blob: 9b9c889496a8a0caf818f4b9e1195b35b098ad30 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chad Rosier618c1db2011-12-01 03:08:23 +000077#include "llvm/Target/TargetLibraryInfo.h"
Chris Lattner95255282006-06-28 23:17:24 +000078#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000079#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000080#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000081#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000082#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000083#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000084#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000085#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000086#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000087#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000088#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000089#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000090using namespace llvm;
91
Chris Lattner3b27d682006-12-19 22:30:33 +000092STATISTIC(NumArrayLenItCounts,
93 "Number of trip counts computed with array length");
94STATISTIC(NumTripCountsComputed,
95 "Number of loops with predictable loop counts");
96STATISTIC(NumTripCountsNotComputed,
97 "Number of loops without predictable loop counts");
98STATISTIC(NumBruteForceTripCountsComputed,
99 "Number of loops with trip counts computed by force");
100
Dan Gohman844731a2008-05-13 00:00:25 +0000101static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000102MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000104 "symbolically execute a constant "
105 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000106 cl::init(100));
107
Owen Anderson2ab36d32010-10-12 19:48:12 +0000108INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
109 "Scalar Evolution Analysis", false, true)
110INITIALIZE_PASS_DEPENDENCY(LoopInfo)
111INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Chad Rosier618c1db2011-12-01 03:08:23 +0000112INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000113INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000114 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000115char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000116
117//===----------------------------------------------------------------------===//
118// SCEV class definitions
119//===----------------------------------------------------------------------===//
120
121//===----------------------------------------------------------------------===//
122// Implementation of the SCEV class.
123//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000124
Manman Ren286c4dc2012-09-12 05:06:18 +0000125#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattner53e677a2004-04-02 20:23:17 +0000126void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000127 print(dbgs());
128 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000129}
Manman Rencc77eec2012-09-06 19:55:56 +0000130#endif
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000131
Dan Gohman4ce32db2010-11-17 22:27:42 +0000132void SCEV::print(raw_ostream &OS) const {
133 switch (getSCEVType()) {
134 case scConstant:
135 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
136 return;
137 case scTruncate: {
138 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
139 const SCEV *Op = Trunc->getOperand();
140 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
141 << *Trunc->getType() << ")";
142 return;
143 }
144 case scZeroExtend: {
145 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
146 const SCEV *Op = ZExt->getOperand();
147 OS << "(zext " << *Op->getType() << " " << *Op << " to "
148 << *ZExt->getType() << ")";
149 return;
150 }
151 case scSignExtend: {
152 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
153 const SCEV *Op = SExt->getOperand();
154 OS << "(sext " << *Op->getType() << " " << *Op << " to "
155 << *SExt->getType() << ")";
156 return;
157 }
158 case scAddRecExpr: {
159 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
160 OS << "{" << *AR->getOperand(0);
161 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
162 OS << ",+," << *AR->getOperand(i);
163 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000164 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000165 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000166 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000167 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000168 if (AR->getNoWrapFlags(FlagNW) &&
169 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
170 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000171 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
172 OS << ">";
173 return;
174 }
175 case scAddExpr:
176 case scMulExpr:
177 case scUMaxExpr:
178 case scSMaxExpr: {
179 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000180 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000181 switch (NAry->getSCEVType()) {
182 case scAddExpr: OpStr = " + "; break;
183 case scMulExpr: OpStr = " * "; break;
184 case scUMaxExpr: OpStr = " umax "; break;
185 case scSMaxExpr: OpStr = " smax "; break;
186 }
187 OS << "(";
188 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
189 I != E; ++I) {
190 OS << **I;
191 if (llvm::next(I) != E)
192 OS << OpStr;
193 }
194 OS << ")";
Andrew Trick121d78f2011-11-29 02:06:35 +0000195 switch (NAry->getSCEVType()) {
196 case scAddExpr:
197 case scMulExpr:
198 if (NAry->getNoWrapFlags(FlagNUW))
199 OS << "<nuw>";
200 if (NAry->getNoWrapFlags(FlagNSW))
201 OS << "<nsw>";
202 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000203 return;
204 }
205 case scUDivExpr: {
206 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
207 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
208 return;
209 }
210 case scUnknown: {
211 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000212 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000213 if (U->isSizeOf(AllocTy)) {
214 OS << "sizeof(" << *AllocTy << ")";
215 return;
216 }
217 if (U->isAlignOf(AllocTy)) {
218 OS << "alignof(" << *AllocTy << ")";
219 return;
220 }
Andrew Trick635f7182011-03-09 17:23:39 +0000221
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000222 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000223 Constant *FieldNo;
224 if (U->isOffsetOf(CTy, FieldNo)) {
225 OS << "offsetof(" << *CTy << ", ";
226 WriteAsOperand(OS, FieldNo, false);
227 OS << ")";
228 return;
229 }
Andrew Trick635f7182011-03-09 17:23:39 +0000230
Dan Gohman4ce32db2010-11-17 22:27:42 +0000231 // Otherwise just print it normally.
232 WriteAsOperand(OS, U->getValue(), false);
233 return;
234 }
235 case scCouldNotCompute:
236 OS << "***COULDNOTCOMPUTE***";
237 return;
238 default: break;
239 }
240 llvm_unreachable("Unknown SCEV kind!");
241}
242
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000243Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000244 switch (getSCEVType()) {
245 case scConstant:
246 return cast<SCEVConstant>(this)->getType();
247 case scTruncate:
248 case scZeroExtend:
249 case scSignExtend:
250 return cast<SCEVCastExpr>(this)->getType();
251 case scAddRecExpr:
252 case scMulExpr:
253 case scUMaxExpr:
254 case scSMaxExpr:
255 return cast<SCEVNAryExpr>(this)->getType();
256 case scAddExpr:
257 return cast<SCEVAddExpr>(this)->getType();
258 case scUDivExpr:
259 return cast<SCEVUDivExpr>(this)->getType();
260 case scUnknown:
261 return cast<SCEVUnknown>(this)->getType();
262 case scCouldNotCompute:
263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +0000264 default:
265 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman4ce32db2010-11-17 22:27:42 +0000266 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000267}
268
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000269bool SCEV::isZero() const {
270 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
271 return SC->getValue()->isZero();
272 return false;
273}
274
Dan Gohman70a1fe72009-05-18 15:22:39 +0000275bool SCEV::isOne() const {
276 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
277 return SC->getValue()->isOne();
278 return false;
279}
Chris Lattner53e677a2004-04-02 20:23:17 +0000280
Dan Gohman4d289bf2009-06-24 00:30:26 +0000281bool SCEV::isAllOnesValue() const {
282 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
283 return SC->getValue()->isAllOnesValue();
284 return false;
285}
286
Andrew Trickf8fd8412012-01-07 00:27:31 +0000287/// isNonConstantNegative - Return true if the specified scev is negated, but
288/// not a constant.
289bool SCEV::isNonConstantNegative() const {
290 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
291 if (!Mul) return false;
292
293 // If there is a constant factor, it will be first.
294 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
295 if (!SC) return false;
296
297 // Return true if the value is negative, this matches things like (-42 * V).
298 return SC->getValue()->getValue().isNegative();
299}
300
Owen Anderson753ad612009-06-22 21:57:23 +0000301SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000302 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000303
Chris Lattner53e677a2004-04-02 20:23:17 +0000304bool SCEVCouldNotCompute::classof(const SCEV *S) {
305 return S->getSCEVType() == scCouldNotCompute;
306}
307
Dan Gohman0bba49c2009-07-07 17:06:11 +0000308const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000309 FoldingSetNodeID ID;
310 ID.AddInteger(scConstant);
311 ID.AddPointer(V);
312 void *IP = 0;
313 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000314 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000315 UniqueSCEVs.InsertNode(S, IP);
316 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000317}
Chris Lattner53e677a2004-04-02 20:23:17 +0000318
Dan Gohman0bba49c2009-07-07 17:06:11 +0000319const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000320 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000321}
322
Dan Gohman0bba49c2009-07-07 17:06:11 +0000323const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000324ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
325 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000326 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000327}
328
Dan Gohman3bf63762010-06-18 19:54:20 +0000329SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000330 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000331 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000332
Dan Gohman3bf63762010-06-18 19:54:20 +0000333SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000334 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000335 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000336 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
337 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000339}
Chris Lattner53e677a2004-04-02 20:23:17 +0000340
Dan Gohman3bf63762010-06-18 19:54:20 +0000341SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000342 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000343 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000346 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000347}
348
Dan Gohman3bf63762010-06-18 19:54:20 +0000349SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000350 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000351 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000354 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000355}
356
Dan Gohmanab37f502010-08-02 23:49:30 +0000357void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000358 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000359 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000360
361 // Remove this SCEVUnknown from the uniquing map.
362 SE->UniqueSCEVs.RemoveNode(this);
363
364 // Release the value.
365 setValPtr(0);
366}
367
368void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000369 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000370 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000371
372 // Remove this SCEVUnknown from the uniquing map.
373 SE->UniqueSCEVs.RemoveNode(this);
374
375 // Update this SCEVUnknown to point to the new value. This is needed
376 // because there may still be outstanding SCEVs which still point to
377 // this SCEVUnknown.
378 setValPtr(New);
379}
380
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000381bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000382 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000383 if (VCE->getOpcode() == Instruction::PtrToInt)
384 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000385 if (CE->getOpcode() == Instruction::GetElementPtr &&
386 CE->getOperand(0)->isNullValue() &&
387 CE->getNumOperands() == 2)
388 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
389 if (CI->isOne()) {
390 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
391 ->getElementType();
392 return true;
393 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000394
395 return false;
396}
397
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000398bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000399 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000400 if (VCE->getOpcode() == Instruction::PtrToInt)
401 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000402 if (CE->getOpcode() == Instruction::GetElementPtr &&
403 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000404 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000405 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000406 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000407 if (!STy->isPacked() &&
408 CE->getNumOperands() == 3 &&
409 CE->getOperand(1)->isNullValue()) {
410 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
411 if (CI->isOne() &&
412 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000413 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000414 AllocTy = STy->getElementType(1);
415 return true;
416 }
417 }
418 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000419
420 return false;
421}
422
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000423bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000424 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000425 if (VCE->getOpcode() == Instruction::PtrToInt)
426 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
427 if (CE->getOpcode() == Instruction::GetElementPtr &&
428 CE->getNumOperands() == 3 &&
429 CE->getOperand(0)->isNullValue() &&
430 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000431 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000432 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
433 // Ignore vector types here so that ScalarEvolutionExpander doesn't
434 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000435 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000436 CTy = Ty;
437 FieldNo = CE->getOperand(2);
438 return true;
439 }
440 }
441
442 return false;
443}
444
Chris Lattner8d741b82004-06-20 06:23:15 +0000445//===----------------------------------------------------------------------===//
446// SCEV Utilities
447//===----------------------------------------------------------------------===//
448
449namespace {
450 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
451 /// than the complexity of the RHS. This comparator is used to canonicalize
452 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000453 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000454 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000455 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000456 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000457
Dan Gohman67ef74e2010-08-27 15:26:01 +0000458 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000459 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000460 return compare(LHS, RHS) < 0;
461 }
462
463 // Return negative, zero, or positive, if LHS is less than, equal to, or
464 // greater than RHS, respectively. A three-way result allows recursive
465 // comparisons to be more efficient.
466 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000467 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
468 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000469 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000470
Dan Gohman72861302009-05-07 14:39:04 +0000471 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000472 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
473 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000474 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000475
Dan Gohman3bf63762010-06-18 19:54:20 +0000476 // Aside from the getSCEVType() ordering, the particular ordering
477 // isn't very important except that it's beneficial to be consistent,
478 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000479 switch (LType) {
480 case scUnknown: {
481 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000482 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000483
484 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
485 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000486 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000487
488 // Order pointer values after integer values. This helps SCEVExpander
489 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000490 bool LIsPointer = LV->getType()->isPointerTy(),
491 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000492 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000493 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000494
495 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000496 unsigned LID = LV->getValueID(),
497 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000498 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000499 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000500
501 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000502 if (const Argument *LA = dyn_cast<Argument>(LV)) {
503 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000504 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
505 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000506 }
507
Dan Gohman67ef74e2010-08-27 15:26:01 +0000508 // For instructions, compare their loop depth, and their operand
509 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000510 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
511 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000512
513 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000514 const BasicBlock *LParent = LInst->getParent(),
515 *RParent = RInst->getParent();
516 if (LParent != RParent) {
517 unsigned LDepth = LI->getLoopDepth(LParent),
518 RDepth = LI->getLoopDepth(RParent);
519 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000520 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000521 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000522
523 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000524 unsigned LNumOps = LInst->getNumOperands(),
525 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000526 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000527 }
528
Dan Gohman67ef74e2010-08-27 15:26:01 +0000529 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000530 }
531
Dan Gohman67ef74e2010-08-27 15:26:01 +0000532 case scConstant: {
533 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000534 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000535
536 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000537 const APInt &LA = LC->getValue()->getValue();
538 const APInt &RA = RC->getValue()->getValue();
539 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000540 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000541 return (int)LBitWidth - (int)RBitWidth;
542 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000543 }
544
Dan Gohman67ef74e2010-08-27 15:26:01 +0000545 case scAddRecExpr: {
546 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000547 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000548
549 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000550 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
551 if (LLoop != RLoop) {
552 unsigned LDepth = LLoop->getLoopDepth(),
553 RDepth = RLoop->getLoopDepth();
554 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000555 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000556 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000557
558 // Addrec complexity grows with operand count.
559 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
560 if (LNumOps != RNumOps)
561 return (int)LNumOps - (int)RNumOps;
562
563 // Lexicographically compare.
564 for (unsigned i = 0; i != LNumOps; ++i) {
565 long X = compare(LA->getOperand(i), RA->getOperand(i));
566 if (X != 0)
567 return X;
568 }
569
570 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000571 }
572
Dan Gohman67ef74e2010-08-27 15:26:01 +0000573 case scAddExpr:
574 case scMulExpr:
575 case scSMaxExpr:
576 case scUMaxExpr: {
577 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000578 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000579
580 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000581 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
582 for (unsigned i = 0; i != LNumOps; ++i) {
583 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000584 return 1;
585 long X = compare(LC->getOperand(i), RC->getOperand(i));
586 if (X != 0)
587 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000588 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000589 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000590 }
591
Dan Gohman67ef74e2010-08-27 15:26:01 +0000592 case scUDivExpr: {
593 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000594 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000595
596 // Lexicographically compare udiv expressions.
597 long X = compare(LC->getLHS(), RC->getLHS());
598 if (X != 0)
599 return X;
600 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000601 }
602
Dan Gohman67ef74e2010-08-27 15:26:01 +0000603 case scTruncate:
604 case scZeroExtend:
605 case scSignExtend: {
606 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000607 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000608
609 // Compare cast expressions by operand.
610 return compare(LC->getOperand(), RC->getOperand());
611 }
612
613 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +0000614 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman3bf63762010-06-18 19:54:20 +0000615 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000616 }
617 };
618}
619
620/// GroupByComplexity - Given a list of SCEV objects, order them by their
621/// complexity, and group objects of the same complexity together by value.
622/// When this routine is finished, we know that any duplicates in the vector are
623/// consecutive and that complexity is monotonically increasing.
624///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000625/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000626/// results from this routine. In other words, we don't want the results of
627/// this to depend on where the addresses of various SCEV objects happened to
628/// land in memory.
629///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000630static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000631 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000632 if (Ops.size() < 2) return; // Noop
633 if (Ops.size() == 2) {
634 // This is the common case, which also happens to be trivially simple.
635 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000636 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
637 if (SCEVComplexityCompare(LI)(RHS, LHS))
638 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000639 return;
640 }
641
Dan Gohman3bf63762010-06-18 19:54:20 +0000642 // Do the rough sort by complexity.
643 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
644
645 // Now that we are sorted by complexity, group elements of the same
646 // complexity. Note that this is, at worst, N^2, but the vector is likely to
647 // be extremely short in practice. Note that we take this approach because we
648 // do not want to depend on the addresses of the objects we are grouping.
649 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
650 const SCEV *S = Ops[i];
651 unsigned Complexity = S->getSCEVType();
652
653 // If there are any objects of the same complexity and same value as this
654 // one, group them.
655 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
656 if (Ops[j] == S) { // Found a duplicate.
657 // Move it to immediately after i'th element.
658 std::swap(Ops[i+1], Ops[j]);
659 ++i; // no need to rescan it.
660 if (i == e-2) return; // Done!
661 }
662 }
663 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000664}
665
Chris Lattner53e677a2004-04-02 20:23:17 +0000666
Chris Lattner53e677a2004-04-02 20:23:17 +0000667
668//===----------------------------------------------------------------------===//
669// Simple SCEV method implementations
670//===----------------------------------------------------------------------===//
671
Eli Friedmanb42a6262008-08-04 23:49:06 +0000672/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000673/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000674static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000675 ScalarEvolution &SE,
Nick Lewycky8cfb2f82011-09-06 06:39:54 +0000676 Type *ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000677 // Handle the simplest case efficiently.
678 if (K == 1)
679 return SE.getTruncateOrZeroExtend(It, ResultTy);
680
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000681 // We are using the following formula for BC(It, K):
682 //
683 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
684 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000685 // Suppose, W is the bitwidth of the return value. We must be prepared for
686 // overflow. Hence, we must assure that the result of our computation is
687 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
688 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000689 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000690 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000691 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000692 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
693 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000694 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000695 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000696 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000697 // This formula is trivially equivalent to the previous formula. However,
698 // this formula can be implemented much more efficiently. The trick is that
699 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
700 // arithmetic. To do exact division in modular arithmetic, all we have
701 // to do is multiply by the inverse. Therefore, this step can be done at
702 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000703 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000704 // The next issue is how to safely do the division by 2^T. The way this
705 // is done is by doing the multiplication step at a width of at least W + T
706 // bits. This way, the bottom W+T bits of the product are accurate. Then,
707 // when we perform the division by 2^T (which is equivalent to a right shift
708 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
709 // truncated out after the division by 2^T.
710 //
711 // In comparison to just directly using the first formula, this technique
712 // is much more efficient; using the first formula requires W * K bits,
713 // but this formula less than W + K bits. Also, the first formula requires
714 // a division step, whereas this formula only requires multiplies and shifts.
715 //
716 // It doesn't matter whether the subtraction step is done in the calculation
717 // width or the input iteration count's width; if the subtraction overflows,
718 // the result must be zero anyway. We prefer here to do it in the width of
719 // the induction variable because it helps a lot for certain cases; CodeGen
720 // isn't smart enough to ignore the overflow, which leads to much less
721 // efficient code if the width of the subtraction is wider than the native
722 // register width.
723 //
724 // (It's possible to not widen at all by pulling out factors of 2 before
725 // the multiplication; for example, K=2 can be calculated as
726 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
727 // extra arithmetic, so it's not an obvious win, and it gets
728 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000729
Eli Friedmanb42a6262008-08-04 23:49:06 +0000730 // Protection from insane SCEVs; this bound is conservative,
731 // but it probably doesn't matter.
732 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000733 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000734
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000735 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000736
Eli Friedmanb42a6262008-08-04 23:49:06 +0000737 // Calculate K! / 2^T and T; we divide out the factors of two before
738 // multiplying for calculating K! / 2^T to avoid overflow.
739 // Other overflow doesn't matter because we only care about the bottom
740 // W bits of the result.
741 APInt OddFactorial(W, 1);
742 unsigned T = 1;
743 for (unsigned i = 3; i <= K; ++i) {
744 APInt Mult(W, i);
745 unsigned TwoFactors = Mult.countTrailingZeros();
746 T += TwoFactors;
747 Mult = Mult.lshr(TwoFactors);
748 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000749 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000750
Eli Friedmanb42a6262008-08-04 23:49:06 +0000751 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000752 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000753
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000754 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000755 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
756
757 // Calculate the multiplicative inverse of K! / 2^T;
758 // this multiplication factor will perform the exact division by
759 // K! / 2^T.
760 APInt Mod = APInt::getSignedMinValue(W+1);
761 APInt MultiplyFactor = OddFactorial.zext(W+1);
762 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
763 MultiplyFactor = MultiplyFactor.trunc(W);
764
765 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000766 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000767 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000768 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000769 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000770 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000771 Dividend = SE.getMulExpr(Dividend,
772 SE.getTruncateOrZeroExtend(S, CalculationTy));
773 }
774
775 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000776 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000777
778 // Truncate the result, and divide by K! / 2^T.
779
780 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
781 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000782}
783
Chris Lattner53e677a2004-04-02 20:23:17 +0000784/// evaluateAtIteration - Return the value of this chain of recurrences at
785/// the specified iteration number. We can evaluate this recurrence by
786/// multiplying each element in the chain by the binomial coefficient
787/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
788///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000789/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000790///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000791/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000792///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000793const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000794 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000795 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000796 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000797 // The computation is correct in the face of overflow provided that the
798 // multiplication is performed _after_ the evaluation of the binomial
799 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000800 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000801 if (isa<SCEVCouldNotCompute>(Coeff))
802 return Coeff;
803
804 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000805 }
806 return Result;
807}
808
Chris Lattner53e677a2004-04-02 20:23:17 +0000809//===----------------------------------------------------------------------===//
810// SCEV Expression folder implementations
811//===----------------------------------------------------------------------===//
812
Dan Gohman0bba49c2009-07-07 17:06:11 +0000813const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000814 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000815 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000816 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000817 assert(isSCEVable(Ty) &&
818 "This is not a conversion to a SCEVable type!");
819 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000820
Dan Gohmanc050fd92009-07-13 20:50:19 +0000821 FoldingSetNodeID ID;
822 ID.AddInteger(scTruncate);
823 ID.AddPointer(Op);
824 ID.AddPointer(Ty);
825 void *IP = 0;
826 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
827
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000828 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000829 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000830 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000831 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000832
Dan Gohman20900ca2009-04-22 16:20:48 +0000833 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000834 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000835 return getTruncateExpr(ST->getOperand(), Ty);
836
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000837 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000838 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000839 return getTruncateOrSignExtend(SS->getOperand(), Ty);
840
841 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000842 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000843 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
844
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000845 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
846 // eliminate all the truncates.
847 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
848 SmallVector<const SCEV *, 4> Operands;
849 bool hasTrunc = false;
850 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
851 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
852 hasTrunc = isa<SCEVTruncateExpr>(S);
853 Operands.push_back(S);
854 }
855 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000856 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000857 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000858 }
859
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000860 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
861 // eliminate all the truncates.
862 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
863 SmallVector<const SCEV *, 4> Operands;
864 bool hasTrunc = false;
865 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
866 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
867 hasTrunc = isa<SCEVTruncateExpr>(S);
868 Operands.push_back(S);
869 }
870 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000871 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000872 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000873 }
874
Dan Gohman6864db62009-06-18 16:24:47 +0000875 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000876 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000877 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000878 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000879 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000880 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000881 }
882
Dan Gohman420ab912010-06-25 18:47:08 +0000883 // The cast wasn't folded; create an explicit cast node. We can reuse
884 // the existing insert position since if we get here, we won't have
885 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000886 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
887 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000888 UniqueSCEVs.InsertNode(S, IP);
889 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000890}
891
Dan Gohman0bba49c2009-07-07 17:06:11 +0000892const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000893 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000894 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000895 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000896 assert(isSCEVable(Ty) &&
897 "This is not a conversion to a SCEVable type!");
898 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000899
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000900 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000901 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
902 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000903 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000904
Dan Gohman20900ca2009-04-22 16:20:48 +0000905 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000906 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000907 return getZeroExtendExpr(SZ->getOperand(), Ty);
908
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000909 // Before doing any expensive analysis, check to see if we've already
910 // computed a SCEV for this Op and Ty.
911 FoldingSetNodeID ID;
912 ID.AddInteger(scZeroExtend);
913 ID.AddPointer(Op);
914 ID.AddPointer(Ty);
915 void *IP = 0;
916 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
917
Nick Lewycky630d85a2011-01-23 06:20:19 +0000918 // zext(trunc(x)) --> zext(x) or x or trunc(x)
919 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
920 // It's possible the bits taken off by the truncate were all zero bits. If
921 // so, we should be able to simplify this further.
922 const SCEV *X = ST->getOperand();
923 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000924 unsigned TruncBits = getTypeSizeInBits(ST->getType());
925 unsigned NewBits = getTypeSizeInBits(Ty);
926 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000927 CR.zextOrTrunc(NewBits)))
928 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000929 }
930
Dan Gohman01ecca22009-04-27 20:16:15 +0000931 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000932 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000933 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000934 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000935 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000936 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000937 const SCEV *Start = AR->getStart();
938 const SCEV *Step = AR->getStepRecurrence(*this);
939 unsigned BitWidth = getTypeSizeInBits(AR->getType());
940 const Loop *L = AR->getLoop();
941
Dan Gohmaneb490a72009-07-25 01:22:26 +0000942 // If we have special knowledge that this addrec won't overflow,
943 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000944 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000945 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
946 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000947 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000948
Dan Gohman01ecca22009-04-27 20:16:15 +0000949 // Check whether the backedge-taken count is SCEVCouldNotCompute.
950 // Note that this serves two purposes: It filters out loops that are
951 // simply not analyzable, and it covers the case where this code is
952 // being called from within backedge-taken count analysis, such that
953 // attempting to ask for the backedge-taken count would likely result
954 // in infinite recursion. In the later case, the analysis code will
955 // cope with a conservative value, and it will take care to purge
956 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000957 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000958 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000959 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000960 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000961
962 // Check whether the backedge-taken count can be losslessly casted to
963 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000964 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000965 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000966 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000967 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
968 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000969 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000970 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000971 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +0000972 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
973 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
974 const SCEV *WideMaxBECount =
975 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000976 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000977 getAddExpr(WideStart,
978 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000979 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +0000980 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +0000981 // Cache knowledge of AR NUW, which is propagated to this AddRec.
982 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000983 // Return the expression with the addrec on the outside.
984 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
985 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000986 L, AR->getNoWrapFlags());
987 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000988 // Similar to above, only this time treat the step value as signed.
989 // This covers loops that count down.
Dan Gohman5183cae2009-05-18 15:58:39 +0000990 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000991 getAddExpr(WideStart,
992 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000993 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +0000994 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +0000995 // Cache knowledge of AR NW, which is propagated to this AddRec.
996 // Negative step causes unsigned wrap, but it still can't self-wrap.
997 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000998 // Return the expression with the addrec on the outside.
999 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1000 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001001 L, AR->getNoWrapFlags());
1002 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001003 }
1004
1005 // If the backedge is guarded by a comparison with the pre-inc value
1006 // the addrec is safe. Also, if the entry is guarded by a comparison
1007 // with the start value and the backedge is guarded by a comparison
1008 // with the post-inc value, the addrec is safe.
1009 if (isKnownPositive(Step)) {
1010 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1011 getUnsignedRange(Step).getUnsignedMax());
1012 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001013 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001014 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001015 AR->getPostIncExpr(*this), N))) {
1016 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1017 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001018 // Return the expression with the addrec on the outside.
1019 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1020 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001021 L, AR->getNoWrapFlags());
1022 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001023 } else if (isKnownNegative(Step)) {
1024 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1025 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001026 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1027 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001028 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001029 AR->getPostIncExpr(*this), N))) {
1030 // Cache knowledge of AR NW, which is propagated to this AddRec.
1031 // Negative step causes unsigned wrap, but it still can't self-wrap.
1032 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1033 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001034 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1035 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001036 L, AR->getNoWrapFlags());
1037 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001038 }
1039 }
1040 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001041
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001042 // The cast wasn't folded; create an explicit cast node.
1043 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001044 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001045 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1046 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001047 UniqueSCEVs.InsertNode(S, IP);
1048 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001049}
1050
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001051// Get the limit of a recurrence such that incrementing by Step cannot cause
1052// signed overflow as long as the value of the recurrence within the loop does
1053// not exceed this limit before incrementing.
1054static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1055 ICmpInst::Predicate *Pred,
1056 ScalarEvolution *SE) {
1057 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1058 if (SE->isKnownPositive(Step)) {
1059 *Pred = ICmpInst::ICMP_SLT;
1060 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1061 SE->getSignedRange(Step).getSignedMax());
1062 }
1063 if (SE->isKnownNegative(Step)) {
1064 *Pred = ICmpInst::ICMP_SGT;
1065 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1066 SE->getSignedRange(Step).getSignedMin());
1067 }
1068 return 0;
1069}
1070
1071// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1072// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1073// or postincrement sibling. This allows normalizing a sign extended AddRec as
1074// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1075// result, the expression "Step + sext(PreIncAR)" is congruent with
1076// "sext(PostIncAR)"
1077static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001078 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001079 ScalarEvolution *SE) {
1080 const Loop *L = AR->getLoop();
1081 const SCEV *Start = AR->getStart();
1082 const SCEV *Step = AR->getStepRecurrence(*SE);
1083
1084 // Check for a simple looking step prior to loop entry.
1085 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickf63ae212011-09-28 17:02:54 +00001086 if (!SA)
1087 return 0;
1088
1089 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1090 // subtraction is expensive. For this purpose, perform a quick and dirty
1091 // difference, by checking for Step in the operand list.
1092 SmallVector<const SCEV *, 4> DiffOps;
1093 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1094 I != E; ++I) {
1095 if (*I != Step)
1096 DiffOps.push_back(*I);
1097 }
1098 if (DiffOps.size() == SA->getNumOperands())
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001099 return 0;
1100
1101 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1102 // same three conditions that getSignExtendedExpr checks.
1103
1104 // 1. NSW flags on the step increment.
Andrew Trickf63ae212011-09-28 17:02:54 +00001105 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001106 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1107 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1108
Andrew Trickcf31f912011-06-01 19:14:56 +00001109 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001110 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001111
1112 // 2. Direct overflow check on the step operation's expression.
1113 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001114 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001115 const SCEV *OperandExtendedStart =
1116 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1117 SE->getSignExtendExpr(Step, WideTy));
1118 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1119 // Cache knowledge of PreAR NSW.
1120 if (PreAR)
1121 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1122 // FIXME: this optimization needs a unit test
1123 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1124 return PreStart;
1125 }
1126
1127 // 3. Loop precondition.
1128 ICmpInst::Predicate Pred;
1129 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1130
Andrew Trickcf31f912011-06-01 19:14:56 +00001131 if (OverflowLimit &&
1132 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001133 return PreStart;
1134 }
1135 return 0;
1136}
1137
1138// Get the normalized sign-extended expression for this AddRec's Start.
1139static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001140 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001141 ScalarEvolution *SE) {
1142 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1143 if (!PreStart)
1144 return SE->getSignExtendExpr(AR->getStart(), Ty);
1145
1146 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1147 SE->getSignExtendExpr(PreStart, Ty));
1148}
1149
Dan Gohman0bba49c2009-07-07 17:06:11 +00001150const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001151 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001152 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001153 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001154 assert(isSCEVable(Ty) &&
1155 "This is not a conversion to a SCEVable type!");
1156 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001157
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001158 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001159 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1160 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +00001161 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmand19534a2007-06-15 14:38:12 +00001162
Dan Gohman20900ca2009-04-22 16:20:48 +00001163 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001164 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001165 return getSignExtendExpr(SS->getOperand(), Ty);
1166
Nick Lewycky73f565e2011-01-19 15:56:12 +00001167 // sext(zext(x)) --> zext(x)
1168 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1169 return getZeroExtendExpr(SZ->getOperand(), Ty);
1170
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001171 // Before doing any expensive analysis, check to see if we've already
1172 // computed a SCEV for this Op and Ty.
1173 FoldingSetNodeID ID;
1174 ID.AddInteger(scSignExtend);
1175 ID.AddPointer(Op);
1176 ID.AddPointer(Ty);
1177 void *IP = 0;
1178 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1179
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001180 // If the input value is provably positive, build a zext instead.
1181 if (isKnownNonNegative(Op))
1182 return getZeroExtendExpr(Op, Ty);
1183
Nick Lewycky630d85a2011-01-23 06:20:19 +00001184 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1185 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1186 // It's possible the bits taken off by the truncate were all sign bits. If
1187 // so, we should be able to simplify this further.
1188 const SCEV *X = ST->getOperand();
1189 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001190 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1191 unsigned NewBits = getTypeSizeInBits(Ty);
1192 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001193 CR.sextOrTrunc(NewBits)))
1194 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001195 }
1196
Dan Gohman01ecca22009-04-27 20:16:15 +00001197 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001198 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001199 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001200 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001201 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001202 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001203 const SCEV *Start = AR->getStart();
1204 const SCEV *Step = AR->getStepRecurrence(*this);
1205 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1206 const Loop *L = AR->getLoop();
1207
Dan Gohmaneb490a72009-07-25 01:22:26 +00001208 // If we have special knowledge that this addrec won't overflow,
1209 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001210 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001211 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001212 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001213 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001214
Dan Gohman01ecca22009-04-27 20:16:15 +00001215 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1216 // Note that this serves two purposes: It filters out loops that are
1217 // simply not analyzable, and it covers the case where this code is
1218 // being called from within backedge-taken count analysis, such that
1219 // attempting to ask for the backedge-taken count would likely result
1220 // in infinite recursion. In the later case, the analysis code will
1221 // cope with a conservative value, and it will take care to purge
1222 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001223 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001224 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001225 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001226 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001227
1228 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001229 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001230 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001231 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001232 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001233 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1234 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001235 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001236 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001237 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +00001238 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1239 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1240 const SCEV *WideMaxBECount =
1241 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001242 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001243 getAddExpr(WideStart,
1244 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +00001245 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001246 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001247 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1248 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001249 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001250 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001251 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001252 L, AR->getNoWrapFlags());
1253 }
Dan Gohman850f7912009-07-16 17:34:36 +00001254 // Similar to above, only this time treat the step value as unsigned.
1255 // This covers loops that count up with an unsigned step.
Dan Gohman850f7912009-07-16 17:34:36 +00001256 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001257 getAddExpr(WideStart,
1258 getMulExpr(WideMaxBECount,
Dan Gohman850f7912009-07-16 17:34:36 +00001259 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001260 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001261 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1262 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001263 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001264 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001265 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001266 L, AR->getNoWrapFlags());
1267 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001268 }
1269
1270 // If the backedge is guarded by a comparison with the pre-inc value
1271 // the addrec is safe. Also, if the entry is guarded by a comparison
1272 // with the start value and the backedge is guarded by a comparison
1273 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001274 ICmpInst::Predicate Pred;
1275 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1276 if (OverflowLimit &&
1277 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1278 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1279 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1280 OverflowLimit)))) {
1281 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1282 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1283 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1284 getSignExtendExpr(Step, Ty),
1285 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001286 }
1287 }
1288 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001289
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001290 // The cast wasn't folded; create an explicit cast node.
1291 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001292 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001293 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1294 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001295 UniqueSCEVs.InsertNode(S, IP);
1296 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001297}
1298
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001299/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1300/// unspecified bits out to the given type.
1301///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001302const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001303 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001304 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1305 "This is not an extending conversion!");
1306 assert(isSCEVable(Ty) &&
1307 "This is not a conversion to a SCEVable type!");
1308 Ty = getEffectiveSCEVType(Ty);
1309
1310 // Sign-extend negative constants.
1311 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1312 if (SC->getValue()->getValue().isNegative())
1313 return getSignExtendExpr(Op, Ty);
1314
1315 // Peel off a truncate cast.
1316 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001317 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001318 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1319 return getAnyExtendExpr(NewOp, Ty);
1320 return getTruncateOrNoop(NewOp, Ty);
1321 }
1322
1323 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001324 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001325 if (!isa<SCEVZeroExtendExpr>(ZExt))
1326 return ZExt;
1327
1328 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001329 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001330 if (!isa<SCEVSignExtendExpr>(SExt))
1331 return SExt;
1332
Dan Gohmana10756e2010-01-21 02:09:26 +00001333 // Force the cast to be folded into the operands of an addrec.
1334 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1335 SmallVector<const SCEV *, 4> Ops;
1336 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1337 I != E; ++I)
1338 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001339 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001340 }
1341
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001342 // If the expression is obviously signed, use the sext cast value.
1343 if (isa<SCEVSMaxExpr>(Op))
1344 return SExt;
1345
1346 // Absent any other information, use the zext cast value.
1347 return ZExt;
1348}
1349
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001350/// CollectAddOperandsWithScales - Process the given Ops list, which is
1351/// a list of operands to be added under the given scale, update the given
1352/// map. This is a helper function for getAddRecExpr. As an example of
1353/// what it does, given a sequence of operands that would form an add
1354/// expression like this:
1355///
1356/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1357///
1358/// where A and B are constants, update the map with these values:
1359///
1360/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1361///
1362/// and add 13 + A*B*29 to AccumulatedConstant.
1363/// This will allow getAddRecExpr to produce this:
1364///
1365/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1366///
1367/// This form often exposes folding opportunities that are hidden in
1368/// the original operand list.
1369///
Sylvestre Ledru94c22712012-09-27 10:14:43 +00001370/// Return true iff it appears that any interesting folding opportunities
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001371/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1372/// the common case where no interesting opportunities are present, and
1373/// is also used as a check to avoid infinite recursion.
1374///
1375static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001376CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1377 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001378 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001379 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001380 const APInt &Scale,
1381 ScalarEvolution &SE) {
1382 bool Interesting = false;
1383
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001384 // Iterate over the add operands. They are sorted, with constants first.
1385 unsigned i = 0;
1386 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1387 ++i;
1388 // Pull a buried constant out to the outside.
1389 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1390 Interesting = true;
1391 AccumulatedConstant += Scale * C->getValue()->getValue();
1392 }
1393
1394 // Next comes everything else. We're especially interested in multiplies
1395 // here, but they're in the middle, so just visit the rest with one loop.
1396 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001397 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1398 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1399 APInt NewScale =
1400 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1401 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1402 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001403 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001404 Interesting |=
1405 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001406 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001407 NewScale, SE);
1408 } else {
1409 // A multiplication of a constant with some other value. Update
1410 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001411 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1412 const SCEV *Key = SE.getMulExpr(MulOps);
1413 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001414 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001415 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001416 NewOps.push_back(Pair.first->first);
1417 } else {
1418 Pair.first->second += NewScale;
1419 // The map already had an entry for this value, which may indicate
1420 // a folding opportunity.
1421 Interesting = true;
1422 }
1423 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001424 } else {
1425 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001426 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001427 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001428 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001429 NewOps.push_back(Pair.first->first);
1430 } else {
1431 Pair.first->second += Scale;
1432 // The map already had an entry for this value, which may indicate
1433 // a folding opportunity.
1434 Interesting = true;
1435 }
1436 }
1437 }
1438
1439 return Interesting;
1440}
1441
1442namespace {
1443 struct APIntCompare {
1444 bool operator()(const APInt &LHS, const APInt &RHS) const {
1445 return LHS.ult(RHS);
1446 }
1447 };
1448}
1449
Dan Gohman6c0866c2009-05-24 23:45:28 +00001450/// getAddExpr - Get a canonical add expression, or something simpler if
1451/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001452const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001453 SCEV::NoWrapFlags Flags) {
1454 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1455 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001456 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001457 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001458#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001459 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001460 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001461 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001462 "SCEVAddExpr operand types don't match!");
1463#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001464
Andrew Trick3228cc22011-03-14 16:50:06 +00001465 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001466 // And vice-versa.
1467 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1468 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1469 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001470 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001471 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1472 E = Ops.end(); I != E; ++I)
1473 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001474 All = false;
1475 break;
1476 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001477 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001478 }
1479
Chris Lattner53e677a2004-04-02 20:23:17 +00001480 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001481 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001482
1483 // If there are any constants, fold them together.
1484 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001485 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001486 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001487 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001488 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001489 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001490 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1491 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001492 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001493 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001494 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001495 }
1496
1497 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001498 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001499 Ops.erase(Ops.begin());
1500 --Idx;
1501 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001502
Dan Gohmanbca091d2010-04-12 23:08:18 +00001503 if (Ops.size() == 1) return Ops[0];
1504 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001505
Dan Gohman68ff7762010-08-27 21:39:59 +00001506 // Okay, check to see if the same value occurs in the operand list more than
1507 // once. If so, merge them together into an multiply expression. Since we
1508 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001509 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001510 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001511 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001512 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001513 // Scan ahead to count how many equal operands there are.
1514 unsigned Count = 2;
1515 while (i+Count != e && Ops[i+Count] == Ops[i])
1516 ++Count;
1517 // Merge the values into a multiply.
1518 const SCEV *Scale = getConstant(Ty, Count);
1519 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1520 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001521 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001522 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001523 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001524 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001525 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001526 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001527 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001528 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001529
Dan Gohman728c7f32009-05-08 21:03:19 +00001530 // Check for truncates. If all the operands are truncated from the same
1531 // type, see if factoring out the truncate would permit the result to be
1532 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1533 // if the contents of the resulting outer trunc fold to something simple.
1534 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1535 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001536 Type *DstType = Trunc->getType();
1537 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001538 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001539 bool Ok = true;
1540 // Check all the operands to see if they can be represented in the
1541 // source type of the truncate.
1542 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1543 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1544 if (T->getOperand()->getType() != SrcType) {
1545 Ok = false;
1546 break;
1547 }
1548 LargeOps.push_back(T->getOperand());
1549 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001550 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001551 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001552 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001553 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1554 if (const SCEVTruncateExpr *T =
1555 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1556 if (T->getOperand()->getType() != SrcType) {
1557 Ok = false;
1558 break;
1559 }
1560 LargeMulOps.push_back(T->getOperand());
1561 } else if (const SCEVConstant *C =
1562 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001563 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001564 } else {
1565 Ok = false;
1566 break;
1567 }
1568 }
1569 if (Ok)
1570 LargeOps.push_back(getMulExpr(LargeMulOps));
1571 } else {
1572 Ok = false;
1573 break;
1574 }
1575 }
1576 if (Ok) {
1577 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001578 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001579 // If it folds to something simple, use it. Otherwise, don't.
1580 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1581 return getTruncateExpr(Fold, DstType);
1582 }
1583 }
1584
1585 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001586 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1587 ++Idx;
1588
1589 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001590 if (Idx < Ops.size()) {
1591 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001592 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001593 // If we have an add, expand the add operands onto the end of the operands
1594 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001595 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001596 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001597 DeletedAdd = true;
1598 }
1599
1600 // If we deleted at least one add, we added operands to the end of the list,
1601 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001602 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001603 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001604 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001605 }
1606
1607 // Skip over the add expression until we get to a multiply.
1608 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1609 ++Idx;
1610
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001611 // Check to see if there are any folding opportunities present with
1612 // operands multiplied by constant values.
1613 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1614 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001615 DenseMap<const SCEV *, APInt> M;
1616 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001617 APInt AccumulatedConstant(BitWidth, 0);
1618 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001619 Ops.data(), Ops.size(),
1620 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001621 // Some interesting folding opportunity is present, so its worthwhile to
1622 // re-generate the operands list. Group the operands by constant scale,
1623 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001624 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001625 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001626 E = NewOps.end(); I != E; ++I)
1627 MulOpLists[M.find(*I)->second].push_back(*I);
1628 // Re-generate the operands list.
1629 Ops.clear();
1630 if (AccumulatedConstant != 0)
1631 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001632 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1633 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001634 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001635 Ops.push_back(getMulExpr(getConstant(I->first),
1636 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001637 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001638 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001639 if (Ops.size() == 1)
1640 return Ops[0];
1641 return getAddExpr(Ops);
1642 }
1643 }
1644
Chris Lattner53e677a2004-04-02 20:23:17 +00001645 // If we are adding something to a multiply expression, make sure the
1646 // something is not already an operand of the multiply. If so, merge it into
1647 // the multiply.
1648 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001649 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001650 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001651 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001652 if (isa<SCEVConstant>(MulOpSCEV))
1653 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001654 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001655 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001656 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001657 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001658 if (Mul->getNumOperands() != 2) {
1659 // If the multiply has more than two operands, we must get the
1660 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001661 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1662 Mul->op_begin()+MulOp);
1663 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001664 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001665 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001666 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001667 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001668 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001669 if (Ops.size() == 2) return OuterMul;
1670 if (AddOp < Idx) {
1671 Ops.erase(Ops.begin()+AddOp);
1672 Ops.erase(Ops.begin()+Idx-1);
1673 } else {
1674 Ops.erase(Ops.begin()+Idx);
1675 Ops.erase(Ops.begin()+AddOp-1);
1676 }
1677 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001678 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001679 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001680
Chris Lattner53e677a2004-04-02 20:23:17 +00001681 // Check this multiply against other multiplies being added together.
1682 for (unsigned OtherMulIdx = Idx+1;
1683 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1684 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001685 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001686 // If MulOp occurs in OtherMul, we can fold the two multiplies
1687 // together.
1688 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1689 OMulOp != e; ++OMulOp)
1690 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1691 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001692 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001693 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001694 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001695 Mul->op_begin()+MulOp);
1696 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001697 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001698 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001699 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001700 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001701 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001702 OtherMul->op_begin()+OMulOp);
1703 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001704 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001705 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001706 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1707 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001708 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001709 Ops.erase(Ops.begin()+Idx);
1710 Ops.erase(Ops.begin()+OtherMulIdx-1);
1711 Ops.push_back(OuterMul);
1712 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001713 }
1714 }
1715 }
1716 }
1717
1718 // If there are any add recurrences in the operands list, see if any other
1719 // added values are loop invariant. If so, we can fold them into the
1720 // recurrence.
1721 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1722 ++Idx;
1723
1724 // Scan over all recurrences, trying to fold loop invariants into them.
1725 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1726 // Scan all of the other operands to this add and add them to the vector if
1727 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001728 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001729 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001730 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001731 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001732 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001733 LIOps.push_back(Ops[i]);
1734 Ops.erase(Ops.begin()+i);
1735 --i; --e;
1736 }
1737
1738 // If we found some loop invariants, fold them into the recurrence.
1739 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001740 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001741 LIOps.push_back(AddRec->getStart());
1742
Dan Gohman0bba49c2009-07-07 17:06:11 +00001743 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001744 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001745 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001746
Dan Gohmanb9f96512010-06-30 07:16:37 +00001747 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001748 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001749 // Always propagate NW.
1750 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001751 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001752
Chris Lattner53e677a2004-04-02 20:23:17 +00001753 // If all of the other operands were loop invariant, we are done.
1754 if (Ops.size() == 1) return NewRec;
1755
Nick Lewycky980e9f32011-09-06 05:08:09 +00001756 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001757 for (unsigned i = 0;; ++i)
1758 if (Ops[i] == AddRec) {
1759 Ops[i] = NewRec;
1760 break;
1761 }
Dan Gohman246b2562007-10-22 18:31:58 +00001762 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001763 }
1764
1765 // Okay, if there weren't any loop invariants to be folded, check to see if
1766 // there are multiple AddRec's with the same loop induction variable being
1767 // added together. If so, we can fold them.
1768 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001769 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1770 ++OtherIdx)
1771 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1772 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1773 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1774 AddRec->op_end());
1775 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1776 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001777 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001778 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001779 if (OtherAddRec->getLoop() == AddRecLoop) {
1780 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1781 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001782 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001783 AddRecOps.append(OtherAddRec->op_begin()+i,
1784 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001785 break;
1786 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001787 AddRecOps[i] = getAddExpr(AddRecOps[i],
1788 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001789 }
1790 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001791 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001792 // Step size has changed, so we cannot guarantee no self-wraparound.
1793 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001794 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001795 }
1796
1797 // Otherwise couldn't fold anything into this recurrence. Move onto the
1798 // next one.
1799 }
1800
1801 // Okay, it looks like we really DO need an add expr. Check to see if we
1802 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001803 FoldingSetNodeID ID;
1804 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001805 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1806 ID.AddPointer(Ops[i]);
1807 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001808 SCEVAddExpr *S =
1809 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1810 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001811 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1812 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001813 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1814 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001815 UniqueSCEVs.InsertNode(S, IP);
1816 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001817 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001818 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001819}
1820
Nick Lewyckye97728e2011-10-04 06:51:26 +00001821static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1822 uint64_t k = i*j;
1823 if (j > 1 && k / j != i) Overflow = true;
1824 return k;
1825}
1826
1827/// Compute the result of "n choose k", the binomial coefficient. If an
1828/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerd9b0b022012-06-02 10:20:22 +00001829/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewyckye97728e2011-10-04 06:51:26 +00001830static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1831 // We use the multiplicative formula:
1832 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1833 // At each iteration, we take the n-th term of the numeral and divide by the
1834 // (k-n)th term of the denominator. This division will always produce an
1835 // integral result, and helps reduce the chance of overflow in the
1836 // intermediate computations. However, we can still overflow even when the
1837 // final result would fit.
1838
1839 if (n == 0 || n == k) return 1;
1840 if (k > n) return 0;
1841
1842 if (k > n/2)
1843 k = n-k;
1844
1845 uint64_t r = 1;
1846 for (uint64_t i = 1; i <= k; ++i) {
1847 r = umul_ov(r, n-(i-1), Overflow);
1848 r /= i;
1849 }
1850 return r;
1851}
1852
Dan Gohman6c0866c2009-05-24 23:45:28 +00001853/// getMulExpr - Get a canonical multiply expression, or something simpler if
1854/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001855const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001856 SCEV::NoWrapFlags Flags) {
1857 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1858 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001859 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001860 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001861#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001862 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001863 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001864 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001865 "SCEVMulExpr operand types don't match!");
1866#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001867
Andrew Trick3228cc22011-03-14 16:50:06 +00001868 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001869 // And vice-versa.
1870 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1871 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1872 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001873 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001874 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1875 E = Ops.end(); I != E; ++I)
1876 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001877 All = false;
1878 break;
1879 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001880 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001881 }
1882
Chris Lattner53e677a2004-04-02 20:23:17 +00001883 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001884 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001885
1886 // If there are any constants, fold them together.
1887 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001888 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001889
1890 // C1*(C2+V) -> C1*C2 + C1*V
1891 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001892 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001893 if (Add->getNumOperands() == 2 &&
1894 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001895 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1896 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001897
Chris Lattner53e677a2004-04-02 20:23:17 +00001898 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001899 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001900 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001901 ConstantInt *Fold = ConstantInt::get(getContext(),
1902 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001903 RHSC->getValue()->getValue());
1904 Ops[0] = getConstant(Fold);
1905 Ops.erase(Ops.begin()+1); // Erase the folded element
1906 if (Ops.size() == 1) return Ops[0];
1907 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001908 }
1909
1910 // If we are left with a constant one being multiplied, strip it off.
1911 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1912 Ops.erase(Ops.begin());
1913 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001914 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001915 // If we have a multiply of zero, it will always be zero.
1916 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001917 } else if (Ops[0]->isAllOnesValue()) {
1918 // If we have a mul by -1 of an add, try distributing the -1 among the
1919 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001920 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001921 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1922 SmallVector<const SCEV *, 4> NewOps;
1923 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001924 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1925 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001926 const SCEV *Mul = getMulExpr(Ops[0], *I);
1927 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1928 NewOps.push_back(Mul);
1929 }
1930 if (AnyFolded)
1931 return getAddExpr(NewOps);
1932 }
Andrew Tricka053b212011-03-14 17:38:54 +00001933 else if (const SCEVAddRecExpr *
1934 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1935 // Negation preserves a recurrence's no self-wrap property.
1936 SmallVector<const SCEV *, 4> Operands;
1937 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1938 E = AddRec->op_end(); I != E; ++I) {
1939 Operands.push_back(getMulExpr(Ops[0], *I));
1940 }
1941 return getAddRecExpr(Operands, AddRec->getLoop(),
1942 AddRec->getNoWrapFlags(SCEV::FlagNW));
1943 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001944 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001945 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001946
1947 if (Ops.size() == 1)
1948 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001949 }
1950
1951 // Skip over the add expression until we get to a multiply.
1952 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1953 ++Idx;
1954
Chris Lattner53e677a2004-04-02 20:23:17 +00001955 // If there are mul operands inline them all into this expression.
1956 if (Idx < Ops.size()) {
1957 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001958 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001959 // If we have an mul, expand the mul operands onto the end of the operands
1960 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001961 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001962 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001963 DeletedMul = true;
1964 }
1965
1966 // If we deleted at least one mul, we added operands to the end of the list,
1967 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001968 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001969 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001970 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001971 }
1972
1973 // If there are any add recurrences in the operands list, see if any other
1974 // added values are loop invariant. If so, we can fold them into the
1975 // recurrence.
1976 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1977 ++Idx;
1978
1979 // Scan over all recurrences, trying to fold loop invariants into them.
1980 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1981 // Scan all of the other operands to this mul and add them to the vector if
1982 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001983 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001984 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001985 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001986 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001987 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001988 LIOps.push_back(Ops[i]);
1989 Ops.erase(Ops.begin()+i);
1990 --i; --e;
1991 }
1992
1993 // If we found some loop invariants, fold them into the recurrence.
1994 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001995 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001996 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001997 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001998 const SCEV *Scale = getMulExpr(LIOps);
1999 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2000 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00002001
Dan Gohmanb9f96512010-06-30 07:16:37 +00002002 // Build the new addrec. Propagate the NUW and NSW flags if both the
2003 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00002004 //
2005 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002006 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00002007 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2008 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002009
2010 // If all of the other operands were loop invariant, we are done.
2011 if (Ops.size() == 1) return NewRec;
2012
Nick Lewycky980e9f32011-09-06 05:08:09 +00002013 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00002014 for (unsigned i = 0;; ++i)
2015 if (Ops[i] == AddRec) {
2016 Ops[i] = NewRec;
2017 break;
2018 }
Dan Gohman246b2562007-10-22 18:31:58 +00002019 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002020 }
2021
2022 // Okay, if there weren't any loop invariants to be folded, check to see if
2023 // there are multiple AddRec's with the same loop induction variable being
2024 // multiplied together. If so, we can fold them.
2025 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002026 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002027 ++OtherIdx) {
Andrew Trick97178ae2012-05-30 03:35:17 +00002028 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2029 continue;
2030
2031 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2032 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2033 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2034 // ]]],+,...up to x=2n}.
2035 // Note that the arguments to choose() are always integers with values
2036 // known at compile time, never SCEV objects.
2037 //
2038 // The implementation avoids pointless extra computations when the two
2039 // addrec's are of different length (mathematically, it's equivalent to
2040 // an infinite stream of zeros on the right).
2041 bool OpsModified = false;
2042 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2043 ++OtherIdx) {
2044 const SCEVAddRecExpr *OtherAddRec =
2045 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2046 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2047 continue;
2048
2049 bool Overflow = false;
2050 Type *Ty = AddRec->getType();
2051 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2052 SmallVector<const SCEV*, 7> AddRecOps;
2053 for (int x = 0, xe = AddRec->getNumOperands() +
2054 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2055 const SCEV *Term = getConstant(Ty, 0);
2056 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2057 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2058 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2059 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2060 z < ze && !Overflow; ++z) {
2061 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2062 uint64_t Coeff;
2063 if (LargerThan64Bits)
2064 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2065 else
2066 Coeff = Coeff1*Coeff2;
2067 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2068 const SCEV *Term1 = AddRec->getOperand(y-z);
2069 const SCEV *Term2 = OtherAddRec->getOperand(z);
2070 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Dan Gohman6a0c1252010-08-31 22:52:12 +00002071 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002072 }
2073 AddRecOps.push_back(Term);
2074 }
2075 if (!Overflow) {
2076 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2077 SCEV::FlagAnyWrap);
2078 if (Ops.size() == 2) return NewAddRec;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002079 Ops[Idx] = NewAddRec;
Andrew Trick97178ae2012-05-30 03:35:17 +00002080 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2081 OpsModified = true;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002082 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2083 if (!AddRec)
2084 break;
Andrew Trick97178ae2012-05-30 03:35:17 +00002085 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002086 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002087 if (OpsModified)
2088 return getMulExpr(Ops);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002089 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002090
2091 // Otherwise couldn't fold anything into this recurrence. Move onto the
2092 // next one.
2093 }
2094
2095 // Okay, it looks like we really DO need an mul expr. Check to see if we
2096 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002097 FoldingSetNodeID ID;
2098 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002099 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2100 ID.AddPointer(Ops[i]);
2101 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002102 SCEVMulExpr *S =
2103 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2104 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002105 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2106 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002107 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2108 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002109 UniqueSCEVs.InsertNode(S, IP);
2110 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002111 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002112 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002113}
2114
Andreas Bolka8a11c982009-08-07 22:55:26 +00002115/// getUDivExpr - Get a canonical unsigned division expression, or something
2116/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002117const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2118 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002119 assert(getEffectiveSCEVType(LHS->getType()) ==
2120 getEffectiveSCEVType(RHS->getType()) &&
2121 "SCEVUDivExpr operand types don't match!");
2122
Dan Gohman622ed672009-05-04 22:02:23 +00002123 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002124 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002125 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002126 // If the denominator is zero, the result of the udiv is undefined. Don't
2127 // try to analyze it, because the resolution chosen here may differ from
2128 // the resolution chosen in other parts of the compiler.
2129 if (!RHSC->getValue()->isZero()) {
2130 // Determine if the division can be folded into the operands of
2131 // its operands.
2132 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002133 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002134 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002135 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002136 // For non-power-of-two values, effectively round the value up to the
2137 // nearest power of two.
2138 if (!RHSC->getValue()->getValue().isPowerOf2())
2139 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002140 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002141 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002142 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2143 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002144 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2145 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2146 const APInt &StepInt = Step->getValue()->getValue();
2147 const APInt &DivInt = RHSC->getValue()->getValue();
2148 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002149 getZeroExtendExpr(AR, ExtTy) ==
2150 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2151 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002152 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002153 SmallVector<const SCEV *, 4> Operands;
2154 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2155 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002156 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002157 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002158 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002159 /// Get a canonical UDivExpr for a recurrence.
2160 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2161 // We can currently only fold X%N if X is constant.
2162 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2163 if (StartC && !DivInt.urem(StepInt) &&
2164 getZeroExtendExpr(AR, ExtTy) ==
2165 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2166 getZeroExtendExpr(Step, ExtTy),
2167 AR->getLoop(), SCEV::FlagAnyWrap)) {
2168 const APInt &StartInt = StartC->getValue()->getValue();
2169 const APInt &StartRem = StartInt.urem(StepInt);
2170 if (StartRem != 0)
2171 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2172 AR->getLoop(), SCEV::FlagNW);
2173 }
2174 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002175 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2176 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2177 SmallVector<const SCEV *, 4> Operands;
2178 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2179 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2180 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2181 // Find an operand that's safely divisible.
2182 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2183 const SCEV *Op = M->getOperand(i);
2184 const SCEV *Div = getUDivExpr(Op, RHSC);
2185 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2186 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2187 M->op_end());
2188 Operands[i] = Div;
2189 return getMulExpr(Operands);
2190 }
2191 }
Dan Gohman185cf032009-05-08 20:18:49 +00002192 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002193 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002194 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002195 SmallVector<const SCEV *, 4> Operands;
2196 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2197 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2198 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2199 Operands.clear();
2200 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2201 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2202 if (isa<SCEVUDivExpr>(Op) ||
2203 getMulExpr(Op, RHS) != A->getOperand(i))
2204 break;
2205 Operands.push_back(Op);
2206 }
2207 if (Operands.size() == A->getNumOperands())
2208 return getAddExpr(Operands);
2209 }
2210 }
Dan Gohman185cf032009-05-08 20:18:49 +00002211
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002212 // Fold if both operands are constant.
2213 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2214 Constant *LHSCV = LHSC->getValue();
2215 Constant *RHSCV = RHSC->getValue();
2216 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2217 RHSCV)));
2218 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002219 }
2220 }
2221
Dan Gohman1c343752009-06-27 21:21:31 +00002222 FoldingSetNodeID ID;
2223 ID.AddInteger(scUDivExpr);
2224 ID.AddPointer(LHS);
2225 ID.AddPointer(RHS);
2226 void *IP = 0;
2227 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002228 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2229 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002230 UniqueSCEVs.InsertNode(S, IP);
2231 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002232}
2233
2234
Dan Gohman6c0866c2009-05-24 23:45:28 +00002235/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2236/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002237const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2238 const Loop *L,
2239 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002240 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002241 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002242 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002243 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002244 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002245 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002246 }
2247
2248 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002249 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002250}
2251
Dan Gohman6c0866c2009-05-24 23:45:28 +00002252/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2253/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002254const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002255ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002256 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002257 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002258#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002259 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002260 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002261 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002262 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002263 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002264 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002265 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002266#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002267
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002268 if (Operands.back()->isZero()) {
2269 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002270 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002271 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002272
Dan Gohmanbc028532010-02-19 18:49:22 +00002273 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2274 // use that information to infer NUW and NSW flags. However, computing a
2275 // BE count requires calling getAddRecExpr, so we may not yet have a
2276 // meaningful BE count at this point (and if we don't, we'd be stuck
2277 // with a SCEVCouldNotCompute as the cached BE count).
2278
Andrew Trick3228cc22011-03-14 16:50:06 +00002279 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002280 // And vice-versa.
2281 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2282 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2283 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002284 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002285 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2286 E = Operands.end(); I != E; ++I)
2287 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002288 All = false;
2289 break;
2290 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002291 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002292 }
2293
Dan Gohmand9cc7492008-08-08 18:33:12 +00002294 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002295 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002296 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002297 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002298 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002299 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002300 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002301 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002302 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002303 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002304 // AddRecs require their operands be loop-invariant with respect to their
2305 // loops. Don't perform this transformation if it would break this
2306 // requirement.
2307 bool AllInvariant = true;
2308 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002309 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002310 AllInvariant = false;
2311 break;
2312 }
2313 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002314 // Create a recurrence for the outer loop with the same step size.
2315 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002316 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2317 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002318 SCEV::NoWrapFlags OuterFlags =
2319 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002320
2321 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002322 AllInvariant = true;
2323 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002324 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002325 AllInvariant = false;
2326 break;
2327 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002328 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002329 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002330 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002331 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2332 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002333 SCEV::NoWrapFlags InnerFlags =
2334 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002335 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2336 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002337 }
2338 // Reset Operands to its original state.
2339 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002340 }
2341 }
2342
Dan Gohman67847532010-01-19 22:27:22 +00002343 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2344 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002345 FoldingSetNodeID ID;
2346 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002347 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2348 ID.AddPointer(Operands[i]);
2349 ID.AddPointer(L);
2350 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002351 SCEVAddRecExpr *S =
2352 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2353 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002354 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2355 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002356 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2357 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002358 UniqueSCEVs.InsertNode(S, IP);
2359 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002360 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002361 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002362}
2363
Dan Gohman9311ef62009-06-24 14:49:00 +00002364const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2365 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002366 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002367 Ops.push_back(LHS);
2368 Ops.push_back(RHS);
2369 return getSMaxExpr(Ops);
2370}
2371
Dan Gohman0bba49c2009-07-07 17:06:11 +00002372const SCEV *
2373ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002374 assert(!Ops.empty() && "Cannot get empty smax!");
2375 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002376#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002377 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002378 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002379 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002380 "SCEVSMaxExpr operand types don't match!");
2381#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002382
2383 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002384 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002385
2386 // If there are any constants, fold them together.
2387 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002388 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002389 ++Idx;
2390 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002391 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002392 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002393 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002394 APIntOps::smax(LHSC->getValue()->getValue(),
2395 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002396 Ops[0] = getConstant(Fold);
2397 Ops.erase(Ops.begin()+1); // Erase the folded element
2398 if (Ops.size() == 1) return Ops[0];
2399 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002400 }
2401
Dan Gohmane5aceed2009-06-24 14:46:22 +00002402 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002403 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2404 Ops.erase(Ops.begin());
2405 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002406 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2407 // If we have an smax with a constant maximum-int, it will always be
2408 // maximum-int.
2409 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002410 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002411
Dan Gohman3ab13122010-04-13 16:49:23 +00002412 if (Ops.size() == 1) return Ops[0];
2413 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002414
2415 // Find the first SMax
2416 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2417 ++Idx;
2418
2419 // Check to see if one of the operands is an SMax. If so, expand its operands
2420 // onto our operand list, and recurse to simplify.
2421 if (Idx < Ops.size()) {
2422 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002423 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002424 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002425 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002426 DeletedSMax = true;
2427 }
2428
2429 if (DeletedSMax)
2430 return getSMaxExpr(Ops);
2431 }
2432
2433 // Okay, check to see if the same value occurs in the operand list twice. If
2434 // so, delete one. Since we sorted the list, these values are required to
2435 // be adjacent.
2436 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002437 // X smax Y smax Y --> X smax Y
2438 // X smax Y --> X, if X is always greater than Y
2439 if (Ops[i] == Ops[i+1] ||
2440 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2441 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2442 --i; --e;
2443 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002444 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2445 --i; --e;
2446 }
2447
2448 if (Ops.size() == 1) return Ops[0];
2449
2450 assert(!Ops.empty() && "Reduced smax down to nothing!");
2451
Nick Lewycky3e630762008-02-20 06:48:22 +00002452 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002453 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002454 FoldingSetNodeID ID;
2455 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002456 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2457 ID.AddPointer(Ops[i]);
2458 void *IP = 0;
2459 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002460 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2461 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002462 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2463 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002464 UniqueSCEVs.InsertNode(S, IP);
2465 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002466}
2467
Dan Gohman9311ef62009-06-24 14:49:00 +00002468const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2469 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002470 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002471 Ops.push_back(LHS);
2472 Ops.push_back(RHS);
2473 return getUMaxExpr(Ops);
2474}
2475
Dan Gohman0bba49c2009-07-07 17:06:11 +00002476const SCEV *
2477ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002478 assert(!Ops.empty() && "Cannot get empty umax!");
2479 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002480#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002481 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002482 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002483 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002484 "SCEVUMaxExpr operand types don't match!");
2485#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002486
2487 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002488 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002489
2490 // If there are any constants, fold them together.
2491 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002492 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002493 ++Idx;
2494 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002495 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002496 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002497 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002498 APIntOps::umax(LHSC->getValue()->getValue(),
2499 RHSC->getValue()->getValue()));
2500 Ops[0] = getConstant(Fold);
2501 Ops.erase(Ops.begin()+1); // Erase the folded element
2502 if (Ops.size() == 1) return Ops[0];
2503 LHSC = cast<SCEVConstant>(Ops[0]);
2504 }
2505
Dan Gohmane5aceed2009-06-24 14:46:22 +00002506 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002507 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2508 Ops.erase(Ops.begin());
2509 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002510 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2511 // If we have an umax with a constant maximum-int, it will always be
2512 // maximum-int.
2513 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002514 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002515
Dan Gohman3ab13122010-04-13 16:49:23 +00002516 if (Ops.size() == 1) return Ops[0];
2517 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002518
2519 // Find the first UMax
2520 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2521 ++Idx;
2522
2523 // Check to see if one of the operands is a UMax. If so, expand its operands
2524 // onto our operand list, and recurse to simplify.
2525 if (Idx < Ops.size()) {
2526 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002527 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002528 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002529 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002530 DeletedUMax = true;
2531 }
2532
2533 if (DeletedUMax)
2534 return getUMaxExpr(Ops);
2535 }
2536
2537 // Okay, check to see if the same value occurs in the operand list twice. If
2538 // so, delete one. Since we sorted the list, these values are required to
2539 // be adjacent.
2540 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002541 // X umax Y umax Y --> X umax Y
2542 // X umax Y --> X, if X is always greater than Y
2543 if (Ops[i] == Ops[i+1] ||
2544 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2545 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2546 --i; --e;
2547 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002548 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2549 --i; --e;
2550 }
2551
2552 if (Ops.size() == 1) return Ops[0];
2553
2554 assert(!Ops.empty() && "Reduced umax down to nothing!");
2555
2556 // Okay, it looks like we really DO need a umax expr. Check to see if we
2557 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002558 FoldingSetNodeID ID;
2559 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002560 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2561 ID.AddPointer(Ops[i]);
2562 void *IP = 0;
2563 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002564 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2565 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002566 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2567 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002568 UniqueSCEVs.InsertNode(S, IP);
2569 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002570}
2571
Dan Gohman9311ef62009-06-24 14:49:00 +00002572const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2573 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002574 // ~smax(~x, ~y) == smin(x, y).
2575 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2576}
2577
Dan Gohman9311ef62009-06-24 14:49:00 +00002578const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2579 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002580 // ~umax(~x, ~y) == umin(x, y)
2581 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2582}
2583
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002584const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002585 // If we have TargetData, we can bypass creating a target-independent
2586 // constant expression and then folding it back into a ConstantInt.
2587 // This is just a compile-time optimization.
2588 if (TD)
2589 return getConstant(TD->getIntPtrType(getContext()),
2590 TD->getTypeAllocSize(AllocTy));
2591
Dan Gohman4f8eea82010-02-01 18:27:38 +00002592 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2593 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002594 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002595 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002596 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002597 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2598}
2599
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002600const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002601 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2602 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002603 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002604 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002605 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002606 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2607}
2608
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002609const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002610 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002611 // If we have TargetData, we can bypass creating a target-independent
2612 // constant expression and then folding it back into a ConstantInt.
2613 // This is just a compile-time optimization.
2614 if (TD)
2615 return getConstant(TD->getIntPtrType(getContext()),
2616 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2617
Dan Gohman0f5efe52010-01-28 02:15:55 +00002618 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2619 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002620 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002621 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002622 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002623 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002624}
2625
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002626const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002627 Constant *FieldNo) {
2628 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002629 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002630 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002631 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002632 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002633 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002634}
2635
Dan Gohman0bba49c2009-07-07 17:06:11 +00002636const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002637 // Don't attempt to do anything other than create a SCEVUnknown object
2638 // here. createSCEV only calls getUnknown after checking for all other
2639 // interesting possibilities, and any other code that calls getUnknown
2640 // is doing so in order to hide a value from SCEV canonicalization.
2641
Dan Gohman1c343752009-06-27 21:21:31 +00002642 FoldingSetNodeID ID;
2643 ID.AddInteger(scUnknown);
2644 ID.AddPointer(V);
2645 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002646 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2647 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2648 "Stale SCEVUnknown in uniquing map!");
2649 return S;
2650 }
2651 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2652 FirstUnknown);
2653 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002654 UniqueSCEVs.InsertNode(S, IP);
2655 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002656}
2657
Chris Lattner53e677a2004-04-02 20:23:17 +00002658//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002659// Basic SCEV Analysis and PHI Idiom Recognition Code
2660//
2661
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002662/// isSCEVable - Test if values of the given type are analyzable within
2663/// the SCEV framework. This primarily includes integer types, and it
2664/// can optionally include pointer types if the ScalarEvolution class
2665/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002666bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002667 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002668 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002669}
2670
2671/// getTypeSizeInBits - Return the size in bits of the specified type,
2672/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002673uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002674 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2675
2676 // If we have a TargetData, use it!
2677 if (TD)
2678 return TD->getTypeSizeInBits(Ty);
2679
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002680 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002681 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002682 return Ty->getPrimitiveSizeInBits();
2683
2684 // The only other support type is pointer. Without TargetData, conservatively
2685 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002686 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002687 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002688}
2689
2690/// getEffectiveSCEVType - Return a type with the same bitwidth as
2691/// the given type and which represents how SCEV will treat the given
2692/// type, for which isSCEVable must return true. For pointer types,
2693/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002694Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002695 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2696
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002697 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002698 return Ty;
2699
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002700 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002701 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002702 if (TD) return TD->getIntPtrType(getContext());
2703
2704 // Without TargetData, conservatively assume pointers are 64-bit.
2705 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002706}
Chris Lattner53e677a2004-04-02 20:23:17 +00002707
Dan Gohman0bba49c2009-07-07 17:06:11 +00002708const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002709 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002710}
2711
Chris Lattner53e677a2004-04-02 20:23:17 +00002712/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2713/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002714const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002715 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002716
Benjamin Kramer992c25a2012-06-30 22:37:15 +00002717 ValueExprMapType::const_iterator I = ValueExprMap.find_as(V);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002718 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002719 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002720
2721 // The process of creating a SCEV for V may have caused other SCEVs
2722 // to have been created, so it's necessary to insert the new entry
2723 // from scratch, rather than trying to remember the insert position
2724 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002725 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002726 return S;
2727}
2728
Dan Gohman2d1be872009-04-16 03:18:22 +00002729/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2730///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002731const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002732 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002733 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002734 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002735
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002736 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002737 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002738 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002739 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002740}
2741
2742/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002743const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002744 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002745 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002746 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002747
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002748 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002749 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002750 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002751 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002752 return getMinusSCEV(AllOnes, V);
2753}
2754
Andrew Trick3228cc22011-03-14 16:50:06 +00002755/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002756const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002757 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002758 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2759
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002760 // Fast path: X - X --> 0.
2761 if (LHS == RHS)
2762 return getConstant(LHS->getType(), 0);
2763
Dan Gohman2d1be872009-04-16 03:18:22 +00002764 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002765 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002766}
2767
2768/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2769/// input value to the specified type. If the type must be extended, it is zero
2770/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002771const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002772ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2773 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002774 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2775 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002776 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002777 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002778 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002779 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002780 return getTruncateExpr(V, Ty);
2781 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002782}
2783
2784/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2785/// input value to the specified type. If the type must be extended, it is sign
2786/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002787const SCEV *
2788ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002789 Type *Ty) {
2790 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002791 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2792 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002793 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002794 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002795 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002796 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002797 return getTruncateExpr(V, Ty);
2798 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002799}
2800
Dan Gohman467c4302009-05-13 03:46:30 +00002801/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2802/// input value to the specified type. If the type must be extended, it is zero
2803/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002804const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002805ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2806 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002807 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2808 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002809 "Cannot noop or zero extend with non-integer arguments!");
2810 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2811 "getNoopOrZeroExtend cannot truncate!");
2812 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2813 return V; // No conversion
2814 return getZeroExtendExpr(V, Ty);
2815}
2816
2817/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2818/// input value to the specified type. If the type must be extended, it is sign
2819/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002820const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002821ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2822 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002823 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2824 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002825 "Cannot noop or sign extend with non-integer arguments!");
2826 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2827 "getNoopOrSignExtend cannot truncate!");
2828 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2829 return V; // No conversion
2830 return getSignExtendExpr(V, Ty);
2831}
2832
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002833/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2834/// the input value to the specified type. If the type must be extended,
2835/// it is extended with unspecified bits. The conversion must not be
2836/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002837const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002838ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2839 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002840 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2841 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002842 "Cannot noop or any extend with non-integer arguments!");
2843 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2844 "getNoopOrAnyExtend cannot truncate!");
2845 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2846 return V; // No conversion
2847 return getAnyExtendExpr(V, Ty);
2848}
2849
Dan Gohman467c4302009-05-13 03:46:30 +00002850/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2851/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002852const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002853ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2854 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002855 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2856 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002857 "Cannot truncate or noop with non-integer arguments!");
2858 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2859 "getTruncateOrNoop cannot extend!");
2860 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2861 return V; // No conversion
2862 return getTruncateExpr(V, Ty);
2863}
2864
Dan Gohmana334aa72009-06-22 00:31:57 +00002865/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2866/// the types using zero-extension, and then perform a umax operation
2867/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002868const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2869 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002870 const SCEV *PromotedLHS = LHS;
2871 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002872
2873 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2874 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2875 else
2876 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2877
2878 return getUMaxExpr(PromotedLHS, PromotedRHS);
2879}
2880
Dan Gohmanc9759e82009-06-22 15:03:27 +00002881/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2882/// the types using zero-extension, and then perform a umin operation
2883/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002884const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2885 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002886 const SCEV *PromotedLHS = LHS;
2887 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002888
2889 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2890 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2891 else
2892 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2893
2894 return getUMinExpr(PromotedLHS, PromotedRHS);
2895}
2896
Andrew Trickb12a7542011-03-17 23:51:11 +00002897/// getPointerBase - Transitively follow the chain of pointer-type operands
2898/// until reaching a SCEV that does not have a single pointer operand. This
2899/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2900/// but corner cases do exist.
2901const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2902 // A pointer operand may evaluate to a nonpointer expression, such as null.
2903 if (!V->getType()->isPointerTy())
2904 return V;
2905
2906 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2907 return getPointerBase(Cast->getOperand());
2908 }
2909 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2910 const SCEV *PtrOp = 0;
2911 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2912 I != E; ++I) {
2913 if ((*I)->getType()->isPointerTy()) {
2914 // Cannot find the base of an expression with multiple pointer operands.
2915 if (PtrOp)
2916 return V;
2917 PtrOp = *I;
2918 }
2919 }
2920 if (!PtrOp)
2921 return V;
2922 return getPointerBase(PtrOp);
2923 }
2924 return V;
2925}
2926
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002927/// PushDefUseChildren - Push users of the given Instruction
2928/// onto the given Worklist.
2929static void
2930PushDefUseChildren(Instruction *I,
2931 SmallVectorImpl<Instruction *> &Worklist) {
2932 // Push the def-use children onto the Worklist stack.
2933 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2934 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002935 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002936}
2937
2938/// ForgetSymbolicValue - This looks up computed SCEV values for all
2939/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002940/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002941/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002942void
Dan Gohman85669632010-02-25 06:57:05 +00002943ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002944 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002945 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002946
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002947 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002948 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002949 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002950 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002951 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002952
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002953 ValueExprMapType::iterator It =
Benjamin Kramer992c25a2012-06-30 22:37:15 +00002954 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002955 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002956 const SCEV *Old = It->second;
2957
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002958 // Short-circuit the def-use traversal if the symbolic name
2959 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002960 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002961 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002962
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002963 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002964 // structure, it's a PHI that's in the progress of being computed
2965 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2966 // additional loop trip count information isn't going to change anything.
2967 // In the second case, createNodeForPHI will perform the necessary
2968 // updates on its own when it gets to that point. In the third, we do
2969 // want to forget the SCEVUnknown.
2970 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002971 !isa<SCEVUnknown>(Old) ||
2972 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002973 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002974 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002975 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002976 }
2977
2978 PushDefUseChildren(I, Worklist);
2979 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002980}
Chris Lattner53e677a2004-04-02 20:23:17 +00002981
2982/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2983/// a loop header, making it a potential recurrence, or it doesn't.
2984///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002985const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002986 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2987 if (L->getHeader() == PN->getParent()) {
2988 // The loop may have multiple entrances or multiple exits; we can analyze
2989 // this phi as an addrec if it has a unique entry value and a unique
2990 // backedge value.
2991 Value *BEValueV = 0, *StartValueV = 0;
2992 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2993 Value *V = PN->getIncomingValue(i);
2994 if (L->contains(PN->getIncomingBlock(i))) {
2995 if (!BEValueV) {
2996 BEValueV = V;
2997 } else if (BEValueV != V) {
2998 BEValueV = 0;
2999 break;
3000 }
3001 } else if (!StartValueV) {
3002 StartValueV = V;
3003 } else if (StartValueV != V) {
3004 StartValueV = 0;
3005 break;
3006 }
3007 }
3008 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003009 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003010 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramer992c25a2012-06-30 22:37:15 +00003011 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003012 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003013 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00003014
3015 // Using this symbolic name for the PHI, analyze the value coming around
3016 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003017 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00003018
3019 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3020 // has a special value for the first iteration of the loop.
3021
3022 // If the value coming around the backedge is an add with the symbolic
3023 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00003024 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003025 // If there is a single occurrence of the symbolic value, replace it
3026 // with a recurrence.
3027 unsigned FoundIndex = Add->getNumOperands();
3028 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3029 if (Add->getOperand(i) == SymbolicName)
3030 if (FoundIndex == e) {
3031 FoundIndex = i;
3032 break;
3033 }
3034
3035 if (FoundIndex != Add->getNumOperands()) {
3036 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003037 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00003038 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3039 if (i != FoundIndex)
3040 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00003041 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00003042
3043 // This is not a valid addrec if the step amount is varying each
3044 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003045 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00003046 (isa<SCEVAddRecExpr>(Accum) &&
3047 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003048 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00003049
3050 // If the increment doesn't overflow, then neither the addrec nor
3051 // the post-increment will overflow.
3052 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3053 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003054 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003055 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003056 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00003057 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00003058 dyn_cast<GEPOperator>(BEValueV)) {
3059 // If the increment is an inbounds GEP, then we know the address
3060 // space cannot be wrapped around. We cannot make any guarantee
3061 // about signed or unsigned overflow because pointers are
3062 // unsigned but we may have a negative index from the base
3063 // pointer.
3064 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00003065 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003066 }
3067
Dan Gohman27dead42010-04-12 07:49:36 +00003068 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00003069 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00003070
Dan Gohmana10756e2010-01-21 02:09:26 +00003071 // Since the no-wrap flags are on the increment, they apply to the
3072 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003073 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003074 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003075 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003076
3077 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003078 // to be symbolic. We now need to go back and purge all of the
3079 // entries for the scalars that use the symbolic expression.
3080 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003081 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003082 return PHISCEV;
3083 }
3084 }
Dan Gohman622ed672009-05-04 22:02:23 +00003085 } else if (const SCEVAddRecExpr *AddRec =
3086 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003087 // Otherwise, this could be a loop like this:
3088 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3089 // In this case, j = {1,+,1} and BEValue is j.
3090 // Because the other in-value of i (0) fits the evolution of BEValue
3091 // i really is an addrec evolution.
3092 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003093 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003094
3095 // If StartVal = j.start - j.stride, we can use StartVal as the
3096 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003097 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003098 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003099 // FIXME: For constant StartVal, we should be able to infer
3100 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003101 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003102 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3103 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003104
3105 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003106 // to be symbolic. We now need to go back and purge all of the
3107 // entries for the scalars that use the symbolic expression.
3108 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003109 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003110 return PHISCEV;
3111 }
3112 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003113 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003114 }
Dan Gohman27dead42010-04-12 07:49:36 +00003115 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003116
Dan Gohman85669632010-02-25 06:57:05 +00003117 // If the PHI has a single incoming value, follow that value, unless the
3118 // PHI's incoming blocks are in a different loop, in which case doing so
3119 // risks breaking LCSSA form. Instcombine would normally zap these, but
3120 // it doesn't have DominatorTree information, so it may miss cases.
Chad Rosier618c1db2011-12-01 03:08:23 +00003121 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003122 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003123 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003124
Chris Lattner53e677a2004-04-02 20:23:17 +00003125 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003126 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003127}
3128
Dan Gohman26466c02009-05-08 20:26:55 +00003129/// createNodeForGEP - Expand GEP instructions into add and multiply
3130/// operations. This allows them to be analyzed by regular SCEV code.
3131///
Dan Gohmand281ed22009-12-18 02:09:29 +00003132const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003133
Dan Gohmanb9f96512010-06-30 07:16:37 +00003134 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3135 // Add expression, because the Instruction may be guarded by control flow
3136 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003137 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003138 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003139
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003140 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003141 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003142 // Don't attempt to analyze GEPs over unsized objects.
3143 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3144 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003145 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003146 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003147 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003148 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003149 I != E; ++I) {
3150 Value *Index = *I;
3151 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003152 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003153 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003154 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00003155 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3156
Dan Gohmanb9f96512010-06-30 07:16:37 +00003157 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003158 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003159 } else {
3160 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003161 const SCEV *ElementSize = getSizeOfExpr(*GTI);
3162 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003163 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003164 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3165
Dan Gohmanb9f96512010-06-30 07:16:37 +00003166 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003167 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3168 isInBounds ? SCEV::FlagNSW :
3169 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003170
3171 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003172 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003173 }
3174 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003175
3176 // Get the SCEV for the GEP base.
3177 const SCEV *BaseS = getSCEV(Base);
3178
Dan Gohmanb9f96512010-06-30 07:16:37 +00003179 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003180 return getAddExpr(BaseS, TotalOffset,
Benjamin Kramer86df0622012-04-17 06:33:57 +00003181 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003182}
3183
Nick Lewycky83bb0052007-11-22 07:59:40 +00003184/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3185/// guaranteed to end in (at every loop iteration). It is, at the same time,
3186/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3187/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003188uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003189ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003190 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003191 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003192
Dan Gohman622ed672009-05-04 22:02:23 +00003193 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003194 return std::min(GetMinTrailingZeros(T->getOperand()),
3195 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003196
Dan Gohman622ed672009-05-04 22:02:23 +00003197 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003198 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3199 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3200 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003201 }
3202
Dan Gohman622ed672009-05-04 22:02:23 +00003203 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003204 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3205 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3206 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003207 }
3208
Dan Gohman622ed672009-05-04 22:02:23 +00003209 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003210 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003211 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003212 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003213 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003214 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003215 }
3216
Dan Gohman622ed672009-05-04 22:02:23 +00003217 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003218 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003219 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3220 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003221 for (unsigned i = 1, e = M->getNumOperands();
3222 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003223 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003224 BitWidth);
3225 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003226 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003227
Dan Gohman622ed672009-05-04 22:02:23 +00003228 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003229 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003230 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003231 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003232 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003233 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003234 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003235
Dan Gohman622ed672009-05-04 22:02:23 +00003236 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003237 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003238 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003239 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003240 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003241 return MinOpRes;
3242 }
3243
Dan Gohman622ed672009-05-04 22:02:23 +00003244 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003245 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003246 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003247 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003248 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003249 return MinOpRes;
3250 }
3251
Dan Gohman2c364ad2009-06-19 23:29:04 +00003252 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3253 // For a SCEVUnknown, ask ValueTracking.
3254 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohman2c364ad2009-06-19 23:29:04 +00003255 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003256 ComputeMaskedBits(U->getValue(), Zeros, Ones);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003257 return Zeros.countTrailingOnes();
3258 }
3259
3260 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003261 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003262}
Chris Lattner53e677a2004-04-02 20:23:17 +00003263
Dan Gohman85b05a22009-07-13 21:35:55 +00003264/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3265///
3266ConstantRange
3267ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003268 // See if we've computed this range already.
3269 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3270 if (I != UnsignedRanges.end())
3271 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003272
3273 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003274 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003275
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003276 unsigned BitWidth = getTypeSizeInBits(S->getType());
3277 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3278
3279 // If the value has known zeros, the maximum unsigned value will have those
3280 // known zeros as well.
3281 uint32_t TZ = GetMinTrailingZeros(S);
3282 if (TZ != 0)
3283 ConservativeResult =
3284 ConstantRange(APInt::getMinValue(BitWidth),
3285 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3286
Dan Gohman85b05a22009-07-13 21:35:55 +00003287 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3288 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3289 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3290 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003291 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003292 }
3293
3294 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3295 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3296 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3297 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003298 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003299 }
3300
3301 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3302 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3303 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3304 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003305 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003306 }
3307
3308 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3309 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3310 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3311 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003312 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003313 }
3314
3315 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3316 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3317 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003318 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003319 }
3320
3321 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3322 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003323 return setUnsignedRange(ZExt,
3324 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003325 }
3326
3327 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3328 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003329 return setUnsignedRange(SExt,
3330 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003331 }
3332
3333 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3334 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003335 return setUnsignedRange(Trunc,
3336 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003337 }
3338
Dan Gohman85b05a22009-07-13 21:35:55 +00003339 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003340 // If there's no unsigned wrap, the value will never be less than its
3341 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003342 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003343 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003344 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003345 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003346 ConservativeResult.intersectWith(
3347 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003348
3349 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003350 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003351 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003352 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003353 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3354 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003355 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3356
3357 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003358 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003359
3360 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003361 ConstantRange StepRange = getSignedRange(Step);
3362 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3363 ConstantRange EndRange =
3364 StartRange.add(MaxBECountRange.multiply(StepRange));
3365
3366 // Check for overflow. This must be done with ConstantRange arithmetic
3367 // because we could be called from within the ScalarEvolution overflow
3368 // checking code.
3369 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3370 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3371 ConstantRange ExtMaxBECountRange =
3372 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3373 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3374 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3375 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003376 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003377
Dan Gohman85b05a22009-07-13 21:35:55 +00003378 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3379 EndRange.getUnsignedMin());
3380 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3381 EndRange.getUnsignedMax());
3382 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003383 return setUnsignedRange(AddRec, ConservativeResult);
3384 return setUnsignedRange(AddRec,
3385 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003386 }
3387 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003388
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003389 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003390 }
3391
3392 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3393 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003394 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003395 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003396 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003397 return setUnsignedRange(U, ConservativeResult);
3398 return setUnsignedRange(U,
3399 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003400 }
3401
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003402 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003403}
3404
Dan Gohman85b05a22009-07-13 21:35:55 +00003405/// getSignedRange - Determine the signed range for a particular SCEV.
3406///
3407ConstantRange
3408ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003409 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003410 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3411 if (I != SignedRanges.end())
3412 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003413
Dan Gohman85b05a22009-07-13 21:35:55 +00003414 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003415 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003416
Dan Gohman52fddd32010-01-26 04:40:18 +00003417 unsigned BitWidth = getTypeSizeInBits(S->getType());
3418 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3419
3420 // If the value has known zeros, the maximum signed value will have those
3421 // known zeros as well.
3422 uint32_t TZ = GetMinTrailingZeros(S);
3423 if (TZ != 0)
3424 ConservativeResult =
3425 ConstantRange(APInt::getSignedMinValue(BitWidth),
3426 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3427
Dan Gohman85b05a22009-07-13 21:35:55 +00003428 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3429 ConstantRange X = getSignedRange(Add->getOperand(0));
3430 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3431 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003432 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003433 }
3434
Dan Gohman85b05a22009-07-13 21:35:55 +00003435 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3436 ConstantRange X = getSignedRange(Mul->getOperand(0));
3437 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3438 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003439 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003440 }
3441
Dan Gohman85b05a22009-07-13 21:35:55 +00003442 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3443 ConstantRange X = getSignedRange(SMax->getOperand(0));
3444 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3445 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003446 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003447 }
Dan Gohman62849c02009-06-24 01:05:09 +00003448
Dan Gohman85b05a22009-07-13 21:35:55 +00003449 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3450 ConstantRange X = getSignedRange(UMax->getOperand(0));
3451 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3452 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003453 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003454 }
Dan Gohman62849c02009-06-24 01:05:09 +00003455
Dan Gohman85b05a22009-07-13 21:35:55 +00003456 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3457 ConstantRange X = getSignedRange(UDiv->getLHS());
3458 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003459 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003460 }
Dan Gohman62849c02009-06-24 01:05:09 +00003461
Dan Gohman85b05a22009-07-13 21:35:55 +00003462 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3463 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003464 return setSignedRange(ZExt,
3465 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003466 }
3467
3468 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3469 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003470 return setSignedRange(SExt,
3471 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003472 }
3473
3474 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3475 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003476 return setSignedRange(Trunc,
3477 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003478 }
3479
Dan Gohman85b05a22009-07-13 21:35:55 +00003480 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003481 // If there's no signed wrap, and all the operands have the same sign or
3482 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003483 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003484 bool AllNonNeg = true;
3485 bool AllNonPos = true;
3486 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3487 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3488 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3489 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003490 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003491 ConservativeResult = ConservativeResult.intersectWith(
3492 ConstantRange(APInt(BitWidth, 0),
3493 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003494 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003495 ConservativeResult = ConservativeResult.intersectWith(
3496 ConstantRange(APInt::getSignedMinValue(BitWidth),
3497 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003498 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003499
3500 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003501 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003502 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003503 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003504 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3505 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003506 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3507
3508 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003509 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003510
3511 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003512 ConstantRange StepRange = getSignedRange(Step);
3513 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3514 ConstantRange EndRange =
3515 StartRange.add(MaxBECountRange.multiply(StepRange));
3516
3517 // Check for overflow. This must be done with ConstantRange arithmetic
3518 // because we could be called from within the ScalarEvolution overflow
3519 // checking code.
3520 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3521 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3522 ConstantRange ExtMaxBECountRange =
3523 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3524 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3525 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3526 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003527 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003528
Dan Gohman85b05a22009-07-13 21:35:55 +00003529 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3530 EndRange.getSignedMin());
3531 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3532 EndRange.getSignedMax());
3533 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003534 return setSignedRange(AddRec, ConservativeResult);
3535 return setSignedRange(AddRec,
3536 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003537 }
Dan Gohman62849c02009-06-24 01:05:09 +00003538 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003539
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003540 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003541 }
3542
Dan Gohman2c364ad2009-06-19 23:29:04 +00003543 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3544 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003545 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003546 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003547 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3548 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003549 return setSignedRange(U, ConservativeResult);
3550 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003551 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003552 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003553 }
3554
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003555 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003556}
3557
Chris Lattner53e677a2004-04-02 20:23:17 +00003558/// createSCEV - We know that there is no SCEV for the specified value.
3559/// Analyze the expression.
3560///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003561const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003562 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003563 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003564
Dan Gohman6c459a22008-06-22 19:56:46 +00003565 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003566 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003567 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003568
3569 // Don't attempt to analyze instructions in blocks that aren't
3570 // reachable. Such instructions don't matter, and they aren't required
3571 // to obey basic rules for definitions dominating uses which this
3572 // analysis depends on.
3573 if (!DT->isReachableFromEntry(I->getParent()))
3574 return getUnknown(V);
3575 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003576 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003577 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3578 return getConstant(CI);
3579 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003580 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003581 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3582 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003583 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003584 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003585
Dan Gohmanca178902009-07-17 20:47:02 +00003586 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003587 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003588 case Instruction::Add: {
3589 // The simple thing to do would be to just call getSCEV on both operands
3590 // and call getAddExpr with the result. However if we're looking at a
3591 // bunch of things all added together, this can be quite inefficient,
3592 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3593 // Instead, gather up all the operands and make a single getAddExpr call.
3594 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickecb35ec2011-11-29 02:16:38 +00003595 //
3596 // Don't apply this instruction's NSW or NUW flags to the new
3597 // expression. The instruction may be guarded by control flow that the
3598 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3599 // mapped to the same SCEV expression, and it would be incorrect to transfer
3600 // NSW/NUW semantics to those operations.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003601 SmallVector<const SCEV *, 4> AddOps;
3602 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003603 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3604 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3605 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3606 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003607 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003608 const SCEV *Op1 = getSCEV(U->getOperand(1));
3609 if (Opcode == Instruction::Sub)
3610 AddOps.push_back(getNegativeSCEV(Op1));
3611 else
3612 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003613 }
3614 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickecb35ec2011-11-29 02:16:38 +00003615 return getAddExpr(AddOps);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003616 }
3617 case Instruction::Mul: {
Andrew Trickecb35ec2011-11-29 02:16:38 +00003618 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003619 SmallVector<const SCEV *, 4> MulOps;
3620 MulOps.push_back(getSCEV(U->getOperand(1)));
3621 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003622 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003623 Op = U->getOperand(0)) {
3624 U = cast<Operator>(Op);
3625 MulOps.push_back(getSCEV(U->getOperand(1)));
3626 }
3627 MulOps.push_back(getSCEV(U->getOperand(0)));
3628 return getMulExpr(MulOps);
3629 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003630 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003631 return getUDivExpr(getSCEV(U->getOperand(0)),
3632 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003633 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003634 return getMinusSCEV(getSCEV(U->getOperand(0)),
3635 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003636 case Instruction::And:
3637 // For an expression like x&255 that merely masks off the high bits,
3638 // use zext(trunc(x)) as the SCEV expression.
3639 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003640 if (CI->isNullValue())
3641 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003642 if (CI->isAllOnesValue())
3643 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003644 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003645
3646 // Instcombine's ShrinkDemandedConstant may strip bits out of
3647 // constants, obscuring what would otherwise be a low-bits mask.
3648 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3649 // knew about to reconstruct a low-bits mask value.
3650 unsigned LZ = A.countLeadingZeros();
3651 unsigned BitWidth = A.getBitWidth();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003652 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003653 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003654
3655 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3656
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003657 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003658 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003659 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003660 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003661 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003662 }
3663 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003664
Dan Gohman6c459a22008-06-22 19:56:46 +00003665 case Instruction::Or:
3666 // If the RHS of the Or is a constant, we may have something like:
3667 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3668 // optimizations will transparently handle this case.
3669 //
3670 // In order for this transformation to be safe, the LHS must be of the
3671 // form X*(2^n) and the Or constant must be less than 2^n.
3672 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003673 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003674 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003675 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003676 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3677 // Build a plain add SCEV.
3678 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3679 // If the LHS of the add was an addrec and it has no-wrap flags,
3680 // transfer the no-wrap flags, since an or won't introduce a wrap.
3681 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3682 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003683 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3684 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003685 }
3686 return S;
3687 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003688 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003689 break;
3690 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003691 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003692 // If the RHS of the xor is a signbit, then this is just an add.
3693 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003694 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003695 return getAddExpr(getSCEV(U->getOperand(0)),
3696 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003697
3698 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003699 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003700 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003701
3702 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3703 // This is a variant of the check for xor with -1, and it handles
3704 // the case where instcombine has trimmed non-demanded bits out
3705 // of an xor with -1.
3706 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3707 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3708 if (BO->getOpcode() == Instruction::And &&
3709 LCI->getValue() == CI->getValue())
3710 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003711 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003712 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003713 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003714 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003715 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3716
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003717 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003718 // mask off the high bits. Complement the operand and
3719 // re-apply the zext.
3720 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3721 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3722
3723 // If C is a single bit, it may be in the sign-bit position
3724 // before the zero-extend. In this case, represent the xor
3725 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003726 APInt Trunc = CI->getValue().trunc(Z0TySize);
3727 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003728 Trunc.isSignBit())
3729 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3730 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003731 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003732 }
3733 break;
3734
3735 case Instruction::Shl:
3736 // Turn shift left of a constant amount into a multiply.
3737 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003738 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003739
3740 // If the shift count is not less than the bitwidth, the result of
3741 // the shift is undefined. Don't try to analyze it, because the
3742 // resolution chosen here may differ from the resolution chosen in
3743 // other parts of the compiler.
3744 if (SA->getValue().uge(BitWidth))
3745 break;
3746
Owen Andersoneed707b2009-07-24 23:12:02 +00003747 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003748 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003749 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003750 }
3751 break;
3752
Nick Lewycky01eaf802008-07-07 06:15:49 +00003753 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003754 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003755 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003756 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003757
3758 // If the shift count is not less than the bitwidth, the result of
3759 // the shift is undefined. Don't try to analyze it, because the
3760 // resolution chosen here may differ from the resolution chosen in
3761 // other parts of the compiler.
3762 if (SA->getValue().uge(BitWidth))
3763 break;
3764
Owen Andersoneed707b2009-07-24 23:12:02 +00003765 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003766 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003767 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003768 }
3769 break;
3770
Dan Gohman4ee29af2009-04-21 02:26:00 +00003771 case Instruction::AShr:
3772 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3773 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003774 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003775 if (L->getOpcode() == Instruction::Shl &&
3776 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003777 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3778
3779 // If the shift count is not less than the bitwidth, the result of
3780 // the shift is undefined. Don't try to analyze it, because the
3781 // resolution chosen here may differ from the resolution chosen in
3782 // other parts of the compiler.
3783 if (CI->getValue().uge(BitWidth))
3784 break;
3785
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003786 uint64_t Amt = BitWidth - CI->getZExtValue();
3787 if (Amt == BitWidth)
3788 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003789 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003790 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003791 IntegerType::get(getContext(),
3792 Amt)),
3793 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003794 }
3795 break;
3796
Dan Gohman6c459a22008-06-22 19:56:46 +00003797 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003798 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003799
3800 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003801 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003802
3803 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003804 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003805
3806 case Instruction::BitCast:
3807 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003808 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003809 return getSCEV(U->getOperand(0));
3810 break;
3811
Dan Gohman4f8eea82010-02-01 18:27:38 +00003812 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3813 // lead to pointer expressions which cannot safely be expanded to GEPs,
3814 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3815 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003816
Dan Gohman26466c02009-05-08 20:26:55 +00003817 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003818 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003819
Dan Gohman6c459a22008-06-22 19:56:46 +00003820 case Instruction::PHI:
3821 return createNodeForPHI(cast<PHINode>(U));
3822
3823 case Instruction::Select:
3824 // This could be a smax or umax that was lowered earlier.
3825 // Try to recover it.
3826 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3827 Value *LHS = ICI->getOperand(0);
3828 Value *RHS = ICI->getOperand(1);
3829 switch (ICI->getPredicate()) {
3830 case ICmpInst::ICMP_SLT:
3831 case ICmpInst::ICMP_SLE:
3832 std::swap(LHS, RHS);
3833 // fall through
3834 case ICmpInst::ICMP_SGT:
3835 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003836 // a >s b ? a+x : b+x -> smax(a, b)+x
3837 // a >s b ? b+x : a+x -> smin(a, b)+x
3838 if (LHS->getType() == U->getType()) {
3839 const SCEV *LS = getSCEV(LHS);
3840 const SCEV *RS = getSCEV(RHS);
3841 const SCEV *LA = getSCEV(U->getOperand(1));
3842 const SCEV *RA = getSCEV(U->getOperand(2));
3843 const SCEV *LDiff = getMinusSCEV(LA, LS);
3844 const SCEV *RDiff = getMinusSCEV(RA, RS);
3845 if (LDiff == RDiff)
3846 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3847 LDiff = getMinusSCEV(LA, RS);
3848 RDiff = getMinusSCEV(RA, LS);
3849 if (LDiff == RDiff)
3850 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3851 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003852 break;
3853 case ICmpInst::ICMP_ULT:
3854 case ICmpInst::ICMP_ULE:
3855 std::swap(LHS, RHS);
3856 // fall through
3857 case ICmpInst::ICMP_UGT:
3858 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003859 // a >u b ? a+x : b+x -> umax(a, b)+x
3860 // a >u b ? b+x : a+x -> umin(a, b)+x
3861 if (LHS->getType() == U->getType()) {
3862 const SCEV *LS = getSCEV(LHS);
3863 const SCEV *RS = getSCEV(RHS);
3864 const SCEV *LA = getSCEV(U->getOperand(1));
3865 const SCEV *RA = getSCEV(U->getOperand(2));
3866 const SCEV *LDiff = getMinusSCEV(LA, LS);
3867 const SCEV *RDiff = getMinusSCEV(RA, RS);
3868 if (LDiff == RDiff)
3869 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3870 LDiff = getMinusSCEV(LA, RS);
3871 RDiff = getMinusSCEV(RA, LS);
3872 if (LDiff == RDiff)
3873 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3874 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003875 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003876 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003877 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3878 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003879 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003880 cast<ConstantInt>(RHS)->isZero()) {
3881 const SCEV *One = getConstant(LHS->getType(), 1);
3882 const SCEV *LS = getSCEV(LHS);
3883 const SCEV *LA = getSCEV(U->getOperand(1));
3884 const SCEV *RA = getSCEV(U->getOperand(2));
3885 const SCEV *LDiff = getMinusSCEV(LA, LS);
3886 const SCEV *RDiff = getMinusSCEV(RA, One);
3887 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003888 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003889 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003890 break;
3891 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003892 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3893 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003894 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003895 cast<ConstantInt>(RHS)->isZero()) {
3896 const SCEV *One = getConstant(LHS->getType(), 1);
3897 const SCEV *LS = getSCEV(LHS);
3898 const SCEV *LA = getSCEV(U->getOperand(1));
3899 const SCEV *RA = getSCEV(U->getOperand(2));
3900 const SCEV *LDiff = getMinusSCEV(LA, One);
3901 const SCEV *RDiff = getMinusSCEV(RA, LS);
3902 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003903 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003904 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003905 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003906 default:
3907 break;
3908 }
3909 }
3910
3911 default: // We cannot analyze this expression.
3912 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003913 }
3914
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003915 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003916}
3917
3918
3919
3920//===----------------------------------------------------------------------===//
3921// Iteration Count Computation Code
3922//
3923
Andrew Trickb1831c62011-08-11 23:36:16 +00003924/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Trick3eada312012-01-11 06:52:55 +00003925/// normal unsigned value. Returns 0 if the trip count is unknown or not
3926/// constant. Will also return 0 if the maximum trip count is very large (>=
3927/// 2^32).
3928///
3929/// This "trip count" assumes that control exits via ExitingBlock. More
3930/// precisely, it is the number of times that control may reach ExitingBlock
3931/// before taking the branch. For loops with multiple exits, it may not be the
3932/// number times that the loop header executes because the loop may exit
3933/// prematurely via another branch.
3934unsigned ScalarEvolution::
3935getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) {
Andrew Trickb1831c62011-08-11 23:36:16 +00003936 const SCEVConstant *ExitCount =
Andrew Trick3eada312012-01-11 06:52:55 +00003937 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trickb1831c62011-08-11 23:36:16 +00003938 if (!ExitCount)
3939 return 0;
3940
3941 ConstantInt *ExitConst = ExitCount->getValue();
3942
3943 // Guard against huge trip counts.
3944 if (ExitConst->getValue().getActiveBits() > 32)
3945 return 0;
3946
3947 // In case of integer overflow, this returns 0, which is correct.
3948 return ((unsigned)ExitConst->getZExtValue()) + 1;
3949}
3950
3951/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3952/// trip count of this loop as a normal unsigned value, if possible. This
3953/// means that the actual trip count is always a multiple of the returned
3954/// value (don't forget the trip count could very well be zero as well!).
3955///
3956/// Returns 1 if the trip count is unknown or not guaranteed to be the
3957/// multiple of a constant (which is also the case if the trip count is simply
3958/// constant, use getSmallConstantTripCount for that case), Will also return 1
3959/// if the trip count is very large (>= 2^32).
Andrew Trick3eada312012-01-11 06:52:55 +00003960///
3961/// As explained in the comments for getSmallConstantTripCount, this assumes
3962/// that control exits the loop via ExitingBlock.
3963unsigned ScalarEvolution::
3964getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) {
3965 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trickb1831c62011-08-11 23:36:16 +00003966 if (ExitCount == getCouldNotCompute())
3967 return 1;
3968
3969 // Get the trip count from the BE count by adding 1.
3970 const SCEV *TCMul = getAddExpr(ExitCount,
3971 getConstant(ExitCount->getType(), 1));
3972 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3973 // to factor simple cases.
3974 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3975 TCMul = Mul->getOperand(0);
3976
3977 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3978 if (!MulC)
3979 return 1;
3980
3981 ConstantInt *Result = MulC->getValue();
3982
3983 // Guard against huge trip counts.
3984 if (!Result || Result->getValue().getActiveBits() > 32)
3985 return 1;
3986
3987 return (unsigned)Result->getZExtValue();
3988}
3989
Andrew Trick5116ff62011-07-26 17:19:55 +00003990// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickfcb43562011-08-02 04:23:35 +00003991// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00003992// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00003993const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
3994 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00003995}
3996
Dan Gohman46bdfb02009-02-24 18:55:53 +00003997/// getBackedgeTakenCount - If the specified loop has a predictable
3998/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3999/// object. The backedge-taken count is the number of times the loop header
4000/// will be branched to from within the loop. This is one less than the
4001/// trip count of the loop, since it doesn't count the first iteration,
4002/// when the header is branched to from outside the loop.
4003///
4004/// Note that it is not valid to call this method on a loop without a
4005/// loop-invariant backedge-taken count (see
4006/// hasLoopInvariantBackedgeTakenCount).
4007///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004008const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004009 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004010}
4011
4012/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4013/// return the least SCEV value that is known never to be less than the
4014/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004015const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004016 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004017}
4018
Dan Gohman59ae6b92009-07-08 19:23:34 +00004019/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4020/// onto the given Worklist.
4021static void
4022PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4023 BasicBlock *Header = L->getHeader();
4024
4025 // Push all Loop-header PHIs onto the Worklist stack.
4026 for (BasicBlock::iterator I = Header->begin();
4027 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4028 Worklist.push_back(PN);
4029}
4030
Dan Gohmana1af7572009-04-30 20:47:05 +00004031const ScalarEvolution::BackedgeTakenInfo &
4032ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004033 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004034 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00004035 // update the value. The temporary CouldNotCompute value tells SCEV
4036 // code elsewhere that it shouldn't attempt to request a new
4037 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004038 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00004039 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00004040 if (!Pair.second)
4041 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00004042
Andrew Trick5116ff62011-07-26 17:19:55 +00004043 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4044 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4045 // must be cleared in this scope.
4046 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4047
4048 if (Result.getExact(this) != getCouldNotCompute()) {
4049 assert(isLoopInvariant(Result.getExact(this), L) &&
4050 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00004051 "Computed backedge-taken count isn't loop invariant for loop!");
4052 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00004053 }
4054 else if (Result.getMax(this) == getCouldNotCompute() &&
4055 isa<PHINode>(L->getHeader()->begin())) {
4056 // Only count loops that have phi nodes as not being computable.
4057 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00004058 }
Dan Gohmana1af7572009-04-30 20:47:05 +00004059
Chris Lattnerf1859892011-01-09 02:16:18 +00004060 // Now that we know more about the trip count for this loop, forget any
4061 // existing SCEV values for PHI nodes in this loop since they are only
4062 // conservative estimates made without the benefit of trip count
4063 // information. This is similar to the code in forgetLoop, except that
4064 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00004065 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00004066 SmallVector<Instruction *, 16> Worklist;
4067 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004068
Chris Lattnerf1859892011-01-09 02:16:18 +00004069 SmallPtrSet<Instruction *, 8> Visited;
4070 while (!Worklist.empty()) {
4071 Instruction *I = Worklist.pop_back_val();
4072 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004073
Chris Lattnerf1859892011-01-09 02:16:18 +00004074 ValueExprMapType::iterator It =
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004075 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnerf1859892011-01-09 02:16:18 +00004076 if (It != ValueExprMap.end()) {
4077 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00004078
Chris Lattnerf1859892011-01-09 02:16:18 +00004079 // SCEVUnknown for a PHI either means that it has an unrecognized
4080 // structure, or it's a PHI that's in the progress of being computed
4081 // by createNodeForPHI. In the former case, additional loop trip
4082 // count information isn't going to change anything. In the later
4083 // case, createNodeForPHI will perform the necessary updates on its
4084 // own when it gets to that point.
4085 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4086 forgetMemoizedResults(Old);
4087 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004088 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004089 if (PHINode *PN = dyn_cast<PHINode>(I))
4090 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004091 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004092
4093 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004094 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004095 }
Dan Gohman308bec32011-04-25 22:48:29 +00004096
4097 // Re-lookup the insert position, since the call to
4098 // ComputeBackedgeTakenCount above could result in a
4099 // recusive call to getBackedgeTakenInfo (on a different
4100 // loop), which would invalidate the iterator computed
4101 // earlier.
4102 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004103}
4104
Dan Gohman4c7279a2009-10-31 15:04:55 +00004105/// forgetLoop - This method should be called by the client when it has
4106/// changed a loop in a way that may effect ScalarEvolution's ability to
4107/// compute a trip count, or if the loop is deleted.
4108void ScalarEvolution::forgetLoop(const Loop *L) {
4109 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004110 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4111 BackedgeTakenCounts.find(L);
4112 if (BTCPos != BackedgeTakenCounts.end()) {
4113 BTCPos->second.clear();
4114 BackedgeTakenCounts.erase(BTCPos);
4115 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004116
Dan Gohman4c7279a2009-10-31 15:04:55 +00004117 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004118 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004119 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004120
Dan Gohman59ae6b92009-07-08 19:23:34 +00004121 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004122 while (!Worklist.empty()) {
4123 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004124 if (!Visited.insert(I)) continue;
4125
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004126 ValueExprMapType::iterator It =
4127 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004128 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004129 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004130 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004131 if (PHINode *PN = dyn_cast<PHINode>(I))
4132 ConstantEvolutionLoopExitValue.erase(PN);
4133 }
4134
4135 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004136 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004137
4138 // Forget all contained loops too, to avoid dangling entries in the
4139 // ValuesAtScopes map.
4140 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4141 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004142}
4143
Eric Christophere6cbfa62010-07-29 01:25:38 +00004144/// forgetValue - This method should be called by the client when it has
4145/// changed a value in a way that may effect its value, or which may
4146/// disconnect it from a def-use chain linking it to a loop.
4147void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004148 Instruction *I = dyn_cast<Instruction>(V);
4149 if (!I) return;
4150
4151 // Drop information about expressions based on loop-header PHIs.
4152 SmallVector<Instruction *, 16> Worklist;
4153 Worklist.push_back(I);
4154
4155 SmallPtrSet<Instruction *, 8> Visited;
4156 while (!Worklist.empty()) {
4157 I = Worklist.pop_back_val();
4158 if (!Visited.insert(I)) continue;
4159
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004160 ValueExprMapType::iterator It =
4161 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004162 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004163 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004164 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004165 if (PHINode *PN = dyn_cast<PHINode>(I))
4166 ConstantEvolutionLoopExitValue.erase(PN);
4167 }
4168
4169 PushDefUseChildren(I, Worklist);
4170 }
4171}
4172
Andrew Trick5116ff62011-07-26 17:19:55 +00004173/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004174/// exits. A computable result can only be return for loops with a single exit.
4175/// Returning the minimum taken count among all exits is incorrect because one
4176/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4177/// the limit of each loop test is never skipped. This is a valid assumption as
4178/// long as the loop exits via that test. For precise results, it is the
4179/// caller's responsibility to specify the relevant loop exit using
4180/// getExact(ExitingBlock, SE).
Andrew Trick5116ff62011-07-26 17:19:55 +00004181const SCEV *
4182ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4183 // If any exits were not computable, the loop is not computable.
4184 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4185
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004186 // We need exactly one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004187 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004188 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4189
4190 const SCEV *BECount = 0;
4191 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4192 ENT != 0; ENT = ENT->getNextExit()) {
4193
4194 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4195
4196 if (!BECount)
4197 BECount = ENT->ExactNotTaken;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004198 else if (BECount != ENT->ExactNotTaken)
4199 return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004200 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004201 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004202 return BECount;
4203}
4204
4205/// getExact - Get the exact not taken count for this loop exit.
4206const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004207ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004208 ScalarEvolution *SE) const {
4209 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4210 ENT != 0; ENT = ENT->getNextExit()) {
4211
Andrew Trickfcb43562011-08-02 04:23:35 +00004212 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004213 return ENT->ExactNotTaken;
4214 }
4215 return SE->getCouldNotCompute();
4216}
4217
4218/// getMax - Get the max backedge taken count for the loop.
4219const SCEV *
4220ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4221 return Max ? Max : SE->getCouldNotCompute();
4222}
4223
4224/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4225/// computable exit into a persistent ExitNotTakenInfo array.
4226ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4227 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4228 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4229
4230 if (!Complete)
4231 ExitNotTaken.setIncomplete();
4232
4233 unsigned NumExits = ExitCounts.size();
4234 if (NumExits == 0) return;
4235
Andrew Trickfcb43562011-08-02 04:23:35 +00004236 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004237 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4238 if (NumExits == 1) return;
4239
4240 // Handle the rare case of multiple computable exits.
4241 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4242
4243 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4244 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4245 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004246 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004247 ENT->ExactNotTaken = ExitCounts[i].second;
4248 }
4249}
4250
4251/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4252void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004253 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004254 ExitNotTaken.ExactNotTaken = 0;
4255 delete[] ExitNotTaken.getNextExit();
4256}
4257
Dan Gohman46bdfb02009-02-24 18:55:53 +00004258/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4259/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004260ScalarEvolution::BackedgeTakenInfo
4261ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004262 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004263 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004264
Dan Gohmana334aa72009-06-22 00:31:57 +00004265 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004266 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004267 bool CouldComputeBECount = true;
4268 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004269 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004270 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4271 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004272 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004273 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004274 CouldComputeBECount = false;
4275 else
4276 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4277
Dan Gohman1c343752009-06-27 21:21:31 +00004278 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004279 MaxBECount = EL.Max;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004280 else if (EL.Max != getCouldNotCompute()) {
4281 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4282 // skip some loop tests. Taking the max over the exits is sufficiently
4283 // conservative. TODO: We could do better taking into consideration
4284 // that (1) the loop has unit stride (2) the last loop test is
4285 // less-than/greater-than (3) any loop test is less-than/greater-than AND
4286 // falls-through some constant times less then the other tests.
4287 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4288 }
Dan Gohmana334aa72009-06-22 00:31:57 +00004289 }
4290
Andrew Trick5116ff62011-07-26 17:19:55 +00004291 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004292}
4293
Andrew Trick5116ff62011-07-26 17:19:55 +00004294/// ComputeExitLimit - Compute the number of times the backedge of the specified
4295/// loop will execute if it exits via the specified block.
4296ScalarEvolution::ExitLimit
4297ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004298
4299 // Okay, we've chosen an exiting block. See what condition causes us to
4300 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004301 //
4302 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004303 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004304 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004305 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004306
Chris Lattner8b0e3602007-01-07 02:24:26 +00004307 // At this point, we know we have a conditional branch that determines whether
4308 // the loop is exited. However, we don't know if the branch is executed each
4309 // time through the loop. If not, then the execution count of the branch will
4310 // not be equal to the trip count of the loop.
4311 //
4312 // Currently we check for this by checking to see if the Exit branch goes to
4313 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004314 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004315 // loop header. This is common for un-rotated loops.
4316 //
4317 // If both of those tests fail, walk up the unique predecessor chain to the
4318 // header, stopping if there is an edge that doesn't exit the loop. If the
4319 // header is reached, the execution count of the branch will be equal to the
4320 // trip count of the loop.
4321 //
4322 // More extensive analysis could be done to handle more cases here.
4323 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004324 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004325 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004326 ExitBr->getParent() != L->getHeader()) {
4327 // The simple checks failed, try climbing the unique predecessor chain
4328 // up to the header.
4329 bool Ok = false;
4330 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4331 BasicBlock *Pred = BB->getUniquePredecessor();
4332 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004333 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004334 TerminatorInst *PredTerm = Pred->getTerminator();
4335 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4336 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4337 if (PredSucc == BB)
4338 continue;
4339 // If the predecessor has a successor that isn't BB and isn't
4340 // outside the loop, assume the worst.
4341 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004342 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004343 }
4344 if (Pred == L->getHeader()) {
4345 Ok = true;
4346 break;
4347 }
4348 BB = Pred;
4349 }
4350 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004351 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004352 }
4353
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004354 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004355 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4356 ExitBr->getSuccessor(0),
4357 ExitBr->getSuccessor(1));
Dan Gohmana334aa72009-06-22 00:31:57 +00004358}
4359
Andrew Trick5116ff62011-07-26 17:19:55 +00004360/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004361/// backedge of the specified loop will execute if its exit condition
4362/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004363ScalarEvolution::ExitLimit
4364ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4365 Value *ExitCond,
4366 BasicBlock *TBB,
4367 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004368 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004369 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4370 if (BO->getOpcode() == Instruction::And) {
4371 // Recurse on the operands of the and.
Andrew Trick5116ff62011-07-26 17:19:55 +00004372 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4373 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004374 const SCEV *BECount = getCouldNotCompute();
4375 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004376 if (L->contains(TBB)) {
4377 // Both conditions must be true for the loop to continue executing.
4378 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004379 if (EL0.Exact == getCouldNotCompute() ||
4380 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004381 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004382 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004383 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4384 if (EL0.Max == getCouldNotCompute())
4385 MaxBECount = EL1.Max;
4386 else if (EL1.Max == getCouldNotCompute())
4387 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004388 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004389 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004390 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004391 // Both conditions must be true at the same time for the loop to exit.
4392 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004393 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004394 if (EL0.Max == EL1.Max)
4395 MaxBECount = EL0.Max;
4396 if (EL0.Exact == EL1.Exact)
4397 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004398 }
4399
Andrew Trick5116ff62011-07-26 17:19:55 +00004400 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004401 }
4402 if (BO->getOpcode() == Instruction::Or) {
4403 // Recurse on the operands of the or.
Andrew Trick5116ff62011-07-26 17:19:55 +00004404 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4405 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004406 const SCEV *BECount = getCouldNotCompute();
4407 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004408 if (L->contains(FBB)) {
4409 // Both conditions must be false for the loop to continue executing.
4410 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004411 if (EL0.Exact == getCouldNotCompute() ||
4412 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004413 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004414 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004415 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4416 if (EL0.Max == getCouldNotCompute())
4417 MaxBECount = EL1.Max;
4418 else if (EL1.Max == getCouldNotCompute())
4419 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004420 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004421 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004422 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004423 // Both conditions must be false at the same time for the loop to exit.
4424 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004425 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004426 if (EL0.Max == EL1.Max)
4427 MaxBECount = EL0.Max;
4428 if (EL0.Exact == EL1.Exact)
4429 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004430 }
4431
Andrew Trick5116ff62011-07-26 17:19:55 +00004432 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004433 }
4434 }
4435
4436 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004437 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004438 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5116ff62011-07-26 17:19:55 +00004439 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004440
Dan Gohman00cb5b72010-02-19 18:12:07 +00004441 // Check for a constant condition. These are normally stripped out by
4442 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4443 // preserve the CFG and is temporarily leaving constant conditions
4444 // in place.
4445 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4446 if (L->contains(FBB) == !CI->getZExtValue())
4447 // The backedge is always taken.
4448 return getCouldNotCompute();
4449 else
4450 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004451 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004452 }
4453
Eli Friedman361e54d2009-05-09 12:32:42 +00004454 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004455 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004456}
4457
Andrew Trick5116ff62011-07-26 17:19:55 +00004458/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004459/// backedge of the specified loop will execute if its exit condition
4460/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004461ScalarEvolution::ExitLimit
4462ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4463 ICmpInst *ExitCond,
4464 BasicBlock *TBB,
4465 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004466
Reid Spencere4d87aa2006-12-23 06:05:41 +00004467 // If the condition was exit on true, convert the condition to exit on false
4468 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004469 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004470 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004471 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004472 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004473
4474 // Handle common loops like: for (X = "string"; *X; ++X)
4475 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4476 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004477 ExitLimit ItCnt =
4478 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004479 if (ItCnt.hasAnyInfo())
4480 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004481 }
4482
Dan Gohman0bba49c2009-07-07 17:06:11 +00004483 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4484 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004485
4486 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004487 LHS = getSCEVAtScope(LHS, L);
4488 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004489
Dan Gohman64a845e2009-06-24 04:48:43 +00004490 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004491 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004492 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004493 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004494 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004495 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004496 }
4497
Dan Gohman03557dc2010-05-03 16:35:17 +00004498 // Simplify the operands before analyzing them.
4499 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4500
Chris Lattner53e677a2004-04-02 20:23:17 +00004501 // If we have a comparison of a chrec against a constant, try to use value
4502 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004503 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4504 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004505 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004506 // Form the constant range.
4507 ConstantRange CompRange(
4508 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004509
Dan Gohman0bba49c2009-07-07 17:06:11 +00004510 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004511 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004512 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004513
Chris Lattner53e677a2004-04-02 20:23:17 +00004514 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004515 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004516 // Convert to: while (X-Y != 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004517 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4518 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004519 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004520 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004521 case ICmpInst::ICMP_EQ: { // while (X == Y)
4522 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004523 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4524 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004525 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004526 }
4527 case ICmpInst::ICMP_SLT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004528 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4529 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004530 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004531 }
4532 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004533 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004534 getNotSCEV(RHS), L, true);
Andrew Trick5116ff62011-07-26 17:19:55 +00004535 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004536 break;
4537 }
4538 case ICmpInst::ICMP_ULT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004539 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4540 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004541 break;
4542 }
4543 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004544 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004545 getNotSCEV(RHS), L, false);
Andrew Trick5116ff62011-07-26 17:19:55 +00004546 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004547 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004548 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004549 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004550#if 0
David Greene25e0e872009-12-23 22:18:14 +00004551 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004552 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004553 dbgs() << "[unsigned] ";
4554 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004555 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004556 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004557#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004558 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004559 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004560 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004561}
4562
Chris Lattner673e02b2004-10-12 01:49:27 +00004563static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004564EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4565 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004566 const SCEV *InVal = SE.getConstant(C);
4567 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004568 assert(isa<SCEVConstant>(Val) &&
4569 "Evaluation of SCEV at constant didn't fold correctly?");
4570 return cast<SCEVConstant>(Val)->getValue();
4571}
4572
Andrew Trick5116ff62011-07-26 17:19:55 +00004573/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004574/// 'icmp op load X, cst', try to see if we can compute the backedge
4575/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004576ScalarEvolution::ExitLimit
4577ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4578 LoadInst *LI,
4579 Constant *RHS,
4580 const Loop *L,
4581 ICmpInst::Predicate predicate) {
4582
Dan Gohman1c343752009-06-27 21:21:31 +00004583 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004584
4585 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004586 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004587 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004588 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004589
4590 // Make sure that it is really a constant global we are gepping, with an
4591 // initializer, and make sure the first IDX is really 0.
4592 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004593 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004594 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4595 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004596 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004597
4598 // Okay, we allow one non-constant index into the GEP instruction.
4599 Value *VarIdx = 0;
Chris Lattnerdada5862012-01-24 05:49:24 +00004600 std::vector<Constant*> Indexes;
Chris Lattner673e02b2004-10-12 01:49:27 +00004601 unsigned VarIdxNum = 0;
4602 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4603 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4604 Indexes.push_back(CI);
4605 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004606 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004607 VarIdx = GEP->getOperand(i);
4608 VarIdxNum = i-2;
4609 Indexes.push_back(0);
4610 }
4611
Andrew Trickeb6dd232012-03-26 22:33:59 +00004612 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4613 if (!VarIdx)
4614 return getCouldNotCompute();
4615
Chris Lattner673e02b2004-10-12 01:49:27 +00004616 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4617 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004618 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004619 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004620
4621 // We can only recognize very limited forms of loop index expressions, in
4622 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004623 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004624 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004625 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4626 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004627 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004628
4629 unsigned MaxSteps = MaxBruteForceIterations;
4630 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004631 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004632 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004633 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004634
4635 // Form the GEP offset.
4636 Indexes[VarIdxNum] = Val;
4637
Chris Lattnerdada5862012-01-24 05:49:24 +00004638 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4639 Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004640 if (Result == 0) break; // Cannot compute!
4641
4642 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004643 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004644 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004645 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004646#if 0
David Greene25e0e872009-12-23 22:18:14 +00004647 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004648 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4649 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004650#endif
4651 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004652 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004653 }
4654 }
Dan Gohman1c343752009-06-27 21:21:31 +00004655 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004656}
4657
4658
Chris Lattner3221ad02004-04-17 22:58:41 +00004659/// CanConstantFold - Return true if we can constant fold an instruction of the
4660/// specified type, assuming that all operands were constants.
4661static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004662 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewycky614fef62011-10-22 19:58:20 +00004663 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4664 isa<LoadInst>(I))
Chris Lattner3221ad02004-04-17 22:58:41 +00004665 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004666
Chris Lattner3221ad02004-04-17 22:58:41 +00004667 if (const CallInst *CI = dyn_cast<CallInst>(I))
4668 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004669 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004670 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004671}
4672
Andrew Trick13d31e02011-10-05 03:25:31 +00004673/// Determine whether this instruction can constant evolve within this loop
4674/// assuming its operands can all constant evolve.
4675static bool canConstantEvolve(Instruction *I, const Loop *L) {
4676 // An instruction outside of the loop can't be derived from a loop PHI.
4677 if (!L->contains(I)) return false;
4678
4679 if (isa<PHINode>(I)) {
4680 if (L->getHeader() == I->getParent())
4681 return true;
4682 else
4683 // We don't currently keep track of the control flow needed to evaluate
4684 // PHIs, so we cannot handle PHIs inside of loops.
4685 return false;
4686 }
4687
4688 // If we won't be able to constant fold this expression even if the operands
4689 // are constants, bail early.
4690 return CanConstantFold(I);
4691}
4692
4693/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4694/// recursing through each instruction operand until reaching a loop header phi.
4695static PHINode *
4696getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Trick28ab7db2011-10-05 05:58:49 +00004697 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004698
4699 // Otherwise, we can evaluate this instruction if all of its operands are
4700 // constant or derived from a PHI node themselves.
4701 PHINode *PHI = 0;
4702 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4703 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4704
4705 if (isa<Constant>(*OpI)) continue;
4706
4707 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4708 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4709
4710 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trickef8a4c22011-10-05 22:06:53 +00004711 if (!P)
4712 // If this operand is already visited, reuse the prior result.
4713 // We may have P != PHI if this is the deepest point at which the
4714 // inconsistent paths meet.
4715 P = PHIMap.lookup(OpInst);
4716 if (!P) {
4717 // Recurse and memoize the results, whether a phi is found or not.
4718 // This recursive call invalidates pointers into PHIMap.
4719 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4720 PHIMap[OpInst] = P;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004721 }
Andrew Trick28ab7db2011-10-05 05:58:49 +00004722 if (P == 0) return 0; // Not evolving from PHI
4723 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4724 PHI = P;
Andrew Trick13d31e02011-10-05 03:25:31 +00004725 }
4726 // This is a expression evolving from a constant PHI!
4727 return PHI;
4728}
4729
Chris Lattner3221ad02004-04-17 22:58:41 +00004730/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4731/// in the loop that V is derived from. We allow arbitrary operations along the
4732/// way, but the operands of an operation must either be constants or a value
4733/// derived from a constant PHI. If this expression does not fit with these
4734/// constraints, return null.
4735static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004736 Instruction *I = dyn_cast<Instruction>(V);
Andrew Trick13d31e02011-10-05 03:25:31 +00004737 if (I == 0 || !canConstantEvolve(I, L)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004738
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004739 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004740 return PN;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004741 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004742
Andrew Trick13d31e02011-10-05 03:25:31 +00004743 // Record non-constant instructions contained by the loop.
Andrew Trick28ab7db2011-10-05 05:58:49 +00004744 DenseMap<Instruction *, PHINode *> PHIMap;
4745 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattner3221ad02004-04-17 22:58:41 +00004746}
4747
4748/// EvaluateExpression - Given an expression that passes the
4749/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4750/// in the loop has the value PHIVal. If we can't fold this expression for some
4751/// reason, return null.
Andrew Trick13d31e02011-10-05 03:25:31 +00004752static Constant *EvaluateExpression(Value *V, const Loop *L,
4753 DenseMap<Instruction *, Constant *> &Vals,
Chad Rosier00737bd2011-12-01 21:29:16 +00004754 const TargetData *TD,
4755 const TargetLibraryInfo *TLI) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004756 // Convenient constant check, but redundant for recursive calls.
Reid Spencere8404342004-07-18 00:18:30 +00004757 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewycky614fef62011-10-22 19:58:20 +00004758 Instruction *I = dyn_cast<Instruction>(V);
4759 if (!I) return 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004760
Andrew Trick13d31e02011-10-05 03:25:31 +00004761 if (Constant *C = Vals.lookup(I)) return C;
4762
Nick Lewycky614fef62011-10-22 19:58:20 +00004763 // An instruction inside the loop depends on a value outside the loop that we
4764 // weren't given a mapping for, or a value such as a call inside the loop.
4765 if (!canConstantEvolve(I, L)) return 0;
4766
4767 // An unmapped PHI can be due to a branch or another loop inside this loop,
4768 // or due to this not being the initial iteration through a loop where we
4769 // couldn't compute the evolution of this particular PHI last time.
4770 if (isa<PHINode>(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004771
Dan Gohman9d4588f2010-06-22 13:15:46 +00004772 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004773
4774 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004775 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4776 if (!Operand) {
Nick Lewycky4c7f1ca2011-10-14 09:38:46 +00004777 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4778 if (!Operands[i]) return 0;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004779 continue;
4780 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004781 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
Andrew Trick28ab7db2011-10-05 05:58:49 +00004782 Vals[Operand] = C;
4783 if (!C) return 0;
4784 Operands[i] = C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004785 }
4786
Nick Lewycky614fef62011-10-22 19:58:20 +00004787 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004788 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chad Rosieraab8e282011-12-02 01:26:24 +00004789 Operands[1], TD, TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00004790 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4791 if (!LI->isVolatile())
4792 return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4793 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004794 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4795 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004796}
4797
4798/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4799/// in the header of its containing loop, we know the loop executes a
4800/// constant number of times, and the PHI node is just a recurrence
4801/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004802Constant *
4803ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004804 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004805 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004806 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004807 ConstantEvolutionLoopExitValue.find(PN);
4808 if (I != ConstantEvolutionLoopExitValue.end())
4809 return I->second;
4810
Dan Gohmane0567812010-04-08 23:03:40 +00004811 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004812 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4813
4814 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4815
Andrew Trick13d31e02011-10-05 03:25:31 +00004816 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewycky614fef62011-10-22 19:58:20 +00004817 BasicBlock *Header = L->getHeader();
4818 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick13d31e02011-10-05 03:25:31 +00004819
Chris Lattner3221ad02004-04-17 22:58:41 +00004820 // Since the loop is canonicalized, the PHI node must have two entries. One
4821 // entry must be a constant (coming in from outside of the loop), and the
4822 // second must be derived from the same PHI.
4823 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Nick Lewycky614fef62011-10-22 19:58:20 +00004824 PHINode *PHI = 0;
4825 for (BasicBlock::iterator I = Header->begin();
4826 (PHI = dyn_cast<PHINode>(I)); ++I) {
4827 Constant *StartCST =
4828 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4829 if (StartCST == 0) continue;
4830 CurrentIterVals[PHI] = StartCST;
4831 }
4832 if (!CurrentIterVals.count(PN))
4833 return RetVal = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004834
4835 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattner3221ad02004-04-17 22:58:41 +00004836
4837 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004838 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004839 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004840
Dan Gohman46bdfb02009-02-24 18:55:53 +00004841 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004842 unsigned IterationNum = 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004843 for (; ; ++IterationNum) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004844 if (IterationNum == NumIterations)
Andrew Trick13d31e02011-10-05 03:25:31 +00004845 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattner3221ad02004-04-17 22:58:41 +00004846
Nick Lewycky614fef62011-10-22 19:58:20 +00004847 // Compute the value of the PHIs for the next iteration.
Andrew Trick13d31e02011-10-05 03:25:31 +00004848 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewycky614fef62011-10-22 19:58:20 +00004849 DenseMap<Instruction *, Constant *> NextIterVals;
Chad Rosier00737bd2011-12-01 21:29:16 +00004850 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4851 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004852 if (NextPHI == 0)
4853 return 0; // Couldn't evaluate!
Andrew Trick13d31e02011-10-05 03:25:31 +00004854 NextIterVals[PN] = NextPHI;
Nick Lewycky614fef62011-10-22 19:58:20 +00004855
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004856 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4857
Nick Lewycky614fef62011-10-22 19:58:20 +00004858 // Also evaluate the other PHI nodes. However, we don't get to stop if we
4859 // cease to be able to evaluate one of them or if they stop evolving,
4860 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004861 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewycky614fef62011-10-22 19:58:20 +00004862 for (DenseMap<Instruction *, Constant *>::const_iterator
4863 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4864 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky5bef0eb2011-10-24 05:51:01 +00004865 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004866 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4867 }
4868 // We use two distinct loops because EvaluateExpression may invalidate any
4869 // iterators into CurrentIterVals.
4870 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4871 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4872 PHINode *PHI = I->first;
Nick Lewycky614fef62011-10-22 19:58:20 +00004873 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004874 if (!NextPHI) { // Not already computed.
4875 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004876 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004877 }
4878 if (NextPHI != I->second)
4879 StoppedEvolving = false;
Nick Lewycky614fef62011-10-22 19:58:20 +00004880 }
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004881
4882 // If all entries in CurrentIterVals == NextIterVals then we can stop
4883 // iterating, the loop can't continue to change.
4884 if (StoppedEvolving)
4885 return RetVal = CurrentIterVals[PN];
4886
Andrew Trick13d31e02011-10-05 03:25:31 +00004887 CurrentIterVals.swap(NextIterVals);
Chris Lattner3221ad02004-04-17 22:58:41 +00004888 }
4889}
4890
Andrew Trick5116ff62011-07-26 17:19:55 +00004891/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004892/// constant number of times (the condition evolves only from constants),
4893/// try to evaluate a few iterations of the loop until we get the exit
4894/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004895/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewycky614fef62011-10-22 19:58:20 +00004896const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4897 Value *Cond,
4898 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004899 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004900 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004901
Dan Gohmanb92654d2010-06-19 14:17:24 +00004902 // If the loop is canonicalized, the PHI will have exactly two entries.
4903 // That's the only form we support here.
4904 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4905
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004906 DenseMap<Instruction *, Constant *> CurrentIterVals;
4907 BasicBlock *Header = L->getHeader();
4908 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4909
Dan Gohmanb92654d2010-06-19 14:17:24 +00004910 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004911 // second must be derived from the same PHI.
4912 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004913 PHINode *PHI = 0;
4914 for (BasicBlock::iterator I = Header->begin();
4915 (PHI = dyn_cast<PHINode>(I)); ++I) {
4916 Constant *StartCST =
4917 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4918 if (StartCST == 0) continue;
4919 CurrentIterVals[PHI] = StartCST;
4920 }
4921 if (!CurrentIterVals.count(PN))
4922 return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004923
4924 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4925 // the loop symbolically to determine when the condition gets a value of
4926 // "ExitWhen".
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004927
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004928 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004929 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004930 ConstantInt *CondVal =
Chad Rosier00737bd2011-12-01 21:29:16 +00004931 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
4932 TD, TLI));
Chris Lattner3221ad02004-04-17 22:58:41 +00004933
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004934 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004935 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004936
Reid Spencere8019bb2007-03-01 07:25:48 +00004937 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004938 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004939 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004940 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004941
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004942 // Update all the PHI nodes for the next iteration.
4943 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004944
4945 // Create a list of which PHIs we need to compute. We want to do this before
4946 // calling EvaluateExpression on them because that may invalidate iterators
4947 // into CurrentIterVals.
4948 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004949 for (DenseMap<Instruction *, Constant *>::const_iterator
4950 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4951 PHINode *PHI = dyn_cast<PHINode>(I->first);
4952 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004953 PHIsToCompute.push_back(PHI);
4954 }
4955 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
4956 E = PHIsToCompute.end(); I != E; ++I) {
4957 PHINode *PHI = *I;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004958 Constant *&NextPHI = NextIterVals[PHI];
4959 if (NextPHI) continue; // Already computed!
4960
4961 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004962 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004963 }
4964 CurrentIterVals.swap(NextIterVals);
Chris Lattner7980fb92004-04-17 18:36:24 +00004965 }
4966
4967 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004968 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004969}
4970
Dan Gohmane7125f42009-09-03 15:00:26 +00004971/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004972/// at the specified scope in the program. The L value specifies a loop
4973/// nest to evaluate the expression at, where null is the top-level or a
4974/// specified loop is immediately inside of the loop.
4975///
4976/// This method can be used to compute the exit value for a variable defined
4977/// in a loop by querying what the value will hold in the parent loop.
4978///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004979/// In the case that a relevant loop exit value cannot be computed, the
4980/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004981const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004982 // Check to see if we've folded this expression at this loop before.
4983 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4984 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4985 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4986 if (!Pair.second)
4987 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004988
Dan Gohman42214892009-08-31 21:15:23 +00004989 // Otherwise compute it.
4990 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004991 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004992 return C;
4993}
4994
Nick Lewycky614fef62011-10-22 19:58:20 +00004995/// This builds up a Constant using the ConstantExpr interface. That way, we
4996/// will return Constants for objects which aren't represented by a
4997/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
4998/// Returns NULL if the SCEV isn't representable as a Constant.
4999static Constant *BuildConstantFromSCEV(const SCEV *V) {
5000 switch (V->getSCEVType()) {
5001 default: // TODO: smax, umax.
5002 case scCouldNotCompute:
5003 case scAddRecExpr:
5004 break;
5005 case scConstant:
5006 return cast<SCEVConstant>(V)->getValue();
5007 case scUnknown:
5008 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5009 case scSignExtend: {
5010 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5011 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5012 return ConstantExpr::getSExt(CastOp, SS->getType());
5013 break;
5014 }
5015 case scZeroExtend: {
5016 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5017 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5018 return ConstantExpr::getZExt(CastOp, SZ->getType());
5019 break;
5020 }
5021 case scTruncate: {
5022 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5023 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5024 return ConstantExpr::getTrunc(CastOp, ST->getType());
5025 break;
5026 }
5027 case scAddExpr: {
5028 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5029 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5030 if (C->getType()->isPointerTy())
5031 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5032 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5033 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5034 if (!C2) return 0;
5035
5036 // First pointer!
5037 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5038 std::swap(C, C2);
5039 // The offsets have been converted to bytes. We can add bytes to an
5040 // i8* by GEP with the byte count in the first index.
5041 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5042 }
5043
5044 // Don't bother trying to sum two pointers. We probably can't
5045 // statically compute a load that results from it anyway.
5046 if (C2->getType()->isPointerTy())
5047 return 0;
5048
5049 if (C->getType()->isPointerTy()) {
5050 if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5051 C2 = ConstantExpr::getIntegerCast(
5052 C2, Type::getInt32Ty(C->getContext()), true);
5053 C = ConstantExpr::getGetElementPtr(C, C2);
5054 } else
5055 C = ConstantExpr::getAdd(C, C2);
5056 }
5057 return C;
5058 }
5059 break;
5060 }
5061 case scMulExpr: {
5062 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5063 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5064 // Don't bother with pointers at all.
5065 if (C->getType()->isPointerTy()) return 0;
5066 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5067 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5068 if (!C2 || C2->getType()->isPointerTy()) return 0;
5069 C = ConstantExpr::getMul(C, C2);
5070 }
5071 return C;
5072 }
5073 break;
5074 }
5075 case scUDivExpr: {
5076 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5077 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5078 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5079 if (LHS->getType() == RHS->getType())
5080 return ConstantExpr::getUDiv(LHS, RHS);
5081 break;
5082 }
5083 }
5084 return 0;
5085}
5086
Dan Gohman42214892009-08-31 21:15:23 +00005087const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005088 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005089
Nick Lewycky3e630762008-02-20 06:48:22 +00005090 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00005091 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00005092 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005093 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005094 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00005095 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5096 if (PHINode *PN = dyn_cast<PHINode>(I))
5097 if (PN->getParent() == LI->getHeader()) {
5098 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00005099 // to see if the loop that contains it has a known backedge-taken
5100 // count. If so, we may be able to force computation of the exit
5101 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005102 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00005103 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00005104 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005105 // Okay, we know how many times the containing loop executes. If
5106 // this is a constant evolving PHI node, get the final value at
5107 // the specified iteration number.
5108 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00005109 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00005110 LI);
Dan Gohman09987962009-06-29 21:31:18 +00005111 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00005112 }
5113 }
5114
Reid Spencer09906f32006-12-04 21:33:23 +00005115 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00005116 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00005117 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00005118 // result. This is particularly useful for computing loop exit values.
5119 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00005120 SmallVector<Constant *, 4> Operands;
5121 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00005122 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5123 Value *Op = I->getOperand(i);
5124 if (Constant *C = dyn_cast<Constant>(Op)) {
5125 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00005126 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00005127 }
Dan Gohman11046452010-06-29 23:43:06 +00005128
5129 // If any of the operands is non-constant and if they are
5130 // non-integer and non-pointer, don't even try to analyze them
5131 // with scev techniques.
5132 if (!isSCEVable(Op->getType()))
5133 return V;
5134
5135 const SCEV *OrigV = getSCEV(Op);
5136 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5137 MadeImprovement |= OrigV != OpV;
5138
Nick Lewycky614fef62011-10-22 19:58:20 +00005139 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohman11046452010-06-29 23:43:06 +00005140 if (!C) return V;
5141 if (C->getType() != Op->getType())
5142 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5143 Op->getType(),
5144 false),
5145 C, Op->getType());
5146 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00005147 }
Dan Gohman64a845e2009-06-24 04:48:43 +00005148
Dan Gohman11046452010-06-29 23:43:06 +00005149 // Check to see if getSCEVAtScope actually made an improvement.
5150 if (MadeImprovement) {
5151 Constant *C = 0;
5152 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5153 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Chad Rosieraab8e282011-12-02 01:26:24 +00005154 Operands[0], Operands[1], TD,
5155 TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00005156 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5157 if (!LI->isVolatile())
5158 C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5159 } else
Dan Gohman11046452010-06-29 23:43:06 +00005160 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Chad Rosier00737bd2011-12-01 21:29:16 +00005161 Operands, TD, TLI);
Dan Gohman11046452010-06-29 23:43:06 +00005162 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00005163 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00005164 }
Chris Lattner3221ad02004-04-17 22:58:41 +00005165 }
5166 }
5167
5168 // This is some other type of SCEVUnknown, just return it.
5169 return V;
5170 }
5171
Dan Gohman622ed672009-05-04 22:02:23 +00005172 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005173 // Avoid performing the look-up in the common case where the specified
5174 // expression has no loop-variant portions.
5175 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005176 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005177 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005178 // Okay, at least one of these operands is loop variant but might be
5179 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00005180 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5181 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00005182 NewOps.push_back(OpAtScope);
5183
5184 for (++i; i != e; ++i) {
5185 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005186 NewOps.push_back(OpAtScope);
5187 }
5188 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005189 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005190 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005191 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005192 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005193 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00005194 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005195 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00005196 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005197 }
5198 }
5199 // If we got here, all operands are loop invariant.
5200 return Comm;
5201 }
5202
Dan Gohman622ed672009-05-04 22:02:23 +00005203 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005204 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5205 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00005206 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5207 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005208 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00005209 }
5210
5211 // If this is a loop recurrence for a loop that does not contain L, then we
5212 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00005213 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00005214 // First, attempt to evaluate each operand.
5215 // Avoid performing the look-up in the common case where the specified
5216 // expression has no loop-variant portions.
5217 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5218 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5219 if (OpAtScope == AddRec->getOperand(i))
5220 continue;
5221
5222 // Okay, at least one of these operands is loop variant but might be
5223 // foldable. Build a new instance of the folded commutative expression.
5224 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5225 AddRec->op_begin()+i);
5226 NewOps.push_back(OpAtScope);
5227 for (++i; i != e; ++i)
5228 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5229
Andrew Trick3f95c882011-04-27 01:21:25 +00005230 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00005231 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00005232 AddRec->getNoWrapFlags(SCEV::FlagNW));
5233 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00005234 // The addrec may be folded to a nonrecurrence, for example, if the
5235 // induction variable is multiplied by zero after constant folding. Go
5236 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00005237 if (!AddRec)
5238 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00005239 break;
5240 }
5241
5242 // If the scope is outside the addrec's loop, evaluate it by using the
5243 // loop exit value of the addrec.
5244 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005245 // To evaluate this recurrence, we need to know how many times the AddRec
5246 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005247 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00005248 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005249
Eli Friedmanb42a6262008-08-04 23:49:06 +00005250 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005251 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005252 }
Dan Gohman11046452010-06-29 23:43:06 +00005253
Dan Gohmand594e6f2009-05-24 23:25:42 +00005254 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00005255 }
5256
Dan Gohman622ed672009-05-04 22:02:23 +00005257 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005258 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005259 if (Op == Cast->getOperand())
5260 return Cast; // must be loop invariant
5261 return getZeroExtendExpr(Op, Cast->getType());
5262 }
5263
Dan Gohman622ed672009-05-04 22:02:23 +00005264 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005265 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005266 if (Op == Cast->getOperand())
5267 return Cast; // must be loop invariant
5268 return getSignExtendExpr(Op, Cast->getType());
5269 }
5270
Dan Gohman622ed672009-05-04 22:02:23 +00005271 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005272 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005273 if (Op == Cast->getOperand())
5274 return Cast; // must be loop invariant
5275 return getTruncateExpr(Op, Cast->getType());
5276 }
5277
Torok Edwinc23197a2009-07-14 16:55:14 +00005278 llvm_unreachable("Unknown SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005279}
5280
Dan Gohman66a7e852009-05-08 20:38:54 +00005281/// getSCEVAtScope - This is a convenience function which does
5282/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00005283const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005284 return getSCEVAtScope(getSCEV(V), L);
5285}
5286
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005287/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5288/// following equation:
5289///
5290/// A * X = B (mod N)
5291///
5292/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5293/// A and B isn't important.
5294///
5295/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005296static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005297 ScalarEvolution &SE) {
5298 uint32_t BW = A.getBitWidth();
5299 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5300 assert(A != 0 && "A must be non-zero.");
5301
5302 // 1. D = gcd(A, N)
5303 //
5304 // The gcd of A and N may have only one prime factor: 2. The number of
5305 // trailing zeros in A is its multiplicity
5306 uint32_t Mult2 = A.countTrailingZeros();
5307 // D = 2^Mult2
5308
5309 // 2. Check if B is divisible by D.
5310 //
5311 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5312 // is not less than multiplicity of this prime factor for D.
5313 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005314 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005315
5316 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5317 // modulo (N / D).
5318 //
5319 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5320 // bit width during computations.
5321 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5322 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005323 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005324 APInt I = AD.multiplicativeInverse(Mod);
5325
5326 // 4. Compute the minimum unsigned root of the equation:
5327 // I * (B / D) mod (N / D)
5328 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5329
5330 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5331 // bits.
5332 return SE.getConstant(Result.trunc(BW));
5333}
Chris Lattner53e677a2004-04-02 20:23:17 +00005334
5335/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5336/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5337/// might be the same) or two SCEVCouldNotCompute objects.
5338///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005339static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005340SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005341 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005342 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5343 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5344 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005345
Chris Lattner53e677a2004-04-02 20:23:17 +00005346 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005347 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005348 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005349 return std::make_pair(CNC, CNC);
5350 }
5351
Reid Spencere8019bb2007-03-01 07:25:48 +00005352 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005353 const APInt &L = LC->getValue()->getValue();
5354 const APInt &M = MC->getValue()->getValue();
5355 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005356 APInt Two(BitWidth, 2);
5357 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005358
Dan Gohman64a845e2009-06-24 04:48:43 +00005359 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005360 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005361 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005362 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5363 // The B coefficient is M-N/2
5364 APInt B(M);
5365 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005366
Reid Spencere8019bb2007-03-01 07:25:48 +00005367 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005368 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005369
Reid Spencere8019bb2007-03-01 07:25:48 +00005370 // Compute the B^2-4ac term.
5371 APInt SqrtTerm(B);
5372 SqrtTerm *= B;
5373 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005374
Nick Lewycky6ce24712012-08-01 09:14:36 +00005375 if (SqrtTerm.isNegative()) {
5376 // The loop is provably infinite.
5377 const SCEV *CNC = SE.getCouldNotCompute();
5378 return std::make_pair(CNC, CNC);
5379 }
5380
Reid Spencere8019bb2007-03-01 07:25:48 +00005381 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5382 // integer value or else APInt::sqrt() will assert.
5383 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005384
Dan Gohman64a845e2009-06-24 04:48:43 +00005385 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005386 // The divisions must be performed as signed divisions.
5387 APInt NegB(-B);
Nick Lewycky1cbae182011-10-03 07:10:45 +00005388 APInt TwoA(A << 1);
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005389 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005390 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005391 return std::make_pair(CNC, CNC);
5392 }
5393
Owen Andersone922c022009-07-22 00:24:57 +00005394 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005395
5396 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005397 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005398 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005399 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005400
Dan Gohman64a845e2009-06-24 04:48:43 +00005401 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005402 SE.getConstant(Solution2));
Nick Lewycky1cbae182011-10-03 07:10:45 +00005403 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005404}
5405
5406/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005407/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005408///
5409/// This is only used for loops with a "x != y" exit test. The exit condition is
5410/// now expressed as a single expression, V = x-y. So the exit test is
5411/// effectively V != 0. We know and take advantage of the fact that this
5412/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005413ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005414ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005415 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005416 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005417 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005418 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005419 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005420 }
5421
Dan Gohman35738ac2009-05-04 22:30:44 +00005422 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005423 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005424 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005425
Chris Lattner7975e3e2011-01-09 22:39:48 +00005426 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5427 // the quadratic equation to solve it.
5428 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5429 std::pair<const SCEV *,const SCEV *> Roots =
5430 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005431 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5432 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005433 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005434#if 0
David Greene25e0e872009-12-23 22:18:14 +00005435 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005436 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005437#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005438 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005439 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005440 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5441 R1->getValue(),
5442 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005443 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005444 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005445
Chris Lattner53e677a2004-04-02 20:23:17 +00005446 // We can only use this value if the chrec ends up with an exact zero
5447 // value at this index. When solving for "X*X != 5", for example, we
5448 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005449 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005450 if (Val->isZero())
5451 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005452 }
5453 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005454 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005455 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005456
Chris Lattner7975e3e2011-01-09 22:39:48 +00005457 // Otherwise we can only handle this if it is affine.
5458 if (!AddRec->isAffine())
5459 return getCouldNotCompute();
5460
5461 // If this is an affine expression, the execution count of this branch is
5462 // the minimum unsigned root of the following equation:
5463 //
5464 // Start + Step*N = 0 (mod 2^BW)
5465 //
5466 // equivalent to:
5467 //
5468 // Step*N = -Start (mod 2^BW)
5469 //
5470 // where BW is the common bit width of Start and Step.
5471
5472 // Get the initial value for the loop.
5473 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5474 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5475
5476 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005477 //
5478 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5479 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5480 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5481 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005482 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Nick Lewycky4d3bba52012-06-28 23:44:57 +00005483 if (StepC == 0 || StepC->getValue()->equalsInt(0))
Chris Lattner7975e3e2011-01-09 22:39:48 +00005484 return getCouldNotCompute();
5485
Andrew Trick3228cc22011-03-14 16:50:06 +00005486 // For positive steps (counting up until unsigned overflow):
5487 // N = -Start/Step (as unsigned)
5488 // For negative steps (counting down to zero):
5489 // N = Start/-Step
5490 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005491 bool CountDown = StepC->getValue()->getValue().isNegative();
5492 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005493
5494 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005495 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5496 // N = Distance (as unsigned)
Nick Lewycky1cbae182011-10-03 07:10:45 +00005497 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5498 ConstantRange CR = getUnsignedRange(Start);
5499 const SCEV *MaxBECount;
5500 if (!CountDown && CR.getUnsignedMin().isMinValue())
5501 // When counting up, the worst starting value is 1, not 0.
5502 MaxBECount = CR.getUnsignedMax().isMinValue()
5503 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5504 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5505 else
5506 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5507 : -CR.getUnsignedMin());
5508 return ExitLimit(Distance, MaxBECount);
5509 }
Andrew Trick635f7182011-03-09 17:23:39 +00005510
Andrew Trickdcfd4042011-03-14 17:28:02 +00005511 // If the recurrence is known not to wraparound, unsigned divide computes the
5512 // back edge count. We know that the value will either become zero (and thus
5513 // the loop terminates), that the loop will terminate through some other exit
5514 // condition first, or that the loop has undefined behavior. This means
5515 // we can't "miss" the exit value, even with nonunit stride.
5516 //
5517 // FIXME: Prove that loops always exhibits *acceptable* undefined
5518 // behavior. Loops must exhibit defined behavior until a wrapped value is
5519 // actually used. So the trip count computed by udiv could be smaller than the
5520 // number of well-defined iterations.
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005521 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
Andrew Trickdcfd4042011-03-14 17:28:02 +00005522 // FIXME: We really want an "isexact" bit for udiv.
5523 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005524 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005525 // Then, try to solve the above equation provided that Start is constant.
5526 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5527 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5528 -StartC->getValue()->getValue(),
5529 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005530 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005531}
5532
5533/// HowFarToNonZero - Return the number of times a backedge checking the
5534/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005535/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005536ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005537ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005538 // Loops that look like: while (X == 0) are very strange indeed. We don't
5539 // handle them yet except for the trivial case. This could be expanded in the
5540 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005541
Chris Lattner53e677a2004-04-02 20:23:17 +00005542 // If the value is a constant, check to see if it is known to be non-zero
5543 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005544 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005545 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005546 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005547 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005548 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005549
Chris Lattner53e677a2004-04-02 20:23:17 +00005550 // We could implement others, but I really doubt anyone writes loops like
5551 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005552 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005553}
5554
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005555/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5556/// (which may not be an immediate predecessor) which has exactly one
5557/// successor from which BB is reachable, or null if no such block is
5558/// found.
5559///
Dan Gohman005752b2010-04-15 16:19:08 +00005560std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005561ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005562 // If the block has a unique predecessor, then there is no path from the
5563 // predecessor to the block that does not go through the direct edge
5564 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005565 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005566 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005567
5568 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005569 // If the header has a unique predecessor outside the loop, it must be
5570 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005571 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005572 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005573
Dan Gohman005752b2010-04-15 16:19:08 +00005574 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005575}
5576
Dan Gohman763bad12009-06-20 00:35:32 +00005577/// HasSameValue - SCEV structural equivalence is usually sufficient for
5578/// testing whether two expressions are equal, however for the purposes of
5579/// looking for a condition guarding a loop, it can be useful to be a little
5580/// more general, since a front-end may have replicated the controlling
5581/// expression.
5582///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005583static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005584 // Quick check to see if they are the same SCEV.
5585 if (A == B) return true;
5586
5587 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5588 // two different instructions with the same value. Check for this case.
5589 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5590 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5591 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5592 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005593 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005594 return true;
5595
5596 // Otherwise assume they may have a different value.
5597 return false;
5598}
5599
Dan Gohmane9796502010-04-24 01:28:42 +00005600/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru94c22712012-09-27 10:14:43 +00005601/// predicate Pred. Return true iff any changes were made.
Dan Gohmane9796502010-04-24 01:28:42 +00005602///
5603bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005604 const SCEV *&LHS, const SCEV *&RHS,
5605 unsigned Depth) {
Dan Gohmane9796502010-04-24 01:28:42 +00005606 bool Changed = false;
5607
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005608 // If we hit the max recursion limit bail out.
5609 if (Depth >= 3)
5610 return false;
5611
Dan Gohmane9796502010-04-24 01:28:42 +00005612 // Canonicalize a constant to the right side.
5613 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5614 // Check for both operands constant.
5615 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5616 if (ConstantExpr::getICmp(Pred,
5617 LHSC->getValue(),
5618 RHSC->getValue())->isNullValue())
5619 goto trivially_false;
5620 else
5621 goto trivially_true;
5622 }
5623 // Otherwise swap the operands to put the constant on the right.
5624 std::swap(LHS, RHS);
5625 Pred = ICmpInst::getSwappedPredicate(Pred);
5626 Changed = true;
5627 }
5628
5629 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005630 // addrec's loop, put the addrec on the left. Also make a dominance check,
5631 // as both operands could be addrecs loop-invariant in each other's loop.
5632 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5633 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005634 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005635 std::swap(LHS, RHS);
5636 Pred = ICmpInst::getSwappedPredicate(Pred);
5637 Changed = true;
5638 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005639 }
Dan Gohmane9796502010-04-24 01:28:42 +00005640
5641 // If there's a constant operand, canonicalize comparisons with boundary
5642 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5643 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5644 const APInt &RA = RC->getValue()->getValue();
5645 switch (Pred) {
5646 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5647 case ICmpInst::ICMP_EQ:
5648 case ICmpInst::ICMP_NE:
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005649 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5650 if (!RA)
5651 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5652 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer127563b2012-05-30 18:42:43 +00005653 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5654 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005655 RHS = AE->getOperand(1);
5656 LHS = ME->getOperand(1);
5657 Changed = true;
5658 }
Dan Gohmane9796502010-04-24 01:28:42 +00005659 break;
5660 case ICmpInst::ICMP_UGE:
5661 if ((RA - 1).isMinValue()) {
5662 Pred = ICmpInst::ICMP_NE;
5663 RHS = getConstant(RA - 1);
5664 Changed = true;
5665 break;
5666 }
5667 if (RA.isMaxValue()) {
5668 Pred = ICmpInst::ICMP_EQ;
5669 Changed = true;
5670 break;
5671 }
5672 if (RA.isMinValue()) goto trivially_true;
5673
5674 Pred = ICmpInst::ICMP_UGT;
5675 RHS = getConstant(RA - 1);
5676 Changed = true;
5677 break;
5678 case ICmpInst::ICMP_ULE:
5679 if ((RA + 1).isMaxValue()) {
5680 Pred = ICmpInst::ICMP_NE;
5681 RHS = getConstant(RA + 1);
5682 Changed = true;
5683 break;
5684 }
5685 if (RA.isMinValue()) {
5686 Pred = ICmpInst::ICMP_EQ;
5687 Changed = true;
5688 break;
5689 }
5690 if (RA.isMaxValue()) goto trivially_true;
5691
5692 Pred = ICmpInst::ICMP_ULT;
5693 RHS = getConstant(RA + 1);
5694 Changed = true;
5695 break;
5696 case ICmpInst::ICMP_SGE:
5697 if ((RA - 1).isMinSignedValue()) {
5698 Pred = ICmpInst::ICMP_NE;
5699 RHS = getConstant(RA - 1);
5700 Changed = true;
5701 break;
5702 }
5703 if (RA.isMaxSignedValue()) {
5704 Pred = ICmpInst::ICMP_EQ;
5705 Changed = true;
5706 break;
5707 }
5708 if (RA.isMinSignedValue()) goto trivially_true;
5709
5710 Pred = ICmpInst::ICMP_SGT;
5711 RHS = getConstant(RA - 1);
5712 Changed = true;
5713 break;
5714 case ICmpInst::ICMP_SLE:
5715 if ((RA + 1).isMaxSignedValue()) {
5716 Pred = ICmpInst::ICMP_NE;
5717 RHS = getConstant(RA + 1);
5718 Changed = true;
5719 break;
5720 }
5721 if (RA.isMinSignedValue()) {
5722 Pred = ICmpInst::ICMP_EQ;
5723 Changed = true;
5724 break;
5725 }
5726 if (RA.isMaxSignedValue()) goto trivially_true;
5727
5728 Pred = ICmpInst::ICMP_SLT;
5729 RHS = getConstant(RA + 1);
5730 Changed = true;
5731 break;
5732 case ICmpInst::ICMP_UGT:
5733 if (RA.isMinValue()) {
5734 Pred = ICmpInst::ICMP_NE;
5735 Changed = true;
5736 break;
5737 }
5738 if ((RA + 1).isMaxValue()) {
5739 Pred = ICmpInst::ICMP_EQ;
5740 RHS = getConstant(RA + 1);
5741 Changed = true;
5742 break;
5743 }
5744 if (RA.isMaxValue()) goto trivially_false;
5745 break;
5746 case ICmpInst::ICMP_ULT:
5747 if (RA.isMaxValue()) {
5748 Pred = ICmpInst::ICMP_NE;
5749 Changed = true;
5750 break;
5751 }
5752 if ((RA - 1).isMinValue()) {
5753 Pred = ICmpInst::ICMP_EQ;
5754 RHS = getConstant(RA - 1);
5755 Changed = true;
5756 break;
5757 }
5758 if (RA.isMinValue()) goto trivially_false;
5759 break;
5760 case ICmpInst::ICMP_SGT:
5761 if (RA.isMinSignedValue()) {
5762 Pred = ICmpInst::ICMP_NE;
5763 Changed = true;
5764 break;
5765 }
5766 if ((RA + 1).isMaxSignedValue()) {
5767 Pred = ICmpInst::ICMP_EQ;
5768 RHS = getConstant(RA + 1);
5769 Changed = true;
5770 break;
5771 }
5772 if (RA.isMaxSignedValue()) goto trivially_false;
5773 break;
5774 case ICmpInst::ICMP_SLT:
5775 if (RA.isMaxSignedValue()) {
5776 Pred = ICmpInst::ICMP_NE;
5777 Changed = true;
5778 break;
5779 }
5780 if ((RA - 1).isMinSignedValue()) {
5781 Pred = ICmpInst::ICMP_EQ;
5782 RHS = getConstant(RA - 1);
5783 Changed = true;
5784 break;
5785 }
5786 if (RA.isMinSignedValue()) goto trivially_false;
5787 break;
5788 }
5789 }
5790
5791 // Check for obvious equality.
5792 if (HasSameValue(LHS, RHS)) {
5793 if (ICmpInst::isTrueWhenEqual(Pred))
5794 goto trivially_true;
5795 if (ICmpInst::isFalseWhenEqual(Pred))
5796 goto trivially_false;
5797 }
5798
Dan Gohman03557dc2010-05-03 16:35:17 +00005799 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5800 // adding or subtracting 1 from one of the operands.
5801 switch (Pred) {
5802 case ICmpInst::ICMP_SLE:
5803 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5804 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005805 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005806 Pred = ICmpInst::ICMP_SLT;
5807 Changed = true;
5808 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005809 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005810 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005811 Pred = ICmpInst::ICMP_SLT;
5812 Changed = true;
5813 }
5814 break;
5815 case ICmpInst::ICMP_SGE:
5816 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005817 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005818 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005819 Pred = ICmpInst::ICMP_SGT;
5820 Changed = true;
5821 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5822 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005823 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005824 Pred = ICmpInst::ICMP_SGT;
5825 Changed = true;
5826 }
5827 break;
5828 case ICmpInst::ICMP_ULE:
5829 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005830 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005831 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005832 Pred = ICmpInst::ICMP_ULT;
5833 Changed = true;
5834 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005835 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005836 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005837 Pred = ICmpInst::ICMP_ULT;
5838 Changed = true;
5839 }
5840 break;
5841 case ICmpInst::ICMP_UGE:
5842 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005843 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005844 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005845 Pred = ICmpInst::ICMP_UGT;
5846 Changed = true;
5847 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005848 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005849 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005850 Pred = ICmpInst::ICMP_UGT;
5851 Changed = true;
5852 }
5853 break;
5854 default:
5855 break;
5856 }
5857
Dan Gohmane9796502010-04-24 01:28:42 +00005858 // TODO: More simplifications are possible here.
5859
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005860 // Recursively simplify until we either hit a recursion limit or nothing
5861 // changes.
5862 if (Changed)
5863 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
5864
Dan Gohmane9796502010-04-24 01:28:42 +00005865 return Changed;
5866
5867trivially_true:
5868 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005869 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005870 Pred = ICmpInst::ICMP_EQ;
5871 return true;
5872
5873trivially_false:
5874 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005875 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005876 Pred = ICmpInst::ICMP_NE;
5877 return true;
5878}
5879
Dan Gohman85b05a22009-07-13 21:35:55 +00005880bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5881 return getSignedRange(S).getSignedMax().isNegative();
5882}
5883
5884bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5885 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5886}
5887
5888bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5889 return !getSignedRange(S).getSignedMin().isNegative();
5890}
5891
5892bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5893 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5894}
5895
5896bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5897 return isKnownNegative(S) || isKnownPositive(S);
5898}
5899
5900bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5901 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005902 // Canonicalize the inputs first.
5903 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5904
Dan Gohman53c66ea2010-04-11 22:16:48 +00005905 // If LHS or RHS is an addrec, check to see if the condition is true in
5906 // every iteration of the loop.
5907 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5908 if (isLoopEntryGuardedByCond(
5909 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5910 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005911 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005912 return true;
5913 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5914 if (isLoopEntryGuardedByCond(
5915 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5916 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005917 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005918 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005919
Dan Gohman53c66ea2010-04-11 22:16:48 +00005920 // Otherwise see what can be done with known constant ranges.
5921 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5922}
5923
5924bool
5925ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5926 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005927 if (HasSameValue(LHS, RHS))
5928 return ICmpInst::isTrueWhenEqual(Pred);
5929
Dan Gohman53c66ea2010-04-11 22:16:48 +00005930 // This code is split out from isKnownPredicate because it is called from
5931 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005932 switch (Pred) {
5933 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005934 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005935 case ICmpInst::ICMP_SGT:
5936 Pred = ICmpInst::ICMP_SLT;
5937 std::swap(LHS, RHS);
5938 case ICmpInst::ICMP_SLT: {
5939 ConstantRange LHSRange = getSignedRange(LHS);
5940 ConstantRange RHSRange = getSignedRange(RHS);
5941 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5942 return true;
5943 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5944 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005945 break;
5946 }
5947 case ICmpInst::ICMP_SGE:
5948 Pred = ICmpInst::ICMP_SLE;
5949 std::swap(LHS, RHS);
5950 case ICmpInst::ICMP_SLE: {
5951 ConstantRange LHSRange = getSignedRange(LHS);
5952 ConstantRange RHSRange = getSignedRange(RHS);
5953 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5954 return true;
5955 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5956 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005957 break;
5958 }
5959 case ICmpInst::ICMP_UGT:
5960 Pred = ICmpInst::ICMP_ULT;
5961 std::swap(LHS, RHS);
5962 case ICmpInst::ICMP_ULT: {
5963 ConstantRange LHSRange = getUnsignedRange(LHS);
5964 ConstantRange RHSRange = getUnsignedRange(RHS);
5965 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5966 return true;
5967 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5968 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005969 break;
5970 }
5971 case ICmpInst::ICMP_UGE:
5972 Pred = ICmpInst::ICMP_ULE;
5973 std::swap(LHS, RHS);
5974 case ICmpInst::ICMP_ULE: {
5975 ConstantRange LHSRange = getUnsignedRange(LHS);
5976 ConstantRange RHSRange = getUnsignedRange(RHS);
5977 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5978 return true;
5979 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5980 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005981 break;
5982 }
5983 case ICmpInst::ICMP_NE: {
5984 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5985 return true;
5986 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5987 return true;
5988
5989 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5990 if (isKnownNonZero(Diff))
5991 return true;
5992 break;
5993 }
5994 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005995 // The check at the top of the function catches the case where
5996 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005997 break;
5998 }
5999 return false;
6000}
6001
6002/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6003/// protected by a conditional between LHS and RHS. This is used to
6004/// to eliminate casts.
6005bool
6006ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6007 ICmpInst::Predicate Pred,
6008 const SCEV *LHS, const SCEV *RHS) {
6009 // Interpret a null as meaning no loop, where there is obviously no guard
6010 // (interprocedural conditions notwithstanding).
6011 if (!L) return true;
6012
6013 BasicBlock *Latch = L->getLoopLatch();
6014 if (!Latch)
6015 return false;
6016
6017 BranchInst *LoopContinuePredicate =
6018 dyn_cast<BranchInst>(Latch->getTerminator());
6019 if (!LoopContinuePredicate ||
6020 LoopContinuePredicate->isUnconditional())
6021 return false;
6022
Dan Gohmanaf08a362010-08-10 23:46:30 +00006023 return isImpliedCond(Pred, LHS, RHS,
6024 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00006025 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00006026}
6027
Dan Gohman3948d0b2010-04-11 19:27:13 +00006028/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00006029/// by a conditional between LHS and RHS. This is used to help avoid max
6030/// expressions in loop trip counts, and to eliminate casts.
6031bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00006032ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6033 ICmpInst::Predicate Pred,
6034 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00006035 // Interpret a null as meaning no loop, where there is obviously no guard
6036 // (interprocedural conditions notwithstanding).
6037 if (!L) return false;
6038
Dan Gohman859b4822009-05-18 15:36:09 +00006039 // Starting at the loop predecessor, climb up the predecessor chain, as long
6040 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00006041 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00006042 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00006043 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00006044 Pair.first;
6045 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00006046
6047 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00006048 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00006049 if (!LoopEntryPredicate ||
6050 LoopEntryPredicate->isUnconditional())
6051 continue;
6052
Dan Gohmanaf08a362010-08-10 23:46:30 +00006053 if (isImpliedCond(Pred, LHS, RHS,
6054 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00006055 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00006056 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00006057 }
6058
Dan Gohman38372182008-08-12 20:17:31 +00006059 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00006060}
6061
Andrew Trick8aa22012012-05-19 00:48:25 +00006062/// RAII wrapper to prevent recursive application of isImpliedCond.
6063/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6064/// currently evaluating isImpliedCond.
6065struct MarkPendingLoopPredicate {
6066 Value *Cond;
6067 DenseSet<Value*> &LoopPreds;
6068 bool Pending;
6069
6070 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6071 : Cond(C), LoopPreds(LP) {
6072 Pending = !LoopPreds.insert(Cond).second;
6073 }
6074 ~MarkPendingLoopPredicate() {
6075 if (!Pending)
6076 LoopPreds.erase(Cond);
6077 }
6078};
6079
Dan Gohman0f4b2852009-07-21 23:03:19 +00006080/// isImpliedCond - Test whether the condition described by Pred, LHS,
6081/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006082bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006083 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00006084 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006085 bool Inverse) {
Andrew Trick8aa22012012-05-19 00:48:25 +00006086 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6087 if (Mark.Pending)
6088 return false;
6089
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006090 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006091 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006092 if (BO->getOpcode() == Instruction::And) {
6093 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006094 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6095 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006096 } else if (BO->getOpcode() == Instruction::Or) {
6097 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006098 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6099 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006100 }
6101 }
6102
Dan Gohmanaf08a362010-08-10 23:46:30 +00006103 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006104 if (!ICI) return false;
6105
Dan Gohman85b05a22009-07-13 21:35:55 +00006106 // Bail if the ICmp's operands' types are wider than the needed type
6107 // before attempting to call getSCEV on them. This avoids infinite
6108 // recursion, since the analysis of widening casts can require loop
6109 // exit condition information for overflow checking, which would
6110 // lead back here.
6111 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00006112 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00006113 return false;
6114
Dan Gohman0f4b2852009-07-21 23:03:19 +00006115 // Now that we found a conditional branch that dominates the loop, check to
6116 // see if it is the comparison we are looking for.
6117 ICmpInst::Predicate FoundPred;
6118 if (Inverse)
6119 FoundPred = ICI->getInversePredicate();
6120 else
6121 FoundPred = ICI->getPredicate();
6122
6123 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6124 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00006125
6126 // Balance the types. The case where FoundLHS' type is wider than
6127 // LHS' type is checked for above.
6128 if (getTypeSizeInBits(LHS->getType()) >
6129 getTypeSizeInBits(FoundLHS->getType())) {
6130 if (CmpInst::isSigned(Pred)) {
6131 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6132 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6133 } else {
6134 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6135 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6136 }
6137 }
6138
Dan Gohman0f4b2852009-07-21 23:03:19 +00006139 // Canonicalize the query to match the way instcombine will have
6140 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00006141 if (SimplifyICmpOperands(Pred, LHS, RHS))
6142 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006143 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00006144 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6145 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006146 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00006147
6148 // Check to see if we can make the LHS or RHS match.
6149 if (LHS == FoundRHS || RHS == FoundLHS) {
6150 if (isa<SCEVConstant>(RHS)) {
6151 std::swap(FoundLHS, FoundRHS);
6152 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6153 } else {
6154 std::swap(LHS, RHS);
6155 Pred = ICmpInst::getSwappedPredicate(Pred);
6156 }
6157 }
6158
6159 // Check whether the found predicate is the same as the desired predicate.
6160 if (FoundPred == Pred)
6161 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6162
6163 // Check whether swapping the found predicate makes it the same as the
6164 // desired predicate.
6165 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6166 if (isa<SCEVConstant>(RHS))
6167 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6168 else
6169 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6170 RHS, LHS, FoundLHS, FoundRHS);
6171 }
6172
6173 // Check whether the actual condition is beyond sufficient.
6174 if (FoundPred == ICmpInst::ICMP_EQ)
6175 if (ICmpInst::isTrueWhenEqual(Pred))
6176 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6177 return true;
6178 if (Pred == ICmpInst::ICMP_NE)
6179 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6180 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6181 return true;
6182
6183 // Otherwise assume the worst.
6184 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006185}
6186
Dan Gohman0f4b2852009-07-21 23:03:19 +00006187/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006188/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006189/// and FoundRHS is true.
6190bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6191 const SCEV *LHS, const SCEV *RHS,
6192 const SCEV *FoundLHS,
6193 const SCEV *FoundRHS) {
6194 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6195 FoundLHS, FoundRHS) ||
6196 // ~x < ~y --> x > y
6197 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6198 getNotSCEV(FoundRHS),
6199 getNotSCEV(FoundLHS));
6200}
6201
6202/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006203/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006204/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00006205bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00006206ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6207 const SCEV *LHS, const SCEV *RHS,
6208 const SCEV *FoundLHS,
6209 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006210 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00006211 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6212 case ICmpInst::ICMP_EQ:
6213 case ICmpInst::ICMP_NE:
6214 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6215 return true;
6216 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00006217 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00006218 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006219 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6220 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006221 return true;
6222 break;
6223 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006224 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006225 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6226 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006227 return true;
6228 break;
6229 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00006230 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006231 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6232 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006233 return true;
6234 break;
6235 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006236 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006237 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6238 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006239 return true;
6240 break;
6241 }
6242
6243 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006244}
6245
Dan Gohman51f53b72009-06-21 23:46:38 +00006246/// getBECount - Subtract the end and start values and divide by the step,
6247/// rounding up, to get the number of times the backedge is executed. Return
6248/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006249const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00006250 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00006251 const SCEV *Step,
6252 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00006253 assert(!isKnownNegative(Step) &&
6254 "This code doesn't handle negative strides yet!");
6255
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006256 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00006257
6258 // When Start == End, we have an exact BECount == 0. Short-circuit this case
6259 // here because SCEV may not be able to determine that the unsigned division
6260 // after rounding is zero.
6261 if (Start == End)
6262 return getConstant(Ty, 0);
6263
Dan Gohmandeff6212010-05-03 22:09:21 +00006264 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00006265 const SCEV *Diff = getMinusSCEV(End, Start);
6266 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00006267
6268 // Add an adjustment to the difference between End and Start so that
6269 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006270 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00006271
Dan Gohman1f96e672009-09-17 18:05:20 +00006272 if (!NoWrap) {
6273 // Check Add for unsigned overflow.
6274 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006275 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00006276 getTypeSizeInBits(Ty) + 1);
6277 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6278 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6279 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6280 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6281 return getCouldNotCompute();
6282 }
Dan Gohman51f53b72009-06-21 23:46:38 +00006283
6284 return getUDivExpr(Add, Step);
6285}
6286
Chris Lattnerdb25de42005-08-15 23:33:51 +00006287/// HowManyLessThans - Return the number of times a backedge containing the
6288/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00006289/// CouldNotCompute.
Andrew Trick5116ff62011-07-26 17:19:55 +00006290ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00006291ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6292 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00006293 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00006294 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006295
Dan Gohman35738ac2009-05-04 22:30:44 +00006296 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006297 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00006298 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006299
Dan Gohman1f96e672009-09-17 18:05:20 +00006300 // Check to see if we have a flag which makes analysis easy.
Nick Lewycky89d093d2011-11-09 07:11:37 +00006301 bool NoWrap = isSigned ?
6302 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
6303 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
Dan Gohman1f96e672009-09-17 18:05:20 +00006304
Chris Lattnerdb25de42005-08-15 23:33:51 +00006305 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006306 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00006307 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00006308
Dan Gohman52fddd32010-01-26 04:40:18 +00006309 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00006310 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00006311 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006312 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00006313 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00006314 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00006315 // value and past the maximum value for its type in a single step.
6316 // Note that it's not sufficient to check NoWrap here, because even
6317 // though the value after a wrap is undefined, it's not undefined
6318 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00006319 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00006320 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00006321 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00006322 if (isSigned) {
6323 APInt Max = APInt::getSignedMaxValue(BitWidth);
6324 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6325 .slt(getSignedRange(RHS).getSignedMax()))
6326 return getCouldNotCompute();
6327 } else {
6328 APInt Max = APInt::getMaxValue(BitWidth);
6329 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6330 .ult(getUnsignedRange(RHS).getUnsignedMax()))
6331 return getCouldNotCompute();
6332 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006333 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00006334 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00006335 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006336
Dan Gohmana1af7572009-04-30 20:47:05 +00006337 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6338 // m. So, we count the number of iterations in which {n,+,s} < m is true.
6339 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00006340 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00006341
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006342 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00006343 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006344
Dan Gohmana1af7572009-04-30 20:47:05 +00006345 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006346 const SCEV *MinStart = getConstant(isSigned ?
6347 getSignedRange(Start).getSignedMin() :
6348 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006349
Dan Gohmana1af7572009-04-30 20:47:05 +00006350 // If we know that the condition is true in order to enter the loop,
6351 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006352 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6353 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006354 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006355 if (!isLoopEntryGuardedByCond(L,
6356 isSigned ? ICmpInst::ICMP_SLT :
6357 ICmpInst::ICMP_ULT,
6358 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006359 End = isSigned ? getSMaxExpr(RHS, Start)
6360 : getUMaxExpr(RHS, Start);
6361
6362 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006363 const SCEV *MaxEnd = getConstant(isSigned ?
6364 getSignedRange(End).getSignedMax() :
6365 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006366
Dan Gohman52fddd32010-01-26 04:40:18 +00006367 // If MaxEnd is within a step of the maximum integer value in its type,
6368 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006369 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006370 // compute the correct value.
6371 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006372 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006373 MaxEnd = isSigned ?
6374 getSMinExpr(MaxEnd,
6375 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6376 StepMinusOne)) :
6377 getUMinExpr(MaxEnd,
6378 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6379 StepMinusOne));
6380
Dan Gohmana1af7572009-04-30 20:47:05 +00006381 // Finally, we subtract these two values and divide, rounding up, to get
6382 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006383 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006384
6385 // The maximum backedge count is similar, except using the minimum start
6386 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006387 // If we already have an exact constant BECount, use it instead.
6388 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6389 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6390
6391 // If the stride is nonconstant, and NoWrap == true, then
6392 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6393 // exact BECount and invalid MaxBECount, which should be avoided to catch
6394 // more optimization opportunities.
6395 if (isa<SCEVCouldNotCompute>(MaxBECount))
6396 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006397
Andrew Trick5116ff62011-07-26 17:19:55 +00006398 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006399 }
6400
Dan Gohman1c343752009-06-27 21:21:31 +00006401 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006402}
6403
Chris Lattner53e677a2004-04-02 20:23:17 +00006404/// getNumIterationsInRange - Return the number of iterations of this loop that
6405/// produce values in the specified constant range. Another way of looking at
6406/// this is that it returns the first iteration number where the value is not in
6407/// the condition, thus computing the exit count. If the iteration count can't
6408/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006409const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006410 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006411 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006412 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006413
6414 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006415 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006416 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006417 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006418 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006419 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006420 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006421 if (const SCEVAddRecExpr *ShiftedAddRec =
6422 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006423 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006424 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006425 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006426 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006427 }
6428
6429 // The only time we can solve this is when we have all constant indices.
6430 // Otherwise, we cannot determine the overflow conditions.
6431 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6432 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006433 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006434
6435
6436 // Okay at this point we know that all elements of the chrec are constants and
6437 // that the start element is zero.
6438
6439 // First check to see if the range contains zero. If not, the first
6440 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006441 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006442 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006443 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006444
Chris Lattner53e677a2004-04-02 20:23:17 +00006445 if (isAffine()) {
6446 // If this is an affine expression then we have this situation:
6447 // Solve {0,+,A} in Range === Ax in Range
6448
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006449 // We know that zero is in the range. If A is positive then we know that
6450 // the upper value of the range must be the first possible exit value.
6451 // If A is negative then the lower of the range is the last possible loop
6452 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006453 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006454 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6455 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006456
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006457 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006458 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006459 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006460
6461 // Evaluate at the exit value. If we really did fall out of the valid
6462 // range, then we computed our trip count, otherwise wrap around or other
6463 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006464 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006465 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006466 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006467
6468 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006469 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006470 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006471 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006472 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006473 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006474 } else if (isQuadratic()) {
6475 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6476 // quadratic equation to solve it. To do this, we must frame our problem in
6477 // terms of figuring out when zero is crossed, instead of when
6478 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006479 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006480 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006481 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6482 // getNoWrapFlags(FlagNW)
6483 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006484
6485 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006486 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006487 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006488 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6489 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006490 if (R1) {
6491 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006492 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006493 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006494 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006495 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006496 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006497
Chris Lattner53e677a2004-04-02 20:23:17 +00006498 // Make sure the root is not off by one. The returned iteration should
6499 // not be in the range, but the previous one should be. When solving
6500 // for "X*X < 5", for example, we should not return a root of 2.
6501 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006502 R1->getValue(),
6503 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006504 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006505 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006506 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006507 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006508
Dan Gohman246b2562007-10-22 18:31:58 +00006509 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006510 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006511 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006512 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006513 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006514
Chris Lattner53e677a2004-04-02 20:23:17 +00006515 // If R1 was not in the range, then it is a good return value. Make
6516 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006517 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006518 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006519 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006520 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006521 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006522 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006523 }
6524 }
6525 }
6526
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006527 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006528}
6529
6530
6531
6532//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006533// SCEVCallbackVH Class Implementation
6534//===----------------------------------------------------------------------===//
6535
Dan Gohman1959b752009-05-19 19:22:47 +00006536void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006537 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006538 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6539 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006540 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006541 // this now dangles!
6542}
6543
Dan Gohman81f91212010-07-28 01:09:07 +00006544void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006545 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006546
Dan Gohman35738ac2009-05-04 22:30:44 +00006547 // Forget all the expressions associated with users of the old value,
6548 // so that future queries will recompute the expressions using the new
6549 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006550 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006551 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006552 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006553 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6554 UI != UE; ++UI)
6555 Worklist.push_back(*UI);
6556 while (!Worklist.empty()) {
6557 User *U = Worklist.pop_back_val();
6558 // Deleting the Old value will cause this to dangle. Postpone
6559 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006560 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006561 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006562 if (!Visited.insert(U))
6563 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006564 if (PHINode *PN = dyn_cast<PHINode>(U))
6565 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006566 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006567 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6568 UI != UE; ++UI)
6569 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006570 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006571 // Delete the Old value.
6572 if (PHINode *PN = dyn_cast<PHINode>(Old))
6573 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006574 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006575 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006576}
6577
Dan Gohman1959b752009-05-19 19:22:47 +00006578ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006579 : CallbackVH(V), SE(se) {}
6580
6581//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006582// ScalarEvolution Class Implementation
6583//===----------------------------------------------------------------------===//
6584
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006585ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006586 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006587 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006588}
6589
Chris Lattner53e677a2004-04-02 20:23:17 +00006590bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006591 this->F = &F;
6592 LI = &getAnalysis<LoopInfo>();
6593 TD = getAnalysisIfAvailable<TargetData>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006594 TLI = &getAnalysis<TargetLibraryInfo>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006595 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006596 return false;
6597}
6598
6599void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006600 // Iterate through all the SCEVUnknown instances and call their
6601 // destructors, so that they release their references to their values.
6602 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6603 U->~SCEVUnknown();
6604 FirstUnknown = 0;
6605
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006606 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006607
6608 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6609 // that a loop had multiple computable exits.
6610 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6611 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6612 I != E; ++I) {
6613 I->second.clear();
6614 }
6615
Andrew Trick8aa22012012-05-19 00:48:25 +00006616 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
6617
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006618 BackedgeTakenCounts.clear();
6619 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006620 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006621 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006622 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006623 UnsignedRanges.clear();
6624 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006625 UniqueSCEVs.clear();
6626 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006627}
6628
6629void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6630 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006631 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006632 AU.addRequiredTransitive<DominatorTree>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006633 AU.addRequired<TargetLibraryInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006634}
6635
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006636bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006637 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006638}
6639
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006640static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006641 const Loop *L) {
6642 // Print all inner loops first
6643 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6644 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006645
Dan Gohman30733292010-01-09 18:17:45 +00006646 OS << "Loop ";
6647 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6648 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006649
Dan Gohman5d984912009-12-18 01:14:11 +00006650 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006651 L->getExitBlocks(ExitBlocks);
6652 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006653 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006654
Dan Gohman46bdfb02009-02-24 18:55:53 +00006655 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6656 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006657 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006658 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006659 }
6660
Dan Gohman30733292010-01-09 18:17:45 +00006661 OS << "\n"
6662 "Loop ";
6663 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6664 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006665
6666 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6667 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6668 } else {
6669 OS << "Unpredictable max backedge-taken count. ";
6670 }
6671
6672 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006673}
6674
Dan Gohman5d984912009-12-18 01:14:11 +00006675void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006676 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006677 // out SCEV values of all instructions that are interesting. Doing
6678 // this potentially causes it to create new SCEV objects though,
6679 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006680 // observable from outside the class though, so casting away the
6681 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006682 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006683
Dan Gohman30733292010-01-09 18:17:45 +00006684 OS << "Classifying expressions for: ";
6685 WriteAsOperand(OS, F, /*PrintType=*/false);
6686 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006687 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006688 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006689 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006690 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006691 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006692 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006693
Dan Gohman0c689c52009-06-19 17:49:54 +00006694 const Loop *L = LI->getLoopFor((*I).getParent());
6695
Dan Gohman0bba49c2009-07-07 17:06:11 +00006696 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006697 if (AtUse != SV) {
6698 OS << " --> ";
6699 AtUse->print(OS);
6700 }
6701
6702 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006703 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006704 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006705 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006706 OS << "<<Unknown>>";
6707 } else {
6708 OS << *ExitValue;
6709 }
6710 }
6711
Chris Lattner53e677a2004-04-02 20:23:17 +00006712 OS << "\n";
6713 }
6714
Dan Gohman30733292010-01-09 18:17:45 +00006715 OS << "Determining loop execution counts for: ";
6716 WriteAsOperand(OS, F, /*PrintType=*/false);
6717 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006718 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6719 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006720}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006721
Dan Gohman714b5292010-11-17 23:21:44 +00006722ScalarEvolution::LoopDisposition
6723ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6724 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6725 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6726 Values.insert(std::make_pair(L, LoopVariant));
6727 if (!Pair.second)
6728 return Pair.first->second;
6729
6730 LoopDisposition D = computeLoopDisposition(S, L);
6731 return LoopDispositions[S][L] = D;
6732}
6733
6734ScalarEvolution::LoopDisposition
6735ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006736 switch (S->getSCEVType()) {
6737 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006738 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006739 case scTruncate:
6740 case scZeroExtend:
6741 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006742 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006743 case scAddRecExpr: {
6744 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6745
Dan Gohman714b5292010-11-17 23:21:44 +00006746 // If L is the addrec's loop, it's computable.
6747 if (AR->getLoop() == L)
6748 return LoopComputable;
6749
Dan Gohman17ead4f2010-11-17 21:23:15 +00006750 // Add recurrences are never invariant in the function-body (null loop).
6751 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006752 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006753
6754 // This recurrence is variant w.r.t. L if L contains AR's loop.
6755 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006756 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006757
6758 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6759 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006760 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006761
6762 // This recurrence is variant w.r.t. L if any of its operands
6763 // are variant.
6764 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6765 I != E; ++I)
6766 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006767 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006768
6769 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006770 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006771 }
6772 case scAddExpr:
6773 case scMulExpr:
6774 case scUMaxExpr:
6775 case scSMaxExpr: {
6776 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006777 bool HasVarying = false;
6778 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6779 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006780 LoopDisposition D = getLoopDisposition(*I, L);
6781 if (D == LoopVariant)
6782 return LoopVariant;
6783 if (D == LoopComputable)
6784 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006785 }
Dan Gohman714b5292010-11-17 23:21:44 +00006786 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006787 }
6788 case scUDivExpr: {
6789 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006790 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6791 if (LD == LoopVariant)
6792 return LoopVariant;
6793 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6794 if (RD == LoopVariant)
6795 return LoopVariant;
6796 return (LD == LoopInvariant && RD == LoopInvariant) ?
6797 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006798 }
6799 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006800 // All non-instruction values are loop invariant. All instructions are loop
6801 // invariant if they are not contained in the specified loop.
6802 // Instructions are never considered invariant in the function body
6803 // (null loop) because they are defined within the "loop".
6804 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6805 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6806 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006807 case scCouldNotCompute:
6808 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +00006809 default: llvm_unreachable("Unknown SCEV kind!");
Dan Gohman17ead4f2010-11-17 21:23:15 +00006810 }
Dan Gohman714b5292010-11-17 23:21:44 +00006811}
6812
6813bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6814 return getLoopDisposition(S, L) == LoopInvariant;
6815}
6816
6817bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6818 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006819}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006820
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006821ScalarEvolution::BlockDisposition
6822ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6823 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6824 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6825 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6826 if (!Pair.second)
6827 return Pair.first->second;
6828
6829 BlockDisposition D = computeBlockDisposition(S, BB);
6830 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006831}
6832
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006833ScalarEvolution::BlockDisposition
6834ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006835 switch (S->getSCEVType()) {
6836 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006837 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006838 case scTruncate:
6839 case scZeroExtend:
6840 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006841 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006842 case scAddRecExpr: {
6843 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006844 // to test for proper dominance too, because the instruction which
6845 // produces the addrec's value is a PHI, and a PHI effectively properly
6846 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006847 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6848 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006849 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006850 }
6851 // FALL THROUGH into SCEVNAryExpr handling.
6852 case scAddExpr:
6853 case scMulExpr:
6854 case scUMaxExpr:
6855 case scSMaxExpr: {
6856 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006857 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006858 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006859 I != E; ++I) {
6860 BlockDisposition D = getBlockDisposition(*I, BB);
6861 if (D == DoesNotDominateBlock)
6862 return DoesNotDominateBlock;
6863 if (D == DominatesBlock)
6864 Proper = false;
6865 }
6866 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006867 }
6868 case scUDivExpr: {
6869 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006870 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6871 BlockDisposition LD = getBlockDisposition(LHS, BB);
6872 if (LD == DoesNotDominateBlock)
6873 return DoesNotDominateBlock;
6874 BlockDisposition RD = getBlockDisposition(RHS, BB);
6875 if (RD == DoesNotDominateBlock)
6876 return DoesNotDominateBlock;
6877 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6878 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006879 }
6880 case scUnknown:
6881 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006882 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6883 if (I->getParent() == BB)
6884 return DominatesBlock;
6885 if (DT->properlyDominates(I->getParent(), BB))
6886 return ProperlyDominatesBlock;
6887 return DoesNotDominateBlock;
6888 }
6889 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006890 case scCouldNotCompute:
6891 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Andrew Trickeb6dd232012-03-26 22:33:59 +00006892 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +00006893 llvm_unreachable("Unknown SCEV kind!");
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006894 }
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006895}
6896
6897bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6898 return getBlockDisposition(S, BB) >= DominatesBlock;
6899}
6900
6901bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6902 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006903}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006904
Andrew Trick8b7036b2012-07-13 23:33:03 +00006905namespace {
6906// Search for a SCEV expression node within an expression tree.
6907// Implements SCEVTraversal::Visitor.
6908struct SCEVSearch {
6909 const SCEV *Node;
6910 bool IsFound;
6911
6912 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
6913
6914 bool follow(const SCEV *S) {
6915 IsFound |= (S == Node);
6916 return !IsFound;
6917 }
6918 bool isDone() const { return IsFound; }
6919};
6920}
6921
Dan Gohman4ce32db2010-11-17 22:27:42 +00006922bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick8b7036b2012-07-13 23:33:03 +00006923 SCEVSearch Search(Op);
6924 visitAll(S, Search);
6925 return Search.IsFound;
Dan Gohman4ce32db2010-11-17 22:27:42 +00006926}
Dan Gohman56a75682010-11-17 23:28:48 +00006927
6928void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6929 ValuesAtScopes.erase(S);
6930 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006931 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006932 UnsignedRanges.erase(S);
6933 SignedRanges.erase(S);
6934}