsw flags from subtraction
4009 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4010 // for instance.
4011 }
4012
4013 const SCEV *StartVal = getSCEV(StartValueV);
4014 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4015
Sanjoy Das55015d22015-10-02 23:09:44 +00004016 // Okay, for the entire analysis of this edge we assumed the PHI
4017 // to be symbolic. We now need to go back and purge all of the
4018 // entries for the scalars that use the symbolic expression.
Sanjoy Dasf1e9cae02016-03-01 19:28:01 +00004019 forgetSymbolicName(PN, SymbolicName);
Sanjoy Das55015d22015-10-02 23:09:44 +00004020 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004021
4022 // We can add Flags to the post-inc expression only if we
4023 // know that it us *undefined behavior* for BEValueV to
4024 // overflow.
4025 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4026 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4027 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4028
Sanjoy Das55015d22015-10-02 23:09:44 +00004029 return PHISCEV;
Dan Gohman6635bb22010-04-12 07:49:36 +00004030 }
4031 }
Silviu Barangaf91c8072015-10-30 15:02:28 +00004032 } else {
Sanjoy Das55015d22015-10-02 23:09:44 +00004033 // Otherwise, this could be a loop like this:
4034 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
4035 // In this case, j = {1,+,1} and BEValue is j.
4036 // Because the other in-value of i (0) fits the evolution of BEValue
4037 // i really is an addrec evolution.
Silviu Barangaf91c8072015-10-30 15:02:28 +00004038 //
4039 // We can generalize this saying that i is the shifted value of BEValue
4040 // by one iteration:
4041 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
4042 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4043 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4044 if (Shifted != getCouldNotCompute() &&
4045 Start != getCouldNotCompute()) {
Sanjoy Das55015d22015-10-02 23:09:44 +00004046 const SCEV *StartVal = getSCEV(StartValueV);
Silviu Barangaf91c8072015-10-30 15:02:28 +00004047 if (Start == StartVal) {
Sanjoy Das55015d22015-10-02 23:09:44 +00004048 // Okay, for the entire analysis of this edge we assumed the PHI
4049 // to be symbolic. We now need to go back and purge all of the
4050 // entries for the scalars that use the symbolic expression.
Sanjoy Dasf1e9cae02016-03-01 19:28:01 +00004051 forgetSymbolicName(PN, SymbolicName);
Silviu Barangaf91c8072015-10-30 15:02:28 +00004052 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4053 return Shifted;
Chris Lattnerd934c702004-04-02 20:23:17 +00004054 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004055 }
Dan Gohman6635bb22010-04-12 07:49:36 +00004056 }
Tobias Grosser934fcf42016-02-21 18:50:09 +00004057
4058 // Remove the temporary PHI node SCEV that has been inserted while intending
4059 // to create an AddRecExpr for this PHI node. We can not keep this temporary
4060 // as it will prevent later (possibly simpler) SCEV expressions to be added
4061 // to the ValueExprMap.
4062 ValueExprMap.erase(PN);
Sanjoy Das55015d22015-10-02 23:09:44 +00004063 }
4064
4065 return nullptr;
4066}
4067
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004068// Checks if the SCEV S is available at BB. S is considered available at BB
4069// if S can be materialized at BB without introducing a fault.
4070static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4071 BasicBlock *BB) {
4072 struct CheckAvailable {
4073 bool TraversalDone = false;
4074 bool Available = true;
Sanjoy Das55015d22015-10-02 23:09:44 +00004075
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004076 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
4077 BasicBlock *BB = nullptr;
4078 DominatorTree &DT;
Sanjoy Das55015d22015-10-02 23:09:44 +00004079
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004080 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4081 : L(L), BB(BB), DT(DT) {}
Sanjoy Das55015d22015-10-02 23:09:44 +00004082
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004083 bool setUnavailable() {
4084 TraversalDone = true;
4085 Available = false;
Sanjoy Das55015d22015-10-02 23:09:44 +00004086 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00004087 }
4088
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004089 bool follow(const SCEV *S) {
4090 switch (S->getSCEVType()) {
4091 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4092 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
Sanjoy Dasbb5ffc52015-10-24 05:37:28 +00004093 // These expressions are available if their operand(s) is/are.
4094 return true;
Sanjoy Das55015d22015-10-02 23:09:44 +00004095
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004096 case scAddRecExpr: {
4097 // We allow add recurrences that are on the loop BB is in, or some
4098 // outer loop. This guarantees availability because the value of the
4099 // add recurrence at BB is simply the "current" value of the induction
4100 // variable. We can relax this in the future; for instance an add
4101 // recurrence on a sibling dominating loop is also available at BB.
4102 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4103 if (L && (ARLoop == L || ARLoop->contains(L)))
Sanjoy Das55015d22015-10-02 23:09:44 +00004104 return true;
4105
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004106 return setUnavailable();
Sanjoy Das55015d22015-10-02 23:09:44 +00004107 }
4108
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004109 case scUnknown: {
4110 // For SCEVUnknown, we check for simple dominance.
4111 const auto *SU = cast<SCEVUnknown>(S);
4112 Value *V = SU->getValue();
Sanjoy Das55015d22015-10-02 23:09:44 +00004113
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004114 if (isa<Argument>(V))
4115 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00004116
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004117 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4118 return false;
4119
4120 return setUnavailable();
4121 }
4122
4123 case scUDivExpr:
4124 case scCouldNotCompute:
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00004125 // We do not try to smart about these at all.
4126 return setUnavailable();
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004127 }
4128 llvm_unreachable("switch should be fully covered!");
4129 }
4130
4131 bool isDone() { return TraversalDone; }
Sanjoy Das55015d22015-10-02 23:09:44 +00004132 };
4133
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004134 CheckAvailable CA(L, BB, DT);
4135 SCEVTraversal<CheckAvailable> ST(CA);
4136
4137 ST.visitAll(S);
4138 return CA.Available;
4139}
4140
4141// Try to match a control flow sequence that branches out at BI and merges back
4142// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
4143// match.
4144static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4145 Value *&C, Value *&LHS, Value *&RHS) {
4146 C = BI->getCondition();
4147
4148 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4149 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4150
4151 if (!LeftEdge.isSingleEdge())
4152 return false;
4153
4154 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
4155
4156 Use &LeftUse = Merge->getOperandUse(0);
4157 Use &RightUse = Merge->getOperandUse(1);
4158
4159 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4160 LHS = LeftUse;
4161 RHS = RightUse;
4162 return true;
4163 }
4164
4165 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4166 LHS = RightUse;
4167 RHS = LeftUse;
4168 return true;
4169 }
4170
4171 return false;
4172}
4173
4174const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
Sanjoy Das55015d22015-10-02 23:09:44 +00004175 if (PN->getNumIncomingValues() == 2) {
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004176 const Loop *L = LI.getLoopFor(PN->getParent());
4177
Sanjoy Das337d4782015-10-31 23:21:40 +00004178 // We don't want to break LCSSA, even in a SCEV expression tree.
4179 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4180 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4181 return nullptr;
4182
Sanjoy Das55015d22015-10-02 23:09:44 +00004183 // Try to match
4184 //
4185 // br %cond, label %left, label %right
4186 // left:
4187 // br label %merge
4188 // right:
4189 // br label %merge
4190 // merge:
4191 // V = phi [ %x, %left ], [ %y, %right ]
4192 //
4193 // as "select %cond, %x, %y"
4194
4195 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4196 assert(IDom && "At least the entry block should dominate PN");
4197
4198 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4199 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4200
Sanjoy Das1cd930b2015-10-03 00:34:19 +00004201 if (BI && BI->isConditional() &&
4202 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4203 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4204 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
Sanjoy Das55015d22015-10-02 23:09:44 +00004205 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4206 }
4207
4208 return nullptr;
4209}
4210
4211const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4212 if (const SCEV *S = createAddRecFromPHI(PN))
4213 return S;
4214
4215 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4216 return S;
Misha Brukman01808ca2005-04-21 21:13:18 +00004217
Dan Gohmana9c205c2010-02-25 06:57:05 +00004218 // If the PHI has a single incoming value, follow that value, unless the
4219 // PHI's incoming blocks are in a different loop, in which case doing so
4220 // risks breaking LCSSA form. Instcombine would normally zap these, but
4221 // it doesn't have DominatorTree information, so it may miss cases.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004222 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004223 if (LI.replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00004224 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00004225
Chris Lattnerd934c702004-04-02 20:23:17 +00004226 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00004227 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00004228}
4229
Sanjoy Das55015d22015-10-02 23:09:44 +00004230const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4231 Value *Cond,
4232 Value *TrueVal,
4233 Value *FalseVal) {
Mehdi Amini044cb342015-10-07 18:14:25 +00004234 // Handle "constant" branch or select. This can occur for instance when a
4235 // loop pass transforms an inner loop and moves on to process the outer loop.
4236 if (auto *CI = dyn_cast<ConstantInt>(Cond))
4237 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4238
Sanjoy Dasd0671342015-10-02 19:39:59 +00004239 // Try to match some simple smax or umax patterns.
4240 auto *ICI = dyn_cast<ICmpInst>(Cond);
4241 if (!ICI)
4242 return getUnknown(I);
4243
4244 Value *LHS = ICI->getOperand(0);
4245 Value *RHS = ICI->getOperand(1);
4246
4247 switch (ICI->getPredicate()) {
4248 case ICmpInst::ICMP_SLT:
4249 case ICmpInst::ICMP_SLE:
4250 std::swap(LHS, RHS);
4251 // fall through
4252 case ICmpInst::ICMP_SGT:
4253 case ICmpInst::ICMP_SGE:
4254 // a >s b ? a+x : b+x -> smax(a, b)+x
4255 // a >s b ? b+x : a+x -> smin(a, b)+x
4256 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4257 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4258 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4259 const SCEV *LA = getSCEV(TrueVal);
4260 const SCEV *RA = getSCEV(FalseVal);
4261 const SCEV *LDiff = getMinusSCEV(LA, LS);
4262 const SCEV *RDiff = getMinusSCEV(RA, RS);
4263 if (LDiff == RDiff)
4264 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4265 LDiff = getMinusSCEV(LA, RS);
4266 RDiff = getMinusSCEV(RA, LS);
4267 if (LDiff == RDiff)
4268 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4269 }
4270 break;
4271 case ICmpInst::ICMP_ULT:
4272 case ICmpInst::ICMP_ULE:
4273 std::swap(LHS, RHS);
4274 // fall through
4275 case ICmpInst::ICMP_UGT:
4276 case ICmpInst::ICMP_UGE:
4277 // a >u b ? a+x : b+x -> umax(a, b)+x
4278 // a >u b ? b+x : a+x -> umin(a, b)+x
4279 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4280 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4281 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4282 const SCEV *LA = getSCEV(TrueVal);
4283 const SCEV *RA = getSCEV(FalseVal);
4284 const SCEV *LDiff = getMinusSCEV(LA, LS);
4285 const SCEV *RDiff = getMinusSCEV(RA, RS);
4286 if (LDiff == RDiff)
4287 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4288 LDiff = getMinusSCEV(LA, RS);
4289 RDiff = getMinusSCEV(RA, LS);
4290 if (LDiff == RDiff)
4291 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4292 }
4293 break;
4294 case ICmpInst::ICMP_NE:
4295 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4296 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4297 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4298 const SCEV *One = getOne(I->getType());
4299 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4300 const SCEV *LA = getSCEV(TrueVal);
4301 const SCEV *RA = getSCEV(FalseVal);
4302 const SCEV *LDiff = getMinusSCEV(LA, LS);
4303 const SCEV *RDiff = getMinusSCEV(RA, One);
4304 if (LDiff == RDiff)
4305 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4306 }
4307 break;
4308 case ICmpInst::ICMP_EQ:
4309 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4310 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4311 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4312 const SCEV *One = getOne(I->getType());
4313 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4314 const SCEV *LA = getSCEV(TrueVal);
4315 const SCEV *RA = getSCEV(FalseVal);
4316 const SCEV *LDiff = getMinusSCEV(LA, One);
4317 const SCEV *RDiff = getMinusSCEV(RA, LS);
4318 if (LDiff == RDiff)
4319 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4320 }
4321 break;
4322 default:
4323 break;
4324 }
4325
4326 return getUnknown(I);
4327}
4328
Sanjoy Dasf8570812016-05-29 00:38:22 +00004329/// Expand GEP instructions into add and multiply operations. This allows them
4330/// to be analyzed by regular SCEV code.
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004331const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman30f24fe2009-05-09 00:14:52 +00004332 // Don't attempt to analyze GEPs over unsized objects.
Eduard Burtescu19eb0312016-01-19 17:28:00 +00004333 if (!GEP->getSourceElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00004334 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00004335
Jingyue Wu2982d4d2015-05-18 17:03:25 +00004336 SmallVector<const SCEV *, 4> IndexExprs;
4337 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4338 IndexExprs.push_back(getSCEV(*Index));
Eduard Burtescu19eb0312016-01-19 17:28:00 +00004339 return getGEPExpr(GEP->getSourceElementType(),
4340 getSCEV(GEP->getPointerOperand()),
4341 IndexExprs, GEP->isInBounds());
Dan Gohmanee750d12009-05-08 20:26:55 +00004342}
4343
Dan Gohmanc702fc02009-06-19 23:29:04 +00004344uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00004345ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00004346 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00004347 return C->getAPInt().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00004348
Dan Gohmana30370b2009-05-04 22:02:23 +00004349 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00004350 return std::min(GetMinTrailingZeros(T->getOperand()),
4351 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00004352
Dan Gohmana30370b2009-05-04 22:02:23 +00004353 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004354 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4355 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4356 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004357 }
4358
Dan Gohmana30370b2009-05-04 22:02:23 +00004359 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004360 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4361 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4362 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004363 }
4364
Dan Gohmana30370b2009-05-04 22:02:23 +00004365 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004366 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004367 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004368 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004369 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004370 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004371 }
4372
Dan Gohmana30370b2009-05-04 22:02:23 +00004373 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004374 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004375 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4376 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00004377 for (unsigned i = 1, e = M->getNumOperands();
4378 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004379 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00004380 BitWidth);
4381 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004382 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004383
Dan Gohmana30370b2009-05-04 22:02:23 +00004384 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004385 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004386 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004387 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004388 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004389 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004390 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004391
Dan Gohmana30370b2009-05-04 22:02:23 +00004392 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004393 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004394 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004395 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004396 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004397 return MinOpRes;
4398 }
4399
Dan Gohmana30370b2009-05-04 22:02:23 +00004400 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004401 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004402 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004403 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004404 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004405 return MinOpRes;
4406 }
4407
Dan Gohmanc702fc02009-06-19 23:29:04 +00004408 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4409 // For a SCEVUnknown, ask ValueTracking.
4410 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00004411 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004412 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4413 nullptr, &DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004414 return Zeros.countTrailingOnes();
4415 }
4416
4417 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00004418 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00004419}
Chris Lattnerd934c702004-04-02 20:23:17 +00004420
Sanjoy Dasf8570812016-05-29 00:38:22 +00004421/// Helper method to assign a range to V from metadata present in the IR.
Sanjoy Das1f05c512014-10-10 21:22:34 +00004422static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004423 if (Instruction *I = dyn_cast<Instruction>(V))
4424 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4425 return getConstantRangeFromMetadata(*MD);
Sanjoy Das1f05c512014-10-10 21:22:34 +00004426
4427 return None;
4428}
4429
Sanjoy Dasf8570812016-05-29 00:38:22 +00004430/// Determine the range for a particular SCEV. If SignHint is
Sanjoy Das91b54772015-03-09 21:43:43 +00004431/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4432/// with a "cleaner" unsigned (resp. signed) representation.
Dan Gohmane65c9172009-07-13 21:35:55 +00004433ConstantRange
Sanjoy Das91b54772015-03-09 21:43:43 +00004434ScalarEvolution::getRange(const SCEV *S,
4435 ScalarEvolution::RangeSignHint SignHint) {
4436 DenseMap<const SCEV *, ConstantRange> &Cache =
4437 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4438 : SignedRanges;
4439
Dan Gohman761065e2010-11-17 02:44:44 +00004440 // See if we've computed this range already.
Sanjoy Das91b54772015-03-09 21:43:43 +00004441 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4442 if (I != Cache.end())
Dan Gohman761065e2010-11-17 02:44:44 +00004443 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00004444
4445 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00004446 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004447
Dan Gohman85be4332010-01-26 19:19:05 +00004448 unsigned BitWidth = getTypeSizeInBits(S->getType());
4449 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4450
Sanjoy Das91b54772015-03-09 21:43:43 +00004451 // If the value has known zeros, the maximum value will have those known zeros
4452 // as well.
Dan Gohman85be4332010-01-26 19:19:05 +00004453 uint32_t TZ = GetMinTrailingZeros(S);
Sanjoy Das91b54772015-03-09 21:43:43 +00004454 if (TZ != 0) {
4455 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4456 ConservativeResult =
4457 ConstantRange(APInt::getMinValue(BitWidth),
4458 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4459 else
4460 ConservativeResult = ConstantRange(
4461 APInt::getSignedMinValue(BitWidth),
4462 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4463 }
Dan Gohman85be4332010-01-26 19:19:05 +00004464
Dan Gohmane65c9172009-07-13 21:35:55 +00004465 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004466 ConstantRange X = getRange(Add->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004467 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004468 X = X.add(getRange(Add->getOperand(i), SignHint));
4469 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004470 }
4471
4472 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004473 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004474 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004475 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4476 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004477 }
4478
4479 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004480 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004481 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004482 X = X.smax(getRange(SMax->getOperand(i), SignHint));
4483 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004484 }
4485
4486 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004487 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004488 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004489 X = X.umax(getRange(UMax->getOperand(i), SignHint));
4490 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004491 }
4492
4493 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004494 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4495 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4496 return setRange(UDiv, SignHint,
4497 ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004498 }
4499
4500 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004501 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4502 return setRange(ZExt, SignHint,
4503 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004504 }
4505
4506 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004507 ConstantRange X = getRange(SExt->getOperand(), SignHint);
4508 return setRange(SExt, SignHint,
4509 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004510 }
4511
4512 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004513 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4514 return setRange(Trunc, SignHint,
4515 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004516 }
4517
Dan Gohmane65c9172009-07-13 21:35:55 +00004518 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004519 // If there's no unsigned wrap, the value will never be less than its
4520 // initial value.
Sanjoy Das76c48e02016-02-04 18:21:54 +00004521 if (AddRec->hasNoUnsignedWrap())
Dan Gohman51ad99d2010-01-21 02:09:26 +00004522 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00004523 if (!C->getValue()->isZero())
Sanjoy Das0de2fec2015-12-17 20:28:46 +00004524 ConservativeResult = ConservativeResult.intersectWith(
4525 ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004526
Dan Gohman51ad99d2010-01-21 02:09:26 +00004527 // If there's no signed wrap, and all the operands have the same sign or
4528 // zero, the value won't ever change sign.
Sanjoy Das76c48e02016-02-04 18:21:54 +00004529 if (AddRec->hasNoSignedWrap()) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004530 bool AllNonNeg = true;
4531 bool AllNonPos = true;
4532 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4533 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4534 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4535 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004536 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00004537 ConservativeResult = ConservativeResult.intersectWith(
4538 ConstantRange(APInt(BitWidth, 0),
4539 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004540 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00004541 ConservativeResult = ConservativeResult.intersectWith(
4542 ConstantRange(APInt::getSignedMinValue(BitWidth),
4543 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004544 }
Dan Gohmane65c9172009-07-13 21:35:55 +00004545
4546 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00004547 if (AddRec->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00004548 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00004549 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4550 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Sanjoy Dasb765b632016-03-02 00:57:39 +00004551 auto RangeFromAffine = getRangeForAffineAR(
4552 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4553 BitWidth);
4554 if (!RangeFromAffine.isFullSet())
4555 ConservativeResult =
4556 ConservativeResult.intersectWith(RangeFromAffine);
Sanjoy Dasbf730982016-03-02 00:57:54 +00004557
4558 auto RangeFromFactoring = getRangeViaFactoring(
4559 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4560 BitWidth);
4561 if (!RangeFromFactoring.isFullSet())
4562 ConservativeResult =
4563 ConservativeResult.intersectWith(RangeFromFactoring);
Dan Gohmand261d272009-06-24 01:05:09 +00004564 }
Dan Gohmand261d272009-06-24 01:05:09 +00004565 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004566
Sanjoy Das91b54772015-03-09 21:43:43 +00004567 return setRange(AddRec, SignHint, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004568 }
4569
Dan Gohmanc702fc02009-06-19 23:29:04 +00004570 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004571 // Check if the IR explicitly contains !range metadata.
4572 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4573 if (MDRange.hasValue())
4574 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4575
Sanjoy Das91b54772015-03-09 21:43:43 +00004576 // Split here to avoid paying the compile-time cost of calling both
4577 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4578 // if needed.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004579 const DataLayout &DL = getDataLayout();
Sanjoy Das91b54772015-03-09 21:43:43 +00004580 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4581 // For a SCEVUnknown, ask ValueTracking.
4582 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004583 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
Sanjoy Das91b54772015-03-09 21:43:43 +00004584 if (Ones != ~Zeros + 1)
4585 ConservativeResult =
4586 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4587 } else {
4588 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4589 "generalize as needed!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004590 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004591 if (NS > 1)
4592 ConservativeResult = ConservativeResult.intersectWith(
4593 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4594 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
Sanjoy Das91b54772015-03-09 21:43:43 +00004595 }
4596
4597 return setRange(U, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004598 }
4599
Sanjoy Das91b54772015-03-09 21:43:43 +00004600 return setRange(S, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004601}
4602
Sanjoy Dasb765b632016-03-02 00:57:39 +00004603ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
4604 const SCEV *Step,
4605 const SCEV *MaxBECount,
4606 unsigned BitWidth) {
4607 assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
4608 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
4609 "Precondition!");
4610
4611 ConstantRange Result(BitWidth, /* isFullSet = */ true);
4612
4613 // Check for overflow. This must be done with ConstantRange arithmetic
4614 // because we could be called from within the ScalarEvolution overflow
4615 // checking code.
4616
4617 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
4618 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4619 ConstantRange ZExtMaxBECountRange =
4620 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4621
4622 ConstantRange StepSRange = getSignedRange(Step);
4623 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4624
4625 ConstantRange StartURange = getUnsignedRange(Start);
4626 ConstantRange EndURange =
4627 StartURange.add(MaxBECountRange.multiply(StepSRange));
4628
4629 // Check for unsigned overflow.
4630 ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1);
4631 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4632 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4633 ZExtEndURange) {
4634 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4635 EndURange.getUnsignedMin());
4636 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4637 EndURange.getUnsignedMax());
4638 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4639 if (!IsFullRange)
4640 Result =
4641 Result.intersectWith(ConstantRange(Min, Max + 1));
4642 }
4643
4644 ConstantRange StartSRange = getSignedRange(Start);
4645 ConstantRange EndSRange =
4646 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4647
4648 // Check for signed overflow. This must be done with ConstantRange
4649 // arithmetic because we could be called from within the ScalarEvolution
4650 // overflow checking code.
4651 ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4652 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4653 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4654 SExtEndSRange) {
4655 APInt Min =
4656 APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin());
4657 APInt Max =
4658 APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax());
4659 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4660 if (!IsFullRange)
4661 Result =
4662 Result.intersectWith(ConstantRange(Min, Max + 1));
4663 }
4664
4665 return Result;
4666}
4667
Sanjoy Dasbf730982016-03-02 00:57:54 +00004668ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
4669 const SCEV *Step,
4670 const SCEV *MaxBECount,
4671 unsigned BitWidth) {
Sanjoy Dasbf730982016-03-02 00:57:54 +00004672 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
4673 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
4674
4675 struct SelectPattern {
4676 Value *Condition = nullptr;
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004677 APInt TrueValue;
4678 APInt FalseValue;
Sanjoy Dasbf730982016-03-02 00:57:54 +00004679
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004680 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
4681 const SCEV *S) {
4682 Optional<unsigned> CastOp;
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004683 APInt Offset(BitWidth, 0);
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004684
4685 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
4686 "Should be!");
4687
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004688 // Peel off a constant offset:
4689 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
4690 // In the future we could consider being smarter here and handle
4691 // {Start+Step,+,Step} too.
4692 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
4693 return;
4694
4695 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
4696 S = SA->getOperand(1);
4697 }
4698
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004699 // Peel off a cast operation
4700 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
4701 CastOp = SCast->getSCEVType();
4702 S = SCast->getOperand();
4703 }
4704
Sanjoy Dasbf730982016-03-02 00:57:54 +00004705 using namespace llvm::PatternMatch;
4706
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004707 auto *SU = dyn_cast<SCEVUnknown>(S);
4708 const APInt *TrueVal, *FalseVal;
4709 if (!SU ||
4710 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
4711 m_APInt(FalseVal)))) {
Sanjoy Dasbf730982016-03-02 00:57:54 +00004712 Condition = nullptr;
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004713 return;
Sanjoy Dasbf730982016-03-02 00:57:54 +00004714 }
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004715
4716 TrueValue = *TrueVal;
4717 FalseValue = *FalseVal;
4718
4719 // Re-apply the cast we peeled off earlier
4720 if (CastOp.hasValue())
4721 switch (*CastOp) {
4722 default:
4723 llvm_unreachable("Unknown SCEV cast type!");
4724
4725 case scTruncate:
4726 TrueValue = TrueValue.trunc(BitWidth);
4727 FalseValue = FalseValue.trunc(BitWidth);
4728 break;
4729 case scZeroExtend:
4730 TrueValue = TrueValue.zext(BitWidth);
4731 FalseValue = FalseValue.zext(BitWidth);
4732 break;
4733 case scSignExtend:
4734 TrueValue = TrueValue.sext(BitWidth);
4735 FalseValue = FalseValue.sext(BitWidth);
4736 break;
4737 }
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004738
4739 // Re-apply the constant offset we peeled off earlier
4740 TrueValue += Offset;
4741 FalseValue += Offset;
Sanjoy Dasbf730982016-03-02 00:57:54 +00004742 }
4743
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004744 bool isRecognized() { return Condition != nullptr; }
Sanjoy Dasbf730982016-03-02 00:57:54 +00004745 };
4746
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004747 SelectPattern StartPattern(*this, BitWidth, Start);
Sanjoy Dasbf730982016-03-02 00:57:54 +00004748 if (!StartPattern.isRecognized())
4749 return ConstantRange(BitWidth, /* isFullSet = */ true);
4750
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004751 SelectPattern StepPattern(*this, BitWidth, Step);
Sanjoy Dasbf730982016-03-02 00:57:54 +00004752 if (!StepPattern.isRecognized())
4753 return ConstantRange(BitWidth, /* isFullSet = */ true);
4754
4755 if (StartPattern.Condition != StepPattern.Condition) {
4756 // We don't handle this case today; but we could, by considering four
4757 // possibilities below instead of two. I'm not sure if there are cases where
4758 // that will help over what getRange already does, though.
4759 return ConstantRange(BitWidth, /* isFullSet = */ true);
4760 }
4761
4762 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
4763 // construct arbitrary general SCEV expressions here. This function is called
4764 // from deep in the call stack, and calling getSCEV (on a sext instruction,
4765 // say) can end up caching a suboptimal value.
4766
Sanjoy Das6b017a12016-03-02 02:56:29 +00004767 // FIXME: without the explicit `this` receiver below, MSVC errors out with
4768 // C2352 and C2512 (otherwise it isn't needed).
4769
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004770 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004771 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
Sanjoy Das97d19bd2016-03-09 01:51:02 +00004772 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
Sanjoy Dasd3488c62016-03-09 01:50:57 +00004773 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
Sanjoy Das62a1c332016-03-02 02:15:42 +00004774
Sanjoy Das1168f932016-03-02 02:34:20 +00004775 ConstantRange TrueRange =
Sanjoy Daseca1b532016-03-02 02:44:08 +00004776 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
Sanjoy Das1168f932016-03-02 02:34:20 +00004777 ConstantRange FalseRange =
Sanjoy Daseca1b532016-03-02 02:44:08 +00004778 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
Sanjoy Dasbf730982016-03-02 00:57:54 +00004779
4780 return TrueRange.unionWith(FalseRange);
4781}
4782
Jingyue Wu42f1d672015-07-28 18:22:40 +00004783SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004784 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004785 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4786
4787 // Return early if there are no flags to propagate to the SCEV.
4788 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4789 if (BinOp->hasNoUnsignedWrap())
4790 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4791 if (BinOp->hasNoSignedWrap())
4792 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
Sanjoy Dasdcd3a882016-03-02 04:52:22 +00004793 if (Flags == SCEV::FlagAnyWrap)
Jingyue Wu42f1d672015-07-28 18:22:40 +00004794 return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004795
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004796 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
4797}
4798
4799bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
4800 // Here we check that I is in the header of the innermost loop containing I,
4801 // since we only deal with instructions in the loop header. The actual loop we
4802 // need to check later will come from an add recurrence, but getting that
4803 // requires computing the SCEV of the operands, which can be expensive. This
4804 // check we can do cheaply to rule out some cases early.
4805 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
Sanjoy Dasdcd3a882016-03-02 04:52:22 +00004806 if (InnermostContainingLoop == nullptr ||
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004807 InnermostContainingLoop->getHeader() != I->getParent())
4808 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004809
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004810 // Only proceed if we can prove that I does not yield poison.
4811 if (!isKnownNotFullPoison(I)) return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004812
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004813 // At this point we know that if I is executed, then it does not wrap
4814 // according to at least one of NSW or NUW. If I is not executed, then we do
4815 // not know if the calculation that I represents would wrap. Multiple
4816 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
Jingyue Wu42f1d672015-07-28 18:22:40 +00004817 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4818 // derived from other instructions that map to the same SCEV. We cannot make
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004819 // that guarantee for cases where I is not executed. So we need to find the
4820 // loop that I is considered in relation to and prove that I is executed for
4821 // every iteration of that loop. That implies that the value that I
Jingyue Wu42f1d672015-07-28 18:22:40 +00004822 // calculates does not wrap anywhere in the loop, so then we can apply the
4823 // flags to the SCEV.
4824 //
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004825 // We check isLoopInvariant to disambiguate in case we are adding recurrences
4826 // from different loops, so that we know which loop to prove that I is
4827 // executed in.
4828 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
4829 const SCEV *Op = getSCEV(I->getOperand(OpIndex));
Jingyue Wu42f1d672015-07-28 18:22:40 +00004830 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004831 bool AllOtherOpsLoopInvariant = true;
4832 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
4833 ++OtherOpIndex) {
4834 if (OtherOpIndex != OpIndex) {
4835 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
4836 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
4837 AllOtherOpsLoopInvariant = false;
4838 break;
4839 }
4840 }
4841 }
4842 if (AllOtherOpsLoopInvariant &&
4843 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
4844 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004845 }
4846 }
Sanjoy Dasefdeb452016-04-22 05:38:54 +00004847 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004848}
4849
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004850bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
4851 // If we know that \c I can never be poison period, then that's enough.
4852 if (isSCEVExprNeverPoison(I))
4853 return true;
4854
4855 // For an add recurrence specifically, we assume that infinite loops without
4856 // side effects are undefined behavior, and then reason as follows:
4857 //
4858 // If the add recurrence is poison in any iteration, it is poison on all
4859 // future iterations (since incrementing poison yields poison). If the result
4860 // of the add recurrence is fed into the loop latch condition and the loop
4861 // does not contain any throws or exiting blocks other than the latch, we now
4862 // have the ability to "choose" whether the backedge is taken or not (by
4863 // choosing a sufficiently evil value for the poison feeding into the branch)
4864 // for every iteration including and after the one in which \p I first became
4865 // poison. There are two possibilities (let's call the iteration in which \p
4866 // I first became poison as K):
4867 //
4868 // 1. In the set of iterations including and after K, the loop body executes
4869 // no side effects. In this case executing the backege an infinte number
4870 // of times will yield undefined behavior.
4871 //
4872 // 2. In the set of iterations including and after K, the loop body executes
4873 // at least one side effect. In this case, that specific instance of side
4874 // effect is control dependent on poison, which also yields undefined
4875 // behavior.
4876
4877 auto *ExitingBB = L->getExitingBlock();
4878 auto *LatchBB = L->getLoopLatch();
4879 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
4880 return false;
4881
4882 SmallPtrSet<const Instruction *, 16> Pushed;
Sanjoy Dasa19edc42016-06-08 17:48:31 +00004883 SmallVector<const Instruction *, 8> PoisonStack;
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004884
Sanjoy Dasa19edc42016-06-08 17:48:31 +00004885 // We start by assuming \c I, the post-inc add recurrence, is poison. Only
4886 // things that are known to be fully poison under that assumption go on the
4887 // PoisonStack.
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004888 Pushed.insert(I);
Sanjoy Dasa19edc42016-06-08 17:48:31 +00004889 PoisonStack.push_back(I);
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004890
4891 bool LatchControlDependentOnPoison = false;
Sanjoy Das2401c982016-06-08 17:48:46 +00004892 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
Sanjoy Dasa19edc42016-06-08 17:48:31 +00004893 const Instruction *Poison = PoisonStack.pop_back_val();
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004894
Sanjoy Dasa19edc42016-06-08 17:48:31 +00004895 for (auto *PoisonUser : Poison->users()) {
4896 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
4897 if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
4898 PoisonStack.push_back(cast<Instruction>(PoisonUser));
4899 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004900 assert(BI->isConditional() && "Only possibility!");
4901 if (BI->getParent() == LatchBB) {
4902 LatchControlDependentOnPoison = true;
4903 break;
4904 }
4905 }
4906 }
4907 }
4908
Sanjoy Das97cd7d52016-06-09 01:13:54 +00004909 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
4910}
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004911
Sanjoy Das97cd7d52016-06-09 01:13:54 +00004912bool ScalarEvolution::loopHasNoAbnormalExits(const Loop *L) {
4913 auto Itr = LoopHasNoAbnormalExits.find(L);
4914 if (Itr == LoopHasNoAbnormalExits.end()) {
Sanjoy Das85984122016-06-08 17:48:42 +00004915 bool HasAbnormalExit = false;
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004916 for (auto *BB : L->getBlocks()) {
Sanjoy Das85984122016-06-08 17:48:42 +00004917 HasAbnormalExit = any_of(*BB, [](Instruction &I) {
4918 return !isGuaranteedToTransferExecutionToSuccessor(&I);
4919 });
4920 if (HasAbnormalExit)
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004921 break;
4922 }
Sanjoy Das97cd7d52016-06-09 01:13:54 +00004923 auto InsertPair = LoopHasNoAbnormalExits.insert({L, !HasAbnormalExit});
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004924 assert(InsertPair.second && "We just checked!");
4925 Itr = InsertPair.first;
4926 }
4927
Sanjoy Das97cd7d52016-06-09 01:13:54 +00004928 return Itr->second;
Sanjoy Das7e4a6412016-05-29 00:32:17 +00004929}
4930
Dan Gohmanaf752342009-07-07 17:06:11 +00004931const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004932 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004933 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004934
Dan Gohman69451a02010-03-09 23:46:50 +00004935 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman69451a02010-03-09 23:46:50 +00004936 // Don't attempt to analyze instructions in blocks that aren't
4937 // reachable. Such instructions don't matter, and they aren't required
4938 // to obey basic rules for definitions dominating uses which this
4939 // analysis depends on.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004940 if (!DT.isReachableFromEntry(I->getParent()))
Dan Gohman69451a02010-03-09 23:46:50 +00004941 return getUnknown(V);
Sanjoy Das260ad4d2016-03-29 16:40:39 +00004942 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Dan Gohmanf436bac2009-06-24 00:54:57 +00004943 return getConstant(CI);
4944 else if (isa<ConstantPointerNull>(V))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004945 return getZero(V->getType());
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004946 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
Sanjoy Das5ce32722016-04-08 00:48:30 +00004947 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
Sanjoy Das260ad4d2016-03-29 16:40:39 +00004948 else if (!isa<ConstantExpr>(V))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004949 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004950
Dan Gohman80ca01c2009-07-17 20:47:02 +00004951 Operator *U = cast<Operator>(V);
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004952 if (auto BO = MatchBinaryOp(U, DT)) {
Sanjoy Das2381fcd2016-03-29 16:40:44 +00004953 switch (BO->Opcode) {
4954 case Instruction::Add: {
4955 // The simple thing to do would be to just call getSCEV on both operands
4956 // and call getAddExpr with the result. However if we're looking at a
4957 // bunch of things all added together, this can be quite inefficient,
4958 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4959 // Instead, gather up all the operands and make a single getAddExpr call.
4960 // LLVM IR canonical form means we need only traverse the left operands.
4961 SmallVector<const SCEV *, 4> AddOps;
4962 do {
4963 if (BO->Op) {
4964 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
4965 AddOps.push_back(OpSCEV);
4966 break;
4967 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004968
Sanjoy Das2381fcd2016-03-29 16:40:44 +00004969 // If a NUW or NSW flag can be applied to the SCEV for this
4970 // addition, then compute the SCEV for this addition by itself
4971 // with a separate call to getAddExpr. We need to do that
4972 // instead of pushing the operands of the addition onto AddOps,
4973 // since the flags are only known to apply to this particular
4974 // addition - they may not apply to other additions that can be
4975 // formed with operands from AddOps.
4976 const SCEV *RHS = getSCEV(BO->RHS);
4977 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
4978 if (Flags != SCEV::FlagAnyWrap) {
4979 const SCEV *LHS = getSCEV(BO->LHS);
4980 if (BO->Opcode == Instruction::Sub)
4981 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4982 else
4983 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4984 break;
4985 }
Dan Gohman36bad002009-09-17 18:05:20 +00004986 }
Sanjoy Das2381fcd2016-03-29 16:40:44 +00004987
4988 if (BO->Opcode == Instruction::Sub)
4989 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
4990 else
4991 AddOps.push_back(getSCEV(BO->RHS));
4992
Sanjoy Dasf49ca522016-05-29 00:34:42 +00004993 auto NewBO = MatchBinaryOp(BO->LHS, DT);
Sanjoy Das2381fcd2016-03-29 16:40:44 +00004994 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
4995 NewBO->Opcode != Instruction::Sub)) {
4996 AddOps.push_back(getSCEV(BO->LHS));
4997 break;
4998 }
4999 BO = NewBO;
5000 } while (true);
5001
5002 return getAddExpr(AddOps);
5003 }
5004
5005 case Instruction::Mul: {
5006 SmallVector<const SCEV *, 4> MulOps;
5007 do {
5008 if (BO->Op) {
5009 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5010 MulOps.push_back(OpSCEV);
5011 break;
5012 }
5013
5014 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5015 if (Flags != SCEV::FlagAnyWrap) {
5016 MulOps.push_back(
5017 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
5018 break;
5019 }
5020 }
5021
5022 MulOps.push_back(getSCEV(BO->RHS));
Sanjoy Dasf49ca522016-05-29 00:34:42 +00005023 auto NewBO = MatchBinaryOp(BO->LHS, DT);
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005024 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
5025 MulOps.push_back(getSCEV(BO->LHS));
5026 break;
5027 }
5028 BO = NewBO;
5029 } while (true);
5030
5031 return getMulExpr(MulOps);
5032 }
5033 case Instruction::UDiv:
5034 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
5035 case Instruction::Sub: {
5036 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5037 if (BO->Op)
5038 Flags = getNoWrapFlagsFromUB(BO->Op);
5039 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
5040 }
5041 case Instruction::And:
5042 // For an expression like x&255 that merely masks off the high bits,
5043 // use zext(trunc(x)) as the SCEV expression.
5044 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5045 if (CI->isNullValue())
5046 return getSCEV(BO->RHS);
5047 if (CI->isAllOnesValue())
5048 return getSCEV(BO->LHS);
5049 const APInt &A = CI->getValue();
5050
5051 // Instcombine's ShrinkDemandedConstant may strip bits out of
5052 // constants, obscuring what would otherwise be a low-bits mask.
5053 // Use computeKnownBits to compute what ShrinkDemandedConstant
5054 // knew about to reconstruct a low-bits mask value.
5055 unsigned LZ = A.countLeadingZeros();
5056 unsigned TZ = A.countTrailingZeros();
5057 unsigned BitWidth = A.getBitWidth();
5058 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5059 computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(),
5060 0, &AC, nullptr, &DT);
5061
5062 APInt EffectiveMask =
5063 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
5064 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
5065 const SCEV *MulCount = getConstant(ConstantInt::get(
5066 getContext(), APInt::getOneBitSet(BitWidth, TZ)));
5067 return getMulExpr(
5068 getZeroExtendExpr(
5069 getTruncateExpr(
5070 getUDivExactExpr(getSCEV(BO->LHS), MulCount),
5071 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
5072 BO->LHS->getType()),
5073 MulCount);
5074 }
Dan Gohman36bad002009-09-17 18:05:20 +00005075 }
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005076 break;
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00005077
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005078 case Instruction::Or:
5079 // If the RHS of the Or is a constant, we may have something like:
5080 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
5081 // optimizations will transparently handle this case.
5082 //
5083 // In order for this transformation to be safe, the LHS must be of the
5084 // form X*(2^n) and the Or constant must be less than 2^n.
5085 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5086 const SCEV *LHS = getSCEV(BO->LHS);
5087 const APInt &CIVal = CI->getValue();
5088 if (GetMinTrailingZeros(LHS) >=
5089 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
5090 // Build a plain add SCEV.
5091 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
5092 // If the LHS of the add was an addrec and it has no-wrap flags,
5093 // transfer the no-wrap flags, since an or won't introduce a wrap.
5094 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
5095 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
5096 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
5097 OldAR->getNoWrapFlags());
5098 }
5099 return S;
5100 }
5101 }
5102 break;
Dan Gohman6350296e2009-05-18 16:29:04 +00005103
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005104 case Instruction::Xor:
5105 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5106 // If the RHS of xor is -1, then this is a not operation.
5107 if (CI->isAllOnesValue())
5108 return getNotSCEV(getSCEV(BO->LHS));
Dan Gohmaneddf7712009-06-18 00:00:20 +00005109
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005110 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
5111 // This is a variant of the check for xor with -1, and it handles
5112 // the case where instcombine has trimmed non-demanded bits out
5113 // of an xor with -1.
5114 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
5115 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5116 if (LBO->getOpcode() == Instruction::And &&
5117 LCI->getValue() == CI->getValue())
5118 if (const SCEVZeroExtendExpr *Z =
5119 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5120 Type *UTy = BO->LHS->getType();
5121 const SCEV *Z0 = Z->getOperand();
5122 Type *Z0Ty = Z0->getType();
5123 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
Dan Gohmaneddf7712009-06-18 00:00:20 +00005124
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005125 // If C is a low-bits mask, the zero extend is serving to
5126 // mask off the high bits. Complement the operand and
5127 // re-apply the zext.
5128 if (APIntOps::isMask(Z0TySize, CI->getValue()))
5129 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5130
5131 // If C is a single bit, it may be in the sign-bit position
5132 // before the zero-extend. In this case, represent the xor
5133 // using an add, which is equivalent, and re-apply the zext.
5134 APInt Trunc = CI->getValue().trunc(Z0TySize);
5135 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5136 Trunc.isSignBit())
5137 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5138 UTy);
5139 }
5140 }
5141 break;
Dan Gohman05e89732008-06-22 19:56:46 +00005142
5143 case Instruction::Shl:
5144 // Turn shift left of a constant amount into a multiply.
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005145 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
5146 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00005147
5148 // If the shift count is not less than the bitwidth, the result of
5149 // the shift is undefined. Don't try to analyze it, because the
5150 // resolution chosen here may differ from the resolution chosen in
5151 // other parts of the compiler.
5152 if (SA->getValue().uge(BitWidth))
5153 break;
5154
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00005155 // It is currently not resolved how to interpret NSW for left
5156 // shift by BitWidth - 1, so we avoid applying flags in that
5157 // case. Remove this check (or this comment) once the situation
5158 // is resolved. See
5159 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
5160 // and http://reviews.llvm.org/D8890 .
5161 auto Flags = SCEV::FlagAnyWrap;
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005162 if (BO->Op && SA->getValue().ult(BitWidth - 1))
5163 Flags = getNoWrapFlagsFromUB(BO->Op);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00005164
Owen Andersonedb4a702009-07-24 23:12:02 +00005165 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00005166 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005167 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
Dan Gohman05e89732008-06-22 19:56:46 +00005168 }
5169 break;
5170
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005171 case Instruction::AShr:
5172 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
5173 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS))
5174 if (Operator *L = dyn_cast<Operator>(BO->LHS))
5175 if (L->getOpcode() == Instruction::Shl &&
5176 L->getOperand(1) == BO->RHS) {
5177 uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType());
Dan Gohmanacd700a2010-04-22 01:35:11 +00005178
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005179 // If the shift count is not less than the bitwidth, the result of
5180 // the shift is undefined. Don't try to analyze it, because the
5181 // resolution chosen here may differ from the resolution chosen in
5182 // other parts of the compiler.
5183 if (CI->getValue().uge(BitWidth))
5184 break;
Dan Gohmanacd700a2010-04-22 01:35:11 +00005185
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005186 uint64_t Amt = BitWidth - CI->getZExtValue();
5187 if (Amt == BitWidth)
5188 return getSCEV(L->getOperand(0)); // shift by zero --> noop
5189 return getSignExtendExpr(
5190 getTruncateExpr(getSCEV(L->getOperand(0)),
5191 IntegerType::get(getContext(), Amt)),
5192 BO->LHS->getType());
5193 }
5194 break;
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00005195 }
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005196 }
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00005197
Sanjoy Das2381fcd2016-03-29 16:40:44 +00005198 switch (U->getOpcode()) {
Dan Gohman05e89732008-06-22 19:56:46 +00005199 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00005200 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00005201
5202 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00005203 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00005204
5205 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00005206 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00005207
5208 case Instruction::BitCast:
5209 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00005210 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00005211 return getSCEV(U->getOperand(0));
5212 break;
5213
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00005214 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
5215 // lead to pointer expressions which cannot safely be expanded to GEPs,
5216 // because ScalarEvolution doesn't respect the GEP aliasing rules when
5217 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00005218
Dan Gohmanee750d12009-05-08 20:26:55 +00005219 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00005220 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00005221
Dan Gohman05e89732008-06-22 19:56:46 +00005222 case Instruction::PHI:
5223 return createNodeForPHI(cast<PHINode>(U));
5224
5225 case Instruction::Select:
Sanjoy Dasd0671342015-10-02 19:39:59 +00005226 // U can also be a select constant expr, which let fall through. Since
5227 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
5228 // constant expressions cannot have instructions as operands, we'd have
5229 // returned getUnknown for a select constant expressions anyway.
5230 if (isa<Instruction>(U))
Sanjoy Das55015d22015-10-02 23:09:44 +00005231 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
5232 U->getOperand(1), U->getOperand(2));
Chris Lattnerd934c702004-04-02 20:23:17 +00005233 }
5234
Dan Gohmanc8e23622009-04-21 23:15:49 +00005235 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00005236}
5237
5238
5239
5240//===----------------------------------------------------------------------===//
5241// Iteration Count Computation Code
5242//
5243
Chandler Carruth6666c272014-10-11 00:12:11 +00005244unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
5245 if (BasicBlock *ExitingBB = L->getExitingBlock())
5246 return getSmallConstantTripCount(L, ExitingBB);
5247
5248 // No trip count information for multiple exits.
5249 return 0;
5250}
5251
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005252unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
5253 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00005254 assert(ExitingBlock && "Must pass a non-null exiting block!");
5255 assert(L->isLoopExiting(ExitingBlock) &&
5256 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00005257 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005258 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00005259 if (!ExitCount)
5260 return 0;
5261
5262 ConstantInt *ExitConst = ExitCount->getValue();
5263
5264 // Guard against huge trip counts.
5265 if (ExitConst->getValue().getActiveBits() > 32)
5266 return 0;
5267
5268 // In case of integer overflow, this returns 0, which is correct.
5269 return ((unsigned)ExitConst->getZExtValue()) + 1;
5270}
5271
Chandler Carruth6666c272014-10-11 00:12:11 +00005272unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
5273 if (BasicBlock *ExitingBB = L->getExitingBlock())
5274 return getSmallConstantTripMultiple(L, ExitingBB);
5275
5276 // No trip multiple information for multiple exits.
5277 return 0;
5278}
5279
Sanjoy Dasf8570812016-05-29 00:38:22 +00005280/// Returns the largest constant divisor of the trip count of this loop as a
5281/// normal unsigned value, if possible. This means that the actual trip count is
5282/// always a multiple of the returned value (don't forget the trip count could
5283/// very well be zero as well!).
Andrew Trick2b6860f2011-08-11 23:36:16 +00005284///
5285/// Returns 1 if the trip count is unknown or not guaranteed to be the
5286/// multiple of a constant (which is also the case if the trip count is simply
5287/// constant, use getSmallConstantTripCount for that case), Will also return 1
5288/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00005289///
5290/// As explained in the comments for getSmallConstantTripCount, this assumes
5291/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005292unsigned
5293ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
5294 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00005295 assert(ExitingBlock && "Must pass a non-null exiting block!");
5296 assert(L->isLoopExiting(ExitingBlock) &&
5297 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005298 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00005299 if (ExitCount == getCouldNotCompute())
5300 return 1;
5301
5302 // Get the trip count from the BE count by adding 1.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00005303 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
Andrew Trick2b6860f2011-08-11 23:36:16 +00005304 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
5305 // to factor simple cases.
5306 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
5307 TCMul = Mul->getOperand(0);
5308
5309 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
5310 if (!MulC)
5311 return 1;
5312
5313 ConstantInt *Result = MulC->getValue();
5314
Hal Finkel30bd9342012-10-24 19:46:44 +00005315 // Guard against huge trip counts (this requires checking
5316 // for zero to handle the case where the trip count == -1 and the
5317 // addition wraps).
5318 if (!Result || Result->getValue().getActiveBits() > 32 ||
5319 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00005320 return 1;
5321
5322 return (unsigned)Result->getZExtValue();
5323}
5324
Sanjoy Dasf8570812016-05-29 00:38:22 +00005325/// Get the expression for the number of loop iterations for which this loop is
5326/// guaranteed not to exit via ExitingBlock. Otherwise return
5327/// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00005328const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
5329 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005330}
5331
Silviu Baranga6f444df2016-04-08 14:29:09 +00005332const SCEV *
5333ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
5334 SCEVUnionPredicate &Preds) {
5335 return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
5336}
5337
Dan Gohmanaf752342009-07-07 17:06:11 +00005338const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005339 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00005340}
5341
Sanjoy Dasf8570812016-05-29 00:38:22 +00005342/// Similar to getBackedgeTakenCount, except return the least SCEV value that is
5343/// known never to be less than the actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00005344const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005345 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00005346}
5347
Sanjoy Dasf8570812016-05-29 00:38:22 +00005348/// Push PHI nodes in the header of the given loop onto the given Worklist.
Dan Gohmandc191042009-07-08 19:23:34 +00005349static void
5350PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5351 BasicBlock *Header = L->getHeader();
5352
5353 // Push all Loop-header PHIs onto the Worklist stack.
5354 for (BasicBlock::iterator I = Header->begin();
5355 PHINode *PN = dyn_cast<PHINode>(I); ++I)
5356 Worklist.push_back(PN);
5357}
5358
Dan Gohman2b8da352009-04-30 20:47:05 +00005359const ScalarEvolution::BackedgeTakenInfo &
Silviu Baranga6f444df2016-04-08 14:29:09 +00005360ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
5361 auto &BTI = getBackedgeTakenInfo(L);
5362 if (BTI.hasFullInfo())
5363 return BTI;
5364
5365 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5366
5367 if (!Pair.second)
5368 return Pair.first->second;
5369
5370 BackedgeTakenInfo Result =
5371 computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
5372
5373 return PredicatedBackedgeTakenCounts.find(L)->second = Result;
5374}
5375
5376const ScalarEvolution::BackedgeTakenInfo &
Dan Gohman2b8da352009-04-30 20:47:05 +00005377ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005378 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00005379 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00005380 // update the value. The temporary CouldNotCompute value tells SCEV
5381 // code elsewhere that it shouldn't attempt to request a new
5382 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00005383 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00005384 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
Chris Lattnera337f5e2011-01-09 02:16:18 +00005385 if (!Pair.second)
5386 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00005387
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005388 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
Andrew Trick3ca3f982011-07-26 17:19:55 +00005389 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5390 // must be cleared in this scope.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005391 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005392
5393 if (Result.getExact(this) != getCouldNotCompute()) {
5394 assert(isLoopInvariant(Result.getExact(this), L) &&
5395 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00005396 "Computed backedge-taken count isn't loop invariant for loop!");
5397 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005398 }
5399 else if (Result.getMax(this) == getCouldNotCompute() &&
5400 isa<PHINode>(L->getHeader()->begin())) {
5401 // Only count loops that have phi nodes as not being computable.
5402 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00005403 }
Dan Gohman2b8da352009-04-30 20:47:05 +00005404
Chris Lattnera337f5e2011-01-09 02:16:18 +00005405 // Now that we know more about the trip count for this loop, forget any
5406 // existing SCEV values for PHI nodes in this loop since they are only
5407 // conservative estimates made without the benefit of trip count
5408 // information. This is similar to the code in forgetLoop, except that
5409 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005410 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00005411 SmallVector<Instruction *, 16> Worklist;
5412 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00005413
Chris Lattnera337f5e2011-01-09 02:16:18 +00005414 SmallPtrSet<Instruction *, 8> Visited;
5415 while (!Worklist.empty()) {
5416 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005417 if (!Visited.insert(I).second)
5418 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00005419
Chris Lattnera337f5e2011-01-09 02:16:18 +00005420 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005421 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00005422 if (It != ValueExprMap.end()) {
5423 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00005424
Chris Lattnera337f5e2011-01-09 02:16:18 +00005425 // SCEVUnknown for a PHI either means that it has an unrecognized
5426 // structure, or it's a PHI that's in the progress of being computed
5427 // by createNodeForPHI. In the former case, additional loop trip
5428 // count information isn't going to change anything. In the later
5429 // case, createNodeForPHI will perform the necessary updates on its
5430 // own when it gets to that point.
5431 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5432 forgetMemoizedResults(Old);
5433 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00005434 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00005435 if (PHINode *PN = dyn_cast<PHINode>(I))
5436 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00005437 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00005438
5439 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00005440 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005441 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00005442
5443 // Re-lookup the insert position, since the call to
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005444 // computeBackedgeTakenCount above could result in a
Dan Gohman6acd95b2011-04-25 22:48:29 +00005445 // recusive call to getBackedgeTakenInfo (on a different
5446 // loop), which would invalidate the iterator computed
5447 // earlier.
5448 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00005449}
5450
Dan Gohman880c92a2009-10-31 15:04:55 +00005451void ScalarEvolution::forgetLoop(const Loop *L) {
5452 // Drop any stored trip count value.
Silviu Baranga6f444df2016-04-08 14:29:09 +00005453 auto RemoveLoopFromBackedgeMap =
5454 [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
5455 auto BTCPos = Map.find(L);
5456 if (BTCPos != Map.end()) {
5457 BTCPos->second.clear();
5458 Map.erase(BTCPos);
5459 }
5460 };
5461
5462 RemoveLoopFromBackedgeMap(BackedgeTakenCounts);
5463 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts);
Dan Gohmanf1505722009-05-02 17:43:35 +00005464
Dan Gohman880c92a2009-10-31 15:04:55 +00005465 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00005466 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00005467 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00005468
Dan Gohmandc191042009-07-08 19:23:34 +00005469 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00005470 while (!Worklist.empty()) {
5471 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005472 if (!Visited.insert(I).second)
5473 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00005474
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005475 ValueExprMapType::iterator It =
5476 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005477 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005478 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005479 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00005480 if (PHINode *PN = dyn_cast<PHINode>(I))
5481 ConstantEvolutionLoopExitValue.erase(PN);
5482 }
5483
5484 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00005485 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00005486
5487 // Forget all contained loops too, to avoid dangling entries in the
5488 // ValuesAtScopes map.
5489 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5490 forgetLoop(*I);
Sanjoy Das7e4a6412016-05-29 00:32:17 +00005491
Sanjoy Das97cd7d52016-06-09 01:13:54 +00005492 LoopHasNoAbnormalExits.erase(L);
Dan Gohman43300342009-02-17 20:49:49 +00005493}
5494
Eric Christopheref6d5932010-07-29 01:25:38 +00005495void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005496 Instruction *I = dyn_cast<Instruction>(V);
5497 if (!I) return;
5498
5499 // Drop information about expressions based on loop-header PHIs.
5500 SmallVector<Instruction *, 16> Worklist;
5501 Worklist.push_back(I);
5502
5503 SmallPtrSet<Instruction *, 8> Visited;
5504 while (!Worklist.empty()) {
5505 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005506 if (!Visited.insert(I).second)
5507 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005508
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005509 ValueExprMapType::iterator It =
5510 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005511 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005512 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005513 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005514 if (PHINode *PN = dyn_cast<PHINode>(I))
5515 ConstantEvolutionLoopExitValue.erase(PN);
5516 }
5517
5518 PushDefUseChildren(I, Worklist);
5519 }
5520}
5521
Sanjoy Dasf8570812016-05-29 00:38:22 +00005522/// Get the exact loop backedge taken count considering all loop exits. A
5523/// computable result can only be returned for loops with a single exit.
5524/// Returning the minimum taken count among all exits is incorrect because one
5525/// of the loop's exit limit's may have been skipped. howFarToZero assumes that
5526/// the limit of each loop test is never skipped. This is a valid assumption as
5527/// long as the loop exits via that test. For precise results, it is the
5528/// caller's responsibility to specify the relevant loop exit using
Andrew Trick90c7a102011-11-16 00:52:40 +00005529/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00005530const SCEV *
Silviu Baranga6f444df2016-04-08 14:29:09 +00005531ScalarEvolution::BackedgeTakenInfo::getExact(
5532 ScalarEvolution *SE, SCEVUnionPredicate *Preds) const {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005533 // If any exits were not computable, the loop is not computable.
5534 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5535
Andrew Trick90c7a102011-11-16 00:52:40 +00005536 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00005537 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005538 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5539
Craig Topper9f008862014-04-15 04:59:12 +00005540 const SCEV *BECount = nullptr;
Silviu Baranga6f444df2016-04-08 14:29:09 +00005541 for (auto &ENT : ExitNotTaken) {
5542 assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005543
5544 if (!BECount)
Silviu Baranga6f444df2016-04-08 14:29:09 +00005545 BECount = ENT.ExactNotTaken;
5546 else if (BECount != ENT.ExactNotTaken)
Andrew Trick90c7a102011-11-16 00:52:40 +00005547 return SE->getCouldNotCompute();
Silviu Baranga6f444df2016-04-08 14:29:09 +00005548 if (Preds && ENT.getPred())
5549 Preds->add(ENT.getPred());
5550
5551 assert((Preds || ENT.hasAlwaysTruePred()) &&
5552 "Predicate should be always true!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005553 }
Silviu Baranga6f444df2016-04-08 14:29:09 +00005554
Andrew Trickbbb226a2011-09-02 21:20:46 +00005555 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005556 return BECount;
5557}
5558
Sanjoy Dasf8570812016-05-29 00:38:22 +00005559/// Get the exact not taken count for this loop exit.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005560const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00005561ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005562 ScalarEvolution *SE) const {
Silviu Baranga6f444df2016-04-08 14:29:09 +00005563 for (auto &ENT : ExitNotTaken)
5564 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePred())
5565 return ENT.ExactNotTaken;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005566
Andrew Trick3ca3f982011-07-26 17:19:55 +00005567 return SE->getCouldNotCompute();
5568}
5569
5570/// getMax - Get the max backedge taken count for the loop.
5571const SCEV *
5572ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
Silviu Baranga6f444df2016-04-08 14:29:09 +00005573 for (auto &ENT : ExitNotTaken)
5574 if (!ENT.hasAlwaysTruePred())
5575 return SE->getCouldNotCompute();
5576
Andrew Trick3ca3f982011-07-26 17:19:55 +00005577 return Max ? Max : SE->getCouldNotCompute();
5578}
5579
Andrew Trick9093e152013-03-26 03:14:53 +00005580bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5581 ScalarEvolution *SE) const {
5582 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5583 return true;
5584
5585 if (!ExitNotTaken.ExitingBlock)
5586 return false;
5587
Silviu Baranga6f444df2016-04-08 14:29:09 +00005588 for (auto &ENT : ExitNotTaken)
5589 if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
5590 SE->hasOperand(ENT.ExactNotTaken, S))
Silviu Barangaa393baf2016-04-06 14:06:32 +00005591 return true;
Silviu Baranga6f444df2016-04-08 14:29:09 +00005592
Andrew Trick9093e152013-03-26 03:14:53 +00005593 return false;
5594}
5595
Andrew Trick3ca3f982011-07-26 17:19:55 +00005596/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5597/// computable exit into a persistent ExitNotTakenInfo array.
5598ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
Silviu Baranga6f444df2016-04-08 14:29:09 +00005599 SmallVectorImpl<EdgeInfo> &ExitCounts, bool Complete, const SCEV *MaxCount)
5600 : Max(MaxCount) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005601
5602 if (!Complete)
5603 ExitNotTaken.setIncomplete();
5604
5605 unsigned NumExits = ExitCounts.size();
5606 if (NumExits == 0) return;
5607
Silviu Baranga6f444df2016-04-08 14:29:09 +00005608 ExitNotTaken.ExitingBlock = ExitCounts[0].ExitBlock;
5609 ExitNotTaken.ExactNotTaken = ExitCounts[0].Taken;
5610
5611 // Determine the number of ExitNotTakenExtras structures that we need.
5612 unsigned ExtraInfoSize = 0;
5613 if (NumExits > 1)
5614 ExtraInfoSize = 1 + std::count_if(std::next(ExitCounts.begin()),
5615 ExitCounts.end(), [](EdgeInfo &Entry) {
5616 return !Entry.Pred.isAlwaysTrue();
5617 });
5618 else if (!ExitCounts[0].Pred.isAlwaysTrue())
5619 ExtraInfoSize = 1;
5620
5621 ExitNotTakenExtras *ENT = nullptr;
5622
5623 // Allocate the ExitNotTakenExtras structures and initialize the first
5624 // element (ExitNotTaken).
5625 if (ExtraInfoSize > 0) {
5626 ENT = new ExitNotTakenExtras[ExtraInfoSize];
5627 ExitNotTaken.ExtraInfo = &ENT[0];
5628 *ExitNotTaken.getPred() = std::move(ExitCounts[0].Pred);
5629 }
5630
5631 if (NumExits == 1)
5632 return;
5633
Silviu Baranga24dbd2e2016-05-13 14:54:50 +00005634 assert(ENT && "ExitNotTakenExtras is NULL while having more than one exit");
5635
Silviu Baranga6f444df2016-04-08 14:29:09 +00005636 auto &Exits = ExitNotTaken.ExtraInfo->Exits;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005637
5638 // Handle the rare case of multiple computable exits.
Silviu Baranga6f444df2016-04-08 14:29:09 +00005639 for (unsigned i = 1, PredPos = 1; i < NumExits; ++i) {
5640 ExitNotTakenExtras *Ptr = nullptr;
5641 if (!ExitCounts[i].Pred.isAlwaysTrue()) {
5642 Ptr = &ENT[PredPos++];
5643 Ptr->Pred = std::move(ExitCounts[i].Pred);
5644 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00005645
Silviu Baranga6f444df2016-04-08 14:29:09 +00005646 Exits.emplace_back(ExitCounts[i].ExitBlock, ExitCounts[i].Taken, Ptr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005647 }
5648}
5649
Sanjoy Dasf8570812016-05-29 00:38:22 +00005650/// Invalidate this result and free the ExitNotTakenInfo array.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005651void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00005652 ExitNotTaken.ExitingBlock = nullptr;
5653 ExitNotTaken.ExactNotTaken = nullptr;
Silviu Baranga6f444df2016-04-08 14:29:09 +00005654 delete[] ExitNotTaken.ExtraInfo;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005655}
5656
Sanjoy Dasf8570812016-05-29 00:38:22 +00005657/// Compute the number of times the backedge of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00005658ScalarEvolution::BackedgeTakenInfo
Silviu Baranga6f444df2016-04-08 14:29:09 +00005659ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
5660 bool AllowPredicates) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00005661 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00005662 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00005663
Silviu Baranga6f444df2016-04-08 14:29:09 +00005664 SmallVector<EdgeInfo, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005665 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005666 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00005667 const SCEV *MustExitMaxBECount = nullptr;
5668 const SCEV *MayExitMaxBECount = nullptr;
5669
5670 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5671 // and compute maxBECount.
Silviu Baranga6f444df2016-04-08 14:29:09 +00005672 // Do a union of all the predicates here.
Dan Gohman96212b62009-06-22 00:31:57 +00005673 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005674 BasicBlock *ExitBB = ExitingBlocks[i];
Silviu Baranga6f444df2016-04-08 14:29:09 +00005675 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
5676
5677 assert((AllowPredicates || EL.Pred.isAlwaysTrue()) &&
5678 "Predicated exit limit when predicates are not allowed!");
Andrew Trick839e30b2014-05-23 19:47:13 +00005679
5680 // 1. For each exit that can be computed, add an entry to ExitCounts.
5681 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005682 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00005683 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00005684 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005685 CouldComputeBECount = false;
5686 else
Silviu Baranga6f444df2016-04-08 14:29:09 +00005687 ExitCounts.emplace_back(EdgeInfo(ExitBB, EL.Exact, EL.Pred));
Andrew Trick3ca3f982011-07-26 17:19:55 +00005688
Andrew Trick839e30b2014-05-23 19:47:13 +00005689 // 2. Derive the loop's MaxBECount from each exit's max number of
5690 // non-exiting iterations. Partition the loop exits into two kinds:
5691 // LoopMustExits and LoopMayExits.
5692 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005693 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5694 // is a LoopMayExit. If any computable LoopMustExit is found, then
5695 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5696 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5697 // considered greater than any computable EL.Max.
5698 if (EL.Max != getCouldNotCompute() && Latch &&
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005699 DT.dominates(ExitBB, Latch)) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005700 if (!MustExitMaxBECount)
5701 MustExitMaxBECount = EL.Max;
5702 else {
5703 MustExitMaxBECount =
5704 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00005705 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005706 } else if (MayExitMaxBECount != getCouldNotCompute()) {
5707 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5708 MayExitMaxBECount = EL.Max;
5709 else {
5710 MayExitMaxBECount =
5711 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5712 }
Andrew Trick90c7a102011-11-16 00:52:40 +00005713 }
Dan Gohman96212b62009-06-22 00:31:57 +00005714 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005715 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5716 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00005717 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005718}
5719
Andrew Trick3ca3f982011-07-26 17:19:55 +00005720ScalarEvolution::ExitLimit
Silviu Baranga6f444df2016-04-08 14:29:09 +00005721ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
5722 bool AllowPredicates) {
Dan Gohman96212b62009-06-22 00:31:57 +00005723
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005724 // Okay, we've chosen an exiting block. See what condition causes us to exit
5725 // at this block and remember the exit block and whether all other targets
Benjamin Kramer5a188542014-02-11 15:44:32 +00005726 // lead to the loop header.
5727 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00005728 BasicBlock *Exit = nullptr;
Sanjoy Das0ff07872016-01-19 20:53:46 +00005729 for (auto *SBB : successors(ExitingBlock))
5730 if (!L->contains(SBB)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005731 if (Exit) // Multiple exit successors.
5732 return getCouldNotCompute();
Sanjoy Das0ff07872016-01-19 20:53:46 +00005733 Exit = SBB;
5734 } else if (SBB != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005735 MustExecuteLoopHeader = false;
5736 }
Dan Gohmance973df2009-06-24 04:48:43 +00005737
Chris Lattner18954852007-01-07 02:24:26 +00005738 // At this point, we know we have a conditional branch that determines whether
5739 // the loop is exited. However, we don't know if the branch is executed each
5740 // time through the loop. If not, then the execution count of the branch will
5741 // not be equal to the trip count of the loop.
5742 //
5743 // Currently we check for this by checking to see if the Exit branch goes to
5744 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00005745 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00005746 // loop header. This is common for un-rotated loops.
5747 //
5748 // If both of those tests fail, walk up the unique predecessor chain to the
5749 // header, stopping if there is an edge that doesn't exit the loop. If the
5750 // header is reached, the execution count of the branch will be equal to the
5751 // trip count of the loop.
5752 //
5753 // More extensive analysis could be done to handle more cases here.
5754 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00005755 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005756 // The simple checks failed, try climbing the unique predecessor chain
5757 // up to the header.
5758 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00005759 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00005760 BasicBlock *Pred = BB->getUniquePredecessor();
5761 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005762 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005763 TerminatorInst *PredTerm = Pred->getTerminator();
Pete Cooperebcd7482015-08-06 20:22:46 +00005764 for (const BasicBlock *PredSucc : PredTerm->successors()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005765 if (PredSucc == BB)
5766 continue;
5767 // If the predecessor has a successor that isn't BB and isn't
5768 // outside the loop, assume the worst.
5769 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005770 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005771 }
5772 if (Pred == L->getHeader()) {
5773 Ok = true;
5774 break;
5775 }
5776 BB = Pred;
5777 }
5778 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005779 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005780 }
5781
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005782 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005783 TerminatorInst *Term = ExitingBlock->getTerminator();
5784 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5785 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5786 // Proceed to the next level to examine the exit condition expression.
Silviu Baranga6f444df2016-04-08 14:29:09 +00005787 return computeExitLimitFromCond(
5788 L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
5789 /*ControlsExit=*/IsOnlyExit, AllowPredicates);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005790 }
5791
5792 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005793 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005794 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005795
5796 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005797}
5798
Andrew Trick3ca3f982011-07-26 17:19:55 +00005799ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005800ScalarEvolution::computeExitLimitFromCond(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005801 Value *ExitCond,
5802 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005803 BasicBlock *FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005804 bool ControlsExit,
5805 bool AllowPredicates) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00005806 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00005807 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5808 if (BO->getOpcode() == Instruction::And) {
5809 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00005810 bool EitherMayExit = L->contains(TBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005811 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005812 ControlsExit && !EitherMayExit,
5813 AllowPredicates);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005814 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005815 ControlsExit && !EitherMayExit,
5816 AllowPredicates);
Dan Gohmanaf752342009-07-07 17:06:11 +00005817 const SCEV *BECount = getCouldNotCompute();
5818 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005819 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005820 // Both conditions must be true for the loop to continue executing.
5821 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005822 if (EL0.Exact == getCouldNotCompute() ||
5823 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005824 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005825 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005826 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5827 if (EL0.Max == getCouldNotCompute())
5828 MaxBECount = EL1.Max;
5829 else if (EL1.Max == getCouldNotCompute())
5830 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005831 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005832 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005833 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005834 // Both conditions must be true at the same time for the loop to exit.
5835 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005836 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005837 if (EL0.Max == EL1.Max)
5838 MaxBECount = EL0.Max;
5839 if (EL0.Exact == EL1.Exact)
5840 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005841 }
5842
Silviu Baranga6f444df2016-04-08 14:29:09 +00005843 SCEVUnionPredicate NP;
5844 NP.add(&EL0.Pred);
5845 NP.add(&EL1.Pred);
Sanjoy Das29a4b5d2016-01-19 20:53:51 +00005846 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5847 // to be more aggressive when computing BECount than when computing
5848 // MaxBECount. In these cases it is possible for EL0.Exact and EL1.Exact
5849 // to match, but for EL0.Max and EL1.Max to not.
5850 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5851 !isa<SCEVCouldNotCompute>(BECount))
5852 MaxBECount = BECount;
5853
Silviu Baranga6f444df2016-04-08 14:29:09 +00005854 return ExitLimit(BECount, MaxBECount, NP);
Dan Gohman96212b62009-06-22 00:31:57 +00005855 }
5856 if (BO->getOpcode() == Instruction::Or) {
5857 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005858 bool EitherMayExit = L->contains(FBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005859 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005860 ControlsExit && !EitherMayExit,
5861 AllowPredicates);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005862 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005863 ControlsExit && !EitherMayExit,
5864 AllowPredicates);
Dan Gohmanaf752342009-07-07 17:06:11 +00005865 const SCEV *BECount = getCouldNotCompute();
5866 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005867 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005868 // Both conditions must be false for the loop to continue executing.
5869 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005870 if (EL0.Exact == getCouldNotCompute() ||
5871 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005872 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005873 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005874 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5875 if (EL0.Max == getCouldNotCompute())
5876 MaxBECount = EL1.Max;
5877 else if (EL1.Max == getCouldNotCompute())
5878 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005879 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005880 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005881 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005882 // Both conditions must be false at the same time for the loop to exit.
5883 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005884 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005885 if (EL0.Max == EL1.Max)
5886 MaxBECount = EL0.Max;
5887 if (EL0.Exact == EL1.Exact)
5888 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005889 }
5890
Silviu Baranga6f444df2016-04-08 14:29:09 +00005891 SCEVUnionPredicate NP;
5892 NP.add(&EL0.Pred);
5893 NP.add(&EL1.Pred);
5894 return ExitLimit(BECount, MaxBECount, NP);
Dan Gohman96212b62009-06-22 00:31:57 +00005895 }
5896 }
5897
5898 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005899 // Proceed to the next level to examine the icmp.
Silviu Baranga6f444df2016-04-08 14:29:09 +00005900 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
5901 ExitLimit EL =
5902 computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5903 if (EL.hasFullInfo() || !AllowPredicates)
5904 return EL;
5905
5906 // Try again, but use SCEV predicates this time.
5907 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
5908 /*AllowPredicates=*/true);
5909 }
Reid Spencer266e42b2006-12-23 06:05:41 +00005910
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005911 // Check for a constant condition. These are normally stripped out by
5912 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5913 // preserve the CFG and is temporarily leaving constant conditions
5914 // in place.
5915 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5916 if (L->contains(FBB) == !CI->getZExtValue())
5917 // The backedge is always taken.
5918 return getCouldNotCompute();
5919 else
5920 // The backedge is never taken.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00005921 return getZero(CI->getType());
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005922 }
5923
Eli Friedmanebf98b02009-05-09 12:32:42 +00005924 // If it's not an integer or pointer comparison then compute it the hard way.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005925 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005926}
5927
Andrew Trick3ca3f982011-07-26 17:19:55 +00005928ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005929ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005930 ICmpInst *ExitCond,
5931 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005932 BasicBlock *FBB,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005933 bool ControlsExit,
5934 bool AllowPredicates) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005935
Reid Spencer266e42b2006-12-23 06:05:41 +00005936 // If the condition was exit on true, convert the condition to exit on false
5937 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005938 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005939 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005940 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005941 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005942
5943 // Handle common loops like: for (X = "string"; *X; ++X)
5944 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5945 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005946 ExitLimit ItCnt =
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005947 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005948 if (ItCnt.hasAnyInfo())
5949 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005950 }
5951
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00005952 ExitLimit ShiftEL = computeShiftCompareExitLimit(
5953 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
5954 if (ShiftEL.hasAnyInfo())
5955 return ShiftEL;
5956
Dan Gohmanaf752342009-07-07 17:06:11 +00005957 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5958 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005959
5960 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005961 LHS = getSCEVAtScope(LHS, L);
5962 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005963
Dan Gohmance973df2009-06-24 04:48:43 +00005964 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005965 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005966 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005967 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005968 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005969 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005970 }
5971
Dan Gohman81585c12010-05-03 16:35:17 +00005972 // Simplify the operands before analyzing them.
5973 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5974
Chris Lattnerd934c702004-04-02 20:23:17 +00005975 // If we have a comparison of a chrec against a constant, try to use value
5976 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005977 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5978 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005979 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005980 // Form the constant range.
5981 ConstantRange CompRange(
Sanjoy Das0de2fec2015-12-17 20:28:46 +00005982 ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005983
Dan Gohmanaf752342009-07-07 17:06:11 +00005984 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005985 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005986 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005987
Chris Lattnerd934c702004-04-02 20:23:17 +00005988 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005989 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005990 // Convert to: while (X-Y != 0)
Sanjoy Das108fcf22016-05-29 00:38:00 +00005991 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
Silviu Baranga6f444df2016-04-08 14:29:09 +00005992 AllowPredicates);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005993 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005994 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005995 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005996 case ICmpInst::ICMP_EQ: { // while (X == Y)
5997 // Convert to: while (X-Y == 0)
Sanjoy Das108fcf22016-05-29 00:38:00 +00005998 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005999 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00006000 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00006001 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006002 case ICmpInst::ICMP_SLT:
6003 case ICmpInst::ICMP_ULT: { // while (X < Y)
6004 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Sanjoy Das108fcf22016-05-29 00:38:00 +00006005 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
Silviu Baranga6f444df2016-04-08 14:29:09 +00006006 AllowPredicates);
Andrew Trick3ca3f982011-07-26 17:19:55 +00006007 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00006008 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00006009 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006010 case ICmpInst::ICMP_SGT:
6011 case ICmpInst::ICMP_UGT: { // while (X > Y)
6012 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Silviu Baranga6f444df2016-04-08 14:29:09 +00006013 ExitLimit EL =
Sanjoy Das108fcf22016-05-29 00:38:00 +00006014 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
Silviu Baranga6f444df2016-04-08 14:29:09 +00006015 AllowPredicates);
Andrew Trick3ca3f982011-07-26 17:19:55 +00006016 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00006017 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00006018 }
Chris Lattnerd934c702004-04-02 20:23:17 +00006019 default:
Chris Lattner0defaa12004-04-03 00:43:03 +00006020 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00006021 }
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006022 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00006023}
6024
Benjamin Kramer5a188542014-02-11 15:44:32 +00006025ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006026ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
Benjamin Kramer5a188542014-02-11 15:44:32 +00006027 SwitchInst *Switch,
6028 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006029 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00006030 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
6031
6032 // Give up if the exit is the default dest of a switch.
6033 if (Switch->getDefaultDest() == ExitingBlock)
6034 return getCouldNotCompute();
6035
6036 assert(L->contains(Switch->getDefaultDest()) &&
6037 "Default case must not exit the loop!");
6038 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
6039 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
6040
6041 // while (X != Y) --> while (X-Y != 0)
Sanjoy Das108fcf22016-05-29 00:38:00 +00006042 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00006043 if (EL.hasAnyInfo())
6044 return EL;
6045
6046 return getCouldNotCompute();
6047}
6048
Chris Lattnerec901cc2004-10-12 01:49:27 +00006049static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00006050EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
6051 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006052 const SCEV *InVal = SE.getConstant(C);
6053 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00006054 assert(isa<SCEVConstant>(Val) &&
6055 "Evaluation of SCEV at constant didn't fold correctly?");
6056 return cast<SCEVConstant>(Val)->getValue();
6057}
6058
Sanjoy Dasf8570812016-05-29 00:38:22 +00006059/// Given an exit condition of 'icmp op load X, cst', try to see if we can
6060/// compute the backedge execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006061ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006062ScalarEvolution::computeLoadConstantCompareExitLimit(
Andrew Trick3ca3f982011-07-26 17:19:55 +00006063 LoadInst *LI,
6064 Constant *RHS,
6065 const Loop *L,
6066 ICmpInst::Predicate predicate) {
6067
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006068 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006069
6070 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00006071 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00006072 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006073 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006074
6075 // Make sure that it is really a constant global we are gepping, with an
6076 // initializer, and make sure the first IDX is really 0.
6077 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00006078 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00006079 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
6080 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006081 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006082
6083 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00006084 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00006085 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00006086 unsigned VarIdxNum = 0;
6087 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
6088 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
6089 Indexes.push_back(CI);
6090 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006091 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00006092 VarIdx = GEP->getOperand(i);
6093 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00006094 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00006095 }
6096
Andrew Trick7004e4b2012-03-26 22:33:59 +00006097 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
6098 if (!VarIdx)
6099 return getCouldNotCompute();
6100
Chris Lattnerec901cc2004-10-12 01:49:27 +00006101 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
6102 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006103 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00006104 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00006105
6106 // We can only recognize very limited forms of loop index expressions, in
6107 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00006108 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00006109 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00006110 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
6111 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006112 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006113
6114 unsigned MaxSteps = MaxBruteForceIterations;
6115 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00006116 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00006117 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00006118 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00006119
6120 // Form the GEP offset.
6121 Indexes[VarIdxNum] = Val;
6122
Chris Lattnere166a852012-01-24 05:49:24 +00006123 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
6124 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00006125 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00006126
6127 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00006128 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00006129 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00006130 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00006131 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00006132 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00006133 }
6134 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006135 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00006136}
6137
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00006138ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
6139 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
6140 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
6141 if (!RHS)
6142 return getCouldNotCompute();
6143
6144 const BasicBlock *Latch = L->getLoopLatch();
6145 if (!Latch)
6146 return getCouldNotCompute();
6147
6148 const BasicBlock *Predecessor = L->getLoopPredecessor();
6149 if (!Predecessor)
6150 return getCouldNotCompute();
6151
6152 // Return true if V is of the form "LHS `shift_op` <positive constant>".
6153 // Return LHS in OutLHS and shift_opt in OutOpCode.
6154 auto MatchPositiveShift =
6155 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
6156
6157 using namespace PatternMatch;
6158
6159 ConstantInt *ShiftAmt;
6160 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6161 OutOpCode = Instruction::LShr;
6162 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6163 OutOpCode = Instruction::AShr;
6164 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6165 OutOpCode = Instruction::Shl;
6166 else
6167 return false;
6168
6169 return ShiftAmt->getValue().isStrictlyPositive();
6170 };
6171
6172 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
6173 //
6174 // loop:
6175 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
6176 // %iv.shifted = lshr i32 %iv, <positive constant>
6177 //
6178 // Return true on a succesful match. Return the corresponding PHI node (%iv
6179 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
6180 auto MatchShiftRecurrence =
6181 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
6182 Optional<Instruction::BinaryOps> PostShiftOpCode;
6183
6184 {
6185 Instruction::BinaryOps OpC;
6186 Value *V;
6187
6188 // If we encounter a shift instruction, "peel off" the shift operation,
6189 // and remember that we did so. Later when we inspect %iv's backedge
6190 // value, we will make sure that the backedge value uses the same
6191 // operation.
6192 //
6193 // Note: the peeled shift operation does not have to be the same
6194 // instruction as the one feeding into the PHI's backedge value. We only
6195 // really care about it being the same *kind* of shift instruction --
6196 // that's all that is required for our later inferences to hold.
6197 if (MatchPositiveShift(LHS, V, OpC)) {
6198 PostShiftOpCode = OpC;
6199 LHS = V;
6200 }
6201 }
6202
6203 PNOut = dyn_cast<PHINode>(LHS);
6204 if (!PNOut || PNOut->getParent() != L->getHeader())
6205 return false;
6206
6207 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
6208 Value *OpLHS;
6209
6210 return
6211 // The backedge value for the PHI node must be a shift by a positive
6212 // amount
6213 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
6214
6215 // of the PHI node itself
6216 OpLHS == PNOut &&
6217
6218 // and the kind of shift should be match the kind of shift we peeled
6219 // off, if any.
6220 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
6221 };
6222
6223 PHINode *PN;
6224 Instruction::BinaryOps OpCode;
6225 if (!MatchShiftRecurrence(LHS, PN, OpCode))
6226 return getCouldNotCompute();
6227
6228 const DataLayout &DL = getDataLayout();
6229
6230 // The key rationale for this optimization is that for some kinds of shift
6231 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
6232 // within a finite number of iterations. If the condition guarding the
6233 // backedge (in the sense that the backedge is taken if the condition is true)
6234 // is false for the value the shift recurrence stabilizes to, then we know
6235 // that the backedge is taken only a finite number of times.
6236
6237 ConstantInt *StableValue = nullptr;
6238 switch (OpCode) {
6239 default:
6240 llvm_unreachable("Impossible case!");
6241
6242 case Instruction::AShr: {
6243 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
6244 // bitwidth(K) iterations.
6245 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
6246 bool KnownZero, KnownOne;
6247 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
6248 Predecessor->getTerminator(), &DT);
6249 auto *Ty = cast<IntegerType>(RHS->getType());
6250 if (KnownZero)
6251 StableValue = ConstantInt::get(Ty, 0);
6252 else if (KnownOne)
6253 StableValue = ConstantInt::get(Ty, -1, true);
6254 else
6255 return getCouldNotCompute();
6256
6257 break;
6258 }
6259 case Instruction::LShr:
6260 case Instruction::Shl:
6261 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
6262 // stabilize to 0 in at most bitwidth(K) iterations.
6263 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
6264 break;
6265 }
6266
6267 auto *Result =
6268 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
6269 assert(Result->getType()->isIntegerTy(1) &&
6270 "Otherwise cannot be an operand to a branch instruction");
6271
6272 if (Result->isZeroValue()) {
6273 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6274 const SCEV *UpperBound =
6275 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
Silviu Baranga6f444df2016-04-08 14:29:09 +00006276 SCEVUnionPredicate P;
6277 return ExitLimit(getCouldNotCompute(), UpperBound, P);
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00006278 }
6279
6280 return getCouldNotCompute();
6281}
Chris Lattnerec901cc2004-10-12 01:49:27 +00006282
Sanjoy Dasf8570812016-05-29 00:38:22 +00006283/// Return true if we can constant fold an instruction of the specified type,
6284/// assuming that all operands were constants.
Chris Lattnerdd730472004-04-17 22:58:41 +00006285static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00006286 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00006287 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6288 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00006289 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00006290
Chris Lattnerdd730472004-04-17 22:58:41 +00006291 if (const CallInst *CI = dyn_cast<CallInst>(I))
6292 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00006293 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00006294 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00006295}
6296
Andrew Trick3a86ba72011-10-05 03:25:31 +00006297/// Determine whether this instruction can constant evolve within this loop
6298/// assuming its operands can all constant evolve.
6299static bool canConstantEvolve(Instruction *I, const Loop *L) {
6300 // An instruction outside of the loop can't be derived from a loop PHI.
6301 if (!L->contains(I)) return false;
6302
6303 if (isa<PHINode>(I)) {
David Blaikie19ef0d32015-03-24 16:33:19 +00006304 // We don't currently keep track of the control flow needed to evaluate
6305 // PHIs, so we cannot handle PHIs inside of loops.
6306 return L->getHeader() == I->getParent();
Andrew Trick3a86ba72011-10-05 03:25:31 +00006307 }
6308
6309 // If we won't be able to constant fold this expression even if the operands
6310 // are constants, bail early.
6311 return CanConstantFold(I);
6312}
6313
6314/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
6315/// recursing through each instruction operand until reaching a loop header phi.
6316static PHINode *
6317getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00006318 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00006319
6320 // Otherwise, we can evaluate this instruction if all of its operands are
6321 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00006322 PHINode *PHI = nullptr;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00006323 for (Value *Op : UseInst->operands()) {
6324 if (isa<Constant>(Op)) continue;
Andrew Trick3a86ba72011-10-05 03:25:31 +00006325
Sanjoy Dasd87e4352015-12-08 22:53:36 +00006326 Instruction *OpInst = dyn_cast<Instruction>(Op);
Craig Topper9f008862014-04-15 04:59:12 +00006327 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00006328
6329 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00006330 if (!P)
6331 // If this operand is already visited, reuse the prior result.
6332 // We may have P != PHI if this is the deepest point at which the
6333 // inconsistent paths meet.
6334 P = PHIMap.lookup(OpInst);
6335 if (!P) {
6336 // Recurse and memoize the results, whether a phi is found or not.
6337 // This recursive call invalidates pointers into PHIMap.
6338 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
6339 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00006340 }
Craig Topper9f008862014-04-15 04:59:12 +00006341 if (!P)
6342 return nullptr; // Not evolving from PHI
6343 if (PHI && PHI != P)
6344 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00006345 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00006346 }
6347 // This is a expression evolving from a constant PHI!
6348 return PHI;
6349}
6350
Chris Lattnerdd730472004-04-17 22:58:41 +00006351/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
6352/// in the loop that V is derived from. We allow arbitrary operations along the
6353/// way, but the operands of an operation must either be constants or a value
6354/// derived from a constant PHI. If this expression does not fit with these
6355/// constraints, return null.
6356static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006357 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00006358 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00006359
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00006360 if (PHINode *PN = dyn_cast<PHINode>(I))
Andrew Trick3a86ba72011-10-05 03:25:31 +00006361 return PN;
Chris Lattnerdd730472004-04-17 22:58:41 +00006362
Andrew Trick3a86ba72011-10-05 03:25:31 +00006363 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00006364 DenseMap<Instruction *, PHINode *> PHIMap;
6365 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00006366}
6367
6368/// EvaluateExpression - Given an expression that passes the
6369/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
6370/// in the loop has the value PHIVal. If we can't fold this expression for some
6371/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00006372static Constant *EvaluateExpression(Value *V, const Loop *L,
6373 DenseMap<Instruction *, Constant *> &Vals,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006374 const DataLayout &DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00006375 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00006376 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00006377 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006378 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00006379 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00006380
Andrew Trick3a86ba72011-10-05 03:25:31 +00006381 if (Constant *C = Vals.lookup(I)) return C;
6382
Nick Lewyckya6674c72011-10-22 19:58:20 +00006383 // An instruction inside the loop depends on a value outside the loop that we
6384 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00006385 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006386
6387 // An unmapped PHI can be due to a branch or another loop inside this loop,
6388 // or due to this not being the initial iteration through a loop where we
6389 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00006390 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00006391
Dan Gohmanf820bd32010-06-22 13:15:46 +00006392 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00006393
6394 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00006395 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
6396 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00006397 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006398 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00006399 continue;
6400 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00006401 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00006402 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00006403 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00006404 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00006405 }
6406
Nick Lewyckya6674c72011-10-22 19:58:20 +00006407 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00006408 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00006409 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006410 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6411 if (!LI->isVolatile())
Eduard Burtescu14239212016-01-22 01:17:26 +00006412 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006413 }
Manuel Jacobe9024592016-01-21 06:33:22 +00006414 return ConstantFoldInstOperands(I, Operands, DL, TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00006415}
6416
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006417
6418// If every incoming value to PN except the one for BB is a specific Constant,
6419// return that, else return nullptr.
6420static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6421 Constant *IncomingVal = nullptr;
6422
6423 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6424 if (PN->getIncomingBlock(i) == BB)
6425 continue;
6426
6427 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6428 if (!CurrentVal)
6429 return nullptr;
6430
6431 if (IncomingVal != CurrentVal) {
6432 if (IncomingVal)
6433 return nullptr;
6434 IncomingVal = CurrentVal;
6435 }
6436 }
6437
6438 return IncomingVal;
6439}
6440
Chris Lattnerdd730472004-04-17 22:58:41 +00006441/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6442/// in the header of its containing loop, we know the loop executes a
6443/// constant number of times, and the PHI node is just a recurrence
6444/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00006445Constant *
6446ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00006447 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00006448 const Loop *L) {
Sanjoy Das4493b402015-10-07 17:38:25 +00006449 auto I = ConstantEvolutionLoopExitValue.find(PN);
Chris Lattnerdd730472004-04-17 22:58:41 +00006450 if (I != ConstantEvolutionLoopExitValue.end())
6451 return I->second;
6452
Dan Gohman4ce1fb12010-04-08 23:03:40 +00006453 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00006454 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00006455
6456 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6457
Andrew Trick3a86ba72011-10-05 03:25:31 +00006458 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006459 BasicBlock *Header = L->getHeader();
6460 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00006461
Sanjoy Dasdd709962015-10-08 18:28:36 +00006462 BasicBlock *Latch = L->getLoopLatch();
6463 if (!Latch)
6464 return nullptr;
6465
Sanjoy Das4493b402015-10-07 17:38:25 +00006466 for (auto &I : *Header) {
6467 PHINode *PHI = dyn_cast<PHINode>(&I);
6468 if (!PHI) break;
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006469 auto *StartCST = getOtherIncomingValue(PHI, Latch);
Craig Topper9f008862014-04-15 04:59:12 +00006470 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006471 CurrentIterVals[PHI] = StartCST;
6472 }
6473 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00006474 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00006475
Sanjoy Dasdd709962015-10-08 18:28:36 +00006476 Value *BEValue = PN->getIncomingValueForBlock(Latch);
Chris Lattnerdd730472004-04-17 22:58:41 +00006477
6478 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00006479 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00006480 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00006481
Dan Gohman0bddac12009-02-24 18:55:53 +00006482 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00006483 unsigned IterationNum = 0;
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006484 const DataLayout &DL = getDataLayout();
Andrew Trick3a86ba72011-10-05 03:25:31 +00006485 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006486 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00006487 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00006488
Nick Lewyckya6674c72011-10-22 19:58:20 +00006489 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00006490 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006491 DenseMap<Instruction *, Constant *> NextIterVals;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006492 Constant *NextPHI =
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006493 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Craig Topper9f008862014-04-15 04:59:12 +00006494 if (!NextPHI)
6495 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00006496 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006497
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006498 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6499
Nick Lewyckya6674c72011-10-22 19:58:20 +00006500 // Also evaluate the other PHI nodes. However, we don't get to stop if we
6501 // cease to be able to evaluate one of them or if they stop evolving,
6502 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006503 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00006504 for (const auto &I : CurrentIterVals) {
6505 PHINode *PHI = dyn_cast<PHINode>(I.first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00006506 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Sanjoy Das4493b402015-10-07 17:38:25 +00006507 PHIsToCompute.emplace_back(PHI, I.second);
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006508 }
6509 // We use two distinct loops because EvaluateExpression may invalidate any
6510 // iterators into CurrentIterVals.
Sanjoy Das4493b402015-10-07 17:38:25 +00006511 for (const auto &I : PHIsToCompute) {
6512 PHINode *PHI = I.first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006513 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006514 if (!NextPHI) { // Not already computed.
Sanjoy Dasdd709962015-10-08 18:28:36 +00006515 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006516 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006517 }
Sanjoy Das4493b402015-10-07 17:38:25 +00006518 if (NextPHI != I.second)
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006519 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006520 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006521
6522 // If all entries in CurrentIterVals == NextIterVals then we can stop
6523 // iterating, the loop can't continue to change.
6524 if (StoppedEvolving)
6525 return RetVal = CurrentIterVals[PN];
6526
Andrew Trick3a86ba72011-10-05 03:25:31 +00006527 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00006528 }
6529}
6530
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006531const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
Nick Lewyckya6674c72011-10-22 19:58:20 +00006532 Value *Cond,
6533 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00006534 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00006535 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00006536
Dan Gohman866971e2010-06-19 14:17:24 +00006537 // If the loop is canonicalized, the PHI will have exactly two entries.
6538 // That's the only form we support here.
6539 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6540
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006541 DenseMap<Instruction *, Constant *> CurrentIterVals;
6542 BasicBlock *Header = L->getHeader();
6543 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6544
Sanjoy Dasdd709962015-10-08 18:28:36 +00006545 BasicBlock *Latch = L->getLoopLatch();
6546 assert(Latch && "Should follow from NumIncomingValues == 2!");
6547
Sanjoy Das4493b402015-10-07 17:38:25 +00006548 for (auto &I : *Header) {
6549 PHINode *PHI = dyn_cast<PHINode>(&I);
6550 if (!PHI)
6551 break;
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006552 auto *StartCST = getOtherIncomingValue(PHI, Latch);
Craig Topper9f008862014-04-15 04:59:12 +00006553 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006554 CurrentIterVals[PHI] = StartCST;
6555 }
6556 if (!CurrentIterVals.count(PN))
6557 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00006558
6559 // Okay, we find a PHI node that defines the trip count of this loop. Execute
6560 // the loop symbolically to determine when the condition gets a value of
6561 // "ExitWhen".
Andrew Trick90c7a102011-11-16 00:52:40 +00006562 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006563 const DataLayout &DL = getDataLayout();
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006564 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Sanjoy Das4493b402015-10-07 17:38:25 +00006565 auto *CondVal = dyn_cast_or_null<ConstantInt>(
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006566 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00006567
Zhou Sheng75b871f2007-01-11 12:24:14 +00006568 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006569 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00006570
Reid Spencer983e3b32007-03-01 07:25:48 +00006571 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00006572 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00006573 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006574 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006575
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006576 // Update all the PHI nodes for the next iteration.
6577 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006578
6579 // Create a list of which PHIs we need to compute. We want to do this before
6580 // calling EvaluateExpression on them because that may invalidate iterators
6581 // into CurrentIterVals.
6582 SmallVector<PHINode *, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00006583 for (const auto &I : CurrentIterVals) {
6584 PHINode *PHI = dyn_cast<PHINode>(I.first);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006585 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006586 PHIsToCompute.push_back(PHI);
6587 }
Sanjoy Das4493b402015-10-07 17:38:25 +00006588 for (PHINode *PHI : PHIsToCompute) {
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006589 Constant *&NextPHI = NextIterVals[PHI];
6590 if (NextPHI) continue; // Already computed!
6591
Sanjoy Dasdd709962015-10-08 18:28:36 +00006592 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006593 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006594 }
6595 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006596 }
6597
6598 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006599 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006600}
6601
Dan Gohmanaf752342009-07-07 17:06:11 +00006602const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Sanjoy Das01947432015-11-22 21:20:13 +00006603 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6604 ValuesAtScopes[V];
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006605 // Check to see if we've folded this expression at this loop before.
Sanjoy Das01947432015-11-22 21:20:13 +00006606 for (auto &LS : Values)
6607 if (LS.first == L)
6608 return LS.second ? LS.second : V;
6609
6610 Values.emplace_back(L, nullptr);
6611
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006612 // Otherwise compute it.
6613 const SCEV *C = computeSCEVAtScope(V, L);
Sanjoy Das01947432015-11-22 21:20:13 +00006614 for (auto &LS : reverse(ValuesAtScopes[V]))
6615 if (LS.first == L) {
6616 LS.second = C;
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00006617 break;
6618 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006619 return C;
6620}
6621
Nick Lewyckya6674c72011-10-22 19:58:20 +00006622/// This builds up a Constant using the ConstantExpr interface. That way, we
6623/// will return Constants for objects which aren't represented by a
6624/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6625/// Returns NULL if the SCEV isn't representable as a Constant.
6626static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00006627 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00006628 case scCouldNotCompute:
6629 case scAddRecExpr:
6630 break;
6631 case scConstant:
6632 return cast<SCEVConstant>(V)->getValue();
6633 case scUnknown:
6634 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6635 case scSignExtend: {
6636 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6637 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6638 return ConstantExpr::getSExt(CastOp, SS->getType());
6639 break;
6640 }
6641 case scZeroExtend: {
6642 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6643 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6644 return ConstantExpr::getZExt(CastOp, SZ->getType());
6645 break;
6646 }
6647 case scTruncate: {
6648 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6649 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6650 return ConstantExpr::getTrunc(CastOp, ST->getType());
6651 break;
6652 }
6653 case scAddExpr: {
6654 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6655 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006656 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6657 unsigned AS = PTy->getAddressSpace();
6658 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6659 C = ConstantExpr::getBitCast(C, DestPtrTy);
6660 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00006661 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6662 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006663 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006664
6665 // First pointer!
6666 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006667 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00006668 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006669 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006670 // The offsets have been converted to bytes. We can add bytes to an
6671 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006672 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006673 }
6674
6675 // Don't bother trying to sum two pointers. We probably can't
6676 // statically compute a load that results from it anyway.
6677 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00006678 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006679
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006680 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6681 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00006682 C2 = ConstantExpr::getIntegerCast(
6683 C2, Type::getInt32Ty(C->getContext()), true);
David Blaikie4a2e73b2015-04-02 18:55:32 +00006684 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006685 } else
6686 C = ConstantExpr::getAdd(C, C2);
6687 }
6688 return C;
6689 }
6690 break;
6691 }
6692 case scMulExpr: {
6693 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6694 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6695 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00006696 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006697 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6698 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006699 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006700 C = ConstantExpr::getMul(C, C2);
6701 }
6702 return C;
6703 }
6704 break;
6705 }
6706 case scUDivExpr: {
6707 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6708 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6709 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6710 if (LHS->getType() == RHS->getType())
6711 return ConstantExpr::getUDiv(LHS, RHS);
6712 break;
6713 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00006714 case scSMaxExpr:
6715 case scUMaxExpr:
6716 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006717 }
Craig Topper9f008862014-04-15 04:59:12 +00006718 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006719}
6720
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006721const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006722 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00006723
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006724 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00006725 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00006726 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006727 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006728 const Loop *LI = this->LI[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00006729 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
6730 if (PHINode *PN = dyn_cast<PHINode>(I))
6731 if (PN->getParent() == LI->getHeader()) {
6732 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00006733 // to see if the loop that contains it has a known backedge-taken
6734 // count. If so, we may be able to force computation of the exit
6735 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00006736 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00006737 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00006738 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006739 // Okay, we know how many times the containing loop executes. If
6740 // this is a constant evolving PHI node, get the final value at
6741 // the specified iteration number.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006742 Constant *RV =
6743 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00006744 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00006745 }
6746 }
6747
Reid Spencere6328ca2006-12-04 21:33:23 +00006748 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00006749 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00006750 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00006751 // result. This is particularly useful for computing loop exit values.
6752 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006753 SmallVector<Constant *, 4> Operands;
6754 bool MadeImprovement = false;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00006755 for (Value *Op : I->operands()) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006756 if (Constant *C = dyn_cast<Constant>(Op)) {
6757 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006758 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00006759 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006760
6761 // If any of the operands is non-constant and if they are
6762 // non-integer and non-pointer, don't even try to analyze them
6763 // with scev techniques.
6764 if (!isSCEVable(Op->getType()))
6765 return V;
6766
6767 const SCEV *OrigV = getSCEV(Op);
6768 const SCEV *OpV = getSCEVAtScope(OrigV, L);
6769 MadeImprovement |= OrigV != OpV;
6770
Nick Lewyckya6674c72011-10-22 19:58:20 +00006771 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006772 if (!C) return V;
6773 if (C->getType() != Op->getType())
6774 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6775 Op->getType(),
6776 false),
6777 C, Op->getType());
6778 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00006779 }
Dan Gohmance973df2009-06-24 04:48:43 +00006780
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006781 // Check to see if getSCEVAtScope actually made an improvement.
6782 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00006783 Constant *C = nullptr;
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006784 const DataLayout &DL = getDataLayout();
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006785 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006786 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006787 Operands[1], DL, &TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006788 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6789 if (!LI->isVolatile())
Eduard Burtescu14239212016-01-22 01:17:26 +00006790 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006791 } else
Manuel Jacobe9024592016-01-21 06:33:22 +00006792 C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006793 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00006794 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006795 }
Chris Lattnerdd730472004-04-17 22:58:41 +00006796 }
6797 }
6798
6799 // This is some other type of SCEVUnknown, just return it.
6800 return V;
6801 }
6802
Dan Gohmana30370b2009-05-04 22:02:23 +00006803 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006804 // Avoid performing the look-up in the common case where the specified
6805 // expression has no loop-variant portions.
6806 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006807 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006808 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006809 // Okay, at least one of these operands is loop variant but might be
6810 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00006811 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6812 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00006813 NewOps.push_back(OpAtScope);
6814
6815 for (++i; i != e; ++i) {
6816 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006817 NewOps.push_back(OpAtScope);
6818 }
6819 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006820 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006821 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006822 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006823 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006824 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006825 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006826 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00006827 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006828 }
6829 }
6830 // If we got here, all operands are loop invariant.
6831 return Comm;
6832 }
6833
Dan Gohmana30370b2009-05-04 22:02:23 +00006834 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006835 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6836 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00006837 if (LHS == Div->getLHS() && RHS == Div->getRHS())
6838 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00006839 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00006840 }
6841
6842 // If this is a loop recurrence for a loop that does not contain L, then we
6843 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00006844 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006845 // First, attempt to evaluate each operand.
6846 // Avoid performing the look-up in the common case where the specified
6847 // expression has no loop-variant portions.
6848 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6849 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6850 if (OpAtScope == AddRec->getOperand(i))
6851 continue;
6852
6853 // Okay, at least one of these operands is loop variant but might be
6854 // foldable. Build a new instance of the folded commutative expression.
6855 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6856 AddRec->op_begin()+i);
6857 NewOps.push_back(OpAtScope);
6858 for (++i; i != e; ++i)
6859 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6860
Andrew Trick759ba082011-04-27 01:21:25 +00006861 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00006862 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00006863 AddRec->getNoWrapFlags(SCEV::FlagNW));
6864 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00006865 // The addrec may be folded to a nonrecurrence, for example, if the
6866 // induction variable is multiplied by zero after constant folding. Go
6867 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00006868 if (!AddRec)
6869 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006870 break;
6871 }
6872
6873 // If the scope is outside the addrec's loop, evaluate it by using the
6874 // loop exit value of the addrec.
6875 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006876 // To evaluate this recurrence, we need to know how many times the AddRec
6877 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006878 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006879 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00006880
Eli Friedman61f67622008-08-04 23:49:06 +00006881 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006882 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00006883 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006884
Dan Gohman8ca08852009-05-24 23:25:42 +00006885 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00006886 }
6887
Dan Gohmana30370b2009-05-04 22:02:23 +00006888 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006889 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006890 if (Op == Cast->getOperand())
6891 return Cast; // must be loop invariant
6892 return getZeroExtendExpr(Op, Cast->getType());
6893 }
6894
Dan Gohmana30370b2009-05-04 22:02:23 +00006895 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006896 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006897 if (Op == Cast->getOperand())
6898 return Cast; // must be loop invariant
6899 return getSignExtendExpr(Op, Cast->getType());
6900 }
6901
Dan Gohmana30370b2009-05-04 22:02:23 +00006902 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006903 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006904 if (Op == Cast->getOperand())
6905 return Cast; // must be loop invariant
6906 return getTruncateExpr(Op, Cast->getType());
6907 }
6908
Torok Edwinfbcc6632009-07-14 16:55:14 +00006909 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006910}
6911
Dan Gohmanaf752342009-07-07 17:06:11 +00006912const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00006913 return getSCEVAtScope(getSCEV(V), L);
6914}
6915
Sanjoy Dasf8570812016-05-29 00:38:22 +00006916/// Finds the minimum unsigned root of the following equation:
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006917///
6918/// A * X = B (mod N)
6919///
6920/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6921/// A and B isn't important.
6922///
6923/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006924static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006925 ScalarEvolution &SE) {
6926 uint32_t BW = A.getBitWidth();
6927 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6928 assert(A != 0 && "A must be non-zero.");
6929
6930 // 1. D = gcd(A, N)
6931 //
6932 // The gcd of A and N may have only one prime factor: 2. The number of
6933 // trailing zeros in A is its multiplicity
6934 uint32_t Mult2 = A.countTrailingZeros();
6935 // D = 2^Mult2
6936
6937 // 2. Check if B is divisible by D.
6938 //
6939 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6940 // is not less than multiplicity of this prime factor for D.
6941 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00006942 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006943
6944 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6945 // modulo (N / D).
6946 //
6947 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6948 // bit width during computations.
6949 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6950 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00006951 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006952 APInt I = AD.multiplicativeInverse(Mod);
6953
6954 // 4. Compute the minimum unsigned root of the equation:
6955 // I * (B / D) mod (N / D)
6956 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6957
6958 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6959 // bits.
6960 return SE.getConstant(Result.trunc(BW));
6961}
Chris Lattnerd934c702004-04-02 20:23:17 +00006962
Sanjoy Dasf8570812016-05-29 00:38:22 +00006963/// Find the roots of the quadratic equation for the given quadratic chrec
6964/// {L,+,M,+,N}. This returns either the two roots (which might be the same) or
6965/// two SCEVCouldNotCompute objects.
Chris Lattnerd934c702004-04-02 20:23:17 +00006966///
Dan Gohmanaf752342009-07-07 17:06:11 +00006967static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00006968SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006969 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00006970 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6971 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6972 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00006973
Chris Lattnerd934c702004-04-02 20:23:17 +00006974 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00006975 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00006976 const SCEV *CNC = SE.getCouldNotCompute();
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00006977 return {CNC, CNC};
Chris Lattnerd934c702004-04-02 20:23:17 +00006978 }
6979
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006980 uint32_t BitWidth = LC->getAPInt().getBitWidth();
6981 const APInt &L = LC->getAPInt();
6982 const APInt &M = MC->getAPInt();
6983 const APInt &N = NC->getAPInt();
Reid Spencer983e3b32007-03-01 07:25:48 +00006984 APInt Two(BitWidth, 2);
6985 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006986
Dan Gohmance973df2009-06-24 04:48:43 +00006987 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006988 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006989 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006990 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6991 // The B coefficient is M-N/2
6992 APInt B(M);
6993 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006994
Reid Spencer983e3b32007-03-01 07:25:48 +00006995 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006996 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006997
Reid Spencer983e3b32007-03-01 07:25:48 +00006998 // Compute the B^2-4ac term.
6999 APInt SqrtTerm(B);
7000 SqrtTerm *= B;
7001 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00007002
Nick Lewyckyfb780832012-08-01 09:14:36 +00007003 if (SqrtTerm.isNegative()) {
7004 // The loop is provably infinite.
7005 const SCEV *CNC = SE.getCouldNotCompute();
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00007006 return {CNC, CNC};
Nick Lewyckyfb780832012-08-01 09:14:36 +00007007 }
7008
Reid Spencer983e3b32007-03-01 07:25:48 +00007009 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
7010 // integer value or else APInt::sqrt() will assert.
7011 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00007012
Dan Gohmance973df2009-06-24 04:48:43 +00007013 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00007014 // The divisions must be performed as signed divisions.
7015 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00007016 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00007017 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00007018 const SCEV *CNC = SE.getCouldNotCompute();
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00007019 return {CNC, CNC};
Nick Lewycky7b14e202008-11-03 02:43:49 +00007020 }
7021
Owen Anderson47db9412009-07-22 00:24:57 +00007022 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00007023
7024 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00007025 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00007026 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00007027 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00007028
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00007029 return {SE.getConstant(Solution1), SE.getConstant(Solution2)};
Nick Lewycky31555522011-10-03 07:10:45 +00007030 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00007031}
7032
Andrew Trick3ca3f982011-07-26 17:19:55 +00007033ScalarEvolution::ExitLimit
Sanjoy Das108fcf22016-05-29 00:38:00 +00007034ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
Silviu Baranga6f444df2016-04-08 14:29:09 +00007035 bool AllowPredicates) {
Sanjoy Dasf8570812016-05-29 00:38:22 +00007036
7037 // This is only used for loops with a "x != y" exit test. The exit condition
7038 // is now expressed as a single expression, V = x-y. So the exit test is
7039 // effectively V != 0. We know and take advantage of the fact that this
7040 // expression only being used in a comparison by zero context.
7041
Silviu Baranga6f444df2016-04-08 14:29:09 +00007042 SCEVUnionPredicate P;
Chris Lattnerd934c702004-04-02 20:23:17 +00007043 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00007044 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007045 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00007046 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007047 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00007048 }
7049
Dan Gohman48f82222009-05-04 22:30:44 +00007050 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Silviu Baranga6f444df2016-04-08 14:29:09 +00007051 if (!AddRec && AllowPredicates)
7052 // Try to make this an AddRec using runtime tests, in the first X
7053 // iterations of this loop, where X is the SCEV expression found by the
7054 // algorithm below.
7055 AddRec = convertSCEVToAddRecWithPredicates(V, L, P);
7056
Chris Lattnerd934c702004-04-02 20:23:17 +00007057 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007058 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007059
Chris Lattnerdff679f2011-01-09 22:39:48 +00007060 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
7061 // the quadratic equation to solve it.
7062 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
7063 std::pair<const SCEV *,const SCEV *> Roots =
7064 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00007065 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7066 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00007067 if (R1 && R2) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007068 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00007069 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00007070 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
7071 R1->getValue(),
7072 R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00007073 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00007074 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00007075
Chris Lattnerd934c702004-04-02 20:23:17 +00007076 // We can only use this value if the chrec ends up with an exact zero
7077 // value at this index. When solving for "X*X != 5", for example, we
7078 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00007079 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00007080 if (Val->isZero())
Silviu Baranga6f444df2016-04-08 14:29:09 +00007081 return ExitLimit(R1, R1, P); // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00007082 }
7083 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00007084 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007085 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007086
Chris Lattnerdff679f2011-01-09 22:39:48 +00007087 // Otherwise we can only handle this if it is affine.
7088 if (!AddRec->isAffine())
7089 return getCouldNotCompute();
7090
7091 // If this is an affine expression, the execution count of this branch is
7092 // the minimum unsigned root of the following equation:
7093 //
7094 // Start + Step*N = 0 (mod 2^BW)
7095 //
7096 // equivalent to:
7097 //
7098 // Step*N = -Start (mod 2^BW)
7099 //
7100 // where BW is the common bit width of Start and Step.
7101
7102 // Get the initial value for the loop.
7103 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
7104 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
7105
7106 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00007107 //
7108 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
7109 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
7110 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
7111 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00007112 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00007113 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00007114 return getCouldNotCompute();
7115
Andrew Trick8b55b732011-03-14 16:50:06 +00007116 // For positive steps (counting up until unsigned overflow):
7117 // N = -Start/Step (as unsigned)
7118 // For negative steps (counting down to zero):
7119 // N = Start/-Step
7120 // First compute the unsigned distance from zero in the direction of Step.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007121 bool CountDown = StepC->getAPInt().isNegative();
Andrew Trickf1781db2011-03-14 17:28:02 +00007122 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00007123
7124 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00007125 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
7126 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00007127 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
7128 ConstantRange CR = getUnsignedRange(Start);
7129 const SCEV *MaxBECount;
7130 if (!CountDown && CR.getUnsignedMin().isMinValue())
7131 // When counting up, the worst starting value is 1, not 0.
7132 MaxBECount = CR.getUnsignedMax().isMinValue()
7133 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
7134 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
7135 else
7136 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
7137 : -CR.getUnsignedMin());
Silviu Baranga6f444df2016-04-08 14:29:09 +00007138 return ExitLimit(Distance, MaxBECount, P);
Nick Lewycky31555522011-10-03 07:10:45 +00007139 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00007140
Mark Heffernanacbed5e2014-12-15 21:19:53 +00007141 // As a special case, handle the instance where Step is a positive power of
7142 // two. In this case, determining whether Step divides Distance evenly can be
7143 // done by counting and comparing the number of trailing zeros of Step and
7144 // Distance.
7145 if (!CountDown) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007146 const APInt &StepV = StepC->getAPInt();
Mark Heffernanacbed5e2014-12-15 21:19:53 +00007147 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
7148 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
7149 // case is not handled as this code is guarded by !CountDown.
7150 if (StepV.isPowerOf2() &&
Sanjoy Dasf3132d32015-09-10 05:27:38 +00007151 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
7152 // Here we've constrained the equation to be of the form
7153 //
7154 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
7155 //
7156 // where we're operating on a W bit wide integer domain and k is
7157 // non-negative. The smallest unsigned solution for X is the trip count.
7158 //
7159 // (0) is equivalent to:
7160 //
7161 // 2^(N + k) * Distance' - 2^N * X = L * 2^W
7162 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
7163 // <=> 2^k * Distance' - X = L * 2^(W - N)
7164 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
7165 //
7166 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
7167 // by 2^(W - N).
7168 //
7169 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
7170 //
7171 // E.g. say we're solving
7172 //
7173 // 2 * Val = 2 * X (in i8) ... (3)
7174 //
7175 // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
7176 //
7177 // Note: It is tempting to solve (3) by setting X = Val, but Val is not
7178 // necessarily the smallest unsigned value of X that satisfies (3).
7179 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
7180 // is i8 1, not i8 -127
7181
7182 const auto *ModuloResult = getUDivExactExpr(Distance, Step);
7183
7184 // Since SCEV does not have a URem node, we construct one using a truncate
7185 // and a zero extend.
7186
7187 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
7188 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
7189 auto *WideTy = Distance->getType();
7190
Silviu Baranga6f444df2016-04-08 14:29:09 +00007191 const SCEV *Limit =
7192 getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
7193 return ExitLimit(Limit, Limit, P);
Sanjoy Dasf3132d32015-09-10 05:27:38 +00007194 }
Mark Heffernanacbed5e2014-12-15 21:19:53 +00007195 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00007196
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007197 // If the condition controls loop exit (the loop exits only if the expression
7198 // is true) and the addition is no-wrap we can use unsigned divide to
7199 // compute the backedge count. In this case, the step may not divide the
7200 // distance, but we don't care because if the condition is "missed" the loop
7201 // will have undefined behavior due to wrapping.
Sanjoy Dasc7f69b92016-06-09 01:13:59 +00007202 if (ControlsExit && AddRec->hasNoSelfWrap() &&
7203 loopHasNoAbnormalExits(AddRec->getLoop())) {
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007204 const SCEV *Exact =
7205 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Silviu Baranga6f444df2016-04-08 14:29:09 +00007206 return ExitLimit(Exact, Exact, P);
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007207 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00007208
Chris Lattnerdff679f2011-01-09 22:39:48 +00007209 // Then, try to solve the above equation provided that Start is constant.
Silviu Baranga6f444df2016-04-08 14:29:09 +00007210 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
7211 const SCEV *E = SolveLinEquationWithOverflow(
7212 StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this);
7213 return ExitLimit(E, E, P);
7214 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007215 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007216}
7217
Andrew Trick3ca3f982011-07-26 17:19:55 +00007218ScalarEvolution::ExitLimit
Sanjoy Das108fcf22016-05-29 00:38:00 +00007219ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007220 // Loops that look like: while (X == 0) are very strange indeed. We don't
7221 // handle them yet except for the trivial case. This could be expanded in the
7222 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00007223
Chris Lattnerd934c702004-04-02 20:23:17 +00007224 // If the value is a constant, check to see if it is known to be non-zero
7225 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00007226 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00007227 if (!C->getValue()->isNullValue())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00007228 return getZero(C->getType());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007229 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00007230 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007231
Chris Lattnerd934c702004-04-02 20:23:17 +00007232 // We could implement others, but I really doubt anyone writes loops like
7233 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007234 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007235}
7236
Dan Gohman4e3c1132010-04-15 16:19:08 +00007237std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00007238ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00007239 // If the block has a unique predecessor, then there is no path from the
7240 // predecessor to the block that does not go through the direct edge
7241 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00007242 if (BasicBlock *Pred = BB->getSinglePredecessor())
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00007243 return {Pred, BB};
Dan Gohmanf9081a22008-09-15 22:18:04 +00007244
7245 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007246 // If the header has a unique predecessor outside the loop, it must be
7247 // a block that has exactly one successor that can reach the loop.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007248 if (Loop *L = LI.getLoopFor(BB))
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00007249 return {L->getLoopPredecessor(), L->getHeader()};
Dan Gohmanf9081a22008-09-15 22:18:04 +00007250
Sanjoy Dasc42f7cc2016-02-20 01:35:56 +00007251 return {nullptr, nullptr};
Dan Gohmanf9081a22008-09-15 22:18:04 +00007252}
7253
Sanjoy Dasf8570812016-05-29 00:38:22 +00007254/// SCEV structural equivalence is usually sufficient for testing whether two
7255/// expressions are equal, however for the purposes of looking for a condition
7256/// guarding a loop, it can be useful to be a little more general, since a
7257/// front-end may have replicated the controlling expression.
Dan Gohman450f4e02009-06-20 00:35:32 +00007258///
Dan Gohmanaf752342009-07-07 17:06:11 +00007259static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00007260 // Quick check to see if they are the same SCEV.
7261 if (A == B) return true;
7262
Sanjoy Dasf1090b62015-09-27 21:09:48 +00007263 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
7264 // Not all instructions that are "identical" compute the same value. For
7265 // instance, two distinct alloca instructions allocating the same type are
7266 // identical and do not read memory; but compute distinct values.
7267 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
7268 };
7269
Dan Gohman450f4e02009-06-20 00:35:32 +00007270 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
7271 // two different instructions with the same value. Check for this case.
7272 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
7273 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
7274 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
7275 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Sanjoy Dasf1090b62015-09-27 21:09:48 +00007276 if (ComputesEqualValues(AI, BI))
Dan Gohman450f4e02009-06-20 00:35:32 +00007277 return true;
7278
7279 // Otherwise assume they may have a different value.
7280 return false;
7281}
7282
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007283bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007284 const SCEV *&LHS, const SCEV *&RHS,
7285 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007286 bool Changed = false;
7287
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007288 // If we hit the max recursion limit bail out.
7289 if (Depth >= 3)
7290 return false;
7291
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007292 // Canonicalize a constant to the right side.
7293 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
7294 // Check for both operands constant.
7295 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
7296 if (ConstantExpr::getICmp(Pred,
7297 LHSC->getValue(),
7298 RHSC->getValue())->isNullValue())
7299 goto trivially_false;
7300 else
7301 goto trivially_true;
7302 }
7303 // Otherwise swap the operands to put the constant on the right.
7304 std::swap(LHS, RHS);
7305 Pred = ICmpInst::getSwappedPredicate(Pred);
7306 Changed = true;
7307 }
7308
7309 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00007310 // addrec's loop, put the addrec on the left. Also make a dominance check,
7311 // as both operands could be addrecs loop-invariant in each other's loop.
7312 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
7313 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00007314 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007315 std::swap(LHS, RHS);
7316 Pred = ICmpInst::getSwappedPredicate(Pred);
7317 Changed = true;
7318 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00007319 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007320
7321 // If there's a constant operand, canonicalize comparisons with boundary
7322 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
7323 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007324 const APInt &RA = RC->getAPInt();
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007325 switch (Pred) {
7326 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7327 case ICmpInst::ICMP_EQ:
7328 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007329 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
7330 if (!RA)
7331 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
7332 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00007333 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
7334 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007335 RHS = AE->getOperand(1);
7336 LHS = ME->getOperand(1);
7337 Changed = true;
7338 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007339 break;
7340 case ICmpInst::ICMP_UGE:
7341 if ((RA - 1).isMinValue()) {
7342 Pred = ICmpInst::ICMP_NE;
7343 RHS = getConstant(RA - 1);
7344 Changed = true;
7345 break;
7346 }
7347 if (RA.isMaxValue()) {
7348 Pred = ICmpInst::ICMP_EQ;
7349 Changed = true;
7350 break;
7351 }
7352 if (RA.isMinValue()) goto trivially_true;
7353
7354 Pred = ICmpInst::ICMP_UGT;
7355 RHS = getConstant(RA - 1);
7356 Changed = true;
7357 break;
7358 case ICmpInst::ICMP_ULE:
7359 if ((RA + 1).isMaxValue()) {
7360 Pred = ICmpInst::ICMP_NE;
7361 RHS = getConstant(RA + 1);
7362 Changed = true;
7363 break;
7364 }
7365 if (RA.isMinValue()) {
7366 Pred = ICmpInst::ICMP_EQ;
7367 Changed = true;
7368 break;
7369 }
7370 if (RA.isMaxValue()) goto trivially_true;
7371
7372 Pred = ICmpInst::ICMP_ULT;
7373 RHS = getConstant(RA + 1);
7374 Changed = true;
7375 break;
7376 case ICmpInst::ICMP_SGE:
7377 if ((RA - 1).isMinSignedValue()) {
7378 Pred = ICmpInst::ICMP_NE;
7379 RHS = getConstant(RA - 1);
7380 Changed = true;
7381 break;
7382 }
7383 if (RA.isMaxSignedValue()) {
7384 Pred = ICmpInst::ICMP_EQ;
7385 Changed = true;
7386 break;
7387 }
7388 if (RA.isMinSignedValue()) goto trivially_true;
7389
7390 Pred = ICmpInst::ICMP_SGT;
7391 RHS = getConstant(RA - 1);
7392 Changed = true;
7393 break;
7394 case ICmpInst::ICMP_SLE:
7395 if ((RA + 1).isMaxSignedValue()) {
7396 Pred = ICmpInst::ICMP_NE;
7397 RHS = getConstant(RA + 1);
7398 Changed = true;
7399 break;
7400 }
7401 if (RA.isMinSignedValue()) {
7402 Pred = ICmpInst::ICMP_EQ;
7403 Changed = true;
7404 break;
7405 }
7406 if (RA.isMaxSignedValue()) goto trivially_true;
7407
7408 Pred = ICmpInst::ICMP_SLT;
7409 RHS = getConstant(RA + 1);
7410 Changed = true;
7411 break;
7412 case ICmpInst::ICMP_UGT:
7413 if (RA.isMinValue()) {
7414 Pred = ICmpInst::ICMP_NE;
7415 Changed = true;
7416 break;
7417 }
7418 if ((RA + 1).isMaxValue()) {
7419 Pred = ICmpInst::ICMP_EQ;
7420 RHS = getConstant(RA + 1);
7421 Changed = true;
7422 break;
7423 }
7424 if (RA.isMaxValue()) goto trivially_false;
7425 break;
7426 case ICmpInst::ICMP_ULT:
7427 if (RA.isMaxValue()) {
7428 Pred = ICmpInst::ICMP_NE;
7429 Changed = true;
7430 break;
7431 }
7432 if ((RA - 1).isMinValue()) {
7433 Pred = ICmpInst::ICMP_EQ;
7434 RHS = getConstant(RA - 1);
7435 Changed = true;
7436 break;
7437 }
7438 if (RA.isMinValue()) goto trivially_false;
7439 break;
7440 case ICmpInst::ICMP_SGT:
7441 if (RA.isMinSignedValue()) {
7442 Pred = ICmpInst::ICMP_NE;
7443 Changed = true;
7444 break;
7445 }
7446 if ((RA + 1).isMaxSignedValue()) {
7447 Pred = ICmpInst::ICMP_EQ;
7448 RHS = getConstant(RA + 1);
7449 Changed = true;
7450 break;
7451 }
7452 if (RA.isMaxSignedValue()) goto trivially_false;
7453 break;
7454 case ICmpInst::ICMP_SLT:
7455 if (RA.isMaxSignedValue()) {
7456 Pred = ICmpInst::ICMP_NE;
7457 Changed = true;
7458 break;
7459 }
7460 if ((RA - 1).isMinSignedValue()) {
7461 Pred = ICmpInst::ICMP_EQ;
7462 RHS = getConstant(RA - 1);
7463 Changed = true;
7464 break;
7465 }
7466 if (RA.isMinSignedValue()) goto trivially_false;
7467 break;
7468 }
7469 }
7470
7471 // Check for obvious equality.
7472 if (HasSameValue(LHS, RHS)) {
7473 if (ICmpInst::isTrueWhenEqual(Pred))
7474 goto trivially_true;
7475 if (ICmpInst::isFalseWhenEqual(Pred))
7476 goto trivially_false;
7477 }
7478
Dan Gohman81585c12010-05-03 16:35:17 +00007479 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7480 // adding or subtracting 1 from one of the operands.
7481 switch (Pred) {
7482 case ICmpInst::ICMP_SLE:
7483 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7484 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007485 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007486 Pred = ICmpInst::ICMP_SLT;
7487 Changed = true;
7488 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007489 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007490 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007491 Pred = ICmpInst::ICMP_SLT;
7492 Changed = true;
7493 }
7494 break;
7495 case ICmpInst::ICMP_SGE:
7496 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007497 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007498 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007499 Pred = ICmpInst::ICMP_SGT;
7500 Changed = true;
7501 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7502 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007503 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007504 Pred = ICmpInst::ICMP_SGT;
7505 Changed = true;
7506 }
7507 break;
7508 case ICmpInst::ICMP_ULE:
7509 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007510 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007511 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007512 Pred = ICmpInst::ICMP_ULT;
7513 Changed = true;
7514 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Peter Collingbournec85f4ce2015-11-20 01:26:13 +00007515 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
Dan Gohman81585c12010-05-03 16:35:17 +00007516 Pred = ICmpInst::ICMP_ULT;
7517 Changed = true;
7518 }
7519 break;
7520 case ICmpInst::ICMP_UGE:
7521 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Peter Collingbournec85f4ce2015-11-20 01:26:13 +00007522 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
Dan Gohman81585c12010-05-03 16:35:17 +00007523 Pred = ICmpInst::ICMP_UGT;
7524 Changed = true;
7525 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007526 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007527 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007528 Pred = ICmpInst::ICMP_UGT;
7529 Changed = true;
7530 }
7531 break;
7532 default:
7533 break;
7534 }
7535
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007536 // TODO: More simplifications are possible here.
7537
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007538 // Recursively simplify until we either hit a recursion limit or nothing
7539 // changes.
7540 if (Changed)
7541 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7542
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007543 return Changed;
7544
7545trivially_true:
7546 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00007547 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007548 Pred = ICmpInst::ICMP_EQ;
7549 return true;
7550
7551trivially_false:
7552 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00007553 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007554 Pred = ICmpInst::ICMP_NE;
7555 return true;
7556}
7557
Dan Gohmane65c9172009-07-13 21:35:55 +00007558bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7559 return getSignedRange(S).getSignedMax().isNegative();
7560}
7561
7562bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7563 return getSignedRange(S).getSignedMin().isStrictlyPositive();
7564}
7565
7566bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7567 return !getSignedRange(S).getSignedMin().isNegative();
7568}
7569
7570bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7571 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7572}
7573
7574bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7575 return isKnownNegative(S) || isKnownPositive(S);
7576}
7577
7578bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7579 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00007580 // Canonicalize the inputs first.
7581 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7582
Dan Gohman07591692010-04-11 22:16:48 +00007583 // If LHS or RHS is an addrec, check to see if the condition is true in
7584 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00007585 // If LHS and RHS are both addrec, both conditions must be true in
7586 // every iteration of the loop.
7587 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7588 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7589 bool LeftGuarded = false;
7590 bool RightGuarded = false;
7591 if (LAR) {
7592 const Loop *L = LAR->getLoop();
7593 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7594 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7595 if (!RAR) return true;
7596 LeftGuarded = true;
7597 }
7598 }
7599 if (RAR) {
7600 const Loop *L = RAR->getLoop();
7601 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7602 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7603 if (!LAR) return true;
7604 RightGuarded = true;
7605 }
7606 }
7607 if (LeftGuarded && RightGuarded)
7608 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007609
Sanjoy Das7d910f22015-10-02 18:50:30 +00007610 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7611 return true;
7612
Dan Gohman07591692010-04-11 22:16:48 +00007613 // Otherwise see what can be done with known constant ranges.
Sanjoy Das401e6312016-02-01 20:48:10 +00007614 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
Dan Gohman07591692010-04-11 22:16:48 +00007615}
7616
Sanjoy Das5dab2052015-07-27 21:42:49 +00007617bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7618 ICmpInst::Predicate Pred,
7619 bool &Increasing) {
7620 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7621
7622#ifndef NDEBUG
7623 // Verify an invariant: inverting the predicate should turn a monotonically
7624 // increasing change to a monotonically decreasing one, and vice versa.
7625 bool IncreasingSwapped;
7626 bool ResultSwapped = isMonotonicPredicateImpl(
7627 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7628
7629 assert(Result == ResultSwapped && "should be able to analyze both!");
7630 if (ResultSwapped)
7631 assert(Increasing == !IncreasingSwapped &&
7632 "monotonicity should flip as we flip the predicate");
7633#endif
7634
7635 return Result;
7636}
7637
7638bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7639 ICmpInst::Predicate Pred,
7640 bool &Increasing) {
Sanjoy Das5dab2052015-07-27 21:42:49 +00007641
7642 // A zero step value for LHS means the induction variable is essentially a
7643 // loop invariant value. We don't really depend on the predicate actually
7644 // flipping from false to true (for increasing predicates, and the other way
7645 // around for decreasing predicates), all we care about is that *if* the
7646 // predicate changes then it only changes from false to true.
7647 //
7648 // A zero step value in itself is not very useful, but there may be places
7649 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7650 // as general as possible.
7651
Sanjoy Das366acc12015-08-06 20:43:41 +00007652 switch (Pred) {
7653 default:
7654 return false; // Conservative answer
7655
7656 case ICmpInst::ICMP_UGT:
7657 case ICmpInst::ICMP_UGE:
7658 case ICmpInst::ICMP_ULT:
7659 case ICmpInst::ICMP_ULE:
Sanjoy Das76c48e02016-02-04 18:21:54 +00007660 if (!LHS->hasNoUnsignedWrap())
Sanjoy Das366acc12015-08-06 20:43:41 +00007661 return false;
7662
7663 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007664 return true;
Sanjoy Das366acc12015-08-06 20:43:41 +00007665
7666 case ICmpInst::ICMP_SGT:
7667 case ICmpInst::ICMP_SGE:
7668 case ICmpInst::ICMP_SLT:
7669 case ICmpInst::ICMP_SLE: {
Sanjoy Das76c48e02016-02-04 18:21:54 +00007670 if (!LHS->hasNoSignedWrap())
Sanjoy Das366acc12015-08-06 20:43:41 +00007671 return false;
7672
7673 const SCEV *Step = LHS->getStepRecurrence(*this);
7674
7675 if (isKnownNonNegative(Step)) {
7676 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7677 return true;
7678 }
7679
7680 if (isKnownNonPositive(Step)) {
7681 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7682 return true;
7683 }
7684
7685 return false;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007686 }
7687
Sanjoy Das5dab2052015-07-27 21:42:49 +00007688 }
7689
Sanjoy Das366acc12015-08-06 20:43:41 +00007690 llvm_unreachable("switch has default clause!");
Sanjoy Das5dab2052015-07-27 21:42:49 +00007691}
7692
7693bool ScalarEvolution::isLoopInvariantPredicate(
7694 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7695 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7696 const SCEV *&InvariantRHS) {
7697
7698 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7699 if (!isLoopInvariant(RHS, L)) {
7700 if (!isLoopInvariant(LHS, L))
7701 return false;
7702
7703 std::swap(LHS, RHS);
7704 Pred = ICmpInst::getSwappedPredicate(Pred);
7705 }
7706
7707 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7708 if (!ArLHS || ArLHS->getLoop() != L)
7709 return false;
7710
7711 bool Increasing;
7712 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7713 return false;
7714
7715 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7716 // true as the loop iterates, and the backedge is control dependent on
7717 // "ArLHS `Pred` RHS" == true then we can reason as follows:
7718 //
7719 // * if the predicate was false in the first iteration then the predicate
7720 // is never evaluated again, since the loop exits without taking the
7721 // backedge.
7722 // * if the predicate was true in the first iteration then it will
7723 // continue to be true for all future iterations since it is
7724 // monotonically increasing.
7725 //
7726 // For both the above possibilities, we can replace the loop varying
7727 // predicate with its value on the first iteration of the loop (which is
7728 // loop invariant).
7729 //
7730 // A similar reasoning applies for a monotonically decreasing predicate, by
7731 // replacing true with false and false with true in the above two bullets.
7732
7733 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7734
7735 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7736 return false;
7737
7738 InvariantPred = Pred;
7739 InvariantLHS = ArLHS->getStart();
7740 InvariantRHS = RHS;
7741 return true;
7742}
7743
Sanjoy Das401e6312016-02-01 20:48:10 +00007744bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7745 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007746 if (HasSameValue(LHS, RHS))
7747 return ICmpInst::isTrueWhenEqual(Pred);
7748
Dan Gohman07591692010-04-11 22:16:48 +00007749 // This code is split out from isKnownPredicate because it is called from
7750 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00007751
Sanjoy Das4c7b6d72016-02-01 20:48:14 +00007752 auto CheckRanges =
7753 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7754 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7755 .contains(RangeLHS);
7756 };
7757
7758 // The check at the top of the function catches the case where the values are
7759 // known to be equal.
7760 if (Pred == CmpInst::ICMP_EQ)
7761 return false;
7762
7763 if (Pred == CmpInst::ICMP_NE)
7764 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7765 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7766 isKnownNonZero(getMinusSCEV(LHS, RHS));
7767
7768 if (CmpInst::isSigned(Pred))
7769 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7770
7771 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
Dan Gohmane65c9172009-07-13 21:35:55 +00007772}
7773
Sanjoy Dasc1a29772015-11-05 23:45:38 +00007774bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7775 const SCEV *LHS,
7776 const SCEV *RHS) {
7777
7778 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7779 // Return Y via OutY.
7780 auto MatchBinaryAddToConst =
7781 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7782 SCEV::NoWrapFlags ExpectedFlags) {
7783 const SCEV *NonConstOp, *ConstOp;
7784 SCEV::NoWrapFlags FlagsPresent;
7785
7786 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7787 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7788 return false;
7789
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007790 OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
Sanjoy Dasc1a29772015-11-05 23:45:38 +00007791 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7792 };
7793
7794 APInt C;
7795
7796 switch (Pred) {
7797 default:
7798 break;
7799
7800 case ICmpInst::ICMP_SGE:
7801 std::swap(LHS, RHS);
7802 case ICmpInst::ICMP_SLE:
7803 // X s<= (X + C)<nsw> if C >= 0
7804 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7805 return true;
7806
7807 // (X + C)<nsw> s<= X if C <= 0
7808 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7809 !C.isStrictlyPositive())
7810 return true;
7811 break;
7812
7813 case ICmpInst::ICMP_SGT:
7814 std::swap(LHS, RHS);
7815 case ICmpInst::ICMP_SLT:
7816 // X s< (X + C)<nsw> if C > 0
7817 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7818 C.isStrictlyPositive())
7819 return true;
7820
7821 // (X + C)<nsw> s< X if C < 0
7822 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7823 return true;
7824 break;
7825 }
7826
7827 return false;
7828}
7829
Sanjoy Das7d910f22015-10-02 18:50:30 +00007830bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7831 const SCEV *LHS,
7832 const SCEV *RHS) {
Sanjoy Das10dffcb2015-10-08 03:46:00 +00007833 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
Sanjoy Das7d910f22015-10-02 18:50:30 +00007834 return false;
7835
7836 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7837 // the stack can result in exponential time complexity.
7838 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7839
7840 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7841 //
7842 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7843 // isKnownPredicate. isKnownPredicate is more powerful, but also more
7844 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7845 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
7846 // use isKnownPredicate later if needed.
Alexander Kornienko484e48e32015-11-05 21:07:12 +00007847 return isKnownNonNegative(RHS) &&
7848 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7849 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
Sanjoy Das7d910f22015-10-02 18:50:30 +00007850}
7851
Sanjoy Das2512d0c2016-05-10 00:31:49 +00007852bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
7853 ICmpInst::Predicate Pred,
7854 const SCEV *LHS, const SCEV *RHS) {
7855 // No need to even try if we know the module has no guards.
7856 if (!HasGuards)
7857 return false;
7858
7859 return any_of(*BB, [&](Instruction &I) {
7860 using namespace llvm::PatternMatch;
7861
7862 Value *Condition;
7863 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
7864 m_Value(Condition))) &&
7865 isImpliedCond(Pred, LHS, RHS, Condition, false);
7866 });
7867}
7868
Dan Gohmane65c9172009-07-13 21:35:55 +00007869/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7870/// protected by a conditional between LHS and RHS. This is used to
7871/// to eliminate casts.
7872bool
7873ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7874 ICmpInst::Predicate Pred,
7875 const SCEV *LHS, const SCEV *RHS) {
7876 // Interpret a null as meaning no loop, where there is obviously no guard
7877 // (interprocedural conditions notwithstanding).
7878 if (!L) return true;
7879
Sanjoy Das401e6312016-02-01 20:48:10 +00007880 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7881 return true;
Sanjoy Das1f05c512014-10-10 21:22:34 +00007882
Dan Gohmane65c9172009-07-13 21:35:55 +00007883 BasicBlock *Latch = L->getLoopLatch();
7884 if (!Latch)
7885 return false;
7886
7887 BranchInst *LoopContinuePredicate =
7888 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007889 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7890 isImpliedCond(Pred, LHS, RHS,
7891 LoopContinuePredicate->getCondition(),
7892 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7893 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007894
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007895 // We don't want more than one activation of the following loops on the stack
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007896 // -- that can lead to O(n!) time complexity.
7897 if (WalkingBEDominatingConds)
7898 return false;
7899
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +00007900 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007901
Sanjoy Dasb174f9a2015-09-25 23:53:50 +00007902 // See if we can exploit a trip count to prove the predicate.
7903 const auto &BETakenInfo = getBackedgeTakenInfo(L);
7904 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7905 if (LatchBECount != getCouldNotCompute()) {
7906 // We know that Latch branches back to the loop header exactly
7907 // LatchBECount times. This means the backdege condition at Latch is
7908 // equivalent to "{0,+,1} u< LatchBECount".
7909 Type *Ty = LatchBECount->getType();
7910 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7911 const SCEV *LoopCounter =
7912 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7913 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7914 LatchBECount))
7915 return true;
7916 }
7917
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007918 // Check conditions due to any @llvm.assume intrinsics.
7919 for (auto &AssumeVH : AC.assumptions()) {
7920 if (!AssumeVH)
7921 continue;
7922 auto *CI = cast<CallInst>(AssumeVH);
7923 if (!DT.dominates(CI, Latch->getTerminator()))
7924 continue;
7925
7926 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7927 return true;
7928 }
7929
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007930 // If the loop is not reachable from the entry block, we risk running into an
7931 // infinite loop as we walk up into the dom tree. These loops do not matter
7932 // anyway, so we just return a conservative answer when we see them.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007933 if (!DT.isReachableFromEntry(L->getHeader()))
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007934 return false;
7935
Sanjoy Das2512d0c2016-05-10 00:31:49 +00007936 if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
7937 return true;
7938
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007939 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7940 DTN != HeaderDTN; DTN = DTN->getIDom()) {
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007941
7942 assert(DTN && "should reach the loop header before reaching the root!");
7943
7944 BasicBlock *BB = DTN->getBlock();
Sanjoy Das2512d0c2016-05-10 00:31:49 +00007945 if (isImpliedViaGuard(BB, Pred, LHS, RHS))
7946 return true;
7947
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007948 BasicBlock *PBB = BB->getSinglePredecessor();
7949 if (!PBB)
7950 continue;
7951
7952 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7953 if (!ContinuePredicate || !ContinuePredicate->isConditional())
7954 continue;
7955
7956 Value *Condition = ContinuePredicate->getCondition();
7957
7958 // If we have an edge `E` within the loop body that dominates the only
7959 // latch, the condition guarding `E` also guards the backedge. This
7960 // reasoning works only for loops with a single latch.
7961
7962 BasicBlockEdge DominatingEdge(PBB, BB);
7963 if (DominatingEdge.isSingleEdge()) {
7964 // We're constructively (and conservatively) enumerating edges within the
7965 // loop body that dominate the latch. The dominator tree better agree
7966 // with us on this:
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007967 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007968
7969 if (isImpliedCond(Pred, LHS, RHS, Condition,
7970 BB != ContinuePredicate->getSuccessor(0)))
7971 return true;
7972 }
7973 }
7974
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007975 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007976}
7977
Dan Gohmane65c9172009-07-13 21:35:55 +00007978bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00007979ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7980 ICmpInst::Predicate Pred,
7981 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00007982 // Interpret a null as meaning no loop, where there is obviously no guard
7983 // (interprocedural conditions notwithstanding).
7984 if (!L) return false;
7985
Sanjoy Das401e6312016-02-01 20:48:10 +00007986 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7987 return true;
Sanjoy Das1f05c512014-10-10 21:22:34 +00007988
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007989 // Starting at the loop predecessor, climb up the predecessor chain, as long
7990 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00007991 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00007992 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00007993 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00007994 Pair.first;
7995 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00007996
Sanjoy Das2512d0c2016-05-10 00:31:49 +00007997 if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS))
7998 return true;
7999
Dan Gohman2a62fd92008-08-12 20:17:31 +00008000 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00008001 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00008002 if (!LoopEntryPredicate ||
8003 LoopEntryPredicate->isUnconditional())
8004 continue;
8005
Dan Gohmane18c2d62010-08-10 23:46:30 +00008006 if (isImpliedCond(Pred, LHS, RHS,
8007 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00008008 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00008009 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00008010 }
8011
Hal Finkelcebf0cc2014-09-07 21:37:59 +00008012 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008013 for (auto &AssumeVH : AC.assumptions()) {
Chandler Carruth66b31302015-01-04 12:03:27 +00008014 if (!AssumeVH)
8015 continue;
8016 auto *CI = cast<CallInst>(AssumeVH);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008017 if (!DT.dominates(CI, L->getHeader()))
Hal Finkelcebf0cc2014-09-07 21:37:59 +00008018 continue;
8019
8020 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
8021 return true;
8022 }
8023
Dan Gohman2a62fd92008-08-12 20:17:31 +00008024 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00008025}
8026
Benjamin Kramer039b1042015-10-28 13:54:36 +00008027namespace {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00008028/// RAII wrapper to prevent recursive application of isImpliedCond.
8029/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
8030/// currently evaluating isImpliedCond.
8031struct MarkPendingLoopPredicate {
8032 Value *Cond;
8033 DenseSet<Value*> &LoopPreds;
8034 bool Pending;
8035
8036 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
8037 : Cond(C), LoopPreds(LP) {
8038 Pending = !LoopPreds.insert(Cond).second;
8039 }
8040 ~MarkPendingLoopPredicate() {
8041 if (!Pending)
8042 LoopPreds.erase(Cond);
8043 }
8044};
Benjamin Kramer039b1042015-10-28 13:54:36 +00008045} // end anonymous namespace
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00008046
Dan Gohmane18c2d62010-08-10 23:46:30 +00008047bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00008048 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00008049 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00008050 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00008051 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
8052 if (Mark.Pending)
8053 return false;
8054
Dan Gohman8b0a4192010-03-01 17:49:51 +00008055 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00008056 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008057 if (BO->getOpcode() == Instruction::And) {
8058 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00008059 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8060 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008061 } else if (BO->getOpcode() == Instruction::Or) {
8062 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00008063 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8064 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008065 }
8066 }
8067
Dan Gohmane18c2d62010-08-10 23:46:30 +00008068 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008069 if (!ICI) return false;
8070
Andrew Trickfa594032012-11-29 18:35:13 +00008071 // Now that we found a conditional branch that dominates the loop or controls
8072 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00008073 ICmpInst::Predicate FoundPred;
8074 if (Inverse)
8075 FoundPred = ICI->getInversePredicate();
8076 else
8077 FoundPred = ICI->getPredicate();
8078
8079 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
8080 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00008081
Sanjoy Dasdf1635d2015-09-25 19:59:52 +00008082 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
8083}
8084
8085bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
8086 const SCEV *RHS,
8087 ICmpInst::Predicate FoundPred,
8088 const SCEV *FoundLHS,
8089 const SCEV *FoundRHS) {
Sanjoy Das14598832015-03-26 17:28:26 +00008090 // Balance the types.
8091 if (getTypeSizeInBits(LHS->getType()) <
8092 getTypeSizeInBits(FoundLHS->getType())) {
8093 if (CmpInst::isSigned(Pred)) {
8094 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
8095 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
8096 } else {
8097 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
8098 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
8099 }
8100 } else if (getTypeSizeInBits(LHS->getType()) >
Dan Gohmane65c9172009-07-13 21:35:55 +00008101 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00008102 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00008103 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
8104 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
8105 } else {
8106 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
8107 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
8108 }
8109 }
8110
Dan Gohman430f0cc2009-07-21 23:03:19 +00008111 // Canonicalize the query to match the way instcombine will have
8112 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00008113 if (SimplifyICmpOperands(Pred, LHS, RHS))
8114 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00008115 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00008116 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
8117 if (FoundLHS == FoundRHS)
8118 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00008119
8120 // Check to see if we can make the LHS or RHS match.
8121 if (LHS == FoundRHS || RHS == FoundLHS) {
8122 if (isa<SCEVConstant>(RHS)) {
8123 std::swap(FoundLHS, FoundRHS);
8124 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
8125 } else {
8126 std::swap(LHS, RHS);
8127 Pred = ICmpInst::getSwappedPredicate(Pred);
8128 }
8129 }
8130
8131 // Check whether the found predicate is the same as the desired predicate.
8132 if (FoundPred == Pred)
8133 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8134
8135 // Check whether swapping the found predicate makes it the same as the
8136 // desired predicate.
8137 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
8138 if (isa<SCEVConstant>(RHS))
8139 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
8140 else
8141 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
8142 RHS, LHS, FoundLHS, FoundRHS);
8143 }
8144
Sanjoy Das6e78b172015-10-22 19:57:34 +00008145 // Unsigned comparison is the same as signed comparison when both the operands
8146 // are non-negative.
8147 if (CmpInst::isUnsigned(FoundPred) &&
8148 CmpInst::getSignedPredicate(FoundPred) == Pred &&
8149 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
8150 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8151
Sanjoy Dasc5676df2014-11-13 00:00:58 +00008152 // Check if we can make progress by sharpening ranges.
8153 if (FoundPred == ICmpInst::ICMP_NE &&
8154 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
8155
8156 const SCEVConstant *C = nullptr;
8157 const SCEV *V = nullptr;
8158
8159 if (isa<SCEVConstant>(FoundLHS)) {
8160 C = cast<SCEVConstant>(FoundLHS);
8161 V = FoundRHS;
8162 } else {
8163 C = cast<SCEVConstant>(FoundRHS);
8164 V = FoundLHS;
8165 }
8166
8167 // The guarding predicate tells us that C != V. If the known range
8168 // of V is [C, t), we can sharpen the range to [C + 1, t). The
8169 // range we consider has to correspond to same signedness as the
8170 // predicate we're interested in folding.
8171
8172 APInt Min = ICmpInst::isSigned(Pred) ?
8173 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
8174
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008175 if (Min == C->getAPInt()) {
Sanjoy Dasc5676df2014-11-13 00:00:58 +00008176 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
8177 // This is true even if (Min + 1) wraps around -- in case of
8178 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
8179
8180 APInt SharperMin = Min + 1;
8181
8182 switch (Pred) {
8183 case ICmpInst::ICMP_SGE:
8184 case ICmpInst::ICMP_UGE:
8185 // We know V `Pred` SharperMin. If this implies LHS `Pred`
8186 // RHS, we're done.
8187 if (isImpliedCondOperands(Pred, LHS, RHS, V,
8188 getConstant(SharperMin)))
8189 return true;
8190
8191 case ICmpInst::ICMP_SGT:
8192 case ICmpInst::ICMP_UGT:
8193 // We know from the range information that (V `Pred` Min ||
8194 // V == Min). We know from the guarding condition that !(V
8195 // == Min). This gives us
8196 //
8197 // V `Pred` Min || V == Min && !(V == Min)
8198 // => V `Pred` Min
8199 //
8200 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
8201
8202 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
8203 return true;
8204
8205 default:
8206 // No change
8207 break;
8208 }
8209 }
8210 }
8211
Dan Gohman430f0cc2009-07-21 23:03:19 +00008212 // Check whether the actual condition is beyond sufficient.
8213 if (FoundPred == ICmpInst::ICMP_EQ)
8214 if (ICmpInst::isTrueWhenEqual(Pred))
8215 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
8216 return true;
8217 if (Pred == ICmpInst::ICMP_NE)
8218 if (!ICmpInst::isTrueWhenEqual(FoundPred))
8219 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
8220 return true;
8221
8222 // Otherwise assume the worst.
8223 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00008224}
8225
Sanjoy Das1ed69102015-10-13 02:53:27 +00008226bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
8227 const SCEV *&L, const SCEV *&R,
8228 SCEV::NoWrapFlags &Flags) {
8229 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
8230 if (!AE || AE->getNumOperands() != 2)
8231 return false;
8232
8233 L = AE->getOperand(0);
8234 R = AE->getOperand(1);
8235 Flags = AE->getNoWrapFlags();
8236 return true;
8237}
8238
8239bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
8240 const SCEV *More,
8241 APInt &C) {
Sanjoy Das96709c42015-09-25 23:53:45 +00008242 // We avoid subtracting expressions here because this function is usually
8243 // fairly deep in the call stack (i.e. is called many times).
8244
Sanjoy Das96709c42015-09-25 23:53:45 +00008245 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
8246 const auto *LAR = cast<SCEVAddRecExpr>(Less);
8247 const auto *MAR = cast<SCEVAddRecExpr>(More);
8248
8249 if (LAR->getLoop() != MAR->getLoop())
8250 return false;
8251
8252 // We look at affine expressions only; not for correctness but to keep
8253 // getStepRecurrence cheap.
8254 if (!LAR->isAffine() || !MAR->isAffine())
8255 return false;
8256
Sanjoy Das1ed69102015-10-13 02:53:27 +00008257 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
Sanjoy Das96709c42015-09-25 23:53:45 +00008258 return false;
8259
8260 Less = LAR->getStart();
8261 More = MAR->getStart();
8262
8263 // fall through
8264 }
8265
8266 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008267 const auto &M = cast<SCEVConstant>(More)->getAPInt();
8268 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
Sanjoy Das96709c42015-09-25 23:53:45 +00008269 C = M - L;
8270 return true;
8271 }
8272
8273 const SCEV *L, *R;
Sanjoy Das1ed69102015-10-13 02:53:27 +00008274 SCEV::NoWrapFlags Flags;
8275 if (splitBinaryAdd(Less, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00008276 if (const auto *LC = dyn_cast<SCEVConstant>(L))
8277 if (R == More) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008278 C = -(LC->getAPInt());
Sanjoy Das96709c42015-09-25 23:53:45 +00008279 return true;
8280 }
8281
Sanjoy Das1ed69102015-10-13 02:53:27 +00008282 if (splitBinaryAdd(More, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00008283 if (const auto *LC = dyn_cast<SCEVConstant>(L))
8284 if (R == Less) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008285 C = LC->getAPInt();
Sanjoy Das96709c42015-09-25 23:53:45 +00008286 return true;
8287 }
8288
8289 return false;
8290}
8291
8292bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
8293 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
8294 const SCEV *FoundLHS, const SCEV *FoundRHS) {
8295 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
8296 return false;
8297
8298 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8299 if (!AddRecLHS)
8300 return false;
8301
8302 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
8303 if (!AddRecFoundLHS)
8304 return false;
8305
8306 // We'd like to let SCEV reason about control dependencies, so we constrain
8307 // both the inequalities to be about add recurrences on the same loop. This
8308 // way we can use isLoopEntryGuardedByCond later.
8309
8310 const Loop *L = AddRecFoundLHS->getLoop();
8311 if (L != AddRecLHS->getLoop())
8312 return false;
8313
8314 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
8315 //
8316 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
8317 // ... (2)
8318 //
8319 // Informal proof for (2), assuming (1) [*]:
8320 //
8321 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
8322 //
8323 // Then
8324 //
8325 // FoundLHS s< FoundRHS s< INT_MIN - C
8326 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
8327 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
8328 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
8329 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
8330 // <=> FoundLHS + C s< FoundRHS + C
8331 //
8332 // [*]: (1) can be proved by ruling out overflow.
8333 //
8334 // [**]: This can be proved by analyzing all the four possibilities:
8335 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
8336 // (A s>= 0, B s>= 0).
8337 //
8338 // Note:
8339 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
8340 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
8341 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
8342 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
8343 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
8344 // C)".
8345
8346 APInt LDiff, RDiff;
Sanjoy Das1ed69102015-10-13 02:53:27 +00008347 if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
8348 !computeConstantDifference(FoundRHS, RHS, RDiff) ||
Sanjoy Das96709c42015-09-25 23:53:45 +00008349 LDiff != RDiff)
8350 return false;
8351
8352 if (LDiff == 0)
8353 return true;
8354
Sanjoy Das96709c42015-09-25 23:53:45 +00008355 APInt FoundRHSLimit;
8356
8357 if (Pred == CmpInst::ICMP_ULT) {
8358 FoundRHSLimit = -RDiff;
8359 } else {
8360 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
Sanjoy Das4f1c4592015-09-28 21:14:32 +00008361 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
Sanjoy Das96709c42015-09-25 23:53:45 +00008362 }
8363
8364 // Try to prove (1) or (2), as needed.
8365 return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
8366 getConstant(FoundRHSLimit));
8367}
8368
Dan Gohman430f0cc2009-07-21 23:03:19 +00008369bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
8370 const SCEV *LHS, const SCEV *RHS,
8371 const SCEV *FoundLHS,
8372 const SCEV *FoundRHS) {
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008373 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
8374 return true;
8375
Sanjoy Das96709c42015-09-25 23:53:45 +00008376 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
8377 return true;
8378
Dan Gohman430f0cc2009-07-21 23:03:19 +00008379 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
8380 FoundLHS, FoundRHS) ||
8381 // ~x < ~y --> x > y
8382 isImpliedCondOperandsHelper(Pred, LHS, RHS,
8383 getNotSCEV(FoundRHS),
8384 getNotSCEV(FoundLHS));
8385}
8386
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008387
8388/// If Expr computes ~A, return A else return nullptr
8389static const SCEV *MatchNotExpr(const SCEV *Expr) {
8390 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
Sanjoy Das16e7ff12015-10-13 23:28:31 +00008391 if (!Add || Add->getNumOperands() != 2 ||
8392 !Add->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008393 return nullptr;
8394
8395 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
Sanjoy Das16e7ff12015-10-13 23:28:31 +00008396 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
8397 !AddRHS->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008398 return nullptr;
8399
8400 return AddRHS->getOperand(1);
8401}
8402
8403
8404/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
8405template<typename MaxExprType>
8406static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
8407 const SCEV *Candidate) {
8408 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
8409 if (!MaxExpr) return false;
8410
Sanjoy Das347d2722015-12-01 07:49:27 +00008411 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008412}
8413
8414
8415/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8416template<typename MaxExprType>
8417static bool IsMinConsistingOf(ScalarEvolution &SE,
8418 const SCEV *MaybeMinExpr,
8419 const SCEV *Candidate) {
8420 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8421 if (!MaybeMaxExpr)
8422 return false;
8423
8424 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8425}
8426
Hal Finkela8d205f2015-08-19 01:51:51 +00008427static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8428 ICmpInst::Predicate Pred,
8429 const SCEV *LHS, const SCEV *RHS) {
8430
8431 // If both sides are affine addrecs for the same loop, with equal
8432 // steps, and we know the recurrences don't wrap, then we only
8433 // need to check the predicate on the starting values.
8434
8435 if (!ICmpInst::isRelational(Pred))
8436 return false;
8437
8438 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8439 if (!LAR)
8440 return false;
8441 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8442 if (!RAR)
8443 return false;
8444 if (LAR->getLoop() != RAR->getLoop())
8445 return false;
8446 if (!LAR->isAffine() || !RAR->isAffine())
8447 return false;
8448
8449 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8450 return false;
8451
Hal Finkelff08a2e2015-08-19 17:26:07 +00008452 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8453 SCEV::FlagNSW : SCEV::FlagNUW;
8454 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
Hal Finkela8d205f2015-08-19 01:51:51 +00008455 return false;
8456
8457 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8458}
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008459
8460/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8461/// expression?
8462static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8463 ICmpInst::Predicate Pred,
8464 const SCEV *LHS, const SCEV *RHS) {
8465 switch (Pred) {
8466 default:
8467 return false;
8468
8469 case ICmpInst::ICMP_SGE:
8470 std::swap(LHS, RHS);
8471 // fall through
8472 case ICmpInst::ICMP_SLE:
8473 return
8474 // min(A, ...) <= A
8475 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8476 // A <= max(A, ...)
8477 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8478
8479 case ICmpInst::ICMP_UGE:
8480 std::swap(LHS, RHS);
8481 // fall through
8482 case ICmpInst::ICMP_ULE:
8483 return
8484 // min(A, ...) <= A
8485 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8486 // A <= max(A, ...)
8487 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8488 }
8489
8490 llvm_unreachable("covered switch fell through?!");
8491}
8492
Dan Gohmane65c9172009-07-13 21:35:55 +00008493bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00008494ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8495 const SCEV *LHS, const SCEV *RHS,
8496 const SCEV *FoundLHS,
8497 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008498 auto IsKnownPredicateFull =
8499 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
Sanjoy Das401e6312016-02-01 20:48:10 +00008500 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
Sanjoy Das11231482015-10-22 19:57:29 +00008501 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
Sanjoy Dasc1a29772015-11-05 23:45:38 +00008502 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8503 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008504 };
8505
Dan Gohmane65c9172009-07-13 21:35:55 +00008506 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00008507 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8508 case ICmpInst::ICMP_EQ:
8509 case ICmpInst::ICMP_NE:
8510 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8511 return true;
8512 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00008513 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008514 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008515 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8516 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008517 return true;
8518 break;
8519 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008520 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008521 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8522 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008523 return true;
8524 break;
8525 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008526 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008527 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8528 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008529 return true;
8530 break;
8531 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008532 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008533 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8534 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008535 return true;
8536 break;
8537 }
8538
8539 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008540}
8541
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008542bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8543 const SCEV *LHS,
8544 const SCEV *RHS,
8545 const SCEV *FoundLHS,
8546 const SCEV *FoundRHS) {
8547 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8548 // The restriction on `FoundRHS` be lifted easily -- it exists only to
8549 // reduce the compile time impact of this optimization.
8550 return false;
8551
8552 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8553 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8554 !isa<SCEVConstant>(AddLHS->getOperand(0)))
8555 return false;
8556
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008557 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008558
8559 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8560 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8561 ConstantRange FoundLHSRange =
8562 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8563
8564 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8565 // for `LHS`:
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008566 APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008567 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8568
8569 // We can also compute the range of values for `LHS` that satisfy the
8570 // consequent, "`LHS` `Pred` `RHS`":
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008571 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008572 ConstantRange SatisfyingLHSRange =
8573 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8574
8575 // The antecedent implies the consequent if every value of `LHS` that
8576 // satisfies the antecedent also satisfies the consequent.
8577 return SatisfyingLHSRange.contains(LHSRange);
8578}
8579
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008580bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8581 bool IsSigned, bool NoWrap) {
8582 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00008583
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008584 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008585 const SCEV *One = getOne(Stride->getType());
Andrew Trick2afa3252011-03-09 17:29:58 +00008586
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008587 if (IsSigned) {
8588 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8589 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8590 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8591 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00008592
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008593 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8594 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00008595 }
Dan Gohman01048422009-06-21 23:46:38 +00008596
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008597 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8598 APInt MaxValue = APInt::getMaxValue(BitWidth);
8599 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8600 .getUnsignedMax();
8601
8602 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8603 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8604}
8605
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008606bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8607 bool IsSigned, bool NoWrap) {
8608 if (NoWrap) return false;
8609
8610 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008611 const SCEV *One = getOne(Stride->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008612
8613 if (IsSigned) {
8614 APInt MinRHS = getSignedRange(RHS).getSignedMin();
8615 APInt MinValue = APInt::getSignedMinValue(BitWidth);
8616 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8617 .getSignedMax();
8618
8619 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8620 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8621 }
8622
8623 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8624 APInt MinValue = APInt::getMinValue(BitWidth);
8625 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8626 .getUnsignedMax();
8627
8628 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8629 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8630}
8631
Johannes Doerfert2683e562015-02-09 12:34:23 +00008632const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008633 bool Equality) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008634 const SCEV *One = getOne(Step->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008635 Delta = Equality ? getAddExpr(Delta, Step)
8636 : getAddExpr(Delta, getMinusSCEV(Step, One));
8637 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00008638}
8639
Andrew Trick3ca3f982011-07-26 17:19:55 +00008640ScalarEvolution::ExitLimit
Sanjoy Das108fcf22016-05-29 00:38:00 +00008641ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008642 const Loop *L, bool IsSigned,
Silviu Baranga6f444df2016-04-08 14:29:09 +00008643 bool ControlsExit, bool AllowPredicates) {
8644 SCEVUnionPredicate P;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008645 // We handle only IV < Invariant
8646 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00008647 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008648
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008649 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Silviu Baranga6f444df2016-04-08 14:29:09 +00008650 if (!IV && AllowPredicates)
8651 // Try to make this an AddRec using runtime tests, in the first X
8652 // iterations of this loop, where X is the SCEV expression found by the
8653 // algorithm below.
8654 IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
Dan Gohman2b8da352009-04-30 20:47:05 +00008655
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008656 // Avoid weird loops
8657 if (!IV || IV->getLoop() != L || !IV->isAffine())
8658 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008659
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008660 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008661 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008662
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008663 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008664
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008665 // Avoid negative or zero stride values
8666 if (!isKnownPositive(Stride))
8667 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008668
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008669 // Avoid proven overflow cases: this will ensure that the backedge taken count
8670 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008671 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008672 // behaviors like the case of C language.
8673 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8674 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008675
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008676 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8677 : ICmpInst::ICMP_ULT;
8678 const SCEV *Start = IV->getStart();
8679 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008680 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8681 const SCEV *Diff = getMinusSCEV(RHS, Start);
8682 // If we have NoWrap set, then we can assume that the increment won't
8683 // overflow, in which case if RHS - Start is a constant, we don't need to
8684 // do a max operation since we can just figure it out statically
8685 if (NoWrap && isa<SCEVConstant>(Diff)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008686 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
Bradley Smith9992b162014-10-31 11:40:32 +00008687 if (D.isNegative())
8688 End = Start;
8689 } else
8690 End = IsSigned ? getSMaxExpr(RHS, Start)
8691 : getUMaxExpr(RHS, Start);
8692 }
Dan Gohman51aaf022010-01-26 04:40:18 +00008693
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008694 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00008695
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008696 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8697 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00008698
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008699 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8700 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00008701
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008702 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8703 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8704 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00008705
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008706 // Although End can be a MAX expression we estimate MaxEnd considering only
8707 // the case End = RHS. This is safe because in the other case (End - Start)
8708 // is zero, leading to a zero maximum backedge taken count.
8709 APInt MaxEnd =
8710 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8711 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8712
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00008713 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008714 if (isa<SCEVConstant>(BECount))
8715 MaxBECount = BECount;
8716 else
8717 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8718 getConstant(MinStride), false);
8719
8720 if (isa<SCEVCouldNotCompute>(MaxBECount))
8721 MaxBECount = BECount;
8722
Silviu Baranga6f444df2016-04-08 14:29:09 +00008723 return ExitLimit(BECount, MaxBECount, P);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008724}
8725
8726ScalarEvolution::ExitLimit
Sanjoy Das108fcf22016-05-29 00:38:00 +00008727ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008728 const Loop *L, bool IsSigned,
Silviu Baranga6f444df2016-04-08 14:29:09 +00008729 bool ControlsExit, bool AllowPredicates) {
8730 SCEVUnionPredicate P;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008731 // We handle only IV > Invariant
8732 if (!isLoopInvariant(RHS, L))
8733 return getCouldNotCompute();
8734
8735 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Silviu Baranga6f444df2016-04-08 14:29:09 +00008736 if (!IV && AllowPredicates)
8737 // Try to make this an AddRec using runtime tests, in the first X
8738 // iterations of this loop, where X is the SCEV expression found by the
8739 // algorithm below.
8740 IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008741
8742 // Avoid weird loops
8743 if (!IV || IV->getLoop() != L || !IV->isAffine())
8744 return getCouldNotCompute();
8745
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008746 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008747 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8748
8749 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8750
8751 // Avoid negative or zero stride values
8752 if (!isKnownPositive(Stride))
8753 return getCouldNotCompute();
8754
8755 // Avoid proven overflow cases: this will ensure that the backedge taken count
8756 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008757 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008758 // behaviors like the case of C language.
8759 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8760 return getCouldNotCompute();
8761
8762 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8763 : ICmpInst::ICMP_UGT;
8764
8765 const SCEV *Start = IV->getStart();
8766 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008767 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8768 const SCEV *Diff = getMinusSCEV(RHS, Start);
8769 // If we have NoWrap set, then we can assume that the increment won't
8770 // overflow, in which case if RHS - Start is a constant, we don't need to
8771 // do a max operation since we can just figure it out statically
8772 if (NoWrap && isa<SCEVConstant>(Diff)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008773 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
Bradley Smith9992b162014-10-31 11:40:32 +00008774 if (!D.isNegative())
8775 End = Start;
8776 } else
8777 End = IsSigned ? getSMinExpr(RHS, Start)
8778 : getUMinExpr(RHS, Start);
8779 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008780
8781 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8782
8783 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8784 : getUnsignedRange(Start).getUnsignedMax();
8785
8786 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8787 : getUnsignedRange(Stride).getUnsignedMin();
8788
8789 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8790 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8791 : APInt::getMinValue(BitWidth) + (MinStride - 1);
8792
8793 // Although End can be a MIN expression we estimate MinEnd considering only
8794 // the case End = RHS. This is safe because in the other case (Start - End)
8795 // is zero, leading to a zero maximum backedge taken count.
8796 APInt MinEnd =
8797 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8798 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8799
8800
8801 const SCEV *MaxBECount = getCouldNotCompute();
8802 if (isa<SCEVConstant>(BECount))
8803 MaxBECount = BECount;
8804 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00008805 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008806 getConstant(MinStride), false);
8807
8808 if (isa<SCEVCouldNotCompute>(MaxBECount))
8809 MaxBECount = BECount;
8810
Silviu Baranga6f444df2016-04-08 14:29:09 +00008811 return ExitLimit(BECount, MaxBECount, P);
Chris Lattner587a75b2005-08-15 23:33:51 +00008812}
8813
Benjamin Kramerc321e532016-06-08 19:09:22 +00008814const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
Dan Gohmance973df2009-06-24 04:48:43 +00008815 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00008816 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00008817 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008818
8819 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00008820 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00008821 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00008822 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008823 Operands[0] = SE.getZero(SC->getType());
Andrew Trick8b55b732011-03-14 16:50:06 +00008824 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00008825 getNoWrapFlags(FlagNW));
Sanjoy Das63914592015-10-18 00:29:20 +00008826 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00008827 return ShiftedAddRec->getNumIterationsInRange(
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008828 Range.subtract(SC->getAPInt()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00008829 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00008830 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008831 }
8832
8833 // The only time we can solve this is when we have all constant indices.
8834 // Otherwise, we cannot determine the overflow conditions.
Sanjoy Dasff3b8b42015-12-01 07:49:23 +00008835 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00008836 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008837
8838 // Okay at this point we know that all elements of the chrec are constants and
8839 // that the start element is zero.
8840
8841 // First check to see if the range contains zero. If not, the first
8842 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00008843 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00008844 if (!Range.contains(APInt(BitWidth, 0)))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008845 return SE.getZero(getType());
Misha Brukman01808ca2005-04-21 21:13:18 +00008846
Chris Lattnerd934c702004-04-02 20:23:17 +00008847 if (isAffine()) {
8848 // If this is an affine expression then we have this situation:
8849 // Solve {0,+,A} in Range === Ax in Range
8850
Nick Lewycky52460262007-07-16 02:08:00 +00008851 // We know that zero is in the range. If A is positive then we know that
8852 // the upper value of the range must be the first possible exit value.
8853 // If A is negative then the lower of the range is the last possible loop
8854 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00008855 APInt One(BitWidth,1);
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008856 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
Nick Lewycky52460262007-07-16 02:08:00 +00008857 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00008858
Nick Lewycky52460262007-07-16 02:08:00 +00008859 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00008860 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00008861 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00008862
8863 // Evaluate at the exit value. If we really did fall out of the valid
8864 // range, then we computed our trip count, otherwise wrap around or other
8865 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00008866 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008867 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00008868 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008869
8870 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00008871 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00008872 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00008873 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00008874 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00008875 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00008876 } else if (isQuadratic()) {
8877 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8878 // quadratic equation to solve it. To do this, we must frame our problem in
8879 // terms of figuring out when zero is crossed, instead of when
8880 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00008881 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00008882 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00008883 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8884 // getNoWrapFlags(FlagNW)
8885 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00008886
8887 // Next, solve the constructed addrec
Sanjoy Das01947432015-11-22 21:20:13 +00008888 auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00008889 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8890 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00008891 if (R1) {
8892 // Pick the smallest positive root value.
Sanjoy Das01947432015-11-22 21:20:13 +00008893 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8894 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00008895 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00008896 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00008897
Chris Lattnerd934c702004-04-02 20:23:17 +00008898 // Make sure the root is not off by one. The returned iteration should
8899 // not be in the range, but the previous one should be. When solving
8900 // for "X*X < 5", for example, we should not return a root of 2.
8901 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00008902 R1->getValue(),
8903 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008904 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008905 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00008906 ConstantInt *NextVal =
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008907 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
Misha Brukman01808ca2005-04-21 21:13:18 +00008908
Dan Gohmana37eaf22007-10-22 18:31:58 +00008909 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008910 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00008911 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00008912 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008913 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008914
Chris Lattnerd934c702004-04-02 20:23:17 +00008915 // If R1 was not in the range, then it is a good return value. Make
8916 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00008917 ConstantInt *NextVal =
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008918 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00008919 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008920 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00008921 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00008922 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008923 }
8924 }
8925 }
8926
Dan Gohman31efa302009-04-18 17:58:19 +00008927 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008928}
8929
Sebastian Pop448712b2014-05-07 18:01:20 +00008930namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008931struct FindUndefs {
8932 bool Found;
8933 FindUndefs() : Found(false) {}
8934
8935 bool follow(const SCEV *S) {
8936 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8937 if (isa<UndefValue>(C->getValue()))
8938 Found = true;
8939 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8940 if (isa<UndefValue>(C->getValue()))
8941 Found = true;
8942 }
8943
8944 // Keep looking if we haven't found it yet.
8945 return !Found;
8946 }
8947 bool isDone() const {
8948 // Stop recursion if we have found an undef.
8949 return Found;
8950 }
8951};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008952}
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008953
8954// Return true when S contains at least an undef value.
8955static inline bool
8956containsUndefs(const SCEV *S) {
8957 FindUndefs F;
8958 SCEVTraversal<FindUndefs> ST(F);
8959 ST.visitAll(S);
8960
8961 return F.Found;
8962}
8963
8964namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00008965// Collect all steps of SCEV expressions.
8966struct SCEVCollectStrides {
8967 ScalarEvolution &SE;
8968 SmallVectorImpl<const SCEV *> &Strides;
8969
8970 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8971 : SE(SE), Strides(S) {}
8972
8973 bool follow(const SCEV *S) {
8974 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8975 Strides.push_back(AR->getStepRecurrence(SE));
8976 return true;
8977 }
8978 bool isDone() const { return false; }
8979};
8980
8981// Collect all SCEVUnknown and SCEVMulExpr expressions.
8982struct SCEVCollectTerms {
8983 SmallVectorImpl<const SCEV *> &Terms;
8984
8985 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8986 : Terms(T) {}
8987
8988 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008989 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008990 if (!containsUndefs(S))
8991 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00008992
8993 // Stop recursion: once we collected a term, do not walk its operands.
8994 return false;
8995 }
8996
8997 // Keep looking.
8998 return true;
8999 }
9000 bool isDone() const { return false; }
9001};
Tobias Grosser374bce02015-10-12 08:02:00 +00009002
9003// Check if a SCEV contains an AddRecExpr.
9004struct SCEVHasAddRec {
9005 bool &ContainsAddRec;
9006
9007 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
9008 ContainsAddRec = false;
9009 }
9010
9011 bool follow(const SCEV *S) {
9012 if (isa<SCEVAddRecExpr>(S)) {
9013 ContainsAddRec = true;
9014
9015 // Stop recursion: once we collected a term, do not walk its operands.
9016 return false;
9017 }
9018
9019 // Keep looking.
9020 return true;
9021 }
9022 bool isDone() const { return false; }
9023};
9024
9025// Find factors that are multiplied with an expression that (possibly as a
9026// subexpression) contains an AddRecExpr. In the expression:
9027//
9028// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
9029//
9030// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
9031// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
9032// parameters as they form a product with an induction variable.
9033//
9034// This collector expects all array size parameters to be in the same MulExpr.
9035// It might be necessary to later add support for collecting parameters that are
9036// spread over different nested MulExpr.
9037struct SCEVCollectAddRecMultiplies {
9038 SmallVectorImpl<const SCEV *> &Terms;
9039 ScalarEvolution &SE;
9040
9041 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
9042 : Terms(T), SE(SE) {}
9043
9044 bool follow(const SCEV *S) {
9045 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
9046 bool HasAddRec = false;
9047 SmallVector<const SCEV *, 0> Operands;
9048 for (auto Op : Mul->operands()) {
9049 if (isa<SCEVUnknown>(Op)) {
9050 Operands.push_back(Op);
9051 } else {
9052 bool ContainsAddRec;
9053 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
9054 visitAll(Op, ContiansAddRec);
9055 HasAddRec |= ContainsAddRec;
9056 }
9057 }
9058 if (Operands.size() == 0)
9059 return true;
9060
9061 if (!HasAddRec)
9062 return false;
9063
9064 Terms.push_back(SE.getMulExpr(Operands));
9065 // Stop recursion: once we collected a term, do not walk its operands.
9066 return false;
9067 }
9068
9069 // Keep looking.
9070 return true;
9071 }
9072 bool isDone() const { return false; }
9073};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00009074}
Sebastian Pop448712b2014-05-07 18:01:20 +00009075
Tobias Grosser374bce02015-10-12 08:02:00 +00009076/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
9077/// two places:
9078/// 1) The strides of AddRec expressions.
9079/// 2) Unknowns that are multiplied with AddRec expressions.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009080void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
9081 SmallVectorImpl<const SCEV *> &Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009082 SmallVector<const SCEV *, 4> Strides;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009083 SCEVCollectStrides StrideCollector(*this, Strides);
9084 visitAll(Expr, StrideCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00009085
9086 DEBUG({
9087 dbgs() << "Strides:\n";
9088 for (const SCEV *S : Strides)
9089 dbgs() << *S << "\n";
9090 });
9091
9092 for (const SCEV *S : Strides) {
9093 SCEVCollectTerms TermCollector(Terms);
9094 visitAll(S, TermCollector);
9095 }
9096
9097 DEBUG({
9098 dbgs() << "Terms:\n";
9099 for (const SCEV *T : Terms)
9100 dbgs() << *T << "\n";
9101 });
Tobias Grosser374bce02015-10-12 08:02:00 +00009102
9103 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
9104 visitAll(Expr, MulCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00009105}
9106
Sebastian Popb1a548f2014-05-12 19:01:53 +00009107static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00009108 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00009109 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00009110 int Last = Terms.size() - 1;
9111 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00009112
Sebastian Pop448712b2014-05-07 18:01:20 +00009113 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00009114 if (Last == 0) {
9115 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009116 SmallVector<const SCEV *, 2> Qs;
9117 for (const SCEV *Op : M->operands())
9118 if (!isa<SCEVConstant>(Op))
9119 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00009120
Sebastian Pope30bd352014-05-27 22:41:56 +00009121 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00009122 }
9123
Sebastian Pope30bd352014-05-27 22:41:56 +00009124 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00009125 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00009126 }
9127
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00009128 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009129 // Normalize the terms before the next call to findArrayDimensionsRec.
9130 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00009131 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00009132
9133 // Bail out when GCD does not evenly divide one of the terms.
9134 if (!R->isZero())
9135 return false;
9136
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00009137 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00009138 }
9139
Tobias Grosser3080cf12014-05-08 07:55:34 +00009140 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00009141 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
9142 return isa<SCEVConstant>(E);
9143 }),
9144 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00009145
Sebastian Pop448712b2014-05-07 18:01:20 +00009146 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00009147 if (!findArrayDimensionsRec(SE, Terms, Sizes))
9148 return false;
9149
Sebastian Pope30bd352014-05-27 22:41:56 +00009150 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00009151 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00009152}
Sebastian Popc62c6792013-11-12 22:47:20 +00009153
Sebastian Pop448712b2014-05-07 18:01:20 +00009154// Returns true when S contains at least a SCEVUnknown parameter.
9155static inline bool
9156containsParameters(const SCEV *S) {
Sanjoy Das7d752672015-12-08 04:32:54 +00009157 struct FindParameter {
9158 bool FoundParameter;
9159 FindParameter() : FoundParameter(false) {}
9160
9161 bool follow(const SCEV *S) {
9162 if (isa<SCEVUnknown>(S)) {
9163 FoundParameter = true;
9164 // Stop recursion: we found a parameter.
9165 return false;
9166 }
9167 // Keep looking.
9168 return true;
9169 }
9170 bool isDone() const {
9171 // Stop recursion if we have found a parameter.
9172 return FoundParameter;
9173 }
9174 };
9175
Sebastian Pop448712b2014-05-07 18:01:20 +00009176 FindParameter F;
9177 SCEVTraversal<FindParameter> ST(F);
9178 ST.visitAll(S);
9179
9180 return F.FoundParameter;
9181}
9182
9183// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
9184static inline bool
9185containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
9186 for (const SCEV *T : Terms)
9187 if (containsParameters(T))
9188 return true;
9189 return false;
9190}
9191
9192// Return the number of product terms in S.
9193static inline int numberOfTerms(const SCEV *S) {
9194 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
9195 return Expr->getNumOperands();
9196 return 1;
9197}
9198
Sebastian Popa6e58602014-05-27 22:41:45 +00009199static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
9200 if (isa<SCEVConstant>(T))
9201 return nullptr;
9202
9203 if (isa<SCEVUnknown>(T))
9204 return T;
9205
9206 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
9207 SmallVector<const SCEV *, 2> Factors;
9208 for (const SCEV *Op : M->operands())
9209 if (!isa<SCEVConstant>(Op))
9210 Factors.push_back(Op);
9211
9212 return SE.getMulExpr(Factors);
9213 }
9214
9215 return T;
9216}
9217
9218/// Return the size of an element read or written by Inst.
9219const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
9220 Type *Ty;
9221 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
9222 Ty = Store->getValueOperand()->getType();
9223 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00009224 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00009225 else
9226 return nullptr;
9227
9228 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
9229 return getSizeOfExpr(ETy, Ty);
9230}
9231
Sebastian Popa6e58602014-05-27 22:41:45 +00009232void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
9233 SmallVectorImpl<const SCEV *> &Sizes,
9234 const SCEV *ElementSize) const {
Sebastian Pop53524082014-05-29 19:44:05 +00009235 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00009236 return;
9237
9238 // Early return when Terms do not contain parameters: we do not delinearize
9239 // non parametric SCEVs.
9240 if (!containsParameters(Terms))
9241 return;
9242
9243 DEBUG({
9244 dbgs() << "Terms:\n";
9245 for (const SCEV *T : Terms)
9246 dbgs() << *T << "\n";
9247 });
9248
9249 // Remove duplicates.
9250 std::sort(Terms.begin(), Terms.end());
9251 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
9252
9253 // Put larger terms first.
9254 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
9255 return numberOfTerms(LHS) > numberOfTerms(RHS);
9256 });
9257
Sebastian Popa6e58602014-05-27 22:41:45 +00009258 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9259
Tobias Grosser374bce02015-10-12 08:02:00 +00009260 // Try to divide all terms by the element size. If term is not divisible by
9261 // element size, proceed with the original term.
Sebastian Popa6e58602014-05-27 22:41:45 +00009262 for (const SCEV *&Term : Terms) {
9263 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00009264 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Tobias Grosser374bce02015-10-12 08:02:00 +00009265 if (!Q->isZero())
9266 Term = Q;
Sebastian Popa6e58602014-05-27 22:41:45 +00009267 }
9268
9269 SmallVector<const SCEV *, 4> NewTerms;
9270
9271 // Remove constant factors.
9272 for (const SCEV *T : Terms)
9273 if (const SCEV *NewT = removeConstantFactors(SE, T))
9274 NewTerms.push_back(NewT);
9275
Sebastian Pop448712b2014-05-07 18:01:20 +00009276 DEBUG({
9277 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00009278 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00009279 dbgs() << *T << "\n";
9280 });
9281
Sebastian Popa6e58602014-05-27 22:41:45 +00009282 if (NewTerms.empty() ||
9283 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00009284 Sizes.clear();
9285 return;
9286 }
Sebastian Pop448712b2014-05-07 18:01:20 +00009287
Sebastian Popa6e58602014-05-27 22:41:45 +00009288 // The last element to be pushed into Sizes is the size of an element.
9289 Sizes.push_back(ElementSize);
9290
Sebastian Pop448712b2014-05-07 18:01:20 +00009291 DEBUG({
9292 dbgs() << "Sizes:\n";
9293 for (const SCEV *S : Sizes)
9294 dbgs() << *S << "\n";
9295 });
9296}
9297
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009298void ScalarEvolution::computeAccessFunctions(
9299 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
9300 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009301
Sebastian Popb1a548f2014-05-12 19:01:53 +00009302 // Early exit in case this SCEV is not an affine multivariate function.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009303 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00009304 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009305
Sanjoy Das1195dbe2015-10-08 03:45:58 +00009306 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009307 if (!AR->isAffine())
9308 return;
9309
9310 const SCEV *Res = Expr;
Sebastian Pop448712b2014-05-07 18:01:20 +00009311 int Last = Sizes.size() - 1;
9312 for (int i = Last; i >= 0; i--) {
9313 const SCEV *Q, *R;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009314 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00009315
9316 DEBUG({
9317 dbgs() << "Res: " << *Res << "\n";
9318 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
9319 dbgs() << "Res divided by Sizes[i]:\n";
9320 dbgs() << "Quotient: " << *Q << "\n";
9321 dbgs() << "Remainder: " << *R << "\n";
9322 });
9323
9324 Res = Q;
9325
Sebastian Popa6e58602014-05-27 22:41:45 +00009326 // Do not record the last subscript corresponding to the size of elements in
9327 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00009328 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00009329
9330 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00009331 if (isa<SCEVAddRecExpr>(R)) {
9332 Subscripts.clear();
9333 Sizes.clear();
9334 return;
9335 }
Sebastian Popa6e58602014-05-27 22:41:45 +00009336
Sebastian Pop448712b2014-05-07 18:01:20 +00009337 continue;
9338 }
9339
9340 // Record the access function for the current subscript.
9341 Subscripts.push_back(R);
9342 }
9343
9344 // Also push in last position the remainder of the last division: it will be
9345 // the access function of the innermost dimension.
9346 Subscripts.push_back(Res);
9347
9348 std::reverse(Subscripts.begin(), Subscripts.end());
9349
9350 DEBUG({
9351 dbgs() << "Subscripts:\n";
9352 for (const SCEV *S : Subscripts)
9353 dbgs() << *S << "\n";
9354 });
Sebastian Pop448712b2014-05-07 18:01:20 +00009355}
9356
Sebastian Popc62c6792013-11-12 22:47:20 +00009357/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
9358/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00009359/// is the offset start of the array. The SCEV->delinearize algorithm computes
9360/// the multiples of SCEV coefficients: that is a pattern matching of sub
9361/// expressions in the stride and base of a SCEV corresponding to the
9362/// computation of a GCD (greatest common divisor) of base and stride. When
9363/// SCEV->delinearize fails, it returns the SCEV unchanged.
9364///
9365/// For example: when analyzing the memory access A[i][j][k] in this loop nest
9366///
9367/// void foo(long n, long m, long o, double A[n][m][o]) {
9368///
9369/// for (long i = 0; i < n; i++)
9370/// for (long j = 0; j < m; j++)
9371/// for (long k = 0; k < o; k++)
9372/// A[i][j][k] = 1.0;
9373/// }
9374///
9375/// the delinearization input is the following AddRec SCEV:
9376///
9377/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
9378///
9379/// From this SCEV, we are able to say that the base offset of the access is %A
9380/// because it appears as an offset that does not divide any of the strides in
9381/// the loops:
9382///
9383/// CHECK: Base offset: %A
9384///
9385/// and then SCEV->delinearize determines the size of some of the dimensions of
9386/// the array as these are the multiples by which the strides are happening:
9387///
9388/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
9389///
9390/// Note that the outermost dimension remains of UnknownSize because there are
9391/// no strides that would help identifying the size of the last dimension: when
9392/// the array has been statically allocated, one could compute the size of that
9393/// dimension by dividing the overall size of the array by the size of the known
9394/// dimensions: %m * %o * 8.
9395///
9396/// Finally delinearize provides the access functions for the array reference
9397/// that does correspond to A[i][j][k] of the above C testcase:
9398///
9399/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9400///
9401/// The testcases are checking the output of a function pass:
9402/// DelinearizationPass that walks through all loads and stores of a function
9403/// asking for the SCEV of the memory access with respect to all enclosing
9404/// loops, calling SCEV->delinearize on that and printing the results.
9405
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009406void ScalarEvolution::delinearize(const SCEV *Expr,
Sebastian Pop28e6b972014-05-27 22:41:51 +00009407 SmallVectorImpl<const SCEV *> &Subscripts,
9408 SmallVectorImpl<const SCEV *> &Sizes,
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009409 const SCEV *ElementSize) {
Sebastian Pop448712b2014-05-07 18:01:20 +00009410 // First step: collect parametric terms.
9411 SmallVector<const SCEV *, 4> Terms;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009412 collectParametricTerms(Expr, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00009413
Sebastian Popb1a548f2014-05-12 19:01:53 +00009414 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00009415 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009416
Sebastian Pop448712b2014-05-07 18:01:20 +00009417 // Second step: find subscript sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009418 findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00009419
Sebastian Popb1a548f2014-05-12 19:01:53 +00009420 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00009421 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009422
Sebastian Pop448712b2014-05-07 18:01:20 +00009423 // Third step: compute the access functions for each subscript.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009424 computeAccessFunctions(Expr, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00009425
Sebastian Pop28e6b972014-05-27 22:41:51 +00009426 if (Subscripts.empty())
9427 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009428
Sebastian Pop448712b2014-05-07 18:01:20 +00009429 DEBUG({
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009430 dbgs() << "succeeded to delinearize " << *Expr << "\n";
Sebastian Pop448712b2014-05-07 18:01:20 +00009431 dbgs() << "ArrayDecl[UnknownSize]";
9432 for (const SCEV *S : Sizes)
9433 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00009434
Sebastian Pop444621a2014-05-09 22:45:02 +00009435 dbgs() << "\nArrayRef";
9436 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00009437 dbgs() << "[" << *S << "]";
9438 dbgs() << "\n";
9439 });
Sebastian Popc62c6792013-11-12 22:47:20 +00009440}
Chris Lattnerd934c702004-04-02 20:23:17 +00009441
9442//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00009443// SCEVCallbackVH Class Implementation
9444//===----------------------------------------------------------------------===//
9445
Dan Gohmand33a0902009-05-19 19:22:47 +00009446void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00009447 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00009448 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9449 SE->ConstantEvolutionLoopExitValue.erase(PN);
Wei Mia49559b2016-02-04 01:27:38 +00009450 SE->eraseValueFromMap(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00009451 // this now dangles!
9452}
9453
Dan Gohman7a066722010-07-28 01:09:07 +00009454void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00009455 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00009456
Dan Gohman48f82222009-05-04 22:30:44 +00009457 // Forget all the expressions associated with users of the old value,
9458 // so that future queries will recompute the expressions using the new
9459 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00009460 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00009461 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00009462 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00009463 while (!Worklist.empty()) {
9464 User *U = Worklist.pop_back_val();
9465 // Deleting the Old value will cause this to dangle. Postpone
9466 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009467 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00009468 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00009469 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00009470 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00009471 if (PHINode *PN = dyn_cast<PHINode>(U))
9472 SE->ConstantEvolutionLoopExitValue.erase(PN);
Wei Mia49559b2016-02-04 01:27:38 +00009473 SE->eraseValueFromMap(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00009474 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00009475 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009476 // Delete the Old value.
9477 if (PHINode *PN = dyn_cast<PHINode>(Old))
9478 SE->ConstantEvolutionLoopExitValue.erase(PN);
Wei Mia49559b2016-02-04 01:27:38 +00009479 SE->eraseValueFromMap(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009480 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00009481}
9482
Dan Gohmand33a0902009-05-19 19:22:47 +00009483ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00009484 : CallbackVH(V), SE(se) {}
9485
9486//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00009487// ScalarEvolution Class Implementation
9488//===----------------------------------------------------------------------===//
9489
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009490ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9491 AssumptionCache &AC, DominatorTree &DT,
9492 LoopInfo &LI)
9493 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9494 CouldNotCompute(new SCEVCouldNotCompute()),
Sanjoy Das7d910f22015-10-02 18:50:30 +00009495 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9496 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
Sanjoy Das2512d0c2016-05-10 00:31:49 +00009497 FirstUnknown(nullptr) {
9498
9499 // To use guards for proving predicates, we need to scan every instruction in
9500 // relevant basic blocks, and not just terminators. Doing this is a waste of
9501 // time if the IR does not actually contain any calls to
9502 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
9503 //
9504 // This pessimizes the case where a pass that preserves ScalarEvolution wants
9505 // to _add_ guards to the module when there weren't any before, and wants
9506 // ScalarEvolution to optimize based on those guards. For now we prefer to be
9507 // efficient in lieu of being smart in that rather obscure case.
9508
9509 auto *GuardDecl = F.getParent()->getFunction(
9510 Intrinsic::getName(Intrinsic::experimental_guard));
9511 HasGuards = GuardDecl && !GuardDecl->use_empty();
9512}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009513
9514ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
Sanjoy Das2512d0c2016-05-10 00:31:49 +00009515 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
9516 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009517 ValueExprMap(std::move(Arg.ValueExprMap)),
Sanjoy Das7d910f22015-10-02 18:50:30 +00009518 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009519 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
Silviu Baranga6f444df2016-04-08 14:29:09 +00009520 PredicatedBackedgeTakenCounts(
9521 std::move(Arg.PredicatedBackedgeTakenCounts)),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009522 ConstantEvolutionLoopExitValue(
9523 std::move(Arg.ConstantEvolutionLoopExitValue)),
9524 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9525 LoopDispositions(std::move(Arg.LoopDispositions)),
9526 BlockDispositions(std::move(Arg.BlockDispositions)),
9527 UnsignedRanges(std::move(Arg.UnsignedRanges)),
9528 SignedRanges(std::move(Arg.SignedRanges)),
9529 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
Silviu Barangae3c05342015-11-02 14:41:02 +00009530 UniquePreds(std::move(Arg.UniquePreds)),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009531 SCEVAllocator(std::move(Arg.SCEVAllocator)),
9532 FirstUnknown(Arg.FirstUnknown) {
9533 Arg.FirstUnknown = nullptr;
Dan Gohmanc8e23622009-04-21 23:15:49 +00009534}
9535
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009536ScalarEvolution::~ScalarEvolution() {
Dan Gohman7cac9572010-08-02 23:49:30 +00009537 // Iterate through all the SCEVUnknown instances and call their
9538 // destructors, so that they release their references to their values.
Naomi Musgravef90c1be2015-09-16 23:46:40 +00009539 for (SCEVUnknown *U = FirstUnknown; U;) {
9540 SCEVUnknown *Tmp = U;
9541 U = U->Next;
9542 Tmp->~SCEVUnknown();
9543 }
Craig Topper9f008862014-04-15 04:59:12 +00009544 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00009545
Wei Mia49559b2016-02-04 01:27:38 +00009546 ExprValueMap.clear();
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009547 ValueExprMap.clear();
Wei Mia49559b2016-02-04 01:27:38 +00009548 HasRecMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00009549
9550 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9551 // that a loop had multiple computable exits.
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009552 for (auto &BTCI : BackedgeTakenCounts)
9553 BTCI.second.clear();
Silviu Baranga6f444df2016-04-08 14:29:09 +00009554 for (auto &BTCI : PredicatedBackedgeTakenCounts)
9555 BTCI.second.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00009556
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00009557 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00009558 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
Sanjoy Das7d910f22015-10-02 18:50:30 +00009559 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
Dan Gohman0a40ad92009-04-16 03:18:22 +00009560}
9561
Dan Gohmanc8e23622009-04-21 23:15:49 +00009562bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00009563 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00009564}
9565
Dan Gohmanc8e23622009-04-21 23:15:49 +00009566static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00009567 const Loop *L) {
9568 // Print all inner loops first
9569 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9570 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00009571
Dan Gohmanbc694912010-01-09 18:17:45 +00009572 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00009573 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009574 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00009575
Dan Gohmancb0efec2009-12-18 01:14:11 +00009576 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00009577 L->getExitBlocks(ExitBlocks);
9578 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00009579 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00009580
Dan Gohman0bddac12009-02-24 18:55:53 +00009581 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9582 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00009583 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00009584 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00009585 }
9586
Dan Gohmanbc694912010-01-09 18:17:45 +00009587 OS << "\n"
9588 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00009589 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009590 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00009591
9592 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9593 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9594 } else {
9595 OS << "Unpredictable max backedge-taken count. ";
9596 }
9597
Silviu Baranga6f444df2016-04-08 14:29:09 +00009598 OS << "\n"
9599 "Loop ";
9600 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9601 OS << ": ";
9602
9603 SCEVUnionPredicate Pred;
9604 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
9605 if (!isa<SCEVCouldNotCompute>(PBT)) {
9606 OS << "Predicated backedge-taken count is " << *PBT << "\n";
9607 OS << " Predicates:\n";
9608 Pred.print(OS, 4);
9609 } else {
9610 OS << "Unpredictable predicated backedge-taken count. ";
9611 }
Dan Gohman69942932009-06-24 00:33:16 +00009612 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00009613}
9614
Sanjoy Dasf2f00fb12016-05-01 04:51:05 +00009615static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
9616 switch (LD) {
9617 case ScalarEvolution::LoopVariant:
9618 return "Variant";
9619 case ScalarEvolution::LoopInvariant:
9620 return "Invariant";
9621 case ScalarEvolution::LoopComputable:
9622 return "Computable";
9623 }
Simon Pilgrim33ae13d2016-05-01 15:52:31 +00009624 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
Sanjoy Dasf2f00fb12016-05-01 04:51:05 +00009625}
9626
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009627void ScalarEvolution::print(raw_ostream &OS) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00009628 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00009629 // out SCEV values of all instructions that are interesting. Doing
9630 // this potentially causes it to create new SCEV objects though,
9631 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00009632 // observable from outside the class though, so casting away the
9633 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00009634 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00009635
Dan Gohmanbc694912010-01-09 18:17:45 +00009636 OS << "Classifying expressions for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009637 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009638 OS << "\n";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009639 for (Instruction &I : instructions(F))
9640 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9641 OS << I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00009642 OS << " --> ";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009643 const SCEV *SV = SE.getSCEV(&I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009644 SV->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009645 if (!isa<SCEVCouldNotCompute>(SV)) {
9646 OS << " U: ";
9647 SE.getUnsignedRange(SV).print(OS);
9648 OS << " S: ";
9649 SE.getSignedRange(SV).print(OS);
9650 }
Misha Brukman01808ca2005-04-21 21:13:18 +00009651
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009652 const Loop *L = LI.getLoopFor(I.getParent());
Dan Gohmanb9063a82009-06-19 17:49:54 +00009653
Dan Gohmanaf752342009-07-07 17:06:11 +00009654 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00009655 if (AtUse != SV) {
9656 OS << " --> ";
9657 AtUse->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009658 if (!isa<SCEVCouldNotCompute>(AtUse)) {
9659 OS << " U: ";
9660 SE.getUnsignedRange(AtUse).print(OS);
9661 OS << " S: ";
9662 SE.getSignedRange(AtUse).print(OS);
9663 }
Dan Gohmanb9063a82009-06-19 17:49:54 +00009664 }
9665
9666 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00009667 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00009668 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00009669 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00009670 OS << "<<Unknown>>";
9671 } else {
9672 OS << *ExitValue;
9673 }
Sanjoy Dasf2f00fb12016-05-01 04:51:05 +00009674
9675 bool First = true;
9676 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
9677 if (First) {
Sanjoy Das013a4ac2016-05-03 17:49:57 +00009678 OS << "\t\t" "LoopDispositions: { ";
Sanjoy Dasf2f00fb12016-05-01 04:51:05 +00009679 First = false;
9680 } else {
9681 OS << ", ";
9682 }
9683
Sanjoy Das013a4ac2016-05-03 17:49:57 +00009684 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9685 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
Sanjoy Dasf2f00fb12016-05-01 04:51:05 +00009686 }
9687
Sanjoy Das013a4ac2016-05-03 17:49:57 +00009688 for (auto *InnerL : depth_first(L)) {
9689 if (InnerL == L)
9690 continue;
9691 if (First) {
9692 OS << "\t\t" "LoopDispositions: { ";
9693 First = false;
9694 } else {
9695 OS << ", ";
9696 }
9697
9698 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9699 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
9700 }
9701
9702 OS << " }";
Chris Lattnerd934c702004-04-02 20:23:17 +00009703 }
9704
Chris Lattnerd934c702004-04-02 20:23:17 +00009705 OS << "\n";
9706 }
9707
Dan Gohmanbc694912010-01-09 18:17:45 +00009708 OS << "Determining loop execution counts for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009709 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009710 OS << "\n";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009711 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
Dan Gohmanc8e23622009-04-21 23:15:49 +00009712 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009713}
Dan Gohmane20f8242009-04-21 00:47:46 +00009714
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009715ScalarEvolution::LoopDisposition
9716ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009717 auto &Values = LoopDispositions[S];
9718 for (auto &V : Values) {
9719 if (V.getPointer() == L)
9720 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009721 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009722 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009723 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009724 auto &Values2 = LoopDispositions[S];
9725 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9726 if (V.getPointer() == L) {
9727 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009728 break;
9729 }
9730 }
9731 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009732}
9733
9734ScalarEvolution::LoopDisposition
9735ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009736 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009737 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009738 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009739 case scTruncate:
9740 case scZeroExtend:
9741 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009742 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00009743 case scAddRecExpr: {
9744 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9745
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009746 // If L is the addrec's loop, it's computable.
9747 if (AR->getLoop() == L)
9748 return LoopComputable;
9749
Dan Gohmanafd6db92010-11-17 21:23:15 +00009750 // Add recurrences are never invariant in the function-body (null loop).
9751 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009752 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009753
9754 // This recurrence is variant w.r.t. L if L contains AR's loop.
9755 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009756 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009757
9758 // This recurrence is invariant w.r.t. L if AR's loop contains L.
9759 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009760 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009761
9762 // This recurrence is variant w.r.t. L if any of its operands
9763 // are variant.
Sanjoy Das01947432015-11-22 21:20:13 +00009764 for (auto *Op : AR->operands())
9765 if (!isLoopInvariant(Op, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009766 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009767
9768 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009769 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009770 }
9771 case scAddExpr:
9772 case scMulExpr:
9773 case scUMaxExpr:
9774 case scSMaxExpr: {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009775 bool HasVarying = false;
Sanjoy Das01947432015-11-22 21:20:13 +00009776 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9777 LoopDisposition D = getLoopDisposition(Op, L);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009778 if (D == LoopVariant)
9779 return LoopVariant;
9780 if (D == LoopComputable)
9781 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009782 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009783 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009784 }
9785 case scUDivExpr: {
9786 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009787 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9788 if (LD == LoopVariant)
9789 return LoopVariant;
9790 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9791 if (RD == LoopVariant)
9792 return LoopVariant;
9793 return (LD == LoopInvariant && RD == LoopInvariant) ?
9794 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009795 }
9796 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009797 // All non-instruction values are loop invariant. All instructions are loop
9798 // invariant if they are not contained in the specified loop.
9799 // Instructions are never considered invariant in the function body
9800 // (null loop) because they are defined within the "loop".
Sanjoy Das01947432015-11-22 21:20:13 +00009801 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009802 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9803 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009804 case scCouldNotCompute:
9805 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00009806 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009807 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009808}
9809
9810bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9811 return getLoopDisposition(S, L) == LoopInvariant;
9812}
9813
9814bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9815 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009816}
Dan Gohman20d9ce22010-11-17 21:41:58 +00009817
Dan Gohman8ea83d82010-11-18 00:34:22 +00009818ScalarEvolution::BlockDisposition
9819ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009820 auto &Values = BlockDispositions[S];
9821 for (auto &V : Values) {
9822 if (V.getPointer() == BB)
9823 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009824 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009825 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009826 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009827 auto &Values2 = BlockDispositions[S];
9828 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9829 if (V.getPointer() == BB) {
9830 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009831 break;
9832 }
9833 }
9834 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009835}
9836
Dan Gohman8ea83d82010-11-18 00:34:22 +00009837ScalarEvolution::BlockDisposition
9838ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009839 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00009840 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009841 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009842 case scTruncate:
9843 case scZeroExtend:
9844 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009845 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00009846 case scAddRecExpr: {
9847 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00009848 // to test for proper dominance too, because the instruction which
9849 // produces the addrec's value is a PHI, and a PHI effectively properly
9850 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00009851 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009852 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009853 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009854 }
9855 // FALL THROUGH into SCEVNAryExpr handling.
9856 case scAddExpr:
9857 case scMulExpr:
9858 case scUMaxExpr:
9859 case scSMaxExpr: {
9860 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009861 bool Proper = true;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00009862 for (const SCEV *NAryOp : NAry->operands()) {
9863 BlockDisposition D = getBlockDisposition(NAryOp, BB);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009864 if (D == DoesNotDominateBlock)
9865 return DoesNotDominateBlock;
9866 if (D == DominatesBlock)
9867 Proper = false;
9868 }
9869 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009870 }
9871 case scUDivExpr: {
9872 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009873 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9874 BlockDisposition LD = getBlockDisposition(LHS, BB);
9875 if (LD == DoesNotDominateBlock)
9876 return DoesNotDominateBlock;
9877 BlockDisposition RD = getBlockDisposition(RHS, BB);
9878 if (RD == DoesNotDominateBlock)
9879 return DoesNotDominateBlock;
9880 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9881 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009882 }
9883 case scUnknown:
9884 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00009885 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9886 if (I->getParent() == BB)
9887 return DominatesBlock;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009888 if (DT.properlyDominates(I->getParent(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009889 return ProperlyDominatesBlock;
9890 return DoesNotDominateBlock;
9891 }
9892 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009893 case scCouldNotCompute:
9894 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00009895 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009896 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00009897}
9898
9899bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9900 return getBlockDisposition(S, BB) >= DominatesBlock;
9901}
9902
9903bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9904 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009905}
Dan Gohman534749b2010-11-17 22:27:42 +00009906
9907bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Sanjoy Das7d752672015-12-08 04:32:54 +00009908 // Search for a SCEV expression node within an expression tree.
9909 // Implements SCEVTraversal::Visitor.
9910 struct SCEVSearch {
9911 const SCEV *Node;
9912 bool IsFound;
9913
9914 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9915
9916 bool follow(const SCEV *S) {
9917 IsFound |= (S == Node);
9918 return !IsFound;
9919 }
9920 bool isDone() const { return IsFound; }
9921 };
9922
Andrew Trick365e31c2012-07-13 23:33:03 +00009923 SCEVSearch Search(Op);
9924 visitAll(S, Search);
9925 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00009926}
Dan Gohman7e6b3932010-11-17 23:28:48 +00009927
9928void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9929 ValuesAtScopes.erase(S);
9930 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009931 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00009932 UnsignedRanges.erase(S);
9933 SignedRanges.erase(S);
Wei Mia49559b2016-02-04 01:27:38 +00009934 ExprValueMap.erase(S);
9935 HasRecMap.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00009936
Silviu Baranga6f444df2016-04-08 14:29:09 +00009937 auto RemoveSCEVFromBackedgeMap =
9938 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
9939 for (auto I = Map.begin(), E = Map.end(); I != E;) {
9940 BackedgeTakenInfo &BEInfo = I->second;
9941 if (BEInfo.hasOperand(S, this)) {
9942 BEInfo.clear();
9943 Map.erase(I++);
9944 } else
9945 ++I;
9946 }
9947 };
9948
9949 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
9950 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
Dan Gohman7e6b3932010-11-17 23:28:48 +00009951}
Benjamin Kramer214935e2012-10-26 17:31:32 +00009952
9953typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009954
Alp Tokercb402912014-01-24 17:20:08 +00009955/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009956static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9957 size_t Pos = 0;
9958 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9959 Str.replace(Pos, From.size(), To.data(), To.size());
9960 Pos += To.size();
9961 }
9962}
9963
Benjamin Kramer214935e2012-10-26 17:31:32 +00009964/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9965static void
9966getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
Sanjoy Das2fbfb252015-12-23 17:48:14 +00009967 std::string &S = Map[L];
9968 if (S.empty()) {
9969 raw_string_ostream OS(S);
9970 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer214935e2012-10-26 17:31:32 +00009971
Sanjoy Das2fbfb252015-12-23 17:48:14 +00009972 // false and 0 are semantically equivalent. This can happen in dead loops.
9973 replaceSubString(OS.str(), "false", "0");
9974 // Remove wrap flags, their use in SCEV is highly fragile.
9975 // FIXME: Remove this when SCEV gets smarter about them.
9976 replaceSubString(OS.str(), "<nw>", "");
9977 replaceSubString(OS.str(), "<nsw>", "");
9978 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00009979 }
Sanjoy Das2fbfb252015-12-23 17:48:14 +00009980
JF Bastien61ad8b32015-12-23 18:18:53 +00009981 for (auto *R : reverse(*L))
9982 getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
Benjamin Kramer214935e2012-10-26 17:31:32 +00009983}
9984
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009985void ScalarEvolution::verify() const {
Benjamin Kramer214935e2012-10-26 17:31:32 +00009986 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9987
9988 // Gather stringified backedge taken counts for all loops using SCEV's caches.
9989 // FIXME: It would be much better to store actual values instead of strings,
9990 // but SCEV pointers will change if we drop the caches.
9991 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009992 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
Benjamin Kramer214935e2012-10-26 17:31:32 +00009993 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9994
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009995 // Gather stringified backedge taken counts for all loops using a fresh
9996 // ScalarEvolution object.
9997 ScalarEvolution SE2(F, TLI, AC, DT, LI);
9998 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9999 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
Benjamin Kramer214935e2012-10-26 17:31:32 +000010000
10001 // Now compare whether they're the same with and without caches. This allows
10002 // verifying that no pass changed the cache.
10003 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
10004 "New loops suddenly appeared!");
10005
10006 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
10007 OldE = BackedgeDumpsOld.end(),
10008 NewI = BackedgeDumpsNew.begin();
10009 OldI != OldE; ++OldI, ++NewI) {
10010 assert(OldI->first == NewI->first && "Loop order changed!");
10011
10012 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
10013 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +000010014 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +000010015 // means that a pass is buggy or SCEV has to learn a new pattern but is
10016 // usually not harmful.
10017 if (OldI->second != NewI->second &&
10018 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +000010019 NewI->second.find("undef") == std::string::npos &&
10020 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +000010021 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +000010022 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +000010023 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +000010024 << "' changed from '" << OldI->second
10025 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +000010026 std::abort();
10027 }
10028 }
10029
10030 // TODO: Verify more things.
10031}
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010032
Chandler Carruthb4faf132016-03-11 10:22:49 +000010033char ScalarEvolutionAnalysis::PassID;
NAKAMURA Takumidf0cd722016-02-28 17:17:00 +000010034
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010035ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
Chandler Carruthb47f8012016-03-11 11:05:24 +000010036 AnalysisManager<Function> &AM) {
10037 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
10038 AM.getResult<AssumptionAnalysis>(F),
10039 AM.getResult<DominatorTreeAnalysis>(F),
10040 AM.getResult<LoopAnalysis>(F));
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010041}
10042
10043PreservedAnalyses
Chandler Carruthb47f8012016-03-11 11:05:24 +000010044ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> &AM) {
10045 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
Chandler Carruth2f1fd162015-08-17 02:08:17 +000010046 return PreservedAnalyses::all();
10047}
10048
10049INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
10050 "Scalar Evolution Analysis", false, true)
10051INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
10052INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
10053INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
10054INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
10055INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
10056 "Scalar Evolution Analysis", false, true)
10057char ScalarEvolutionWrapperPass::ID = 0;
10058
10059ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
10060 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
10061}
10062
10063bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
10064 SE.reset(new ScalarEvolution(
10065 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
10066 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
10067 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
10068 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
10069 return false;
10070}
10071
10072void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
10073
10074void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
10075 SE->print(OS);
10076}
10077
10078void ScalarEvolutionWrapperPass::verifyAnalysis() const {
10079 if (!VerifySCEV)
10080 return;
10081
10082 SE->verify();
10083}
10084
10085void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
10086 AU.setPreservesAll();
10087 AU.addRequiredTransitive<AssumptionCacheTracker>();
10088 AU.addRequiredTransitive<LoopInfoWrapperPass>();
10089 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
10090 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
10091}
Silviu Barangae3c05342015-11-02 14:41:02 +000010092
10093const SCEVPredicate *
10094ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
10095 const SCEVConstant *RHS) {
10096 FoldingSetNodeID ID;
10097 // Unique this node based on the arguments
10098 ID.AddInteger(SCEVPredicate::P_Equal);
10099 ID.AddPointer(LHS);
10100 ID.AddPointer(RHS);
10101 void *IP = nullptr;
10102 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10103 return S;
10104 SCEVEqualPredicate *Eq = new (SCEVAllocator)
10105 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
10106 UniquePreds.InsertNode(Eq, IP);
10107 return Eq;
10108}
10109
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010110const SCEVPredicate *ScalarEvolution::getWrapPredicate(
10111 const SCEVAddRecExpr *AR,
10112 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10113 FoldingSetNodeID ID;
10114 // Unique this node based on the arguments
10115 ID.AddInteger(SCEVPredicate::P_Wrap);
10116 ID.AddPointer(AR);
10117 ID.AddInteger(AddedFlags);
10118 void *IP = nullptr;
10119 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10120 return S;
10121 auto *OF = new (SCEVAllocator)
10122 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
10123 UniquePreds.InsertNode(OF, IP);
10124 return OF;
10125}
10126
Benjamin Kramer83709b12015-11-16 09:01:28 +000010127namespace {
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010128
Silviu Barangae3c05342015-11-02 14:41:02 +000010129class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
10130public:
Sanjoy Das807d33d2016-02-20 01:44:10 +000010131 // Rewrites \p S in the context of a loop L and the predicate A.
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010132 // If Assume is true, rewrite is free to add further predicates to A
10133 // such that the result will be an AddRecExpr.
Sanjoy Das807d33d2016-02-20 01:44:10 +000010134 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
10135 SCEVUnionPredicate &A, bool Assume) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010136 SCEVPredicateRewriter Rewriter(L, SE, A, Assume);
Sanjoy Das807d33d2016-02-20 01:44:10 +000010137 return Rewriter.visit(S);
Silviu Barangae3c05342015-11-02 14:41:02 +000010138 }
10139
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010140 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
10141 SCEVUnionPredicate &P, bool Assume)
10142 : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {}
Silviu Barangae3c05342015-11-02 14:41:02 +000010143
10144 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
10145 auto ExprPreds = P.getPredicatesForExpr(Expr);
10146 for (auto *Pred : ExprPreds)
10147 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
10148 if (IPred->getLHS() == Expr)
10149 return IPred->getRHS();
10150
10151 return Expr;
10152 }
10153
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010154 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
10155 const SCEV *Operand = visit(Expr->getOperand());
10156 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
10157 if (AR && AR->getLoop() == L && AR->isAffine()) {
10158 // This couldn't be folded because the operand didn't have the nuw
10159 // flag. Add the nusw flag as an assumption that we could make.
10160 const SCEV *Step = AR->getStepRecurrence(SE);
10161 Type *Ty = Expr->getType();
10162 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
10163 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
10164 SE.getSignExtendExpr(Step, Ty), L,
10165 AR->getNoWrapFlags());
10166 }
10167 return SE.getZeroExtendExpr(Operand, Expr->getType());
10168 }
10169
10170 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
10171 const SCEV *Operand = visit(Expr->getOperand());
10172 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
10173 if (AR && AR->getLoop() == L && AR->isAffine()) {
10174 // This couldn't be folded because the operand didn't have the nsw
10175 // flag. Add the nssw flag as an assumption that we could make.
10176 const SCEV *Step = AR->getStepRecurrence(SE);
10177 Type *Ty = Expr->getType();
10178 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
10179 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
10180 SE.getSignExtendExpr(Step, Ty), L,
10181 AR->getNoWrapFlags());
10182 }
10183 return SE.getSignExtendExpr(Operand, Expr->getType());
10184 }
10185
Silviu Barangae3c05342015-11-02 14:41:02 +000010186private:
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010187 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
10188 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10189 auto *A = SE.getWrapPredicate(AR, AddedFlags);
10190 if (!Assume) {
10191 // Check if we've already made this assumption.
10192 if (P.implies(A))
10193 return true;
10194 return false;
10195 }
10196 P.add(A);
10197 return true;
10198 }
10199
Silviu Barangae3c05342015-11-02 14:41:02 +000010200 SCEVUnionPredicate &P;
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010201 const Loop *L;
10202 bool Assume;
Silviu Barangae3c05342015-11-02 14:41:02 +000010203};
Benjamin Kramer83709b12015-11-16 09:01:28 +000010204} // end anonymous namespace
Silviu Barangae3c05342015-11-02 14:41:02 +000010205
Sanjoy Das807d33d2016-02-20 01:44:10 +000010206const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
Silviu Barangae3c05342015-11-02 14:41:02 +000010207 SCEVUnionPredicate &Preds) {
Sanjoy Das807d33d2016-02-20 01:44:10 +000010208 return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false);
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010209}
10210
Silviu Barangad68ed852016-03-23 15:29:30 +000010211const SCEVAddRecExpr *
Sanjoy Das807d33d2016-02-20 01:44:10 +000010212ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
10213 SCEVUnionPredicate &Preds) {
Silviu Barangad68ed852016-03-23 15:29:30 +000010214 SCEVUnionPredicate TransformPreds;
10215 S = SCEVPredicateRewriter::rewrite(S, L, *this, TransformPreds, true);
10216 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
10217
10218 if (!AddRec)
10219 return nullptr;
10220
10221 // Since the transformation was successful, we can now transfer the SCEV
10222 // predicates.
10223 Preds.add(&TransformPreds);
10224 return AddRec;
Silviu Barangae3c05342015-11-02 14:41:02 +000010225}
10226
10227/// SCEV predicates
10228SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
10229 SCEVPredicateKind Kind)
10230 : FastID(ID), Kind(Kind) {}
10231
10232SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
10233 const SCEVUnknown *LHS,
10234 const SCEVConstant *RHS)
10235 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
10236
10237bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
10238 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
10239
10240 if (!Op)
10241 return false;
10242
10243 return Op->LHS == LHS && Op->RHS == RHS;
10244}
10245
10246bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
10247
10248const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
10249
10250void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
10251 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
10252}
10253
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010254SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
10255 const SCEVAddRecExpr *AR,
10256 IncrementWrapFlags Flags)
10257 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
10258
10259const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
10260
10261bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
10262 const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
10263
10264 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
10265}
10266
10267bool SCEVWrapPredicate::isAlwaysTrue() const {
10268 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
10269 IncrementWrapFlags IFlags = Flags;
10270
10271 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
10272 IFlags = clearFlags(IFlags, IncrementNSSW);
10273
10274 return IFlags == IncrementAnyWrap;
10275}
10276
10277void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
10278 OS.indent(Depth) << *getExpr() << " Added Flags: ";
10279 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
10280 OS << "<nusw>";
10281 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
10282 OS << "<nssw>";
10283 OS << "\n";
10284}
10285
10286SCEVWrapPredicate::IncrementWrapFlags
10287SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
10288 ScalarEvolution &SE) {
10289 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
10290 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
10291
10292 // We can safely transfer the NSW flag as NSSW.
10293 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
10294 ImpliedFlags = IncrementNSSW;
10295
10296 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
10297 // If the increment is positive, the SCEV NUW flag will also imply the
10298 // WrapPredicate NUSW flag.
10299 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
10300 if (Step->getValue()->getValue().isNonNegative())
10301 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
10302 }
10303
10304 return ImpliedFlags;
10305}
10306
Silviu Barangae3c05342015-11-02 14:41:02 +000010307/// Union predicates don't get cached so create a dummy set ID for it.
10308SCEVUnionPredicate::SCEVUnionPredicate()
10309 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
10310
10311bool SCEVUnionPredicate::isAlwaysTrue() const {
Sanjoy Das3b827c72015-11-29 23:40:53 +000010312 return all_of(Preds,
10313 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
Silviu Barangae3c05342015-11-02 14:41:02 +000010314}
10315
10316ArrayRef<const SCEVPredicate *>
10317SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
10318 auto I = SCEVToPreds.find(Expr);
10319 if (I == SCEVToPreds.end())
10320 return ArrayRef<const SCEVPredicate *>();
10321 return I->second;
10322}
10323
10324bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
10325 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
Sanjoy Das3b827c72015-11-29 23:40:53 +000010326 return all_of(Set->Preds,
10327 [this](const SCEVPredicate *I) { return this->implies(I); });
Silviu Barangae3c05342015-11-02 14:41:02 +000010328
10329 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
10330 if (ScevPredsIt == SCEVToPreds.end())
10331 return false;
10332 auto &SCEVPreds = ScevPredsIt->second;
10333
Sanjoy Dasff3b8b42015-12-01 07:49:23 +000010334 return any_of(SCEVPreds,
10335 [N](const SCEVPredicate *I) { return I->implies(N); });
Silviu Barangae3c05342015-11-02 14:41:02 +000010336}
10337
10338const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
10339
10340void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
10341 for (auto Pred : Preds)
10342 Pred->print(OS, Depth);
10343}
10344
10345void SCEVUnionPredicate::add(const SCEVPredicate *N) {
10346 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
10347 for (auto Pred : Set->Preds)
10348 add(Pred);
10349 return;
10350 }
10351
10352 if (implies(N))
10353 return;
10354
10355 const SCEV *Key = N->getExpr();
10356 assert(Key && "Only SCEVUnionPredicate doesn't have an "
10357 " associated expression!");
10358
10359 SCEVToPreds[Key].push_back(N);
10360 Preds.push_back(N);
10361}
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010362
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010363PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
10364 Loop &L)
Silviu Baranga6f444df2016-04-08 14:29:09 +000010365 : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {}
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010366
10367const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
10368 const SCEV *Expr = SE.getSCEV(V);
10369 RewriteEntry &Entry = RewriteMap[Expr];
10370
10371 // If we already have an entry and the version matches, return it.
10372 if (Entry.second && Generation == Entry.first)
10373 return Entry.second;
10374
10375 // We found an entry but it's stale. Rewrite the stale entry
10376 // acording to the current predicate.
10377 if (Entry.second)
10378 Expr = Entry.second;
10379
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010380 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010381 Entry = {Generation, NewSCEV};
10382
10383 return NewSCEV;
10384}
10385
Silviu Baranga6f444df2016-04-08 14:29:09 +000010386const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
10387 if (!BackedgeCount) {
10388 SCEVUnionPredicate BackedgePred;
10389 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
10390 addPredicate(BackedgePred);
10391 }
10392 return BackedgeCount;
10393}
10394
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010395void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
10396 if (Preds.implies(&Pred))
10397 return;
10398 Preds.add(&Pred);
10399 updateGeneration();
10400}
10401
10402const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
10403 return Preds;
10404}
10405
10406void PredicatedScalarEvolution::updateGeneration() {
10407 // If the generation number wrapped recompute everything.
10408 if (++Generation == 0) {
10409 for (auto &II : RewriteMap) {
10410 const SCEV *Rewritten = II.second.second;
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010411 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +000010412 }
10413 }
10414}
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010415
10416void PredicatedScalarEvolution::setNoOverflow(
10417 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10418 const SCEV *Expr = getSCEV(V);
10419 const auto *AR = cast<SCEVAddRecExpr>(Expr);
10420
10421 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
10422
10423 // Clear the statically implied flags.
10424 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
10425 addPredicate(*SE.getWrapPredicate(AR, Flags));
10426
10427 auto II = FlagsMap.insert({V, Flags});
10428 if (!II.second)
10429 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
10430}
10431
10432bool PredicatedScalarEvolution::hasNoOverflow(
10433 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10434 const SCEV *Expr = getSCEV(V);
10435 const auto *AR = cast<SCEVAddRecExpr>(Expr);
10436
10437 Flags = SCEVWrapPredicate::clearFlags(
10438 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
10439
10440 auto II = FlagsMap.find(V);
10441
10442 if (II != FlagsMap.end())
10443 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
10444
10445 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
10446}
10447
Silviu Barangad68ed852016-03-23 15:29:30 +000010448const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010449 const SCEV *Expr = this->getSCEV(V);
Silviu Barangad68ed852016-03-23 15:29:30 +000010450 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds);
10451
10452 if (!New)
10453 return nullptr;
10454
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010455 updateGeneration();
10456 RewriteMap[SE.getSCEV(V)] = {Generation, New};
10457 return New;
10458}
10459
Silviu Baranga6f444df2016-04-08 14:29:09 +000010460PredicatedScalarEvolution::PredicatedScalarEvolution(
10461 const PredicatedScalarEvolution &Init)
10462 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
10463 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
Silviu Barangaea63a7f2016-02-08 17:02:45 +000010464 for (auto I = Init.FlagsMap.begin(), E = Init.FlagsMap.end(); I != E; ++I)
10465 FlagsMap.insert(*I);
10466}
Silviu Barangab77365b2016-04-14 16:08:45 +000010467
10468void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
10469 // For each block.
10470 for (auto *BB : L.getBlocks())
10471 for (auto &I : *BB) {
10472 if (!SE.isSCEVable(I.getType()))
10473 continue;
10474
10475 auto *Expr = SE.getSCEV(&I);
10476 auto II = RewriteMap.find(Expr);
10477
10478 if (II == RewriteMap.end())
10479 continue;
10480
10481 // Don't print things that are not interesting.
10482 if (II->second.second == Expr)
10483 continue;
10484
10485 OS.indent(Depth) << "[PSE]" << I << ":\n";
10486 OS.indent(Depth + 2) << *Expr << "\n";
10487 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
10488 }
10489}