blob: caf360650d0625d6ada8a9003a609c8ed0b4cdc7 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chad Rosier618c1db2011-12-01 03:08:23 +000077#include "llvm/Target/TargetLibraryInfo.h"
Chris Lattner95255282006-06-28 23:17:24 +000078#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000079#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000080#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000081#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000082#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000083#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000084#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000085#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000086#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000087#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000088#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000089#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000090using namespace llvm;
91
Chris Lattner3b27d682006-12-19 22:30:33 +000092STATISTIC(NumArrayLenItCounts,
93 "Number of trip counts computed with array length");
94STATISTIC(NumTripCountsComputed,
95 "Number of loops with predictable loop counts");
96STATISTIC(NumTripCountsNotComputed,
97 "Number of loops without predictable loop counts");
98STATISTIC(NumBruteForceTripCountsComputed,
99 "Number of loops with trip counts computed by force");
100
Dan Gohman844731a2008-05-13 00:00:25 +0000101static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000102MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000104 "symbolically execute a constant "
105 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000106 cl::init(100));
107
Owen Anderson2ab36d32010-10-12 19:48:12 +0000108INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
109 "Scalar Evolution Analysis", false, true)
110INITIALIZE_PASS_DEPENDENCY(LoopInfo)
111INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Chad Rosier618c1db2011-12-01 03:08:23 +0000112INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000113INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000114 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000115char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000116
117//===----------------------------------------------------------------------===//
118// SCEV class definitions
119//===----------------------------------------------------------------------===//
120
121//===----------------------------------------------------------------------===//
122// Implementation of the SCEV class.
123//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000124
Chris Lattner53e677a2004-04-02 20:23:17 +0000125void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000126 print(dbgs());
127 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000128}
129
Dan Gohman4ce32db2010-11-17 22:27:42 +0000130void SCEV::print(raw_ostream &OS) const {
131 switch (getSCEVType()) {
132 case scConstant:
133 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
134 return;
135 case scTruncate: {
136 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
137 const SCEV *Op = Trunc->getOperand();
138 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
139 << *Trunc->getType() << ")";
140 return;
141 }
142 case scZeroExtend: {
143 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
144 const SCEV *Op = ZExt->getOperand();
145 OS << "(zext " << *Op->getType() << " " << *Op << " to "
146 << *ZExt->getType() << ")";
147 return;
148 }
149 case scSignExtend: {
150 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
151 const SCEV *Op = SExt->getOperand();
152 OS << "(sext " << *Op->getType() << " " << *Op << " to "
153 << *SExt->getType() << ")";
154 return;
155 }
156 case scAddRecExpr: {
157 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
158 OS << "{" << *AR->getOperand(0);
159 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
160 OS << ",+," << *AR->getOperand(i);
161 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000162 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000163 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000164 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000165 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000166 if (AR->getNoWrapFlags(FlagNW) &&
167 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
168 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000169 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
170 OS << ">";
171 return;
172 }
173 case scAddExpr:
174 case scMulExpr:
175 case scUMaxExpr:
176 case scSMaxExpr: {
177 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000178 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000179 switch (NAry->getSCEVType()) {
180 case scAddExpr: OpStr = " + "; break;
181 case scMulExpr: OpStr = " * "; break;
182 case scUMaxExpr: OpStr = " umax "; break;
183 case scSMaxExpr: OpStr = " smax "; break;
184 }
185 OS << "(";
186 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
187 I != E; ++I) {
188 OS << **I;
189 if (llvm::next(I) != E)
190 OS << OpStr;
191 }
192 OS << ")";
Andrew Trick121d78f2011-11-29 02:06:35 +0000193 switch (NAry->getSCEVType()) {
194 case scAddExpr:
195 case scMulExpr:
196 if (NAry->getNoWrapFlags(FlagNUW))
197 OS << "<nuw>";
198 if (NAry->getNoWrapFlags(FlagNSW))
199 OS << "<nsw>";
200 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000201 return;
202 }
203 case scUDivExpr: {
204 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
205 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
206 return;
207 }
208 case scUnknown: {
209 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000210 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000211 if (U->isSizeOf(AllocTy)) {
212 OS << "sizeof(" << *AllocTy << ")";
213 return;
214 }
215 if (U->isAlignOf(AllocTy)) {
216 OS << "alignof(" << *AllocTy << ")";
217 return;
218 }
Andrew Trick635f7182011-03-09 17:23:39 +0000219
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000220 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000221 Constant *FieldNo;
222 if (U->isOffsetOf(CTy, FieldNo)) {
223 OS << "offsetof(" << *CTy << ", ";
224 WriteAsOperand(OS, FieldNo, false);
225 OS << ")";
226 return;
227 }
Andrew Trick635f7182011-03-09 17:23:39 +0000228
Dan Gohman4ce32db2010-11-17 22:27:42 +0000229 // Otherwise just print it normally.
230 WriteAsOperand(OS, U->getValue(), false);
231 return;
232 }
233 case scCouldNotCompute:
234 OS << "***COULDNOTCOMPUTE***";
235 return;
236 default: break;
237 }
238 llvm_unreachable("Unknown SCEV kind!");
239}
240
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000241Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000242 switch (getSCEVType()) {
243 case scConstant:
244 return cast<SCEVConstant>(this)->getType();
245 case scTruncate:
246 case scZeroExtend:
247 case scSignExtend:
248 return cast<SCEVCastExpr>(this)->getType();
249 case scAddRecExpr:
250 case scMulExpr:
251 case scUMaxExpr:
252 case scSMaxExpr:
253 return cast<SCEVNAryExpr>(this)->getType();
254 case scAddExpr:
255 return cast<SCEVAddExpr>(this)->getType();
256 case scUDivExpr:
257 return cast<SCEVUDivExpr>(this)->getType();
258 case scUnknown:
259 return cast<SCEVUnknown>(this)->getType();
260 case scCouldNotCompute:
261 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +0000262 default:
263 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman4ce32db2010-11-17 22:27:42 +0000264 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000265}
266
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000267bool SCEV::isZero() const {
268 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
269 return SC->getValue()->isZero();
270 return false;
271}
272
Dan Gohman70a1fe72009-05-18 15:22:39 +0000273bool SCEV::isOne() const {
274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
275 return SC->getValue()->isOne();
276 return false;
277}
Chris Lattner53e677a2004-04-02 20:23:17 +0000278
Dan Gohman4d289bf2009-06-24 00:30:26 +0000279bool SCEV::isAllOnesValue() const {
280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
281 return SC->getValue()->isAllOnesValue();
282 return false;
283}
284
Andrew Trickf8fd8412012-01-07 00:27:31 +0000285/// isNonConstantNegative - Return true if the specified scev is negated, but
286/// not a constant.
287bool SCEV::isNonConstantNegative() const {
288 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
289 if (!Mul) return false;
290
291 // If there is a constant factor, it will be first.
292 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
293 if (!SC) return false;
294
295 // Return true if the value is negative, this matches things like (-42 * V).
296 return SC->getValue()->getValue().isNegative();
297}
298
Owen Anderson753ad612009-06-22 21:57:23 +0000299SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000300 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000301
Chris Lattner53e677a2004-04-02 20:23:17 +0000302bool SCEVCouldNotCompute::classof(const SCEV *S) {
303 return S->getSCEVType() == scCouldNotCompute;
304}
305
Dan Gohman0bba49c2009-07-07 17:06:11 +0000306const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000307 FoldingSetNodeID ID;
308 ID.AddInteger(scConstant);
309 ID.AddPointer(V);
310 void *IP = 0;
311 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000312 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000313 UniqueSCEVs.InsertNode(S, IP);
314 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000315}
Chris Lattner53e677a2004-04-02 20:23:17 +0000316
Dan Gohman0bba49c2009-07-07 17:06:11 +0000317const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000318 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000319}
320
Dan Gohman0bba49c2009-07-07 17:06:11 +0000321const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000322ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
323 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000324 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000325}
326
Dan Gohman3bf63762010-06-18 19:54:20 +0000327SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000328 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000329 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000330
Dan Gohman3bf63762010-06-18 19:54:20 +0000331SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000332 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000333 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000334 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
335 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000336 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000337}
Chris Lattner53e677a2004-04-02 20:23:17 +0000338
Dan Gohman3bf63762010-06-18 19:54:20 +0000339SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000340 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000341 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000344 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345}
346
Dan Gohman3bf63762010-06-18 19:54:20 +0000347SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000348 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000349 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000352 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000353}
354
Dan Gohmanab37f502010-08-02 23:49:30 +0000355void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000356 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000357 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000358
359 // Remove this SCEVUnknown from the uniquing map.
360 SE->UniqueSCEVs.RemoveNode(this);
361
362 // Release the value.
363 setValPtr(0);
364}
365
366void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000367 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000368 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000369
370 // Remove this SCEVUnknown from the uniquing map.
371 SE->UniqueSCEVs.RemoveNode(this);
372
373 // Update this SCEVUnknown to point to the new value. This is needed
374 // because there may still be outstanding SCEVs which still point to
375 // this SCEVUnknown.
376 setValPtr(New);
377}
378
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000379bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000380 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000381 if (VCE->getOpcode() == Instruction::PtrToInt)
382 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000383 if (CE->getOpcode() == Instruction::GetElementPtr &&
384 CE->getOperand(0)->isNullValue() &&
385 CE->getNumOperands() == 2)
386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
387 if (CI->isOne()) {
388 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
389 ->getElementType();
390 return true;
391 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000392
393 return false;
394}
395
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000396bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000398 if (VCE->getOpcode() == Instruction::PtrToInt)
399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000400 if (CE->getOpcode() == Instruction::GetElementPtr &&
401 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000402 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000403 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000404 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000405 if (!STy->isPacked() &&
406 CE->getNumOperands() == 3 &&
407 CE->getOperand(1)->isNullValue()) {
408 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
409 if (CI->isOne() &&
410 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000411 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000412 AllocTy = STy->getElementType(1);
413 return true;
414 }
415 }
416 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000417
418 return false;
419}
420
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000421bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000422 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000423 if (VCE->getOpcode() == Instruction::PtrToInt)
424 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
425 if (CE->getOpcode() == Instruction::GetElementPtr &&
426 CE->getNumOperands() == 3 &&
427 CE->getOperand(0)->isNullValue() &&
428 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000429 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000430 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
431 // Ignore vector types here so that ScalarEvolutionExpander doesn't
432 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000433 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000434 CTy = Ty;
435 FieldNo = CE->getOperand(2);
436 return true;
437 }
438 }
439
440 return false;
441}
442
Chris Lattner8d741b82004-06-20 06:23:15 +0000443//===----------------------------------------------------------------------===//
444// SCEV Utilities
445//===----------------------------------------------------------------------===//
446
447namespace {
448 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
449 /// than the complexity of the RHS. This comparator is used to canonicalize
450 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000451 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000452 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000453 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000454 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000455
Dan Gohman67ef74e2010-08-27 15:26:01 +0000456 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000457 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000458 return compare(LHS, RHS) < 0;
459 }
460
461 // Return negative, zero, or positive, if LHS is less than, equal to, or
462 // greater than RHS, respectively. A three-way result allows recursive
463 // comparisons to be more efficient.
464 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000465 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
466 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000467 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000468
Dan Gohman72861302009-05-07 14:39:04 +0000469 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000470 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
471 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000472 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000473
Dan Gohman3bf63762010-06-18 19:54:20 +0000474 // Aside from the getSCEVType() ordering, the particular ordering
475 // isn't very important except that it's beneficial to be consistent,
476 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000477 switch (LType) {
478 case scUnknown: {
479 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000480 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000481
482 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
483 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000484 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000485
486 // Order pointer values after integer values. This helps SCEVExpander
487 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000488 bool LIsPointer = LV->getType()->isPointerTy(),
489 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000490 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000491 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000492
493 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000494 unsigned LID = LV->getValueID(),
495 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000496 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000497 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000498
499 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000500 if (const Argument *LA = dyn_cast<Argument>(LV)) {
501 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
503 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000504 }
505
Dan Gohman67ef74e2010-08-27 15:26:01 +0000506 // For instructions, compare their loop depth, and their operand
507 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000508 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
509 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000510
511 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000512 const BasicBlock *LParent = LInst->getParent(),
513 *RParent = RInst->getParent();
514 if (LParent != RParent) {
515 unsigned LDepth = LI->getLoopDepth(LParent),
516 RDepth = LI->getLoopDepth(RParent);
517 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000518 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000519 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000520
521 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000522 unsigned LNumOps = LInst->getNumOperands(),
523 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000524 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000525 }
526
Dan Gohman67ef74e2010-08-27 15:26:01 +0000527 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000528 }
529
Dan Gohman67ef74e2010-08-27 15:26:01 +0000530 case scConstant: {
531 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000532 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000533
534 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000535 const APInt &LA = LC->getValue()->getValue();
536 const APInt &RA = RC->getValue()->getValue();
537 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000538 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000539 return (int)LBitWidth - (int)RBitWidth;
540 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000541 }
542
Dan Gohman67ef74e2010-08-27 15:26:01 +0000543 case scAddRecExpr: {
544 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000545 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000546
547 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000548 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
549 if (LLoop != RLoop) {
550 unsigned LDepth = LLoop->getLoopDepth(),
551 RDepth = RLoop->getLoopDepth();
552 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000553 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000554 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000555
556 // Addrec complexity grows with operand count.
557 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
558 if (LNumOps != RNumOps)
559 return (int)LNumOps - (int)RNumOps;
560
561 // Lexicographically compare.
562 for (unsigned i = 0; i != LNumOps; ++i) {
563 long X = compare(LA->getOperand(i), RA->getOperand(i));
564 if (X != 0)
565 return X;
566 }
567
568 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000569 }
570
Dan Gohman67ef74e2010-08-27 15:26:01 +0000571 case scAddExpr:
572 case scMulExpr:
573 case scSMaxExpr:
574 case scUMaxExpr: {
575 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000576 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000577
578 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000579 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
580 for (unsigned i = 0; i != LNumOps; ++i) {
581 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000582 return 1;
583 long X = compare(LC->getOperand(i), RC->getOperand(i));
584 if (X != 0)
585 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000586 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000587 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000588 }
589
Dan Gohman67ef74e2010-08-27 15:26:01 +0000590 case scUDivExpr: {
591 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000592 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000593
594 // Lexicographically compare udiv expressions.
595 long X = compare(LC->getLHS(), RC->getLHS());
596 if (X != 0)
597 return X;
598 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000599 }
600
Dan Gohman67ef74e2010-08-27 15:26:01 +0000601 case scTruncate:
602 case scZeroExtend:
603 case scSignExtend: {
604 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000605 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000606
607 // Compare cast expressions by operand.
608 return compare(LC->getOperand(), RC->getOperand());
609 }
610
611 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +0000612 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman3bf63762010-06-18 19:54:20 +0000613 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000614 }
615 };
616}
617
618/// GroupByComplexity - Given a list of SCEV objects, order them by their
619/// complexity, and group objects of the same complexity together by value.
620/// When this routine is finished, we know that any duplicates in the vector are
621/// consecutive and that complexity is monotonically increasing.
622///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000623/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000624/// results from this routine. In other words, we don't want the results of
625/// this to depend on where the addresses of various SCEV objects happened to
626/// land in memory.
627///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000628static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000629 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000630 if (Ops.size() < 2) return; // Noop
631 if (Ops.size() == 2) {
632 // This is the common case, which also happens to be trivially simple.
633 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000634 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
635 if (SCEVComplexityCompare(LI)(RHS, LHS))
636 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000637 return;
638 }
639
Dan Gohman3bf63762010-06-18 19:54:20 +0000640 // Do the rough sort by complexity.
641 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
642
643 // Now that we are sorted by complexity, group elements of the same
644 // complexity. Note that this is, at worst, N^2, but the vector is likely to
645 // be extremely short in practice. Note that we take this approach because we
646 // do not want to depend on the addresses of the objects we are grouping.
647 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
648 const SCEV *S = Ops[i];
649 unsigned Complexity = S->getSCEVType();
650
651 // If there are any objects of the same complexity and same value as this
652 // one, group them.
653 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
654 if (Ops[j] == S) { // Found a duplicate.
655 // Move it to immediately after i'th element.
656 std::swap(Ops[i+1], Ops[j]);
657 ++i; // no need to rescan it.
658 if (i == e-2) return; // Done!
659 }
660 }
661 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000662}
663
Chris Lattner53e677a2004-04-02 20:23:17 +0000664
Chris Lattner53e677a2004-04-02 20:23:17 +0000665
666//===----------------------------------------------------------------------===//
667// Simple SCEV method implementations
668//===----------------------------------------------------------------------===//
669
Eli Friedmanb42a6262008-08-04 23:49:06 +0000670/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000671/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000672static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000673 ScalarEvolution &SE,
Nick Lewycky8cfb2f82011-09-06 06:39:54 +0000674 Type *ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000675 // Handle the simplest case efficiently.
676 if (K == 1)
677 return SE.getTruncateOrZeroExtend(It, ResultTy);
678
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000679 // We are using the following formula for BC(It, K):
680 //
681 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
682 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000683 // Suppose, W is the bitwidth of the return value. We must be prepared for
684 // overflow. Hence, we must assure that the result of our computation is
685 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
686 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000687 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000688 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000689 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000690 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
691 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000692 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000693 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000694 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000695 // This formula is trivially equivalent to the previous formula. However,
696 // this formula can be implemented much more efficiently. The trick is that
697 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
698 // arithmetic. To do exact division in modular arithmetic, all we have
699 // to do is multiply by the inverse. Therefore, this step can be done at
700 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000701 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000702 // The next issue is how to safely do the division by 2^T. The way this
703 // is done is by doing the multiplication step at a width of at least W + T
704 // bits. This way, the bottom W+T bits of the product are accurate. Then,
705 // when we perform the division by 2^T (which is equivalent to a right shift
706 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
707 // truncated out after the division by 2^T.
708 //
709 // In comparison to just directly using the first formula, this technique
710 // is much more efficient; using the first formula requires W * K bits,
711 // but this formula less than W + K bits. Also, the first formula requires
712 // a division step, whereas this formula only requires multiplies and shifts.
713 //
714 // It doesn't matter whether the subtraction step is done in the calculation
715 // width or the input iteration count's width; if the subtraction overflows,
716 // the result must be zero anyway. We prefer here to do it in the width of
717 // the induction variable because it helps a lot for certain cases; CodeGen
718 // isn't smart enough to ignore the overflow, which leads to much less
719 // efficient code if the width of the subtraction is wider than the native
720 // register width.
721 //
722 // (It's possible to not widen at all by pulling out factors of 2 before
723 // the multiplication; for example, K=2 can be calculated as
724 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
725 // extra arithmetic, so it's not an obvious win, and it gets
726 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000727
Eli Friedmanb42a6262008-08-04 23:49:06 +0000728 // Protection from insane SCEVs; this bound is conservative,
729 // but it probably doesn't matter.
730 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000731 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000732
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000733 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000734
Eli Friedmanb42a6262008-08-04 23:49:06 +0000735 // Calculate K! / 2^T and T; we divide out the factors of two before
736 // multiplying for calculating K! / 2^T to avoid overflow.
737 // Other overflow doesn't matter because we only care about the bottom
738 // W bits of the result.
739 APInt OddFactorial(W, 1);
740 unsigned T = 1;
741 for (unsigned i = 3; i <= K; ++i) {
742 APInt Mult(W, i);
743 unsigned TwoFactors = Mult.countTrailingZeros();
744 T += TwoFactors;
745 Mult = Mult.lshr(TwoFactors);
746 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000747 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000748
Eli Friedmanb42a6262008-08-04 23:49:06 +0000749 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000750 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000751
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000752 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000753 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
754
755 // Calculate the multiplicative inverse of K! / 2^T;
756 // this multiplication factor will perform the exact division by
757 // K! / 2^T.
758 APInt Mod = APInt::getSignedMinValue(W+1);
759 APInt MultiplyFactor = OddFactorial.zext(W+1);
760 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
761 MultiplyFactor = MultiplyFactor.trunc(W);
762
763 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000764 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000765 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000766 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000767 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000768 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000769 Dividend = SE.getMulExpr(Dividend,
770 SE.getTruncateOrZeroExtend(S, CalculationTy));
771 }
772
773 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000774 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000775
776 // Truncate the result, and divide by K! / 2^T.
777
778 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
779 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000780}
781
Chris Lattner53e677a2004-04-02 20:23:17 +0000782/// evaluateAtIteration - Return the value of this chain of recurrences at
783/// the specified iteration number. We can evaluate this recurrence by
784/// multiplying each element in the chain by the binomial coefficient
785/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
786///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000787/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000788///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000789/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000790///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000791const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000792 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000793 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000794 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000795 // The computation is correct in the face of overflow provided that the
796 // multiplication is performed _after_ the evaluation of the binomial
797 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000798 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000799 if (isa<SCEVCouldNotCompute>(Coeff))
800 return Coeff;
801
802 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000803 }
804 return Result;
805}
806
Chris Lattner53e677a2004-04-02 20:23:17 +0000807//===----------------------------------------------------------------------===//
808// SCEV Expression folder implementations
809//===----------------------------------------------------------------------===//
810
Dan Gohman0bba49c2009-07-07 17:06:11 +0000811const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000812 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000813 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000814 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000815 assert(isSCEVable(Ty) &&
816 "This is not a conversion to a SCEVable type!");
817 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000818
Dan Gohmanc050fd92009-07-13 20:50:19 +0000819 FoldingSetNodeID ID;
820 ID.AddInteger(scTruncate);
821 ID.AddPointer(Op);
822 ID.AddPointer(Ty);
823 void *IP = 0;
824 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
825
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000826 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000827 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000828 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000829 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
830 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000831
Dan Gohman20900ca2009-04-22 16:20:48 +0000832 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000833 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000834 return getTruncateExpr(ST->getOperand(), Ty);
835
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000836 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000837 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000838 return getTruncateOrSignExtend(SS->getOperand(), Ty);
839
840 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000841 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000842 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
843
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000844 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
845 // eliminate all the truncates.
846 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
847 SmallVector<const SCEV *, 4> Operands;
848 bool hasTrunc = false;
849 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
850 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
851 hasTrunc = isa<SCEVTruncateExpr>(S);
852 Operands.push_back(S);
853 }
854 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000855 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000856 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000857 }
858
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000859 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
860 // eliminate all the truncates.
861 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
862 SmallVector<const SCEV *, 4> Operands;
863 bool hasTrunc = false;
864 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
865 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
866 hasTrunc = isa<SCEVTruncateExpr>(S);
867 Operands.push_back(S);
868 }
869 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000870 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000871 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000872 }
873
Dan Gohman6864db62009-06-18 16:24:47 +0000874 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000875 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000876 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000877 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000878 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000879 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000880 }
881
Dan Gohmanf53462d2010-07-15 20:02:11 +0000882 // As a special case, fold trunc(undef) to undef. We don't want to
883 // know too much about SCEVUnknowns, but this special case is handy
884 // and harmless.
885 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
886 if (isa<UndefValue>(U->getValue()))
887 return getSCEV(UndefValue::get(Ty));
888
Dan Gohman420ab912010-06-25 18:47:08 +0000889 // The cast wasn't folded; create an explicit cast node. We can reuse
890 // the existing insert position since if we get here, we won't have
891 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000892 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
893 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000894 UniqueSCEVs.InsertNode(S, IP);
895 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000896}
897
Dan Gohman0bba49c2009-07-07 17:06:11 +0000898const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000899 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000900 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000901 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000902 assert(isSCEVable(Ty) &&
903 "This is not a conversion to a SCEVable type!");
904 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000905
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000906 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000907 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
908 return getConstant(
909 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
910 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000911
Dan Gohman20900ca2009-04-22 16:20:48 +0000912 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000913 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000914 return getZeroExtendExpr(SZ->getOperand(), Ty);
915
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000916 // Before doing any expensive analysis, check to see if we've already
917 // computed a SCEV for this Op and Ty.
918 FoldingSetNodeID ID;
919 ID.AddInteger(scZeroExtend);
920 ID.AddPointer(Op);
921 ID.AddPointer(Ty);
922 void *IP = 0;
923 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
924
Nick Lewycky630d85a2011-01-23 06:20:19 +0000925 // zext(trunc(x)) --> zext(x) or x or trunc(x)
926 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
927 // It's possible the bits taken off by the truncate were all zero bits. If
928 // so, we should be able to simplify this further.
929 const SCEV *X = ST->getOperand();
930 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000931 unsigned TruncBits = getTypeSizeInBits(ST->getType());
932 unsigned NewBits = getTypeSizeInBits(Ty);
933 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000934 CR.zextOrTrunc(NewBits)))
935 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000936 }
937
Dan Gohman01ecca22009-04-27 20:16:15 +0000938 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000939 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000940 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000941 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000942 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000943 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000944 const SCEV *Start = AR->getStart();
945 const SCEV *Step = AR->getStepRecurrence(*this);
946 unsigned BitWidth = getTypeSizeInBits(AR->getType());
947 const Loop *L = AR->getLoop();
948
Dan Gohmaneb490a72009-07-25 01:22:26 +0000949 // If we have special knowledge that this addrec won't overflow,
950 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000951 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000952 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
953 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000954 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000955
Dan Gohman01ecca22009-04-27 20:16:15 +0000956 // Check whether the backedge-taken count is SCEVCouldNotCompute.
957 // Note that this serves two purposes: It filters out loops that are
958 // simply not analyzable, and it covers the case where this code is
959 // being called from within backedge-taken count analysis, such that
960 // attempting to ask for the backedge-taken count would likely result
961 // in infinite recursion. In the later case, the analysis code will
962 // cope with a conservative value, and it will take care to purge
963 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000964 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000965 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000966 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000967 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000968
969 // Check whether the backedge-taken count can be losslessly casted to
970 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000971 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000972 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000973 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000974 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
975 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000976 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000977 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000978 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000979 const SCEV *Add = getAddExpr(Start, ZMul);
980 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000981 getAddExpr(getZeroExtendExpr(Start, WideTy),
982 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
983 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +0000984 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
985 // Cache knowledge of AR NUW, which is propagated to this AddRec.
986 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000987 // Return the expression with the addrec on the outside.
988 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
989 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000990 L, AR->getNoWrapFlags());
991 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000992 // Similar to above, only this time treat the step value as signed.
993 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000994 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000995 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000996 OperandExtendedAdd =
997 getAddExpr(getZeroExtendExpr(Start, WideTy),
998 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
999 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001000 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1001 // Cache knowledge of AR NW, which is propagated to this AddRec.
1002 // Negative step causes unsigned wrap, but it still can't self-wrap.
1003 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001004 // Return the expression with the addrec on the outside.
1005 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1006 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001007 L, AR->getNoWrapFlags());
1008 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001009 }
1010
1011 // If the backedge is guarded by a comparison with the pre-inc value
1012 // the addrec is safe. Also, if the entry is guarded by a comparison
1013 // with the start value and the backedge is guarded by a comparison
1014 // with the post-inc value, the addrec is safe.
1015 if (isKnownPositive(Step)) {
1016 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1017 getUnsignedRange(Step).getUnsignedMax());
1018 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001019 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001020 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001021 AR->getPostIncExpr(*this), N))) {
1022 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1023 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001024 // Return the expression with the addrec on the outside.
1025 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1026 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001027 L, AR->getNoWrapFlags());
1028 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001029 } else if (isKnownNegative(Step)) {
1030 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1031 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001032 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1033 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001034 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001035 AR->getPostIncExpr(*this), N))) {
1036 // Cache knowledge of AR NW, which is propagated to this AddRec.
1037 // Negative step causes unsigned wrap, but it still can't self-wrap.
1038 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1039 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001040 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1041 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001042 L, AR->getNoWrapFlags());
1043 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001044 }
1045 }
1046 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001047
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001048 // The cast wasn't folded; create an explicit cast node.
1049 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001050 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001051 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1052 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001053 UniqueSCEVs.InsertNode(S, IP);
1054 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001055}
1056
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001057// Get the limit of a recurrence such that incrementing by Step cannot cause
1058// signed overflow as long as the value of the recurrence within the loop does
1059// not exceed this limit before incrementing.
1060static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1061 ICmpInst::Predicate *Pred,
1062 ScalarEvolution *SE) {
1063 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1064 if (SE->isKnownPositive(Step)) {
1065 *Pred = ICmpInst::ICMP_SLT;
1066 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1067 SE->getSignedRange(Step).getSignedMax());
1068 }
1069 if (SE->isKnownNegative(Step)) {
1070 *Pred = ICmpInst::ICMP_SGT;
1071 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1072 SE->getSignedRange(Step).getSignedMin());
1073 }
1074 return 0;
1075}
1076
1077// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1078// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1079// or postincrement sibling. This allows normalizing a sign extended AddRec as
1080// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1081// result, the expression "Step + sext(PreIncAR)" is congruent with
1082// "sext(PostIncAR)"
1083static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001084 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001085 ScalarEvolution *SE) {
1086 const Loop *L = AR->getLoop();
1087 const SCEV *Start = AR->getStart();
1088 const SCEV *Step = AR->getStepRecurrence(*SE);
1089
1090 // Check for a simple looking step prior to loop entry.
1091 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickf63ae212011-09-28 17:02:54 +00001092 if (!SA)
1093 return 0;
1094
1095 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1096 // subtraction is expensive. For this purpose, perform a quick and dirty
1097 // difference, by checking for Step in the operand list.
1098 SmallVector<const SCEV *, 4> DiffOps;
1099 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1100 I != E; ++I) {
1101 if (*I != Step)
1102 DiffOps.push_back(*I);
1103 }
1104 if (DiffOps.size() == SA->getNumOperands())
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001105 return 0;
1106
1107 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1108 // same three conditions that getSignExtendedExpr checks.
1109
1110 // 1. NSW flags on the step increment.
Andrew Trickf63ae212011-09-28 17:02:54 +00001111 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001112 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1113 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1114
Andrew Trickcf31f912011-06-01 19:14:56 +00001115 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001116 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001117
1118 // 2. Direct overflow check on the step operation's expression.
1119 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001120 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001121 const SCEV *OperandExtendedStart =
1122 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1123 SE->getSignExtendExpr(Step, WideTy));
1124 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1125 // Cache knowledge of PreAR NSW.
1126 if (PreAR)
1127 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1128 // FIXME: this optimization needs a unit test
1129 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1130 return PreStart;
1131 }
1132
1133 // 3. Loop precondition.
1134 ICmpInst::Predicate Pred;
1135 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1136
Andrew Trickcf31f912011-06-01 19:14:56 +00001137 if (OverflowLimit &&
1138 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001139 return PreStart;
1140 }
1141 return 0;
1142}
1143
1144// Get the normalized sign-extended expression for this AddRec's Start.
1145static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001146 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001147 ScalarEvolution *SE) {
1148 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1149 if (!PreStart)
1150 return SE->getSignExtendExpr(AR->getStart(), Ty);
1151
1152 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1153 SE->getSignExtendExpr(PreStart, Ty));
1154}
1155
Dan Gohman0bba49c2009-07-07 17:06:11 +00001156const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001157 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001158 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001159 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001160 assert(isSCEVable(Ty) &&
1161 "This is not a conversion to a SCEVable type!");
1162 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001163
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001164 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001165 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1166 return getConstant(
1167 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1168 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001169
Dan Gohman20900ca2009-04-22 16:20:48 +00001170 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001171 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001172 return getSignExtendExpr(SS->getOperand(), Ty);
1173
Nick Lewycky73f565e2011-01-19 15:56:12 +00001174 // sext(zext(x)) --> zext(x)
1175 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1176 return getZeroExtendExpr(SZ->getOperand(), Ty);
1177
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001178 // Before doing any expensive analysis, check to see if we've already
1179 // computed a SCEV for this Op and Ty.
1180 FoldingSetNodeID ID;
1181 ID.AddInteger(scSignExtend);
1182 ID.AddPointer(Op);
1183 ID.AddPointer(Ty);
1184 void *IP = 0;
1185 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1186
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001187 // If the input value is provably positive, build a zext instead.
1188 if (isKnownNonNegative(Op))
1189 return getZeroExtendExpr(Op, Ty);
1190
Nick Lewycky630d85a2011-01-23 06:20:19 +00001191 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1192 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1193 // It's possible the bits taken off by the truncate were all sign bits. If
1194 // so, we should be able to simplify this further.
1195 const SCEV *X = ST->getOperand();
1196 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001197 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1198 unsigned NewBits = getTypeSizeInBits(Ty);
1199 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001200 CR.sextOrTrunc(NewBits)))
1201 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001202 }
1203
Dan Gohman01ecca22009-04-27 20:16:15 +00001204 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001205 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001206 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001207 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001208 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001209 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001210 const SCEV *Start = AR->getStart();
1211 const SCEV *Step = AR->getStepRecurrence(*this);
1212 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1213 const Loop *L = AR->getLoop();
1214
Dan Gohmaneb490a72009-07-25 01:22:26 +00001215 // If we have special knowledge that this addrec won't overflow,
1216 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001217 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001218 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001219 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001220 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001221
Dan Gohman01ecca22009-04-27 20:16:15 +00001222 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1223 // Note that this serves two purposes: It filters out loops that are
1224 // simply not analyzable, and it covers the case where this code is
1225 // being called from within backedge-taken count analysis, such that
1226 // attempting to ask for the backedge-taken count would likely result
1227 // in infinite recursion. In the later case, the analysis code will
1228 // cope with a conservative value, and it will take care to purge
1229 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001230 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001231 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001232 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001233 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001234
1235 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001236 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001237 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001238 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001239 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001240 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1241 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001242 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001243 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001244 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001245 const SCEV *Add = getAddExpr(Start, SMul);
1246 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001247 getAddExpr(getSignExtendExpr(Start, WideTy),
1248 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1249 getSignExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001250 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1251 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1252 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001253 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001254 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001255 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001256 L, AR->getNoWrapFlags());
1257 }
Dan Gohman850f7912009-07-16 17:34:36 +00001258 // Similar to above, only this time treat the step value as unsigned.
1259 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001260 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001261 Add = getAddExpr(Start, UMul);
1262 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001263 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001264 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1265 getZeroExtendExpr(Step, WideTy)));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001266 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1267 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1268 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001269 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001270 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001271 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001272 L, AR->getNoWrapFlags());
1273 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001274 }
1275
1276 // If the backedge is guarded by a comparison with the pre-inc value
1277 // the addrec is safe. Also, if the entry is guarded by a comparison
1278 // with the start value and the backedge is guarded by a comparison
1279 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001280 ICmpInst::Predicate Pred;
1281 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1282 if (OverflowLimit &&
1283 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1284 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1285 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1286 OverflowLimit)))) {
1287 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1288 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1289 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1290 getSignExtendExpr(Step, Ty),
1291 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001292 }
1293 }
1294 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001295
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001296 // The cast wasn't folded; create an explicit cast node.
1297 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001298 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001299 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1300 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001301 UniqueSCEVs.InsertNode(S, IP);
1302 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001303}
1304
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001305/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1306/// unspecified bits out to the given type.
1307///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001308const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001309 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001310 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1311 "This is not an extending conversion!");
1312 assert(isSCEVable(Ty) &&
1313 "This is not a conversion to a SCEVable type!");
1314 Ty = getEffectiveSCEVType(Ty);
1315
1316 // Sign-extend negative constants.
1317 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1318 if (SC->getValue()->getValue().isNegative())
1319 return getSignExtendExpr(Op, Ty);
1320
1321 // Peel off a truncate cast.
1322 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001323 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001324 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1325 return getAnyExtendExpr(NewOp, Ty);
1326 return getTruncateOrNoop(NewOp, Ty);
1327 }
1328
1329 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001330 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001331 if (!isa<SCEVZeroExtendExpr>(ZExt))
1332 return ZExt;
1333
1334 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001335 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001336 if (!isa<SCEVSignExtendExpr>(SExt))
1337 return SExt;
1338
Dan Gohmana10756e2010-01-21 02:09:26 +00001339 // Force the cast to be folded into the operands of an addrec.
1340 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1341 SmallVector<const SCEV *, 4> Ops;
1342 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1343 I != E; ++I)
1344 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001345 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001346 }
1347
Dan Gohmanf53462d2010-07-15 20:02:11 +00001348 // As a special case, fold anyext(undef) to undef. We don't want to
1349 // know too much about SCEVUnknowns, but this special case is handy
1350 // and harmless.
1351 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1352 if (isa<UndefValue>(U->getValue()))
1353 return getSCEV(UndefValue::get(Ty));
1354
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001355 // If the expression is obviously signed, use the sext cast value.
1356 if (isa<SCEVSMaxExpr>(Op))
1357 return SExt;
1358
1359 // Absent any other information, use the zext cast value.
1360 return ZExt;
1361}
1362
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001363/// CollectAddOperandsWithScales - Process the given Ops list, which is
1364/// a list of operands to be added under the given scale, update the given
1365/// map. This is a helper function for getAddRecExpr. As an example of
1366/// what it does, given a sequence of operands that would form an add
1367/// expression like this:
1368///
1369/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1370///
1371/// where A and B are constants, update the map with these values:
1372///
1373/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1374///
1375/// and add 13 + A*B*29 to AccumulatedConstant.
1376/// This will allow getAddRecExpr to produce this:
1377///
1378/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1379///
1380/// This form often exposes folding opportunities that are hidden in
1381/// the original operand list.
1382///
1383/// Return true iff it appears that any interesting folding opportunities
1384/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1385/// the common case where no interesting opportunities are present, and
1386/// is also used as a check to avoid infinite recursion.
1387///
1388static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001389CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1390 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001391 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001392 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001393 const APInt &Scale,
1394 ScalarEvolution &SE) {
1395 bool Interesting = false;
1396
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001397 // Iterate over the add operands. They are sorted, with constants first.
1398 unsigned i = 0;
1399 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1400 ++i;
1401 // Pull a buried constant out to the outside.
1402 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1403 Interesting = true;
1404 AccumulatedConstant += Scale * C->getValue()->getValue();
1405 }
1406
1407 // Next comes everything else. We're especially interested in multiplies
1408 // here, but they're in the middle, so just visit the rest with one loop.
1409 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001410 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1411 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1412 APInt NewScale =
1413 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1414 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1415 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001416 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001417 Interesting |=
1418 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001419 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001420 NewScale, SE);
1421 } else {
1422 // A multiplication of a constant with some other value. Update
1423 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001424 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1425 const SCEV *Key = SE.getMulExpr(MulOps);
1426 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001427 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001428 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001429 NewOps.push_back(Pair.first->first);
1430 } else {
1431 Pair.first->second += NewScale;
1432 // The map already had an entry for this value, which may indicate
1433 // a folding opportunity.
1434 Interesting = true;
1435 }
1436 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001437 } else {
1438 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001439 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001440 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001441 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001442 NewOps.push_back(Pair.first->first);
1443 } else {
1444 Pair.first->second += Scale;
1445 // The map already had an entry for this value, which may indicate
1446 // a folding opportunity.
1447 Interesting = true;
1448 }
1449 }
1450 }
1451
1452 return Interesting;
1453}
1454
1455namespace {
1456 struct APIntCompare {
1457 bool operator()(const APInt &LHS, const APInt &RHS) const {
1458 return LHS.ult(RHS);
1459 }
1460 };
1461}
1462
Dan Gohman6c0866c2009-05-24 23:45:28 +00001463/// getAddExpr - Get a canonical add expression, or something simpler if
1464/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001465const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001466 SCEV::NoWrapFlags Flags) {
1467 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1468 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001469 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001470 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001471#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001472 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001473 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001474 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001475 "SCEVAddExpr operand types don't match!");
1476#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001477
Andrew Trick3228cc22011-03-14 16:50:06 +00001478 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001479 // And vice-versa.
1480 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1481 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1482 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001483 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001484 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1485 E = Ops.end(); I != E; ++I)
1486 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001487 All = false;
1488 break;
1489 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001490 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001491 }
1492
Chris Lattner53e677a2004-04-02 20:23:17 +00001493 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001494 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001495
1496 // If there are any constants, fold them together.
1497 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001498 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001499 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001500 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001501 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001502 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001503 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1504 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001505 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001506 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001507 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 }
1509
1510 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001511 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001512 Ops.erase(Ops.begin());
1513 --Idx;
1514 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001515
Dan Gohmanbca091d2010-04-12 23:08:18 +00001516 if (Ops.size() == 1) return Ops[0];
1517 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001518
Dan Gohman68ff7762010-08-27 21:39:59 +00001519 // Okay, check to see if the same value occurs in the operand list more than
1520 // once. If so, merge them together into an multiply expression. Since we
1521 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001522 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001523 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001524 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001525 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001526 // Scan ahead to count how many equal operands there are.
1527 unsigned Count = 2;
1528 while (i+Count != e && Ops[i+Count] == Ops[i])
1529 ++Count;
1530 // Merge the values into a multiply.
1531 const SCEV *Scale = getConstant(Ty, Count);
1532 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1533 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001534 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001535 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001536 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001537 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001538 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001539 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001540 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001541 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001542
Dan Gohman728c7f32009-05-08 21:03:19 +00001543 // Check for truncates. If all the operands are truncated from the same
1544 // type, see if factoring out the truncate would permit the result to be
1545 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1546 // if the contents of the resulting outer trunc fold to something simple.
1547 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1548 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001549 Type *DstType = Trunc->getType();
1550 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001551 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001552 bool Ok = true;
1553 // Check all the operands to see if they can be represented in the
1554 // source type of the truncate.
1555 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1556 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1557 if (T->getOperand()->getType() != SrcType) {
1558 Ok = false;
1559 break;
1560 }
1561 LargeOps.push_back(T->getOperand());
1562 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001563 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001564 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001565 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001566 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1567 if (const SCEVTruncateExpr *T =
1568 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1569 if (T->getOperand()->getType() != SrcType) {
1570 Ok = false;
1571 break;
1572 }
1573 LargeMulOps.push_back(T->getOperand());
1574 } else if (const SCEVConstant *C =
1575 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001576 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001577 } else {
1578 Ok = false;
1579 break;
1580 }
1581 }
1582 if (Ok)
1583 LargeOps.push_back(getMulExpr(LargeMulOps));
1584 } else {
1585 Ok = false;
1586 break;
1587 }
1588 }
1589 if (Ok) {
1590 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001591 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001592 // If it folds to something simple, use it. Otherwise, don't.
1593 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1594 return getTruncateExpr(Fold, DstType);
1595 }
1596 }
1597
1598 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001599 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1600 ++Idx;
1601
1602 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001603 if (Idx < Ops.size()) {
1604 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001605 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001606 // If we have an add, expand the add operands onto the end of the operands
1607 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001608 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001609 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001610 DeletedAdd = true;
1611 }
1612
1613 // If we deleted at least one add, we added operands to the end of the list,
1614 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001615 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001616 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001617 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001618 }
1619
1620 // Skip over the add expression until we get to a multiply.
1621 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1622 ++Idx;
1623
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001624 // Check to see if there are any folding opportunities present with
1625 // operands multiplied by constant values.
1626 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1627 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001628 DenseMap<const SCEV *, APInt> M;
1629 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001630 APInt AccumulatedConstant(BitWidth, 0);
1631 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001632 Ops.data(), Ops.size(),
1633 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001634 // Some interesting folding opportunity is present, so its worthwhile to
1635 // re-generate the operands list. Group the operands by constant scale,
1636 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001637 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001638 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001639 E = NewOps.end(); I != E; ++I)
1640 MulOpLists[M.find(*I)->second].push_back(*I);
1641 // Re-generate the operands list.
1642 Ops.clear();
1643 if (AccumulatedConstant != 0)
1644 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001645 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1646 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001647 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001648 Ops.push_back(getMulExpr(getConstant(I->first),
1649 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001650 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001651 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001652 if (Ops.size() == 1)
1653 return Ops[0];
1654 return getAddExpr(Ops);
1655 }
1656 }
1657
Chris Lattner53e677a2004-04-02 20:23:17 +00001658 // If we are adding something to a multiply expression, make sure the
1659 // something is not already an operand of the multiply. If so, merge it into
1660 // the multiply.
1661 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001662 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001663 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001664 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001665 if (isa<SCEVConstant>(MulOpSCEV))
1666 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001667 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001668 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001669 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001670 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001671 if (Mul->getNumOperands() != 2) {
1672 // If the multiply has more than two operands, we must get the
1673 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001674 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1675 Mul->op_begin()+MulOp);
1676 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001677 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001678 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001679 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001680 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001681 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001682 if (Ops.size() == 2) return OuterMul;
1683 if (AddOp < Idx) {
1684 Ops.erase(Ops.begin()+AddOp);
1685 Ops.erase(Ops.begin()+Idx-1);
1686 } else {
1687 Ops.erase(Ops.begin()+Idx);
1688 Ops.erase(Ops.begin()+AddOp-1);
1689 }
1690 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001691 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001692 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001693
Chris Lattner53e677a2004-04-02 20:23:17 +00001694 // Check this multiply against other multiplies being added together.
1695 for (unsigned OtherMulIdx = Idx+1;
1696 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1697 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001698 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001699 // If MulOp occurs in OtherMul, we can fold the two multiplies
1700 // together.
1701 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1702 OMulOp != e; ++OMulOp)
1703 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1704 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001705 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001706 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001707 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001708 Mul->op_begin()+MulOp);
1709 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001710 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001711 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001712 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001713 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001714 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001715 OtherMul->op_begin()+OMulOp);
1716 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001717 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001718 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001719 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1720 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001721 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001722 Ops.erase(Ops.begin()+Idx);
1723 Ops.erase(Ops.begin()+OtherMulIdx-1);
1724 Ops.push_back(OuterMul);
1725 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001726 }
1727 }
1728 }
1729 }
1730
1731 // If there are any add recurrences in the operands list, see if any other
1732 // added values are loop invariant. If so, we can fold them into the
1733 // recurrence.
1734 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1735 ++Idx;
1736
1737 // Scan over all recurrences, trying to fold loop invariants into them.
1738 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1739 // Scan all of the other operands to this add and add them to the vector if
1740 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001741 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001742 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001743 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001744 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001745 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001746 LIOps.push_back(Ops[i]);
1747 Ops.erase(Ops.begin()+i);
1748 --i; --e;
1749 }
1750
1751 // If we found some loop invariants, fold them into the recurrence.
1752 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001753 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001754 LIOps.push_back(AddRec->getStart());
1755
Dan Gohman0bba49c2009-07-07 17:06:11 +00001756 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001757 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001758 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001759
Dan Gohmanb9f96512010-06-30 07:16:37 +00001760 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001761 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001762 // Always propagate NW.
1763 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001764 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001765
Chris Lattner53e677a2004-04-02 20:23:17 +00001766 // If all of the other operands were loop invariant, we are done.
1767 if (Ops.size() == 1) return NewRec;
1768
Nick Lewycky980e9f32011-09-06 05:08:09 +00001769 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001770 for (unsigned i = 0;; ++i)
1771 if (Ops[i] == AddRec) {
1772 Ops[i] = NewRec;
1773 break;
1774 }
Dan Gohman246b2562007-10-22 18:31:58 +00001775 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001776 }
1777
1778 // Okay, if there weren't any loop invariants to be folded, check to see if
1779 // there are multiple AddRec's with the same loop induction variable being
1780 // added together. If so, we can fold them.
1781 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001782 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1783 ++OtherIdx)
1784 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1785 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1786 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1787 AddRec->op_end());
1788 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1789 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001790 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001791 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001792 if (OtherAddRec->getLoop() == AddRecLoop) {
1793 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1794 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001795 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001796 AddRecOps.append(OtherAddRec->op_begin()+i,
1797 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001798 break;
1799 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001800 AddRecOps[i] = getAddExpr(AddRecOps[i],
1801 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001802 }
1803 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001804 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001805 // Step size has changed, so we cannot guarantee no self-wraparound.
1806 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001807 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001808 }
1809
1810 // Otherwise couldn't fold anything into this recurrence. Move onto the
1811 // next one.
1812 }
1813
1814 // Okay, it looks like we really DO need an add expr. Check to see if we
1815 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001816 FoldingSetNodeID ID;
1817 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001818 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1819 ID.AddPointer(Ops[i]);
1820 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001821 SCEVAddExpr *S =
1822 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1823 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001824 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1825 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001826 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1827 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001828 UniqueSCEVs.InsertNode(S, IP);
1829 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001830 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001831 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001832}
1833
Nick Lewyckye97728e2011-10-04 06:51:26 +00001834static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1835 uint64_t k = i*j;
1836 if (j > 1 && k / j != i) Overflow = true;
1837 return k;
1838}
1839
1840/// Compute the result of "n choose k", the binomial coefficient. If an
1841/// intermediate computation overflows, Overflow will be set and the return will
1842/// be garbage. Overflow is not cleared on absense of overflow.
1843static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1844 // We use the multiplicative formula:
1845 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1846 // At each iteration, we take the n-th term of the numeral and divide by the
1847 // (k-n)th term of the denominator. This division will always produce an
1848 // integral result, and helps reduce the chance of overflow in the
1849 // intermediate computations. However, we can still overflow even when the
1850 // final result would fit.
1851
1852 if (n == 0 || n == k) return 1;
1853 if (k > n) return 0;
1854
1855 if (k > n/2)
1856 k = n-k;
1857
1858 uint64_t r = 1;
1859 for (uint64_t i = 1; i <= k; ++i) {
1860 r = umul_ov(r, n-(i-1), Overflow);
1861 r /= i;
1862 }
1863 return r;
1864}
1865
Dan Gohman6c0866c2009-05-24 23:45:28 +00001866/// getMulExpr - Get a canonical multiply expression, or something simpler if
1867/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001868const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001869 SCEV::NoWrapFlags Flags) {
1870 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1871 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001872 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001873 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001874#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001875 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001876 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001877 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001878 "SCEVMulExpr operand types don't match!");
1879#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001880
Andrew Trick3228cc22011-03-14 16:50:06 +00001881 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001882 // And vice-versa.
1883 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1884 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1885 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001886 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001887 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1888 E = Ops.end(); I != E; ++I)
1889 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001890 All = false;
1891 break;
1892 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001893 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001894 }
1895
Chris Lattner53e677a2004-04-02 20:23:17 +00001896 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001897 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001898
1899 // If there are any constants, fold them together.
1900 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001901 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001902
1903 // C1*(C2+V) -> C1*C2 + C1*V
1904 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001905 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001906 if (Add->getNumOperands() == 2 &&
1907 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001908 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1909 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001910
Chris Lattner53e677a2004-04-02 20:23:17 +00001911 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001912 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001913 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001914 ConstantInt *Fold = ConstantInt::get(getContext(),
1915 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001916 RHSC->getValue()->getValue());
1917 Ops[0] = getConstant(Fold);
1918 Ops.erase(Ops.begin()+1); // Erase the folded element
1919 if (Ops.size() == 1) return Ops[0];
1920 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001921 }
1922
1923 // If we are left with a constant one being multiplied, strip it off.
1924 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1925 Ops.erase(Ops.begin());
1926 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001927 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001928 // If we have a multiply of zero, it will always be zero.
1929 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001930 } else if (Ops[0]->isAllOnesValue()) {
1931 // If we have a mul by -1 of an add, try distributing the -1 among the
1932 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001933 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001934 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1935 SmallVector<const SCEV *, 4> NewOps;
1936 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001937 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1938 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001939 const SCEV *Mul = getMulExpr(Ops[0], *I);
1940 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1941 NewOps.push_back(Mul);
1942 }
1943 if (AnyFolded)
1944 return getAddExpr(NewOps);
1945 }
Andrew Tricka053b212011-03-14 17:38:54 +00001946 else if (const SCEVAddRecExpr *
1947 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1948 // Negation preserves a recurrence's no self-wrap property.
1949 SmallVector<const SCEV *, 4> Operands;
1950 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1951 E = AddRec->op_end(); I != E; ++I) {
1952 Operands.push_back(getMulExpr(Ops[0], *I));
1953 }
1954 return getAddRecExpr(Operands, AddRec->getLoop(),
1955 AddRec->getNoWrapFlags(SCEV::FlagNW));
1956 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001957 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001958 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001959
1960 if (Ops.size() == 1)
1961 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001962 }
1963
1964 // Skip over the add expression until we get to a multiply.
1965 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1966 ++Idx;
1967
Chris Lattner53e677a2004-04-02 20:23:17 +00001968 // If there are mul operands inline them all into this expression.
1969 if (Idx < Ops.size()) {
1970 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001971 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001972 // If we have an mul, expand the mul operands onto the end of the operands
1973 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001974 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001975 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001976 DeletedMul = true;
1977 }
1978
1979 // If we deleted at least one mul, we added operands to the end of the list,
1980 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001981 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001982 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001983 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001984 }
1985
1986 // If there are any add recurrences in the operands list, see if any other
1987 // added values are loop invariant. If so, we can fold them into the
1988 // recurrence.
1989 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1990 ++Idx;
1991
1992 // Scan over all recurrences, trying to fold loop invariants into them.
1993 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1994 // Scan all of the other operands to this mul and add them to the vector if
1995 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001996 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001997 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001998 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001999 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002000 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002001 LIOps.push_back(Ops[i]);
2002 Ops.erase(Ops.begin()+i);
2003 --i; --e;
2004 }
2005
2006 // If we found some loop invariants, fold them into the recurrence.
2007 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00002008 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00002009 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00002010 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00002011 const SCEV *Scale = getMulExpr(LIOps);
2012 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2013 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00002014
Dan Gohmanb9f96512010-06-30 07:16:37 +00002015 // Build the new addrec. Propagate the NUW and NSW flags if both the
2016 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00002017 //
2018 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002019 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00002020 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2021 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002022
2023 // If all of the other operands were loop invariant, we are done.
2024 if (Ops.size() == 1) return NewRec;
2025
Nick Lewycky980e9f32011-09-06 05:08:09 +00002026 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00002027 for (unsigned i = 0;; ++i)
2028 if (Ops[i] == AddRec) {
2029 Ops[i] = NewRec;
2030 break;
2031 }
Dan Gohman246b2562007-10-22 18:31:58 +00002032 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002033 }
2034
2035 // Okay, if there weren't any loop invariants to be folded, check to see if
2036 // there are multiple AddRec's with the same loop induction variable being
2037 // multiplied together. If so, we can fold them.
2038 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002039 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002040 ++OtherIdx) {
Dan Gohman6a0c1252010-08-31 22:52:12 +00002041 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
Nick Lewyckye97728e2011-10-04 06:51:26 +00002042 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2043 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2044 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2045 // ]]],+,...up to x=2n}.
2046 // Note that the arguments to choose() are always integers with values
2047 // known at compile time, never SCEV objects.
Nick Lewycky28682ae2011-09-06 05:33:18 +00002048 //
Nick Lewyckye97728e2011-10-04 06:51:26 +00002049 // The implementation avoids pointless extra computations when the two
2050 // addrec's are of different length (mathematically, it's equivalent to
2051 // an infinite stream of zeros on the right).
2052 bool OpsModified = false;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002053 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2054 ++OtherIdx)
2055 if (const SCEVAddRecExpr *OtherAddRec =
2056 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2057 if (OtherAddRec->getLoop() == AddRecLoop) {
Nick Lewyckye97728e2011-10-04 06:51:26 +00002058 bool Overflow = false;
2059 Type *Ty = AddRec->getType();
2060 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2061 SmallVector<const SCEV*, 7> AddRecOps;
2062 for (int x = 0, xe = AddRec->getNumOperands() +
2063 OtherAddRec->getNumOperands() - 1;
2064 x != xe && !Overflow; ++x) {
2065 const SCEV *Term = getConstant(Ty, 0);
2066 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2067 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2068 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2069 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2070 z < ze && !Overflow; ++z) {
2071 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2072 uint64_t Coeff;
2073 if (LargerThan64Bits)
2074 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2075 else
2076 Coeff = Coeff1*Coeff2;
2077 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2078 const SCEV *Term1 = AddRec->getOperand(y-z);
2079 const SCEV *Term2 = OtherAddRec->getOperand(z);
2080 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2081 }
2082 }
2083 AddRecOps.push_back(Term);
2084 }
2085 if (!Overflow) {
Nick Lewyckyc103a082011-09-06 21:42:18 +00002086 const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
2087 AddRec->getLoop(),
2088 SCEV::FlagAnyWrap);
2089 if (Ops.size() == 2) return NewAddRec;
2090 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
2091 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Nick Lewyckye97728e2011-10-04 06:51:26 +00002092 OpsModified = true;
Nick Lewyckyc103a082011-09-06 21:42:18 +00002093 }
Dan Gohman6a0c1252010-08-31 22:52:12 +00002094 }
Nick Lewyckye97728e2011-10-04 06:51:26 +00002095 if (OpsModified)
Nick Lewyckyc103a082011-09-06 21:42:18 +00002096 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002097 }
Nick Lewyckyc103a082011-09-06 21:42:18 +00002098 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002099
2100 // Otherwise couldn't fold anything into this recurrence. Move onto the
2101 // next one.
2102 }
2103
2104 // Okay, it looks like we really DO need an mul expr. Check to see if we
2105 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002106 FoldingSetNodeID ID;
2107 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002108 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2109 ID.AddPointer(Ops[i]);
2110 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002111 SCEVMulExpr *S =
2112 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2113 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002114 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2115 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002116 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2117 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002118 UniqueSCEVs.InsertNode(S, IP);
2119 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002120 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002121 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002122}
2123
Andreas Bolka8a11c982009-08-07 22:55:26 +00002124/// getUDivExpr - Get a canonical unsigned division expression, or something
2125/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002126const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2127 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002128 assert(getEffectiveSCEVType(LHS->getType()) ==
2129 getEffectiveSCEVType(RHS->getType()) &&
2130 "SCEVUDivExpr operand types don't match!");
2131
Dan Gohman622ed672009-05-04 22:02:23 +00002132 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002133 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002134 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002135 // If the denominator is zero, the result of the udiv is undefined. Don't
2136 // try to analyze it, because the resolution chosen here may differ from
2137 // the resolution chosen in other parts of the compiler.
2138 if (!RHSC->getValue()->isZero()) {
2139 // Determine if the division can be folded into the operands of
2140 // its operands.
2141 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002142 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002143 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002144 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002145 // For non-power-of-two values, effectively round the value up to the
2146 // nearest power of two.
2147 if (!RHSC->getValue()->getValue().isPowerOf2())
2148 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002149 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002150 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002151 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2152 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002153 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2154 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2155 const APInt &StepInt = Step->getValue()->getValue();
2156 const APInt &DivInt = RHSC->getValue()->getValue();
2157 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002158 getZeroExtendExpr(AR, ExtTy) ==
2159 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2160 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002161 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002162 SmallVector<const SCEV *, 4> Operands;
2163 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2164 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002165 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002166 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002167 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002168 /// Get a canonical UDivExpr for a recurrence.
2169 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2170 // We can currently only fold X%N if X is constant.
2171 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2172 if (StartC && !DivInt.urem(StepInt) &&
2173 getZeroExtendExpr(AR, ExtTy) ==
2174 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2175 getZeroExtendExpr(Step, ExtTy),
2176 AR->getLoop(), SCEV::FlagAnyWrap)) {
2177 const APInt &StartInt = StartC->getValue()->getValue();
2178 const APInt &StartRem = StartInt.urem(StepInt);
2179 if (StartRem != 0)
2180 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2181 AR->getLoop(), SCEV::FlagNW);
2182 }
2183 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002184 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2185 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2186 SmallVector<const SCEV *, 4> Operands;
2187 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2188 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2189 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2190 // Find an operand that's safely divisible.
2191 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2192 const SCEV *Op = M->getOperand(i);
2193 const SCEV *Div = getUDivExpr(Op, RHSC);
2194 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2195 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2196 M->op_end());
2197 Operands[i] = Div;
2198 return getMulExpr(Operands);
2199 }
2200 }
Dan Gohman185cf032009-05-08 20:18:49 +00002201 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002202 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002203 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002204 SmallVector<const SCEV *, 4> Operands;
2205 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2206 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2207 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2208 Operands.clear();
2209 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2210 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2211 if (isa<SCEVUDivExpr>(Op) ||
2212 getMulExpr(Op, RHS) != A->getOperand(i))
2213 break;
2214 Operands.push_back(Op);
2215 }
2216 if (Operands.size() == A->getNumOperands())
2217 return getAddExpr(Operands);
2218 }
2219 }
Dan Gohman185cf032009-05-08 20:18:49 +00002220
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002221 // Fold if both operands are constant.
2222 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2223 Constant *LHSCV = LHSC->getValue();
2224 Constant *RHSCV = RHSC->getValue();
2225 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2226 RHSCV)));
2227 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002228 }
2229 }
2230
Dan Gohman1c343752009-06-27 21:21:31 +00002231 FoldingSetNodeID ID;
2232 ID.AddInteger(scUDivExpr);
2233 ID.AddPointer(LHS);
2234 ID.AddPointer(RHS);
2235 void *IP = 0;
2236 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002237 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2238 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002239 UniqueSCEVs.InsertNode(S, IP);
2240 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002241}
2242
2243
Dan Gohman6c0866c2009-05-24 23:45:28 +00002244/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2245/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002246const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2247 const Loop *L,
2248 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002249 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002250 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002251 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002252 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002253 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002254 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002255 }
2256
2257 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002258 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002259}
2260
Dan Gohman6c0866c2009-05-24 23:45:28 +00002261/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2262/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002263const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002264ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002265 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002266 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002267#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002268 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002269 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002270 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002271 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002272 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002273 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002274 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002275#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002276
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002277 if (Operands.back()->isZero()) {
2278 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002279 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002280 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002281
Dan Gohmanbc028532010-02-19 18:49:22 +00002282 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2283 // use that information to infer NUW and NSW flags. However, computing a
2284 // BE count requires calling getAddRecExpr, so we may not yet have a
2285 // meaningful BE count at this point (and if we don't, we'd be stuck
2286 // with a SCEVCouldNotCompute as the cached BE count).
2287
Andrew Trick3228cc22011-03-14 16:50:06 +00002288 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002289 // And vice-versa.
2290 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2291 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2292 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002293 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002294 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2295 E = Operands.end(); I != E; ++I)
2296 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002297 All = false;
2298 break;
2299 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002300 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002301 }
2302
Dan Gohmand9cc7492008-08-08 18:33:12 +00002303 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002304 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002305 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002306 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002307 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002308 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002309 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002310 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002311 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002312 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002313 // AddRecs require their operands be loop-invariant with respect to their
2314 // loops. Don't perform this transformation if it would break this
2315 // requirement.
2316 bool AllInvariant = true;
2317 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002318 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002319 AllInvariant = false;
2320 break;
2321 }
2322 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002323 // Create a recurrence for the outer loop with the same step size.
2324 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002325 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2326 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002327 SCEV::NoWrapFlags OuterFlags =
2328 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002329
2330 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002331 AllInvariant = true;
2332 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002333 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002334 AllInvariant = false;
2335 break;
2336 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002337 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002338 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002339 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002340 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2341 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002342 SCEV::NoWrapFlags InnerFlags =
2343 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002344 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2345 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002346 }
2347 // Reset Operands to its original state.
2348 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002349 }
2350 }
2351
Dan Gohman67847532010-01-19 22:27:22 +00002352 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2353 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002354 FoldingSetNodeID ID;
2355 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002356 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2357 ID.AddPointer(Operands[i]);
2358 ID.AddPointer(L);
2359 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002360 SCEVAddRecExpr *S =
2361 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2362 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002363 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2364 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002365 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2366 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002367 UniqueSCEVs.InsertNode(S, IP);
2368 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002369 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002370 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002371}
2372
Dan Gohman9311ef62009-06-24 14:49:00 +00002373const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2374 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002375 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002376 Ops.push_back(LHS);
2377 Ops.push_back(RHS);
2378 return getSMaxExpr(Ops);
2379}
2380
Dan Gohman0bba49c2009-07-07 17:06:11 +00002381const SCEV *
2382ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002383 assert(!Ops.empty() && "Cannot get empty smax!");
2384 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002385#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002386 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002387 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002388 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002389 "SCEVSMaxExpr operand types don't match!");
2390#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002391
2392 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002393 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002394
2395 // If there are any constants, fold them together.
2396 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002397 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002398 ++Idx;
2399 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002400 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002401 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002402 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002403 APIntOps::smax(LHSC->getValue()->getValue(),
2404 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002405 Ops[0] = getConstant(Fold);
2406 Ops.erase(Ops.begin()+1); // Erase the folded element
2407 if (Ops.size() == 1) return Ops[0];
2408 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002409 }
2410
Dan Gohmane5aceed2009-06-24 14:46:22 +00002411 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002412 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2413 Ops.erase(Ops.begin());
2414 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002415 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2416 // If we have an smax with a constant maximum-int, it will always be
2417 // maximum-int.
2418 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002419 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002420
Dan Gohman3ab13122010-04-13 16:49:23 +00002421 if (Ops.size() == 1) return Ops[0];
2422 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002423
2424 // Find the first SMax
2425 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2426 ++Idx;
2427
2428 // Check to see if one of the operands is an SMax. If so, expand its operands
2429 // onto our operand list, and recurse to simplify.
2430 if (Idx < Ops.size()) {
2431 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002432 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002433 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002434 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002435 DeletedSMax = true;
2436 }
2437
2438 if (DeletedSMax)
2439 return getSMaxExpr(Ops);
2440 }
2441
2442 // Okay, check to see if the same value occurs in the operand list twice. If
2443 // so, delete one. Since we sorted the list, these values are required to
2444 // be adjacent.
2445 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002446 // X smax Y smax Y --> X smax Y
2447 // X smax Y --> X, if X is always greater than Y
2448 if (Ops[i] == Ops[i+1] ||
2449 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2450 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2451 --i; --e;
2452 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002453 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2454 --i; --e;
2455 }
2456
2457 if (Ops.size() == 1) return Ops[0];
2458
2459 assert(!Ops.empty() && "Reduced smax down to nothing!");
2460
Nick Lewycky3e630762008-02-20 06:48:22 +00002461 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002462 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002463 FoldingSetNodeID ID;
2464 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002465 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2466 ID.AddPointer(Ops[i]);
2467 void *IP = 0;
2468 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002469 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2470 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002471 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2472 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002473 UniqueSCEVs.InsertNode(S, IP);
2474 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002475}
2476
Dan Gohman9311ef62009-06-24 14:49:00 +00002477const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2478 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002479 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002480 Ops.push_back(LHS);
2481 Ops.push_back(RHS);
2482 return getUMaxExpr(Ops);
2483}
2484
Dan Gohman0bba49c2009-07-07 17:06:11 +00002485const SCEV *
2486ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002487 assert(!Ops.empty() && "Cannot get empty umax!");
2488 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002489#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002490 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002491 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002492 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002493 "SCEVUMaxExpr operand types don't match!");
2494#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002495
2496 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002497 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002498
2499 // If there are any constants, fold them together.
2500 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002501 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002502 ++Idx;
2503 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002504 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002505 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002506 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002507 APIntOps::umax(LHSC->getValue()->getValue(),
2508 RHSC->getValue()->getValue()));
2509 Ops[0] = getConstant(Fold);
2510 Ops.erase(Ops.begin()+1); // Erase the folded element
2511 if (Ops.size() == 1) return Ops[0];
2512 LHSC = cast<SCEVConstant>(Ops[0]);
2513 }
2514
Dan Gohmane5aceed2009-06-24 14:46:22 +00002515 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002516 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2517 Ops.erase(Ops.begin());
2518 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002519 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2520 // If we have an umax with a constant maximum-int, it will always be
2521 // maximum-int.
2522 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002523 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002524
Dan Gohman3ab13122010-04-13 16:49:23 +00002525 if (Ops.size() == 1) return Ops[0];
2526 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002527
2528 // Find the first UMax
2529 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2530 ++Idx;
2531
2532 // Check to see if one of the operands is a UMax. If so, expand its operands
2533 // onto our operand list, and recurse to simplify.
2534 if (Idx < Ops.size()) {
2535 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002536 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002537 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002538 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002539 DeletedUMax = true;
2540 }
2541
2542 if (DeletedUMax)
2543 return getUMaxExpr(Ops);
2544 }
2545
2546 // Okay, check to see if the same value occurs in the operand list twice. If
2547 // so, delete one. Since we sorted the list, these values are required to
2548 // be adjacent.
2549 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002550 // X umax Y umax Y --> X umax Y
2551 // X umax Y --> X, if X is always greater than Y
2552 if (Ops[i] == Ops[i+1] ||
2553 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2554 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2555 --i; --e;
2556 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002557 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2558 --i; --e;
2559 }
2560
2561 if (Ops.size() == 1) return Ops[0];
2562
2563 assert(!Ops.empty() && "Reduced umax down to nothing!");
2564
2565 // Okay, it looks like we really DO need a umax expr. Check to see if we
2566 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002567 FoldingSetNodeID ID;
2568 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002569 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2570 ID.AddPointer(Ops[i]);
2571 void *IP = 0;
2572 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002573 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2574 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002575 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2576 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002577 UniqueSCEVs.InsertNode(S, IP);
2578 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002579}
2580
Dan Gohman9311ef62009-06-24 14:49:00 +00002581const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2582 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002583 // ~smax(~x, ~y) == smin(x, y).
2584 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2585}
2586
Dan Gohman9311ef62009-06-24 14:49:00 +00002587const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2588 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002589 // ~umax(~x, ~y) == umin(x, y)
2590 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2591}
2592
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002593const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002594 // If we have TargetData, we can bypass creating a target-independent
2595 // constant expression and then folding it back into a ConstantInt.
2596 // This is just a compile-time optimization.
2597 if (TD)
2598 return getConstant(TD->getIntPtrType(getContext()),
2599 TD->getTypeAllocSize(AllocTy));
2600
Dan Gohman4f8eea82010-02-01 18:27:38 +00002601 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2602 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002603 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002604 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002605 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002606 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2607}
2608
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002609const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002610 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2611 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002612 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002613 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002614 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002615 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2616}
2617
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002618const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002619 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002620 // If we have TargetData, we can bypass creating a target-independent
2621 // constant expression and then folding it back into a ConstantInt.
2622 // This is just a compile-time optimization.
2623 if (TD)
2624 return getConstant(TD->getIntPtrType(getContext()),
2625 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2626
Dan Gohman0f5efe52010-01-28 02:15:55 +00002627 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2628 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002629 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002630 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002631 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002632 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002633}
2634
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002635const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002636 Constant *FieldNo) {
2637 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002638 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002639 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002640 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002641 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002642 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002643}
2644
Dan Gohman0bba49c2009-07-07 17:06:11 +00002645const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002646 // Don't attempt to do anything other than create a SCEVUnknown object
2647 // here. createSCEV only calls getUnknown after checking for all other
2648 // interesting possibilities, and any other code that calls getUnknown
2649 // is doing so in order to hide a value from SCEV canonicalization.
2650
Dan Gohman1c343752009-06-27 21:21:31 +00002651 FoldingSetNodeID ID;
2652 ID.AddInteger(scUnknown);
2653 ID.AddPointer(V);
2654 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002655 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2656 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2657 "Stale SCEVUnknown in uniquing map!");
2658 return S;
2659 }
2660 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2661 FirstUnknown);
2662 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002663 UniqueSCEVs.InsertNode(S, IP);
2664 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002665}
2666
Chris Lattner53e677a2004-04-02 20:23:17 +00002667//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002668// Basic SCEV Analysis and PHI Idiom Recognition Code
2669//
2670
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002671/// isSCEVable - Test if values of the given type are analyzable within
2672/// the SCEV framework. This primarily includes integer types, and it
2673/// can optionally include pointer types if the ScalarEvolution class
2674/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002675bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002676 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002677 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002678}
2679
2680/// getTypeSizeInBits - Return the size in bits of the specified type,
2681/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002682uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002683 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2684
2685 // If we have a TargetData, use it!
2686 if (TD)
2687 return TD->getTypeSizeInBits(Ty);
2688
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002689 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002690 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002691 return Ty->getPrimitiveSizeInBits();
2692
2693 // The only other support type is pointer. Without TargetData, conservatively
2694 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002695 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002696 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002697}
2698
2699/// getEffectiveSCEVType - Return a type with the same bitwidth as
2700/// the given type and which represents how SCEV will treat the given
2701/// type, for which isSCEVable must return true. For pointer types,
2702/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002703Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002704 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2705
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002706 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002707 return Ty;
2708
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002709 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002710 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002711 if (TD) return TD->getIntPtrType(getContext());
2712
2713 // Without TargetData, conservatively assume pointers are 64-bit.
2714 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002715}
Chris Lattner53e677a2004-04-02 20:23:17 +00002716
Dan Gohman0bba49c2009-07-07 17:06:11 +00002717const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002718 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002719}
2720
Chris Lattner53e677a2004-04-02 20:23:17 +00002721/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2722/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002723const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002724 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002725
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002726 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2727 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002728 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002729
2730 // The process of creating a SCEV for V may have caused other SCEVs
2731 // to have been created, so it's necessary to insert the new entry
2732 // from scratch, rather than trying to remember the insert position
2733 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002734 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002735 return S;
2736}
2737
Dan Gohman2d1be872009-04-16 03:18:22 +00002738/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2739///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002740const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002741 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002742 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002743 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002744
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002745 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002746 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002747 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002748 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002749}
2750
2751/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002752const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002753 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002754 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002755 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002756
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002757 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002758 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002759 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002760 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002761 return getMinusSCEV(AllOnes, V);
2762}
2763
Andrew Trick3228cc22011-03-14 16:50:06 +00002764/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002765const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002766 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002767 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2768
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002769 // Fast path: X - X --> 0.
2770 if (LHS == RHS)
2771 return getConstant(LHS->getType(), 0);
2772
Dan Gohman2d1be872009-04-16 03:18:22 +00002773 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002774 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002775}
2776
2777/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2778/// input value to the specified type. If the type must be extended, it is zero
2779/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002780const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002781ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2782 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002783 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2784 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002785 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002786 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002787 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002788 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002789 return getTruncateExpr(V, Ty);
2790 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002791}
2792
2793/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2794/// input value to the specified type. If the type must be extended, it is sign
2795/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002796const SCEV *
2797ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002798 Type *Ty) {
2799 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002800 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2801 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002802 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002803 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002804 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002805 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002806 return getTruncateExpr(V, Ty);
2807 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002808}
2809
Dan Gohman467c4302009-05-13 03:46:30 +00002810/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2811/// input value to the specified type. If the type must be extended, it is zero
2812/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002813const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002814ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2815 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002816 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2817 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002818 "Cannot noop or zero extend with non-integer arguments!");
2819 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2820 "getNoopOrZeroExtend cannot truncate!");
2821 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2822 return V; // No conversion
2823 return getZeroExtendExpr(V, Ty);
2824}
2825
2826/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2827/// input value to the specified type. If the type must be extended, it is sign
2828/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002829const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002830ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2831 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002832 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2833 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002834 "Cannot noop or sign extend with non-integer arguments!");
2835 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2836 "getNoopOrSignExtend cannot truncate!");
2837 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2838 return V; // No conversion
2839 return getSignExtendExpr(V, Ty);
2840}
2841
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002842/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2843/// the input value to the specified type. If the type must be extended,
2844/// it is extended with unspecified bits. The conversion must not be
2845/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002846const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002847ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2848 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002849 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2850 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002851 "Cannot noop or any extend with non-integer arguments!");
2852 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2853 "getNoopOrAnyExtend cannot truncate!");
2854 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2855 return V; // No conversion
2856 return getAnyExtendExpr(V, Ty);
2857}
2858
Dan Gohman467c4302009-05-13 03:46:30 +00002859/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2860/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002861const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002862ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2863 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002864 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2865 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002866 "Cannot truncate or noop with non-integer arguments!");
2867 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2868 "getTruncateOrNoop cannot extend!");
2869 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2870 return V; // No conversion
2871 return getTruncateExpr(V, Ty);
2872}
2873
Dan Gohmana334aa72009-06-22 00:31:57 +00002874/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2875/// the types using zero-extension, and then perform a umax operation
2876/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002877const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2878 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002879 const SCEV *PromotedLHS = LHS;
2880 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002881
2882 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2883 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2884 else
2885 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2886
2887 return getUMaxExpr(PromotedLHS, PromotedRHS);
2888}
2889
Dan Gohmanc9759e82009-06-22 15:03:27 +00002890/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2891/// the types using zero-extension, and then perform a umin operation
2892/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002893const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2894 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002895 const SCEV *PromotedLHS = LHS;
2896 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002897
2898 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2899 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2900 else
2901 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2902
2903 return getUMinExpr(PromotedLHS, PromotedRHS);
2904}
2905
Andrew Trickb12a7542011-03-17 23:51:11 +00002906/// getPointerBase - Transitively follow the chain of pointer-type operands
2907/// until reaching a SCEV that does not have a single pointer operand. This
2908/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2909/// but corner cases do exist.
2910const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2911 // A pointer operand may evaluate to a nonpointer expression, such as null.
2912 if (!V->getType()->isPointerTy())
2913 return V;
2914
2915 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2916 return getPointerBase(Cast->getOperand());
2917 }
2918 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2919 const SCEV *PtrOp = 0;
2920 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2921 I != E; ++I) {
2922 if ((*I)->getType()->isPointerTy()) {
2923 // Cannot find the base of an expression with multiple pointer operands.
2924 if (PtrOp)
2925 return V;
2926 PtrOp = *I;
2927 }
2928 }
2929 if (!PtrOp)
2930 return V;
2931 return getPointerBase(PtrOp);
2932 }
2933 return V;
2934}
2935
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002936/// PushDefUseChildren - Push users of the given Instruction
2937/// onto the given Worklist.
2938static void
2939PushDefUseChildren(Instruction *I,
2940 SmallVectorImpl<Instruction *> &Worklist) {
2941 // Push the def-use children onto the Worklist stack.
2942 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2943 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002944 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002945}
2946
2947/// ForgetSymbolicValue - This looks up computed SCEV values for all
2948/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002949/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002950/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002951void
Dan Gohman85669632010-02-25 06:57:05 +00002952ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002953 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002954 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002955
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002956 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002957 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002958 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002959 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002960 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002961
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002962 ValueExprMapType::iterator It =
2963 ValueExprMap.find(static_cast<Value *>(I));
2964 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002965 const SCEV *Old = It->second;
2966
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002967 // Short-circuit the def-use traversal if the symbolic name
2968 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002969 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002970 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002971
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002972 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002973 // structure, it's a PHI that's in the progress of being computed
2974 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2975 // additional loop trip count information isn't going to change anything.
2976 // In the second case, createNodeForPHI will perform the necessary
2977 // updates on its own when it gets to that point. In the third, we do
2978 // want to forget the SCEVUnknown.
2979 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002980 !isa<SCEVUnknown>(Old) ||
2981 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002982 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002983 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002984 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002985 }
2986
2987 PushDefUseChildren(I, Worklist);
2988 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002989}
Chris Lattner53e677a2004-04-02 20:23:17 +00002990
2991/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2992/// a loop header, making it a potential recurrence, or it doesn't.
2993///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002994const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002995 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2996 if (L->getHeader() == PN->getParent()) {
2997 // The loop may have multiple entrances or multiple exits; we can analyze
2998 // this phi as an addrec if it has a unique entry value and a unique
2999 // backedge value.
3000 Value *BEValueV = 0, *StartValueV = 0;
3001 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3002 Value *V = PN->getIncomingValue(i);
3003 if (L->contains(PN->getIncomingBlock(i))) {
3004 if (!BEValueV) {
3005 BEValueV = V;
3006 } else if (BEValueV != V) {
3007 BEValueV = 0;
3008 break;
3009 }
3010 } else if (!StartValueV) {
3011 StartValueV = V;
3012 } else if (StartValueV != V) {
3013 StartValueV = 0;
3014 break;
3015 }
3016 }
3017 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003018 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003019 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003020 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003021 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003022 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00003023
3024 // Using this symbolic name for the PHI, analyze the value coming around
3025 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003026 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00003027
3028 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3029 // has a special value for the first iteration of the loop.
3030
3031 // If the value coming around the backedge is an add with the symbolic
3032 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00003033 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003034 // If there is a single occurrence of the symbolic value, replace it
3035 // with a recurrence.
3036 unsigned FoundIndex = Add->getNumOperands();
3037 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3038 if (Add->getOperand(i) == SymbolicName)
3039 if (FoundIndex == e) {
3040 FoundIndex = i;
3041 break;
3042 }
3043
3044 if (FoundIndex != Add->getNumOperands()) {
3045 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003046 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00003047 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3048 if (i != FoundIndex)
3049 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00003050 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00003051
3052 // This is not a valid addrec if the step amount is varying each
3053 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003054 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00003055 (isa<SCEVAddRecExpr>(Accum) &&
3056 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003057 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00003058
3059 // If the increment doesn't overflow, then neither the addrec nor
3060 // the post-increment will overflow.
3061 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3062 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003063 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003064 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003065 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00003066 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00003067 dyn_cast<GEPOperator>(BEValueV)) {
3068 // If the increment is an inbounds GEP, then we know the address
3069 // space cannot be wrapped around. We cannot make any guarantee
3070 // about signed or unsigned overflow because pointers are
3071 // unsigned but we may have a negative index from the base
3072 // pointer.
3073 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00003074 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003075 }
3076
Dan Gohman27dead42010-04-12 07:49:36 +00003077 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00003078 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00003079
Dan Gohmana10756e2010-01-21 02:09:26 +00003080 // Since the no-wrap flags are on the increment, they apply to the
3081 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003082 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003083 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003084 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003085
3086 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003087 // to be symbolic. We now need to go back and purge all of the
3088 // entries for the scalars that use the symbolic expression.
3089 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003090 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003091 return PHISCEV;
3092 }
3093 }
Dan Gohman622ed672009-05-04 22:02:23 +00003094 } else if (const SCEVAddRecExpr *AddRec =
3095 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003096 // Otherwise, this could be a loop like this:
3097 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3098 // In this case, j = {1,+,1} and BEValue is j.
3099 // Because the other in-value of i (0) fits the evolution of BEValue
3100 // i really is an addrec evolution.
3101 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003102 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003103
3104 // If StartVal = j.start - j.stride, we can use StartVal as the
3105 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003106 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003107 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003108 // FIXME: For constant StartVal, we should be able to infer
3109 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003110 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003111 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3112 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003113
3114 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003115 // to be symbolic. We now need to go back and purge all of the
3116 // entries for the scalars that use the symbolic expression.
3117 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003118 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003119 return PHISCEV;
3120 }
3121 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003122 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003123 }
Dan Gohman27dead42010-04-12 07:49:36 +00003124 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003125
Dan Gohman85669632010-02-25 06:57:05 +00003126 // If the PHI has a single incoming value, follow that value, unless the
3127 // PHI's incoming blocks are in a different loop, in which case doing so
3128 // risks breaking LCSSA form. Instcombine would normally zap these, but
3129 // it doesn't have DominatorTree information, so it may miss cases.
Chad Rosier618c1db2011-12-01 03:08:23 +00003130 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003131 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003132 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003133
Chris Lattner53e677a2004-04-02 20:23:17 +00003134 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003135 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003136}
3137
Dan Gohman26466c02009-05-08 20:26:55 +00003138/// createNodeForGEP - Expand GEP instructions into add and multiply
3139/// operations. This allows them to be analyzed by regular SCEV code.
3140///
Dan Gohmand281ed22009-12-18 02:09:29 +00003141const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003142
Dan Gohmanb9f96512010-06-30 07:16:37 +00003143 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3144 // Add expression, because the Instruction may be guarded by control flow
3145 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003146 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003147 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003148
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003149 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003150 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003151 // Don't attempt to analyze GEPs over unsized objects.
3152 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3153 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003154 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003155 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003156 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003157 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003158 I != E; ++I) {
3159 Value *Index = *I;
3160 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003161 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003162 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003163 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00003164 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3165
Dan Gohmanb9f96512010-06-30 07:16:37 +00003166 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003167 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003168 } else {
3169 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003170 const SCEV *ElementSize = getSizeOfExpr(*GTI);
3171 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003172 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003173 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3174
Dan Gohmanb9f96512010-06-30 07:16:37 +00003175 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003176 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3177 isInBounds ? SCEV::FlagNSW :
3178 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003179
3180 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003181 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003182 }
3183 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003184
3185 // Get the SCEV for the GEP base.
3186 const SCEV *BaseS = getSCEV(Base);
3187
Dan Gohmanb9f96512010-06-30 07:16:37 +00003188 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003189 return getAddExpr(BaseS, TotalOffset,
3190 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003191}
3192
Nick Lewycky83bb0052007-11-22 07:59:40 +00003193/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3194/// guaranteed to end in (at every loop iteration). It is, at the same time,
3195/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3196/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003197uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003198ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003199 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003200 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003201
Dan Gohman622ed672009-05-04 22:02:23 +00003202 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003203 return std::min(GetMinTrailingZeros(T->getOperand()),
3204 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003205
Dan Gohman622ed672009-05-04 22:02:23 +00003206 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003207 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3208 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3209 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003210 }
3211
Dan Gohman622ed672009-05-04 22:02:23 +00003212 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003213 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3214 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3215 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003216 }
3217
Dan Gohman622ed672009-05-04 22:02:23 +00003218 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003219 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003220 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003221 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003222 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003223 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003224 }
3225
Dan Gohman622ed672009-05-04 22:02:23 +00003226 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003227 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003228 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3229 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003230 for (unsigned i = 1, e = M->getNumOperands();
3231 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003232 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003233 BitWidth);
3234 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003235 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003236
Dan Gohman622ed672009-05-04 22:02:23 +00003237 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003238 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003239 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003240 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003241 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003242 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003243 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003244
Dan Gohman622ed672009-05-04 22:02:23 +00003245 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003246 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003247 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003248 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003249 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003250 return MinOpRes;
3251 }
3252
Dan Gohman622ed672009-05-04 22:02:23 +00003253 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003254 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003255 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003256 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003257 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003258 return MinOpRes;
3259 }
3260
Dan Gohman2c364ad2009-06-19 23:29:04 +00003261 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3262 // For a SCEVUnknown, ask ValueTracking.
3263 unsigned BitWidth = getTypeSizeInBits(U->getType());
3264 APInt Mask = APInt::getAllOnesValue(BitWidth);
3265 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3266 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3267 return Zeros.countTrailingOnes();
3268 }
3269
3270 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003271 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003272}
Chris Lattner53e677a2004-04-02 20:23:17 +00003273
Dan Gohman85b05a22009-07-13 21:35:55 +00003274/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3275///
3276ConstantRange
3277ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003278 // See if we've computed this range already.
3279 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3280 if (I != UnsignedRanges.end())
3281 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003282
3283 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003284 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003285
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003286 unsigned BitWidth = getTypeSizeInBits(S->getType());
3287 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3288
3289 // If the value has known zeros, the maximum unsigned value will have those
3290 // known zeros as well.
3291 uint32_t TZ = GetMinTrailingZeros(S);
3292 if (TZ != 0)
3293 ConservativeResult =
3294 ConstantRange(APInt::getMinValue(BitWidth),
3295 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3296
Dan Gohman85b05a22009-07-13 21:35:55 +00003297 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3298 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3299 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3300 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003301 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003302 }
3303
3304 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3305 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3306 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3307 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003308 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003309 }
3310
3311 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3312 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3313 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3314 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003315 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003316 }
3317
3318 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3319 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3320 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3321 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003322 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003323 }
3324
3325 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3326 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3327 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003328 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003329 }
3330
3331 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3332 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003333 return setUnsignedRange(ZExt,
3334 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003335 }
3336
3337 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3338 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003339 return setUnsignedRange(SExt,
3340 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003341 }
3342
3343 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3344 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003345 return setUnsignedRange(Trunc,
3346 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003347 }
3348
Dan Gohman85b05a22009-07-13 21:35:55 +00003349 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003350 // If there's no unsigned wrap, the value will never be less than its
3351 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003352 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003353 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003354 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003355 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003356 ConservativeResult.intersectWith(
3357 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003358
3359 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003360 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003361 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003362 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003363 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3364 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003365 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3366
3367 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003368 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003369
3370 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003371 ConstantRange StepRange = getSignedRange(Step);
3372 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3373 ConstantRange EndRange =
3374 StartRange.add(MaxBECountRange.multiply(StepRange));
3375
3376 // Check for overflow. This must be done with ConstantRange arithmetic
3377 // because we could be called from within the ScalarEvolution overflow
3378 // checking code.
3379 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3380 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3381 ConstantRange ExtMaxBECountRange =
3382 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3383 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3384 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3385 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003386 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003387
Dan Gohman85b05a22009-07-13 21:35:55 +00003388 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3389 EndRange.getUnsignedMin());
3390 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3391 EndRange.getUnsignedMax());
3392 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003393 return setUnsignedRange(AddRec, ConservativeResult);
3394 return setUnsignedRange(AddRec,
3395 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003396 }
3397 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003398
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003399 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003400 }
3401
3402 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3403 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003404 APInt Mask = APInt::getAllOnesValue(BitWidth);
3405 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3406 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003407 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003408 return setUnsignedRange(U, ConservativeResult);
3409 return setUnsignedRange(U,
3410 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003411 }
3412
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003413 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003414}
3415
Dan Gohman85b05a22009-07-13 21:35:55 +00003416/// getSignedRange - Determine the signed range for a particular SCEV.
3417///
3418ConstantRange
3419ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003420 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003421 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3422 if (I != SignedRanges.end())
3423 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003424
Dan Gohman85b05a22009-07-13 21:35:55 +00003425 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003426 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003427
Dan Gohman52fddd32010-01-26 04:40:18 +00003428 unsigned BitWidth = getTypeSizeInBits(S->getType());
3429 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3430
3431 // If the value has known zeros, the maximum signed value will have those
3432 // known zeros as well.
3433 uint32_t TZ = GetMinTrailingZeros(S);
3434 if (TZ != 0)
3435 ConservativeResult =
3436 ConstantRange(APInt::getSignedMinValue(BitWidth),
3437 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3438
Dan Gohman85b05a22009-07-13 21:35:55 +00003439 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3440 ConstantRange X = getSignedRange(Add->getOperand(0));
3441 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3442 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003443 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003444 }
3445
Dan Gohman85b05a22009-07-13 21:35:55 +00003446 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3447 ConstantRange X = getSignedRange(Mul->getOperand(0));
3448 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3449 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003450 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003451 }
3452
Dan Gohman85b05a22009-07-13 21:35:55 +00003453 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3454 ConstantRange X = getSignedRange(SMax->getOperand(0));
3455 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3456 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003457 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003458 }
Dan Gohman62849c02009-06-24 01:05:09 +00003459
Dan Gohman85b05a22009-07-13 21:35:55 +00003460 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3461 ConstantRange X = getSignedRange(UMax->getOperand(0));
3462 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3463 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003464 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003465 }
Dan Gohman62849c02009-06-24 01:05:09 +00003466
Dan Gohman85b05a22009-07-13 21:35:55 +00003467 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3468 ConstantRange X = getSignedRange(UDiv->getLHS());
3469 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003470 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003471 }
Dan Gohman62849c02009-06-24 01:05:09 +00003472
Dan Gohman85b05a22009-07-13 21:35:55 +00003473 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3474 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003475 return setSignedRange(ZExt,
3476 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003477 }
3478
3479 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3480 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003481 return setSignedRange(SExt,
3482 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003483 }
3484
3485 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3486 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003487 return setSignedRange(Trunc,
3488 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003489 }
3490
Dan Gohman85b05a22009-07-13 21:35:55 +00003491 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003492 // If there's no signed wrap, and all the operands have the same sign or
3493 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003494 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003495 bool AllNonNeg = true;
3496 bool AllNonPos = true;
3497 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3498 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3499 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3500 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003501 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003502 ConservativeResult = ConservativeResult.intersectWith(
3503 ConstantRange(APInt(BitWidth, 0),
3504 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003505 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003506 ConservativeResult = ConservativeResult.intersectWith(
3507 ConstantRange(APInt::getSignedMinValue(BitWidth),
3508 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003509 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003510
3511 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003512 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003513 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003514 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003515 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3516 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003517 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3518
3519 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003520 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003521
3522 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003523 ConstantRange StepRange = getSignedRange(Step);
3524 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3525 ConstantRange EndRange =
3526 StartRange.add(MaxBECountRange.multiply(StepRange));
3527
3528 // Check for overflow. This must be done with ConstantRange arithmetic
3529 // because we could be called from within the ScalarEvolution overflow
3530 // checking code.
3531 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3532 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3533 ConstantRange ExtMaxBECountRange =
3534 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3535 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3536 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3537 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003538 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003539
Dan Gohman85b05a22009-07-13 21:35:55 +00003540 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3541 EndRange.getSignedMin());
3542 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3543 EndRange.getSignedMax());
3544 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003545 return setSignedRange(AddRec, ConservativeResult);
3546 return setSignedRange(AddRec,
3547 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003548 }
Dan Gohman62849c02009-06-24 01:05:09 +00003549 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003550
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003551 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003552 }
3553
Dan Gohman2c364ad2009-06-19 23:29:04 +00003554 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3555 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003556 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003557 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003558 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3559 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003560 return setSignedRange(U, ConservativeResult);
3561 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003562 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003563 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003564 }
3565
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003566 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003567}
3568
Chris Lattner53e677a2004-04-02 20:23:17 +00003569/// createSCEV - We know that there is no SCEV for the specified value.
3570/// Analyze the expression.
3571///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003572const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003573 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003574 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003575
Dan Gohman6c459a22008-06-22 19:56:46 +00003576 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003577 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003578 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003579
3580 // Don't attempt to analyze instructions in blocks that aren't
3581 // reachable. Such instructions don't matter, and they aren't required
3582 // to obey basic rules for definitions dominating uses which this
3583 // analysis depends on.
3584 if (!DT->isReachableFromEntry(I->getParent()))
3585 return getUnknown(V);
3586 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003587 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003588 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3589 return getConstant(CI);
3590 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003591 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003592 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3593 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003594 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003595 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003596
Dan Gohmanca178902009-07-17 20:47:02 +00003597 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003598 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003599 case Instruction::Add: {
3600 // The simple thing to do would be to just call getSCEV on both operands
3601 // and call getAddExpr with the result. However if we're looking at a
3602 // bunch of things all added together, this can be quite inefficient,
3603 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3604 // Instead, gather up all the operands and make a single getAddExpr call.
3605 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickecb35ec2011-11-29 02:16:38 +00003606 //
3607 // Don't apply this instruction's NSW or NUW flags to the new
3608 // expression. The instruction may be guarded by control flow that the
3609 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3610 // mapped to the same SCEV expression, and it would be incorrect to transfer
3611 // NSW/NUW semantics to those operations.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003612 SmallVector<const SCEV *, 4> AddOps;
3613 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003614 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3615 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3616 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3617 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003618 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003619 const SCEV *Op1 = getSCEV(U->getOperand(1));
3620 if (Opcode == Instruction::Sub)
3621 AddOps.push_back(getNegativeSCEV(Op1));
3622 else
3623 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003624 }
3625 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickecb35ec2011-11-29 02:16:38 +00003626 return getAddExpr(AddOps);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003627 }
3628 case Instruction::Mul: {
Andrew Trickecb35ec2011-11-29 02:16:38 +00003629 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003630 SmallVector<const SCEV *, 4> MulOps;
3631 MulOps.push_back(getSCEV(U->getOperand(1)));
3632 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003633 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003634 Op = U->getOperand(0)) {
3635 U = cast<Operator>(Op);
3636 MulOps.push_back(getSCEV(U->getOperand(1)));
3637 }
3638 MulOps.push_back(getSCEV(U->getOperand(0)));
3639 return getMulExpr(MulOps);
3640 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003641 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003642 return getUDivExpr(getSCEV(U->getOperand(0)),
3643 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003644 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003645 return getMinusSCEV(getSCEV(U->getOperand(0)),
3646 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003647 case Instruction::And:
3648 // For an expression like x&255 that merely masks off the high bits,
3649 // use zext(trunc(x)) as the SCEV expression.
3650 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003651 if (CI->isNullValue())
3652 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003653 if (CI->isAllOnesValue())
3654 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003655 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003656
3657 // Instcombine's ShrinkDemandedConstant may strip bits out of
3658 // constants, obscuring what would otherwise be a low-bits mask.
3659 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3660 // knew about to reconstruct a low-bits mask value.
3661 unsigned LZ = A.countLeadingZeros();
3662 unsigned BitWidth = A.getBitWidth();
3663 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3664 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3665 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3666
3667 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3668
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003669 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003670 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003671 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003672 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003673 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003674 }
3675 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003676
Dan Gohman6c459a22008-06-22 19:56:46 +00003677 case Instruction::Or:
3678 // If the RHS of the Or is a constant, we may have something like:
3679 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3680 // optimizations will transparently handle this case.
3681 //
3682 // In order for this transformation to be safe, the LHS must be of the
3683 // form X*(2^n) and the Or constant must be less than 2^n.
3684 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003685 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003686 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003687 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003688 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3689 // Build a plain add SCEV.
3690 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3691 // If the LHS of the add was an addrec and it has no-wrap flags,
3692 // transfer the no-wrap flags, since an or won't introduce a wrap.
3693 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3694 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003695 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3696 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003697 }
3698 return S;
3699 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003700 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003701 break;
3702 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003703 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003704 // If the RHS of the xor is a signbit, then this is just an add.
3705 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003706 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003707 return getAddExpr(getSCEV(U->getOperand(0)),
3708 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003709
3710 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003711 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003712 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003713
3714 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3715 // This is a variant of the check for xor with -1, and it handles
3716 // the case where instcombine has trimmed non-demanded bits out
3717 // of an xor with -1.
3718 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3719 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3720 if (BO->getOpcode() == Instruction::And &&
3721 LCI->getValue() == CI->getValue())
3722 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003723 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003724 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003725 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003726 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003727 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3728
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003729 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003730 // mask off the high bits. Complement the operand and
3731 // re-apply the zext.
3732 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3733 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3734
3735 // If C is a single bit, it may be in the sign-bit position
3736 // before the zero-extend. In this case, represent the xor
3737 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003738 APInt Trunc = CI->getValue().trunc(Z0TySize);
3739 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003740 Trunc.isSignBit())
3741 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3742 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003743 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003744 }
3745 break;
3746
3747 case Instruction::Shl:
3748 // Turn shift left of a constant amount into a multiply.
3749 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003750 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003751
3752 // If the shift count is not less than the bitwidth, the result of
3753 // the shift is undefined. Don't try to analyze it, because the
3754 // resolution chosen here may differ from the resolution chosen in
3755 // other parts of the compiler.
3756 if (SA->getValue().uge(BitWidth))
3757 break;
3758
Owen Andersoneed707b2009-07-24 23:12:02 +00003759 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003760 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003761 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003762 }
3763 break;
3764
Nick Lewycky01eaf802008-07-07 06:15:49 +00003765 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003766 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003767 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003768 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003769
3770 // If the shift count is not less than the bitwidth, the result of
3771 // the shift is undefined. Don't try to analyze it, because the
3772 // resolution chosen here may differ from the resolution chosen in
3773 // other parts of the compiler.
3774 if (SA->getValue().uge(BitWidth))
3775 break;
3776
Owen Andersoneed707b2009-07-24 23:12:02 +00003777 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003778 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003779 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003780 }
3781 break;
3782
Dan Gohman4ee29af2009-04-21 02:26:00 +00003783 case Instruction::AShr:
3784 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3785 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003786 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003787 if (L->getOpcode() == Instruction::Shl &&
3788 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003789 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3790
3791 // If the shift count is not less than the bitwidth, the result of
3792 // the shift is undefined. Don't try to analyze it, because the
3793 // resolution chosen here may differ from the resolution chosen in
3794 // other parts of the compiler.
3795 if (CI->getValue().uge(BitWidth))
3796 break;
3797
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003798 uint64_t Amt = BitWidth - CI->getZExtValue();
3799 if (Amt == BitWidth)
3800 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003801 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003802 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003803 IntegerType::get(getContext(),
3804 Amt)),
3805 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003806 }
3807 break;
3808
Dan Gohman6c459a22008-06-22 19:56:46 +00003809 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003810 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003811
3812 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003813 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003814
3815 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003816 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003817
3818 case Instruction::BitCast:
3819 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003820 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003821 return getSCEV(U->getOperand(0));
3822 break;
3823
Dan Gohman4f8eea82010-02-01 18:27:38 +00003824 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3825 // lead to pointer expressions which cannot safely be expanded to GEPs,
3826 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3827 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003828
Dan Gohman26466c02009-05-08 20:26:55 +00003829 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003830 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003831
Dan Gohman6c459a22008-06-22 19:56:46 +00003832 case Instruction::PHI:
3833 return createNodeForPHI(cast<PHINode>(U));
3834
3835 case Instruction::Select:
3836 // This could be a smax or umax that was lowered earlier.
3837 // Try to recover it.
3838 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3839 Value *LHS = ICI->getOperand(0);
3840 Value *RHS = ICI->getOperand(1);
3841 switch (ICI->getPredicate()) {
3842 case ICmpInst::ICMP_SLT:
3843 case ICmpInst::ICMP_SLE:
3844 std::swap(LHS, RHS);
3845 // fall through
3846 case ICmpInst::ICMP_SGT:
3847 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003848 // a >s b ? a+x : b+x -> smax(a, b)+x
3849 // a >s b ? b+x : a+x -> smin(a, b)+x
3850 if (LHS->getType() == U->getType()) {
3851 const SCEV *LS = getSCEV(LHS);
3852 const SCEV *RS = getSCEV(RHS);
3853 const SCEV *LA = getSCEV(U->getOperand(1));
3854 const SCEV *RA = getSCEV(U->getOperand(2));
3855 const SCEV *LDiff = getMinusSCEV(LA, LS);
3856 const SCEV *RDiff = getMinusSCEV(RA, RS);
3857 if (LDiff == RDiff)
3858 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3859 LDiff = getMinusSCEV(LA, RS);
3860 RDiff = getMinusSCEV(RA, LS);
3861 if (LDiff == RDiff)
3862 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3863 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003864 break;
3865 case ICmpInst::ICMP_ULT:
3866 case ICmpInst::ICMP_ULE:
3867 std::swap(LHS, RHS);
3868 // fall through
3869 case ICmpInst::ICMP_UGT:
3870 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003871 // a >u b ? a+x : b+x -> umax(a, b)+x
3872 // a >u b ? b+x : a+x -> umin(a, b)+x
3873 if (LHS->getType() == U->getType()) {
3874 const SCEV *LS = getSCEV(LHS);
3875 const SCEV *RS = getSCEV(RHS);
3876 const SCEV *LA = getSCEV(U->getOperand(1));
3877 const SCEV *RA = getSCEV(U->getOperand(2));
3878 const SCEV *LDiff = getMinusSCEV(LA, LS);
3879 const SCEV *RDiff = getMinusSCEV(RA, RS);
3880 if (LDiff == RDiff)
3881 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3882 LDiff = getMinusSCEV(LA, RS);
3883 RDiff = getMinusSCEV(RA, LS);
3884 if (LDiff == RDiff)
3885 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3886 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003887 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003888 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003889 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3890 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003891 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003892 cast<ConstantInt>(RHS)->isZero()) {
3893 const SCEV *One = getConstant(LHS->getType(), 1);
3894 const SCEV *LS = getSCEV(LHS);
3895 const SCEV *LA = getSCEV(U->getOperand(1));
3896 const SCEV *RA = getSCEV(U->getOperand(2));
3897 const SCEV *LDiff = getMinusSCEV(LA, LS);
3898 const SCEV *RDiff = getMinusSCEV(RA, One);
3899 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003900 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003901 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003902 break;
3903 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003904 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3905 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003906 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003907 cast<ConstantInt>(RHS)->isZero()) {
3908 const SCEV *One = getConstant(LHS->getType(), 1);
3909 const SCEV *LS = getSCEV(LHS);
3910 const SCEV *LA = getSCEV(U->getOperand(1));
3911 const SCEV *RA = getSCEV(U->getOperand(2));
3912 const SCEV *LDiff = getMinusSCEV(LA, One);
3913 const SCEV *RDiff = getMinusSCEV(RA, LS);
3914 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003915 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003916 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003917 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003918 default:
3919 break;
3920 }
3921 }
3922
3923 default: // We cannot analyze this expression.
3924 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003925 }
3926
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003927 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003928}
3929
3930
3931
3932//===----------------------------------------------------------------------===//
3933// Iteration Count Computation Code
3934//
3935
Andrew Trickb1831c62011-08-11 23:36:16 +00003936/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Trick3eada312012-01-11 06:52:55 +00003937/// normal unsigned value. Returns 0 if the trip count is unknown or not
3938/// constant. Will also return 0 if the maximum trip count is very large (>=
3939/// 2^32).
3940///
3941/// This "trip count" assumes that control exits via ExitingBlock. More
3942/// precisely, it is the number of times that control may reach ExitingBlock
3943/// before taking the branch. For loops with multiple exits, it may not be the
3944/// number times that the loop header executes because the loop may exit
3945/// prematurely via another branch.
3946unsigned ScalarEvolution::
3947getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) {
Andrew Trickb1831c62011-08-11 23:36:16 +00003948 const SCEVConstant *ExitCount =
Andrew Trick3eada312012-01-11 06:52:55 +00003949 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trickb1831c62011-08-11 23:36:16 +00003950 if (!ExitCount)
3951 return 0;
3952
3953 ConstantInt *ExitConst = ExitCount->getValue();
3954
3955 // Guard against huge trip counts.
3956 if (ExitConst->getValue().getActiveBits() > 32)
3957 return 0;
3958
3959 // In case of integer overflow, this returns 0, which is correct.
3960 return ((unsigned)ExitConst->getZExtValue()) + 1;
3961}
3962
3963/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3964/// trip count of this loop as a normal unsigned value, if possible. This
3965/// means that the actual trip count is always a multiple of the returned
3966/// value (don't forget the trip count could very well be zero as well!).
3967///
3968/// Returns 1 if the trip count is unknown or not guaranteed to be the
3969/// multiple of a constant (which is also the case if the trip count is simply
3970/// constant, use getSmallConstantTripCount for that case), Will also return 1
3971/// if the trip count is very large (>= 2^32).
Andrew Trick3eada312012-01-11 06:52:55 +00003972///
3973/// As explained in the comments for getSmallConstantTripCount, this assumes
3974/// that control exits the loop via ExitingBlock.
3975unsigned ScalarEvolution::
3976getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) {
3977 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trickb1831c62011-08-11 23:36:16 +00003978 if (ExitCount == getCouldNotCompute())
3979 return 1;
3980
3981 // Get the trip count from the BE count by adding 1.
3982 const SCEV *TCMul = getAddExpr(ExitCount,
3983 getConstant(ExitCount->getType(), 1));
3984 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3985 // to factor simple cases.
3986 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3987 TCMul = Mul->getOperand(0);
3988
3989 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3990 if (!MulC)
3991 return 1;
3992
3993 ConstantInt *Result = MulC->getValue();
3994
3995 // Guard against huge trip counts.
3996 if (!Result || Result->getValue().getActiveBits() > 32)
3997 return 1;
3998
3999 return (unsigned)Result->getZExtValue();
4000}
4001
Andrew Trick5116ff62011-07-26 17:19:55 +00004002// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickfcb43562011-08-02 04:23:35 +00004003// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00004004// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00004005const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4006 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00004007}
4008
Dan Gohman46bdfb02009-02-24 18:55:53 +00004009/// getBackedgeTakenCount - If the specified loop has a predictable
4010/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4011/// object. The backedge-taken count is the number of times the loop header
4012/// will be branched to from within the loop. This is one less than the
4013/// trip count of the loop, since it doesn't count the first iteration,
4014/// when the header is branched to from outside the loop.
4015///
4016/// Note that it is not valid to call this method on a loop without a
4017/// loop-invariant backedge-taken count (see
4018/// hasLoopInvariantBackedgeTakenCount).
4019///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004020const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004021 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004022}
4023
4024/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4025/// return the least SCEV value that is known never to be less than the
4026/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004027const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004028 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004029}
4030
Dan Gohman59ae6b92009-07-08 19:23:34 +00004031/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4032/// onto the given Worklist.
4033static void
4034PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4035 BasicBlock *Header = L->getHeader();
4036
4037 // Push all Loop-header PHIs onto the Worklist stack.
4038 for (BasicBlock::iterator I = Header->begin();
4039 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4040 Worklist.push_back(PN);
4041}
4042
Dan Gohmana1af7572009-04-30 20:47:05 +00004043const ScalarEvolution::BackedgeTakenInfo &
4044ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004045 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004046 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00004047 // update the value. The temporary CouldNotCompute value tells SCEV
4048 // code elsewhere that it shouldn't attempt to request a new
4049 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004050 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00004051 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00004052 if (!Pair.second)
4053 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00004054
Andrew Trick5116ff62011-07-26 17:19:55 +00004055 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4056 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4057 // must be cleared in this scope.
4058 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4059
4060 if (Result.getExact(this) != getCouldNotCompute()) {
4061 assert(isLoopInvariant(Result.getExact(this), L) &&
4062 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00004063 "Computed backedge-taken count isn't loop invariant for loop!");
4064 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00004065 }
4066 else if (Result.getMax(this) == getCouldNotCompute() &&
4067 isa<PHINode>(L->getHeader()->begin())) {
4068 // Only count loops that have phi nodes as not being computable.
4069 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00004070 }
Dan Gohmana1af7572009-04-30 20:47:05 +00004071
Chris Lattnerf1859892011-01-09 02:16:18 +00004072 // Now that we know more about the trip count for this loop, forget any
4073 // existing SCEV values for PHI nodes in this loop since they are only
4074 // conservative estimates made without the benefit of trip count
4075 // information. This is similar to the code in forgetLoop, except that
4076 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00004077 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00004078 SmallVector<Instruction *, 16> Worklist;
4079 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004080
Chris Lattnerf1859892011-01-09 02:16:18 +00004081 SmallPtrSet<Instruction *, 8> Visited;
4082 while (!Worklist.empty()) {
4083 Instruction *I = Worklist.pop_back_val();
4084 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004085
Chris Lattnerf1859892011-01-09 02:16:18 +00004086 ValueExprMapType::iterator It =
4087 ValueExprMap.find(static_cast<Value *>(I));
4088 if (It != ValueExprMap.end()) {
4089 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00004090
Chris Lattnerf1859892011-01-09 02:16:18 +00004091 // SCEVUnknown for a PHI either means that it has an unrecognized
4092 // structure, or it's a PHI that's in the progress of being computed
4093 // by createNodeForPHI. In the former case, additional loop trip
4094 // count information isn't going to change anything. In the later
4095 // case, createNodeForPHI will perform the necessary updates on its
4096 // own when it gets to that point.
4097 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4098 forgetMemoizedResults(Old);
4099 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004100 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004101 if (PHINode *PN = dyn_cast<PHINode>(I))
4102 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004103 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004104
4105 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004106 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004107 }
Dan Gohman308bec32011-04-25 22:48:29 +00004108
4109 // Re-lookup the insert position, since the call to
4110 // ComputeBackedgeTakenCount above could result in a
4111 // recusive call to getBackedgeTakenInfo (on a different
4112 // loop), which would invalidate the iterator computed
4113 // earlier.
4114 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004115}
4116
Dan Gohman4c7279a2009-10-31 15:04:55 +00004117/// forgetLoop - This method should be called by the client when it has
4118/// changed a loop in a way that may effect ScalarEvolution's ability to
4119/// compute a trip count, or if the loop is deleted.
4120void ScalarEvolution::forgetLoop(const Loop *L) {
4121 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004122 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4123 BackedgeTakenCounts.find(L);
4124 if (BTCPos != BackedgeTakenCounts.end()) {
4125 BTCPos->second.clear();
4126 BackedgeTakenCounts.erase(BTCPos);
4127 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004128
Dan Gohman4c7279a2009-10-31 15:04:55 +00004129 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004130 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004131 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004132
Dan Gohman59ae6b92009-07-08 19:23:34 +00004133 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004134 while (!Worklist.empty()) {
4135 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004136 if (!Visited.insert(I)) continue;
4137
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004138 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4139 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004140 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004141 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004142 if (PHINode *PN = dyn_cast<PHINode>(I))
4143 ConstantEvolutionLoopExitValue.erase(PN);
4144 }
4145
4146 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004147 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004148
4149 // Forget all contained loops too, to avoid dangling entries in the
4150 // ValuesAtScopes map.
4151 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4152 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004153}
4154
Eric Christophere6cbfa62010-07-29 01:25:38 +00004155/// forgetValue - This method should be called by the client when it has
4156/// changed a value in a way that may effect its value, or which may
4157/// disconnect it from a def-use chain linking it to a loop.
4158void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004159 Instruction *I = dyn_cast<Instruction>(V);
4160 if (!I) return;
4161
4162 // Drop information about expressions based on loop-header PHIs.
4163 SmallVector<Instruction *, 16> Worklist;
4164 Worklist.push_back(I);
4165
4166 SmallPtrSet<Instruction *, 8> Visited;
4167 while (!Worklist.empty()) {
4168 I = Worklist.pop_back_val();
4169 if (!Visited.insert(I)) continue;
4170
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004171 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4172 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004173 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004174 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004175 if (PHINode *PN = dyn_cast<PHINode>(I))
4176 ConstantEvolutionLoopExitValue.erase(PN);
4177 }
4178
4179 PushDefUseChildren(I, Worklist);
4180 }
4181}
4182
Andrew Trick5116ff62011-07-26 17:19:55 +00004183/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004184/// exits. A computable result can only be return for loops with a single exit.
4185/// Returning the minimum taken count among all exits is incorrect because one
4186/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4187/// the limit of each loop test is never skipped. This is a valid assumption as
4188/// long as the loop exits via that test. For precise results, it is the
4189/// caller's responsibility to specify the relevant loop exit using
4190/// getExact(ExitingBlock, SE).
Andrew Trick5116ff62011-07-26 17:19:55 +00004191const SCEV *
4192ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4193 // If any exits were not computable, the loop is not computable.
4194 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4195
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004196 // We need exactly one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004197 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004198 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4199
4200 const SCEV *BECount = 0;
4201 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4202 ENT != 0; ENT = ENT->getNextExit()) {
4203
4204 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4205
4206 if (!BECount)
4207 BECount = ENT->ExactNotTaken;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004208 else if (BECount != ENT->ExactNotTaken)
4209 return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004210 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004211 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004212 return BECount;
4213}
4214
4215/// getExact - Get the exact not taken count for this loop exit.
4216const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004217ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004218 ScalarEvolution *SE) const {
4219 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4220 ENT != 0; ENT = ENT->getNextExit()) {
4221
Andrew Trickfcb43562011-08-02 04:23:35 +00004222 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004223 return ENT->ExactNotTaken;
4224 }
4225 return SE->getCouldNotCompute();
4226}
4227
4228/// getMax - Get the max backedge taken count for the loop.
4229const SCEV *
4230ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4231 return Max ? Max : SE->getCouldNotCompute();
4232}
4233
4234/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4235/// computable exit into a persistent ExitNotTakenInfo array.
4236ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4237 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4238 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4239
4240 if (!Complete)
4241 ExitNotTaken.setIncomplete();
4242
4243 unsigned NumExits = ExitCounts.size();
4244 if (NumExits == 0) return;
4245
Andrew Trickfcb43562011-08-02 04:23:35 +00004246 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004247 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4248 if (NumExits == 1) return;
4249
4250 // Handle the rare case of multiple computable exits.
4251 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4252
4253 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4254 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4255 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004256 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004257 ENT->ExactNotTaken = ExitCounts[i].second;
4258 }
4259}
4260
4261/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4262void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004263 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004264 ExitNotTaken.ExactNotTaken = 0;
4265 delete[] ExitNotTaken.getNextExit();
4266}
4267
Dan Gohman46bdfb02009-02-24 18:55:53 +00004268/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4269/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004270ScalarEvolution::BackedgeTakenInfo
4271ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004272 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004273 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004274
Dan Gohmana334aa72009-06-22 00:31:57 +00004275 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004276 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004277 bool CouldComputeBECount = true;
4278 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004279 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004280 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4281 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004282 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004283 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004284 CouldComputeBECount = false;
4285 else
4286 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4287
Dan Gohman1c343752009-06-27 21:21:31 +00004288 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004289 MaxBECount = EL.Max;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004290 else if (EL.Max != getCouldNotCompute()) {
4291 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4292 // skip some loop tests. Taking the max over the exits is sufficiently
4293 // conservative. TODO: We could do better taking into consideration
4294 // that (1) the loop has unit stride (2) the last loop test is
4295 // less-than/greater-than (3) any loop test is less-than/greater-than AND
4296 // falls-through some constant times less then the other tests.
4297 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4298 }
Dan Gohmana334aa72009-06-22 00:31:57 +00004299 }
4300
Andrew Trick5116ff62011-07-26 17:19:55 +00004301 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004302}
4303
Andrew Trick5116ff62011-07-26 17:19:55 +00004304/// ComputeExitLimit - Compute the number of times the backedge of the specified
4305/// loop will execute if it exits via the specified block.
4306ScalarEvolution::ExitLimit
4307ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004308
4309 // Okay, we've chosen an exiting block. See what condition causes us to
4310 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004311 //
4312 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004313 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004314 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004315 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004316
Chris Lattner8b0e3602007-01-07 02:24:26 +00004317 // At this point, we know we have a conditional branch that determines whether
4318 // the loop is exited. However, we don't know if the branch is executed each
4319 // time through the loop. If not, then the execution count of the branch will
4320 // not be equal to the trip count of the loop.
4321 //
4322 // Currently we check for this by checking to see if the Exit branch goes to
4323 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004324 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004325 // loop header. This is common for un-rotated loops.
4326 //
4327 // If both of those tests fail, walk up the unique predecessor chain to the
4328 // header, stopping if there is an edge that doesn't exit the loop. If the
4329 // header is reached, the execution count of the branch will be equal to the
4330 // trip count of the loop.
4331 //
4332 // More extensive analysis could be done to handle more cases here.
4333 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004334 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004335 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004336 ExitBr->getParent() != L->getHeader()) {
4337 // The simple checks failed, try climbing the unique predecessor chain
4338 // up to the header.
4339 bool Ok = false;
4340 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4341 BasicBlock *Pred = BB->getUniquePredecessor();
4342 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004343 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004344 TerminatorInst *PredTerm = Pred->getTerminator();
4345 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4346 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4347 if (PredSucc == BB)
4348 continue;
4349 // If the predecessor has a successor that isn't BB and isn't
4350 // outside the loop, assume the worst.
4351 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004352 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004353 }
4354 if (Pred == L->getHeader()) {
4355 Ok = true;
4356 break;
4357 }
4358 BB = Pred;
4359 }
4360 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004361 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004362 }
4363
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004364 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004365 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4366 ExitBr->getSuccessor(0),
4367 ExitBr->getSuccessor(1));
Dan Gohmana334aa72009-06-22 00:31:57 +00004368}
4369
Andrew Trick5116ff62011-07-26 17:19:55 +00004370/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004371/// backedge of the specified loop will execute if its exit condition
4372/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004373ScalarEvolution::ExitLimit
4374ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4375 Value *ExitCond,
4376 BasicBlock *TBB,
4377 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004378 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004379 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4380 if (BO->getOpcode() == Instruction::And) {
4381 // Recurse on the operands of the and.
Andrew Trick5116ff62011-07-26 17:19:55 +00004382 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4383 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004384 const SCEV *BECount = getCouldNotCompute();
4385 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004386 if (L->contains(TBB)) {
4387 // Both conditions must be true for the loop to continue executing.
4388 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004389 if (EL0.Exact == getCouldNotCompute() ||
4390 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004391 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004392 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004393 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4394 if (EL0.Max == getCouldNotCompute())
4395 MaxBECount = EL1.Max;
4396 else if (EL1.Max == getCouldNotCompute())
4397 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004398 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004399 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004400 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004401 // Both conditions must be true at the same time for the loop to exit.
4402 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004403 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004404 if (EL0.Max == EL1.Max)
4405 MaxBECount = EL0.Max;
4406 if (EL0.Exact == EL1.Exact)
4407 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004408 }
4409
Andrew Trick5116ff62011-07-26 17:19:55 +00004410 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004411 }
4412 if (BO->getOpcode() == Instruction::Or) {
4413 // Recurse on the operands of the or.
Andrew Trick5116ff62011-07-26 17:19:55 +00004414 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4415 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004416 const SCEV *BECount = getCouldNotCompute();
4417 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004418 if (L->contains(FBB)) {
4419 // Both conditions must be false for the loop to continue executing.
4420 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004421 if (EL0.Exact == getCouldNotCompute() ||
4422 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004423 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004424 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004425 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4426 if (EL0.Max == getCouldNotCompute())
4427 MaxBECount = EL1.Max;
4428 else if (EL1.Max == getCouldNotCompute())
4429 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004430 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004431 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004432 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004433 // Both conditions must be false at the same time for the loop to exit.
4434 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004435 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004436 if (EL0.Max == EL1.Max)
4437 MaxBECount = EL0.Max;
4438 if (EL0.Exact == EL1.Exact)
4439 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004440 }
4441
Andrew Trick5116ff62011-07-26 17:19:55 +00004442 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004443 }
4444 }
4445
4446 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004447 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004448 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5116ff62011-07-26 17:19:55 +00004449 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004450
Dan Gohman00cb5b72010-02-19 18:12:07 +00004451 // Check for a constant condition. These are normally stripped out by
4452 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4453 // preserve the CFG and is temporarily leaving constant conditions
4454 // in place.
4455 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4456 if (L->contains(FBB) == !CI->getZExtValue())
4457 // The backedge is always taken.
4458 return getCouldNotCompute();
4459 else
4460 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004461 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004462 }
4463
Eli Friedman361e54d2009-05-09 12:32:42 +00004464 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004465 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004466}
4467
Andrew Trick5116ff62011-07-26 17:19:55 +00004468/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004469/// backedge of the specified loop will execute if its exit condition
4470/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004471ScalarEvolution::ExitLimit
4472ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4473 ICmpInst *ExitCond,
4474 BasicBlock *TBB,
4475 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004476
Reid Spencere4d87aa2006-12-23 06:05:41 +00004477 // If the condition was exit on true, convert the condition to exit on false
4478 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004479 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004480 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004481 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004482 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004483
4484 // Handle common loops like: for (X = "string"; *X; ++X)
4485 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4486 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004487 ExitLimit ItCnt =
4488 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004489 if (ItCnt.hasAnyInfo())
4490 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004491 }
4492
Dan Gohman0bba49c2009-07-07 17:06:11 +00004493 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4494 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004495
4496 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004497 LHS = getSCEVAtScope(LHS, L);
4498 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004499
Dan Gohman64a845e2009-06-24 04:48:43 +00004500 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004501 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004502 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004503 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004504 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004505 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004506 }
4507
Dan Gohman03557dc2010-05-03 16:35:17 +00004508 // Simplify the operands before analyzing them.
4509 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4510
Chris Lattner53e677a2004-04-02 20:23:17 +00004511 // If we have a comparison of a chrec against a constant, try to use value
4512 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004513 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4514 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004515 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004516 // Form the constant range.
4517 ConstantRange CompRange(
4518 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004519
Dan Gohman0bba49c2009-07-07 17:06:11 +00004520 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004521 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004522 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004523
Chris Lattner53e677a2004-04-02 20:23:17 +00004524 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004525 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004526 // Convert to: while (X-Y != 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004527 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4528 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004529 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004530 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004531 case ICmpInst::ICMP_EQ: { // while (X == Y)
4532 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004533 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4534 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004535 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004536 }
4537 case ICmpInst::ICMP_SLT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004538 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4539 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004540 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004541 }
4542 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004543 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004544 getNotSCEV(RHS), L, true);
Andrew Trick5116ff62011-07-26 17:19:55 +00004545 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004546 break;
4547 }
4548 case ICmpInst::ICMP_ULT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004549 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4550 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004551 break;
4552 }
4553 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004554 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004555 getNotSCEV(RHS), L, false);
Andrew Trick5116ff62011-07-26 17:19:55 +00004556 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004557 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004558 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004559 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004560#if 0
David Greene25e0e872009-12-23 22:18:14 +00004561 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004562 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004563 dbgs() << "[unsigned] ";
4564 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004565 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004566 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004567#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004568 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004569 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004570 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004571}
4572
Chris Lattner673e02b2004-10-12 01:49:27 +00004573static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004574EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4575 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004576 const SCEV *InVal = SE.getConstant(C);
4577 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004578 assert(isa<SCEVConstant>(Val) &&
4579 "Evaluation of SCEV at constant didn't fold correctly?");
4580 return cast<SCEVConstant>(Val)->getValue();
4581}
4582
4583/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4584/// and a GEP expression (missing the pointer index) indexing into it, return
4585/// the addressed element of the initializer or null if the index expression is
4586/// invalid.
4587static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004588GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004589 const std::vector<ConstantInt*> &Indices) {
4590 Constant *Init = GV->getInitializer();
4591 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004592 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004593 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4594 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4595 Init = cast<Constant>(CS->getOperand(Idx));
4596 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4597 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4598 Init = cast<Constant>(CA->getOperand(Idx));
4599 } else if (isa<ConstantAggregateZero>(Init)) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004600 if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004601 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004602 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattnerdb125cf2011-07-18 04:54:35 +00004603 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004604 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004605 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004606 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004607 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004608 }
Chris Lattner673e02b2004-10-12 01:49:27 +00004609 } else {
4610 return 0; // Unknown initializer type
4611 }
4612 }
4613 return Init;
4614}
4615
Andrew Trick5116ff62011-07-26 17:19:55 +00004616/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004617/// 'icmp op load X, cst', try to see if we can compute the backedge
4618/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004619ScalarEvolution::ExitLimit
4620ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4621 LoadInst *LI,
4622 Constant *RHS,
4623 const Loop *L,
4624 ICmpInst::Predicate predicate) {
4625
Dan Gohman1c343752009-06-27 21:21:31 +00004626 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004627
4628 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004629 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004630 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004631 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004632
4633 // Make sure that it is really a constant global we are gepping, with an
4634 // initializer, and make sure the first IDX is really 0.
4635 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004636 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004637 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4638 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004639 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004640
4641 // Okay, we allow one non-constant index into the GEP instruction.
4642 Value *VarIdx = 0;
4643 std::vector<ConstantInt*> Indexes;
4644 unsigned VarIdxNum = 0;
4645 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4646 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4647 Indexes.push_back(CI);
4648 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004649 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004650 VarIdx = GEP->getOperand(i);
4651 VarIdxNum = i-2;
4652 Indexes.push_back(0);
4653 }
4654
4655 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4656 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004657 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004658 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004659
4660 // We can only recognize very limited forms of loop index expressions, in
4661 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004662 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004663 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004664 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4665 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004666 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004667
4668 unsigned MaxSteps = MaxBruteForceIterations;
4669 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004670 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004671 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004672 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004673
4674 // Form the GEP offset.
4675 Indexes[VarIdxNum] = Val;
4676
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004677 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004678 if (Result == 0) break; // Cannot compute!
4679
4680 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004681 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004682 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004683 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004684#if 0
David Greene25e0e872009-12-23 22:18:14 +00004685 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004686 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4687 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004688#endif
4689 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004690 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004691 }
4692 }
Dan Gohman1c343752009-06-27 21:21:31 +00004693 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004694}
4695
4696
Chris Lattner3221ad02004-04-17 22:58:41 +00004697/// CanConstantFold - Return true if we can constant fold an instruction of the
4698/// specified type, assuming that all operands were constants.
4699static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004700 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewycky614fef62011-10-22 19:58:20 +00004701 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4702 isa<LoadInst>(I))
Chris Lattner3221ad02004-04-17 22:58:41 +00004703 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004704
Chris Lattner3221ad02004-04-17 22:58:41 +00004705 if (const CallInst *CI = dyn_cast<CallInst>(I))
4706 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004707 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004708 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004709}
4710
Andrew Trick13d31e02011-10-05 03:25:31 +00004711/// Determine whether this instruction can constant evolve within this loop
4712/// assuming its operands can all constant evolve.
4713static bool canConstantEvolve(Instruction *I, const Loop *L) {
4714 // An instruction outside of the loop can't be derived from a loop PHI.
4715 if (!L->contains(I)) return false;
4716
4717 if (isa<PHINode>(I)) {
4718 if (L->getHeader() == I->getParent())
4719 return true;
4720 else
4721 // We don't currently keep track of the control flow needed to evaluate
4722 // PHIs, so we cannot handle PHIs inside of loops.
4723 return false;
4724 }
4725
4726 // If we won't be able to constant fold this expression even if the operands
4727 // are constants, bail early.
4728 return CanConstantFold(I);
4729}
4730
4731/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4732/// recursing through each instruction operand until reaching a loop header phi.
4733static PHINode *
4734getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Trick28ab7db2011-10-05 05:58:49 +00004735 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004736
4737 // Otherwise, we can evaluate this instruction if all of its operands are
4738 // constant or derived from a PHI node themselves.
4739 PHINode *PHI = 0;
4740 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4741 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4742
4743 if (isa<Constant>(*OpI)) continue;
4744
4745 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4746 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4747
4748 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trickef8a4c22011-10-05 22:06:53 +00004749 if (!P)
4750 // If this operand is already visited, reuse the prior result.
4751 // We may have P != PHI if this is the deepest point at which the
4752 // inconsistent paths meet.
4753 P = PHIMap.lookup(OpInst);
4754 if (!P) {
4755 // Recurse and memoize the results, whether a phi is found or not.
4756 // This recursive call invalidates pointers into PHIMap.
4757 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4758 PHIMap[OpInst] = P;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004759 }
Andrew Trick28ab7db2011-10-05 05:58:49 +00004760 if (P == 0) return 0; // Not evolving from PHI
4761 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4762 PHI = P;
Andrew Trick13d31e02011-10-05 03:25:31 +00004763 }
4764 // This is a expression evolving from a constant PHI!
4765 return PHI;
4766}
4767
Chris Lattner3221ad02004-04-17 22:58:41 +00004768/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4769/// in the loop that V is derived from. We allow arbitrary operations along the
4770/// way, but the operands of an operation must either be constants or a value
4771/// derived from a constant PHI. If this expression does not fit with these
4772/// constraints, return null.
4773static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004774 Instruction *I = dyn_cast<Instruction>(V);
Andrew Trick13d31e02011-10-05 03:25:31 +00004775 if (I == 0 || !canConstantEvolve(I, L)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004776
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004777 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004778 return PN;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004779 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004780
Andrew Trick13d31e02011-10-05 03:25:31 +00004781 // Record non-constant instructions contained by the loop.
Andrew Trick28ab7db2011-10-05 05:58:49 +00004782 DenseMap<Instruction *, PHINode *> PHIMap;
4783 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattner3221ad02004-04-17 22:58:41 +00004784}
4785
4786/// EvaluateExpression - Given an expression that passes the
4787/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4788/// in the loop has the value PHIVal. If we can't fold this expression for some
4789/// reason, return null.
Andrew Trick13d31e02011-10-05 03:25:31 +00004790static Constant *EvaluateExpression(Value *V, const Loop *L,
4791 DenseMap<Instruction *, Constant *> &Vals,
Chad Rosier00737bd2011-12-01 21:29:16 +00004792 const TargetData *TD,
4793 const TargetLibraryInfo *TLI) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004794 // Convenient constant check, but redundant for recursive calls.
Reid Spencere8404342004-07-18 00:18:30 +00004795 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewycky614fef62011-10-22 19:58:20 +00004796 Instruction *I = dyn_cast<Instruction>(V);
4797 if (!I) return 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004798
Andrew Trick13d31e02011-10-05 03:25:31 +00004799 if (Constant *C = Vals.lookup(I)) return C;
4800
Nick Lewycky614fef62011-10-22 19:58:20 +00004801 // An instruction inside the loop depends on a value outside the loop that we
4802 // weren't given a mapping for, or a value such as a call inside the loop.
4803 if (!canConstantEvolve(I, L)) return 0;
4804
4805 // An unmapped PHI can be due to a branch or another loop inside this loop,
4806 // or due to this not being the initial iteration through a loop where we
4807 // couldn't compute the evolution of this particular PHI last time.
4808 if (isa<PHINode>(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004809
Dan Gohman9d4588f2010-06-22 13:15:46 +00004810 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004811
4812 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004813 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4814 if (!Operand) {
Nick Lewycky4c7f1ca2011-10-14 09:38:46 +00004815 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4816 if (!Operands[i]) return 0;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004817 continue;
4818 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004819 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
Andrew Trick28ab7db2011-10-05 05:58:49 +00004820 Vals[Operand] = C;
4821 if (!C) return 0;
4822 Operands[i] = C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004823 }
4824
Nick Lewycky614fef62011-10-22 19:58:20 +00004825 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004826 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chad Rosieraab8e282011-12-02 01:26:24 +00004827 Operands[1], TD, TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00004828 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4829 if (!LI->isVolatile())
4830 return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4831 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004832 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4833 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004834}
4835
4836/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4837/// in the header of its containing loop, we know the loop executes a
4838/// constant number of times, and the PHI node is just a recurrence
4839/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004840Constant *
4841ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004842 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004843 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004844 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004845 ConstantEvolutionLoopExitValue.find(PN);
4846 if (I != ConstantEvolutionLoopExitValue.end())
4847 return I->second;
4848
Dan Gohmane0567812010-04-08 23:03:40 +00004849 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004850 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4851
4852 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4853
Andrew Trick13d31e02011-10-05 03:25:31 +00004854 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewycky614fef62011-10-22 19:58:20 +00004855 BasicBlock *Header = L->getHeader();
4856 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick13d31e02011-10-05 03:25:31 +00004857
Chris Lattner3221ad02004-04-17 22:58:41 +00004858 // Since the loop is canonicalized, the PHI node must have two entries. One
4859 // entry must be a constant (coming in from outside of the loop), and the
4860 // second must be derived from the same PHI.
4861 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Nick Lewycky614fef62011-10-22 19:58:20 +00004862 PHINode *PHI = 0;
4863 for (BasicBlock::iterator I = Header->begin();
4864 (PHI = dyn_cast<PHINode>(I)); ++I) {
4865 Constant *StartCST =
4866 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4867 if (StartCST == 0) continue;
4868 CurrentIterVals[PHI] = StartCST;
4869 }
4870 if (!CurrentIterVals.count(PN))
4871 return RetVal = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004872
4873 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattner3221ad02004-04-17 22:58:41 +00004874
4875 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004876 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004877 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004878
Dan Gohman46bdfb02009-02-24 18:55:53 +00004879 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004880 unsigned IterationNum = 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004881 for (; ; ++IterationNum) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004882 if (IterationNum == NumIterations)
Andrew Trick13d31e02011-10-05 03:25:31 +00004883 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattner3221ad02004-04-17 22:58:41 +00004884
Nick Lewycky614fef62011-10-22 19:58:20 +00004885 // Compute the value of the PHIs for the next iteration.
Andrew Trick13d31e02011-10-05 03:25:31 +00004886 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewycky614fef62011-10-22 19:58:20 +00004887 DenseMap<Instruction *, Constant *> NextIterVals;
Chad Rosier00737bd2011-12-01 21:29:16 +00004888 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4889 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004890 if (NextPHI == 0)
4891 return 0; // Couldn't evaluate!
Andrew Trick13d31e02011-10-05 03:25:31 +00004892 NextIterVals[PN] = NextPHI;
Nick Lewycky614fef62011-10-22 19:58:20 +00004893
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004894 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4895
Nick Lewycky614fef62011-10-22 19:58:20 +00004896 // Also evaluate the other PHI nodes. However, we don't get to stop if we
4897 // cease to be able to evaluate one of them or if they stop evolving,
4898 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004899 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewycky614fef62011-10-22 19:58:20 +00004900 for (DenseMap<Instruction *, Constant *>::const_iterator
4901 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4902 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky5bef0eb2011-10-24 05:51:01 +00004903 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004904 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4905 }
4906 // We use two distinct loops because EvaluateExpression may invalidate any
4907 // iterators into CurrentIterVals.
4908 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4909 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4910 PHINode *PHI = I->first;
Nick Lewycky614fef62011-10-22 19:58:20 +00004911 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004912 if (!NextPHI) { // Not already computed.
4913 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004914 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004915 }
4916 if (NextPHI != I->second)
4917 StoppedEvolving = false;
Nick Lewycky614fef62011-10-22 19:58:20 +00004918 }
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004919
4920 // If all entries in CurrentIterVals == NextIterVals then we can stop
4921 // iterating, the loop can't continue to change.
4922 if (StoppedEvolving)
4923 return RetVal = CurrentIterVals[PN];
4924
Andrew Trick13d31e02011-10-05 03:25:31 +00004925 CurrentIterVals.swap(NextIterVals);
Chris Lattner3221ad02004-04-17 22:58:41 +00004926 }
4927}
4928
Andrew Trick5116ff62011-07-26 17:19:55 +00004929/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004930/// constant number of times (the condition evolves only from constants),
4931/// try to evaluate a few iterations of the loop until we get the exit
4932/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004933/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewycky614fef62011-10-22 19:58:20 +00004934const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4935 Value *Cond,
4936 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004937 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004938 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004939
Dan Gohmanb92654d2010-06-19 14:17:24 +00004940 // If the loop is canonicalized, the PHI will have exactly two entries.
4941 // That's the only form we support here.
4942 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4943
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004944 DenseMap<Instruction *, Constant *> CurrentIterVals;
4945 BasicBlock *Header = L->getHeader();
4946 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4947
Dan Gohmanb92654d2010-06-19 14:17:24 +00004948 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004949 // second must be derived from the same PHI.
4950 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004951 PHINode *PHI = 0;
4952 for (BasicBlock::iterator I = Header->begin();
4953 (PHI = dyn_cast<PHINode>(I)); ++I) {
4954 Constant *StartCST =
4955 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4956 if (StartCST == 0) continue;
4957 CurrentIterVals[PHI] = StartCST;
4958 }
4959 if (!CurrentIterVals.count(PN))
4960 return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004961
4962 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4963 // the loop symbolically to determine when the condition gets a value of
4964 // "ExitWhen".
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004965
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004966 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004967 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004968 ConstantInt *CondVal =
Chad Rosier00737bd2011-12-01 21:29:16 +00004969 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
4970 TD, TLI));
Chris Lattner3221ad02004-04-17 22:58:41 +00004971
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004972 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004973 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004974
Reid Spencere8019bb2007-03-01 07:25:48 +00004975 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004976 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004977 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004978 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004979
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004980 // Update all the PHI nodes for the next iteration.
4981 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004982
4983 // Create a list of which PHIs we need to compute. We want to do this before
4984 // calling EvaluateExpression on them because that may invalidate iterators
4985 // into CurrentIterVals.
4986 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004987 for (DenseMap<Instruction *, Constant *>::const_iterator
4988 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4989 PHINode *PHI = dyn_cast<PHINode>(I->first);
4990 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004991 PHIsToCompute.push_back(PHI);
4992 }
4993 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
4994 E = PHIsToCompute.end(); I != E; ++I) {
4995 PHINode *PHI = *I;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004996 Constant *&NextPHI = NextIterVals[PHI];
4997 if (NextPHI) continue; // Already computed!
4998
4999 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00005000 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00005001 }
5002 CurrentIterVals.swap(NextIterVals);
Chris Lattner7980fb92004-04-17 18:36:24 +00005003 }
5004
5005 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00005006 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005007}
5008
Dan Gohmane7125f42009-09-03 15:00:26 +00005009/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00005010/// at the specified scope in the program. The L value specifies a loop
5011/// nest to evaluate the expression at, where null is the top-level or a
5012/// specified loop is immediately inside of the loop.
5013///
5014/// This method can be used to compute the exit value for a variable defined
5015/// in a loop by querying what the value will hold in the parent loop.
5016///
Dan Gohmand594e6f2009-05-24 23:25:42 +00005017/// In the case that a relevant loop exit value cannot be computed, the
5018/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005019const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00005020 // Check to see if we've folded this expression at this loop before.
5021 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
5022 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
5023 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
5024 if (!Pair.second)
5025 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00005026
Dan Gohman42214892009-08-31 21:15:23 +00005027 // Otherwise compute it.
5028 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00005029 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00005030 return C;
5031}
5032
Nick Lewycky614fef62011-10-22 19:58:20 +00005033/// This builds up a Constant using the ConstantExpr interface. That way, we
5034/// will return Constants for objects which aren't represented by a
5035/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5036/// Returns NULL if the SCEV isn't representable as a Constant.
5037static Constant *BuildConstantFromSCEV(const SCEV *V) {
5038 switch (V->getSCEVType()) {
5039 default: // TODO: smax, umax.
5040 case scCouldNotCompute:
5041 case scAddRecExpr:
5042 break;
5043 case scConstant:
5044 return cast<SCEVConstant>(V)->getValue();
5045 case scUnknown:
5046 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5047 case scSignExtend: {
5048 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5049 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5050 return ConstantExpr::getSExt(CastOp, SS->getType());
5051 break;
5052 }
5053 case scZeroExtend: {
5054 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5055 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5056 return ConstantExpr::getZExt(CastOp, SZ->getType());
5057 break;
5058 }
5059 case scTruncate: {
5060 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5061 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5062 return ConstantExpr::getTrunc(CastOp, ST->getType());
5063 break;
5064 }
5065 case scAddExpr: {
5066 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5067 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5068 if (C->getType()->isPointerTy())
5069 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5070 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5071 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5072 if (!C2) return 0;
5073
5074 // First pointer!
5075 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5076 std::swap(C, C2);
5077 // The offsets have been converted to bytes. We can add bytes to an
5078 // i8* by GEP with the byte count in the first index.
5079 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5080 }
5081
5082 // Don't bother trying to sum two pointers. We probably can't
5083 // statically compute a load that results from it anyway.
5084 if (C2->getType()->isPointerTy())
5085 return 0;
5086
5087 if (C->getType()->isPointerTy()) {
5088 if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5089 C2 = ConstantExpr::getIntegerCast(
5090 C2, Type::getInt32Ty(C->getContext()), true);
5091 C = ConstantExpr::getGetElementPtr(C, C2);
5092 } else
5093 C = ConstantExpr::getAdd(C, C2);
5094 }
5095 return C;
5096 }
5097 break;
5098 }
5099 case scMulExpr: {
5100 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5101 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5102 // Don't bother with pointers at all.
5103 if (C->getType()->isPointerTy()) return 0;
5104 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5105 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5106 if (!C2 || C2->getType()->isPointerTy()) return 0;
5107 C = ConstantExpr::getMul(C, C2);
5108 }
5109 return C;
5110 }
5111 break;
5112 }
5113 case scUDivExpr: {
5114 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5115 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5116 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5117 if (LHS->getType() == RHS->getType())
5118 return ConstantExpr::getUDiv(LHS, RHS);
5119 break;
5120 }
5121 }
5122 return 0;
5123}
5124
Dan Gohman42214892009-08-31 21:15:23 +00005125const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005126 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005127
Nick Lewycky3e630762008-02-20 06:48:22 +00005128 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00005129 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00005130 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005131 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005132 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00005133 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5134 if (PHINode *PN = dyn_cast<PHINode>(I))
5135 if (PN->getParent() == LI->getHeader()) {
5136 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00005137 // to see if the loop that contains it has a known backedge-taken
5138 // count. If so, we may be able to force computation of the exit
5139 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005140 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00005141 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00005142 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005143 // Okay, we know how many times the containing loop executes. If
5144 // this is a constant evolving PHI node, get the final value at
5145 // the specified iteration number.
5146 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00005147 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00005148 LI);
Dan Gohman09987962009-06-29 21:31:18 +00005149 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00005150 }
5151 }
5152
Reid Spencer09906f32006-12-04 21:33:23 +00005153 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00005154 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00005155 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00005156 // result. This is particularly useful for computing loop exit values.
5157 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00005158 SmallVector<Constant *, 4> Operands;
5159 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00005160 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5161 Value *Op = I->getOperand(i);
5162 if (Constant *C = dyn_cast<Constant>(Op)) {
5163 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00005164 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00005165 }
Dan Gohman11046452010-06-29 23:43:06 +00005166
5167 // If any of the operands is non-constant and if they are
5168 // non-integer and non-pointer, don't even try to analyze them
5169 // with scev techniques.
5170 if (!isSCEVable(Op->getType()))
5171 return V;
5172
5173 const SCEV *OrigV = getSCEV(Op);
5174 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5175 MadeImprovement |= OrigV != OpV;
5176
Nick Lewycky614fef62011-10-22 19:58:20 +00005177 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohman11046452010-06-29 23:43:06 +00005178 if (!C) return V;
5179 if (C->getType() != Op->getType())
5180 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5181 Op->getType(),
5182 false),
5183 C, Op->getType());
5184 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00005185 }
Dan Gohman64a845e2009-06-24 04:48:43 +00005186
Dan Gohman11046452010-06-29 23:43:06 +00005187 // Check to see if getSCEVAtScope actually made an improvement.
5188 if (MadeImprovement) {
5189 Constant *C = 0;
5190 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5191 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Chad Rosieraab8e282011-12-02 01:26:24 +00005192 Operands[0], Operands[1], TD,
5193 TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00005194 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5195 if (!LI->isVolatile())
5196 C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5197 } else
Dan Gohman11046452010-06-29 23:43:06 +00005198 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Chad Rosier00737bd2011-12-01 21:29:16 +00005199 Operands, TD, TLI);
Dan Gohman11046452010-06-29 23:43:06 +00005200 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00005201 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00005202 }
Chris Lattner3221ad02004-04-17 22:58:41 +00005203 }
5204 }
5205
5206 // This is some other type of SCEVUnknown, just return it.
5207 return V;
5208 }
5209
Dan Gohman622ed672009-05-04 22:02:23 +00005210 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005211 // Avoid performing the look-up in the common case where the specified
5212 // expression has no loop-variant portions.
5213 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005214 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005215 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005216 // Okay, at least one of these operands is loop variant but might be
5217 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00005218 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5219 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00005220 NewOps.push_back(OpAtScope);
5221
5222 for (++i; i != e; ++i) {
5223 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005224 NewOps.push_back(OpAtScope);
5225 }
5226 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005227 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005228 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005229 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005230 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005231 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00005232 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005233 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00005234 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005235 }
5236 }
5237 // If we got here, all operands are loop invariant.
5238 return Comm;
5239 }
5240
Dan Gohman622ed672009-05-04 22:02:23 +00005241 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005242 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5243 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00005244 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5245 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005246 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00005247 }
5248
5249 // If this is a loop recurrence for a loop that does not contain L, then we
5250 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00005251 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00005252 // First, attempt to evaluate each operand.
5253 // Avoid performing the look-up in the common case where the specified
5254 // expression has no loop-variant portions.
5255 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5256 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5257 if (OpAtScope == AddRec->getOperand(i))
5258 continue;
5259
5260 // Okay, at least one of these operands is loop variant but might be
5261 // foldable. Build a new instance of the folded commutative expression.
5262 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5263 AddRec->op_begin()+i);
5264 NewOps.push_back(OpAtScope);
5265 for (++i; i != e; ++i)
5266 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5267
Andrew Trick3f95c882011-04-27 01:21:25 +00005268 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00005269 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00005270 AddRec->getNoWrapFlags(SCEV::FlagNW));
5271 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00005272 // The addrec may be folded to a nonrecurrence, for example, if the
5273 // induction variable is multiplied by zero after constant folding. Go
5274 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00005275 if (!AddRec)
5276 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00005277 break;
5278 }
5279
5280 // If the scope is outside the addrec's loop, evaluate it by using the
5281 // loop exit value of the addrec.
5282 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005283 // To evaluate this recurrence, we need to know how many times the AddRec
5284 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005285 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00005286 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005287
Eli Friedmanb42a6262008-08-04 23:49:06 +00005288 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005289 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005290 }
Dan Gohman11046452010-06-29 23:43:06 +00005291
Dan Gohmand594e6f2009-05-24 23:25:42 +00005292 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00005293 }
5294
Dan Gohman622ed672009-05-04 22:02:23 +00005295 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005296 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005297 if (Op == Cast->getOperand())
5298 return Cast; // must be loop invariant
5299 return getZeroExtendExpr(Op, Cast->getType());
5300 }
5301
Dan Gohman622ed672009-05-04 22:02:23 +00005302 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005303 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005304 if (Op == Cast->getOperand())
5305 return Cast; // must be loop invariant
5306 return getSignExtendExpr(Op, Cast->getType());
5307 }
5308
Dan Gohman622ed672009-05-04 22:02:23 +00005309 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005310 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005311 if (Op == Cast->getOperand())
5312 return Cast; // must be loop invariant
5313 return getTruncateExpr(Op, Cast->getType());
5314 }
5315
Torok Edwinc23197a2009-07-14 16:55:14 +00005316 llvm_unreachable("Unknown SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005317}
5318
Dan Gohman66a7e852009-05-08 20:38:54 +00005319/// getSCEVAtScope - This is a convenience function which does
5320/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00005321const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005322 return getSCEVAtScope(getSCEV(V), L);
5323}
5324
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005325/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5326/// following equation:
5327///
5328/// A * X = B (mod N)
5329///
5330/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5331/// A and B isn't important.
5332///
5333/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005334static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005335 ScalarEvolution &SE) {
5336 uint32_t BW = A.getBitWidth();
5337 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5338 assert(A != 0 && "A must be non-zero.");
5339
5340 // 1. D = gcd(A, N)
5341 //
5342 // The gcd of A and N may have only one prime factor: 2. The number of
5343 // trailing zeros in A is its multiplicity
5344 uint32_t Mult2 = A.countTrailingZeros();
5345 // D = 2^Mult2
5346
5347 // 2. Check if B is divisible by D.
5348 //
5349 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5350 // is not less than multiplicity of this prime factor for D.
5351 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005352 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005353
5354 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5355 // modulo (N / D).
5356 //
5357 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5358 // bit width during computations.
5359 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5360 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005361 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005362 APInt I = AD.multiplicativeInverse(Mod);
5363
5364 // 4. Compute the minimum unsigned root of the equation:
5365 // I * (B / D) mod (N / D)
5366 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5367
5368 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5369 // bits.
5370 return SE.getConstant(Result.trunc(BW));
5371}
Chris Lattner53e677a2004-04-02 20:23:17 +00005372
5373/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5374/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5375/// might be the same) or two SCEVCouldNotCompute objects.
5376///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005377static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005378SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005379 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005380 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5381 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5382 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005383
Chris Lattner53e677a2004-04-02 20:23:17 +00005384 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005385 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005386 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005387 return std::make_pair(CNC, CNC);
5388 }
5389
Reid Spencere8019bb2007-03-01 07:25:48 +00005390 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005391 const APInt &L = LC->getValue()->getValue();
5392 const APInt &M = MC->getValue()->getValue();
5393 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005394 APInt Two(BitWidth, 2);
5395 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005396
Dan Gohman64a845e2009-06-24 04:48:43 +00005397 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005398 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005399 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005400 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5401 // The B coefficient is M-N/2
5402 APInt B(M);
5403 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005404
Reid Spencere8019bb2007-03-01 07:25:48 +00005405 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005406 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005407
Reid Spencere8019bb2007-03-01 07:25:48 +00005408 // Compute the B^2-4ac term.
5409 APInt SqrtTerm(B);
5410 SqrtTerm *= B;
5411 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005412
Reid Spencere8019bb2007-03-01 07:25:48 +00005413 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5414 // integer value or else APInt::sqrt() will assert.
5415 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005416
Dan Gohman64a845e2009-06-24 04:48:43 +00005417 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005418 // The divisions must be performed as signed divisions.
5419 APInt NegB(-B);
Nick Lewycky1cbae182011-10-03 07:10:45 +00005420 APInt TwoA(A << 1);
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005421 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005422 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005423 return std::make_pair(CNC, CNC);
5424 }
5425
Owen Andersone922c022009-07-22 00:24:57 +00005426 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005427
5428 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005429 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005430 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005431 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005432
Dan Gohman64a845e2009-06-24 04:48:43 +00005433 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005434 SE.getConstant(Solution2));
Nick Lewycky1cbae182011-10-03 07:10:45 +00005435 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005436}
5437
5438/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005439/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005440///
5441/// This is only used for loops with a "x != y" exit test. The exit condition is
5442/// now expressed as a single expression, V = x-y. So the exit test is
5443/// effectively V != 0. We know and take advantage of the fact that this
5444/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005445ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005446ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005447 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005448 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005449 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005450 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005451 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005452 }
5453
Dan Gohman35738ac2009-05-04 22:30:44 +00005454 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005455 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005456 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005457
Chris Lattner7975e3e2011-01-09 22:39:48 +00005458 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5459 // the quadratic equation to solve it.
5460 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5461 std::pair<const SCEV *,const SCEV *> Roots =
5462 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005463 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5464 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005465 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005466#if 0
David Greene25e0e872009-12-23 22:18:14 +00005467 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005468 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005469#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005470 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005471 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005472 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5473 R1->getValue(),
5474 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005475 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005476 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005477
Chris Lattner53e677a2004-04-02 20:23:17 +00005478 // We can only use this value if the chrec ends up with an exact zero
5479 // value at this index. When solving for "X*X != 5", for example, we
5480 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005481 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005482 if (Val->isZero())
5483 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005484 }
5485 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005486 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005487 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005488
Chris Lattner7975e3e2011-01-09 22:39:48 +00005489 // Otherwise we can only handle this if it is affine.
5490 if (!AddRec->isAffine())
5491 return getCouldNotCompute();
5492
5493 // If this is an affine expression, the execution count of this branch is
5494 // the minimum unsigned root of the following equation:
5495 //
5496 // Start + Step*N = 0 (mod 2^BW)
5497 //
5498 // equivalent to:
5499 //
5500 // Step*N = -Start (mod 2^BW)
5501 //
5502 // where BW is the common bit width of Start and Step.
5503
5504 // Get the initial value for the loop.
5505 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5506 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5507
5508 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005509 //
5510 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5511 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5512 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5513 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005514 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5515 if (StepC == 0)
5516 return getCouldNotCompute();
5517
Andrew Trick3228cc22011-03-14 16:50:06 +00005518 // For positive steps (counting up until unsigned overflow):
5519 // N = -Start/Step (as unsigned)
5520 // For negative steps (counting down to zero):
5521 // N = Start/-Step
5522 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005523 bool CountDown = StepC->getValue()->getValue().isNegative();
5524 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005525
5526 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005527 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5528 // N = Distance (as unsigned)
Nick Lewycky1cbae182011-10-03 07:10:45 +00005529 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5530 ConstantRange CR = getUnsignedRange(Start);
5531 const SCEV *MaxBECount;
5532 if (!CountDown && CR.getUnsignedMin().isMinValue())
5533 // When counting up, the worst starting value is 1, not 0.
5534 MaxBECount = CR.getUnsignedMax().isMinValue()
5535 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5536 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5537 else
5538 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5539 : -CR.getUnsignedMin());
5540 return ExitLimit(Distance, MaxBECount);
5541 }
Andrew Trick635f7182011-03-09 17:23:39 +00005542
Andrew Trickdcfd4042011-03-14 17:28:02 +00005543 // If the recurrence is known not to wraparound, unsigned divide computes the
5544 // back edge count. We know that the value will either become zero (and thus
5545 // the loop terminates), that the loop will terminate through some other exit
5546 // condition first, or that the loop has undefined behavior. This means
5547 // we can't "miss" the exit value, even with nonunit stride.
5548 //
5549 // FIXME: Prove that loops always exhibits *acceptable* undefined
5550 // behavior. Loops must exhibit defined behavior until a wrapped value is
5551 // actually used. So the trip count computed by udiv could be smaller than the
5552 // number of well-defined iterations.
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005553 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
Andrew Trickdcfd4042011-03-14 17:28:02 +00005554 // FIXME: We really want an "isexact" bit for udiv.
5555 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005556 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005557 // Then, try to solve the above equation provided that Start is constant.
5558 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5559 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5560 -StartC->getValue()->getValue(),
5561 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005562 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005563}
5564
5565/// HowFarToNonZero - Return the number of times a backedge checking the
5566/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005567/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005568ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005569ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005570 // Loops that look like: while (X == 0) are very strange indeed. We don't
5571 // handle them yet except for the trivial case. This could be expanded in the
5572 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005573
Chris Lattner53e677a2004-04-02 20:23:17 +00005574 // If the value is a constant, check to see if it is known to be non-zero
5575 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005576 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005577 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005578 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005579 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005580 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005581
Chris Lattner53e677a2004-04-02 20:23:17 +00005582 // We could implement others, but I really doubt anyone writes loops like
5583 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005584 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005585}
5586
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005587/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5588/// (which may not be an immediate predecessor) which has exactly one
5589/// successor from which BB is reachable, or null if no such block is
5590/// found.
5591///
Dan Gohman005752b2010-04-15 16:19:08 +00005592std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005593ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005594 // If the block has a unique predecessor, then there is no path from the
5595 // predecessor to the block that does not go through the direct edge
5596 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005597 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005598 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005599
5600 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005601 // If the header has a unique predecessor outside the loop, it must be
5602 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005603 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005604 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005605
Dan Gohman005752b2010-04-15 16:19:08 +00005606 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005607}
5608
Dan Gohman763bad12009-06-20 00:35:32 +00005609/// HasSameValue - SCEV structural equivalence is usually sufficient for
5610/// testing whether two expressions are equal, however for the purposes of
5611/// looking for a condition guarding a loop, it can be useful to be a little
5612/// more general, since a front-end may have replicated the controlling
5613/// expression.
5614///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005615static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005616 // Quick check to see if they are the same SCEV.
5617 if (A == B) return true;
5618
5619 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5620 // two different instructions with the same value. Check for this case.
5621 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5622 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5623 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5624 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005625 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005626 return true;
5627
5628 // Otherwise assume they may have a different value.
5629 return false;
5630}
5631
Dan Gohmane9796502010-04-24 01:28:42 +00005632/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5633/// predicate Pred. Return true iff any changes were made.
5634///
5635bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5636 const SCEV *&LHS, const SCEV *&RHS) {
5637 bool Changed = false;
5638
5639 // Canonicalize a constant to the right side.
5640 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5641 // Check for both operands constant.
5642 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5643 if (ConstantExpr::getICmp(Pred,
5644 LHSC->getValue(),
5645 RHSC->getValue())->isNullValue())
5646 goto trivially_false;
5647 else
5648 goto trivially_true;
5649 }
5650 // Otherwise swap the operands to put the constant on the right.
5651 std::swap(LHS, RHS);
5652 Pred = ICmpInst::getSwappedPredicate(Pred);
5653 Changed = true;
5654 }
5655
5656 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005657 // addrec's loop, put the addrec on the left. Also make a dominance check,
5658 // as both operands could be addrecs loop-invariant in each other's loop.
5659 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5660 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005661 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005662 std::swap(LHS, RHS);
5663 Pred = ICmpInst::getSwappedPredicate(Pred);
5664 Changed = true;
5665 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005666 }
Dan Gohmane9796502010-04-24 01:28:42 +00005667
5668 // If there's a constant operand, canonicalize comparisons with boundary
5669 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5670 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5671 const APInt &RA = RC->getValue()->getValue();
5672 switch (Pred) {
5673 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5674 case ICmpInst::ICMP_EQ:
5675 case ICmpInst::ICMP_NE:
5676 break;
5677 case ICmpInst::ICMP_UGE:
5678 if ((RA - 1).isMinValue()) {
5679 Pred = ICmpInst::ICMP_NE;
5680 RHS = getConstant(RA - 1);
5681 Changed = true;
5682 break;
5683 }
5684 if (RA.isMaxValue()) {
5685 Pred = ICmpInst::ICMP_EQ;
5686 Changed = true;
5687 break;
5688 }
5689 if (RA.isMinValue()) goto trivially_true;
5690
5691 Pred = ICmpInst::ICMP_UGT;
5692 RHS = getConstant(RA - 1);
5693 Changed = true;
5694 break;
5695 case ICmpInst::ICMP_ULE:
5696 if ((RA + 1).isMaxValue()) {
5697 Pred = ICmpInst::ICMP_NE;
5698 RHS = getConstant(RA + 1);
5699 Changed = true;
5700 break;
5701 }
5702 if (RA.isMinValue()) {
5703 Pred = ICmpInst::ICMP_EQ;
5704 Changed = true;
5705 break;
5706 }
5707 if (RA.isMaxValue()) goto trivially_true;
5708
5709 Pred = ICmpInst::ICMP_ULT;
5710 RHS = getConstant(RA + 1);
5711 Changed = true;
5712 break;
5713 case ICmpInst::ICMP_SGE:
5714 if ((RA - 1).isMinSignedValue()) {
5715 Pred = ICmpInst::ICMP_NE;
5716 RHS = getConstant(RA - 1);
5717 Changed = true;
5718 break;
5719 }
5720 if (RA.isMaxSignedValue()) {
5721 Pred = ICmpInst::ICMP_EQ;
5722 Changed = true;
5723 break;
5724 }
5725 if (RA.isMinSignedValue()) goto trivially_true;
5726
5727 Pred = ICmpInst::ICMP_SGT;
5728 RHS = getConstant(RA - 1);
5729 Changed = true;
5730 break;
5731 case ICmpInst::ICMP_SLE:
5732 if ((RA + 1).isMaxSignedValue()) {
5733 Pred = ICmpInst::ICMP_NE;
5734 RHS = getConstant(RA + 1);
5735 Changed = true;
5736 break;
5737 }
5738 if (RA.isMinSignedValue()) {
5739 Pred = ICmpInst::ICMP_EQ;
5740 Changed = true;
5741 break;
5742 }
5743 if (RA.isMaxSignedValue()) goto trivially_true;
5744
5745 Pred = ICmpInst::ICMP_SLT;
5746 RHS = getConstant(RA + 1);
5747 Changed = true;
5748 break;
5749 case ICmpInst::ICMP_UGT:
5750 if (RA.isMinValue()) {
5751 Pred = ICmpInst::ICMP_NE;
5752 Changed = true;
5753 break;
5754 }
5755 if ((RA + 1).isMaxValue()) {
5756 Pred = ICmpInst::ICMP_EQ;
5757 RHS = getConstant(RA + 1);
5758 Changed = true;
5759 break;
5760 }
5761 if (RA.isMaxValue()) goto trivially_false;
5762 break;
5763 case ICmpInst::ICMP_ULT:
5764 if (RA.isMaxValue()) {
5765 Pred = ICmpInst::ICMP_NE;
5766 Changed = true;
5767 break;
5768 }
5769 if ((RA - 1).isMinValue()) {
5770 Pred = ICmpInst::ICMP_EQ;
5771 RHS = getConstant(RA - 1);
5772 Changed = true;
5773 break;
5774 }
5775 if (RA.isMinValue()) goto trivially_false;
5776 break;
5777 case ICmpInst::ICMP_SGT:
5778 if (RA.isMinSignedValue()) {
5779 Pred = ICmpInst::ICMP_NE;
5780 Changed = true;
5781 break;
5782 }
5783 if ((RA + 1).isMaxSignedValue()) {
5784 Pred = ICmpInst::ICMP_EQ;
5785 RHS = getConstant(RA + 1);
5786 Changed = true;
5787 break;
5788 }
5789 if (RA.isMaxSignedValue()) goto trivially_false;
5790 break;
5791 case ICmpInst::ICMP_SLT:
5792 if (RA.isMaxSignedValue()) {
5793 Pred = ICmpInst::ICMP_NE;
5794 Changed = true;
5795 break;
5796 }
5797 if ((RA - 1).isMinSignedValue()) {
5798 Pred = ICmpInst::ICMP_EQ;
5799 RHS = getConstant(RA - 1);
5800 Changed = true;
5801 break;
5802 }
5803 if (RA.isMinSignedValue()) goto trivially_false;
5804 break;
5805 }
5806 }
5807
5808 // Check for obvious equality.
5809 if (HasSameValue(LHS, RHS)) {
5810 if (ICmpInst::isTrueWhenEqual(Pred))
5811 goto trivially_true;
5812 if (ICmpInst::isFalseWhenEqual(Pred))
5813 goto trivially_false;
5814 }
5815
Dan Gohman03557dc2010-05-03 16:35:17 +00005816 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5817 // adding or subtracting 1 from one of the operands.
5818 switch (Pred) {
5819 case ICmpInst::ICMP_SLE:
5820 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5821 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005822 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005823 Pred = ICmpInst::ICMP_SLT;
5824 Changed = true;
5825 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005826 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005827 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005828 Pred = ICmpInst::ICMP_SLT;
5829 Changed = true;
5830 }
5831 break;
5832 case ICmpInst::ICMP_SGE:
5833 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005834 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005835 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005836 Pred = ICmpInst::ICMP_SGT;
5837 Changed = true;
5838 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5839 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005840 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005841 Pred = ICmpInst::ICMP_SGT;
5842 Changed = true;
5843 }
5844 break;
5845 case ICmpInst::ICMP_ULE:
5846 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005847 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005848 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005849 Pred = ICmpInst::ICMP_ULT;
5850 Changed = true;
5851 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005852 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005853 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005854 Pred = ICmpInst::ICMP_ULT;
5855 Changed = true;
5856 }
5857 break;
5858 case ICmpInst::ICMP_UGE:
5859 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005860 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005861 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005862 Pred = ICmpInst::ICMP_UGT;
5863 Changed = true;
5864 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005865 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005866 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005867 Pred = ICmpInst::ICMP_UGT;
5868 Changed = true;
5869 }
5870 break;
5871 default:
5872 break;
5873 }
5874
Dan Gohmane9796502010-04-24 01:28:42 +00005875 // TODO: More simplifications are possible here.
5876
5877 return Changed;
5878
5879trivially_true:
5880 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005881 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005882 Pred = ICmpInst::ICMP_EQ;
5883 return true;
5884
5885trivially_false:
5886 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005887 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005888 Pred = ICmpInst::ICMP_NE;
5889 return true;
5890}
5891
Dan Gohman85b05a22009-07-13 21:35:55 +00005892bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5893 return getSignedRange(S).getSignedMax().isNegative();
5894}
5895
5896bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5897 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5898}
5899
5900bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5901 return !getSignedRange(S).getSignedMin().isNegative();
5902}
5903
5904bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5905 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5906}
5907
5908bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5909 return isKnownNegative(S) || isKnownPositive(S);
5910}
5911
5912bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5913 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005914 // Canonicalize the inputs first.
5915 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5916
Dan Gohman53c66ea2010-04-11 22:16:48 +00005917 // If LHS or RHS is an addrec, check to see if the condition is true in
5918 // every iteration of the loop.
5919 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5920 if (isLoopEntryGuardedByCond(
5921 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5922 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005923 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005924 return true;
5925 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5926 if (isLoopEntryGuardedByCond(
5927 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5928 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005929 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005930 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005931
Dan Gohman53c66ea2010-04-11 22:16:48 +00005932 // Otherwise see what can be done with known constant ranges.
5933 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5934}
5935
5936bool
5937ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5938 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005939 if (HasSameValue(LHS, RHS))
5940 return ICmpInst::isTrueWhenEqual(Pred);
5941
Dan Gohman53c66ea2010-04-11 22:16:48 +00005942 // This code is split out from isKnownPredicate because it is called from
5943 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005944 switch (Pred) {
5945 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005946 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005947 case ICmpInst::ICMP_SGT:
5948 Pred = ICmpInst::ICMP_SLT;
5949 std::swap(LHS, RHS);
5950 case ICmpInst::ICMP_SLT: {
5951 ConstantRange LHSRange = getSignedRange(LHS);
5952 ConstantRange RHSRange = getSignedRange(RHS);
5953 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5954 return true;
5955 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5956 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005957 break;
5958 }
5959 case ICmpInst::ICMP_SGE:
5960 Pred = ICmpInst::ICMP_SLE;
5961 std::swap(LHS, RHS);
5962 case ICmpInst::ICMP_SLE: {
5963 ConstantRange LHSRange = getSignedRange(LHS);
5964 ConstantRange RHSRange = getSignedRange(RHS);
5965 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5966 return true;
5967 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5968 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005969 break;
5970 }
5971 case ICmpInst::ICMP_UGT:
5972 Pred = ICmpInst::ICMP_ULT;
5973 std::swap(LHS, RHS);
5974 case ICmpInst::ICMP_ULT: {
5975 ConstantRange LHSRange = getUnsignedRange(LHS);
5976 ConstantRange RHSRange = getUnsignedRange(RHS);
5977 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5978 return true;
5979 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5980 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005981 break;
5982 }
5983 case ICmpInst::ICMP_UGE:
5984 Pred = ICmpInst::ICMP_ULE;
5985 std::swap(LHS, RHS);
5986 case ICmpInst::ICMP_ULE: {
5987 ConstantRange LHSRange = getUnsignedRange(LHS);
5988 ConstantRange RHSRange = getUnsignedRange(RHS);
5989 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5990 return true;
5991 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5992 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005993 break;
5994 }
5995 case ICmpInst::ICMP_NE: {
5996 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5997 return true;
5998 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5999 return true;
6000
6001 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6002 if (isKnownNonZero(Diff))
6003 return true;
6004 break;
6005 }
6006 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00006007 // The check at the top of the function catches the case where
6008 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00006009 break;
6010 }
6011 return false;
6012}
6013
6014/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6015/// protected by a conditional between LHS and RHS. This is used to
6016/// to eliminate casts.
6017bool
6018ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6019 ICmpInst::Predicate Pred,
6020 const SCEV *LHS, const SCEV *RHS) {
6021 // Interpret a null as meaning no loop, where there is obviously no guard
6022 // (interprocedural conditions notwithstanding).
6023 if (!L) return true;
6024
6025 BasicBlock *Latch = L->getLoopLatch();
6026 if (!Latch)
6027 return false;
6028
6029 BranchInst *LoopContinuePredicate =
6030 dyn_cast<BranchInst>(Latch->getTerminator());
6031 if (!LoopContinuePredicate ||
6032 LoopContinuePredicate->isUnconditional())
6033 return false;
6034
Dan Gohmanaf08a362010-08-10 23:46:30 +00006035 return isImpliedCond(Pred, LHS, RHS,
6036 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00006037 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00006038}
6039
Dan Gohman3948d0b2010-04-11 19:27:13 +00006040/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00006041/// by a conditional between LHS and RHS. This is used to help avoid max
6042/// expressions in loop trip counts, and to eliminate casts.
6043bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00006044ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6045 ICmpInst::Predicate Pred,
6046 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00006047 // Interpret a null as meaning no loop, where there is obviously no guard
6048 // (interprocedural conditions notwithstanding).
6049 if (!L) return false;
6050
Dan Gohman859b4822009-05-18 15:36:09 +00006051 // Starting at the loop predecessor, climb up the predecessor chain, as long
6052 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00006053 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00006054 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00006055 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00006056 Pair.first;
6057 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00006058
6059 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00006060 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00006061 if (!LoopEntryPredicate ||
6062 LoopEntryPredicate->isUnconditional())
6063 continue;
6064
Dan Gohmanaf08a362010-08-10 23:46:30 +00006065 if (isImpliedCond(Pred, LHS, RHS,
6066 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00006067 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00006068 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00006069 }
6070
Dan Gohman38372182008-08-12 20:17:31 +00006071 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00006072}
6073
Dan Gohman0f4b2852009-07-21 23:03:19 +00006074/// isImpliedCond - Test whether the condition described by Pred, LHS,
6075/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006076bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006077 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00006078 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006079 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006080 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006081 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006082 if (BO->getOpcode() == Instruction::And) {
6083 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006084 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6085 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006086 } else if (BO->getOpcode() == Instruction::Or) {
6087 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006088 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6089 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006090 }
6091 }
6092
Dan Gohmanaf08a362010-08-10 23:46:30 +00006093 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006094 if (!ICI) return false;
6095
Dan Gohman85b05a22009-07-13 21:35:55 +00006096 // Bail if the ICmp's operands' types are wider than the needed type
6097 // before attempting to call getSCEV on them. This avoids infinite
6098 // recursion, since the analysis of widening casts can require loop
6099 // exit condition information for overflow checking, which would
6100 // lead back here.
6101 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00006102 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00006103 return false;
6104
Dan Gohman0f4b2852009-07-21 23:03:19 +00006105 // Now that we found a conditional branch that dominates the loop, check to
6106 // see if it is the comparison we are looking for.
6107 ICmpInst::Predicate FoundPred;
6108 if (Inverse)
6109 FoundPred = ICI->getInversePredicate();
6110 else
6111 FoundPred = ICI->getPredicate();
6112
6113 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6114 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00006115
6116 // Balance the types. The case where FoundLHS' type is wider than
6117 // LHS' type is checked for above.
6118 if (getTypeSizeInBits(LHS->getType()) >
6119 getTypeSizeInBits(FoundLHS->getType())) {
6120 if (CmpInst::isSigned(Pred)) {
6121 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6122 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6123 } else {
6124 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6125 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6126 }
6127 }
6128
Dan Gohman0f4b2852009-07-21 23:03:19 +00006129 // Canonicalize the query to match the way instcombine will have
6130 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00006131 if (SimplifyICmpOperands(Pred, LHS, RHS))
6132 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006133 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00006134 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6135 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006136 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00006137
6138 // Check to see if we can make the LHS or RHS match.
6139 if (LHS == FoundRHS || RHS == FoundLHS) {
6140 if (isa<SCEVConstant>(RHS)) {
6141 std::swap(FoundLHS, FoundRHS);
6142 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6143 } else {
6144 std::swap(LHS, RHS);
6145 Pred = ICmpInst::getSwappedPredicate(Pred);
6146 }
6147 }
6148
6149 // Check whether the found predicate is the same as the desired predicate.
6150 if (FoundPred == Pred)
6151 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6152
6153 // Check whether swapping the found predicate makes it the same as the
6154 // desired predicate.
6155 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6156 if (isa<SCEVConstant>(RHS))
6157 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6158 else
6159 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6160 RHS, LHS, FoundLHS, FoundRHS);
6161 }
6162
6163 // Check whether the actual condition is beyond sufficient.
6164 if (FoundPred == ICmpInst::ICMP_EQ)
6165 if (ICmpInst::isTrueWhenEqual(Pred))
6166 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6167 return true;
6168 if (Pred == ICmpInst::ICMP_NE)
6169 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6170 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6171 return true;
6172
6173 // Otherwise assume the worst.
6174 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006175}
6176
Dan Gohman0f4b2852009-07-21 23:03:19 +00006177/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006178/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006179/// and FoundRHS is true.
6180bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6181 const SCEV *LHS, const SCEV *RHS,
6182 const SCEV *FoundLHS,
6183 const SCEV *FoundRHS) {
6184 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6185 FoundLHS, FoundRHS) ||
6186 // ~x < ~y --> x > y
6187 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6188 getNotSCEV(FoundRHS),
6189 getNotSCEV(FoundLHS));
6190}
6191
6192/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006193/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006194/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00006195bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00006196ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6197 const SCEV *LHS, const SCEV *RHS,
6198 const SCEV *FoundLHS,
6199 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006200 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00006201 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6202 case ICmpInst::ICMP_EQ:
6203 case ICmpInst::ICMP_NE:
6204 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6205 return true;
6206 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00006207 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00006208 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006209 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6210 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006211 return true;
6212 break;
6213 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006214 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006215 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6216 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006217 return true;
6218 break;
6219 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00006220 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006221 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6222 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006223 return true;
6224 break;
6225 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006226 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006227 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6228 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006229 return true;
6230 break;
6231 }
6232
6233 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006234}
6235
Dan Gohman51f53b72009-06-21 23:46:38 +00006236/// getBECount - Subtract the end and start values and divide by the step,
6237/// rounding up, to get the number of times the backedge is executed. Return
6238/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006239const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00006240 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00006241 const SCEV *Step,
6242 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00006243 assert(!isKnownNegative(Step) &&
6244 "This code doesn't handle negative strides yet!");
6245
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006246 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00006247
6248 // When Start == End, we have an exact BECount == 0. Short-circuit this case
6249 // here because SCEV may not be able to determine that the unsigned division
6250 // after rounding is zero.
6251 if (Start == End)
6252 return getConstant(Ty, 0);
6253
Dan Gohmandeff6212010-05-03 22:09:21 +00006254 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00006255 const SCEV *Diff = getMinusSCEV(End, Start);
6256 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00006257
6258 // Add an adjustment to the difference between End and Start so that
6259 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006260 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00006261
Dan Gohman1f96e672009-09-17 18:05:20 +00006262 if (!NoWrap) {
6263 // Check Add for unsigned overflow.
6264 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006265 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00006266 getTypeSizeInBits(Ty) + 1);
6267 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6268 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6269 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6270 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6271 return getCouldNotCompute();
6272 }
Dan Gohman51f53b72009-06-21 23:46:38 +00006273
6274 return getUDivExpr(Add, Step);
6275}
6276
Chris Lattnerdb25de42005-08-15 23:33:51 +00006277/// HowManyLessThans - Return the number of times a backedge containing the
6278/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00006279/// CouldNotCompute.
Andrew Trick5116ff62011-07-26 17:19:55 +00006280ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00006281ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6282 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00006283 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00006284 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006285
Dan Gohman35738ac2009-05-04 22:30:44 +00006286 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006287 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00006288 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006289
Dan Gohman1f96e672009-09-17 18:05:20 +00006290 // Check to see if we have a flag which makes analysis easy.
Nick Lewycky89d093d2011-11-09 07:11:37 +00006291 bool NoWrap = isSigned ?
6292 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
6293 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
Dan Gohman1f96e672009-09-17 18:05:20 +00006294
Chris Lattnerdb25de42005-08-15 23:33:51 +00006295 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006296 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00006297 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00006298
Dan Gohman52fddd32010-01-26 04:40:18 +00006299 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00006300 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00006301 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006302 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00006303 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00006304 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00006305 // value and past the maximum value for its type in a single step.
6306 // Note that it's not sufficient to check NoWrap here, because even
6307 // though the value after a wrap is undefined, it's not undefined
6308 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00006309 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00006310 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00006311 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00006312 if (isSigned) {
6313 APInt Max = APInt::getSignedMaxValue(BitWidth);
6314 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6315 .slt(getSignedRange(RHS).getSignedMax()))
6316 return getCouldNotCompute();
6317 } else {
6318 APInt Max = APInt::getMaxValue(BitWidth);
6319 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6320 .ult(getUnsignedRange(RHS).getUnsignedMax()))
6321 return getCouldNotCompute();
6322 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006323 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00006324 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00006325 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006326
Dan Gohmana1af7572009-04-30 20:47:05 +00006327 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6328 // m. So, we count the number of iterations in which {n,+,s} < m is true.
6329 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00006330 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00006331
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006332 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00006333 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006334
Dan Gohmana1af7572009-04-30 20:47:05 +00006335 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006336 const SCEV *MinStart = getConstant(isSigned ?
6337 getSignedRange(Start).getSignedMin() :
6338 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006339
Dan Gohmana1af7572009-04-30 20:47:05 +00006340 // If we know that the condition is true in order to enter the loop,
6341 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006342 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6343 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006344 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006345 if (!isLoopEntryGuardedByCond(L,
6346 isSigned ? ICmpInst::ICMP_SLT :
6347 ICmpInst::ICMP_ULT,
6348 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006349 End = isSigned ? getSMaxExpr(RHS, Start)
6350 : getUMaxExpr(RHS, Start);
6351
6352 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006353 const SCEV *MaxEnd = getConstant(isSigned ?
6354 getSignedRange(End).getSignedMax() :
6355 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006356
Dan Gohman52fddd32010-01-26 04:40:18 +00006357 // If MaxEnd is within a step of the maximum integer value in its type,
6358 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006359 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006360 // compute the correct value.
6361 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006362 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006363 MaxEnd = isSigned ?
6364 getSMinExpr(MaxEnd,
6365 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6366 StepMinusOne)) :
6367 getUMinExpr(MaxEnd,
6368 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6369 StepMinusOne));
6370
Dan Gohmana1af7572009-04-30 20:47:05 +00006371 // Finally, we subtract these two values and divide, rounding up, to get
6372 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006373 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006374
6375 // The maximum backedge count is similar, except using the minimum start
6376 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006377 // If we already have an exact constant BECount, use it instead.
6378 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6379 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6380
6381 // If the stride is nonconstant, and NoWrap == true, then
6382 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6383 // exact BECount and invalid MaxBECount, which should be avoided to catch
6384 // more optimization opportunities.
6385 if (isa<SCEVCouldNotCompute>(MaxBECount))
6386 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006387
Andrew Trick5116ff62011-07-26 17:19:55 +00006388 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006389 }
6390
Dan Gohman1c343752009-06-27 21:21:31 +00006391 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006392}
6393
Chris Lattner53e677a2004-04-02 20:23:17 +00006394/// getNumIterationsInRange - Return the number of iterations of this loop that
6395/// produce values in the specified constant range. Another way of looking at
6396/// this is that it returns the first iteration number where the value is not in
6397/// the condition, thus computing the exit count. If the iteration count can't
6398/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006399const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006400 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006401 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006402 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006403
6404 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006405 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006406 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006407 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006408 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006409 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006410 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006411 if (const SCEVAddRecExpr *ShiftedAddRec =
6412 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006413 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006414 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006415 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006416 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006417 }
6418
6419 // The only time we can solve this is when we have all constant indices.
6420 // Otherwise, we cannot determine the overflow conditions.
6421 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6422 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006423 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006424
6425
6426 // Okay at this point we know that all elements of the chrec are constants and
6427 // that the start element is zero.
6428
6429 // First check to see if the range contains zero. If not, the first
6430 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006431 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006432 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006433 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006434
Chris Lattner53e677a2004-04-02 20:23:17 +00006435 if (isAffine()) {
6436 // If this is an affine expression then we have this situation:
6437 // Solve {0,+,A} in Range === Ax in Range
6438
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006439 // We know that zero is in the range. If A is positive then we know that
6440 // the upper value of the range must be the first possible exit value.
6441 // If A is negative then the lower of the range is the last possible loop
6442 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006443 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006444 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6445 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006446
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006447 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006448 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006449 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006450
6451 // Evaluate at the exit value. If we really did fall out of the valid
6452 // range, then we computed our trip count, otherwise wrap around or other
6453 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006454 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006455 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006456 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006457
6458 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006459 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006460 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006461 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006462 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006463 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006464 } else if (isQuadratic()) {
6465 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6466 // quadratic equation to solve it. To do this, we must frame our problem in
6467 // terms of figuring out when zero is crossed, instead of when
6468 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006469 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006470 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006471 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6472 // getNoWrapFlags(FlagNW)
6473 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006474
6475 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006476 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006477 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006478 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6479 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006480 if (R1) {
6481 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006482 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006483 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006484 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006485 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006486 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006487
Chris Lattner53e677a2004-04-02 20:23:17 +00006488 // Make sure the root is not off by one. The returned iteration should
6489 // not be in the range, but the previous one should be. When solving
6490 // for "X*X < 5", for example, we should not return a root of 2.
6491 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006492 R1->getValue(),
6493 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006494 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006495 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006496 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006497 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006498
Dan Gohman246b2562007-10-22 18:31:58 +00006499 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006500 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006501 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006502 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006503 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006504
Chris Lattner53e677a2004-04-02 20:23:17 +00006505 // If R1 was not in the range, then it is a good return value. Make
6506 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006507 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006508 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006509 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006510 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006511 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006512 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006513 }
6514 }
6515 }
6516
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006517 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006518}
6519
6520
6521
6522//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006523// SCEVCallbackVH Class Implementation
6524//===----------------------------------------------------------------------===//
6525
Dan Gohman1959b752009-05-19 19:22:47 +00006526void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006527 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006528 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6529 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006530 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006531 // this now dangles!
6532}
6533
Dan Gohman81f91212010-07-28 01:09:07 +00006534void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006535 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006536
Dan Gohman35738ac2009-05-04 22:30:44 +00006537 // Forget all the expressions associated with users of the old value,
6538 // so that future queries will recompute the expressions using the new
6539 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006540 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006541 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006542 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006543 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6544 UI != UE; ++UI)
6545 Worklist.push_back(*UI);
6546 while (!Worklist.empty()) {
6547 User *U = Worklist.pop_back_val();
6548 // Deleting the Old value will cause this to dangle. Postpone
6549 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006550 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006551 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006552 if (!Visited.insert(U))
6553 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006554 if (PHINode *PN = dyn_cast<PHINode>(U))
6555 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006556 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006557 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6558 UI != UE; ++UI)
6559 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006560 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006561 // Delete the Old value.
6562 if (PHINode *PN = dyn_cast<PHINode>(Old))
6563 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006564 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006565 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006566}
6567
Dan Gohman1959b752009-05-19 19:22:47 +00006568ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006569 : CallbackVH(V), SE(se) {}
6570
6571//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006572// ScalarEvolution Class Implementation
6573//===----------------------------------------------------------------------===//
6574
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006575ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006576 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006577 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006578}
6579
Chris Lattner53e677a2004-04-02 20:23:17 +00006580bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006581 this->F = &F;
6582 LI = &getAnalysis<LoopInfo>();
6583 TD = getAnalysisIfAvailable<TargetData>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006584 TLI = &getAnalysis<TargetLibraryInfo>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006585 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006586 return false;
6587}
6588
6589void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006590 // Iterate through all the SCEVUnknown instances and call their
6591 // destructors, so that they release their references to their values.
6592 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6593 U->~SCEVUnknown();
6594 FirstUnknown = 0;
6595
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006596 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006597
6598 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6599 // that a loop had multiple computable exits.
6600 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6601 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6602 I != E; ++I) {
6603 I->second.clear();
6604 }
6605
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006606 BackedgeTakenCounts.clear();
6607 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006608 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006609 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006610 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006611 UnsignedRanges.clear();
6612 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006613 UniqueSCEVs.clear();
6614 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006615}
6616
6617void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6618 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006619 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006620 AU.addRequiredTransitive<DominatorTree>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006621 AU.addRequired<TargetLibraryInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006622}
6623
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006624bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006625 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006626}
6627
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006628static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006629 const Loop *L) {
6630 // Print all inner loops first
6631 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6632 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006633
Dan Gohman30733292010-01-09 18:17:45 +00006634 OS << "Loop ";
6635 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6636 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006637
Dan Gohman5d984912009-12-18 01:14:11 +00006638 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006639 L->getExitBlocks(ExitBlocks);
6640 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006641 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006642
Dan Gohman46bdfb02009-02-24 18:55:53 +00006643 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6644 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006645 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006646 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006647 }
6648
Dan Gohman30733292010-01-09 18:17:45 +00006649 OS << "\n"
6650 "Loop ";
6651 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6652 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006653
6654 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6655 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6656 } else {
6657 OS << "Unpredictable max backedge-taken count. ";
6658 }
6659
6660 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006661}
6662
Dan Gohman5d984912009-12-18 01:14:11 +00006663void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006664 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006665 // out SCEV values of all instructions that are interesting. Doing
6666 // this potentially causes it to create new SCEV objects though,
6667 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006668 // observable from outside the class though, so casting away the
6669 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006670 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006671
Dan Gohman30733292010-01-09 18:17:45 +00006672 OS << "Classifying expressions for: ";
6673 WriteAsOperand(OS, F, /*PrintType=*/false);
6674 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006675 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006676 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006677 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006678 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006679 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006680 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006681
Dan Gohman0c689c52009-06-19 17:49:54 +00006682 const Loop *L = LI->getLoopFor((*I).getParent());
6683
Dan Gohman0bba49c2009-07-07 17:06:11 +00006684 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006685 if (AtUse != SV) {
6686 OS << " --> ";
6687 AtUse->print(OS);
6688 }
6689
6690 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006691 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006692 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006693 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006694 OS << "<<Unknown>>";
6695 } else {
6696 OS << *ExitValue;
6697 }
6698 }
6699
Chris Lattner53e677a2004-04-02 20:23:17 +00006700 OS << "\n";
6701 }
6702
Dan Gohman30733292010-01-09 18:17:45 +00006703 OS << "Determining loop execution counts for: ";
6704 WriteAsOperand(OS, F, /*PrintType=*/false);
6705 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006706 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6707 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006708}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006709
Dan Gohman714b5292010-11-17 23:21:44 +00006710ScalarEvolution::LoopDisposition
6711ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6712 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6713 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6714 Values.insert(std::make_pair(L, LoopVariant));
6715 if (!Pair.second)
6716 return Pair.first->second;
6717
6718 LoopDisposition D = computeLoopDisposition(S, L);
6719 return LoopDispositions[S][L] = D;
6720}
6721
6722ScalarEvolution::LoopDisposition
6723ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006724 switch (S->getSCEVType()) {
6725 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006726 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006727 case scTruncate:
6728 case scZeroExtend:
6729 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006730 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006731 case scAddRecExpr: {
6732 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6733
Dan Gohman714b5292010-11-17 23:21:44 +00006734 // If L is the addrec's loop, it's computable.
6735 if (AR->getLoop() == L)
6736 return LoopComputable;
6737
Dan Gohman17ead4f2010-11-17 21:23:15 +00006738 // Add recurrences are never invariant in the function-body (null loop).
6739 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006740 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006741
6742 // This recurrence is variant w.r.t. L if L contains AR's loop.
6743 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006744 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006745
6746 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6747 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006748 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006749
6750 // This recurrence is variant w.r.t. L if any of its operands
6751 // are variant.
6752 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6753 I != E; ++I)
6754 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006755 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006756
6757 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006758 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006759 }
6760 case scAddExpr:
6761 case scMulExpr:
6762 case scUMaxExpr:
6763 case scSMaxExpr: {
6764 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006765 bool HasVarying = false;
6766 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6767 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006768 LoopDisposition D = getLoopDisposition(*I, L);
6769 if (D == LoopVariant)
6770 return LoopVariant;
6771 if (D == LoopComputable)
6772 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006773 }
Dan Gohman714b5292010-11-17 23:21:44 +00006774 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006775 }
6776 case scUDivExpr: {
6777 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006778 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6779 if (LD == LoopVariant)
6780 return LoopVariant;
6781 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6782 if (RD == LoopVariant)
6783 return LoopVariant;
6784 return (LD == LoopInvariant && RD == LoopInvariant) ?
6785 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006786 }
6787 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006788 // All non-instruction values are loop invariant. All instructions are loop
6789 // invariant if they are not contained in the specified loop.
6790 // Instructions are never considered invariant in the function body
6791 // (null loop) because they are defined within the "loop".
6792 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6793 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6794 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006795 case scCouldNotCompute:
6796 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +00006797 default: llvm_unreachable("Unknown SCEV kind!");
Dan Gohman17ead4f2010-11-17 21:23:15 +00006798 }
Dan Gohman714b5292010-11-17 23:21:44 +00006799}
6800
6801bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6802 return getLoopDisposition(S, L) == LoopInvariant;
6803}
6804
6805bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6806 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006807}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006808
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006809ScalarEvolution::BlockDisposition
6810ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6811 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6812 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6813 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6814 if (!Pair.second)
6815 return Pair.first->second;
6816
6817 BlockDisposition D = computeBlockDisposition(S, BB);
6818 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006819}
6820
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006821ScalarEvolution::BlockDisposition
6822ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006823 switch (S->getSCEVType()) {
6824 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006825 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006826 case scTruncate:
6827 case scZeroExtend:
6828 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006829 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006830 case scAddRecExpr: {
6831 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006832 // to test for proper dominance too, because the instruction which
6833 // produces the addrec's value is a PHI, and a PHI effectively properly
6834 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006835 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6836 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006837 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006838 }
6839 // FALL THROUGH into SCEVNAryExpr handling.
6840 case scAddExpr:
6841 case scMulExpr:
6842 case scUMaxExpr:
6843 case scSMaxExpr: {
6844 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006845 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006846 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006847 I != E; ++I) {
6848 BlockDisposition D = getBlockDisposition(*I, BB);
6849 if (D == DoesNotDominateBlock)
6850 return DoesNotDominateBlock;
6851 if (D == DominatesBlock)
6852 Proper = false;
6853 }
6854 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006855 }
6856 case scUDivExpr: {
6857 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006858 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6859 BlockDisposition LD = getBlockDisposition(LHS, BB);
6860 if (LD == DoesNotDominateBlock)
6861 return DoesNotDominateBlock;
6862 BlockDisposition RD = getBlockDisposition(RHS, BB);
6863 if (RD == DoesNotDominateBlock)
6864 return DoesNotDominateBlock;
6865 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6866 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006867 }
6868 case scUnknown:
6869 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006870 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6871 if (I->getParent() == BB)
6872 return DominatesBlock;
6873 if (DT->properlyDominates(I->getParent(), BB))
6874 return ProperlyDominatesBlock;
6875 return DoesNotDominateBlock;
6876 }
6877 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006878 case scCouldNotCompute:
6879 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +00006880 default:
6881 llvm_unreachable("Unknown SCEV kind!");
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006882 }
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006883}
6884
6885bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6886 return getBlockDisposition(S, BB) >= DominatesBlock;
6887}
6888
6889bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6890 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006891}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006892
6893bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6894 switch (S->getSCEVType()) {
6895 case scConstant:
6896 return false;
6897 case scTruncate:
6898 case scZeroExtend:
6899 case scSignExtend: {
6900 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6901 const SCEV *CastOp = Cast->getOperand();
6902 return Op == CastOp || hasOperand(CastOp, Op);
6903 }
6904 case scAddRecExpr:
6905 case scAddExpr:
6906 case scMulExpr:
6907 case scUMaxExpr:
6908 case scSMaxExpr: {
6909 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6910 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6911 I != E; ++I) {
6912 const SCEV *NAryOp = *I;
6913 if (NAryOp == Op || hasOperand(NAryOp, Op))
6914 return true;
6915 }
6916 return false;
6917 }
6918 case scUDivExpr: {
6919 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6920 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6921 return LHS == Op || hasOperand(LHS, Op) ||
6922 RHS == Op || hasOperand(RHS, Op);
6923 }
6924 case scUnknown:
6925 return false;
6926 case scCouldNotCompute:
6927 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +00006928 default:
6929 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman4ce32db2010-11-17 22:27:42 +00006930 }
Dan Gohman4ce32db2010-11-17 22:27:42 +00006931}
Dan Gohman56a75682010-11-17 23:28:48 +00006932
6933void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6934 ValuesAtScopes.erase(S);
6935 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006936 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006937 UnsignedRanges.erase(S);
6938 SignedRanges.erase(S);
6939}