blob: f2d7d8d1680c0ad3c9ec4a784ece99cedf3843c2 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnere7886e42009-01-11 20:53:49 +000025 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000026 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000027 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000028 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000029 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000030 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000031 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000032 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000033 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000034 </ol>
35 </li>
Chris Lattner00950542001-06-06 20:29:01 +000036 <li><a href="#typesystem">Type System</a>
37 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000038 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000039 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000040 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000041 <li><a href="#t_floating">Floating Point Types</a></li>
42 <li><a href="#t_void">Void Type</a></li>
43 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000044 </ol>
45 </li>
Chris Lattner00950542001-06-06 20:29:01 +000046 <li><a href="#t_derived">Derived Types</a>
47 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000048 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000049 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000050 <li><a href="#t_function">Function Type</a></li>
51 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000052 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000053 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000054 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000055 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000056 </ol>
57 </li>
58 </ol>
59 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000060 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000061 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000062 <li><a href="#simpleconstants">Simple Constants</a></li>
63 <li><a href="#aggregateconstants">Aggregate Constants</a></li>
64 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
65 <li><a href="#undefvalues">Undefined Values</a></li>
66 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000067 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000068 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000069 <li><a href="#othervalues">Other Values</a>
70 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000071 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000072 </ol>
73 </li>
Chris Lattner00950542001-06-06 20:29:01 +000074 <li><a href="#instref">Instruction Reference</a>
75 <ol>
76 <li><a href="#terminators">Terminator Instructions</a>
77 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000078 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
79 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000080 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
81 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000082 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000083 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000084 </ol>
85 </li>
Chris Lattner00950542001-06-06 20:29:01 +000086 <li><a href="#binaryops">Binary Operations</a>
87 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000088 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
89 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
90 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000091 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
92 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
93 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000094 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
95 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
96 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000097 </ol>
98 </li>
Chris Lattner00950542001-06-06 20:29:01 +000099 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
100 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000101 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
102 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
103 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000104 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000105 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000106 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000107 </ol>
108 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000109 <li><a href="#vectorops">Vector Operations</a>
110 <ol>
111 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
112 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
113 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000114 </ol>
115 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000116 <li><a href="#aggregateops">Aggregate Operations</a>
117 <ol>
118 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
119 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
120 </ol>
121 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000122 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000123 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000124 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
125 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
126 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000127 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
128 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
129 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000130 </ol>
131 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000132 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000133 <ol>
134 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
135 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
138 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000139 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
140 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
141 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
142 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000143 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
144 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000145 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000146 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000147 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000148 <li><a href="#otherops">Other Operations</a>
149 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000150 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
151 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000152 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
153 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000154 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000155 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000156 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000157 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000158 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000159 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000160 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000161 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000162 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000163 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000164 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
165 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000166 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
167 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
168 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000169 </ol>
170 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000171 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
172 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000173 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
174 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
175 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000176 </ol>
177 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000178 <li><a href="#int_codegen">Code Generator Intrinsics</a>
179 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000180 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
181 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
182 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
183 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
184 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
185 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
186 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000187 </ol>
188 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000189 <li><a href="#int_libc">Standard C Library Intrinsics</a>
190 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000191 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
195 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000196 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000199 </ol>
200 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000201 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000202 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000203 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000204 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
205 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000207 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
208 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000209 </ol>
210 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000211 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000212 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000213 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000214 <ol>
215 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000216 </ol>
217 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000218 <li><a href="#int_atomics">Atomic intrinsics</a>
219 <ol>
220 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
221 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
222 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
223 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
224 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
225 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
226 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
227 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
228 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
229 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
230 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
231 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
232 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
233 </ol>
234 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000235 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000236 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000237 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000238 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000239 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000240 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000241 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000242 '<tt>llvm.trap</tt>' Intrinsic</a></li>
243 <li><a href="#int_stackprotector">
244 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000245 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000246 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000247 </ol>
248 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000249</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000250
251<div class="doc_author">
252 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
253 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000254</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000255
Chris Lattner00950542001-06-06 20:29:01 +0000256<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000257<div class="doc_section"> <a name="abstract">Abstract </a></div>
258<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000259
Misha Brukman9d0919f2003-11-08 01:05:38 +0000260<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000261<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000262LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000263type safety, low-level operations, flexibility, and the capability of
264representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000265representation used throughout all phases of the LLVM compilation
266strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000267</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000268
Chris Lattner00950542001-06-06 20:29:01 +0000269<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000270<div class="doc_section"> <a name="introduction">Introduction</a> </div>
271<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000272
Misha Brukman9d0919f2003-11-08 01:05:38 +0000273<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000274
Chris Lattner261efe92003-11-25 01:02:51 +0000275<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000276different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000277representation (suitable for fast loading by a Just-In-Time compiler),
278and as a human readable assembly language representation. This allows
279LLVM to provide a powerful intermediate representation for efficient
280compiler transformations and analysis, while providing a natural means
281to debug and visualize the transformations. The three different forms
282of LLVM are all equivalent. This document describes the human readable
283representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000284
John Criswellc1f786c2005-05-13 22:25:59 +0000285<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000286while being expressive, typed, and extensible at the same time. It
287aims to be a "universal IR" of sorts, by being at a low enough level
288that high-level ideas may be cleanly mapped to it (similar to how
289microprocessors are "universal IR's", allowing many source languages to
290be mapped to them). By providing type information, LLVM can be used as
291the target of optimizations: for example, through pointer analysis, it
292can be proven that a C automatic variable is never accessed outside of
293the current function... allowing it to be promoted to a simple SSA
294value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000295
Misha Brukman9d0919f2003-11-08 01:05:38 +0000296</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000297
Chris Lattner00950542001-06-06 20:29:01 +0000298<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000299<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000300
Misha Brukman9d0919f2003-11-08 01:05:38 +0000301<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000302
Chris Lattner261efe92003-11-25 01:02:51 +0000303<p>It is important to note that this document describes 'well formed'
304LLVM assembly language. There is a difference between what the parser
305accepts and what is considered 'well formed'. For example, the
306following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000307
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000308<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000309<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000310%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000311</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000312</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000313
Chris Lattner261efe92003-11-25 01:02:51 +0000314<p>...because the definition of <tt>%x</tt> does not dominate all of
315its uses. The LLVM infrastructure provides a verification pass that may
316be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000317automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000318the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000319by the verifier pass indicate bugs in transformation passes or input to
320the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000321</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000322
Chris Lattnercc689392007-10-03 17:34:29 +0000323<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000324
Chris Lattner00950542001-06-06 20:29:01 +0000325<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000326<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000327<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000328
Misha Brukman9d0919f2003-11-08 01:05:38 +0000329<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000330
Reid Spencer2c452282007-08-07 14:34:28 +0000331 <p>LLVM identifiers come in two basic types: global and local. Global
332 identifiers (functions, global variables) begin with the @ character. Local
333 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohman0e451ce2008-10-14 16:51:45 +0000334 there are three different formats for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000335
Chris Lattner00950542001-06-06 20:29:01 +0000336<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000337 <li>Named values are represented as a string of characters with their prefix.
338 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
339 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000340 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar76dea952008-10-14 23:51:43 +0000341 with quotes. Special characters may be escaped using "\xx" where xx is the
342 ASCII code for the character in hexadecimal. In this way, any character can
343 be used in a name value, even quotes themselves.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000344
Reid Spencer2c452282007-08-07 14:34:28 +0000345 <li>Unnamed values are represented as an unsigned numeric value with their
346 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000347
Reid Spencercc16dc32004-12-09 18:02:53 +0000348 <li>Constants, which are described in a <a href="#constants">section about
349 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000350</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000351
Reid Spencer2c452282007-08-07 14:34:28 +0000352<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000353don't need to worry about name clashes with reserved words, and the set of
354reserved words may be expanded in the future without penalty. Additionally,
355unnamed identifiers allow a compiler to quickly come up with a temporary
356variable without having to avoid symbol table conflicts.</p>
357
Chris Lattner261efe92003-11-25 01:02:51 +0000358<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000359languages. There are keywords for different opcodes
360('<tt><a href="#i_add">add</a></tt>',
361 '<tt><a href="#i_bitcast">bitcast</a></tt>',
362 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000363href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000364and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000365none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000366
367<p>Here is an example of LLVM code to multiply the integer variable
368'<tt>%X</tt>' by 8:</p>
369
Misha Brukman9d0919f2003-11-08 01:05:38 +0000370<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000371
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000372<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000373<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000374%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000375</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000376</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000377
Misha Brukman9d0919f2003-11-08 01:05:38 +0000378<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000379
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000380<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000381<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000382%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000383</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000384</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000385
Misha Brukman9d0919f2003-11-08 01:05:38 +0000386<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000387
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000388<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000389<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000390<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
391<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
392%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000393</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000394</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000395
Chris Lattner261efe92003-11-25 01:02:51 +0000396<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
397important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000398
Chris Lattner00950542001-06-06 20:29:01 +0000399<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000400
401 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
402 line.</li>
403
404 <li>Unnamed temporaries are created when the result of a computation is not
405 assigned to a named value.</li>
406
Misha Brukman9d0919f2003-11-08 01:05:38 +0000407 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000408
Misha Brukman9d0919f2003-11-08 01:05:38 +0000409</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000410
John Criswelle4c57cc2005-05-12 16:52:32 +0000411<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000412demonstrating instructions, we will follow an instruction with a comment that
413defines the type and name of value produced. Comments are shown in italic
414text.</p>
415
Misha Brukman9d0919f2003-11-08 01:05:38 +0000416</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000417
418<!-- *********************************************************************** -->
419<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
420<!-- *********************************************************************** -->
421
422<!-- ======================================================================= -->
423<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
424</div>
425
426<div class="doc_text">
427
428<p>LLVM programs are composed of "Module"s, each of which is a
429translation unit of the input programs. Each module consists of
430functions, global variables, and symbol table entries. Modules may be
431combined together with the LLVM linker, which merges function (and
432global variable) definitions, resolves forward declarations, and merges
433symbol table entries. Here is an example of the "hello world" module:</p>
434
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000435<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000436<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000437<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
438 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000439
440<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000441<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000442
443<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000444define i32 @main() { <i>; i32()* </i>
Dan Gohman2a08c532009-01-04 23:44:43 +0000445 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000446 %cast210 = <a
Dan Gohman2a08c532009-01-04 23:44:43 +0000447 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000448
449 <i>; Call puts function to write out the string to stdout...</i>
450 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000451 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000452 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000453 href="#i_ret">ret</a> i32 0<br>}<br>
454</pre>
455</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000456
457<p>This example is made up of a <a href="#globalvars">global variable</a>
458named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
459function, and a <a href="#functionstructure">function definition</a>
460for "<tt>main</tt>".</p>
461
Chris Lattnere5d947b2004-12-09 16:36:40 +0000462<p>In general, a module is made up of a list of global values,
463where both functions and global variables are global values. Global values are
464represented by a pointer to a memory location (in this case, a pointer to an
465array of char, and a pointer to a function), and have one of the following <a
466href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000467
Chris Lattnere5d947b2004-12-09 16:36:40 +0000468</div>
469
470<!-- ======================================================================= -->
471<div class="doc_subsection">
472 <a name="linkage">Linkage Types</a>
473</div>
474
475<div class="doc_text">
476
477<p>
478All Global Variables and Functions have one of the following types of linkage:
479</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000480
481<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000482
Rafael Espindolabb46f522009-01-15 20:18:42 +0000483 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
484
485 <dd>Global values with private linkage are only directly accessible by
486 objects in the current module. In particular, linking code into a module with
487 an private global value may cause the private to be renamed as necessary to
488 avoid collisions. Because the symbol is private to the module, all
489 references can be updated. This doesn't show up in any symbol table in the
490 object file.
491 </dd>
492
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000493 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000494
Duncan Sands81d05c22009-01-16 09:29:46 +0000495 <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
Rafael Espindolabb46f522009-01-15 20:18:42 +0000496 the case of ELF) in the object file. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000497 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000498 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000499
Chris Lattnerfa730212004-12-09 16:11:40 +0000500 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000501
Chris Lattner4887bd82007-01-14 06:51:48 +0000502 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
503 the same name when linkage occurs. This is typically used to implement
504 inline functions, templates, or other code which must be generated in each
505 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
506 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000507 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000508
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000509 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
510
511 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
512 linkage, except that unreferenced <tt>common</tt> globals may not be
513 discarded. This is used for globals that may be emitted in multiple
514 translation units, but that are not guaranteed to be emitted into every
515 translation unit that uses them. One example of this is tentative
516 definitions in C, such as "<tt>int X;</tt>" at global scope.
517 </dd>
518
Chris Lattnerfa730212004-12-09 16:11:40 +0000519 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000520
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000521 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
522 that some targets may choose to emit different assembly sequences for them
523 for target-dependent reasons. This is used for globals that are declared
524 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000525 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000526
Chris Lattnerfa730212004-12-09 16:11:40 +0000527 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000528
529 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
530 pointer to array type. When two global variables with appending linkage are
531 linked together, the two global arrays are appended together. This is the
532 LLVM, typesafe, equivalent of having the system linker append together
533 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000534 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000535
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000536 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000537 <dd>The semantics of this linkage follow the ELF object file model: the
538 symbol is weak until linked, if not linked, the symbol becomes null instead
539 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000540 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000541
Chris Lattnerfa730212004-12-09 16:11:40 +0000542 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000543
544 <dd>If none of the above identifiers are used, the global is externally
545 visible, meaning that it participates in linkage and can be used to resolve
546 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000547 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000548</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000549
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000550 <p>
551 The next two types of linkage are targeted for Microsoft Windows platform
552 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000553 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000554 </p>
555
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000556 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000557 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
558
559 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
560 or variable via a global pointer to a pointer that is set up by the DLL
561 exporting the symbol. On Microsoft Windows targets, the pointer name is
Dan Gohman79564122009-01-12 21:35:55 +0000562 formed by combining <code>__imp_</code> and the function or variable name.
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000563 </dd>
564
565 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
566
567 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
568 pointer to a pointer in a DLL, so that it can be referenced with the
569 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
Dan Gohman79564122009-01-12 21:35:55 +0000570 name is formed by combining <code>__imp_</code> and the function or variable
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000571 name.
572 </dd>
573
Chris Lattnerfa730212004-12-09 16:11:40 +0000574</dl>
575
Dan Gohmanf0032762008-11-24 17:18:39 +0000576<p>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000577variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
578variable and was linked with this one, one of the two would be renamed,
579preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
580external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000581outside of the current module.</p>
582<p>It is illegal for a function <i>declaration</i>
583to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000584or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000585<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000586linkages.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000587</div>
588
589<!-- ======================================================================= -->
590<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000591 <a name="callingconv">Calling Conventions</a>
592</div>
593
594<div class="doc_text">
595
596<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
597and <a href="#i_invoke">invokes</a> can all have an optional calling convention
598specified for the call. The calling convention of any pair of dynamic
599caller/callee must match, or the behavior of the program is undefined. The
600following calling conventions are supported by LLVM, and more may be added in
601the future:</p>
602
603<dl>
604 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
605
606 <dd>This calling convention (the default if no other calling convention is
607 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000608 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000609 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000610 </dd>
611
612 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
613
614 <dd>This calling convention attempts to make calls as fast as possible
615 (e.g. by passing things in registers). This calling convention allows the
616 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000617 without having to conform to an externally specified ABI (Application Binary
618 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000619 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
620 supported. This calling convention does not support varargs and requires the
621 prototype of all callees to exactly match the prototype of the function
622 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000623 </dd>
624
625 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
626
627 <dd>This calling convention attempts to make code in the caller as efficient
628 as possible under the assumption that the call is not commonly executed. As
629 such, these calls often preserve all registers so that the call does not break
630 any live ranges in the caller side. This calling convention does not support
631 varargs and requires the prototype of all callees to exactly match the
632 prototype of the function definition.
633 </dd>
634
Chris Lattnercfe6b372005-05-07 01:46:40 +0000635 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000636
637 <dd>Any calling convention may be specified by number, allowing
638 target-specific calling conventions to be used. Target specific calling
639 conventions start at 64.
640 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000641</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000642
643<p>More calling conventions can be added/defined on an as-needed basis, to
644support pascal conventions or any other well-known target-independent
645convention.</p>
646
647</div>
648
649<!-- ======================================================================= -->
650<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000651 <a name="visibility">Visibility Styles</a>
652</div>
653
654<div class="doc_text">
655
656<p>
657All Global Variables and Functions have one of the following visibility styles:
658</p>
659
660<dl>
661 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
662
Chris Lattnerd3eda892008-08-05 18:29:16 +0000663 <dd>On targets that use the ELF object file format, default visibility means
664 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000665 modules and, in shared libraries, means that the declared entity may be
666 overridden. On Darwin, default visibility means that the declaration is
667 visible to other modules. Default visibility corresponds to "external
668 linkage" in the language.
669 </dd>
670
671 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
672
673 <dd>Two declarations of an object with hidden visibility refer to the same
674 object if they are in the same shared object. Usually, hidden visibility
675 indicates that the symbol will not be placed into the dynamic symbol table,
676 so no other module (executable or shared library) can reference it
677 directly.
678 </dd>
679
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000680 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
681
682 <dd>On ELF, protected visibility indicates that the symbol will be placed in
683 the dynamic symbol table, but that references within the defining module will
684 bind to the local symbol. That is, the symbol cannot be overridden by another
685 module.
686 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000687</dl>
688
689</div>
690
691<!-- ======================================================================= -->
692<div class="doc_subsection">
Chris Lattnere7886e42009-01-11 20:53:49 +0000693 <a name="namedtypes">Named Types</a>
694</div>
695
696<div class="doc_text">
697
698<p>LLVM IR allows you to specify name aliases for certain types. This can make
699it easier to read the IR and make the IR more condensed (particularly when
700recursive types are involved). An example of a name specification is:
701</p>
702
703<div class="doc_code">
704<pre>
705%mytype = type { %mytype*, i32 }
706</pre>
707</div>
708
709<p>You may give a name to any <a href="#typesystem">type</a> except "<a
710href="t_void">void</a>". Type name aliases may be used anywhere a type is
711expected with the syntax "%mytype".</p>
712
713<p>Note that type names are aliases for the structural type that they indicate,
714and that you can therefore specify multiple names for the same type. This often
715leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
716structural typing, the name is not part of the type. When printing out LLVM IR,
717the printer will pick <em>one name</em> to render all types of a particular
718shape. This means that if you have code where two different source types end up
719having the same LLVM type, that the dumper will sometimes print the "wrong" or
720unexpected type. This is an important design point and isn't going to
721change.</p>
722
723</div>
724
725
726<!-- ======================================================================= -->
727<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000728 <a name="globalvars">Global Variables</a>
729</div>
730
731<div class="doc_text">
732
Chris Lattner3689a342005-02-12 19:30:21 +0000733<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000734instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000735an explicit section to be placed in, and may have an optional explicit alignment
736specified. A variable may be defined as "thread_local", which means that it
737will not be shared by threads (each thread will have a separated copy of the
738variable). A variable may be defined as a global "constant," which indicates
739that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000740optimization, allowing the global data to be placed in the read-only section of
741an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000742cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000743
744<p>
745LLVM explicitly allows <em>declarations</em> of global variables to be marked
746constant, even if the final definition of the global is not. This capability
747can be used to enable slightly better optimization of the program, but requires
748the language definition to guarantee that optimizations based on the
749'constantness' are valid for the translation units that do not include the
750definition.
751</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000752
753<p>As SSA values, global variables define pointer values that are in
754scope (i.e. they dominate) all basic blocks in the program. Global
755variables always define a pointer to their "content" type because they
756describe a region of memory, and all memory objects in LLVM are
757accessed through pointers.</p>
758
Christopher Lamb284d9922007-12-11 09:31:00 +0000759<p>A global variable may be declared to reside in a target-specifc numbered
760address space. For targets that support them, address spaces may affect how
761optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000762the variable. The default address space is zero. The address space qualifier
763must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000764
Chris Lattner88f6c462005-11-12 00:45:07 +0000765<p>LLVM allows an explicit section to be specified for globals. If the target
766supports it, it will emit globals to the section specified.</p>
767
Chris Lattner2cbdc452005-11-06 08:02:57 +0000768<p>An explicit alignment may be specified for a global. If not present, or if
769the alignment is set to zero, the alignment of the global is set by the target
770to whatever it feels convenient. If an explicit alignment is specified, the
771global is forced to have at least that much alignment. All alignments must be
772a power of 2.</p>
773
Christopher Lamb284d9922007-12-11 09:31:00 +0000774<p>For example, the following defines a global in a numbered address space with
775an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000776
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000777<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000778<pre>
Dan Gohman398873c2009-01-11 00:40:00 +0000779@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000780</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000781</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000782
Chris Lattnerfa730212004-12-09 16:11:40 +0000783</div>
784
785
786<!-- ======================================================================= -->
787<div class="doc_subsection">
788 <a name="functionstructure">Functions</a>
789</div>
790
791<div class="doc_text">
792
Reid Spencerca86e162006-12-31 07:07:53 +0000793<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
794an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000795<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000796<a href="#callingconv">calling convention</a>, a return type, an optional
797<a href="#paramattrs">parameter attribute</a> for the return type, a function
798name, a (possibly empty) argument list (each with optional
Devang Patelf642f472008-10-06 18:50:38 +0000799<a href="#paramattrs">parameter attributes</a>), optional
800<a href="#fnattrs">function attributes</a>, an optional section,
801an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000802an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000803
804LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
805optional <a href="#linkage">linkage type</a>, an optional
806<a href="#visibility">visibility style</a>, an optional
807<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000808<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000809name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000810<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000811
Chris Lattnerd3eda892008-08-05 18:29:16 +0000812<p>A function definition contains a list of basic blocks, forming the CFG
813(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000814the function. Each basic block may optionally start with a label (giving the
815basic block a symbol table entry), contains a list of instructions, and ends
816with a <a href="#terminators">terminator</a> instruction (such as a branch or
817function return).</p>
818
Chris Lattner4a3c9012007-06-08 16:52:14 +0000819<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000820executed on entrance to the function, and it is not allowed to have predecessor
821basic blocks (i.e. there can not be any branches to the entry block of a
822function). Because the block can have no predecessors, it also cannot have any
823<a href="#i_phi">PHI nodes</a>.</p>
824
Chris Lattner88f6c462005-11-12 00:45:07 +0000825<p>LLVM allows an explicit section to be specified for functions. If the target
826supports it, it will emit functions to the section specified.</p>
827
Chris Lattner2cbdc452005-11-06 08:02:57 +0000828<p>An explicit alignment may be specified for a function. If not present, or if
829the alignment is set to zero, the alignment of the function is set by the target
830to whatever it feels convenient. If an explicit alignment is specified, the
831function is forced to have at least that much alignment. All alignments must be
832a power of 2.</p>
833
Devang Patel307e8ab2008-10-07 17:48:33 +0000834 <h5>Syntax:</h5>
835
836<div class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000837<tt>
838define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
839 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
840 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
841 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
842 [<a href="#gc">gc</a>] { ... }
843</tt>
Devang Patel307e8ab2008-10-07 17:48:33 +0000844</div>
845
Chris Lattnerfa730212004-12-09 16:11:40 +0000846</div>
847
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000848
849<!-- ======================================================================= -->
850<div class="doc_subsection">
851 <a name="aliasstructure">Aliases</a>
852</div>
853<div class="doc_text">
854 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000855 function, global variable, another alias or bitcast of global value). Aliases
856 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000857 optional <a href="#visibility">visibility style</a>.</p>
858
859 <h5>Syntax:</h5>
860
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000861<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000862<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000863@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000864</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000865</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000866
867</div>
868
869
870
Chris Lattner4e9aba72006-01-23 23:23:47 +0000871<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000872<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
873<div class="doc_text">
874 <p>The return type and each parameter of a function type may have a set of
875 <i>parameter attributes</i> associated with them. Parameter attributes are
876 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000877 a function. Parameter attributes are considered to be part of the function,
878 not of the function type, so functions with different parameter attributes
879 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000880
Reid Spencer950e9f82007-01-15 18:27:39 +0000881 <p>Parameter attributes are simple keywords that follow the type specified. If
882 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000883 example:</p>
884
885<div class="doc_code">
886<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000887declare i32 @printf(i8* noalias , ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000888declare i32 @atoi(i8 zeroext)
889declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000890</pre>
891</div>
892
Duncan Sandsdc024672007-11-27 13:23:08 +0000893 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
894 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000895
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000896 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000897 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000898 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000899 <dd>This indicates to the code generator that the parameter or return value
900 should be zero-extended to a 32-bit value by the caller (for a parameter)
901 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000902
Reid Spencer9445e9a2007-07-19 23:13:04 +0000903 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000904 <dd>This indicates to the code generator that the parameter or return value
905 should be sign-extended to a 32-bit value by the caller (for a parameter)
906 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000907
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000908 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000909 <dd>This indicates that this parameter or return value should be treated
910 in a special target-dependent fashion during while emitting code for a
911 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000912 to memory, though some targets use it to distinguish between two different
913 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000914
Duncan Sandsedb05df2008-10-06 08:14:18 +0000915 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000916 <dd>This indicates that the pointer parameter should really be passed by
917 value to the function. The attribute implies that a hidden copy of the
918 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000919 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000920 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sandsedb05df2008-10-06 08:14:18 +0000921 value, but is also valid on pointers to scalars. The copy is considered to
922 belong to the caller not the callee (for example,
923 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelf642f472008-10-06 18:50:38 +0000924 <tt>byval</tt> parameters). This is not a valid attribute for return
925 values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000926
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000927 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000928 <dd>This indicates that the pointer parameter specifies the address of a
929 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000930 This pointer must be guaranteed by the caller to be valid: loads and stores
931 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelf642f472008-10-06 18:50:38 +0000932 be applied to the first parameter. This is not a valid attribute for
933 return values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000934
Zhou Shengfebca342007-06-05 05:28:26 +0000935 <dt><tt>noalias</tt></dt>
Nick Lewycky02ff3082008-11-24 03:41:24 +0000936 <dd>This indicates that the pointer does not alias any global or any other
937 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyb2b32fd2008-11-24 05:00:44 +0000938 case. On a function return value, <tt>noalias</tt> additionally indicates
939 that the pointer does not alias any other pointers visible to the
Nick Lewyckyf23d0d32008-12-19 06:39:12 +0000940 caller. For further details, please see the discussion of the NoAlias
941 response in
942 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
943 analysis</a>.</dd>
944
945 <dt><tt>nocapture</tt></dt>
946 <dd>This indicates that the callee does not make any copies of the pointer
947 that outlive the callee itself. This is not a valid attribute for return
948 values.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000949
Duncan Sands50f19f52007-07-27 19:57:41 +0000950 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000951 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelf642f472008-10-06 18:50:38 +0000952 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
953 attribute for return values.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000954 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000955
Reid Spencerca86e162006-12-31 07:07:53 +0000956</div>
957
958<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000959<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000960 <a name="gc">Garbage Collector Names</a>
961</div>
962
963<div class="doc_text">
964<p>Each function may specify a garbage collector name, which is simply a
965string.</p>
966
967<div class="doc_code"><pre
968>define void @f() gc "name" { ...</pre></div>
969
970<p>The compiler declares the supported values of <i>name</i>. Specifying a
971collector which will cause the compiler to alter its output in order to support
972the named garbage collection algorithm.</p>
973</div>
974
975<!-- ======================================================================= -->
976<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000977 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +0000978</div>
979
980<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000981
982<p>Function attributes are set to communicate additional information about
983 a function. Function attributes are considered to be part of the function,
984 not of the function type, so functions with different parameter attributes
985 can have the same function type.</p>
986
987 <p>Function attributes are simple keywords that follow the type specified. If
988 multiple attributes are needed, they are space separated. For
989 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +0000990
991<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000992<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000993define void @f() noinline { ... }
994define void @f() alwaysinline { ... }
995define void @f() alwaysinline optsize { ... }
996define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000997</pre>
Devang Patelf8b94812008-09-04 23:05:13 +0000998</div>
999
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001000<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001001<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001002<dd>This attribute indicates that the inliner should attempt to inline this
1003function into callers whenever possible, ignoring any active inlining size
1004threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001005
Devang Patel2c9c3e72008-09-26 23:51:19 +00001006<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001007<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner94b5f7d2008-10-05 17:14:59 +00001008in any situation. This attribute may not be used together with the
Chris Lattner88d4b592008-10-04 18:23:17 +00001009<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001010
Devang Patel2c9c3e72008-09-26 23:51:19 +00001011<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +00001012<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +00001013make choices that keep the code size of this function low, and otherwise do
1014optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001015
Devang Patel2c9c3e72008-09-26 23:51:19 +00001016<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001017<dd>This function attribute indicates that the function never returns normally.
1018This produces undefined behavior at runtime if the function ever does
1019dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001020
1021<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001022<dd>This function attribute indicates that the function never returns with an
1023unwind or exceptional control flow. If the function does unwind, its runtime
1024behavior is undefined.</dd>
1025
1026<dt><tt>readnone</tt></dt>
Duncan Sandsedb05df2008-10-06 08:14:18 +00001027<dd>This attribute indicates that the function computes its result (or the
1028exception it throws) based strictly on its arguments, without dereferencing any
1029pointer arguments or otherwise accessing any mutable state (e.g. memory, control
1030registers, etc) visible to caller functions. It does not write through any
1031pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
1032never changes any state visible to callers.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001033
Duncan Sandsedb05df2008-10-06 08:14:18 +00001034<dt><tt><a name="readonly">readonly</a></tt></dt>
1035<dd>This attribute indicates that the function does not write through any
1036pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
1037or otherwise modify any state (e.g. memory, control registers, etc) visible to
1038caller functions. It may dereference pointer arguments and read state that may
1039be set in the caller. A readonly function always returns the same value (or
1040throws the same exception) when called with the same set of arguments and global
1041state.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +00001042
1043<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001044<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendling31359ba2008-11-13 01:02:51 +00001045protector. It is in the form of a "canary"&mdash;a random value placed on the
1046stack before the local variables that's checked upon return from the function to
1047see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001048needs stack protectors or not.
Bill Wendling31359ba2008-11-13 01:02:51 +00001049
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001050<p>If a function that has an <tt>ssp</tt> attribute is inlined into a function
1051that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
1052have an <tt>ssp</tt> attribute.</p></dd>
1053
1054<dt><tt>sspreq</tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001055<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendling31359ba2008-11-13 01:02:51 +00001056stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001057function attribute.
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001058
1059<p>If a function that has an <tt>sspreq</tt> attribute is inlined into a
1060function that doesn't have an <tt>sspreq</tt> attribute or which has
1061an <tt>ssp</tt> attribute, then the resulting function will have
1062an <tt>sspreq</tt> attribute.</p></dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001063</dl>
1064
Devang Patelf8b94812008-09-04 23:05:13 +00001065</div>
1066
1067<!-- ======================================================================= -->
1068<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001069 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001070</div>
1071
1072<div class="doc_text">
1073<p>
1074Modules may contain "module-level inline asm" blocks, which corresponds to the
1075GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1076LLVM and treated as a single unit, but may be separated in the .ll file if
1077desired. The syntax is very simple:
1078</p>
1079
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001080<div class="doc_code">
1081<pre>
1082module asm "inline asm code goes here"
1083module asm "more can go here"
1084</pre>
1085</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001086
1087<p>The strings can contain any character by escaping non-printable characters.
1088 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1089 for the number.
1090</p>
1091
1092<p>
1093 The inline asm code is simply printed to the machine code .s file when
1094 assembly code is generated.
1095</p>
1096</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001097
Reid Spencerde151942007-02-19 23:54:10 +00001098<!-- ======================================================================= -->
1099<div class="doc_subsection">
1100 <a name="datalayout">Data Layout</a>
1101</div>
1102
1103<div class="doc_text">
1104<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001105data is to be laid out in memory. The syntax for the data layout is simply:</p>
1106<pre> target datalayout = "<i>layout specification</i>"</pre>
1107<p>The <i>layout specification</i> consists of a list of specifications
1108separated by the minus sign character ('-'). Each specification starts with a
1109letter and may include other information after the letter to define some
1110aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001111<dl>
1112 <dt><tt>E</tt></dt>
1113 <dd>Specifies that the target lays out data in big-endian form. That is, the
1114 bits with the most significance have the lowest address location.</dd>
1115 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001116 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001117 the bits with the least significance have the lowest address location.</dd>
1118 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1119 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1120 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1121 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1122 too.</dd>
1123 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1124 <dd>This specifies the alignment for an integer type of a given bit
1125 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1126 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1127 <dd>This specifies the alignment for a vector type of a given bit
1128 <i>size</i>.</dd>
1129 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1130 <dd>This specifies the alignment for a floating point type of a given bit
1131 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1132 (double).</dd>
1133 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1134 <dd>This specifies the alignment for an aggregate type of a given bit
1135 <i>size</i>.</dd>
1136</dl>
1137<p>When constructing the data layout for a given target, LLVM starts with a
1138default set of specifications which are then (possibly) overriden by the
1139specifications in the <tt>datalayout</tt> keyword. The default specifications
1140are given in this list:</p>
1141<ul>
1142 <li><tt>E</tt> - big endian</li>
1143 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1144 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1145 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1146 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1147 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001148 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001149 alignment of 64-bits</li>
1150 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1151 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1152 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1153 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1154 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1155</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001156<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohman0e451ce2008-10-14 16:51:45 +00001157following rules:</p>
Reid Spencerde151942007-02-19 23:54:10 +00001158<ol>
1159 <li>If the type sought is an exact match for one of the specifications, that
1160 specification is used.</li>
1161 <li>If no match is found, and the type sought is an integer type, then the
1162 smallest integer type that is larger than the bitwidth of the sought type is
1163 used. If none of the specifications are larger than the bitwidth then the the
1164 largest integer type is used. For example, given the default specifications
1165 above, the i7 type will use the alignment of i8 (next largest) while both
1166 i65 and i256 will use the alignment of i64 (largest specified).</li>
1167 <li>If no match is found, and the type sought is a vector type, then the
1168 largest vector type that is smaller than the sought vector type will be used
Dan Gohman0e451ce2008-10-14 16:51:45 +00001169 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1170 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001171</ol>
1172</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001173
Chris Lattner00950542001-06-06 20:29:01 +00001174<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001175<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1176<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001177
Misha Brukman9d0919f2003-11-08 01:05:38 +00001178<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001179
Misha Brukman9d0919f2003-11-08 01:05:38 +00001180<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001181intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001182optimizations to be performed on the intermediate representation directly,
1183without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001184extra analyses on the side before the transformation. A strong type
1185system makes it easier to read the generated code and enables novel
1186analyses and transformations that are not feasible to perform on normal
1187three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001188
1189</div>
1190
Chris Lattner00950542001-06-06 20:29:01 +00001191<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001192<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001193Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001194<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001195<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001196classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001197
1198<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001199 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001200 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001201 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001202 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001203 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001204 </tr>
1205 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001206 <td><a href="#t_floating">floating point</a></td>
1207 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001208 </tr>
1209 <tr>
1210 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001211 <td><a href="#t_integer">integer</a>,
1212 <a href="#t_floating">floating point</a>,
1213 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001214 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001215 <a href="#t_struct">structure</a>,
1216 <a href="#t_array">array</a>,
Dan Gohmanade5faa2008-05-23 22:50:26 +00001217 <a href="#t_label">label</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001218 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001219 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001220 <tr>
1221 <td><a href="#t_primitive">primitive</a></td>
1222 <td><a href="#t_label">label</a>,
1223 <a href="#t_void">void</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001224 <a href="#t_floating">floating point</a>.</td>
1225 </tr>
1226 <tr>
1227 <td><a href="#t_derived">derived</a></td>
1228 <td><a href="#t_integer">integer</a>,
1229 <a href="#t_array">array</a>,
1230 <a href="#t_function">function</a>,
1231 <a href="#t_pointer">pointer</a>,
1232 <a href="#t_struct">structure</a>,
1233 <a href="#t_pstruct">packed structure</a>,
1234 <a href="#t_vector">vector</a>,
1235 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001236 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001237 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001238 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001239</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001240
Chris Lattner261efe92003-11-25 01:02:51 +00001241<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1242most important. Values of these types are the only ones which can be
1243produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001244instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001245</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001246
Chris Lattner00950542001-06-06 20:29:01 +00001247<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001248<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001249
Chris Lattner4f69f462008-01-04 04:32:38 +00001250<div class="doc_text">
1251<p>The primitive types are the fundamental building blocks of the LLVM
1252system.</p>
1253
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001254</div>
1255
Chris Lattner4f69f462008-01-04 04:32:38 +00001256<!-- _______________________________________________________________________ -->
1257<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1258
1259<div class="doc_text">
1260 <table>
1261 <tbody>
1262 <tr><th>Type</th><th>Description</th></tr>
1263 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1264 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1265 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1266 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1267 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1268 </tbody>
1269 </table>
1270</div>
1271
1272<!-- _______________________________________________________________________ -->
1273<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1274
1275<div class="doc_text">
1276<h5>Overview:</h5>
1277<p>The void type does not represent any value and has no size.</p>
1278
1279<h5>Syntax:</h5>
1280
1281<pre>
1282 void
1283</pre>
1284</div>
1285
1286<!-- _______________________________________________________________________ -->
1287<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1288
1289<div class="doc_text">
1290<h5>Overview:</h5>
1291<p>The label type represents code labels.</p>
1292
1293<h5>Syntax:</h5>
1294
1295<pre>
1296 label
1297</pre>
1298</div>
1299
1300
1301<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001302<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001303
Misha Brukman9d0919f2003-11-08 01:05:38 +00001304<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001305
Chris Lattner261efe92003-11-25 01:02:51 +00001306<p>The real power in LLVM comes from the derived types in the system.
1307This is what allows a programmer to represent arrays, functions,
1308pointers, and other useful types. Note that these derived types may be
1309recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001310
Misha Brukman9d0919f2003-11-08 01:05:38 +00001311</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001312
Chris Lattner00950542001-06-06 20:29:01 +00001313<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001314<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1315
1316<div class="doc_text">
1317
1318<h5>Overview:</h5>
1319<p>The integer type is a very simple derived type that simply specifies an
1320arbitrary bit width for the integer type desired. Any bit width from 1 bit to
13212^23-1 (about 8 million) can be specified.</p>
1322
1323<h5>Syntax:</h5>
1324
1325<pre>
1326 iN
1327</pre>
1328
1329<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1330value.</p>
1331
1332<h5>Examples:</h5>
1333<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001334 <tbody>
1335 <tr>
1336 <td><tt>i1</tt></td>
1337 <td>a single-bit integer.</td>
1338 </tr><tr>
1339 <td><tt>i32</tt></td>
1340 <td>a 32-bit integer.</td>
1341 </tr><tr>
1342 <td><tt>i1942652</tt></td>
1343 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001344 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001345 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001346</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001347</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001348
1349<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001350<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001351
Misha Brukman9d0919f2003-11-08 01:05:38 +00001352<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001353
Chris Lattner00950542001-06-06 20:29:01 +00001354<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001355
Misha Brukman9d0919f2003-11-08 01:05:38 +00001356<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001357sequentially in memory. The array type requires a size (number of
1358elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001359
Chris Lattner7faa8832002-04-14 06:13:44 +00001360<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001361
1362<pre>
1363 [&lt;# elements&gt; x &lt;elementtype&gt;]
1364</pre>
1365
John Criswelle4c57cc2005-05-12 16:52:32 +00001366<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001367be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001368
Chris Lattner7faa8832002-04-14 06:13:44 +00001369<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001370<table class="layout">
1371 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001372 <td class="left"><tt>[40 x i32]</tt></td>
1373 <td class="left">Array of 40 32-bit integer values.</td>
1374 </tr>
1375 <tr class="layout">
1376 <td class="left"><tt>[41 x i32]</tt></td>
1377 <td class="left">Array of 41 32-bit integer values.</td>
1378 </tr>
1379 <tr class="layout">
1380 <td class="left"><tt>[4 x i8]</tt></td>
1381 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001382 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001383</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001384<p>Here are some examples of multidimensional arrays:</p>
1385<table class="layout">
1386 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001387 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1388 <td class="left">3x4 array of 32-bit integer values.</td>
1389 </tr>
1390 <tr class="layout">
1391 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1392 <td class="left">12x10 array of single precision floating point values.</td>
1393 </tr>
1394 <tr class="layout">
1395 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1396 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001397 </tr>
1398</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001399
John Criswell0ec250c2005-10-24 16:17:18 +00001400<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1401length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001402LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1403As a special case, however, zero length arrays are recognized to be variable
1404length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001405type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001406
Misha Brukman9d0919f2003-11-08 01:05:38 +00001407</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001408
Chris Lattner00950542001-06-06 20:29:01 +00001409<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001410<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001411<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001412
Chris Lattner00950542001-06-06 20:29:01 +00001413<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001414
Chris Lattner261efe92003-11-25 01:02:51 +00001415<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001416consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001417return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001418If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001419class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001420
Chris Lattner00950542001-06-06 20:29:01 +00001421<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001422
1423<pre>
1424 &lt;returntype list&gt; (&lt;parameter list&gt;)
1425</pre>
1426
John Criswell0ec250c2005-10-24 16:17:18 +00001427<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001428specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001429which indicates that the function takes a variable number of arguments.
1430Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001431 href="#int_varargs">variable argument handling intrinsic</a> functions.
1432'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1433<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001434
Chris Lattner00950542001-06-06 20:29:01 +00001435<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001436<table class="layout">
1437 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001438 <td class="left"><tt>i32 (i32)</tt></td>
1439 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001440 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001441 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001442 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001443 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001444 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1445 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001446 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001447 <tt>float</tt>.
1448 </td>
1449 </tr><tr class="layout">
1450 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1451 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001452 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001453 which returns an integer. This is the signature for <tt>printf</tt> in
1454 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001455 </td>
Devang Patela582f402008-03-24 05:35:41 +00001456 </tr><tr class="layout">
1457 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanb0a57aa2008-11-27 06:41:20 +00001458 <td class="left">A function taking an <tt>i32</tt>, returning two
1459 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001460 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001461 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001462</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001463
Misha Brukman9d0919f2003-11-08 01:05:38 +00001464</div>
Chris Lattner00950542001-06-06 20:29:01 +00001465<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001466<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001467<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001468<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001469<p>The structure type is used to represent a collection of data members
1470together in memory. The packing of the field types is defined to match
1471the ABI of the underlying processor. The elements of a structure may
1472be any type that has a size.</p>
1473<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1474and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1475field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1476instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001477<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001478<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001479<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001480<table class="layout">
1481 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001482 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1483 <td class="left">A triple of three <tt>i32</tt> values</td>
1484 </tr><tr class="layout">
1485 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1486 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1487 second element is a <a href="#t_pointer">pointer</a> to a
1488 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1489 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001490 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001491</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001492</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001493
Chris Lattner00950542001-06-06 20:29:01 +00001494<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001495<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1496</div>
1497<div class="doc_text">
1498<h5>Overview:</h5>
1499<p>The packed structure type is used to represent a collection of data members
1500together in memory. There is no padding between fields. Further, the alignment
1501of a packed structure is 1 byte. The elements of a packed structure may
1502be any type that has a size.</p>
1503<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1504and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1505field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1506instruction.</p>
1507<h5>Syntax:</h5>
1508<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1509<h5>Examples:</h5>
1510<table class="layout">
1511 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001512 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1513 <td class="left">A triple of three <tt>i32</tt> values</td>
1514 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001515 <td class="left">
1516<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001517 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1518 second element is a <a href="#t_pointer">pointer</a> to a
1519 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1520 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001521 </tr>
1522</table>
1523</div>
1524
1525<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001526<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001527<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001528<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001529<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001530reference to another object, which must live in memory. Pointer types may have
1531an optional address space attribute defining the target-specific numbered
1532address space where the pointed-to object resides. The default address space is
1533zero.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001534<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001535<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001536<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001537<table class="layout">
1538 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00001539 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001540 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1541 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1542 </tr>
1543 <tr class="layout">
1544 <td class="left"><tt>i32 (i32 *) *</tt></td>
1545 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001546 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001547 <tt>i32</tt>.</td>
1548 </tr>
1549 <tr class="layout">
1550 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1551 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1552 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001553 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001554</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001555</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001556
Chris Lattnera58561b2004-08-12 19:12:28 +00001557<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001558<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001559<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001560
Chris Lattnera58561b2004-08-12 19:12:28 +00001561<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001562
Reid Spencer485bad12007-02-15 03:07:05 +00001563<p>A vector type is a simple derived type that represents a vector
1564of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001565are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001566A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001567elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001568of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001569considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001570
Chris Lattnera58561b2004-08-12 19:12:28 +00001571<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001572
1573<pre>
1574 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1575</pre>
1576
John Criswellc1f786c2005-05-13 22:25:59 +00001577<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001578be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001579
Chris Lattnera58561b2004-08-12 19:12:28 +00001580<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001581
Reid Spencerd3f876c2004-11-01 08:19:36 +00001582<table class="layout">
1583 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001584 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1585 <td class="left">Vector of 4 32-bit integer values.</td>
1586 </tr>
1587 <tr class="layout">
1588 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1589 <td class="left">Vector of 8 32-bit floating-point values.</td>
1590 </tr>
1591 <tr class="layout">
1592 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1593 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001594 </tr>
1595</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001596</div>
1597
Chris Lattner69c11bb2005-04-25 17:34:15 +00001598<!-- _______________________________________________________________________ -->
1599<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1600<div class="doc_text">
1601
1602<h5>Overview:</h5>
1603
1604<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001605corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001606In LLVM, opaque types can eventually be resolved to any type (not just a
1607structure type).</p>
1608
1609<h5>Syntax:</h5>
1610
1611<pre>
1612 opaque
1613</pre>
1614
1615<h5>Examples:</h5>
1616
1617<table class="layout">
1618 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001619 <td class="left"><tt>opaque</tt></td>
1620 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001621 </tr>
1622</table>
1623</div>
1624
1625
Chris Lattnerc3f59762004-12-09 17:30:23 +00001626<!-- *********************************************************************** -->
1627<div class="doc_section"> <a name="constants">Constants</a> </div>
1628<!-- *********************************************************************** -->
1629
1630<div class="doc_text">
1631
1632<p>LLVM has several different basic types of constants. This section describes
1633them all and their syntax.</p>
1634
1635</div>
1636
1637<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001638<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001639
1640<div class="doc_text">
1641
1642<dl>
1643 <dt><b>Boolean constants</b></dt>
1644
1645 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001646 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001647 </dd>
1648
1649 <dt><b>Integer constants</b></dt>
1650
Reid Spencercc16dc32004-12-09 18:02:53 +00001651 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001652 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001653 integer types.
1654 </dd>
1655
1656 <dt><b>Floating point constants</b></dt>
1657
1658 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1659 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001660 notation (see below). The assembler requires the exact decimal value of
1661 a floating-point constant. For example, the assembler accepts 1.25 but
1662 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1663 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001664
1665 <dt><b>Null pointer constants</b></dt>
1666
John Criswell9e2485c2004-12-10 15:51:16 +00001667 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001668 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1669
1670</dl>
1671
John Criswell9e2485c2004-12-10 15:51:16 +00001672<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001673of floating point constants. For example, the form '<tt>double
16740x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
16754.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001676(and the only time that they are generated by the disassembler) is when a
1677floating point constant must be emitted but it cannot be represented as a
1678decimal floating point number. For example, NaN's, infinities, and other
1679special values are represented in their IEEE hexadecimal format so that
1680assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001681
1682</div>
1683
1684<!-- ======================================================================= -->
1685<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1686</div>
1687
1688<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001689<p>Aggregate constants arise from aggregation of simple constants
1690and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001691
1692<dl>
1693 <dt><b>Structure constants</b></dt>
1694
1695 <dd>Structure constants are represented with notation similar to structure
1696 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001697 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1698 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001699 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001700 types of elements must match those specified by the type.
1701 </dd>
1702
1703 <dt><b>Array constants</b></dt>
1704
1705 <dd>Array constants are represented with notation similar to array type
1706 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001707 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001708 constants must have <a href="#t_array">array type</a>, and the number and
1709 types of elements must match those specified by the type.
1710 </dd>
1711
Reid Spencer485bad12007-02-15 03:07:05 +00001712 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001713
Reid Spencer485bad12007-02-15 03:07:05 +00001714 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001715 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001716 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001717 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001718 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001719 match those specified by the type.
1720 </dd>
1721
1722 <dt><b>Zero initialization</b></dt>
1723
1724 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1725 value to zero of <em>any</em> type, including scalar and aggregate types.
1726 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001727 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001728 initializers.
1729 </dd>
1730</dl>
1731
1732</div>
1733
1734<!-- ======================================================================= -->
1735<div class="doc_subsection">
1736 <a name="globalconstants">Global Variable and Function Addresses</a>
1737</div>
1738
1739<div class="doc_text">
1740
1741<p>The addresses of <a href="#globalvars">global variables</a> and <a
1742href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001743constants. These constants are explicitly referenced when the <a
1744href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001745href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1746file:</p>
1747
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001748<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001749<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001750@X = global i32 17
1751@Y = global i32 42
1752@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001753</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001754</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001755
1756</div>
1757
1758<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001759<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001760<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001761 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001762 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001763 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001764
Reid Spencer2dc45b82004-12-09 18:13:12 +00001765 <p>Undefined values indicate to the compiler that the program is well defined
1766 no matter what value is used, giving the compiler more freedom to optimize.
1767 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001768</div>
1769
1770<!-- ======================================================================= -->
1771<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1772</div>
1773
1774<div class="doc_text">
1775
1776<p>Constant expressions are used to allow expressions involving other constants
1777to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001778href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001779that does not have side effects (e.g. load and call are not supported). The
1780following is the syntax for constant expressions:</p>
1781
1782<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001783 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1784 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001785 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001786
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001787 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1788 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001789 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001790
1791 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1792 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001793 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001794
1795 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1796 <dd>Truncate a floating point constant to another floating point type. The
1797 size of CST must be larger than the size of TYPE. Both types must be
1798 floating point.</dd>
1799
1800 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1801 <dd>Floating point extend a constant to another type. The size of CST must be
1802 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1803
Reid Spencer1539a1c2007-07-31 14:40:14 +00001804 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001805 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001806 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1807 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1808 of the same number of elements. If the value won't fit in the integer type,
1809 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001810
Reid Spencerd4448792006-11-09 23:03:26 +00001811 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001812 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001813 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1814 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1815 of the same number of elements. If the value won't fit in the integer type,
1816 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001817
Reid Spencerd4448792006-11-09 23:03:26 +00001818 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001819 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001820 constant. TYPE must be a scalar or vector floating point type. CST must be of
1821 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1822 of the same number of elements. If the value won't fit in the floating point
1823 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001824
Reid Spencerd4448792006-11-09 23:03:26 +00001825 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001826 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001827 constant. TYPE must be a scalar or vector floating point type. CST must be of
1828 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1829 of the same number of elements. If the value won't fit in the floating point
1830 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001831
Reid Spencer5c0ef472006-11-11 23:08:07 +00001832 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1833 <dd>Convert a pointer typed constant to the corresponding integer constant
1834 TYPE must be an integer type. CST must be of pointer type. The CST value is
1835 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1836
1837 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1838 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1839 pointer type. CST must be of integer type. The CST value is zero extended,
1840 truncated, or unchanged to make it fit in a pointer size. This one is
1841 <i>really</i> dangerous!</dd>
1842
1843 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001844 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1845 identical (same number of bits). The conversion is done as if the CST value
1846 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001847 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001848 vector types to any other type, as long as they have the same bit width. For
Dan Gohman500233a2008-09-08 16:45:59 +00001849 pointers it is only valid to cast to another pointer type. It is not valid
1850 to bitcast to or from an aggregate type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001851 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001852
1853 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1854
1855 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1856 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1857 instruction, the index list may have zero or more indexes, which are required
1858 to make sense for the type of "CSTPTR".</dd>
1859
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001860 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1861
1862 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001863 constants.</dd>
1864
1865 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1866 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1867
1868 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1869 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001870
Nate Begemanac80ade2008-05-12 19:01:56 +00001871 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1872 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1873
1874 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1875 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1876
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001877 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1878
1879 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohman0e451ce2008-10-14 16:51:45 +00001880 operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001881
Robert Bocchino05ccd702006-01-15 20:48:27 +00001882 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1883
1884 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001885 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001886
Chris Lattnerc1989542006-04-08 00:13:41 +00001887
1888 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1889
1890 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001891 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001892
Chris Lattnerc3f59762004-12-09 17:30:23 +00001893 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1894
Reid Spencer2dc45b82004-12-09 18:13:12 +00001895 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1896 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001897 binary</a> operations. The constraints on operands are the same as those for
1898 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001899 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001900</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001901</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001902
Chris Lattner00950542001-06-06 20:29:01 +00001903<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001904<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1905<!-- *********************************************************************** -->
1906
1907<!-- ======================================================================= -->
1908<div class="doc_subsection">
1909<a name="inlineasm">Inline Assembler Expressions</a>
1910</div>
1911
1912<div class="doc_text">
1913
1914<p>
1915LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1916Module-Level Inline Assembly</a>) through the use of a special value. This
1917value represents the inline assembler as a string (containing the instructions
1918to emit), a list of operand constraints (stored as a string), and a flag that
1919indicates whether or not the inline asm expression has side effects. An example
1920inline assembler expression is:
1921</p>
1922
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001923<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001924<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001925i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001926</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001927</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001928
1929<p>
1930Inline assembler expressions may <b>only</b> be used as the callee operand of
1931a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1932</p>
1933
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001934<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001935<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001936%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001937</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001938</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001939
1940<p>
1941Inline asms with side effects not visible in the constraint list must be marked
1942as having side effects. This is done through the use of the
1943'<tt>sideeffect</tt>' keyword, like so:
1944</p>
1945
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001946<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001947<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001948call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001949</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001950</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001951
1952<p>TODO: The format of the asm and constraints string still need to be
1953documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00001954need to be documented). This is probably best done by reference to another
1955document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00001956</p>
1957
1958</div>
1959
1960<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001961<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1962<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001963
Misha Brukman9d0919f2003-11-08 01:05:38 +00001964<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001965
Chris Lattner261efe92003-11-25 01:02:51 +00001966<p>The LLVM instruction set consists of several different
1967classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001968instructions</a>, <a href="#binaryops">binary instructions</a>,
1969<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001970 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1971instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001972
Misha Brukman9d0919f2003-11-08 01:05:38 +00001973</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001974
Chris Lattner00950542001-06-06 20:29:01 +00001975<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001976<div class="doc_subsection"> <a name="terminators">Terminator
1977Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001978
Misha Brukman9d0919f2003-11-08 01:05:38 +00001979<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001980
Chris Lattner261efe92003-11-25 01:02:51 +00001981<p>As mentioned <a href="#functionstructure">previously</a>, every
1982basic block in a program ends with a "Terminator" instruction, which
1983indicates which block should be executed after the current block is
1984finished. These terminator instructions typically yield a '<tt>void</tt>'
1985value: they produce control flow, not values (the one exception being
1986the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001987<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001988 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1989instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001990the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1991 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1992 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001993
Misha Brukman9d0919f2003-11-08 01:05:38 +00001994</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001995
Chris Lattner00950542001-06-06 20:29:01 +00001996<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001997<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1998Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001999<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002000<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002001<pre>
2002 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002003 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00002004</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002005
Chris Lattner00950542001-06-06 20:29:01 +00002006<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002007
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002008<p>The '<tt>ret</tt>' instruction is used to return control flow (and
2009optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00002010<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002011returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00002012control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002013
Chris Lattner00950542001-06-06 20:29:01 +00002014<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002015
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002016<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
2017the return value. The type of the return value must be a
2018'<a href="#t_firstclass">first class</a>' type.</p>
2019
2020<p>A function is not <a href="#wellformed">well formed</a> if
2021it it has a non-void return type and contains a '<tt>ret</tt>'
2022instruction with no return value or a return value with a type that
2023does not match its type, or if it has a void return type and contains
2024a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002025
Chris Lattner00950542001-06-06 20:29:01 +00002026<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002027
Chris Lattner261efe92003-11-25 01:02:51 +00002028<p>When the '<tt>ret</tt>' instruction is executed, control flow
2029returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00002030 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00002031the instruction after the call. If the caller was an "<a
2032 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00002033at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00002034returns a value, that value shall set the call or invoke instruction's
Dan Gohman0e451ce2008-10-14 16:51:45 +00002035return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002036
Chris Lattner00950542001-06-06 20:29:01 +00002037<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002038
2039<pre>
2040 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002041 ret void <i>; Return from a void function</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002042 ret { i32, i8 } { i32 4, i8 2 } <i>; Return an aggregate of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002043</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002044
2045<p>Note that the code generator does not yet fully support larger
2046 aggregate return values.</p>
2047
Misha Brukman9d0919f2003-11-08 01:05:38 +00002048</div>
Chris Lattner00950542001-06-06 20:29:01 +00002049<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002050<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002051<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002052<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002053<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002054</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002055<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002056<p>The '<tt>br</tt>' instruction is used to cause control flow to
2057transfer to a different basic block in the current function. There are
2058two forms of this instruction, corresponding to a conditional branch
2059and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002060<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002061<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00002062single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00002063unconditional form of the '<tt>br</tt>' instruction takes a single
2064'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002065<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002066<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002067argument is evaluated. If the value is <tt>true</tt>, control flows
2068to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2069control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002070<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002071<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00002072 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002073</div>
Chris Lattner00950542001-06-06 20:29:01 +00002074<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002075<div class="doc_subsubsection">
2076 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2077</div>
2078
Misha Brukman9d0919f2003-11-08 01:05:38 +00002079<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002080<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002081
2082<pre>
2083 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2084</pre>
2085
Chris Lattner00950542001-06-06 20:29:01 +00002086<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002087
2088<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2089several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00002090instruction, allowing a branch to occur to one of many possible
2091destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002092
2093
Chris Lattner00950542001-06-06 20:29:01 +00002094<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002095
2096<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2097comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2098an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2099table is not allowed to contain duplicate constant entries.</p>
2100
Chris Lattner00950542001-06-06 20:29:01 +00002101<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002102
Chris Lattner261efe92003-11-25 01:02:51 +00002103<p>The <tt>switch</tt> instruction specifies a table of values and
2104destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002105table is searched for the given value. If the value is found, control flow is
2106transfered to the corresponding destination; otherwise, control flow is
2107transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002108
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002109<h5>Implementation:</h5>
2110
2111<p>Depending on properties of the target machine and the particular
2112<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002113ways. For example, it could be generated as a series of chained conditional
2114branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002115
2116<h5>Example:</h5>
2117
2118<pre>
2119 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002120 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00002121 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002122
2123 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002124 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002125
2126 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00002127 switch i32 %val, label %otherwise [ i32 0, label %onzero
2128 i32 1, label %onone
2129 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002130</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002131</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002132
Chris Lattner00950542001-06-06 20:29:01 +00002133<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002134<div class="doc_subsubsection">
2135 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2136</div>
2137
Misha Brukman9d0919f2003-11-08 01:05:38 +00002138<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002139
Chris Lattner00950542001-06-06 20:29:01 +00002140<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002141
2142<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002143 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002144 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002145</pre>
2146
Chris Lattner6536cfe2002-05-06 22:08:29 +00002147<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002148
2149<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2150function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002151'<tt>normal</tt>' label or the
2152'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002153"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2154"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002155href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohman0e451ce2008-10-14 16:51:45 +00002156continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002157
Chris Lattner00950542001-06-06 20:29:01 +00002158<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002159
Misha Brukman9d0919f2003-11-08 01:05:38 +00002160<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002161
Chris Lattner00950542001-06-06 20:29:01 +00002162<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002163 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002164 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002165 convention</a> the call should use. If none is specified, the call defaults
2166 to using C calling conventions.
2167 </li>
Devang Patelf642f472008-10-06 18:50:38 +00002168
2169 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2170 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2171 and '<tt>inreg</tt>' attributes are valid here.</li>
2172
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002173 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2174 function value being invoked. In most cases, this is a direct function
2175 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2176 an arbitrary pointer to function value.
2177 </li>
2178
2179 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2180 function to be invoked. </li>
2181
2182 <li>'<tt>function args</tt>': argument list whose types match the function
2183 signature argument types. If the function signature indicates the function
2184 accepts a variable number of arguments, the extra arguments can be
2185 specified. </li>
2186
2187 <li>'<tt>normal label</tt>': the label reached when the called function
2188 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2189
2190 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2191 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2192
Devang Patel307e8ab2008-10-07 17:48:33 +00002193 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00002194 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2195 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002196</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002197
Chris Lattner00950542001-06-06 20:29:01 +00002198<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002199
Misha Brukman9d0919f2003-11-08 01:05:38 +00002200<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002201href="#i_call">call</a></tt>' instruction in most regards. The primary
2202difference is that it establishes an association with a label, which is used by
2203the runtime library to unwind the stack.</p>
2204
2205<p>This instruction is used in languages with destructors to ensure that proper
2206cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2207exception. Additionally, this is important for implementation of
2208'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2209
Chris Lattner00950542001-06-06 20:29:01 +00002210<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002211<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002212 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002213 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002214 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002215 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002216</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002217</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002218
2219
Chris Lattner27f71f22003-09-03 00:41:47 +00002220<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002221
Chris Lattner261efe92003-11-25 01:02:51 +00002222<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2223Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002224
Misha Brukman9d0919f2003-11-08 01:05:38 +00002225<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002226
Chris Lattner27f71f22003-09-03 00:41:47 +00002227<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002228<pre>
2229 unwind
2230</pre>
2231
Chris Lattner27f71f22003-09-03 00:41:47 +00002232<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002233
2234<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2235at the first callee in the dynamic call stack which used an <a
2236href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2237primarily used to implement exception handling.</p>
2238
Chris Lattner27f71f22003-09-03 00:41:47 +00002239<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002240
Chris Lattner72ed2002008-04-19 21:01:16 +00002241<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002242immediately halt. The dynamic call stack is then searched for the first <a
2243href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2244execution continues at the "exceptional" destination block specified by the
2245<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2246dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002247</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002248
2249<!-- _______________________________________________________________________ -->
2250
2251<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2252Instruction</a> </div>
2253
2254<div class="doc_text">
2255
2256<h5>Syntax:</h5>
2257<pre>
2258 unreachable
2259</pre>
2260
2261<h5>Overview:</h5>
2262
2263<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2264instruction is used to inform the optimizer that a particular portion of the
2265code is not reachable. This can be used to indicate that the code after a
2266no-return function cannot be reached, and other facts.</p>
2267
2268<h5>Semantics:</h5>
2269
2270<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2271</div>
2272
2273
2274
Chris Lattner00950542001-06-06 20:29:01 +00002275<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002276<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002277<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002278<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002279program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002280produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002281multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002282The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002283<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002284</div>
Chris Lattner00950542001-06-06 20:29:01 +00002285<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002286<div class="doc_subsubsection">
2287 <a name="i_add">'<tt>add</tt>' Instruction</a>
2288</div>
2289
Misha Brukman9d0919f2003-11-08 01:05:38 +00002290<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002291
Chris Lattner00950542001-06-06 20:29:01 +00002292<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002293
2294<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002295 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002296</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002297
Chris Lattner00950542001-06-06 20:29:01 +00002298<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002299
Misha Brukman9d0919f2003-11-08 01:05:38 +00002300<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002301
Chris Lattner00950542001-06-06 20:29:01 +00002302<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002303
2304<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2305 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2306 <a href="#t_vector">vector</a> values. Both arguments must have identical
2307 types.</p>
2308
Chris Lattner00950542001-06-06 20:29:01 +00002309<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002310
Misha Brukman9d0919f2003-11-08 01:05:38 +00002311<p>The value produced is the integer or floating point sum of the two
2312operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002313
Chris Lattner5ec89832008-01-28 00:36:27 +00002314<p>If an integer sum has unsigned overflow, the result returned is the
2315mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2316the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002317
Chris Lattner5ec89832008-01-28 00:36:27 +00002318<p>Because LLVM integers use a two's complement representation, this
2319instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002320
Chris Lattner00950542001-06-06 20:29:01 +00002321<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002322
2323<pre>
2324 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002325</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002326</div>
Chris Lattner00950542001-06-06 20:29:01 +00002327<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002328<div class="doc_subsubsection">
2329 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2330</div>
2331
Misha Brukman9d0919f2003-11-08 01:05:38 +00002332<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002333
Chris Lattner00950542001-06-06 20:29:01 +00002334<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002335
2336<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002337 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002338</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002339
Chris Lattner00950542001-06-06 20:29:01 +00002340<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002341
Misha Brukman9d0919f2003-11-08 01:05:38 +00002342<p>The '<tt>sub</tt>' instruction returns the difference of its two
2343operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002344
2345<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2346'<tt>neg</tt>' instruction present in most other intermediate
2347representations.</p>
2348
Chris Lattner00950542001-06-06 20:29:01 +00002349<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002350
2351<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2352 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2353 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2354 types.</p>
2355
Chris Lattner00950542001-06-06 20:29:01 +00002356<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002357
Chris Lattner261efe92003-11-25 01:02:51 +00002358<p>The value produced is the integer or floating point difference of
2359the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002360
Chris Lattner5ec89832008-01-28 00:36:27 +00002361<p>If an integer difference has unsigned overflow, the result returned is the
2362mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2363the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002364
Chris Lattner5ec89832008-01-28 00:36:27 +00002365<p>Because LLVM integers use a two's complement representation, this
2366instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002367
Chris Lattner00950542001-06-06 20:29:01 +00002368<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002369<pre>
2370 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002371 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002372</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002373</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002374
Chris Lattner00950542001-06-06 20:29:01 +00002375<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002376<div class="doc_subsubsection">
2377 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2378</div>
2379
Misha Brukman9d0919f2003-11-08 01:05:38 +00002380<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002381
Chris Lattner00950542001-06-06 20:29:01 +00002382<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002383<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002384</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002385<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002386<p>The '<tt>mul</tt>' instruction returns the product of its two
2387operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002388
Chris Lattner00950542001-06-06 20:29:01 +00002389<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002390
2391<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2392href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2393or <a href="#t_vector">vector</a> values. Both arguments must have identical
2394types.</p>
2395
Chris Lattner00950542001-06-06 20:29:01 +00002396<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002397
Chris Lattner261efe92003-11-25 01:02:51 +00002398<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002399two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002400
Chris Lattner5ec89832008-01-28 00:36:27 +00002401<p>If the result of an integer multiplication has unsigned overflow,
2402the result returned is the mathematical result modulo
24032<sup>n</sup>, where n is the bit width of the result.</p>
2404<p>Because LLVM integers use a two's complement representation, and the
2405result is the same width as the operands, this instruction returns the
2406correct result for both signed and unsigned integers. If a full product
2407(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2408should be sign-extended or zero-extended as appropriate to the
2409width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002410<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002411<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002412</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002413</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002414
Chris Lattner00950542001-06-06 20:29:01 +00002415<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002416<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2417</a></div>
2418<div class="doc_text">
2419<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002420<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002421</pre>
2422<h5>Overview:</h5>
2423<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2424operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002425
Reid Spencer1628cec2006-10-26 06:15:43 +00002426<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002427
Reid Spencer1628cec2006-10-26 06:15:43 +00002428<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002429<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2430values. Both arguments must have identical types.</p>
2431
Reid Spencer1628cec2006-10-26 06:15:43 +00002432<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002433
Chris Lattner5ec89832008-01-28 00:36:27 +00002434<p>The value produced is the unsigned integer quotient of the two operands.</p>
2435<p>Note that unsigned integer division and signed integer division are distinct
2436operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2437<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002438<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002439<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002440</pre>
2441</div>
2442<!-- _______________________________________________________________________ -->
2443<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2444</a> </div>
2445<div class="doc_text">
2446<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002447<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002448 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002449</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002450
Reid Spencer1628cec2006-10-26 06:15:43 +00002451<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002452
Reid Spencer1628cec2006-10-26 06:15:43 +00002453<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2454operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002455
Reid Spencer1628cec2006-10-26 06:15:43 +00002456<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002457
2458<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2459<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2460values. Both arguments must have identical types.</p>
2461
Reid Spencer1628cec2006-10-26 06:15:43 +00002462<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002463<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002464<p>Note that signed integer division and unsigned integer division are distinct
2465operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2466<p>Division by zero leads to undefined behavior. Overflow also leads to
2467undefined behavior; this is a rare case, but can occur, for example,
2468by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002469<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002470<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002471</pre>
2472</div>
2473<!-- _______________________________________________________________________ -->
2474<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002475Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002476<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002477<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002478<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002479 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002480</pre>
2481<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002482
Reid Spencer1628cec2006-10-26 06:15:43 +00002483<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002484operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002485
Chris Lattner261efe92003-11-25 01:02:51 +00002486<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002487
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002488<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002489<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2490of floating point values. Both arguments must have identical types.</p>
2491
Chris Lattner261efe92003-11-25 01:02:51 +00002492<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002493
Reid Spencer1628cec2006-10-26 06:15:43 +00002494<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002495
Chris Lattner261efe92003-11-25 01:02:51 +00002496<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002497
2498<pre>
2499 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002500</pre>
2501</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002502
Chris Lattner261efe92003-11-25 01:02:51 +00002503<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002504<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2505</div>
2506<div class="doc_text">
2507<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002508<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002509</pre>
2510<h5>Overview:</h5>
2511<p>The '<tt>urem</tt>' instruction returns the remainder from the
2512unsigned division of its two arguments.</p>
2513<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002514<p>The two arguments to the '<tt>urem</tt>' instruction must be
2515<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2516values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002517<h5>Semantics:</h5>
2518<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002519This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002520<p>Note that unsigned integer remainder and signed integer remainder are
2521distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2522<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002523<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002524<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002525</pre>
2526
2527</div>
2528<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002529<div class="doc_subsubsection">
2530 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2531</div>
2532
Chris Lattner261efe92003-11-25 01:02:51 +00002533<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002534
Chris Lattner261efe92003-11-25 01:02:51 +00002535<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002536
2537<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002538 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002539</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002540
Chris Lattner261efe92003-11-25 01:02:51 +00002541<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002542
Reid Spencer0a783f72006-11-02 01:53:59 +00002543<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002544signed division of its two operands. This instruction can also take
2545<a href="#t_vector">vector</a> versions of the values in which case
2546the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002547
Chris Lattner261efe92003-11-25 01:02:51 +00002548<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002549
Reid Spencer0a783f72006-11-02 01:53:59 +00002550<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002551<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2552values. Both arguments must have identical types.</p>
2553
Chris Lattner261efe92003-11-25 01:02:51 +00002554<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002555
Reid Spencer0a783f72006-11-02 01:53:59 +00002556<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002557has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2558operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002559a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002560 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002561Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002562please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002563Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002564<p>Note that signed integer remainder and unsigned integer remainder are
2565distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2566<p>Taking the remainder of a division by zero leads to undefined behavior.
2567Overflow also leads to undefined behavior; this is a rare case, but can occur,
2568for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2569(The remainder doesn't actually overflow, but this rule lets srem be
2570implemented using instructions that return both the result of the division
2571and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002572<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002573<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002574</pre>
2575
2576</div>
2577<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002578<div class="doc_subsubsection">
2579 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2580
Reid Spencer0a783f72006-11-02 01:53:59 +00002581<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002582
Reid Spencer0a783f72006-11-02 01:53:59 +00002583<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002584<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002585</pre>
2586<h5>Overview:</h5>
2587<p>The '<tt>frem</tt>' instruction returns the remainder from the
2588division of its two operands.</p>
2589<h5>Arguments:</h5>
2590<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002591<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2592of floating point values. Both arguments must have identical types.</p>
2593
Reid Spencer0a783f72006-11-02 01:53:59 +00002594<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002595
Chris Lattnera73afe02008-04-01 18:45:27 +00002596<p>This instruction returns the <i>remainder</i> of a division.
2597The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002598
Reid Spencer0a783f72006-11-02 01:53:59 +00002599<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002600
2601<pre>
2602 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002603</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002604</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002605
Reid Spencer8e11bf82007-02-02 13:57:07 +00002606<!-- ======================================================================= -->
2607<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2608Operations</a> </div>
2609<div class="doc_text">
2610<p>Bitwise binary operators are used to do various forms of
2611bit-twiddling in a program. They are generally very efficient
2612instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002613instructions. They require two operands of the same type, execute an operation on them,
2614and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002615</div>
2616
Reid Spencer569f2fa2007-01-31 21:39:12 +00002617<!-- _______________________________________________________________________ -->
2618<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2619Instruction</a> </div>
2620<div class="doc_text">
2621<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002622<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002623</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002624
Reid Spencer569f2fa2007-01-31 21:39:12 +00002625<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002626
Reid Spencer569f2fa2007-01-31 21:39:12 +00002627<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2628the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002629
Reid Spencer569f2fa2007-01-31 21:39:12 +00002630<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002631
Reid Spencer569f2fa2007-01-31 21:39:12 +00002632<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002633 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002634type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002635
Reid Spencer569f2fa2007-01-31 21:39:12 +00002636<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002637
Gabor Greiffb224a22008-08-07 21:46:00 +00002638<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2639where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang01f8d092008-12-10 08:55:09 +00002640equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2641If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2642corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002643
Reid Spencer569f2fa2007-01-31 21:39:12 +00002644<h5>Example:</h5><pre>
2645 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2646 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2647 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002648 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002649 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002650</pre>
2651</div>
2652<!-- _______________________________________________________________________ -->
2653<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2654Instruction</a> </div>
2655<div class="doc_text">
2656<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002657<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002658</pre>
2659
2660<h5>Overview:</h5>
2661<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002662operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002663
2664<h5>Arguments:</h5>
2665<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002666<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002667type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002668
2669<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002670
Reid Spencer569f2fa2007-01-31 21:39:12 +00002671<p>This instruction always performs a logical shift right operation. The most
2672significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002673shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang01f8d092008-12-10 08:55:09 +00002674the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2675vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2676amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002677
2678<h5>Example:</h5>
2679<pre>
2680 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2681 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2682 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2683 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002684 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002685 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002686</pre>
2687</div>
2688
Reid Spencer8e11bf82007-02-02 13:57:07 +00002689<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002690<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2691Instruction</a> </div>
2692<div class="doc_text">
2693
2694<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002695<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002696</pre>
2697
2698<h5>Overview:</h5>
2699<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002700operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002701
2702<h5>Arguments:</h5>
2703<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002704<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002705type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002706
2707<h5>Semantics:</h5>
2708<p>This instruction always performs an arithmetic shift right operation,
2709The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00002710of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang01f8d092008-12-10 08:55:09 +00002711larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
2712arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2713corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002714
2715<h5>Example:</h5>
2716<pre>
2717 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2718 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2719 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2720 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002721 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002722 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002723</pre>
2724</div>
2725
Chris Lattner00950542001-06-06 20:29:01 +00002726<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002727<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2728Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002729
Misha Brukman9d0919f2003-11-08 01:05:38 +00002730<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002731
Chris Lattner00950542001-06-06 20:29:01 +00002732<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002733
2734<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002735 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002736</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002737
Chris Lattner00950542001-06-06 20:29:01 +00002738<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002739
Chris Lattner261efe92003-11-25 01:02:51 +00002740<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2741its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002742
Chris Lattner00950542001-06-06 20:29:01 +00002743<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002744
2745<p>The two arguments to the '<tt>and</tt>' instruction must be
2746<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2747values. Both arguments must have identical types.</p>
2748
Chris Lattner00950542001-06-06 20:29:01 +00002749<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002750<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002751<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002752<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002753<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002754 <tbody>
2755 <tr>
2756 <td>In0</td>
2757 <td>In1</td>
2758 <td>Out</td>
2759 </tr>
2760 <tr>
2761 <td>0</td>
2762 <td>0</td>
2763 <td>0</td>
2764 </tr>
2765 <tr>
2766 <td>0</td>
2767 <td>1</td>
2768 <td>0</td>
2769 </tr>
2770 <tr>
2771 <td>1</td>
2772 <td>0</td>
2773 <td>0</td>
2774 </tr>
2775 <tr>
2776 <td>1</td>
2777 <td>1</td>
2778 <td>1</td>
2779 </tr>
2780 </tbody>
2781</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002782</div>
Chris Lattner00950542001-06-06 20:29:01 +00002783<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002784<pre>
2785 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002786 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2787 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002788</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002789</div>
Chris Lattner00950542001-06-06 20:29:01 +00002790<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002791<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002792<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002793<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002794<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002795</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002796<h5>Overview:</h5>
2797<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2798or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002799<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002800
2801<p>The two arguments to the '<tt>or</tt>' instruction must be
2802<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2803values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002804<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002805<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002806<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002807<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002808<table border="1" cellspacing="0" cellpadding="4">
2809 <tbody>
2810 <tr>
2811 <td>In0</td>
2812 <td>In1</td>
2813 <td>Out</td>
2814 </tr>
2815 <tr>
2816 <td>0</td>
2817 <td>0</td>
2818 <td>0</td>
2819 </tr>
2820 <tr>
2821 <td>0</td>
2822 <td>1</td>
2823 <td>1</td>
2824 </tr>
2825 <tr>
2826 <td>1</td>
2827 <td>0</td>
2828 <td>1</td>
2829 </tr>
2830 <tr>
2831 <td>1</td>
2832 <td>1</td>
2833 <td>1</td>
2834 </tr>
2835 </tbody>
2836</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002837</div>
Chris Lattner00950542001-06-06 20:29:01 +00002838<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002839<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2840 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2841 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002842</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002843</div>
Chris Lattner00950542001-06-06 20:29:01 +00002844<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002845<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2846Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002847<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002848<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002849<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002850</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002851<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002852<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2853or of its two operands. The <tt>xor</tt> is used to implement the
2854"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002855<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002856<p>The two arguments to the '<tt>xor</tt>' instruction must be
2857<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2858values. Both arguments must have identical types.</p>
2859
Chris Lattner00950542001-06-06 20:29:01 +00002860<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002861
Misha Brukman9d0919f2003-11-08 01:05:38 +00002862<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002863<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002864<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002865<table border="1" cellspacing="0" cellpadding="4">
2866 <tbody>
2867 <tr>
2868 <td>In0</td>
2869 <td>In1</td>
2870 <td>Out</td>
2871 </tr>
2872 <tr>
2873 <td>0</td>
2874 <td>0</td>
2875 <td>0</td>
2876 </tr>
2877 <tr>
2878 <td>0</td>
2879 <td>1</td>
2880 <td>1</td>
2881 </tr>
2882 <tr>
2883 <td>1</td>
2884 <td>0</td>
2885 <td>1</td>
2886 </tr>
2887 <tr>
2888 <td>1</td>
2889 <td>1</td>
2890 <td>0</td>
2891 </tr>
2892 </tbody>
2893</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002894</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002895<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002896<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002897<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2898 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2899 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2900 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002901</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002902</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002903
Chris Lattner00950542001-06-06 20:29:01 +00002904<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002905<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002906 <a name="vectorops">Vector Operations</a>
2907</div>
2908
2909<div class="doc_text">
2910
2911<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002912target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002913vector-specific operations needed to process vectors effectively. While LLVM
2914does directly support these vector operations, many sophisticated algorithms
2915will want to use target-specific intrinsics to take full advantage of a specific
2916target.</p>
2917
2918</div>
2919
2920<!-- _______________________________________________________________________ -->
2921<div class="doc_subsubsection">
2922 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2923</div>
2924
2925<div class="doc_text">
2926
2927<h5>Syntax:</h5>
2928
2929<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002930 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002931</pre>
2932
2933<h5>Overview:</h5>
2934
2935<p>
2936The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002937element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002938</p>
2939
2940
2941<h5>Arguments:</h5>
2942
2943<p>
2944The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002945value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002946an index indicating the position from which to extract the element.
2947The index may be a variable.</p>
2948
2949<h5>Semantics:</h5>
2950
2951<p>
2952The result is a scalar of the same type as the element type of
2953<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2954<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2955results are undefined.
2956</p>
2957
2958<h5>Example:</h5>
2959
2960<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002961 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002962</pre>
2963</div>
2964
2965
2966<!-- _______________________________________________________________________ -->
2967<div class="doc_subsubsection">
2968 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2969</div>
2970
2971<div class="doc_text">
2972
2973<h5>Syntax:</h5>
2974
2975<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00002976 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002977</pre>
2978
2979<h5>Overview:</h5>
2980
2981<p>
2982The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002983element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002984</p>
2985
2986
2987<h5>Arguments:</h5>
2988
2989<p>
2990The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002991value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002992scalar value whose type must equal the element type of the first
2993operand. The third operand is an index indicating the position at
2994which to insert the value. The index may be a variable.</p>
2995
2996<h5>Semantics:</h5>
2997
2998<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002999The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00003000element values are those of <tt>val</tt> except at position
3001<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
3002exceeds the length of <tt>val</tt>, the results are undefined.
3003</p>
3004
3005<h5>Example:</h5>
3006
3007<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003008 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003009</pre>
3010</div>
3011
3012<!-- _______________________________________________________________________ -->
3013<div class="doc_subsubsection">
3014 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3015</div>
3016
3017<div class="doc_text">
3018
3019<h5>Syntax:</h5>
3020
3021<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003022 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003023</pre>
3024
3025<h5>Overview:</h5>
3026
3027<p>
3028The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wangaeb06d22008-11-10 04:46:22 +00003029from two input vectors, returning a vector with the same element type as
3030the input and length that is the same as the shuffle mask.
Chris Lattner3df241e2006-04-08 23:07:04 +00003031</p>
3032
3033<h5>Arguments:</h5>
3034
3035<p>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003036The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3037with types that match each other. The third argument is a shuffle mask whose
3038element type is always 'i32'. The result of the instruction is a vector whose
3039length is the same as the shuffle mask and whose element type is the same as
3040the element type of the first two operands.
Chris Lattner3df241e2006-04-08 23:07:04 +00003041</p>
3042
3043<p>
3044The shuffle mask operand is required to be a constant vector with either
3045constant integer or undef values.
3046</p>
3047
3048<h5>Semantics:</h5>
3049
3050<p>
3051The elements of the two input vectors are numbered from left to right across
3052both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wangaeb06d22008-11-10 04:46:22 +00003053the result vector, which element of the two input vectors the result element
Chris Lattner3df241e2006-04-08 23:07:04 +00003054gets. The element selector may be undef (meaning "don't care") and the second
3055operand may be undef if performing a shuffle from only one vector.
3056</p>
3057
3058<h5>Example:</h5>
3059
3060<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003061 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003062 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003063 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3064 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00003065 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3066 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3067 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3068 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003069</pre>
3070</div>
3071
Tanya Lattner09474292006-04-14 19:24:33 +00003072
Chris Lattner3df241e2006-04-08 23:07:04 +00003073<!-- ======================================================================= -->
3074<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003075 <a name="aggregateops">Aggregate Operations</a>
3076</div>
3077
3078<div class="doc_text">
3079
3080<p>LLVM supports several instructions for working with aggregate values.
3081</p>
3082
3083</div>
3084
3085<!-- _______________________________________________________________________ -->
3086<div class="doc_subsubsection">
3087 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3088</div>
3089
3090<div class="doc_text">
3091
3092<h5>Syntax:</h5>
3093
3094<pre>
3095 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3096</pre>
3097
3098<h5>Overview:</h5>
3099
3100<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003101The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3102or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003103</p>
3104
3105
3106<h5>Arguments:</h5>
3107
3108<p>
3109The first operand of an '<tt>extractvalue</tt>' instruction is a
3110value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003111type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003112in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003113'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3114</p>
3115
3116<h5>Semantics:</h5>
3117
3118<p>
3119The result is the value at the position in the aggregate specified by
3120the index operands.
3121</p>
3122
3123<h5>Example:</h5>
3124
3125<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003126 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003127</pre>
3128</div>
3129
3130
3131<!-- _______________________________________________________________________ -->
3132<div class="doc_subsubsection">
3133 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3134</div>
3135
3136<div class="doc_text">
3137
3138<h5>Syntax:</h5>
3139
3140<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003141 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003142</pre>
3143
3144<h5>Overview:</h5>
3145
3146<p>
3147The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003148into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003149</p>
3150
3151
3152<h5>Arguments:</h5>
3153
3154<p>
3155The first operand of an '<tt>insertvalue</tt>' instruction is a
3156value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3157The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003158The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003159indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003160indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003161'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3162The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003163by the indices.
Dan Gohman0e451ce2008-10-14 16:51:45 +00003164</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003165
3166<h5>Semantics:</h5>
3167
3168<p>
3169The result is an aggregate of the same type as <tt>val</tt>. Its
3170value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003171specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003172</p>
3173
3174<h5>Example:</h5>
3175
3176<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003177 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003178</pre>
3179</div>
3180
3181
3182<!-- ======================================================================= -->
3183<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003184 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003185</div>
3186
Misha Brukman9d0919f2003-11-08 01:05:38 +00003187<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003188
Chris Lattner261efe92003-11-25 01:02:51 +00003189<p>A key design point of an SSA-based representation is how it
3190represents memory. In LLVM, no memory locations are in SSA form, which
3191makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003192allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003193
Misha Brukman9d0919f2003-11-08 01:05:38 +00003194</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003195
Chris Lattner00950542001-06-06 20:29:01 +00003196<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003197<div class="doc_subsubsection">
3198 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3199</div>
3200
Misha Brukman9d0919f2003-11-08 01:05:38 +00003201<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003202
Chris Lattner00950542001-06-06 20:29:01 +00003203<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003204
3205<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003206 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003207</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003208
Chris Lattner00950542001-06-06 20:29:01 +00003209<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003210
Chris Lattner261efe92003-11-25 01:02:51 +00003211<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003212heap and returns a pointer to it. The object is always allocated in the generic
3213address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003214
Chris Lattner00950542001-06-06 20:29:01 +00003215<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003216
3217<p>The '<tt>malloc</tt>' instruction allocates
3218<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003219bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003220appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003221number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003222If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003223be aligned to at least that boundary. If not specified, or if zero, the target can
3224choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003225
Misha Brukman9d0919f2003-11-08 01:05:38 +00003226<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003227
Chris Lattner00950542001-06-06 20:29:01 +00003228<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003229
Chris Lattner261efe92003-11-25 01:02:51 +00003230<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewycky02ff3082008-11-24 03:41:24 +00003231a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattner72ed2002008-04-19 21:01:16 +00003232result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003233
Chris Lattner2cbdc452005-11-06 08:02:57 +00003234<h5>Example:</h5>
3235
3236<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003237 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003238
Bill Wendlingaac388b2007-05-29 09:42:13 +00003239 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3240 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3241 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3242 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3243 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003244</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00003245
3246<p>Note that the code generator does not yet respect the
3247 alignment value.</p>
3248
Misha Brukman9d0919f2003-11-08 01:05:38 +00003249</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003250
Chris Lattner00950542001-06-06 20:29:01 +00003251<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003252<div class="doc_subsubsection">
3253 <a name="i_free">'<tt>free</tt>' Instruction</a>
3254</div>
3255
Misha Brukman9d0919f2003-11-08 01:05:38 +00003256<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003257
Chris Lattner00950542001-06-06 20:29:01 +00003258<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003259
3260<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003261 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003262</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003263
Chris Lattner00950542001-06-06 20:29:01 +00003264<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003265
Chris Lattner261efe92003-11-25 01:02:51 +00003266<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003267memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003268
Chris Lattner00950542001-06-06 20:29:01 +00003269<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003270
Chris Lattner261efe92003-11-25 01:02:51 +00003271<p>'<tt>value</tt>' shall be a pointer value that points to a value
3272that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3273instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003274
Chris Lattner00950542001-06-06 20:29:01 +00003275<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003276
John Criswell9e2485c2004-12-10 15:51:16 +00003277<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003278after this instruction executes. If the pointer is null, the operation
3279is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003280
Chris Lattner00950542001-06-06 20:29:01 +00003281<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003282
3283<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003284 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003285 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003286</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003287</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003288
Chris Lattner00950542001-06-06 20:29:01 +00003289<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003290<div class="doc_subsubsection">
3291 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3292</div>
3293
Misha Brukman9d0919f2003-11-08 01:05:38 +00003294<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003295
Chris Lattner00950542001-06-06 20:29:01 +00003296<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003297
3298<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003299 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003300</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003301
Chris Lattner00950542001-06-06 20:29:01 +00003302<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003303
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003304<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3305currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003306returns to its caller. The object is always allocated in the generic address
3307space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003308
Chris Lattner00950542001-06-06 20:29:01 +00003309<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003310
John Criswell9e2485c2004-12-10 15:51:16 +00003311<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003312bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003313appropriate type to the program. If "NumElements" is specified, it is the
3314number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003315If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003316to be aligned to at least that boundary. If not specified, or if zero, the target
3317can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003318
Misha Brukman9d0919f2003-11-08 01:05:38 +00003319<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003320
Chris Lattner00950542001-06-06 20:29:01 +00003321<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003322
Chris Lattner72ed2002008-04-19 21:01:16 +00003323<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3324there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003325memory is automatically released when the function returns. The '<tt>alloca</tt>'
3326instruction is commonly used to represent automatic variables that must
3327have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003328 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003329instructions), the memory is reclaimed. Allocating zero bytes
3330is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003331
Chris Lattner00950542001-06-06 20:29:01 +00003332<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003333
3334<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003335 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3336 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3337 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3338 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003339</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003340</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003341
Chris Lattner00950542001-06-06 20:29:01 +00003342<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003343<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3344Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003345<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003346<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003347<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003348<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003349<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003350<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003351<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003352address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003353 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003354marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003355the number or order of execution of this <tt>load</tt> with other
3356volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3357instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003358<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003359The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003360(that is, the alignment of the memory address). A value of 0 or an
3361omitted "align" argument means that the operation has the preferential
3362alignment for the target. It is the responsibility of the code emitter
3363to ensure that the alignment information is correct. Overestimating
3364the alignment results in an undefined behavior. Underestimating the
3365alignment may produce less efficient code. An alignment of 1 is always
3366safe.
3367</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003368<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003369<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003370<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003371<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003372 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003373 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3374 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003375</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003376</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003377<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003378<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3379Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003380<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003381<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003382<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3383 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003384</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003385<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003386<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003387<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003388<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003389to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003390operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3391of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003392operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003393optimizer is not allowed to modify the number or order of execution of
3394this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3395 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003396<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003397The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003398(that is, the alignment of the memory address). A value of 0 or an
3399omitted "align" argument means that the operation has the preferential
3400alignment for the target. It is the responsibility of the code emitter
3401to ensure that the alignment information is correct. Overestimating
3402the alignment results in an undefined behavior. Underestimating the
3403alignment may produce less efficient code. An alignment of 1 is always
3404safe.
3405</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003406<h5>Semantics:</h5>
3407<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3408at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003409<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003410<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003411 store i32 3, i32* %ptr <i>; yields {void}</i>
3412 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003413</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003414</div>
3415
Chris Lattner2b7d3202002-05-06 03:03:22 +00003416<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003417<div class="doc_subsubsection">
3418 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3419</div>
3420
Misha Brukman9d0919f2003-11-08 01:05:38 +00003421<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003422<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003423<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003424 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003425</pre>
3426
Chris Lattner7faa8832002-04-14 06:13:44 +00003427<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003428
3429<p>
3430The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003431subelement of an aggregate data structure. It performs address calculation only
3432and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003433
Chris Lattner7faa8832002-04-14 06:13:44 +00003434<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003435
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003436<p>The first argument is always a pointer, and forms the basis of the
3437calculation. The remaining arguments are indices, that indicate which of the
3438elements of the aggregate object are indexed. The interpretation of each index
3439is dependent on the type being indexed into. The first index always indexes the
3440pointer value given as the first argument, the second index indexes a value of
3441the type pointed to (not necessarily the value directly pointed to, since the
3442first index can be non-zero), etc. The first type indexed into must be a pointer
3443value, subsequent types can be arrays, vectors and structs. Note that subsequent
3444types being indexed into can never be pointers, since that would require loading
3445the pointer before continuing calculation.</p>
3446
3447<p>The type of each index argument depends on the type it is indexing into.
3448When indexing into a (packed) structure, only <tt>i32</tt> integer
3449<b>constants</b> are allowed. When indexing into an array, pointer or vector,
3450only integers of 32 or 64 bits are allowed (also non-constants). 32-bit values
3451will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003452
Chris Lattner261efe92003-11-25 01:02:51 +00003453<p>For example, let's consider a C code fragment and how it gets
3454compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003455
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003456<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003457<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003458struct RT {
3459 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003460 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003461 char C;
3462};
3463struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003464 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003465 double Y;
3466 struct RT Z;
3467};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003468
Chris Lattnercabc8462007-05-29 15:43:56 +00003469int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003470 return &amp;s[1].Z.B[5][13];
3471}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003472</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003473</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003474
Misha Brukman9d0919f2003-11-08 01:05:38 +00003475<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003476
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003477<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003478<pre>
Chris Lattnere7886e42009-01-11 20:53:49 +00003479%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3480%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003481
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003482define i32* %foo(%ST* %s) {
3483entry:
3484 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3485 ret i32* %reg
3486}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003487</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003488</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003489
Chris Lattner7faa8832002-04-14 06:13:44 +00003490<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003491
Misha Brukman9d0919f2003-11-08 01:05:38 +00003492<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003493type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003494}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003495the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3496i8 }</tt>' type, another structure. The third index indexes into the second
3497element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003498array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003499'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3500to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003501
Chris Lattner261efe92003-11-25 01:02:51 +00003502<p>Note that it is perfectly legal to index partially through a
3503structure, returning a pointer to an inner element. Because of this,
3504the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003505
3506<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003507 define i32* %foo(%ST* %s) {
3508 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003509 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3510 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003511 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3512 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3513 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003514 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003515</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003516
3517<p>Note that it is undefined to access an array out of bounds: array and
3518pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003519The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003520defined to be accessible as variable length arrays, which requires access
3521beyond the zero'th element.</p>
3522
Chris Lattner884a9702006-08-15 00:45:58 +00003523<p>The getelementptr instruction is often confusing. For some more insight
3524into how it works, see <a href="GetElementPtr.html">the getelementptr
3525FAQ</a>.</p>
3526
Chris Lattner7faa8832002-04-14 06:13:44 +00003527<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003528
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003529<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003530 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003531 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3532 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003533 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003534 <i>; yields i8*:eptr</i>
3535 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003536</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003537</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003538
Chris Lattner00950542001-06-06 20:29:01 +00003539<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003540<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003541</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003542<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003543<p>The instructions in this category are the conversion instructions (casting)
3544which all take a single operand and a type. They perform various bit conversions
3545on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003546</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003547
Chris Lattner6536cfe2002-05-06 22:08:29 +00003548<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003549<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003550 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3551</div>
3552<div class="doc_text">
3553
3554<h5>Syntax:</h5>
3555<pre>
3556 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3557</pre>
3558
3559<h5>Overview:</h5>
3560<p>
3561The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3562</p>
3563
3564<h5>Arguments:</h5>
3565<p>
3566The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3567be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003568and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003569type. The bit size of <tt>value</tt> must be larger than the bit size of
3570<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003571
3572<h5>Semantics:</h5>
3573<p>
3574The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003575and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3576larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3577It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003578
3579<h5>Example:</h5>
3580<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003581 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003582 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3583 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003584</pre>
3585</div>
3586
3587<!-- _______________________________________________________________________ -->
3588<div class="doc_subsubsection">
3589 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3590</div>
3591<div class="doc_text">
3592
3593<h5>Syntax:</h5>
3594<pre>
3595 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3596</pre>
3597
3598<h5>Overview:</h5>
3599<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3600<tt>ty2</tt>.</p>
3601
3602
3603<h5>Arguments:</h5>
3604<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003605<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3606also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003607<tt>value</tt> must be smaller than the bit size of the destination type,
3608<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003609
3610<h5>Semantics:</h5>
3611<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003612bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003613
Reid Spencerb5929522007-01-12 15:46:11 +00003614<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003615
3616<h5>Example:</h5>
3617<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003618 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003619 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003620</pre>
3621</div>
3622
3623<!-- _______________________________________________________________________ -->
3624<div class="doc_subsubsection">
3625 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3626</div>
3627<div class="doc_text">
3628
3629<h5>Syntax:</h5>
3630<pre>
3631 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3632</pre>
3633
3634<h5>Overview:</h5>
3635<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3636
3637<h5>Arguments:</h5>
3638<p>
3639The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003640<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3641also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003642<tt>value</tt> must be smaller than the bit size of the destination type,
3643<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003644
3645<h5>Semantics:</h5>
3646<p>
3647The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3648bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003649the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003650
Reid Spencerc78f3372007-01-12 03:35:51 +00003651<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003652
3653<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003654<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003655 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003656 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003657</pre>
3658</div>
3659
3660<!-- _______________________________________________________________________ -->
3661<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003662 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3663</div>
3664
3665<div class="doc_text">
3666
3667<h5>Syntax:</h5>
3668
3669<pre>
3670 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3671</pre>
3672
3673<h5>Overview:</h5>
3674<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3675<tt>ty2</tt>.</p>
3676
3677
3678<h5>Arguments:</h5>
3679<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3680 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3681cast it to. The size of <tt>value</tt> must be larger than the size of
3682<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3683<i>no-op cast</i>.</p>
3684
3685<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003686<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3687<a href="#t_floating">floating point</a> type to a smaller
3688<a href="#t_floating">floating point</a> type. If the value cannot fit within
3689the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003690
3691<h5>Example:</h5>
3692<pre>
3693 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3694 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3695</pre>
3696</div>
3697
3698<!-- _______________________________________________________________________ -->
3699<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003700 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3701</div>
3702<div class="doc_text">
3703
3704<h5>Syntax:</h5>
3705<pre>
3706 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3707</pre>
3708
3709<h5>Overview:</h5>
3710<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3711floating point value.</p>
3712
3713<h5>Arguments:</h5>
3714<p>The '<tt>fpext</tt>' instruction takes a
3715<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003716and a <a href="#t_floating">floating point</a> type to cast it to. The source
3717type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003718
3719<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003720<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003721<a href="#t_floating">floating point</a> type to a larger
3722<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003723used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003724<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003725
3726<h5>Example:</h5>
3727<pre>
3728 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3729 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3730</pre>
3731</div>
3732
3733<!-- _______________________________________________________________________ -->
3734<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003735 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003736</div>
3737<div class="doc_text">
3738
3739<h5>Syntax:</h5>
3740<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003741 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003742</pre>
3743
3744<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003745<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003746unsigned integer equivalent of type <tt>ty2</tt>.
3747</p>
3748
3749<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003750<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003751scalar or vector <a href="#t_floating">floating point</a> value, and a type
3752to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3753type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3754vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003755
3756<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003757<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003758<a href="#t_floating">floating point</a> operand into the nearest (rounding
3759towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3760the results are undefined.</p>
3761
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003762<h5>Example:</h5>
3763<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003764 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003765 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003766 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003767</pre>
3768</div>
3769
3770<!-- _______________________________________________________________________ -->
3771<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003772 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003773</div>
3774<div class="doc_text">
3775
3776<h5>Syntax:</h5>
3777<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003778 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003779</pre>
3780
3781<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003782<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003783<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003784</p>
3785
Chris Lattner6536cfe2002-05-06 22:08:29 +00003786<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003787<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003788scalar or vector <a href="#t_floating">floating point</a> value, and a type
3789to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3790type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3791vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003792
Chris Lattner6536cfe2002-05-06 22:08:29 +00003793<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003794<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003795<a href="#t_floating">floating point</a> operand into the nearest (rounding
3796towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3797the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003798
Chris Lattner33ba0d92001-07-09 00:26:23 +00003799<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003800<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003801 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003802 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003803 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003804</pre>
3805</div>
3806
3807<!-- _______________________________________________________________________ -->
3808<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003809 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003810</div>
3811<div class="doc_text">
3812
3813<h5>Syntax:</h5>
3814<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003815 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003816</pre>
3817
3818<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003819<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003820integer and converts that value to the <tt>ty2</tt> type.</p>
3821
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003822<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003823<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3824scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3825to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3826type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3827floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003828
3829<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003830<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003831integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003832the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003833
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003834<h5>Example:</h5>
3835<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003836 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003837 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003838</pre>
3839</div>
3840
3841<!-- _______________________________________________________________________ -->
3842<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003843 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003844</div>
3845<div class="doc_text">
3846
3847<h5>Syntax:</h5>
3848<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003849 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003850</pre>
3851
3852<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003853<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003854integer and converts that value to the <tt>ty2</tt> type.</p>
3855
3856<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003857<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3858scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3859to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3860type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3861floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003862
3863<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003864<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003865integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003866the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003867
3868<h5>Example:</h5>
3869<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003870 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003871 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003872</pre>
3873</div>
3874
3875<!-- _______________________________________________________________________ -->
3876<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003877 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3878</div>
3879<div class="doc_text">
3880
3881<h5>Syntax:</h5>
3882<pre>
3883 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3884</pre>
3885
3886<h5>Overview:</h5>
3887<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3888the integer type <tt>ty2</tt>.</p>
3889
3890<h5>Arguments:</h5>
3891<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003892must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohman0e451ce2008-10-14 16:51:45 +00003893<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003894
3895<h5>Semantics:</h5>
3896<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3897<tt>ty2</tt> by interpreting the pointer value as an integer and either
3898truncating or zero extending that value to the size of the integer type. If
3899<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3900<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003901are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3902change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003903
3904<h5>Example:</h5>
3905<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003906 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3907 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003908</pre>
3909</div>
3910
3911<!-- _______________________________________________________________________ -->
3912<div class="doc_subsubsection">
3913 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3914</div>
3915<div class="doc_text">
3916
3917<h5>Syntax:</h5>
3918<pre>
3919 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3920</pre>
3921
3922<h5>Overview:</h5>
3923<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3924a pointer type, <tt>ty2</tt>.</p>
3925
3926<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003927<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003928value to cast, and a type to cast it to, which must be a
Dan Gohman0e451ce2008-10-14 16:51:45 +00003929<a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003930
3931<h5>Semantics:</h5>
3932<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3933<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3934the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3935size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3936the size of a pointer then a zero extension is done. If they are the same size,
3937nothing is done (<i>no-op cast</i>).</p>
3938
3939<h5>Example:</h5>
3940<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003941 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3942 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3943 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003944</pre>
3945</div>
3946
3947<!-- _______________________________________________________________________ -->
3948<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003949 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003950</div>
3951<div class="doc_text">
3952
3953<h5>Syntax:</h5>
3954<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003955 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003956</pre>
3957
3958<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003959
Reid Spencer5c0ef472006-11-11 23:08:07 +00003960<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003961<tt>ty2</tt> without changing any bits.</p>
3962
3963<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003964
Reid Spencer5c0ef472006-11-11 23:08:07 +00003965<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00003966a non-aggregate first class value, and a type to cast it to, which must also be
3967a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
3968<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003969and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00003970type is a pointer, the destination type must also be a pointer. This
3971instruction supports bitwise conversion of vectors to integers and to vectors
3972of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003973
3974<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003975<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003976<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3977this conversion. The conversion is done as if the <tt>value</tt> had been
3978stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3979converted to other pointer types with this instruction. To convert pointers to
3980other types, use the <a href="#i_inttoptr">inttoptr</a> or
3981<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003982
3983<h5>Example:</h5>
3984<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003985 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003986 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003987 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003988</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003989</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003990
Reid Spencer2fd21e62006-11-08 01:18:52 +00003991<!-- ======================================================================= -->
3992<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3993<div class="doc_text">
3994<p>The instructions in this category are the "miscellaneous"
3995instructions, which defy better classification.</p>
3996</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003997
3998<!-- _______________________________________________________________________ -->
3999<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4000</div>
4001<div class="doc_text">
4002<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004003<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004004</pre>
4005<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004006<p>The '<tt>icmp</tt>' instruction returns a boolean value or
4007a vector of boolean values based on comparison
4008of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004009<h5>Arguments:</h5>
4010<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004011the condition code indicating the kind of comparison to perform. It is not
4012a value, just a keyword. The possible condition code are:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004013</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004014<ol>
4015 <li><tt>eq</tt>: equal</li>
4016 <li><tt>ne</tt>: not equal </li>
4017 <li><tt>ugt</tt>: unsigned greater than</li>
4018 <li><tt>uge</tt>: unsigned greater or equal</li>
4019 <li><tt>ult</tt>: unsigned less than</li>
4020 <li><tt>ule</tt>: unsigned less or equal</li>
4021 <li><tt>sgt</tt>: signed greater than</li>
4022 <li><tt>sge</tt>: signed greater or equal</li>
4023 <li><tt>slt</tt>: signed less than</li>
4024 <li><tt>sle</tt>: signed less or equal</li>
4025</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00004026<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00004027<a href="#t_pointer">pointer</a>
4028or integer <a href="#t_vector">vector</a> typed.
4029They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004030<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004031<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00004032the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00004033yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004034</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004035<ol>
4036 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4037 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
4038 </li>
4039 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohman0e451ce2008-10-14 16:51:45 +00004040 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004041 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004042 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004043 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004044 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004045 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004046 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004047 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004048 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004049 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004050 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004051 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004052 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004053 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004054 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004055 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004056 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004057</ol>
4058<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00004059values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004060<p>If the operands are integer vectors, then they are compared
4061element by element. The result is an <tt>i1</tt> vector with
4062the same number of elements as the values being compared.
4063Otherwise, the result is an <tt>i1</tt>.
4064</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004065
4066<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00004067<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4068 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4069 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4070 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4071 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4072 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004073</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004074
4075<p>Note that the code generator does not yet support vector types with
4076 the <tt>icmp</tt> instruction.</p>
4077
Reid Spencerf3a70a62006-11-18 21:50:54 +00004078</div>
4079
4080<!-- _______________________________________________________________________ -->
4081<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4082</div>
4083<div class="doc_text">
4084<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004085<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004086</pre>
4087<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004088<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4089or vector of boolean values based on comparison
Dan Gohman0e451ce2008-10-14 16:51:45 +00004090of its operands.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004091<p>
4092If the operands are floating point scalars, then the result
4093type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4094</p>
4095<p>If the operands are floating point vectors, then the result type
4096is a vector of boolean with the same number of elements as the
4097operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004098<h5>Arguments:</h5>
4099<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004100the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004101a value, just a keyword. The possible condition code are:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004102<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004103 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004104 <li><tt>oeq</tt>: ordered and equal</li>
4105 <li><tt>ogt</tt>: ordered and greater than </li>
4106 <li><tt>oge</tt>: ordered and greater than or equal</li>
4107 <li><tt>olt</tt>: ordered and less than </li>
4108 <li><tt>ole</tt>: ordered and less than or equal</li>
4109 <li><tt>one</tt>: ordered and not equal</li>
4110 <li><tt>ord</tt>: ordered (no nans)</li>
4111 <li><tt>ueq</tt>: unordered or equal</li>
4112 <li><tt>ugt</tt>: unordered or greater than </li>
4113 <li><tt>uge</tt>: unordered or greater than or equal</li>
4114 <li><tt>ult</tt>: unordered or less than </li>
4115 <li><tt>ule</tt>: unordered or less than or equal</li>
4116 <li><tt>une</tt>: unordered or not equal</li>
4117 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004118 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004119</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004120<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00004121<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004122<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4123either a <a href="#t_floating">floating point</a> type
4124or a <a href="#t_vector">vector</a> of floating point type.
4125They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004126<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004127<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004128according to the condition code given as <tt>cond</tt>.
4129If the operands are vectors, then the vectors are compared
4130element by element.
4131Each comparison performed
Dan Gohman0e451ce2008-10-14 16:51:45 +00004132always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004133<ol>
4134 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004135 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004136 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004137 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004138 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004139 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004140 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004141 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004142 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004143 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004144 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004145 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004146 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004147 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4148 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004149 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004150 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004151 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004152 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004153 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004154 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004155 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004156 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004157 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004158 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004159 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004160 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004161 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4162</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004163
4164<h5>Example:</h5>
4165<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004166 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4167 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4168 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004169</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004170
4171<p>Note that the code generator does not yet support vector types with
4172 the <tt>fcmp</tt> instruction.</p>
4173
Reid Spencerf3a70a62006-11-18 21:50:54 +00004174</div>
4175
Reid Spencer2fd21e62006-11-08 01:18:52 +00004176<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004177<div class="doc_subsubsection">
4178 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4179</div>
4180<div class="doc_text">
4181<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004182<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004183</pre>
4184<h5>Overview:</h5>
4185<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4186element-wise comparison of its two integer vector operands.</p>
4187<h5>Arguments:</h5>
4188<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4189the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004190a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004191<ol>
4192 <li><tt>eq</tt>: equal</li>
4193 <li><tt>ne</tt>: not equal </li>
4194 <li><tt>ugt</tt>: unsigned greater than</li>
4195 <li><tt>uge</tt>: unsigned greater or equal</li>
4196 <li><tt>ult</tt>: unsigned less than</li>
4197 <li><tt>ule</tt>: unsigned less or equal</li>
4198 <li><tt>sgt</tt>: signed greater than</li>
4199 <li><tt>sge</tt>: signed greater or equal</li>
4200 <li><tt>slt</tt>: signed less than</li>
4201 <li><tt>sle</tt>: signed less or equal</li>
4202</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004203<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004204<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4205<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004206<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004207according to the condition code given as <tt>cond</tt>. The comparison yields a
4208<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4209identical type as the values being compared. The most significant bit in each
4210element is 1 if the element-wise comparison evaluates to true, and is 0
4211otherwise. All other bits of the result are undefined. The condition codes
4212are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohman0e451ce2008-10-14 16:51:45 +00004213instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004214
4215<h5>Example:</h5>
4216<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004217 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4218 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004219</pre>
4220</div>
4221
4222<!-- _______________________________________________________________________ -->
4223<div class="doc_subsubsection">
4224 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4225</div>
4226<div class="doc_text">
4227<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004228<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004229<h5>Overview:</h5>
4230<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4231element-wise comparison of its two floating point vector operands. The output
4232elements have the same width as the input elements.</p>
4233<h5>Arguments:</h5>
4234<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4235the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004236a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004237<ol>
4238 <li><tt>false</tt>: no comparison, always returns false</li>
4239 <li><tt>oeq</tt>: ordered and equal</li>
4240 <li><tt>ogt</tt>: ordered and greater than </li>
4241 <li><tt>oge</tt>: ordered and greater than or equal</li>
4242 <li><tt>olt</tt>: ordered and less than </li>
4243 <li><tt>ole</tt>: ordered and less than or equal</li>
4244 <li><tt>one</tt>: ordered and not equal</li>
4245 <li><tt>ord</tt>: ordered (no nans)</li>
4246 <li><tt>ueq</tt>: unordered or equal</li>
4247 <li><tt>ugt</tt>: unordered or greater than </li>
4248 <li><tt>uge</tt>: unordered or greater than or equal</li>
4249 <li><tt>ult</tt>: unordered or less than </li>
4250 <li><tt>ule</tt>: unordered or less than or equal</li>
4251 <li><tt>une</tt>: unordered or not equal</li>
4252 <li><tt>uno</tt>: unordered (either nans)</li>
4253 <li><tt>true</tt>: no comparison, always returns true</li>
4254</ol>
4255<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4256<a href="#t_floating">floating point</a> typed. They must also be identical
4257types.</p>
4258<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004259<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004260according to the condition code given as <tt>cond</tt>. The comparison yields a
4261<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4262an identical number of elements as the values being compared, and each element
4263having identical with to the width of the floating point elements. The most
4264significant bit in each element is 1 if the element-wise comparison evaluates to
4265true, and is 0 otherwise. All other bits of the result are undefined. The
4266condition codes are evaluated identically to the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004267<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004268
4269<h5>Example:</h5>
4270<pre>
Chris Lattner50ad45c2008-10-13 16:55:18 +00004271 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4272 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4273
4274 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4275 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemanac80ade2008-05-12 19:01:56 +00004276</pre>
4277</div>
4278
4279<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004280<div class="doc_subsubsection">
4281 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4282</div>
4283
Reid Spencer2fd21e62006-11-08 01:18:52 +00004284<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004285
Reid Spencer2fd21e62006-11-08 01:18:52 +00004286<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004287
Reid Spencer2fd21e62006-11-08 01:18:52 +00004288<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4289<h5>Overview:</h5>
4290<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4291the SSA graph representing the function.</p>
4292<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004293
Jeff Cohenb627eab2007-04-29 01:07:00 +00004294<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004295field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4296as arguments, with one pair for each predecessor basic block of the
4297current block. Only values of <a href="#t_firstclass">first class</a>
4298type may be used as the value arguments to the PHI node. Only labels
4299may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004300
Reid Spencer2fd21e62006-11-08 01:18:52 +00004301<p>There must be no non-phi instructions between the start of a basic
4302block and the PHI instructions: i.e. PHI instructions must be first in
4303a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004304
Reid Spencer2fd21e62006-11-08 01:18:52 +00004305<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004306
Jeff Cohenb627eab2007-04-29 01:07:00 +00004307<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4308specified by the pair corresponding to the predecessor basic block that executed
4309just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004310
Reid Spencer2fd21e62006-11-08 01:18:52 +00004311<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004312<pre>
4313Loop: ; Infinite loop that counts from 0 on up...
4314 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4315 %nextindvar = add i32 %indvar, 1
4316 br label %Loop
4317</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004318</div>
4319
Chris Lattnercc37aae2004-03-12 05:50:16 +00004320<!-- _______________________________________________________________________ -->
4321<div class="doc_subsubsection">
4322 <a name="i_select">'<tt>select</tt>' Instruction</a>
4323</div>
4324
4325<div class="doc_text">
4326
4327<h5>Syntax:</h5>
4328
4329<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004330 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4331
Dan Gohman0e451ce2008-10-14 16:51:45 +00004332 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004333</pre>
4334
4335<h5>Overview:</h5>
4336
4337<p>
4338The '<tt>select</tt>' instruction is used to choose one value based on a
4339condition, without branching.
4340</p>
4341
4342
4343<h5>Arguments:</h5>
4344
4345<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004346The '<tt>select</tt>' instruction requires an 'i1' value or
4347a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004348condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004349type. If the val1/val2 are vectors and
4350the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004351individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004352</p>
4353
4354<h5>Semantics:</h5>
4355
4356<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004357If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004358value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004359</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004360<p>
4361If the condition is a vector of i1, then the value arguments must
4362be vectors of the same size, and the selection is done element
4363by element.
4364</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004365
4366<h5>Example:</h5>
4367
4368<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004369 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004370</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004371
4372<p>Note that the code generator does not yet support conditions
4373 with vector type.</p>
4374
Chris Lattnercc37aae2004-03-12 05:50:16 +00004375</div>
4376
Robert Bocchino05ccd702006-01-15 20:48:27 +00004377
4378<!-- _______________________________________________________________________ -->
4379<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004380 <a name="i_call">'<tt>call</tt>' Instruction</a>
4381</div>
4382
Misha Brukman9d0919f2003-11-08 01:05:38 +00004383<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004384
Chris Lattner00950542001-06-06 20:29:01 +00004385<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004386<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004387 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004388</pre>
4389
Chris Lattner00950542001-06-06 20:29:01 +00004390<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004391
Misha Brukman9d0919f2003-11-08 01:05:38 +00004392<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004393
Chris Lattner00950542001-06-06 20:29:01 +00004394<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004395
Misha Brukman9d0919f2003-11-08 01:05:38 +00004396<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004397
Chris Lattner6536cfe2002-05-06 22:08:29 +00004398<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004399 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004400 <p>The optional "tail" marker indicates whether the callee function accesses
4401 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004402 function call is eligible for tail call optimization. Note that calls may
4403 be marked "tail" even if they do not occur before a <a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004404 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004405 </li>
4406 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004407 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004408 convention</a> the call should use. If none is specified, the call defaults
Dan Gohman0e451ce2008-10-14 16:51:45 +00004409 to using C calling conventions.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004410 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004411
4412 <li>
4413 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4414 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4415 and '<tt>inreg</tt>' attributes are valid here.</p>
4416 </li>
4417
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004418 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004419 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4420 the type of the return value. Functions that return no value are marked
4421 <tt><a href="#t_void">void</a></tt>.</p>
4422 </li>
4423 <li>
4424 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4425 value being invoked. The argument types must match the types implied by
4426 this signature. This type can be omitted if the function is not varargs
4427 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004428 </li>
4429 <li>
4430 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4431 be invoked. In most cases, this is a direct function invocation, but
4432 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004433 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004434 </li>
4435 <li>
4436 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004437 function signature argument types. All arguments must be of
4438 <a href="#t_firstclass">first class</a> type. If the function signature
4439 indicates the function accepts a variable number of arguments, the extra
4440 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004441 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004442 <li>
Devang Patel307e8ab2008-10-07 17:48:33 +00004443 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00004444 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4445 '<tt>readnone</tt>' attributes are valid here.</p>
4446 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004447</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004448
Chris Lattner00950542001-06-06 20:29:01 +00004449<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004450
Chris Lattner261efe92003-11-25 01:02:51 +00004451<p>The '<tt>call</tt>' instruction is used to cause control flow to
4452transfer to a specified function, with its incoming arguments bound to
4453the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4454instruction in the called function, control flow continues with the
4455instruction after the function call, and the return value of the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004456function is bound to the result argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004457
Chris Lattner00950542001-06-06 20:29:01 +00004458<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004459
4460<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004461 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004462 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4463 %X = tail call i32 @foo() <i>; yields i32</i>
4464 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4465 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004466
4467 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004468 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004469 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4470 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00004471 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00004472 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004473</pre>
4474
Misha Brukman9d0919f2003-11-08 01:05:38 +00004475</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004476
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004477<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004478<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004479 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004480</div>
4481
Misha Brukman9d0919f2003-11-08 01:05:38 +00004482<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004483
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004484<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004485
4486<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004487 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004488</pre>
4489
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004490<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004491
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004492<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004493the "variable argument" area of a function call. It is used to implement the
4494<tt>va_arg</tt> macro in C.</p>
4495
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004496<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004497
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004498<p>This instruction takes a <tt>va_list*</tt> value and the type of
4499the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004500increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004501actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004502
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004503<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004504
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004505<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4506type from the specified <tt>va_list</tt> and causes the
4507<tt>va_list</tt> to point to the next argument. For more information,
4508see the variable argument handling <a href="#int_varargs">Intrinsic
4509Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004510
4511<p>It is legal for this instruction to be called in a function which does not
4512take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004513function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004514
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004515<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004516href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004517argument.</p>
4518
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004519<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004520
4521<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4522
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00004523<p>Note that the code generator does not yet fully support va_arg
4524 on many targets. Also, it does not currently support va_arg with
4525 aggregate types on any target.</p>
4526
Misha Brukman9d0919f2003-11-08 01:05:38 +00004527</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004528
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004529<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004530<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4531<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004532
Misha Brukman9d0919f2003-11-08 01:05:38 +00004533<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004534
4535<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004536well known names and semantics and are required to follow certain restrictions.
4537Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004538language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004539adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004540
John Criswellfc6b8952005-05-16 16:17:45 +00004541<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004542prefix is reserved in LLVM for intrinsic names; thus, function names may not
4543begin with this prefix. Intrinsic functions must always be external functions:
4544you cannot define the body of intrinsic functions. Intrinsic functions may
4545only be used in call or invoke instructions: it is illegal to take the address
4546of an intrinsic function. Additionally, because intrinsic functions are part
4547of the LLVM language, it is required if any are added that they be documented
4548here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004549
Chandler Carruth69940402007-08-04 01:51:18 +00004550<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4551a family of functions that perform the same operation but on different data
4552types. Because LLVM can represent over 8 million different integer types,
4553overloading is used commonly to allow an intrinsic function to operate on any
4554integer type. One or more of the argument types or the result type can be
4555overloaded to accept any integer type. Argument types may also be defined as
4556exactly matching a previous argument's type or the result type. This allows an
4557intrinsic function which accepts multiple arguments, but needs all of them to
4558be of the same type, to only be overloaded with respect to a single argument or
4559the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004560
Chandler Carruth69940402007-08-04 01:51:18 +00004561<p>Overloaded intrinsics will have the names of its overloaded argument types
4562encoded into its function name, each preceded by a period. Only those types
4563which are overloaded result in a name suffix. Arguments whose type is matched
4564against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4565take an integer of any width and returns an integer of exactly the same integer
4566width. This leads to a family of functions such as
4567<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4568Only one type, the return type, is overloaded, and only one type suffix is
4569required. Because the argument's type is matched against the return type, it
4570does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004571
4572<p>To learn how to add an intrinsic function, please see the
4573<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004574</p>
4575
Misha Brukman9d0919f2003-11-08 01:05:38 +00004576</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004577
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004578<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004579<div class="doc_subsection">
4580 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4581</div>
4582
Misha Brukman9d0919f2003-11-08 01:05:38 +00004583<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004584
Misha Brukman9d0919f2003-11-08 01:05:38 +00004585<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004586 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004587intrinsic functions. These functions are related to the similarly
4588named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004589
Chris Lattner261efe92003-11-25 01:02:51 +00004590<p>All of these functions operate on arguments that use a
4591target-specific value type "<tt>va_list</tt>". The LLVM assembly
4592language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004593transformations should be prepared to handle these functions regardless of
4594the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004595
Chris Lattner374ab302006-05-15 17:26:46 +00004596<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004597instruction and the variable argument handling intrinsic functions are
4598used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004599
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004600<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004601<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004602define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004603 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004604 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004605 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004606 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004607
4608 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004609 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004610
4611 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004612 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004613 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004614 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004615 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004616
4617 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004618 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004619 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004620}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004621
4622declare void @llvm.va_start(i8*)
4623declare void @llvm.va_copy(i8*, i8*)
4624declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004625</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004626</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004627
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004628</div>
4629
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004630<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004631<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004632 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004633</div>
4634
4635
Misha Brukman9d0919f2003-11-08 01:05:38 +00004636<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004637<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004638<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004639<h5>Overview:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004640<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004641<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4642href="#i_va_arg">va_arg</a></tt>.</p>
4643
4644<h5>Arguments:</h5>
4645
Dan Gohman0e451ce2008-10-14 16:51:45 +00004646<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004647
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004648<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004649
Dan Gohman0e451ce2008-10-14 16:51:45 +00004650<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004651macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004652<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004653<tt>va_arg</tt> will produce the first variable argument passed to the function.
4654Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004655last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004656
Misha Brukman9d0919f2003-11-08 01:05:38 +00004657</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004658
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004659<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004660<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004661 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004662</div>
4663
Misha Brukman9d0919f2003-11-08 01:05:38 +00004664<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004665<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004666<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004667<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004668
Jeff Cohenb627eab2007-04-29 01:07:00 +00004669<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004670which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004671or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004672
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004673<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004674
Jeff Cohenb627eab2007-04-29 01:07:00 +00004675<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004676
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004677<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004678
Misha Brukman9d0919f2003-11-08 01:05:38 +00004679<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004680macro available in C. In a target-dependent way, it destroys the
4681<tt>va_list</tt> element to which the argument points. Calls to <a
4682href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4683<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4684<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004685
Misha Brukman9d0919f2003-11-08 01:05:38 +00004686</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004687
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004688<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004689<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004690 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004691</div>
4692
Misha Brukman9d0919f2003-11-08 01:05:38 +00004693<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004694
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004695<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004696
4697<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004698 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004699</pre>
4700
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004701<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004702
Jeff Cohenb627eab2007-04-29 01:07:00 +00004703<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4704from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004705
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004706<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004707
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004708<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004709The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004710
Chris Lattnerd7923912004-05-23 21:06:01 +00004711
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004712<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004713
Jeff Cohenb627eab2007-04-29 01:07:00 +00004714<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4715macro available in C. In a target-dependent way, it copies the source
4716<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4717intrinsic is necessary because the <tt><a href="#int_va_start">
4718llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4719example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004720
Misha Brukman9d0919f2003-11-08 01:05:38 +00004721</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004722
Chris Lattner33aec9e2004-02-12 17:01:32 +00004723<!-- ======================================================================= -->
4724<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004725 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4726</div>
4727
4728<div class="doc_text">
4729
4730<p>
4731LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004732Collection</a> (GC) requires the implementation and generation of these
4733intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004734These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004735stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004736href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004737Front-ends for type-safe garbage collected languages should generate these
4738intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4739href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4740</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004741
4742<p>The garbage collection intrinsics only operate on objects in the generic
4743 address space (address space zero).</p>
4744
Chris Lattnerd7923912004-05-23 21:06:01 +00004745</div>
4746
4747<!-- _______________________________________________________________________ -->
4748<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004749 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004750</div>
4751
4752<div class="doc_text">
4753
4754<h5>Syntax:</h5>
4755
4756<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004757 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004758</pre>
4759
4760<h5>Overview:</h5>
4761
John Criswell9e2485c2004-12-10 15:51:16 +00004762<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004763the code generator, and allows some metadata to be associated with it.</p>
4764
4765<h5>Arguments:</h5>
4766
4767<p>The first argument specifies the address of a stack object that contains the
4768root pointer. The second pointer (which must be either a constant or a global
4769value address) contains the meta-data to be associated with the root.</p>
4770
4771<h5>Semantics:</h5>
4772
Chris Lattner05d67092008-04-24 05:59:56 +00004773<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004774location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004775the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4776intrinsic may only be used in a function which <a href="#gc">specifies a GC
4777algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004778
4779</div>
4780
4781
4782<!-- _______________________________________________________________________ -->
4783<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004784 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004785</div>
4786
4787<div class="doc_text">
4788
4789<h5>Syntax:</h5>
4790
4791<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004792 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004793</pre>
4794
4795<h5>Overview:</h5>
4796
4797<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4798locations, allowing garbage collector implementations that require read
4799barriers.</p>
4800
4801<h5>Arguments:</h5>
4802
Chris Lattner80626e92006-03-14 20:02:51 +00004803<p>The second argument is the address to read from, which should be an address
4804allocated from the garbage collector. The first object is a pointer to the
4805start of the referenced object, if needed by the language runtime (otherwise
4806null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004807
4808<h5>Semantics:</h5>
4809
4810<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4811instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004812garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4813may only be used in a function which <a href="#gc">specifies a GC
4814algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004815
4816</div>
4817
4818
4819<!-- _______________________________________________________________________ -->
4820<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004821 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004822</div>
4823
4824<div class="doc_text">
4825
4826<h5>Syntax:</h5>
4827
4828<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004829 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004830</pre>
4831
4832<h5>Overview:</h5>
4833
4834<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4835locations, allowing garbage collector implementations that require write
4836barriers (such as generational or reference counting collectors).</p>
4837
4838<h5>Arguments:</h5>
4839
Chris Lattner80626e92006-03-14 20:02:51 +00004840<p>The first argument is the reference to store, the second is the start of the
4841object to store it to, and the third is the address of the field of Obj to
4842store to. If the runtime does not require a pointer to the object, Obj may be
4843null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004844
4845<h5>Semantics:</h5>
4846
4847<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4848instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004849garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4850may only be used in a function which <a href="#gc">specifies a GC
4851algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004852
4853</div>
4854
4855
4856
4857<!-- ======================================================================= -->
4858<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004859 <a name="int_codegen">Code Generator Intrinsics</a>
4860</div>
4861
4862<div class="doc_text">
4863<p>
4864These intrinsics are provided by LLVM to expose special features that may only
4865be implemented with code generator support.
4866</p>
4867
4868</div>
4869
4870<!-- _______________________________________________________________________ -->
4871<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004872 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004873</div>
4874
4875<div class="doc_text">
4876
4877<h5>Syntax:</h5>
4878<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004879 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004880</pre>
4881
4882<h5>Overview:</h5>
4883
4884<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004885The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4886target-specific value indicating the return address of the current function
4887or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004888</p>
4889
4890<h5>Arguments:</h5>
4891
4892<p>
4893The argument to this intrinsic indicates which function to return the address
4894for. Zero indicates the calling function, one indicates its caller, etc. The
4895argument is <b>required</b> to be a constant integer value.
4896</p>
4897
4898<h5>Semantics:</h5>
4899
4900<p>
4901The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4902the return address of the specified call frame, or zero if it cannot be
4903identified. The value returned by this intrinsic is likely to be incorrect or 0
4904for arguments other than zero, so it should only be used for debugging purposes.
4905</p>
4906
4907<p>
4908Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004909aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004910source-language caller.
4911</p>
4912</div>
4913
4914
4915<!-- _______________________________________________________________________ -->
4916<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004917 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004918</div>
4919
4920<div class="doc_text">
4921
4922<h5>Syntax:</h5>
4923<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004924 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004925</pre>
4926
4927<h5>Overview:</h5>
4928
4929<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004930The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4931target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004932</p>
4933
4934<h5>Arguments:</h5>
4935
4936<p>
4937The argument to this intrinsic indicates which function to return the frame
4938pointer for. Zero indicates the calling function, one indicates its caller,
4939etc. The argument is <b>required</b> to be a constant integer value.
4940</p>
4941
4942<h5>Semantics:</h5>
4943
4944<p>
4945The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4946the frame address of the specified call frame, or zero if it cannot be
4947identified. The value returned by this intrinsic is likely to be incorrect or 0
4948for arguments other than zero, so it should only be used for debugging purposes.
4949</p>
4950
4951<p>
4952Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004953aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004954source-language caller.
4955</p>
4956</div>
4957
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004958<!-- _______________________________________________________________________ -->
4959<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004960 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004961</div>
4962
4963<div class="doc_text">
4964
4965<h5>Syntax:</h5>
4966<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004967 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004968</pre>
4969
4970<h5>Overview:</h5>
4971
4972<p>
4973The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004974the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004975<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4976features like scoped automatic variable sized arrays in C99.
4977</p>
4978
4979<h5>Semantics:</h5>
4980
4981<p>
4982This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004983href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004984<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4985<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4986state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4987practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4988that were allocated after the <tt>llvm.stacksave</tt> was executed.
4989</p>
4990
4991</div>
4992
4993<!-- _______________________________________________________________________ -->
4994<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004995 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004996</div>
4997
4998<div class="doc_text">
4999
5000<h5>Syntax:</h5>
5001<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005002 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00005003</pre>
5004
5005<h5>Overview:</h5>
5006
5007<p>
5008The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5009the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005010href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00005011useful for implementing language features like scoped automatic variable sized
5012arrays in C99.
5013</p>
5014
5015<h5>Semantics:</h5>
5016
5017<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00005018See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00005019</p>
5020
5021</div>
5022
5023
5024<!-- _______________________________________________________________________ -->
5025<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005026 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005027</div>
5028
5029<div class="doc_text">
5030
5031<h5>Syntax:</h5>
5032<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005033 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005034</pre>
5035
5036<h5>Overview:</h5>
5037
5038
5039<p>
5040The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00005041a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
5042no
5043effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00005044characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005045</p>
5046
5047<h5>Arguments:</h5>
5048
5049<p>
5050<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
5051determining if the fetch should be for a read (0) or write (1), and
5052<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00005053locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005054<tt>locality</tt> arguments must be constant integers.
5055</p>
5056
5057<h5>Semantics:</h5>
5058
5059<p>
5060This intrinsic does not modify the behavior of the program. In particular,
5061prefetches cannot trap and do not produce a value. On targets that support this
5062intrinsic, the prefetch can provide hints to the processor cache for better
5063performance.
5064</p>
5065
5066</div>
5067
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005068<!-- _______________________________________________________________________ -->
5069<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005070 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005071</div>
5072
5073<div class="doc_text">
5074
5075<h5>Syntax:</h5>
5076<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005077 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005078</pre>
5079
5080<h5>Overview:</h5>
5081
5082
5083<p>
John Criswellfc6b8952005-05-16 16:17:45 +00005084The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00005085(PC) in a region of
5086code to simulators and other tools. The method is target specific, but it is
5087expected that the marker will use exported symbols to transmit the PC of the
5088marker.
5089The marker makes no guarantees that it will remain with any specific instruction
5090after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00005091optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00005092correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005093</p>
5094
5095<h5>Arguments:</h5>
5096
5097<p>
5098<tt>id</tt> is a numerical id identifying the marker.
5099</p>
5100
5101<h5>Semantics:</h5>
5102
5103<p>
5104This intrinsic does not modify the behavior of the program. Backends that do not
5105support this intrinisic may ignore it.
5106</p>
5107
5108</div>
5109
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005110<!-- _______________________________________________________________________ -->
5111<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005112 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005113</div>
5114
5115<div class="doc_text">
5116
5117<h5>Syntax:</h5>
5118<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005119 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005120</pre>
5121
5122<h5>Overview:</h5>
5123
5124
5125<p>
5126The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5127counter register (or similar low latency, high accuracy clocks) on those targets
5128that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5129As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5130should only be used for small timings.
5131</p>
5132
5133<h5>Semantics:</h5>
5134
5135<p>
5136When directly supported, reading the cycle counter should not modify any memory.
5137Implementations are allowed to either return a application specific value or a
5138system wide value. On backends without support, this is lowered to a constant 0.
5139</p>
5140
5141</div>
5142
Chris Lattner10610642004-02-14 04:08:35 +00005143<!-- ======================================================================= -->
5144<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005145 <a name="int_libc">Standard C Library Intrinsics</a>
5146</div>
5147
5148<div class="doc_text">
5149<p>
Chris Lattner10610642004-02-14 04:08:35 +00005150LLVM provides intrinsics for a few important standard C library functions.
5151These intrinsics allow source-language front-ends to pass information about the
5152alignment of the pointer arguments to the code generator, providing opportunity
5153for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005154</p>
5155
5156</div>
5157
5158<!-- _______________________________________________________________________ -->
5159<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005160 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005161</div>
5162
5163<div class="doc_text">
5164
5165<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005166<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5167width. Not all targets support all bit widths however.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005168<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005169 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5170 i8 &lt;len&gt;, i32 &lt;align&gt;)
5171 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5172 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005173 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005174 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005175 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005176 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005177</pre>
5178
5179<h5>Overview:</h5>
5180
5181<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005182The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005183location to the destination location.
5184</p>
5185
5186<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005187Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5188intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005189</p>
5190
5191<h5>Arguments:</h5>
5192
5193<p>
5194The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005195the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005196specifying the number of bytes to copy, and the fourth argument is the alignment
5197of the source and destination locations.
5198</p>
5199
Chris Lattner3301ced2004-02-12 21:18:15 +00005200<p>
5201If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005202the caller guarantees that both the source and destination pointers are aligned
5203to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005204</p>
5205
Chris Lattner33aec9e2004-02-12 17:01:32 +00005206<h5>Semantics:</h5>
5207
5208<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005209The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005210location to the destination location, which are not allowed to overlap. It
5211copies "len" bytes of memory over. If the argument is known to be aligned to
5212some boundary, this can be specified as the fourth argument, otherwise it should
5213be set to 0 or 1.
5214</p>
5215</div>
5216
5217
Chris Lattner0eb51b42004-02-12 18:10:10 +00005218<!-- _______________________________________________________________________ -->
5219<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005220 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005221</div>
5222
5223<div class="doc_text">
5224
5225<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005226<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5227width. Not all targets support all bit widths however.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005228<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005229 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5230 i8 &lt;len&gt;, i32 &lt;align&gt;)
5231 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5232 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005233 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005234 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005235 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005236 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005237</pre>
5238
5239<h5>Overview:</h5>
5240
5241<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005242The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5243location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005244'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005245</p>
5246
5247<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005248Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5249intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005250</p>
5251
5252<h5>Arguments:</h5>
5253
5254<p>
5255The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005256the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005257specifying the number of bytes to copy, and the fourth argument is the alignment
5258of the source and destination locations.
5259</p>
5260
Chris Lattner3301ced2004-02-12 21:18:15 +00005261<p>
5262If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005263the caller guarantees that the source and destination pointers are aligned to
5264that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005265</p>
5266
Chris Lattner0eb51b42004-02-12 18:10:10 +00005267<h5>Semantics:</h5>
5268
5269<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005270The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005271location to the destination location, which may overlap. It
5272copies "len" bytes of memory over. If the argument is known to be aligned to
5273some boundary, this can be specified as the fourth argument, otherwise it should
5274be set to 0 or 1.
5275</p>
5276</div>
5277
Chris Lattner8ff75902004-01-06 05:31:32 +00005278
Chris Lattner10610642004-02-14 04:08:35 +00005279<!-- _______________________________________________________________________ -->
5280<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005281 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005282</div>
5283
5284<div class="doc_text">
5285
5286<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005287<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5288width. Not all targets support all bit widths however.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005289<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005290 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5291 i8 &lt;len&gt;, i32 &lt;align&gt;)
5292 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5293 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005294 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005295 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005296 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005297 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005298</pre>
5299
5300<h5>Overview:</h5>
5301
5302<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005303The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005304byte value.
5305</p>
5306
5307<p>
5308Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5309does not return a value, and takes an extra alignment argument.
5310</p>
5311
5312<h5>Arguments:</h5>
5313
5314<p>
5315The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005316byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005317argument specifying the number of bytes to fill, and the fourth argument is the
5318known alignment of destination location.
5319</p>
5320
5321<p>
5322If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005323the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005324</p>
5325
5326<h5>Semantics:</h5>
5327
5328<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005329The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5330the
Chris Lattner10610642004-02-14 04:08:35 +00005331destination location. If the argument is known to be aligned to some boundary,
5332this can be specified as the fourth argument, otherwise it should be set to 0 or
53331.
5334</p>
5335</div>
5336
5337
Chris Lattner32006282004-06-11 02:28:03 +00005338<!-- _______________________________________________________________________ -->
5339<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005340 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005341</div>
5342
5343<div class="doc_text">
5344
5345<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005346<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005347floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005348types however.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005349<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005350 declare float @llvm.sqrt.f32(float %Val)
5351 declare double @llvm.sqrt.f64(double %Val)
5352 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5353 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5354 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005355</pre>
5356
5357<h5>Overview:</h5>
5358
5359<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005360The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005361returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005362<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005363negative numbers other than -0.0 (which allows for better optimization, because
5364there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5365defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005366</p>
5367
5368<h5>Arguments:</h5>
5369
5370<p>
5371The argument and return value are floating point numbers of the same type.
5372</p>
5373
5374<h5>Semantics:</h5>
5375
5376<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005377This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005378floating point number.
5379</p>
5380</div>
5381
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005382<!-- _______________________________________________________________________ -->
5383<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005384 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005385</div>
5386
5387<div class="doc_text">
5388
5389<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005390<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005391floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005392types however.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005393<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005394 declare float @llvm.powi.f32(float %Val, i32 %power)
5395 declare double @llvm.powi.f64(double %Val, i32 %power)
5396 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5397 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5398 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005399</pre>
5400
5401<h5>Overview:</h5>
5402
5403<p>
5404The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5405specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005406multiplications is not defined. When a vector of floating point type is
5407used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005408</p>
5409
5410<h5>Arguments:</h5>
5411
5412<p>
5413The second argument is an integer power, and the first is a value to raise to
5414that power.
5415</p>
5416
5417<h5>Semantics:</h5>
5418
5419<p>
5420This function returns the first value raised to the second power with an
5421unspecified sequence of rounding operations.</p>
5422</div>
5423
Dan Gohman91c284c2007-10-15 20:30:11 +00005424<!-- _______________________________________________________________________ -->
5425<div class="doc_subsubsection">
5426 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5427</div>
5428
5429<div class="doc_text">
5430
5431<h5>Syntax:</h5>
5432<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5433floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005434types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005435<pre>
5436 declare float @llvm.sin.f32(float %Val)
5437 declare double @llvm.sin.f64(double %Val)
5438 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5439 declare fp128 @llvm.sin.f128(fp128 %Val)
5440 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5441</pre>
5442
5443<h5>Overview:</h5>
5444
5445<p>
5446The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5447</p>
5448
5449<h5>Arguments:</h5>
5450
5451<p>
5452The argument and return value are floating point numbers of the same type.
5453</p>
5454
5455<h5>Semantics:</h5>
5456
5457<p>
5458This function returns the sine of the specified operand, returning the
5459same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005460conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005461</div>
5462
5463<!-- _______________________________________________________________________ -->
5464<div class="doc_subsubsection">
5465 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5466</div>
5467
5468<div class="doc_text">
5469
5470<h5>Syntax:</h5>
5471<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5472floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005473types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005474<pre>
5475 declare float @llvm.cos.f32(float %Val)
5476 declare double @llvm.cos.f64(double %Val)
5477 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5478 declare fp128 @llvm.cos.f128(fp128 %Val)
5479 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5480</pre>
5481
5482<h5>Overview:</h5>
5483
5484<p>
5485The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5486</p>
5487
5488<h5>Arguments:</h5>
5489
5490<p>
5491The argument and return value are floating point numbers of the same type.
5492</p>
5493
5494<h5>Semantics:</h5>
5495
5496<p>
5497This function returns the cosine of the specified operand, returning the
5498same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005499conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005500</div>
5501
5502<!-- _______________________________________________________________________ -->
5503<div class="doc_subsubsection">
5504 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5505</div>
5506
5507<div class="doc_text">
5508
5509<h5>Syntax:</h5>
5510<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5511floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005512types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005513<pre>
5514 declare float @llvm.pow.f32(float %Val, float %Power)
5515 declare double @llvm.pow.f64(double %Val, double %Power)
5516 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5517 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5518 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5519</pre>
5520
5521<h5>Overview:</h5>
5522
5523<p>
5524The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5525specified (positive or negative) power.
5526</p>
5527
5528<h5>Arguments:</h5>
5529
5530<p>
5531The second argument is a floating point power, and the first is a value to
5532raise to that power.
5533</p>
5534
5535<h5>Semantics:</h5>
5536
5537<p>
5538This function returns the first value raised to the second power,
5539returning the
5540same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005541conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005542</div>
5543
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005544
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005545<!-- ======================================================================= -->
5546<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005547 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005548</div>
5549
5550<div class="doc_text">
5551<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005552LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005553These allow efficient code generation for some algorithms.
5554</p>
5555
5556</div>
5557
5558<!-- _______________________________________________________________________ -->
5559<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005560 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005561</div>
5562
5563<div class="doc_text">
5564
5565<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005566<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohman0e451ce2008-10-14 16:51:45 +00005567type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005568<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005569 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5570 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5571 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005572</pre>
5573
5574<h5>Overview:</h5>
5575
5576<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005577The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005578values with an even number of bytes (positive multiple of 16 bits). These are
5579useful for performing operations on data that is not in the target's native
5580byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005581</p>
5582
5583<h5>Semantics:</h5>
5584
5585<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005586The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005587and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5588intrinsic returns an i32 value that has the four bytes of the input i32
5589swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005590i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5591<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005592additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005593</p>
5594
5595</div>
5596
5597<!-- _______________________________________________________________________ -->
5598<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005599 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005600</div>
5601
5602<div class="doc_text">
5603
5604<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005605<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohman0e451ce2008-10-14 16:51:45 +00005606width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005607<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005608 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5609 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005610 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005611 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5612 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005613</pre>
5614
5615<h5>Overview:</h5>
5616
5617<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005618The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5619value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005620</p>
5621
5622<h5>Arguments:</h5>
5623
5624<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005625The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005626integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005627</p>
5628
5629<h5>Semantics:</h5>
5630
5631<p>
5632The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5633</p>
5634</div>
5635
5636<!-- _______________________________________________________________________ -->
5637<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005638 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005639</div>
5640
5641<div class="doc_text">
5642
5643<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005644<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005645integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005646<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005647 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5648 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005649 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005650 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5651 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005652</pre>
5653
5654<h5>Overview:</h5>
5655
5656<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005657The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5658leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005659</p>
5660
5661<h5>Arguments:</h5>
5662
5663<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005664The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005665integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005666</p>
5667
5668<h5>Semantics:</h5>
5669
5670<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005671The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5672in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005673of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005674</p>
5675</div>
Chris Lattner32006282004-06-11 02:28:03 +00005676
5677
Chris Lattnereff29ab2005-05-15 19:39:26 +00005678
5679<!-- _______________________________________________________________________ -->
5680<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005681 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005682</div>
5683
5684<div class="doc_text">
5685
5686<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005687<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005688integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005689<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005690 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5691 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005692 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005693 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5694 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005695</pre>
5696
5697<h5>Overview:</h5>
5698
5699<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005700The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5701trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005702</p>
5703
5704<h5>Arguments:</h5>
5705
5706<p>
5707The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005708integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005709</p>
5710
5711<h5>Semantics:</h5>
5712
5713<p>
5714The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5715in a variable. If the src == 0 then the result is the size in bits of the type
5716of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5717</p>
5718</div>
5719
Reid Spencer497d93e2007-04-01 08:27:01 +00005720<!-- _______________________________________________________________________ -->
5721<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005722 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005723</div>
5724
5725<div class="doc_text">
5726
5727<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005728<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005729on any integer bit width.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005730<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005731 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5732 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005733</pre>
5734
5735<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005736<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005737range of bits from an integer value and returns them in the same bit width as
5738the original value.</p>
5739
5740<h5>Arguments:</h5>
5741<p>The first argument, <tt>%val</tt> and the result may be integer types of
5742any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005743arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005744
5745<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005746<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005747of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5748<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5749operates in forward mode.</p>
5750<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5751right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005752only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5753<ol>
5754 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5755 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5756 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5757 to determine the number of bits to retain.</li>
5758 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005759 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005760</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005761<p>In reverse mode, a similar computation is made except that the bits are
5762returned in the reverse order. So, for example, if <tt>X</tt> has the value
5763<tt>i16 0x0ACF (101011001111)</tt> and we apply
5764<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5765<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005766</div>
5767
Reid Spencerf86037f2007-04-11 23:23:49 +00005768<div class="doc_subsubsection">
5769 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5770</div>
5771
5772<div class="doc_text">
5773
5774<h5>Syntax:</h5>
5775<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005776on any integer bit width.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00005777<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005778 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5779 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005780</pre>
5781
5782<h5>Overview:</h5>
5783<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5784of bits in an integer value with another integer value. It returns the integer
5785with the replaced bits.</p>
5786
5787<h5>Arguments:</h5>
5788<p>The first argument, <tt>%val</tt> and the result may be integer types of
5789any bit width but they must have the same bit width. <tt>%val</tt> is the value
5790whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5791integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5792type since they specify only a bit index.</p>
5793
5794<h5>Semantics:</h5>
5795<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5796of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5797<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5798operates in forward mode.</p>
5799<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5800truncating it down to the size of the replacement area or zero extending it
5801up to that size.</p>
5802<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5803are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5804in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohman0e451ce2008-10-14 16:51:45 +00005805to the <tt>%hi</tt>th bit.</p>
Reid Spencerc6749c42007-05-14 16:50:20 +00005806<p>In reverse mode, a similar computation is made except that the bits are
5807reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohman0e451ce2008-10-14 16:51:45 +00005808<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00005809<h5>Examples:</h5>
5810<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005811 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005812 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5813 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5814 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005815 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005816</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00005817</div>
5818
Chris Lattner8ff75902004-01-06 05:31:32 +00005819<!-- ======================================================================= -->
5820<div class="doc_subsection">
5821 <a name="int_debugger">Debugger Intrinsics</a>
5822</div>
5823
5824<div class="doc_text">
5825<p>
5826The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5827are described in the <a
5828href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5829Debugging</a> document.
5830</p>
5831</div>
5832
5833
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005834<!-- ======================================================================= -->
5835<div class="doc_subsection">
5836 <a name="int_eh">Exception Handling Intrinsics</a>
5837</div>
5838
5839<div class="doc_text">
5840<p> The LLVM exception handling intrinsics (which all start with
5841<tt>llvm.eh.</tt> prefix), are described in the <a
5842href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5843Handling</a> document. </p>
5844</div>
5845
Tanya Lattner6d806e92007-06-15 20:50:54 +00005846<!-- ======================================================================= -->
5847<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005848 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005849</div>
5850
5851<div class="doc_text">
5852<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005853 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005854 the <tt>nest</tt> attribute, from a function. The result is a callable
5855 function pointer lacking the nest parameter - the caller does not need
5856 to provide a value for it. Instead, the value to use is stored in
5857 advance in a "trampoline", a block of memory usually allocated
5858 on the stack, which also contains code to splice the nest value into the
5859 argument list. This is used to implement the GCC nested function address
5860 extension.
5861</p>
5862<p>
5863 For example, if the function is
5864 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00005865 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005866<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005867 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5868 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5869 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5870 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005871</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00005872 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5873 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005874</div>
5875
5876<!-- _______________________________________________________________________ -->
5877<div class="doc_subsubsection">
5878 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5879</div>
5880<div class="doc_text">
5881<h5>Syntax:</h5>
5882<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005883declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005884</pre>
5885<h5>Overview:</h5>
5886<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005887 This fills the memory pointed to by <tt>tramp</tt> with code
5888 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005889</p>
5890<h5>Arguments:</h5>
5891<p>
5892 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5893 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5894 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005895 intrinsic. Note that the size and the alignment are target-specific - LLVM
5896 currently provides no portable way of determining them, so a front-end that
5897 generates this intrinsic needs to have some target-specific knowledge.
5898 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005899</p>
5900<h5>Semantics:</h5>
5901<p>
5902 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005903 dependent code, turning it into a function. A pointer to this function is
5904 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005905 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005906 before being called. The new function's signature is the same as that of
5907 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5908 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5909 of pointer type. Calling the new function is equivalent to calling
5910 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5911 missing <tt>nest</tt> argument. If, after calling
5912 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5913 modified, then the effect of any later call to the returned function pointer is
5914 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005915</p>
5916</div>
5917
5918<!-- ======================================================================= -->
5919<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005920 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5921</div>
5922
5923<div class="doc_text">
5924<p>
5925 These intrinsic functions expand the "universal IR" of LLVM to represent
5926 hardware constructs for atomic operations and memory synchronization. This
5927 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00005928 is aimed at a low enough level to allow any programming models or APIs
5929 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005930 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5931 hardware behavior. Just as hardware provides a "universal IR" for source
5932 languages, it also provides a starting point for developing a "universal"
5933 atomic operation and synchronization IR.
5934</p>
5935<p>
5936 These do <em>not</em> form an API such as high-level threading libraries,
5937 software transaction memory systems, atomic primitives, and intrinsic
5938 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5939 application libraries. The hardware interface provided by LLVM should allow
5940 a clean implementation of all of these APIs and parallel programming models.
5941 No one model or paradigm should be selected above others unless the hardware
5942 itself ubiquitously does so.
5943
5944</p>
5945</div>
5946
5947<!-- _______________________________________________________________________ -->
5948<div class="doc_subsubsection">
5949 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5950</div>
5951<div class="doc_text">
5952<h5>Syntax:</h5>
5953<pre>
5954declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5955i1 &lt;device&gt; )
5956
5957</pre>
5958<h5>Overview:</h5>
5959<p>
5960 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5961 specific pairs of memory access types.
5962</p>
5963<h5>Arguments:</h5>
5964<p>
5965 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5966 The first four arguments enables a specific barrier as listed below. The fith
5967 argument specifies that the barrier applies to io or device or uncached memory.
5968
5969</p>
5970 <ul>
5971 <li><tt>ll</tt>: load-load barrier</li>
5972 <li><tt>ls</tt>: load-store barrier</li>
5973 <li><tt>sl</tt>: store-load barrier</li>
5974 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005975 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005976 </ul>
5977<h5>Semantics:</h5>
5978<p>
5979 This intrinsic causes the system to enforce some ordering constraints upon
5980 the loads and stores of the program. This barrier does not indicate
5981 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5982 which they occur. For any of the specified pairs of load and store operations
5983 (f.ex. load-load, or store-load), all of the first operations preceding the
5984 barrier will complete before any of the second operations succeeding the
5985 barrier begin. Specifically the semantics for each pairing is as follows:
5986</p>
5987 <ul>
5988 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5989 after the barrier begins.</li>
5990
5991 <li><tt>ls</tt>: All loads before the barrier must complete before any
5992 store after the barrier begins.</li>
5993 <li><tt>ss</tt>: All stores before the barrier must complete before any
5994 store after the barrier begins.</li>
5995 <li><tt>sl</tt>: All stores before the barrier must complete before any
5996 load after the barrier begins.</li>
5997 </ul>
5998<p>
5999 These semantics are applied with a logical "and" behavior when more than one
6000 is enabled in a single memory barrier intrinsic.
6001</p>
6002<p>
6003 Backends may implement stronger barriers than those requested when they do not
6004 support as fine grained a barrier as requested. Some architectures do not
6005 need all types of barriers and on such architectures, these become noops.
6006</p>
6007<h5>Example:</h5>
6008<pre>
6009%ptr = malloc i32
6010 store i32 4, %ptr
6011
6012%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6013 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6014 <i>; guarantee the above finishes</i>
6015 store i32 8, %ptr <i>; before this begins</i>
6016</pre>
6017</div>
6018
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006019<!-- _______________________________________________________________________ -->
6020<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006021 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006022</div>
6023<div class="doc_text">
6024<h5>Syntax:</h5>
6025<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00006026 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6027 any integer bit width and for different address spaces. Not all targets
6028 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006029
6030<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006031declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6032declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6033declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6034declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006035
6036</pre>
6037<h5>Overview:</h5>
6038<p>
6039 This loads a value in memory and compares it to a given value. If they are
6040 equal, it stores a new value into the memory.
6041</p>
6042<h5>Arguments:</h5>
6043<p>
Mon P Wang28873102008-06-25 08:15:39 +00006044 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006045 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6046 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6047 this integer type. While any bit width integer may be used, targets may only
6048 lower representations they support in hardware.
6049
6050</p>
6051<h5>Semantics:</h5>
6052<p>
6053 This entire intrinsic must be executed atomically. It first loads the value
6054 in memory pointed to by <tt>ptr</tt> and compares it with the value
6055 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
6056 loaded value is yielded in all cases. This provides the equivalent of an
6057 atomic compare-and-swap operation within the SSA framework.
6058</p>
6059<h5>Examples:</h5>
6060
6061<pre>
6062%ptr = malloc i32
6063 store i32 4, %ptr
6064
6065%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006066%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006067 <i>; yields {i32}:result1 = 4</i>
6068%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6069%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6070
6071%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006072%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006073 <i>; yields {i32}:result2 = 8</i>
6074%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6075
6076%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6077</pre>
6078</div>
6079
6080<!-- _______________________________________________________________________ -->
6081<div class="doc_subsubsection">
6082 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6083</div>
6084<div class="doc_text">
6085<h5>Syntax:</h5>
6086
6087<p>
6088 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6089 integer bit width. Not all targets support all bit widths however.</p>
6090<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006091declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6092declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6093declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6094declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006095
6096</pre>
6097<h5>Overview:</h5>
6098<p>
6099 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6100 the value from memory. It then stores the value in <tt>val</tt> in the memory
6101 at <tt>ptr</tt>.
6102</p>
6103<h5>Arguments:</h5>
6104
6105<p>
Mon P Wang28873102008-06-25 08:15:39 +00006106 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006107 <tt>val</tt> argument and the result must be integers of the same bit width.
6108 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6109 integer type. The targets may only lower integer representations they
6110 support.
6111</p>
6112<h5>Semantics:</h5>
6113<p>
6114 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6115 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6116 equivalent of an atomic swap operation within the SSA framework.
6117
6118</p>
6119<h5>Examples:</h5>
6120<pre>
6121%ptr = malloc i32
6122 store i32 4, %ptr
6123
6124%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006125%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006126 <i>; yields {i32}:result1 = 4</i>
6127%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6128%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6129
6130%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006131%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006132 <i>; yields {i32}:result2 = 8</i>
6133
6134%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6135%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6136</pre>
6137</div>
6138
6139<!-- _______________________________________________________________________ -->
6140<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006141 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006142
6143</div>
6144<div class="doc_text">
6145<h5>Syntax:</h5>
6146<p>
Mon P Wang28873102008-06-25 08:15:39 +00006147 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006148 integer bit width. Not all targets support all bit widths however.</p>
6149<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006150declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6151declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6152declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6153declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006154
6155</pre>
6156<h5>Overview:</h5>
6157<p>
6158 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6159 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6160</p>
6161<h5>Arguments:</h5>
6162<p>
6163
6164 The intrinsic takes two arguments, the first a pointer to an integer value
6165 and the second an integer value. The result is also an integer value. These
6166 integer types can have any bit width, but they must all have the same bit
6167 width. The targets may only lower integer representations they support.
6168</p>
6169<h5>Semantics:</h5>
6170<p>
6171 This intrinsic does a series of operations atomically. It first loads the
6172 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6173 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6174</p>
6175
6176<h5>Examples:</h5>
6177<pre>
6178%ptr = malloc i32
6179 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006180%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006181 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006182%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006183 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006184%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006185 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006186%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006187</pre>
6188</div>
6189
Mon P Wang28873102008-06-25 08:15:39 +00006190<!-- _______________________________________________________________________ -->
6191<div class="doc_subsubsection">
6192 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6193
6194</div>
6195<div class="doc_text">
6196<h5>Syntax:</h5>
6197<p>
6198 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006199 any integer bit width and for different address spaces. Not all targets
6200 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006201<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006202declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6203declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6204declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6205declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006206
6207</pre>
6208<h5>Overview:</h5>
6209<p>
6210 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6211 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6212</p>
6213<h5>Arguments:</h5>
6214<p>
6215
6216 The intrinsic takes two arguments, the first a pointer to an integer value
6217 and the second an integer value. The result is also an integer value. These
6218 integer types can have any bit width, but they must all have the same bit
6219 width. The targets may only lower integer representations they support.
6220</p>
6221<h5>Semantics:</h5>
6222<p>
6223 This intrinsic does a series of operations atomically. It first loads the
6224 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6225 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6226</p>
6227
6228<h5>Examples:</h5>
6229<pre>
6230%ptr = malloc i32
6231 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006232%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006233 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006234%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006235 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006236%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006237 <i>; yields {i32}:result3 = 2</i>
6238%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6239</pre>
6240</div>
6241
6242<!-- _______________________________________________________________________ -->
6243<div class="doc_subsubsection">
6244 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6245 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6246 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6247 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6248
6249</div>
6250<div class="doc_text">
6251<h5>Syntax:</h5>
6252<p>
6253 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6254 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006255 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6256 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006257<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006258declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6259declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6260declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6261declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006262
6263</pre>
6264
6265<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006266declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6267declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6268declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6269declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006270
6271</pre>
6272
6273<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006274declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6275declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6276declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6277declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006278
6279</pre>
6280
6281<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006282declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6283declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6284declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6285declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006286
6287</pre>
6288<h5>Overview:</h5>
6289<p>
6290 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6291 the value stored in memory at <tt>ptr</tt>. It yields the original value
6292 at <tt>ptr</tt>.
6293</p>
6294<h5>Arguments:</h5>
6295<p>
6296
6297 These intrinsics take two arguments, the first a pointer to an integer value
6298 and the second an integer value. The result is also an integer value. These
6299 integer types can have any bit width, but they must all have the same bit
6300 width. The targets may only lower integer representations they support.
6301</p>
6302<h5>Semantics:</h5>
6303<p>
6304 These intrinsics does a series of operations atomically. They first load the
6305 value stored at <tt>ptr</tt>. They then do the bitwise operation
6306 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6307 value stored at <tt>ptr</tt>.
6308</p>
6309
6310<h5>Examples:</h5>
6311<pre>
6312%ptr = malloc i32
6313 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006314%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006315 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006316%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006317 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006318%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006319 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006320%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006321 <i>; yields {i32}:result3 = FF</i>
6322%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6323</pre>
6324</div>
6325
6326
6327<!-- _______________________________________________________________________ -->
6328<div class="doc_subsubsection">
6329 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6330 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6331 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6332 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6333
6334</div>
6335<div class="doc_text">
6336<h5>Syntax:</h5>
6337<p>
6338 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6339 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006340 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6341 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006342 support all bit widths however.</p>
6343<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006344declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6345declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6346declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6347declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006348
6349</pre>
6350
6351<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006352declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6353declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6354declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6355declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006356
6357</pre>
6358
6359<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006360declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6361declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6362declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6363declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006364
6365</pre>
6366
6367<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006368declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6369declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6370declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6371declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006372
6373</pre>
6374<h5>Overview:</h5>
6375<p>
6376 These intrinsics takes the signed or unsigned minimum or maximum of
6377 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6378 original value at <tt>ptr</tt>.
6379</p>
6380<h5>Arguments:</h5>
6381<p>
6382
6383 These intrinsics take two arguments, the first a pointer to an integer value
6384 and the second an integer value. The result is also an integer value. These
6385 integer types can have any bit width, but they must all have the same bit
6386 width. The targets may only lower integer representations they support.
6387</p>
6388<h5>Semantics:</h5>
6389<p>
6390 These intrinsics does a series of operations atomically. They first load the
6391 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6392 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6393 the original value stored at <tt>ptr</tt>.
6394</p>
6395
6396<h5>Examples:</h5>
6397<pre>
6398%ptr = malloc i32
6399 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006400%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006401 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006402%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006403 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006404%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006405 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006406%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006407 <i>; yields {i32}:result3 = 8</i>
6408%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6409</pre>
6410</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006411
6412<!-- ======================================================================= -->
6413<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006414 <a name="int_general">General Intrinsics</a>
6415</div>
6416
6417<div class="doc_text">
6418<p> This class of intrinsics is designed to be generic and has
6419no specific purpose. </p>
6420</div>
6421
6422<!-- _______________________________________________________________________ -->
6423<div class="doc_subsubsection">
6424 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6425</div>
6426
6427<div class="doc_text">
6428
6429<h5>Syntax:</h5>
6430<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006431 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006432</pre>
6433
6434<h5>Overview:</h5>
6435
6436<p>
6437The '<tt>llvm.var.annotation</tt>' intrinsic
6438</p>
6439
6440<h5>Arguments:</h5>
6441
6442<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006443The first argument is a pointer to a value, the second is a pointer to a
6444global string, the third is a pointer to a global string which is the source
6445file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006446</p>
6447
6448<h5>Semantics:</h5>
6449
6450<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006451This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006452This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006453annotations. These have no other defined use, they are ignored by code
6454generation and optimization.
6455</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006456</div>
6457
Tanya Lattnerb6367882007-09-21 22:59:12 +00006458<!-- _______________________________________________________________________ -->
6459<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006460 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006461</div>
6462
6463<div class="doc_text">
6464
6465<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006466<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6467any integer bit width.
6468</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006469<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006470 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6471 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6472 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6473 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6474 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006475</pre>
6476
6477<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006478
6479<p>
6480The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006481</p>
6482
6483<h5>Arguments:</h5>
6484
6485<p>
6486The first argument is an integer value (result of some expression),
6487the second is a pointer to a global string, the third is a pointer to a global
6488string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006489It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006490</p>
6491
6492<h5>Semantics:</h5>
6493
6494<p>
6495This intrinsic allows annotations to be put on arbitrary expressions
6496with arbitrary strings. This can be useful for special purpose optimizations
6497that want to look for these annotations. These have no other defined use, they
6498are ignored by code generation and optimization.
Dan Gohman0e451ce2008-10-14 16:51:45 +00006499</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006500</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006501
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006502<!-- _______________________________________________________________________ -->
6503<div class="doc_subsubsection">
6504 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6505</div>
6506
6507<div class="doc_text">
6508
6509<h5>Syntax:</h5>
6510<pre>
6511 declare void @llvm.trap()
6512</pre>
6513
6514<h5>Overview:</h5>
6515
6516<p>
6517The '<tt>llvm.trap</tt>' intrinsic
6518</p>
6519
6520<h5>Arguments:</h5>
6521
6522<p>
6523None
6524</p>
6525
6526<h5>Semantics:</h5>
6527
6528<p>
6529This intrinsics is lowered to the target dependent trap instruction. If the
6530target does not have a trap instruction, this intrinsic will be lowered to the
6531call of the abort() function.
6532</p>
6533</div>
6534
Bill Wendling69e4adb2008-11-19 05:56:17 +00006535<!-- _______________________________________________________________________ -->
6536<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00006537 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00006538</div>
6539<div class="doc_text">
6540<h5>Syntax:</h5>
6541<pre>
6542declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
6543
6544</pre>
6545<h5>Overview:</h5>
6546<p>
6547 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
6548 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
6549 it is placed on the stack before local variables.
6550</p>
6551<h5>Arguments:</h5>
6552<p>
6553 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
6554 first argument is the value loaded from the stack guard
6555 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
6556 has enough space to hold the value of the guard.
6557</p>
6558<h5>Semantics:</h5>
6559<p>
6560 This intrinsic causes the prologue/epilogue inserter to force the position of
6561 the <tt>AllocaInst</tt> stack slot to be before local variables on the
6562 stack. This is to ensure that if a local variable on the stack is overwritten,
6563 it will destroy the value of the guard. When the function exits, the guard on
6564 the stack is checked against the original guard. If they're different, then
6565 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
6566</p>
6567</div>
6568
Chris Lattner00950542001-06-06 20:29:01 +00006569<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00006570<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006571<address>
6572 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00006573 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006574 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00006575 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006576
6577 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00006578 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006579 Last modified: $Date$
6580</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006581
Misha Brukman9d0919f2003-11-08 01:05:38 +00006582</body>
6583</html>