blob: a654648578bc7a918beb7e7ed1636e6a2b6b53fd [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chad Rosier618c1db2011-12-01 03:08:23 +000077#include "llvm/Target/TargetLibraryInfo.h"
Chris Lattner95255282006-06-28 23:17:24 +000078#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000079#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000080#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000081#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000082#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000083#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000084#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000085#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000086#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000087#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000088#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000089#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000090using namespace llvm;
91
Chris Lattner3b27d682006-12-19 22:30:33 +000092STATISTIC(NumArrayLenItCounts,
93 "Number of trip counts computed with array length");
94STATISTIC(NumTripCountsComputed,
95 "Number of loops with predictable loop counts");
96STATISTIC(NumTripCountsNotComputed,
97 "Number of loops without predictable loop counts");
98STATISTIC(NumBruteForceTripCountsComputed,
99 "Number of loops with trip counts computed by force");
100
Dan Gohman844731a2008-05-13 00:00:25 +0000101static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000102MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000104 "symbolically execute a constant "
105 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000106 cl::init(100));
107
Owen Anderson2ab36d32010-10-12 19:48:12 +0000108INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
109 "Scalar Evolution Analysis", false, true)
110INITIALIZE_PASS_DEPENDENCY(LoopInfo)
111INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Chad Rosier618c1db2011-12-01 03:08:23 +0000112INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000113INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000114 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000115char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000116
117//===----------------------------------------------------------------------===//
118// SCEV class definitions
119//===----------------------------------------------------------------------===//
120
121//===----------------------------------------------------------------------===//
122// Implementation of the SCEV class.
123//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000124
Chris Lattner53e677a2004-04-02 20:23:17 +0000125void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000126 print(dbgs());
127 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000128}
129
Dan Gohman4ce32db2010-11-17 22:27:42 +0000130void SCEV::print(raw_ostream &OS) const {
131 switch (getSCEVType()) {
132 case scConstant:
133 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
134 return;
135 case scTruncate: {
136 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
137 const SCEV *Op = Trunc->getOperand();
138 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
139 << *Trunc->getType() << ")";
140 return;
141 }
142 case scZeroExtend: {
143 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
144 const SCEV *Op = ZExt->getOperand();
145 OS << "(zext " << *Op->getType() << " " << *Op << " to "
146 << *ZExt->getType() << ")";
147 return;
148 }
149 case scSignExtend: {
150 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
151 const SCEV *Op = SExt->getOperand();
152 OS << "(sext " << *Op->getType() << " " << *Op << " to "
153 << *SExt->getType() << ")";
154 return;
155 }
156 case scAddRecExpr: {
157 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
158 OS << "{" << *AR->getOperand(0);
159 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
160 OS << ",+," << *AR->getOperand(i);
161 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000162 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000163 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000164 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000165 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000166 if (AR->getNoWrapFlags(FlagNW) &&
167 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
168 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000169 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
170 OS << ">";
171 return;
172 }
173 case scAddExpr:
174 case scMulExpr:
175 case scUMaxExpr:
176 case scSMaxExpr: {
177 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000178 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000179 switch (NAry->getSCEVType()) {
180 case scAddExpr: OpStr = " + "; break;
181 case scMulExpr: OpStr = " * "; break;
182 case scUMaxExpr: OpStr = " umax "; break;
183 case scSMaxExpr: OpStr = " smax "; break;
184 }
185 OS << "(";
186 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
187 I != E; ++I) {
188 OS << **I;
189 if (llvm::next(I) != E)
190 OS << OpStr;
191 }
192 OS << ")";
Andrew Trick121d78f2011-11-29 02:06:35 +0000193 switch (NAry->getSCEVType()) {
194 case scAddExpr:
195 case scMulExpr:
196 if (NAry->getNoWrapFlags(FlagNUW))
197 OS << "<nuw>";
198 if (NAry->getNoWrapFlags(FlagNSW))
199 OS << "<nsw>";
200 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000201 return;
202 }
203 case scUDivExpr: {
204 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
205 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
206 return;
207 }
208 case scUnknown: {
209 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000210 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000211 if (U->isSizeOf(AllocTy)) {
212 OS << "sizeof(" << *AllocTy << ")";
213 return;
214 }
215 if (U->isAlignOf(AllocTy)) {
216 OS << "alignof(" << *AllocTy << ")";
217 return;
218 }
Andrew Trick635f7182011-03-09 17:23:39 +0000219
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000220 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000221 Constant *FieldNo;
222 if (U->isOffsetOf(CTy, FieldNo)) {
223 OS << "offsetof(" << *CTy << ", ";
224 WriteAsOperand(OS, FieldNo, false);
225 OS << ")";
226 return;
227 }
Andrew Trick635f7182011-03-09 17:23:39 +0000228
Dan Gohman4ce32db2010-11-17 22:27:42 +0000229 // Otherwise just print it normally.
230 WriteAsOperand(OS, U->getValue(), false);
231 return;
232 }
233 case scCouldNotCompute:
234 OS << "***COULDNOTCOMPUTE***";
235 return;
236 default: break;
237 }
238 llvm_unreachable("Unknown SCEV kind!");
239}
240
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000241Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000242 switch (getSCEVType()) {
243 case scConstant:
244 return cast<SCEVConstant>(this)->getType();
245 case scTruncate:
246 case scZeroExtend:
247 case scSignExtend:
248 return cast<SCEVCastExpr>(this)->getType();
249 case scAddRecExpr:
250 case scMulExpr:
251 case scUMaxExpr:
252 case scSMaxExpr:
253 return cast<SCEVNAryExpr>(this)->getType();
254 case scAddExpr:
255 return cast<SCEVAddExpr>(this)->getType();
256 case scUDivExpr:
257 return cast<SCEVUDivExpr>(this)->getType();
258 case scUnknown:
259 return cast<SCEVUnknown>(this)->getType();
260 case scCouldNotCompute:
261 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +0000262 default:
263 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman4ce32db2010-11-17 22:27:42 +0000264 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000265}
266
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000267bool SCEV::isZero() const {
268 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
269 return SC->getValue()->isZero();
270 return false;
271}
272
Dan Gohman70a1fe72009-05-18 15:22:39 +0000273bool SCEV::isOne() const {
274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
275 return SC->getValue()->isOne();
276 return false;
277}
Chris Lattner53e677a2004-04-02 20:23:17 +0000278
Dan Gohman4d289bf2009-06-24 00:30:26 +0000279bool SCEV::isAllOnesValue() const {
280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
281 return SC->getValue()->isAllOnesValue();
282 return false;
283}
284
Andrew Trickf8fd8412012-01-07 00:27:31 +0000285/// isNonConstantNegative - Return true if the specified scev is negated, but
286/// not a constant.
287bool SCEV::isNonConstantNegative() const {
288 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
289 if (!Mul) return false;
290
291 // If there is a constant factor, it will be first.
292 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
293 if (!SC) return false;
294
295 // Return true if the value is negative, this matches things like (-42 * V).
296 return SC->getValue()->getValue().isNegative();
297}
298
Owen Anderson753ad612009-06-22 21:57:23 +0000299SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000300 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000301
Chris Lattner53e677a2004-04-02 20:23:17 +0000302bool SCEVCouldNotCompute::classof(const SCEV *S) {
303 return S->getSCEVType() == scCouldNotCompute;
304}
305
Dan Gohman0bba49c2009-07-07 17:06:11 +0000306const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000307 FoldingSetNodeID ID;
308 ID.AddInteger(scConstant);
309 ID.AddPointer(V);
310 void *IP = 0;
311 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000312 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000313 UniqueSCEVs.InsertNode(S, IP);
314 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000315}
Chris Lattner53e677a2004-04-02 20:23:17 +0000316
Dan Gohman0bba49c2009-07-07 17:06:11 +0000317const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000318 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000319}
320
Dan Gohman0bba49c2009-07-07 17:06:11 +0000321const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000322ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
323 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000324 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000325}
326
Dan Gohman3bf63762010-06-18 19:54:20 +0000327SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000328 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000329 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000330
Dan Gohman3bf63762010-06-18 19:54:20 +0000331SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000332 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000333 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000334 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
335 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000336 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000337}
Chris Lattner53e677a2004-04-02 20:23:17 +0000338
Dan Gohman3bf63762010-06-18 19:54:20 +0000339SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000340 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000341 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000344 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345}
346
Dan Gohman3bf63762010-06-18 19:54:20 +0000347SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000348 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000349 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000352 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000353}
354
Dan Gohmanab37f502010-08-02 23:49:30 +0000355void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000356 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000357 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000358
359 // Remove this SCEVUnknown from the uniquing map.
360 SE->UniqueSCEVs.RemoveNode(this);
361
362 // Release the value.
363 setValPtr(0);
364}
365
366void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000367 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000368 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000369
370 // Remove this SCEVUnknown from the uniquing map.
371 SE->UniqueSCEVs.RemoveNode(this);
372
373 // Update this SCEVUnknown to point to the new value. This is needed
374 // because there may still be outstanding SCEVs which still point to
375 // this SCEVUnknown.
376 setValPtr(New);
377}
378
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000379bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000380 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000381 if (VCE->getOpcode() == Instruction::PtrToInt)
382 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000383 if (CE->getOpcode() == Instruction::GetElementPtr &&
384 CE->getOperand(0)->isNullValue() &&
385 CE->getNumOperands() == 2)
386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
387 if (CI->isOne()) {
388 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
389 ->getElementType();
390 return true;
391 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000392
393 return false;
394}
395
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000396bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000398 if (VCE->getOpcode() == Instruction::PtrToInt)
399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000400 if (CE->getOpcode() == Instruction::GetElementPtr &&
401 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000402 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000403 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000404 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000405 if (!STy->isPacked() &&
406 CE->getNumOperands() == 3 &&
407 CE->getOperand(1)->isNullValue()) {
408 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
409 if (CI->isOne() &&
410 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000411 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000412 AllocTy = STy->getElementType(1);
413 return true;
414 }
415 }
416 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000417
418 return false;
419}
420
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000421bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000422 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000423 if (VCE->getOpcode() == Instruction::PtrToInt)
424 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
425 if (CE->getOpcode() == Instruction::GetElementPtr &&
426 CE->getNumOperands() == 3 &&
427 CE->getOperand(0)->isNullValue() &&
428 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000429 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000430 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
431 // Ignore vector types here so that ScalarEvolutionExpander doesn't
432 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000433 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000434 CTy = Ty;
435 FieldNo = CE->getOperand(2);
436 return true;
437 }
438 }
439
440 return false;
441}
442
Chris Lattner8d741b82004-06-20 06:23:15 +0000443//===----------------------------------------------------------------------===//
444// SCEV Utilities
445//===----------------------------------------------------------------------===//
446
447namespace {
448 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
449 /// than the complexity of the RHS. This comparator is used to canonicalize
450 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000451 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000452 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000453 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000454 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000455
Dan Gohman67ef74e2010-08-27 15:26:01 +0000456 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000457 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000458 return compare(LHS, RHS) < 0;
459 }
460
461 // Return negative, zero, or positive, if LHS is less than, equal to, or
462 // greater than RHS, respectively. A three-way result allows recursive
463 // comparisons to be more efficient.
464 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000465 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
466 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000467 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000468
Dan Gohman72861302009-05-07 14:39:04 +0000469 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000470 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
471 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000472 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000473
Dan Gohman3bf63762010-06-18 19:54:20 +0000474 // Aside from the getSCEVType() ordering, the particular ordering
475 // isn't very important except that it's beneficial to be consistent,
476 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000477 switch (LType) {
478 case scUnknown: {
479 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000480 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000481
482 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
483 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000484 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000485
486 // Order pointer values after integer values. This helps SCEVExpander
487 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000488 bool LIsPointer = LV->getType()->isPointerTy(),
489 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000490 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000491 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000492
493 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000494 unsigned LID = LV->getValueID(),
495 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000496 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000497 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000498
499 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000500 if (const Argument *LA = dyn_cast<Argument>(LV)) {
501 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
503 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000504 }
505
Dan Gohman67ef74e2010-08-27 15:26:01 +0000506 // For instructions, compare their loop depth, and their operand
507 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000508 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
509 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000510
511 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000512 const BasicBlock *LParent = LInst->getParent(),
513 *RParent = RInst->getParent();
514 if (LParent != RParent) {
515 unsigned LDepth = LI->getLoopDepth(LParent),
516 RDepth = LI->getLoopDepth(RParent);
517 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000518 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000519 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000520
521 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000522 unsigned LNumOps = LInst->getNumOperands(),
523 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000524 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000525 }
526
Dan Gohman67ef74e2010-08-27 15:26:01 +0000527 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000528 }
529
Dan Gohman67ef74e2010-08-27 15:26:01 +0000530 case scConstant: {
531 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000532 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000533
534 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000535 const APInt &LA = LC->getValue()->getValue();
536 const APInt &RA = RC->getValue()->getValue();
537 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000538 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000539 return (int)LBitWidth - (int)RBitWidth;
540 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000541 }
542
Dan Gohman67ef74e2010-08-27 15:26:01 +0000543 case scAddRecExpr: {
544 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000545 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000546
547 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000548 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
549 if (LLoop != RLoop) {
550 unsigned LDepth = LLoop->getLoopDepth(),
551 RDepth = RLoop->getLoopDepth();
552 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000553 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000554 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000555
556 // Addrec complexity grows with operand count.
557 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
558 if (LNumOps != RNumOps)
559 return (int)LNumOps - (int)RNumOps;
560
561 // Lexicographically compare.
562 for (unsigned i = 0; i != LNumOps; ++i) {
563 long X = compare(LA->getOperand(i), RA->getOperand(i));
564 if (X != 0)
565 return X;
566 }
567
568 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000569 }
570
Dan Gohman67ef74e2010-08-27 15:26:01 +0000571 case scAddExpr:
572 case scMulExpr:
573 case scSMaxExpr:
574 case scUMaxExpr: {
575 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000576 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000577
578 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000579 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
580 for (unsigned i = 0; i != LNumOps; ++i) {
581 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000582 return 1;
583 long X = compare(LC->getOperand(i), RC->getOperand(i));
584 if (X != 0)
585 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000586 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000587 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000588 }
589
Dan Gohman67ef74e2010-08-27 15:26:01 +0000590 case scUDivExpr: {
591 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000592 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000593
594 // Lexicographically compare udiv expressions.
595 long X = compare(LC->getLHS(), RC->getLHS());
596 if (X != 0)
597 return X;
598 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000599 }
600
Dan Gohman67ef74e2010-08-27 15:26:01 +0000601 case scTruncate:
602 case scZeroExtend:
603 case scSignExtend: {
604 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000605 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000606
607 // Compare cast expressions by operand.
608 return compare(LC->getOperand(), RC->getOperand());
609 }
610
611 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +0000612 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman3bf63762010-06-18 19:54:20 +0000613 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000614 }
615 };
616}
617
618/// GroupByComplexity - Given a list of SCEV objects, order them by their
619/// complexity, and group objects of the same complexity together by value.
620/// When this routine is finished, we know that any duplicates in the vector are
621/// consecutive and that complexity is monotonically increasing.
622///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000623/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000624/// results from this routine. In other words, we don't want the results of
625/// this to depend on where the addresses of various SCEV objects happened to
626/// land in memory.
627///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000628static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000629 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000630 if (Ops.size() < 2) return; // Noop
631 if (Ops.size() == 2) {
632 // This is the common case, which also happens to be trivially simple.
633 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000634 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
635 if (SCEVComplexityCompare(LI)(RHS, LHS))
636 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000637 return;
638 }
639
Dan Gohman3bf63762010-06-18 19:54:20 +0000640 // Do the rough sort by complexity.
641 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
642
643 // Now that we are sorted by complexity, group elements of the same
644 // complexity. Note that this is, at worst, N^2, but the vector is likely to
645 // be extremely short in practice. Note that we take this approach because we
646 // do not want to depend on the addresses of the objects we are grouping.
647 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
648 const SCEV *S = Ops[i];
649 unsigned Complexity = S->getSCEVType();
650
651 // If there are any objects of the same complexity and same value as this
652 // one, group them.
653 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
654 if (Ops[j] == S) { // Found a duplicate.
655 // Move it to immediately after i'th element.
656 std::swap(Ops[i+1], Ops[j]);
657 ++i; // no need to rescan it.
658 if (i == e-2) return; // Done!
659 }
660 }
661 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000662}
663
Chris Lattner53e677a2004-04-02 20:23:17 +0000664
Chris Lattner53e677a2004-04-02 20:23:17 +0000665
666//===----------------------------------------------------------------------===//
667// Simple SCEV method implementations
668//===----------------------------------------------------------------------===//
669
Eli Friedmanb42a6262008-08-04 23:49:06 +0000670/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000671/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000672static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000673 ScalarEvolution &SE,
Nick Lewycky8cfb2f82011-09-06 06:39:54 +0000674 Type *ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000675 // Handle the simplest case efficiently.
676 if (K == 1)
677 return SE.getTruncateOrZeroExtend(It, ResultTy);
678
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000679 // We are using the following formula for BC(It, K):
680 //
681 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
682 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000683 // Suppose, W is the bitwidth of the return value. We must be prepared for
684 // overflow. Hence, we must assure that the result of our computation is
685 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
686 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000687 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000688 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000689 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000690 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
691 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000692 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000693 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000694 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000695 // This formula is trivially equivalent to the previous formula. However,
696 // this formula can be implemented much more efficiently. The trick is that
697 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
698 // arithmetic. To do exact division in modular arithmetic, all we have
699 // to do is multiply by the inverse. Therefore, this step can be done at
700 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000701 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000702 // The next issue is how to safely do the division by 2^T. The way this
703 // is done is by doing the multiplication step at a width of at least W + T
704 // bits. This way, the bottom W+T bits of the product are accurate. Then,
705 // when we perform the division by 2^T (which is equivalent to a right shift
706 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
707 // truncated out after the division by 2^T.
708 //
709 // In comparison to just directly using the first formula, this technique
710 // is much more efficient; using the first formula requires W * K bits,
711 // but this formula less than W + K bits. Also, the first formula requires
712 // a division step, whereas this formula only requires multiplies and shifts.
713 //
714 // It doesn't matter whether the subtraction step is done in the calculation
715 // width or the input iteration count's width; if the subtraction overflows,
716 // the result must be zero anyway. We prefer here to do it in the width of
717 // the induction variable because it helps a lot for certain cases; CodeGen
718 // isn't smart enough to ignore the overflow, which leads to much less
719 // efficient code if the width of the subtraction is wider than the native
720 // register width.
721 //
722 // (It's possible to not widen at all by pulling out factors of 2 before
723 // the multiplication; for example, K=2 can be calculated as
724 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
725 // extra arithmetic, so it's not an obvious win, and it gets
726 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000727
Eli Friedmanb42a6262008-08-04 23:49:06 +0000728 // Protection from insane SCEVs; this bound is conservative,
729 // but it probably doesn't matter.
730 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000731 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000732
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000733 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000734
Eli Friedmanb42a6262008-08-04 23:49:06 +0000735 // Calculate K! / 2^T and T; we divide out the factors of two before
736 // multiplying for calculating K! / 2^T to avoid overflow.
737 // Other overflow doesn't matter because we only care about the bottom
738 // W bits of the result.
739 APInt OddFactorial(W, 1);
740 unsigned T = 1;
741 for (unsigned i = 3; i <= K; ++i) {
742 APInt Mult(W, i);
743 unsigned TwoFactors = Mult.countTrailingZeros();
744 T += TwoFactors;
745 Mult = Mult.lshr(TwoFactors);
746 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000747 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000748
Eli Friedmanb42a6262008-08-04 23:49:06 +0000749 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000750 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000751
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000752 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000753 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
754
755 // Calculate the multiplicative inverse of K! / 2^T;
756 // this multiplication factor will perform the exact division by
757 // K! / 2^T.
758 APInt Mod = APInt::getSignedMinValue(W+1);
759 APInt MultiplyFactor = OddFactorial.zext(W+1);
760 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
761 MultiplyFactor = MultiplyFactor.trunc(W);
762
763 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000764 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000765 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000766 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000767 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000768 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000769 Dividend = SE.getMulExpr(Dividend,
770 SE.getTruncateOrZeroExtend(S, CalculationTy));
771 }
772
773 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000774 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000775
776 // Truncate the result, and divide by K! / 2^T.
777
778 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
779 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000780}
781
Chris Lattner53e677a2004-04-02 20:23:17 +0000782/// evaluateAtIteration - Return the value of this chain of recurrences at
783/// the specified iteration number. We can evaluate this recurrence by
784/// multiplying each element in the chain by the binomial coefficient
785/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
786///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000787/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000788///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000789/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000790///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000791const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000792 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000793 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000794 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000795 // The computation is correct in the face of overflow provided that the
796 // multiplication is performed _after_ the evaluation of the binomial
797 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000798 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000799 if (isa<SCEVCouldNotCompute>(Coeff))
800 return Coeff;
801
802 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000803 }
804 return Result;
805}
806
Chris Lattner53e677a2004-04-02 20:23:17 +0000807//===----------------------------------------------------------------------===//
808// SCEV Expression folder implementations
809//===----------------------------------------------------------------------===//
810
Dan Gohman0bba49c2009-07-07 17:06:11 +0000811const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000812 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000813 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000814 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000815 assert(isSCEVable(Ty) &&
816 "This is not a conversion to a SCEVable type!");
817 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000818
Dan Gohmanc050fd92009-07-13 20:50:19 +0000819 FoldingSetNodeID ID;
820 ID.AddInteger(scTruncate);
821 ID.AddPointer(Op);
822 ID.AddPointer(Ty);
823 void *IP = 0;
824 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
825
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000826 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000827 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000828 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000829 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000830
Dan Gohman20900ca2009-04-22 16:20:48 +0000831 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000832 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000833 return getTruncateExpr(ST->getOperand(), Ty);
834
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000835 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000836 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000837 return getTruncateOrSignExtend(SS->getOperand(), Ty);
838
839 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000840 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000841 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
842
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000843 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
844 // eliminate all the truncates.
845 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
846 SmallVector<const SCEV *, 4> Operands;
847 bool hasTrunc = false;
848 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
849 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
850 hasTrunc = isa<SCEVTruncateExpr>(S);
851 Operands.push_back(S);
852 }
853 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000854 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000855 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000856 }
857
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000858 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
859 // eliminate all the truncates.
860 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
861 SmallVector<const SCEV *, 4> Operands;
862 bool hasTrunc = false;
863 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
864 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
865 hasTrunc = isa<SCEVTruncateExpr>(S);
866 Operands.push_back(S);
867 }
868 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000869 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000870 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000871 }
872
Dan Gohman6864db62009-06-18 16:24:47 +0000873 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000874 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000875 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000876 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000877 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000878 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000879 }
880
Dan Gohman420ab912010-06-25 18:47:08 +0000881 // The cast wasn't folded; create an explicit cast node. We can reuse
882 // the existing insert position since if we get here, we won't have
883 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000884 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
885 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000886 UniqueSCEVs.InsertNode(S, IP);
887 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000888}
889
Dan Gohman0bba49c2009-07-07 17:06:11 +0000890const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000891 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000892 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000893 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000894 assert(isSCEVable(Ty) &&
895 "This is not a conversion to a SCEVable type!");
896 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000897
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000898 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000899 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
900 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000901 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000902
Dan Gohman20900ca2009-04-22 16:20:48 +0000903 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000904 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000905 return getZeroExtendExpr(SZ->getOperand(), Ty);
906
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000907 // Before doing any expensive analysis, check to see if we've already
908 // computed a SCEV for this Op and Ty.
909 FoldingSetNodeID ID;
910 ID.AddInteger(scZeroExtend);
911 ID.AddPointer(Op);
912 ID.AddPointer(Ty);
913 void *IP = 0;
914 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
915
Nick Lewycky630d85a2011-01-23 06:20:19 +0000916 // zext(trunc(x)) --> zext(x) or x or trunc(x)
917 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
918 // It's possible the bits taken off by the truncate were all zero bits. If
919 // so, we should be able to simplify this further.
920 const SCEV *X = ST->getOperand();
921 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000922 unsigned TruncBits = getTypeSizeInBits(ST->getType());
923 unsigned NewBits = getTypeSizeInBits(Ty);
924 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000925 CR.zextOrTrunc(NewBits)))
926 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000927 }
928
Dan Gohman01ecca22009-04-27 20:16:15 +0000929 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000930 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000931 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000932 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000933 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000934 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000935 const SCEV *Start = AR->getStart();
936 const SCEV *Step = AR->getStepRecurrence(*this);
937 unsigned BitWidth = getTypeSizeInBits(AR->getType());
938 const Loop *L = AR->getLoop();
939
Dan Gohmaneb490a72009-07-25 01:22:26 +0000940 // If we have special knowledge that this addrec won't overflow,
941 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000942 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000943 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
944 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000945 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000946
Dan Gohman01ecca22009-04-27 20:16:15 +0000947 // Check whether the backedge-taken count is SCEVCouldNotCompute.
948 // Note that this serves two purposes: It filters out loops that are
949 // simply not analyzable, and it covers the case where this code is
950 // being called from within backedge-taken count analysis, such that
951 // attempting to ask for the backedge-taken count would likely result
952 // in infinite recursion. In the later case, the analysis code will
953 // cope with a conservative value, and it will take care to purge
954 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000955 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000956 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000957 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000958 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000959
960 // Check whether the backedge-taken count can be losslessly casted to
961 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000962 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000963 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000964 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000965 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
966 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000967 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000968 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000969 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +0000970 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
971 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
972 const SCEV *WideMaxBECount =
973 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000974 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000975 getAddExpr(WideStart,
976 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000977 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +0000978 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +0000979 // Cache knowledge of AR NUW, which is propagated to this AddRec.
980 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000981 // Return the expression with the addrec on the outside.
982 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
983 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000984 L, AR->getNoWrapFlags());
985 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000986 // Similar to above, only this time treat the step value as signed.
987 // This covers loops that count down.
Dan Gohman5183cae2009-05-18 15:58:39 +0000988 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000989 getAddExpr(WideStart,
990 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000991 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +0000992 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +0000993 // Cache knowledge of AR NW, which is propagated to this AddRec.
994 // Negative step causes unsigned wrap, but it still can't self-wrap.
995 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000996 // Return the expression with the addrec on the outside.
997 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
998 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000999 L, AR->getNoWrapFlags());
1000 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001001 }
1002
1003 // If the backedge is guarded by a comparison with the pre-inc value
1004 // the addrec is safe. Also, if the entry is guarded by a comparison
1005 // with the start value and the backedge is guarded by a comparison
1006 // with the post-inc value, the addrec is safe.
1007 if (isKnownPositive(Step)) {
1008 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1009 getUnsignedRange(Step).getUnsignedMax());
1010 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001011 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001012 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001013 AR->getPostIncExpr(*this), N))) {
1014 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1015 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001016 // Return the expression with the addrec on the outside.
1017 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1018 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001019 L, AR->getNoWrapFlags());
1020 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001021 } else if (isKnownNegative(Step)) {
1022 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1023 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001024 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1025 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001026 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001027 AR->getPostIncExpr(*this), N))) {
1028 // Cache knowledge of AR NW, which is propagated to this AddRec.
1029 // Negative step causes unsigned wrap, but it still can't self-wrap.
1030 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1031 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001032 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1033 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001034 L, AR->getNoWrapFlags());
1035 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001036 }
1037 }
1038 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001039
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001040 // The cast wasn't folded; create an explicit cast node.
1041 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001042 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001043 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1044 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001045 UniqueSCEVs.InsertNode(S, IP);
1046 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001047}
1048
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001049// Get the limit of a recurrence such that incrementing by Step cannot cause
1050// signed overflow as long as the value of the recurrence within the loop does
1051// not exceed this limit before incrementing.
1052static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1053 ICmpInst::Predicate *Pred,
1054 ScalarEvolution *SE) {
1055 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1056 if (SE->isKnownPositive(Step)) {
1057 *Pred = ICmpInst::ICMP_SLT;
1058 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1059 SE->getSignedRange(Step).getSignedMax());
1060 }
1061 if (SE->isKnownNegative(Step)) {
1062 *Pred = ICmpInst::ICMP_SGT;
1063 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1064 SE->getSignedRange(Step).getSignedMin());
1065 }
1066 return 0;
1067}
1068
1069// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1070// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1071// or postincrement sibling. This allows normalizing a sign extended AddRec as
1072// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1073// result, the expression "Step + sext(PreIncAR)" is congruent with
1074// "sext(PostIncAR)"
1075static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001076 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001077 ScalarEvolution *SE) {
1078 const Loop *L = AR->getLoop();
1079 const SCEV *Start = AR->getStart();
1080 const SCEV *Step = AR->getStepRecurrence(*SE);
1081
1082 // Check for a simple looking step prior to loop entry.
1083 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickf63ae212011-09-28 17:02:54 +00001084 if (!SA)
1085 return 0;
1086
1087 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1088 // subtraction is expensive. For this purpose, perform a quick and dirty
1089 // difference, by checking for Step in the operand list.
1090 SmallVector<const SCEV *, 4> DiffOps;
1091 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1092 I != E; ++I) {
1093 if (*I != Step)
1094 DiffOps.push_back(*I);
1095 }
1096 if (DiffOps.size() == SA->getNumOperands())
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001097 return 0;
1098
1099 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1100 // same three conditions that getSignExtendedExpr checks.
1101
1102 // 1. NSW flags on the step increment.
Andrew Trickf63ae212011-09-28 17:02:54 +00001103 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001104 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1105 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1106
Andrew Trickcf31f912011-06-01 19:14:56 +00001107 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001108 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001109
1110 // 2. Direct overflow check on the step operation's expression.
1111 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001112 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001113 const SCEV *OperandExtendedStart =
1114 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1115 SE->getSignExtendExpr(Step, WideTy));
1116 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1117 // Cache knowledge of PreAR NSW.
1118 if (PreAR)
1119 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1120 // FIXME: this optimization needs a unit test
1121 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1122 return PreStart;
1123 }
1124
1125 // 3. Loop precondition.
1126 ICmpInst::Predicate Pred;
1127 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1128
Andrew Trickcf31f912011-06-01 19:14:56 +00001129 if (OverflowLimit &&
1130 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001131 return PreStart;
1132 }
1133 return 0;
1134}
1135
1136// Get the normalized sign-extended expression for this AddRec's Start.
1137static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001138 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001139 ScalarEvolution *SE) {
1140 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1141 if (!PreStart)
1142 return SE->getSignExtendExpr(AR->getStart(), Ty);
1143
1144 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1145 SE->getSignExtendExpr(PreStart, Ty));
1146}
1147
Dan Gohman0bba49c2009-07-07 17:06:11 +00001148const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001149 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001150 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001151 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001152 assert(isSCEVable(Ty) &&
1153 "This is not a conversion to a SCEVable type!");
1154 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001155
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001156 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001157 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1158 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +00001159 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmand19534a2007-06-15 14:38:12 +00001160
Dan Gohman20900ca2009-04-22 16:20:48 +00001161 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001162 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001163 return getSignExtendExpr(SS->getOperand(), Ty);
1164
Nick Lewycky73f565e2011-01-19 15:56:12 +00001165 // sext(zext(x)) --> zext(x)
1166 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1167 return getZeroExtendExpr(SZ->getOperand(), Ty);
1168
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001169 // Before doing any expensive analysis, check to see if we've already
1170 // computed a SCEV for this Op and Ty.
1171 FoldingSetNodeID ID;
1172 ID.AddInteger(scSignExtend);
1173 ID.AddPointer(Op);
1174 ID.AddPointer(Ty);
1175 void *IP = 0;
1176 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1177
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001178 // If the input value is provably positive, build a zext instead.
1179 if (isKnownNonNegative(Op))
1180 return getZeroExtendExpr(Op, Ty);
1181
Nick Lewycky630d85a2011-01-23 06:20:19 +00001182 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1183 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1184 // It's possible the bits taken off by the truncate were all sign bits. If
1185 // so, we should be able to simplify this further.
1186 const SCEV *X = ST->getOperand();
1187 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001188 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1189 unsigned NewBits = getTypeSizeInBits(Ty);
1190 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001191 CR.sextOrTrunc(NewBits)))
1192 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001193 }
1194
Dan Gohman01ecca22009-04-27 20:16:15 +00001195 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001196 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001197 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001198 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001199 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001200 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001201 const SCEV *Start = AR->getStart();
1202 const SCEV *Step = AR->getStepRecurrence(*this);
1203 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1204 const Loop *L = AR->getLoop();
1205
Dan Gohmaneb490a72009-07-25 01:22:26 +00001206 // If we have special knowledge that this addrec won't overflow,
1207 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001208 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001209 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001210 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001211 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001212
Dan Gohman01ecca22009-04-27 20:16:15 +00001213 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1214 // Note that this serves two purposes: It filters out loops that are
1215 // simply not analyzable, and it covers the case where this code is
1216 // being called from within backedge-taken count analysis, such that
1217 // attempting to ask for the backedge-taken count would likely result
1218 // in infinite recursion. In the later case, the analysis code will
1219 // cope with a conservative value, and it will take care to purge
1220 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001221 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001222 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001223 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001224 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001225
1226 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001227 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001228 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001229 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001230 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001231 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1232 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001233 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001234 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001235 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +00001236 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1237 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1238 const SCEV *WideMaxBECount =
1239 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001240 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001241 getAddExpr(WideStart,
1242 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +00001243 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001244 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001245 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1246 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001247 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001248 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001249 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001250 L, AR->getNoWrapFlags());
1251 }
Dan Gohman850f7912009-07-16 17:34:36 +00001252 // Similar to above, only this time treat the step value as unsigned.
1253 // This covers loops that count up with an unsigned step.
Dan Gohman850f7912009-07-16 17:34:36 +00001254 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001255 getAddExpr(WideStart,
1256 getMulExpr(WideMaxBECount,
Dan Gohman850f7912009-07-16 17:34:36 +00001257 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001258 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001259 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1260 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001261 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001262 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001263 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001264 L, AR->getNoWrapFlags());
1265 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001266 }
1267
1268 // If the backedge is guarded by a comparison with the pre-inc value
1269 // the addrec is safe. Also, if the entry is guarded by a comparison
1270 // with the start value and the backedge is guarded by a comparison
1271 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001272 ICmpInst::Predicate Pred;
1273 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1274 if (OverflowLimit &&
1275 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1276 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1277 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1278 OverflowLimit)))) {
1279 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1280 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1281 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1282 getSignExtendExpr(Step, Ty),
1283 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001284 }
1285 }
1286 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001287
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001288 // The cast wasn't folded; create an explicit cast node.
1289 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001290 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001291 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1292 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001293 UniqueSCEVs.InsertNode(S, IP);
1294 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001295}
1296
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001297/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1298/// unspecified bits out to the given type.
1299///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001300const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001301 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001302 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1303 "This is not an extending conversion!");
1304 assert(isSCEVable(Ty) &&
1305 "This is not a conversion to a SCEVable type!");
1306 Ty = getEffectiveSCEVType(Ty);
1307
1308 // Sign-extend negative constants.
1309 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1310 if (SC->getValue()->getValue().isNegative())
1311 return getSignExtendExpr(Op, Ty);
1312
1313 // Peel off a truncate cast.
1314 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001315 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001316 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1317 return getAnyExtendExpr(NewOp, Ty);
1318 return getTruncateOrNoop(NewOp, Ty);
1319 }
1320
1321 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001322 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001323 if (!isa<SCEVZeroExtendExpr>(ZExt))
1324 return ZExt;
1325
1326 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001327 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001328 if (!isa<SCEVSignExtendExpr>(SExt))
1329 return SExt;
1330
Dan Gohmana10756e2010-01-21 02:09:26 +00001331 // Force the cast to be folded into the operands of an addrec.
1332 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1333 SmallVector<const SCEV *, 4> Ops;
1334 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1335 I != E; ++I)
1336 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001337 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001338 }
1339
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001340 // If the expression is obviously signed, use the sext cast value.
1341 if (isa<SCEVSMaxExpr>(Op))
1342 return SExt;
1343
1344 // Absent any other information, use the zext cast value.
1345 return ZExt;
1346}
1347
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001348/// CollectAddOperandsWithScales - Process the given Ops list, which is
1349/// a list of operands to be added under the given scale, update the given
1350/// map. This is a helper function for getAddRecExpr. As an example of
1351/// what it does, given a sequence of operands that would form an add
1352/// expression like this:
1353///
1354/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1355///
1356/// where A and B are constants, update the map with these values:
1357///
1358/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1359///
1360/// and add 13 + A*B*29 to AccumulatedConstant.
1361/// This will allow getAddRecExpr to produce this:
1362///
1363/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1364///
1365/// This form often exposes folding opportunities that are hidden in
1366/// the original operand list.
1367///
1368/// Return true iff it appears that any interesting folding opportunities
1369/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1370/// the common case where no interesting opportunities are present, and
1371/// is also used as a check to avoid infinite recursion.
1372///
1373static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001374CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1375 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001376 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001377 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001378 const APInt &Scale,
1379 ScalarEvolution &SE) {
1380 bool Interesting = false;
1381
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001382 // Iterate over the add operands. They are sorted, with constants first.
1383 unsigned i = 0;
1384 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1385 ++i;
1386 // Pull a buried constant out to the outside.
1387 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1388 Interesting = true;
1389 AccumulatedConstant += Scale * C->getValue()->getValue();
1390 }
1391
1392 // Next comes everything else. We're especially interested in multiplies
1393 // here, but they're in the middle, so just visit the rest with one loop.
1394 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001395 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1396 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1397 APInt NewScale =
1398 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1399 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1400 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001401 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001402 Interesting |=
1403 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001404 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001405 NewScale, SE);
1406 } else {
1407 // A multiplication of a constant with some other value. Update
1408 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001409 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1410 const SCEV *Key = SE.getMulExpr(MulOps);
1411 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001412 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001413 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001414 NewOps.push_back(Pair.first->first);
1415 } else {
1416 Pair.first->second += NewScale;
1417 // The map already had an entry for this value, which may indicate
1418 // a folding opportunity.
1419 Interesting = true;
1420 }
1421 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001422 } else {
1423 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001424 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001425 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001426 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001427 NewOps.push_back(Pair.first->first);
1428 } else {
1429 Pair.first->second += Scale;
1430 // The map already had an entry for this value, which may indicate
1431 // a folding opportunity.
1432 Interesting = true;
1433 }
1434 }
1435 }
1436
1437 return Interesting;
1438}
1439
1440namespace {
1441 struct APIntCompare {
1442 bool operator()(const APInt &LHS, const APInt &RHS) const {
1443 return LHS.ult(RHS);
1444 }
1445 };
1446}
1447
Dan Gohman6c0866c2009-05-24 23:45:28 +00001448/// getAddExpr - Get a canonical add expression, or something simpler if
1449/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001450const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001451 SCEV::NoWrapFlags Flags) {
1452 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1453 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001454 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001455 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001456#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001457 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001458 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001459 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001460 "SCEVAddExpr operand types don't match!");
1461#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001462
Andrew Trick3228cc22011-03-14 16:50:06 +00001463 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001464 // And vice-versa.
1465 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1466 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1467 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001468 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001469 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1470 E = Ops.end(); I != E; ++I)
1471 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001472 All = false;
1473 break;
1474 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001475 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001476 }
1477
Chris Lattner53e677a2004-04-02 20:23:17 +00001478 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001479 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001480
1481 // If there are any constants, fold them together.
1482 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001483 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001484 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001485 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001486 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001487 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001488 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1489 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001490 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001491 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001492 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001493 }
1494
1495 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001496 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001497 Ops.erase(Ops.begin());
1498 --Idx;
1499 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001500
Dan Gohmanbca091d2010-04-12 23:08:18 +00001501 if (Ops.size() == 1) return Ops[0];
1502 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001503
Dan Gohman68ff7762010-08-27 21:39:59 +00001504 // Okay, check to see if the same value occurs in the operand list more than
1505 // once. If so, merge them together into an multiply expression. Since we
1506 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001507 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001508 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001509 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001510 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001511 // Scan ahead to count how many equal operands there are.
1512 unsigned Count = 2;
1513 while (i+Count != e && Ops[i+Count] == Ops[i])
1514 ++Count;
1515 // Merge the values into a multiply.
1516 const SCEV *Scale = getConstant(Ty, Count);
1517 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1518 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001519 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001520 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001521 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001522 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001523 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001524 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001525 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001526 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001527
Dan Gohman728c7f32009-05-08 21:03:19 +00001528 // Check for truncates. If all the operands are truncated from the same
1529 // type, see if factoring out the truncate would permit the result to be
1530 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1531 // if the contents of the resulting outer trunc fold to something simple.
1532 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1533 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001534 Type *DstType = Trunc->getType();
1535 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001536 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001537 bool Ok = true;
1538 // Check all the operands to see if they can be represented in the
1539 // source type of the truncate.
1540 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1541 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1542 if (T->getOperand()->getType() != SrcType) {
1543 Ok = false;
1544 break;
1545 }
1546 LargeOps.push_back(T->getOperand());
1547 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001548 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001549 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001550 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001551 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1552 if (const SCEVTruncateExpr *T =
1553 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1554 if (T->getOperand()->getType() != SrcType) {
1555 Ok = false;
1556 break;
1557 }
1558 LargeMulOps.push_back(T->getOperand());
1559 } else if (const SCEVConstant *C =
1560 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001561 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001562 } else {
1563 Ok = false;
1564 break;
1565 }
1566 }
1567 if (Ok)
1568 LargeOps.push_back(getMulExpr(LargeMulOps));
1569 } else {
1570 Ok = false;
1571 break;
1572 }
1573 }
1574 if (Ok) {
1575 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001576 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001577 // If it folds to something simple, use it. Otherwise, don't.
1578 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1579 return getTruncateExpr(Fold, DstType);
1580 }
1581 }
1582
1583 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001584 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1585 ++Idx;
1586
1587 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001588 if (Idx < Ops.size()) {
1589 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001590 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001591 // If we have an add, expand the add operands onto the end of the operands
1592 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001593 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001594 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001595 DeletedAdd = true;
1596 }
1597
1598 // If we deleted at least one add, we added operands to the end of the list,
1599 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001600 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001601 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001602 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001603 }
1604
1605 // Skip over the add expression until we get to a multiply.
1606 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1607 ++Idx;
1608
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001609 // Check to see if there are any folding opportunities present with
1610 // operands multiplied by constant values.
1611 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1612 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001613 DenseMap<const SCEV *, APInt> M;
1614 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001615 APInt AccumulatedConstant(BitWidth, 0);
1616 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001617 Ops.data(), Ops.size(),
1618 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001619 // Some interesting folding opportunity is present, so its worthwhile to
1620 // re-generate the operands list. Group the operands by constant scale,
1621 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001622 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001623 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001624 E = NewOps.end(); I != E; ++I)
1625 MulOpLists[M.find(*I)->second].push_back(*I);
1626 // Re-generate the operands list.
1627 Ops.clear();
1628 if (AccumulatedConstant != 0)
1629 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001630 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1631 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001632 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001633 Ops.push_back(getMulExpr(getConstant(I->first),
1634 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001635 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001636 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001637 if (Ops.size() == 1)
1638 return Ops[0];
1639 return getAddExpr(Ops);
1640 }
1641 }
1642
Chris Lattner53e677a2004-04-02 20:23:17 +00001643 // If we are adding something to a multiply expression, make sure the
1644 // something is not already an operand of the multiply. If so, merge it into
1645 // the multiply.
1646 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001647 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001648 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001649 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001650 if (isa<SCEVConstant>(MulOpSCEV))
1651 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001652 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001653 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001654 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001655 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001656 if (Mul->getNumOperands() != 2) {
1657 // If the multiply has more than two operands, we must get the
1658 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001659 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1660 Mul->op_begin()+MulOp);
1661 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001662 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001663 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001664 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001665 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001666 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001667 if (Ops.size() == 2) return OuterMul;
1668 if (AddOp < Idx) {
1669 Ops.erase(Ops.begin()+AddOp);
1670 Ops.erase(Ops.begin()+Idx-1);
1671 } else {
1672 Ops.erase(Ops.begin()+Idx);
1673 Ops.erase(Ops.begin()+AddOp-1);
1674 }
1675 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001676 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001677 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001678
Chris Lattner53e677a2004-04-02 20:23:17 +00001679 // Check this multiply against other multiplies being added together.
1680 for (unsigned OtherMulIdx = Idx+1;
1681 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1682 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001683 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001684 // If MulOp occurs in OtherMul, we can fold the two multiplies
1685 // together.
1686 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1687 OMulOp != e; ++OMulOp)
1688 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1689 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001690 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001691 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001692 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001693 Mul->op_begin()+MulOp);
1694 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001695 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001696 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001697 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001698 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001699 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001700 OtherMul->op_begin()+OMulOp);
1701 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001702 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001703 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001704 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1705 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001706 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001707 Ops.erase(Ops.begin()+Idx);
1708 Ops.erase(Ops.begin()+OtherMulIdx-1);
1709 Ops.push_back(OuterMul);
1710 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001711 }
1712 }
1713 }
1714 }
1715
1716 // If there are any add recurrences in the operands list, see if any other
1717 // added values are loop invariant. If so, we can fold them into the
1718 // recurrence.
1719 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1720 ++Idx;
1721
1722 // Scan over all recurrences, trying to fold loop invariants into them.
1723 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1724 // Scan all of the other operands to this add and add them to the vector if
1725 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001726 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001727 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001728 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001729 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001730 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001731 LIOps.push_back(Ops[i]);
1732 Ops.erase(Ops.begin()+i);
1733 --i; --e;
1734 }
1735
1736 // If we found some loop invariants, fold them into the recurrence.
1737 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001738 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001739 LIOps.push_back(AddRec->getStart());
1740
Dan Gohman0bba49c2009-07-07 17:06:11 +00001741 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001742 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001743 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001744
Dan Gohmanb9f96512010-06-30 07:16:37 +00001745 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001746 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001747 // Always propagate NW.
1748 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001749 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001750
Chris Lattner53e677a2004-04-02 20:23:17 +00001751 // If all of the other operands were loop invariant, we are done.
1752 if (Ops.size() == 1) return NewRec;
1753
Nick Lewycky980e9f32011-09-06 05:08:09 +00001754 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001755 for (unsigned i = 0;; ++i)
1756 if (Ops[i] == AddRec) {
1757 Ops[i] = NewRec;
1758 break;
1759 }
Dan Gohman246b2562007-10-22 18:31:58 +00001760 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001761 }
1762
1763 // Okay, if there weren't any loop invariants to be folded, check to see if
1764 // there are multiple AddRec's with the same loop induction variable being
1765 // added together. If so, we can fold them.
1766 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001767 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1768 ++OtherIdx)
1769 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1770 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1771 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1772 AddRec->op_end());
1773 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1774 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001775 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001776 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001777 if (OtherAddRec->getLoop() == AddRecLoop) {
1778 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1779 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001780 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001781 AddRecOps.append(OtherAddRec->op_begin()+i,
1782 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001783 break;
1784 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001785 AddRecOps[i] = getAddExpr(AddRecOps[i],
1786 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001787 }
1788 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001789 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001790 // Step size has changed, so we cannot guarantee no self-wraparound.
1791 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001792 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001793 }
1794
1795 // Otherwise couldn't fold anything into this recurrence. Move onto the
1796 // next one.
1797 }
1798
1799 // Okay, it looks like we really DO need an add expr. Check to see if we
1800 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001801 FoldingSetNodeID ID;
1802 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001803 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1804 ID.AddPointer(Ops[i]);
1805 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001806 SCEVAddExpr *S =
1807 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1808 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001809 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1810 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001811 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1812 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001813 UniqueSCEVs.InsertNode(S, IP);
1814 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001815 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001816 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001817}
1818
Nick Lewyckye97728e2011-10-04 06:51:26 +00001819static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1820 uint64_t k = i*j;
1821 if (j > 1 && k / j != i) Overflow = true;
1822 return k;
1823}
1824
1825/// Compute the result of "n choose k", the binomial coefficient. If an
1826/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerd9b0b022012-06-02 10:20:22 +00001827/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewyckye97728e2011-10-04 06:51:26 +00001828static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1829 // We use the multiplicative formula:
1830 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1831 // At each iteration, we take the n-th term of the numeral and divide by the
1832 // (k-n)th term of the denominator. This division will always produce an
1833 // integral result, and helps reduce the chance of overflow in the
1834 // intermediate computations. However, we can still overflow even when the
1835 // final result would fit.
1836
1837 if (n == 0 || n == k) return 1;
1838 if (k > n) return 0;
1839
1840 if (k > n/2)
1841 k = n-k;
1842
1843 uint64_t r = 1;
1844 for (uint64_t i = 1; i <= k; ++i) {
1845 r = umul_ov(r, n-(i-1), Overflow);
1846 r /= i;
1847 }
1848 return r;
1849}
1850
Dan Gohman6c0866c2009-05-24 23:45:28 +00001851/// getMulExpr - Get a canonical multiply expression, or something simpler if
1852/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001853const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001854 SCEV::NoWrapFlags Flags) {
1855 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1856 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001857 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001858 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001859#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001860 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001861 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001862 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001863 "SCEVMulExpr operand types don't match!");
1864#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001865
Andrew Trick3228cc22011-03-14 16:50:06 +00001866 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001867 // And vice-versa.
1868 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1869 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1870 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001871 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001872 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1873 E = Ops.end(); I != E; ++I)
1874 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001875 All = false;
1876 break;
1877 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001878 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001879 }
1880
Chris Lattner53e677a2004-04-02 20:23:17 +00001881 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001882 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001883
1884 // If there are any constants, fold them together.
1885 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001886 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001887
1888 // C1*(C2+V) -> C1*C2 + C1*V
1889 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001890 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001891 if (Add->getNumOperands() == 2 &&
1892 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001893 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1894 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001895
Chris Lattner53e677a2004-04-02 20:23:17 +00001896 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001897 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001898 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001899 ConstantInt *Fold = ConstantInt::get(getContext(),
1900 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001901 RHSC->getValue()->getValue());
1902 Ops[0] = getConstant(Fold);
1903 Ops.erase(Ops.begin()+1); // Erase the folded element
1904 if (Ops.size() == 1) return Ops[0];
1905 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001906 }
1907
1908 // If we are left with a constant one being multiplied, strip it off.
1909 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1910 Ops.erase(Ops.begin());
1911 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001912 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001913 // If we have a multiply of zero, it will always be zero.
1914 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001915 } else if (Ops[0]->isAllOnesValue()) {
1916 // If we have a mul by -1 of an add, try distributing the -1 among the
1917 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001918 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001919 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1920 SmallVector<const SCEV *, 4> NewOps;
1921 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001922 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1923 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001924 const SCEV *Mul = getMulExpr(Ops[0], *I);
1925 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1926 NewOps.push_back(Mul);
1927 }
1928 if (AnyFolded)
1929 return getAddExpr(NewOps);
1930 }
Andrew Tricka053b212011-03-14 17:38:54 +00001931 else if (const SCEVAddRecExpr *
1932 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1933 // Negation preserves a recurrence's no self-wrap property.
1934 SmallVector<const SCEV *, 4> Operands;
1935 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1936 E = AddRec->op_end(); I != E; ++I) {
1937 Operands.push_back(getMulExpr(Ops[0], *I));
1938 }
1939 return getAddRecExpr(Operands, AddRec->getLoop(),
1940 AddRec->getNoWrapFlags(SCEV::FlagNW));
1941 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001942 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001943 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001944
1945 if (Ops.size() == 1)
1946 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001947 }
1948
1949 // Skip over the add expression until we get to a multiply.
1950 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1951 ++Idx;
1952
Chris Lattner53e677a2004-04-02 20:23:17 +00001953 // If there are mul operands inline them all into this expression.
1954 if (Idx < Ops.size()) {
1955 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001956 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001957 // If we have an mul, expand the mul operands onto the end of the operands
1958 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001959 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001960 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001961 DeletedMul = true;
1962 }
1963
1964 // If we deleted at least one mul, we added operands to the end of the list,
1965 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001966 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001967 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001968 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001969 }
1970
1971 // If there are any add recurrences in the operands list, see if any other
1972 // added values are loop invariant. If so, we can fold them into the
1973 // recurrence.
1974 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1975 ++Idx;
1976
1977 // Scan over all recurrences, trying to fold loop invariants into them.
1978 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1979 // Scan all of the other operands to this mul and add them to the vector if
1980 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001981 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001982 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001983 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001984 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001985 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001986 LIOps.push_back(Ops[i]);
1987 Ops.erase(Ops.begin()+i);
1988 --i; --e;
1989 }
1990
1991 // If we found some loop invariants, fold them into the recurrence.
1992 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001993 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001994 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001995 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001996 const SCEV *Scale = getMulExpr(LIOps);
1997 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1998 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001999
Dan Gohmanb9f96512010-06-30 07:16:37 +00002000 // Build the new addrec. Propagate the NUW and NSW flags if both the
2001 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00002002 //
2003 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002004 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00002005 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2006 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002007
2008 // If all of the other operands were loop invariant, we are done.
2009 if (Ops.size() == 1) return NewRec;
2010
Nick Lewycky980e9f32011-09-06 05:08:09 +00002011 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00002012 for (unsigned i = 0;; ++i)
2013 if (Ops[i] == AddRec) {
2014 Ops[i] = NewRec;
2015 break;
2016 }
Dan Gohman246b2562007-10-22 18:31:58 +00002017 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002018 }
2019
2020 // Okay, if there weren't any loop invariants to be folded, check to see if
2021 // there are multiple AddRec's with the same loop induction variable being
2022 // multiplied together. If so, we can fold them.
2023 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002024 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002025 ++OtherIdx) {
Andrew Trick97178ae2012-05-30 03:35:17 +00002026 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2027 continue;
2028
2029 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2030 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2031 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2032 // ]]],+,...up to x=2n}.
2033 // Note that the arguments to choose() are always integers with values
2034 // known at compile time, never SCEV objects.
2035 //
2036 // The implementation avoids pointless extra computations when the two
2037 // addrec's are of different length (mathematically, it's equivalent to
2038 // an infinite stream of zeros on the right).
2039 bool OpsModified = false;
2040 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2041 ++OtherIdx) {
2042 const SCEVAddRecExpr *OtherAddRec =
2043 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2044 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2045 continue;
2046
2047 bool Overflow = false;
2048 Type *Ty = AddRec->getType();
2049 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2050 SmallVector<const SCEV*, 7> AddRecOps;
2051 for (int x = 0, xe = AddRec->getNumOperands() +
2052 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2053 const SCEV *Term = getConstant(Ty, 0);
2054 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2055 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2056 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2057 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2058 z < ze && !Overflow; ++z) {
2059 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2060 uint64_t Coeff;
2061 if (LargerThan64Bits)
2062 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2063 else
2064 Coeff = Coeff1*Coeff2;
2065 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2066 const SCEV *Term1 = AddRec->getOperand(y-z);
2067 const SCEV *Term2 = OtherAddRec->getOperand(z);
2068 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Dan Gohman6a0c1252010-08-31 22:52:12 +00002069 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002070 }
2071 AddRecOps.push_back(Term);
2072 }
2073 if (!Overflow) {
2074 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2075 SCEV::FlagAnyWrap);
2076 if (Ops.size() == 2) return NewAddRec;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002077 Ops[Idx] = NewAddRec;
Andrew Trick97178ae2012-05-30 03:35:17 +00002078 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2079 OpsModified = true;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002080 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2081 if (!AddRec)
2082 break;
Andrew Trick97178ae2012-05-30 03:35:17 +00002083 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002084 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002085 if (OpsModified)
2086 return getMulExpr(Ops);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002087 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002088
2089 // Otherwise couldn't fold anything into this recurrence. Move onto the
2090 // next one.
2091 }
2092
2093 // Okay, it looks like we really DO need an mul expr. Check to see if we
2094 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002095 FoldingSetNodeID ID;
2096 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002097 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2098 ID.AddPointer(Ops[i]);
2099 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002100 SCEVMulExpr *S =
2101 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2102 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002103 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2104 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002105 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2106 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002107 UniqueSCEVs.InsertNode(S, IP);
2108 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002109 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002110 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002111}
2112
Andreas Bolka8a11c982009-08-07 22:55:26 +00002113/// getUDivExpr - Get a canonical unsigned division expression, or something
2114/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002115const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2116 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002117 assert(getEffectiveSCEVType(LHS->getType()) ==
2118 getEffectiveSCEVType(RHS->getType()) &&
2119 "SCEVUDivExpr operand types don't match!");
2120
Dan Gohman622ed672009-05-04 22:02:23 +00002121 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002122 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002123 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002124 // If the denominator is zero, the result of the udiv is undefined. Don't
2125 // try to analyze it, because the resolution chosen here may differ from
2126 // the resolution chosen in other parts of the compiler.
2127 if (!RHSC->getValue()->isZero()) {
2128 // Determine if the division can be folded into the operands of
2129 // its operands.
2130 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002131 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002132 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002133 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002134 // For non-power-of-two values, effectively round the value up to the
2135 // nearest power of two.
2136 if (!RHSC->getValue()->getValue().isPowerOf2())
2137 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002138 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002139 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002140 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2141 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002142 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2143 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2144 const APInt &StepInt = Step->getValue()->getValue();
2145 const APInt &DivInt = RHSC->getValue()->getValue();
2146 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002147 getZeroExtendExpr(AR, ExtTy) ==
2148 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2149 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002150 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002151 SmallVector<const SCEV *, 4> Operands;
2152 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2153 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002154 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002155 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002156 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002157 /// Get a canonical UDivExpr for a recurrence.
2158 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2159 // We can currently only fold X%N if X is constant.
2160 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2161 if (StartC && !DivInt.urem(StepInt) &&
2162 getZeroExtendExpr(AR, ExtTy) ==
2163 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2164 getZeroExtendExpr(Step, ExtTy),
2165 AR->getLoop(), SCEV::FlagAnyWrap)) {
2166 const APInt &StartInt = StartC->getValue()->getValue();
2167 const APInt &StartRem = StartInt.urem(StepInt);
2168 if (StartRem != 0)
2169 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2170 AR->getLoop(), SCEV::FlagNW);
2171 }
2172 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002173 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2174 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2175 SmallVector<const SCEV *, 4> Operands;
2176 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2177 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2178 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2179 // Find an operand that's safely divisible.
2180 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2181 const SCEV *Op = M->getOperand(i);
2182 const SCEV *Div = getUDivExpr(Op, RHSC);
2183 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2184 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2185 M->op_end());
2186 Operands[i] = Div;
2187 return getMulExpr(Operands);
2188 }
2189 }
Dan Gohman185cf032009-05-08 20:18:49 +00002190 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002191 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002192 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002193 SmallVector<const SCEV *, 4> Operands;
2194 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2195 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2196 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2197 Operands.clear();
2198 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2199 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2200 if (isa<SCEVUDivExpr>(Op) ||
2201 getMulExpr(Op, RHS) != A->getOperand(i))
2202 break;
2203 Operands.push_back(Op);
2204 }
2205 if (Operands.size() == A->getNumOperands())
2206 return getAddExpr(Operands);
2207 }
2208 }
Dan Gohman185cf032009-05-08 20:18:49 +00002209
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002210 // Fold if both operands are constant.
2211 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2212 Constant *LHSCV = LHSC->getValue();
2213 Constant *RHSCV = RHSC->getValue();
2214 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2215 RHSCV)));
2216 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002217 }
2218 }
2219
Dan Gohman1c343752009-06-27 21:21:31 +00002220 FoldingSetNodeID ID;
2221 ID.AddInteger(scUDivExpr);
2222 ID.AddPointer(LHS);
2223 ID.AddPointer(RHS);
2224 void *IP = 0;
2225 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002226 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2227 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002228 UniqueSCEVs.InsertNode(S, IP);
2229 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002230}
2231
2232
Dan Gohman6c0866c2009-05-24 23:45:28 +00002233/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2234/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002235const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2236 const Loop *L,
2237 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002238 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002239 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002240 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002241 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002242 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002243 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002244 }
2245
2246 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002247 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002248}
2249
Dan Gohman6c0866c2009-05-24 23:45:28 +00002250/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2251/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002252const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002253ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002254 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002255 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002256#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002257 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002258 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002259 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002260 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002261 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002262 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002263 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002264#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002265
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002266 if (Operands.back()->isZero()) {
2267 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002268 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002269 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002270
Dan Gohmanbc028532010-02-19 18:49:22 +00002271 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2272 // use that information to infer NUW and NSW flags. However, computing a
2273 // BE count requires calling getAddRecExpr, so we may not yet have a
2274 // meaningful BE count at this point (and if we don't, we'd be stuck
2275 // with a SCEVCouldNotCompute as the cached BE count).
2276
Andrew Trick3228cc22011-03-14 16:50:06 +00002277 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002278 // And vice-versa.
2279 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2280 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2281 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002282 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002283 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2284 E = Operands.end(); I != E; ++I)
2285 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002286 All = false;
2287 break;
2288 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002289 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002290 }
2291
Dan Gohmand9cc7492008-08-08 18:33:12 +00002292 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002293 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002294 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002295 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002296 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002297 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002298 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002299 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002300 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002301 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002302 // AddRecs require their operands be loop-invariant with respect to their
2303 // loops. Don't perform this transformation if it would break this
2304 // requirement.
2305 bool AllInvariant = true;
2306 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002307 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002308 AllInvariant = false;
2309 break;
2310 }
2311 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002312 // Create a recurrence for the outer loop with the same step size.
2313 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002314 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2315 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002316 SCEV::NoWrapFlags OuterFlags =
2317 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002318
2319 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002320 AllInvariant = true;
2321 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002322 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002323 AllInvariant = false;
2324 break;
2325 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002326 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002327 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002328 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002329 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2330 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002331 SCEV::NoWrapFlags InnerFlags =
2332 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002333 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2334 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002335 }
2336 // Reset Operands to its original state.
2337 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002338 }
2339 }
2340
Dan Gohman67847532010-01-19 22:27:22 +00002341 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2342 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002343 FoldingSetNodeID ID;
2344 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002345 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2346 ID.AddPointer(Operands[i]);
2347 ID.AddPointer(L);
2348 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002349 SCEVAddRecExpr *S =
2350 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2351 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002352 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2353 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002354 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2355 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002356 UniqueSCEVs.InsertNode(S, IP);
2357 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002358 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002359 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002360}
2361
Dan Gohman9311ef62009-06-24 14:49:00 +00002362const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2363 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002364 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002365 Ops.push_back(LHS);
2366 Ops.push_back(RHS);
2367 return getSMaxExpr(Ops);
2368}
2369
Dan Gohman0bba49c2009-07-07 17:06:11 +00002370const SCEV *
2371ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002372 assert(!Ops.empty() && "Cannot get empty smax!");
2373 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002374#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002375 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002376 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002377 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002378 "SCEVSMaxExpr operand types don't match!");
2379#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002380
2381 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002382 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002383
2384 // If there are any constants, fold them together.
2385 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002386 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002387 ++Idx;
2388 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002389 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002390 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002391 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002392 APIntOps::smax(LHSC->getValue()->getValue(),
2393 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002394 Ops[0] = getConstant(Fold);
2395 Ops.erase(Ops.begin()+1); // Erase the folded element
2396 if (Ops.size() == 1) return Ops[0];
2397 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002398 }
2399
Dan Gohmane5aceed2009-06-24 14:46:22 +00002400 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002401 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2402 Ops.erase(Ops.begin());
2403 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002404 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2405 // If we have an smax with a constant maximum-int, it will always be
2406 // maximum-int.
2407 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002408 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002409
Dan Gohman3ab13122010-04-13 16:49:23 +00002410 if (Ops.size() == 1) return Ops[0];
2411 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002412
2413 // Find the first SMax
2414 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2415 ++Idx;
2416
2417 // Check to see if one of the operands is an SMax. If so, expand its operands
2418 // onto our operand list, and recurse to simplify.
2419 if (Idx < Ops.size()) {
2420 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002421 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002422 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002423 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002424 DeletedSMax = true;
2425 }
2426
2427 if (DeletedSMax)
2428 return getSMaxExpr(Ops);
2429 }
2430
2431 // Okay, check to see if the same value occurs in the operand list twice. If
2432 // so, delete one. Since we sorted the list, these values are required to
2433 // be adjacent.
2434 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002435 // X smax Y smax Y --> X smax Y
2436 // X smax Y --> X, if X is always greater than Y
2437 if (Ops[i] == Ops[i+1] ||
2438 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2439 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2440 --i; --e;
2441 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002442 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2443 --i; --e;
2444 }
2445
2446 if (Ops.size() == 1) return Ops[0];
2447
2448 assert(!Ops.empty() && "Reduced smax down to nothing!");
2449
Nick Lewycky3e630762008-02-20 06:48:22 +00002450 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002451 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002452 FoldingSetNodeID ID;
2453 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002454 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2455 ID.AddPointer(Ops[i]);
2456 void *IP = 0;
2457 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002458 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2459 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002460 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2461 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002462 UniqueSCEVs.InsertNode(S, IP);
2463 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002464}
2465
Dan Gohman9311ef62009-06-24 14:49:00 +00002466const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2467 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002468 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002469 Ops.push_back(LHS);
2470 Ops.push_back(RHS);
2471 return getUMaxExpr(Ops);
2472}
2473
Dan Gohman0bba49c2009-07-07 17:06:11 +00002474const SCEV *
2475ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002476 assert(!Ops.empty() && "Cannot get empty umax!");
2477 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002478#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002479 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002480 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002481 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002482 "SCEVUMaxExpr operand types don't match!");
2483#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002484
2485 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002486 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002487
2488 // If there are any constants, fold them together.
2489 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002490 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002491 ++Idx;
2492 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002493 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002494 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002495 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002496 APIntOps::umax(LHSC->getValue()->getValue(),
2497 RHSC->getValue()->getValue()));
2498 Ops[0] = getConstant(Fold);
2499 Ops.erase(Ops.begin()+1); // Erase the folded element
2500 if (Ops.size() == 1) return Ops[0];
2501 LHSC = cast<SCEVConstant>(Ops[0]);
2502 }
2503
Dan Gohmane5aceed2009-06-24 14:46:22 +00002504 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002505 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2506 Ops.erase(Ops.begin());
2507 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002508 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2509 // If we have an umax with a constant maximum-int, it will always be
2510 // maximum-int.
2511 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002512 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002513
Dan Gohman3ab13122010-04-13 16:49:23 +00002514 if (Ops.size() == 1) return Ops[0];
2515 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002516
2517 // Find the first UMax
2518 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2519 ++Idx;
2520
2521 // Check to see if one of the operands is a UMax. If so, expand its operands
2522 // onto our operand list, and recurse to simplify.
2523 if (Idx < Ops.size()) {
2524 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002525 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002526 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002527 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002528 DeletedUMax = true;
2529 }
2530
2531 if (DeletedUMax)
2532 return getUMaxExpr(Ops);
2533 }
2534
2535 // Okay, check to see if the same value occurs in the operand list twice. If
2536 // so, delete one. Since we sorted the list, these values are required to
2537 // be adjacent.
2538 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002539 // X umax Y umax Y --> X umax Y
2540 // X umax Y --> X, if X is always greater than Y
2541 if (Ops[i] == Ops[i+1] ||
2542 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2543 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2544 --i; --e;
2545 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002546 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2547 --i; --e;
2548 }
2549
2550 if (Ops.size() == 1) return Ops[0];
2551
2552 assert(!Ops.empty() && "Reduced umax down to nothing!");
2553
2554 // Okay, it looks like we really DO need a umax expr. Check to see if we
2555 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002556 FoldingSetNodeID ID;
2557 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002558 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2559 ID.AddPointer(Ops[i]);
2560 void *IP = 0;
2561 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002562 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2563 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002564 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2565 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002566 UniqueSCEVs.InsertNode(S, IP);
2567 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002568}
2569
Dan Gohman9311ef62009-06-24 14:49:00 +00002570const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2571 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002572 // ~smax(~x, ~y) == smin(x, y).
2573 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2574}
2575
Dan Gohman9311ef62009-06-24 14:49:00 +00002576const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2577 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002578 // ~umax(~x, ~y) == umin(x, y)
2579 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2580}
2581
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002582const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002583 // If we have TargetData, we can bypass creating a target-independent
2584 // constant expression and then folding it back into a ConstantInt.
2585 // This is just a compile-time optimization.
2586 if (TD)
2587 return getConstant(TD->getIntPtrType(getContext()),
2588 TD->getTypeAllocSize(AllocTy));
2589
Dan Gohman4f8eea82010-02-01 18:27:38 +00002590 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2591 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002592 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002593 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002594 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002595 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2596}
2597
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002598const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002599 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2600 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002601 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002602 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002603 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002604 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2605}
2606
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002607const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002608 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002609 // If we have TargetData, we can bypass creating a target-independent
2610 // constant expression and then folding it back into a ConstantInt.
2611 // This is just a compile-time optimization.
2612 if (TD)
2613 return getConstant(TD->getIntPtrType(getContext()),
2614 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2615
Dan Gohman0f5efe52010-01-28 02:15:55 +00002616 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2617 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002618 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002619 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002620 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002621 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002622}
2623
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002624const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002625 Constant *FieldNo) {
2626 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002627 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002628 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002629 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002630 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002631 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002632}
2633
Dan Gohman0bba49c2009-07-07 17:06:11 +00002634const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002635 // Don't attempt to do anything other than create a SCEVUnknown object
2636 // here. createSCEV only calls getUnknown after checking for all other
2637 // interesting possibilities, and any other code that calls getUnknown
2638 // is doing so in order to hide a value from SCEV canonicalization.
2639
Dan Gohman1c343752009-06-27 21:21:31 +00002640 FoldingSetNodeID ID;
2641 ID.AddInteger(scUnknown);
2642 ID.AddPointer(V);
2643 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002644 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2645 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2646 "Stale SCEVUnknown in uniquing map!");
2647 return S;
2648 }
2649 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2650 FirstUnknown);
2651 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002652 UniqueSCEVs.InsertNode(S, IP);
2653 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002654}
2655
Chris Lattner53e677a2004-04-02 20:23:17 +00002656//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002657// Basic SCEV Analysis and PHI Idiom Recognition Code
2658//
2659
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002660/// isSCEVable - Test if values of the given type are analyzable within
2661/// the SCEV framework. This primarily includes integer types, and it
2662/// can optionally include pointer types if the ScalarEvolution class
2663/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002664bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002665 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002666 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002667}
2668
2669/// getTypeSizeInBits - Return the size in bits of the specified type,
2670/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002671uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002672 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2673
2674 // If we have a TargetData, use it!
2675 if (TD)
2676 return TD->getTypeSizeInBits(Ty);
2677
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002678 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002679 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002680 return Ty->getPrimitiveSizeInBits();
2681
2682 // The only other support type is pointer. Without TargetData, conservatively
2683 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002684 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002685 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002686}
2687
2688/// getEffectiveSCEVType - Return a type with the same bitwidth as
2689/// the given type and which represents how SCEV will treat the given
2690/// type, for which isSCEVable must return true. For pointer types,
2691/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002692Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002693 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2694
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002695 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002696 return Ty;
2697
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002698 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002699 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002700 if (TD) return TD->getIntPtrType(getContext());
2701
2702 // Without TargetData, conservatively assume pointers are 64-bit.
2703 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002704}
Chris Lattner53e677a2004-04-02 20:23:17 +00002705
Dan Gohman0bba49c2009-07-07 17:06:11 +00002706const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002707 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002708}
2709
Chris Lattner53e677a2004-04-02 20:23:17 +00002710/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2711/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002712const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002713 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002714
Benjamin Kramer992c25a2012-06-30 22:37:15 +00002715 ValueExprMapType::const_iterator I = ValueExprMap.find_as(V);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002716 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002717 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002718
2719 // The process of creating a SCEV for V may have caused other SCEVs
2720 // to have been created, so it's necessary to insert the new entry
2721 // from scratch, rather than trying to remember the insert position
2722 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002723 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002724 return S;
2725}
2726
Dan Gohman2d1be872009-04-16 03:18:22 +00002727/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2728///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002729const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002730 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002731 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002732 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002733
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002734 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002735 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002736 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002737 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002738}
2739
2740/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002741const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002742 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002743 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002744 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002745
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002746 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002747 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002748 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002749 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002750 return getMinusSCEV(AllOnes, V);
2751}
2752
Andrew Trick3228cc22011-03-14 16:50:06 +00002753/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002754const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002755 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002756 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2757
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002758 // Fast path: X - X --> 0.
2759 if (LHS == RHS)
2760 return getConstant(LHS->getType(), 0);
2761
Dan Gohman2d1be872009-04-16 03:18:22 +00002762 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002763 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002764}
2765
2766/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2767/// input value to the specified type. If the type must be extended, it is zero
2768/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002769const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002770ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2771 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002772 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2773 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002774 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002775 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002776 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002777 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002778 return getTruncateExpr(V, Ty);
2779 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002780}
2781
2782/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2783/// input value to the specified type. If the type must be extended, it is sign
2784/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002785const SCEV *
2786ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002787 Type *Ty) {
2788 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002789 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2790 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002791 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002792 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002793 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002794 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002795 return getTruncateExpr(V, Ty);
2796 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002797}
2798
Dan Gohman467c4302009-05-13 03:46:30 +00002799/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2800/// input value to the specified type. If the type must be extended, it is zero
2801/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002802const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002803ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2804 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002805 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2806 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002807 "Cannot noop or zero extend with non-integer arguments!");
2808 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2809 "getNoopOrZeroExtend cannot truncate!");
2810 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2811 return V; // No conversion
2812 return getZeroExtendExpr(V, Ty);
2813}
2814
2815/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2816/// input value to the specified type. If the type must be extended, it is sign
2817/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002818const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002819ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2820 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002821 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2822 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002823 "Cannot noop or sign extend with non-integer arguments!");
2824 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2825 "getNoopOrSignExtend cannot truncate!");
2826 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2827 return V; // No conversion
2828 return getSignExtendExpr(V, Ty);
2829}
2830
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002831/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2832/// the input value to the specified type. If the type must be extended,
2833/// it is extended with unspecified bits. The conversion must not be
2834/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002835const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002836ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2837 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002838 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2839 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002840 "Cannot noop or any extend with non-integer arguments!");
2841 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2842 "getNoopOrAnyExtend cannot truncate!");
2843 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2844 return V; // No conversion
2845 return getAnyExtendExpr(V, Ty);
2846}
2847
Dan Gohman467c4302009-05-13 03:46:30 +00002848/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2849/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002850const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002851ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2852 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002853 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2854 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002855 "Cannot truncate or noop with non-integer arguments!");
2856 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2857 "getTruncateOrNoop cannot extend!");
2858 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2859 return V; // No conversion
2860 return getTruncateExpr(V, Ty);
2861}
2862
Dan Gohmana334aa72009-06-22 00:31:57 +00002863/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2864/// the types using zero-extension, and then perform a umax operation
2865/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002866const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2867 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002868 const SCEV *PromotedLHS = LHS;
2869 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002870
2871 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2872 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2873 else
2874 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2875
2876 return getUMaxExpr(PromotedLHS, PromotedRHS);
2877}
2878
Dan Gohmanc9759e82009-06-22 15:03:27 +00002879/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2880/// the types using zero-extension, and then perform a umin operation
2881/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002882const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2883 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002884 const SCEV *PromotedLHS = LHS;
2885 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002886
2887 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2888 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2889 else
2890 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2891
2892 return getUMinExpr(PromotedLHS, PromotedRHS);
2893}
2894
Andrew Trickb12a7542011-03-17 23:51:11 +00002895/// getPointerBase - Transitively follow the chain of pointer-type operands
2896/// until reaching a SCEV that does not have a single pointer operand. This
2897/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2898/// but corner cases do exist.
2899const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2900 // A pointer operand may evaluate to a nonpointer expression, such as null.
2901 if (!V->getType()->isPointerTy())
2902 return V;
2903
2904 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2905 return getPointerBase(Cast->getOperand());
2906 }
2907 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2908 const SCEV *PtrOp = 0;
2909 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2910 I != E; ++I) {
2911 if ((*I)->getType()->isPointerTy()) {
2912 // Cannot find the base of an expression with multiple pointer operands.
2913 if (PtrOp)
2914 return V;
2915 PtrOp = *I;
2916 }
2917 }
2918 if (!PtrOp)
2919 return V;
2920 return getPointerBase(PtrOp);
2921 }
2922 return V;
2923}
2924
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002925/// PushDefUseChildren - Push users of the given Instruction
2926/// onto the given Worklist.
2927static void
2928PushDefUseChildren(Instruction *I,
2929 SmallVectorImpl<Instruction *> &Worklist) {
2930 // Push the def-use children onto the Worklist stack.
2931 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2932 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002933 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002934}
2935
2936/// ForgetSymbolicValue - This looks up computed SCEV values for all
2937/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002938/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002939/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002940void
Dan Gohman85669632010-02-25 06:57:05 +00002941ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002942 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002943 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002944
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002945 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002946 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002947 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002948 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002949 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002950
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002951 ValueExprMapType::iterator It =
Benjamin Kramer992c25a2012-06-30 22:37:15 +00002952 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002953 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002954 const SCEV *Old = It->second;
2955
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002956 // Short-circuit the def-use traversal if the symbolic name
2957 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002958 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002959 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002960
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002961 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002962 // structure, it's a PHI that's in the progress of being computed
2963 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2964 // additional loop trip count information isn't going to change anything.
2965 // In the second case, createNodeForPHI will perform the necessary
2966 // updates on its own when it gets to that point. In the third, we do
2967 // want to forget the SCEVUnknown.
2968 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002969 !isa<SCEVUnknown>(Old) ||
2970 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002971 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002972 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002973 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002974 }
2975
2976 PushDefUseChildren(I, Worklist);
2977 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002978}
Chris Lattner53e677a2004-04-02 20:23:17 +00002979
2980/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2981/// a loop header, making it a potential recurrence, or it doesn't.
2982///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002983const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002984 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2985 if (L->getHeader() == PN->getParent()) {
2986 // The loop may have multiple entrances or multiple exits; we can analyze
2987 // this phi as an addrec if it has a unique entry value and a unique
2988 // backedge value.
2989 Value *BEValueV = 0, *StartValueV = 0;
2990 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2991 Value *V = PN->getIncomingValue(i);
2992 if (L->contains(PN->getIncomingBlock(i))) {
2993 if (!BEValueV) {
2994 BEValueV = V;
2995 } else if (BEValueV != V) {
2996 BEValueV = 0;
2997 break;
2998 }
2999 } else if (!StartValueV) {
3000 StartValueV = V;
3001 } else if (StartValueV != V) {
3002 StartValueV = 0;
3003 break;
3004 }
3005 }
3006 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003007 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003008 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramer992c25a2012-06-30 22:37:15 +00003009 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003010 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003011 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00003012
3013 // Using this symbolic name for the PHI, analyze the value coming around
3014 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003015 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00003016
3017 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3018 // has a special value for the first iteration of the loop.
3019
3020 // If the value coming around the backedge is an add with the symbolic
3021 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00003022 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003023 // If there is a single occurrence of the symbolic value, replace it
3024 // with a recurrence.
3025 unsigned FoundIndex = Add->getNumOperands();
3026 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3027 if (Add->getOperand(i) == SymbolicName)
3028 if (FoundIndex == e) {
3029 FoundIndex = i;
3030 break;
3031 }
3032
3033 if (FoundIndex != Add->getNumOperands()) {
3034 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003035 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00003036 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3037 if (i != FoundIndex)
3038 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00003039 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00003040
3041 // This is not a valid addrec if the step amount is varying each
3042 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003043 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00003044 (isa<SCEVAddRecExpr>(Accum) &&
3045 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003046 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00003047
3048 // If the increment doesn't overflow, then neither the addrec nor
3049 // the post-increment will overflow.
3050 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3051 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003052 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003053 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003054 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00003055 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00003056 dyn_cast<GEPOperator>(BEValueV)) {
3057 // If the increment is an inbounds GEP, then we know the address
3058 // space cannot be wrapped around. We cannot make any guarantee
3059 // about signed or unsigned overflow because pointers are
3060 // unsigned but we may have a negative index from the base
3061 // pointer.
3062 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00003063 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003064 }
3065
Dan Gohman27dead42010-04-12 07:49:36 +00003066 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00003067 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00003068
Dan Gohmana10756e2010-01-21 02:09:26 +00003069 // Since the no-wrap flags are on the increment, they apply to the
3070 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003071 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003072 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003073 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003074
3075 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003076 // to be symbolic. We now need to go back and purge all of the
3077 // entries for the scalars that use the symbolic expression.
3078 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003079 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003080 return PHISCEV;
3081 }
3082 }
Dan Gohman622ed672009-05-04 22:02:23 +00003083 } else if (const SCEVAddRecExpr *AddRec =
3084 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003085 // Otherwise, this could be a loop like this:
3086 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3087 // In this case, j = {1,+,1} and BEValue is j.
3088 // Because the other in-value of i (0) fits the evolution of BEValue
3089 // i really is an addrec evolution.
3090 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003091 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003092
3093 // If StartVal = j.start - j.stride, we can use StartVal as the
3094 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003095 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003096 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003097 // FIXME: For constant StartVal, we should be able to infer
3098 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003099 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003100 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3101 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003102
3103 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003104 // to be symbolic. We now need to go back and purge all of the
3105 // entries for the scalars that use the symbolic expression.
3106 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003107 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003108 return PHISCEV;
3109 }
3110 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003111 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003112 }
Dan Gohman27dead42010-04-12 07:49:36 +00003113 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003114
Dan Gohman85669632010-02-25 06:57:05 +00003115 // If the PHI has a single incoming value, follow that value, unless the
3116 // PHI's incoming blocks are in a different loop, in which case doing so
3117 // risks breaking LCSSA form. Instcombine would normally zap these, but
3118 // it doesn't have DominatorTree information, so it may miss cases.
Chad Rosier618c1db2011-12-01 03:08:23 +00003119 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003120 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003121 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003122
Chris Lattner53e677a2004-04-02 20:23:17 +00003123 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003124 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003125}
3126
Dan Gohman26466c02009-05-08 20:26:55 +00003127/// createNodeForGEP - Expand GEP instructions into add and multiply
3128/// operations. This allows them to be analyzed by regular SCEV code.
3129///
Dan Gohmand281ed22009-12-18 02:09:29 +00003130const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003131
Dan Gohmanb9f96512010-06-30 07:16:37 +00003132 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3133 // Add expression, because the Instruction may be guarded by control flow
3134 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003135 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003136 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003137
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003138 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003139 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003140 // Don't attempt to analyze GEPs over unsized objects.
3141 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3142 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003143 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003144 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003145 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003146 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003147 I != E; ++I) {
3148 Value *Index = *I;
3149 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003150 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003151 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003152 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00003153 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3154
Dan Gohmanb9f96512010-06-30 07:16:37 +00003155 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003156 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003157 } else {
3158 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003159 const SCEV *ElementSize = getSizeOfExpr(*GTI);
3160 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003161 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003162 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3163
Dan Gohmanb9f96512010-06-30 07:16:37 +00003164 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003165 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3166 isInBounds ? SCEV::FlagNSW :
3167 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003168
3169 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003170 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003171 }
3172 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003173
3174 // Get the SCEV for the GEP base.
3175 const SCEV *BaseS = getSCEV(Base);
3176
Dan Gohmanb9f96512010-06-30 07:16:37 +00003177 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003178 return getAddExpr(BaseS, TotalOffset,
Benjamin Kramer86df0622012-04-17 06:33:57 +00003179 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003180}
3181
Nick Lewycky83bb0052007-11-22 07:59:40 +00003182/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3183/// guaranteed to end in (at every loop iteration). It is, at the same time,
3184/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3185/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003186uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003187ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003188 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003189 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003190
Dan Gohman622ed672009-05-04 22:02:23 +00003191 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003192 return std::min(GetMinTrailingZeros(T->getOperand()),
3193 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003194
Dan Gohman622ed672009-05-04 22:02:23 +00003195 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003196 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3197 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3198 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003199 }
3200
Dan Gohman622ed672009-05-04 22:02:23 +00003201 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003202 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3203 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3204 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003205 }
3206
Dan Gohman622ed672009-05-04 22:02:23 +00003207 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003208 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003209 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003210 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003211 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003212 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003213 }
3214
Dan Gohman622ed672009-05-04 22:02:23 +00003215 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003216 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003217 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3218 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003219 for (unsigned i = 1, e = M->getNumOperands();
3220 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003221 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003222 BitWidth);
3223 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003224 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003225
Dan Gohman622ed672009-05-04 22:02:23 +00003226 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003227 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003228 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003229 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003230 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003231 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003232 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003233
Dan Gohman622ed672009-05-04 22:02:23 +00003234 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003235 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003236 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003237 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003238 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003239 return MinOpRes;
3240 }
3241
Dan Gohman622ed672009-05-04 22:02:23 +00003242 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003243 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003244 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003245 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003246 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003247 return MinOpRes;
3248 }
3249
Dan Gohman2c364ad2009-06-19 23:29:04 +00003250 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3251 // For a SCEVUnknown, ask ValueTracking.
3252 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohman2c364ad2009-06-19 23:29:04 +00003253 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003254 ComputeMaskedBits(U->getValue(), Zeros, Ones);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003255 return Zeros.countTrailingOnes();
3256 }
3257
3258 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003259 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003260}
Chris Lattner53e677a2004-04-02 20:23:17 +00003261
Dan Gohman85b05a22009-07-13 21:35:55 +00003262/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3263///
3264ConstantRange
3265ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003266 // See if we've computed this range already.
3267 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3268 if (I != UnsignedRanges.end())
3269 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003270
3271 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003272 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003273
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003274 unsigned BitWidth = getTypeSizeInBits(S->getType());
3275 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3276
3277 // If the value has known zeros, the maximum unsigned value will have those
3278 // known zeros as well.
3279 uint32_t TZ = GetMinTrailingZeros(S);
3280 if (TZ != 0)
3281 ConservativeResult =
3282 ConstantRange(APInt::getMinValue(BitWidth),
3283 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3284
Dan Gohman85b05a22009-07-13 21:35:55 +00003285 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3286 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3287 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3288 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003289 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003290 }
3291
3292 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3293 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3294 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3295 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003296 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003297 }
3298
3299 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3300 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3301 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3302 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003303 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003304 }
3305
3306 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3307 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3308 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3309 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003310 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003311 }
3312
3313 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3314 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3315 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003316 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003317 }
3318
3319 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3320 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003321 return setUnsignedRange(ZExt,
3322 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003323 }
3324
3325 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3326 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003327 return setUnsignedRange(SExt,
3328 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003329 }
3330
3331 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3332 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003333 return setUnsignedRange(Trunc,
3334 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003335 }
3336
Dan Gohman85b05a22009-07-13 21:35:55 +00003337 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003338 // If there's no unsigned wrap, the value will never be less than its
3339 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003340 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003341 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003342 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003343 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003344 ConservativeResult.intersectWith(
3345 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003346
3347 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003348 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003349 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003350 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003351 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3352 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003353 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3354
3355 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003356 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003357
3358 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003359 ConstantRange StepRange = getSignedRange(Step);
3360 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3361 ConstantRange EndRange =
3362 StartRange.add(MaxBECountRange.multiply(StepRange));
3363
3364 // Check for overflow. This must be done with ConstantRange arithmetic
3365 // because we could be called from within the ScalarEvolution overflow
3366 // checking code.
3367 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3368 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3369 ConstantRange ExtMaxBECountRange =
3370 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3371 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3372 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3373 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003374 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003375
Dan Gohman85b05a22009-07-13 21:35:55 +00003376 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3377 EndRange.getUnsignedMin());
3378 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3379 EndRange.getUnsignedMax());
3380 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003381 return setUnsignedRange(AddRec, ConservativeResult);
3382 return setUnsignedRange(AddRec,
3383 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003384 }
3385 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003386
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003387 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003388 }
3389
3390 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3391 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003392 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003393 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003394 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003395 return setUnsignedRange(U, ConservativeResult);
3396 return setUnsignedRange(U,
3397 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003398 }
3399
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003400 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003401}
3402
Dan Gohman85b05a22009-07-13 21:35:55 +00003403/// getSignedRange - Determine the signed range for a particular SCEV.
3404///
3405ConstantRange
3406ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003407 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003408 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3409 if (I != SignedRanges.end())
3410 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003411
Dan Gohman85b05a22009-07-13 21:35:55 +00003412 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003413 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003414
Dan Gohman52fddd32010-01-26 04:40:18 +00003415 unsigned BitWidth = getTypeSizeInBits(S->getType());
3416 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3417
3418 // If the value has known zeros, the maximum signed value will have those
3419 // known zeros as well.
3420 uint32_t TZ = GetMinTrailingZeros(S);
3421 if (TZ != 0)
3422 ConservativeResult =
3423 ConstantRange(APInt::getSignedMinValue(BitWidth),
3424 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3425
Dan Gohman85b05a22009-07-13 21:35:55 +00003426 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3427 ConstantRange X = getSignedRange(Add->getOperand(0));
3428 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3429 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003430 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003431 }
3432
Dan Gohman85b05a22009-07-13 21:35:55 +00003433 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3434 ConstantRange X = getSignedRange(Mul->getOperand(0));
3435 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3436 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003437 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003438 }
3439
Dan Gohman85b05a22009-07-13 21:35:55 +00003440 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3441 ConstantRange X = getSignedRange(SMax->getOperand(0));
3442 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3443 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003444 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003445 }
Dan Gohman62849c02009-06-24 01:05:09 +00003446
Dan Gohman85b05a22009-07-13 21:35:55 +00003447 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3448 ConstantRange X = getSignedRange(UMax->getOperand(0));
3449 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3450 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003451 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003452 }
Dan Gohman62849c02009-06-24 01:05:09 +00003453
Dan Gohman85b05a22009-07-13 21:35:55 +00003454 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3455 ConstantRange X = getSignedRange(UDiv->getLHS());
3456 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003457 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003458 }
Dan Gohman62849c02009-06-24 01:05:09 +00003459
Dan Gohman85b05a22009-07-13 21:35:55 +00003460 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3461 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003462 return setSignedRange(ZExt,
3463 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003464 }
3465
3466 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3467 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003468 return setSignedRange(SExt,
3469 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003470 }
3471
3472 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3473 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003474 return setSignedRange(Trunc,
3475 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003476 }
3477
Dan Gohman85b05a22009-07-13 21:35:55 +00003478 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003479 // If there's no signed wrap, and all the operands have the same sign or
3480 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003481 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003482 bool AllNonNeg = true;
3483 bool AllNonPos = true;
3484 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3485 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3486 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3487 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003488 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003489 ConservativeResult = ConservativeResult.intersectWith(
3490 ConstantRange(APInt(BitWidth, 0),
3491 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003492 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003493 ConservativeResult = ConservativeResult.intersectWith(
3494 ConstantRange(APInt::getSignedMinValue(BitWidth),
3495 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003496 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003497
3498 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003499 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003500 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003501 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003502 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3503 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003504 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3505
3506 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003507 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003508
3509 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003510 ConstantRange StepRange = getSignedRange(Step);
3511 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3512 ConstantRange EndRange =
3513 StartRange.add(MaxBECountRange.multiply(StepRange));
3514
3515 // Check for overflow. This must be done with ConstantRange arithmetic
3516 // because we could be called from within the ScalarEvolution overflow
3517 // checking code.
3518 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3519 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3520 ConstantRange ExtMaxBECountRange =
3521 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3522 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3523 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3524 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003525 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003526
Dan Gohman85b05a22009-07-13 21:35:55 +00003527 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3528 EndRange.getSignedMin());
3529 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3530 EndRange.getSignedMax());
3531 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003532 return setSignedRange(AddRec, ConservativeResult);
3533 return setSignedRange(AddRec,
3534 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003535 }
Dan Gohman62849c02009-06-24 01:05:09 +00003536 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003537
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003538 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003539 }
3540
Dan Gohman2c364ad2009-06-19 23:29:04 +00003541 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3542 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003543 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003544 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003545 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3546 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003547 return setSignedRange(U, ConservativeResult);
3548 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003549 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003550 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003551 }
3552
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003553 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003554}
3555
Chris Lattner53e677a2004-04-02 20:23:17 +00003556/// createSCEV - We know that there is no SCEV for the specified value.
3557/// Analyze the expression.
3558///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003559const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003560 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003561 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003562
Dan Gohman6c459a22008-06-22 19:56:46 +00003563 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003564 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003565 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003566
3567 // Don't attempt to analyze instructions in blocks that aren't
3568 // reachable. Such instructions don't matter, and they aren't required
3569 // to obey basic rules for definitions dominating uses which this
3570 // analysis depends on.
3571 if (!DT->isReachableFromEntry(I->getParent()))
3572 return getUnknown(V);
3573 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003574 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003575 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3576 return getConstant(CI);
3577 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003578 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003579 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3580 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003581 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003582 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003583
Dan Gohmanca178902009-07-17 20:47:02 +00003584 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003585 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003586 case Instruction::Add: {
3587 // The simple thing to do would be to just call getSCEV on both operands
3588 // and call getAddExpr with the result. However if we're looking at a
3589 // bunch of things all added together, this can be quite inefficient,
3590 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3591 // Instead, gather up all the operands and make a single getAddExpr call.
3592 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickecb35ec2011-11-29 02:16:38 +00003593 //
3594 // Don't apply this instruction's NSW or NUW flags to the new
3595 // expression. The instruction may be guarded by control flow that the
3596 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3597 // mapped to the same SCEV expression, and it would be incorrect to transfer
3598 // NSW/NUW semantics to those operations.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003599 SmallVector<const SCEV *, 4> AddOps;
3600 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003601 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3602 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3603 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3604 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003605 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003606 const SCEV *Op1 = getSCEV(U->getOperand(1));
3607 if (Opcode == Instruction::Sub)
3608 AddOps.push_back(getNegativeSCEV(Op1));
3609 else
3610 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003611 }
3612 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickecb35ec2011-11-29 02:16:38 +00003613 return getAddExpr(AddOps);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003614 }
3615 case Instruction::Mul: {
Andrew Trickecb35ec2011-11-29 02:16:38 +00003616 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003617 SmallVector<const SCEV *, 4> MulOps;
3618 MulOps.push_back(getSCEV(U->getOperand(1)));
3619 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003620 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003621 Op = U->getOperand(0)) {
3622 U = cast<Operator>(Op);
3623 MulOps.push_back(getSCEV(U->getOperand(1)));
3624 }
3625 MulOps.push_back(getSCEV(U->getOperand(0)));
3626 return getMulExpr(MulOps);
3627 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003628 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003629 return getUDivExpr(getSCEV(U->getOperand(0)),
3630 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003631 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003632 return getMinusSCEV(getSCEV(U->getOperand(0)),
3633 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003634 case Instruction::And:
3635 // For an expression like x&255 that merely masks off the high bits,
3636 // use zext(trunc(x)) as the SCEV expression.
3637 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003638 if (CI->isNullValue())
3639 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003640 if (CI->isAllOnesValue())
3641 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003642 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003643
3644 // Instcombine's ShrinkDemandedConstant may strip bits out of
3645 // constants, obscuring what would otherwise be a low-bits mask.
3646 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3647 // knew about to reconstruct a low-bits mask value.
3648 unsigned LZ = A.countLeadingZeros();
3649 unsigned BitWidth = A.getBitWidth();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003650 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003651 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003652
3653 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3654
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003655 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003656 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003657 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003658 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003659 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003660 }
3661 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003662
Dan Gohman6c459a22008-06-22 19:56:46 +00003663 case Instruction::Or:
3664 // If the RHS of the Or is a constant, we may have something like:
3665 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3666 // optimizations will transparently handle this case.
3667 //
3668 // In order for this transformation to be safe, the LHS must be of the
3669 // form X*(2^n) and the Or constant must be less than 2^n.
3670 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003671 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003672 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003673 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003674 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3675 // Build a plain add SCEV.
3676 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3677 // If the LHS of the add was an addrec and it has no-wrap flags,
3678 // transfer the no-wrap flags, since an or won't introduce a wrap.
3679 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3680 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003681 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3682 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003683 }
3684 return S;
3685 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003686 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003687 break;
3688 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003689 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003690 // If the RHS of the xor is a signbit, then this is just an add.
3691 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003692 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003693 return getAddExpr(getSCEV(U->getOperand(0)),
3694 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003695
3696 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003697 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003698 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003699
3700 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3701 // This is a variant of the check for xor with -1, and it handles
3702 // the case where instcombine has trimmed non-demanded bits out
3703 // of an xor with -1.
3704 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3705 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3706 if (BO->getOpcode() == Instruction::And &&
3707 LCI->getValue() == CI->getValue())
3708 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003709 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003710 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003711 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003712 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003713 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3714
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003715 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003716 // mask off the high bits. Complement the operand and
3717 // re-apply the zext.
3718 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3719 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3720
3721 // If C is a single bit, it may be in the sign-bit position
3722 // before the zero-extend. In this case, represent the xor
3723 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003724 APInt Trunc = CI->getValue().trunc(Z0TySize);
3725 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003726 Trunc.isSignBit())
3727 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3728 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003729 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003730 }
3731 break;
3732
3733 case Instruction::Shl:
3734 // Turn shift left of a constant amount into a multiply.
3735 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003736 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003737
3738 // If the shift count is not less than the bitwidth, the result of
3739 // the shift is undefined. Don't try to analyze it, because the
3740 // resolution chosen here may differ from the resolution chosen in
3741 // other parts of the compiler.
3742 if (SA->getValue().uge(BitWidth))
3743 break;
3744
Owen Andersoneed707b2009-07-24 23:12:02 +00003745 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003746 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003747 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003748 }
3749 break;
3750
Nick Lewycky01eaf802008-07-07 06:15:49 +00003751 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003752 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003753 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003754 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003755
3756 // If the shift count is not less than the bitwidth, the result of
3757 // the shift is undefined. Don't try to analyze it, because the
3758 // resolution chosen here may differ from the resolution chosen in
3759 // other parts of the compiler.
3760 if (SA->getValue().uge(BitWidth))
3761 break;
3762
Owen Andersoneed707b2009-07-24 23:12:02 +00003763 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003764 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003765 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003766 }
3767 break;
3768
Dan Gohman4ee29af2009-04-21 02:26:00 +00003769 case Instruction::AShr:
3770 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3771 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003772 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003773 if (L->getOpcode() == Instruction::Shl &&
3774 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003775 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3776
3777 // If the shift count is not less than the bitwidth, the result of
3778 // the shift is undefined. Don't try to analyze it, because the
3779 // resolution chosen here may differ from the resolution chosen in
3780 // other parts of the compiler.
3781 if (CI->getValue().uge(BitWidth))
3782 break;
3783
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003784 uint64_t Amt = BitWidth - CI->getZExtValue();
3785 if (Amt == BitWidth)
3786 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003787 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003788 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003789 IntegerType::get(getContext(),
3790 Amt)),
3791 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003792 }
3793 break;
3794
Dan Gohman6c459a22008-06-22 19:56:46 +00003795 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003796 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003797
3798 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003799 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003800
3801 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003802 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003803
3804 case Instruction::BitCast:
3805 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003806 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003807 return getSCEV(U->getOperand(0));
3808 break;
3809
Dan Gohman4f8eea82010-02-01 18:27:38 +00003810 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3811 // lead to pointer expressions which cannot safely be expanded to GEPs,
3812 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3813 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003814
Dan Gohman26466c02009-05-08 20:26:55 +00003815 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003816 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003817
Dan Gohman6c459a22008-06-22 19:56:46 +00003818 case Instruction::PHI:
3819 return createNodeForPHI(cast<PHINode>(U));
3820
3821 case Instruction::Select:
3822 // This could be a smax or umax that was lowered earlier.
3823 // Try to recover it.
3824 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3825 Value *LHS = ICI->getOperand(0);
3826 Value *RHS = ICI->getOperand(1);
3827 switch (ICI->getPredicate()) {
3828 case ICmpInst::ICMP_SLT:
3829 case ICmpInst::ICMP_SLE:
3830 std::swap(LHS, RHS);
3831 // fall through
3832 case ICmpInst::ICMP_SGT:
3833 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003834 // a >s b ? a+x : b+x -> smax(a, b)+x
3835 // a >s b ? b+x : a+x -> smin(a, b)+x
3836 if (LHS->getType() == U->getType()) {
3837 const SCEV *LS = getSCEV(LHS);
3838 const SCEV *RS = getSCEV(RHS);
3839 const SCEV *LA = getSCEV(U->getOperand(1));
3840 const SCEV *RA = getSCEV(U->getOperand(2));
3841 const SCEV *LDiff = getMinusSCEV(LA, LS);
3842 const SCEV *RDiff = getMinusSCEV(RA, RS);
3843 if (LDiff == RDiff)
3844 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3845 LDiff = getMinusSCEV(LA, RS);
3846 RDiff = getMinusSCEV(RA, LS);
3847 if (LDiff == RDiff)
3848 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3849 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003850 break;
3851 case ICmpInst::ICMP_ULT:
3852 case ICmpInst::ICMP_ULE:
3853 std::swap(LHS, RHS);
3854 // fall through
3855 case ICmpInst::ICMP_UGT:
3856 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003857 // a >u b ? a+x : b+x -> umax(a, b)+x
3858 // a >u b ? b+x : a+x -> umin(a, b)+x
3859 if (LHS->getType() == U->getType()) {
3860 const SCEV *LS = getSCEV(LHS);
3861 const SCEV *RS = getSCEV(RHS);
3862 const SCEV *LA = getSCEV(U->getOperand(1));
3863 const SCEV *RA = getSCEV(U->getOperand(2));
3864 const SCEV *LDiff = getMinusSCEV(LA, LS);
3865 const SCEV *RDiff = getMinusSCEV(RA, RS);
3866 if (LDiff == RDiff)
3867 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3868 LDiff = getMinusSCEV(LA, RS);
3869 RDiff = getMinusSCEV(RA, LS);
3870 if (LDiff == RDiff)
3871 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3872 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003873 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003874 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003875 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3876 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003877 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003878 cast<ConstantInt>(RHS)->isZero()) {
3879 const SCEV *One = getConstant(LHS->getType(), 1);
3880 const SCEV *LS = getSCEV(LHS);
3881 const SCEV *LA = getSCEV(U->getOperand(1));
3882 const SCEV *RA = getSCEV(U->getOperand(2));
3883 const SCEV *LDiff = getMinusSCEV(LA, LS);
3884 const SCEV *RDiff = getMinusSCEV(RA, One);
3885 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003886 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003887 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003888 break;
3889 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003890 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3891 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003892 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003893 cast<ConstantInt>(RHS)->isZero()) {
3894 const SCEV *One = getConstant(LHS->getType(), 1);
3895 const SCEV *LS = getSCEV(LHS);
3896 const SCEV *LA = getSCEV(U->getOperand(1));
3897 const SCEV *RA = getSCEV(U->getOperand(2));
3898 const SCEV *LDiff = getMinusSCEV(LA, One);
3899 const SCEV *RDiff = getMinusSCEV(RA, LS);
3900 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003901 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003902 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003903 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003904 default:
3905 break;
3906 }
3907 }
3908
3909 default: // We cannot analyze this expression.
3910 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003911 }
3912
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003913 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003914}
3915
3916
3917
3918//===----------------------------------------------------------------------===//
3919// Iteration Count Computation Code
3920//
3921
Andrew Trickb1831c62011-08-11 23:36:16 +00003922/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Trick3eada312012-01-11 06:52:55 +00003923/// normal unsigned value. Returns 0 if the trip count is unknown or not
3924/// constant. Will also return 0 if the maximum trip count is very large (>=
3925/// 2^32).
3926///
3927/// This "trip count" assumes that control exits via ExitingBlock. More
3928/// precisely, it is the number of times that control may reach ExitingBlock
3929/// before taking the branch. For loops with multiple exits, it may not be the
3930/// number times that the loop header executes because the loop may exit
3931/// prematurely via another branch.
3932unsigned ScalarEvolution::
3933getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) {
Andrew Trickb1831c62011-08-11 23:36:16 +00003934 const SCEVConstant *ExitCount =
Andrew Trick3eada312012-01-11 06:52:55 +00003935 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trickb1831c62011-08-11 23:36:16 +00003936 if (!ExitCount)
3937 return 0;
3938
3939 ConstantInt *ExitConst = ExitCount->getValue();
3940
3941 // Guard against huge trip counts.
3942 if (ExitConst->getValue().getActiveBits() > 32)
3943 return 0;
3944
3945 // In case of integer overflow, this returns 0, which is correct.
3946 return ((unsigned)ExitConst->getZExtValue()) + 1;
3947}
3948
3949/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3950/// trip count of this loop as a normal unsigned value, if possible. This
3951/// means that the actual trip count is always a multiple of the returned
3952/// value (don't forget the trip count could very well be zero as well!).
3953///
3954/// Returns 1 if the trip count is unknown or not guaranteed to be the
3955/// multiple of a constant (which is also the case if the trip count is simply
3956/// constant, use getSmallConstantTripCount for that case), Will also return 1
3957/// if the trip count is very large (>= 2^32).
Andrew Trick3eada312012-01-11 06:52:55 +00003958///
3959/// As explained in the comments for getSmallConstantTripCount, this assumes
3960/// that control exits the loop via ExitingBlock.
3961unsigned ScalarEvolution::
3962getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) {
3963 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trickb1831c62011-08-11 23:36:16 +00003964 if (ExitCount == getCouldNotCompute())
3965 return 1;
3966
3967 // Get the trip count from the BE count by adding 1.
3968 const SCEV *TCMul = getAddExpr(ExitCount,
3969 getConstant(ExitCount->getType(), 1));
3970 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3971 // to factor simple cases.
3972 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3973 TCMul = Mul->getOperand(0);
3974
3975 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3976 if (!MulC)
3977 return 1;
3978
3979 ConstantInt *Result = MulC->getValue();
3980
3981 // Guard against huge trip counts.
3982 if (!Result || Result->getValue().getActiveBits() > 32)
3983 return 1;
3984
3985 return (unsigned)Result->getZExtValue();
3986}
3987
Andrew Trick5116ff62011-07-26 17:19:55 +00003988// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickfcb43562011-08-02 04:23:35 +00003989// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00003990// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00003991const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
3992 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00003993}
3994
Dan Gohman46bdfb02009-02-24 18:55:53 +00003995/// getBackedgeTakenCount - If the specified loop has a predictable
3996/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3997/// object. The backedge-taken count is the number of times the loop header
3998/// will be branched to from within the loop. This is one less than the
3999/// trip count of the loop, since it doesn't count the first iteration,
4000/// when the header is branched to from outside the loop.
4001///
4002/// Note that it is not valid to call this method on a loop without a
4003/// loop-invariant backedge-taken count (see
4004/// hasLoopInvariantBackedgeTakenCount).
4005///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004006const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004007 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004008}
4009
4010/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4011/// return the least SCEV value that is known never to be less than the
4012/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004013const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004014 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004015}
4016
Dan Gohman59ae6b92009-07-08 19:23:34 +00004017/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4018/// onto the given Worklist.
4019static void
4020PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4021 BasicBlock *Header = L->getHeader();
4022
4023 // Push all Loop-header PHIs onto the Worklist stack.
4024 for (BasicBlock::iterator I = Header->begin();
4025 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4026 Worklist.push_back(PN);
4027}
4028
Dan Gohmana1af7572009-04-30 20:47:05 +00004029const ScalarEvolution::BackedgeTakenInfo &
4030ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004031 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004032 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00004033 // update the value. The temporary CouldNotCompute value tells SCEV
4034 // code elsewhere that it shouldn't attempt to request a new
4035 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004036 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00004037 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00004038 if (!Pair.second)
4039 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00004040
Andrew Trick5116ff62011-07-26 17:19:55 +00004041 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4042 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4043 // must be cleared in this scope.
4044 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4045
4046 if (Result.getExact(this) != getCouldNotCompute()) {
4047 assert(isLoopInvariant(Result.getExact(this), L) &&
4048 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00004049 "Computed backedge-taken count isn't loop invariant for loop!");
4050 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00004051 }
4052 else if (Result.getMax(this) == getCouldNotCompute() &&
4053 isa<PHINode>(L->getHeader()->begin())) {
4054 // Only count loops that have phi nodes as not being computable.
4055 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00004056 }
Dan Gohmana1af7572009-04-30 20:47:05 +00004057
Chris Lattnerf1859892011-01-09 02:16:18 +00004058 // Now that we know more about the trip count for this loop, forget any
4059 // existing SCEV values for PHI nodes in this loop since they are only
4060 // conservative estimates made without the benefit of trip count
4061 // information. This is similar to the code in forgetLoop, except that
4062 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00004063 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00004064 SmallVector<Instruction *, 16> Worklist;
4065 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004066
Chris Lattnerf1859892011-01-09 02:16:18 +00004067 SmallPtrSet<Instruction *, 8> Visited;
4068 while (!Worklist.empty()) {
4069 Instruction *I = Worklist.pop_back_val();
4070 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004071
Chris Lattnerf1859892011-01-09 02:16:18 +00004072 ValueExprMapType::iterator It =
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004073 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnerf1859892011-01-09 02:16:18 +00004074 if (It != ValueExprMap.end()) {
4075 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00004076
Chris Lattnerf1859892011-01-09 02:16:18 +00004077 // SCEVUnknown for a PHI either means that it has an unrecognized
4078 // structure, or it's a PHI that's in the progress of being computed
4079 // by createNodeForPHI. In the former case, additional loop trip
4080 // count information isn't going to change anything. In the later
4081 // case, createNodeForPHI will perform the necessary updates on its
4082 // own when it gets to that point.
4083 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4084 forgetMemoizedResults(Old);
4085 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004086 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004087 if (PHINode *PN = dyn_cast<PHINode>(I))
4088 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004089 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004090
4091 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004092 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004093 }
Dan Gohman308bec32011-04-25 22:48:29 +00004094
4095 // Re-lookup the insert position, since the call to
4096 // ComputeBackedgeTakenCount above could result in a
4097 // recusive call to getBackedgeTakenInfo (on a different
4098 // loop), which would invalidate the iterator computed
4099 // earlier.
4100 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004101}
4102
Dan Gohman4c7279a2009-10-31 15:04:55 +00004103/// forgetLoop - This method should be called by the client when it has
4104/// changed a loop in a way that may effect ScalarEvolution's ability to
4105/// compute a trip count, or if the loop is deleted.
4106void ScalarEvolution::forgetLoop(const Loop *L) {
4107 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004108 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4109 BackedgeTakenCounts.find(L);
4110 if (BTCPos != BackedgeTakenCounts.end()) {
4111 BTCPos->second.clear();
4112 BackedgeTakenCounts.erase(BTCPos);
4113 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004114
Dan Gohman4c7279a2009-10-31 15:04:55 +00004115 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004116 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004117 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004118
Dan Gohman59ae6b92009-07-08 19:23:34 +00004119 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004120 while (!Worklist.empty()) {
4121 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004122 if (!Visited.insert(I)) continue;
4123
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004124 ValueExprMapType::iterator It =
4125 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004126 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004127 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004128 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004129 if (PHINode *PN = dyn_cast<PHINode>(I))
4130 ConstantEvolutionLoopExitValue.erase(PN);
4131 }
4132
4133 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004134 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004135
4136 // Forget all contained loops too, to avoid dangling entries in the
4137 // ValuesAtScopes map.
4138 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4139 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004140}
4141
Eric Christophere6cbfa62010-07-29 01:25:38 +00004142/// forgetValue - This method should be called by the client when it has
4143/// changed a value in a way that may effect its value, or which may
4144/// disconnect it from a def-use chain linking it to a loop.
4145void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004146 Instruction *I = dyn_cast<Instruction>(V);
4147 if (!I) return;
4148
4149 // Drop information about expressions based on loop-header PHIs.
4150 SmallVector<Instruction *, 16> Worklist;
4151 Worklist.push_back(I);
4152
4153 SmallPtrSet<Instruction *, 8> Visited;
4154 while (!Worklist.empty()) {
4155 I = Worklist.pop_back_val();
4156 if (!Visited.insert(I)) continue;
4157
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004158 ValueExprMapType::iterator It =
4159 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004160 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004161 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004162 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004163 if (PHINode *PN = dyn_cast<PHINode>(I))
4164 ConstantEvolutionLoopExitValue.erase(PN);
4165 }
4166
4167 PushDefUseChildren(I, Worklist);
4168 }
4169}
4170
Andrew Trick5116ff62011-07-26 17:19:55 +00004171/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004172/// exits. A computable result can only be return for loops with a single exit.
4173/// Returning the minimum taken count among all exits is incorrect because one
4174/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4175/// the limit of each loop test is never skipped. This is a valid assumption as
4176/// long as the loop exits via that test. For precise results, it is the
4177/// caller's responsibility to specify the relevant loop exit using
4178/// getExact(ExitingBlock, SE).
Andrew Trick5116ff62011-07-26 17:19:55 +00004179const SCEV *
4180ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4181 // If any exits were not computable, the loop is not computable.
4182 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4183
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004184 // We need exactly one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004185 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004186 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4187
4188 const SCEV *BECount = 0;
4189 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4190 ENT != 0; ENT = ENT->getNextExit()) {
4191
4192 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4193
4194 if (!BECount)
4195 BECount = ENT->ExactNotTaken;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004196 else if (BECount != ENT->ExactNotTaken)
4197 return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004198 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004199 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004200 return BECount;
4201}
4202
4203/// getExact - Get the exact not taken count for this loop exit.
4204const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004205ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004206 ScalarEvolution *SE) const {
4207 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4208 ENT != 0; ENT = ENT->getNextExit()) {
4209
Andrew Trickfcb43562011-08-02 04:23:35 +00004210 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004211 return ENT->ExactNotTaken;
4212 }
4213 return SE->getCouldNotCompute();
4214}
4215
4216/// getMax - Get the max backedge taken count for the loop.
4217const SCEV *
4218ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4219 return Max ? Max : SE->getCouldNotCompute();
4220}
4221
4222/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4223/// computable exit into a persistent ExitNotTakenInfo array.
4224ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4225 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4226 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4227
4228 if (!Complete)
4229 ExitNotTaken.setIncomplete();
4230
4231 unsigned NumExits = ExitCounts.size();
4232 if (NumExits == 0) return;
4233
Andrew Trickfcb43562011-08-02 04:23:35 +00004234 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004235 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4236 if (NumExits == 1) return;
4237
4238 // Handle the rare case of multiple computable exits.
4239 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4240
4241 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4242 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4243 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004244 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004245 ENT->ExactNotTaken = ExitCounts[i].second;
4246 }
4247}
4248
4249/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4250void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004251 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004252 ExitNotTaken.ExactNotTaken = 0;
4253 delete[] ExitNotTaken.getNextExit();
4254}
4255
Dan Gohman46bdfb02009-02-24 18:55:53 +00004256/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4257/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004258ScalarEvolution::BackedgeTakenInfo
4259ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004260 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004261 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004262
Dan Gohmana334aa72009-06-22 00:31:57 +00004263 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004264 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004265 bool CouldComputeBECount = true;
4266 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004267 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004268 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4269 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004270 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004271 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004272 CouldComputeBECount = false;
4273 else
4274 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4275
Dan Gohman1c343752009-06-27 21:21:31 +00004276 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004277 MaxBECount = EL.Max;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004278 else if (EL.Max != getCouldNotCompute()) {
4279 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4280 // skip some loop tests. Taking the max over the exits is sufficiently
4281 // conservative. TODO: We could do better taking into consideration
4282 // that (1) the loop has unit stride (2) the last loop test is
4283 // less-than/greater-than (3) any loop test is less-than/greater-than AND
4284 // falls-through some constant times less then the other tests.
4285 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4286 }
Dan Gohmana334aa72009-06-22 00:31:57 +00004287 }
4288
Andrew Trick5116ff62011-07-26 17:19:55 +00004289 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004290}
4291
Andrew Trick5116ff62011-07-26 17:19:55 +00004292/// ComputeExitLimit - Compute the number of times the backedge of the specified
4293/// loop will execute if it exits via the specified block.
4294ScalarEvolution::ExitLimit
4295ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004296
4297 // Okay, we've chosen an exiting block. See what condition causes us to
4298 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004299 //
4300 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004301 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004302 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004303 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004304
Chris Lattner8b0e3602007-01-07 02:24:26 +00004305 // At this point, we know we have a conditional branch that determines whether
4306 // the loop is exited. However, we don't know if the branch is executed each
4307 // time through the loop. If not, then the execution count of the branch will
4308 // not be equal to the trip count of the loop.
4309 //
4310 // Currently we check for this by checking to see if the Exit branch goes to
4311 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004312 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004313 // loop header. This is common for un-rotated loops.
4314 //
4315 // If both of those tests fail, walk up the unique predecessor chain to the
4316 // header, stopping if there is an edge that doesn't exit the loop. If the
4317 // header is reached, the execution count of the branch will be equal to the
4318 // trip count of the loop.
4319 //
4320 // More extensive analysis could be done to handle more cases here.
4321 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004322 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004323 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004324 ExitBr->getParent() != L->getHeader()) {
4325 // The simple checks failed, try climbing the unique predecessor chain
4326 // up to the header.
4327 bool Ok = false;
4328 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4329 BasicBlock *Pred = BB->getUniquePredecessor();
4330 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004331 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004332 TerminatorInst *PredTerm = Pred->getTerminator();
4333 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4334 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4335 if (PredSucc == BB)
4336 continue;
4337 // If the predecessor has a successor that isn't BB and isn't
4338 // outside the loop, assume the worst.
4339 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004340 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004341 }
4342 if (Pred == L->getHeader()) {
4343 Ok = true;
4344 break;
4345 }
4346 BB = Pred;
4347 }
4348 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004349 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004350 }
4351
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004352 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004353 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4354 ExitBr->getSuccessor(0),
4355 ExitBr->getSuccessor(1));
Dan Gohmana334aa72009-06-22 00:31:57 +00004356}
4357
Andrew Trick5116ff62011-07-26 17:19:55 +00004358/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004359/// backedge of the specified loop will execute if its exit condition
4360/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004361ScalarEvolution::ExitLimit
4362ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4363 Value *ExitCond,
4364 BasicBlock *TBB,
4365 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004366 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004367 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4368 if (BO->getOpcode() == Instruction::And) {
4369 // Recurse on the operands of the and.
Andrew Trick5116ff62011-07-26 17:19:55 +00004370 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4371 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004372 const SCEV *BECount = getCouldNotCompute();
4373 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004374 if (L->contains(TBB)) {
4375 // Both conditions must be true for the loop to continue executing.
4376 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004377 if (EL0.Exact == getCouldNotCompute() ||
4378 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004379 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004380 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004381 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4382 if (EL0.Max == getCouldNotCompute())
4383 MaxBECount = EL1.Max;
4384 else if (EL1.Max == getCouldNotCompute())
4385 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004386 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004387 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004388 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004389 // Both conditions must be true at the same time for the loop to exit.
4390 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004391 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004392 if (EL0.Max == EL1.Max)
4393 MaxBECount = EL0.Max;
4394 if (EL0.Exact == EL1.Exact)
4395 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004396 }
4397
Andrew Trick5116ff62011-07-26 17:19:55 +00004398 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004399 }
4400 if (BO->getOpcode() == Instruction::Or) {
4401 // Recurse on the operands of the or.
Andrew Trick5116ff62011-07-26 17:19:55 +00004402 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4403 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004404 const SCEV *BECount = getCouldNotCompute();
4405 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004406 if (L->contains(FBB)) {
4407 // Both conditions must be false for the loop to continue executing.
4408 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004409 if (EL0.Exact == getCouldNotCompute() ||
4410 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004411 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004412 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004413 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4414 if (EL0.Max == getCouldNotCompute())
4415 MaxBECount = EL1.Max;
4416 else if (EL1.Max == getCouldNotCompute())
4417 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004418 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004419 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004420 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004421 // Both conditions must be false at the same time for the loop to exit.
4422 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004423 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004424 if (EL0.Max == EL1.Max)
4425 MaxBECount = EL0.Max;
4426 if (EL0.Exact == EL1.Exact)
4427 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004428 }
4429
Andrew Trick5116ff62011-07-26 17:19:55 +00004430 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004431 }
4432 }
4433
4434 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004435 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004436 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5116ff62011-07-26 17:19:55 +00004437 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004438
Dan Gohman00cb5b72010-02-19 18:12:07 +00004439 // Check for a constant condition. These are normally stripped out by
4440 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4441 // preserve the CFG and is temporarily leaving constant conditions
4442 // in place.
4443 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4444 if (L->contains(FBB) == !CI->getZExtValue())
4445 // The backedge is always taken.
4446 return getCouldNotCompute();
4447 else
4448 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004449 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004450 }
4451
Eli Friedman361e54d2009-05-09 12:32:42 +00004452 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004453 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004454}
4455
Andrew Trick5116ff62011-07-26 17:19:55 +00004456/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004457/// backedge of the specified loop will execute if its exit condition
4458/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004459ScalarEvolution::ExitLimit
4460ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4461 ICmpInst *ExitCond,
4462 BasicBlock *TBB,
4463 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004464
Reid Spencere4d87aa2006-12-23 06:05:41 +00004465 // If the condition was exit on true, convert the condition to exit on false
4466 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004467 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004468 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004469 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004470 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004471
4472 // Handle common loops like: for (X = "string"; *X; ++X)
4473 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4474 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004475 ExitLimit ItCnt =
4476 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004477 if (ItCnt.hasAnyInfo())
4478 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004479 }
4480
Dan Gohman0bba49c2009-07-07 17:06:11 +00004481 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4482 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004483
4484 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004485 LHS = getSCEVAtScope(LHS, L);
4486 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004487
Dan Gohman64a845e2009-06-24 04:48:43 +00004488 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004489 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004490 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004491 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004492 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004493 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004494 }
4495
Dan Gohman03557dc2010-05-03 16:35:17 +00004496 // Simplify the operands before analyzing them.
4497 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4498
Chris Lattner53e677a2004-04-02 20:23:17 +00004499 // If we have a comparison of a chrec against a constant, try to use value
4500 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004501 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4502 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004503 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004504 // Form the constant range.
4505 ConstantRange CompRange(
4506 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004507
Dan Gohman0bba49c2009-07-07 17:06:11 +00004508 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004509 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004510 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004511
Chris Lattner53e677a2004-04-02 20:23:17 +00004512 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004513 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004514 // Convert to: while (X-Y != 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004515 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4516 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004517 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004518 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004519 case ICmpInst::ICMP_EQ: { // while (X == Y)
4520 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004521 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4522 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004523 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004524 }
4525 case ICmpInst::ICMP_SLT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004526 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4527 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004528 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004529 }
4530 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004531 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004532 getNotSCEV(RHS), L, true);
Andrew Trick5116ff62011-07-26 17:19:55 +00004533 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004534 break;
4535 }
4536 case ICmpInst::ICMP_ULT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004537 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4538 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004539 break;
4540 }
4541 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004542 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004543 getNotSCEV(RHS), L, false);
Andrew Trick5116ff62011-07-26 17:19:55 +00004544 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004545 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004546 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004547 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004548#if 0
David Greene25e0e872009-12-23 22:18:14 +00004549 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004550 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004551 dbgs() << "[unsigned] ";
4552 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004553 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004554 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004555#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004556 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004557 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004558 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004559}
4560
Chris Lattner673e02b2004-10-12 01:49:27 +00004561static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004562EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4563 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004564 const SCEV *InVal = SE.getConstant(C);
4565 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004566 assert(isa<SCEVConstant>(Val) &&
4567 "Evaluation of SCEV at constant didn't fold correctly?");
4568 return cast<SCEVConstant>(Val)->getValue();
4569}
4570
Andrew Trick5116ff62011-07-26 17:19:55 +00004571/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004572/// 'icmp op load X, cst', try to see if we can compute the backedge
4573/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004574ScalarEvolution::ExitLimit
4575ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4576 LoadInst *LI,
4577 Constant *RHS,
4578 const Loop *L,
4579 ICmpInst::Predicate predicate) {
4580
Dan Gohman1c343752009-06-27 21:21:31 +00004581 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004582
4583 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004584 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004585 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004586 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004587
4588 // Make sure that it is really a constant global we are gepping, with an
4589 // initializer, and make sure the first IDX is really 0.
4590 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004591 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004592 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4593 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004594 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004595
4596 // Okay, we allow one non-constant index into the GEP instruction.
4597 Value *VarIdx = 0;
Chris Lattnerdada5862012-01-24 05:49:24 +00004598 std::vector<Constant*> Indexes;
Chris Lattner673e02b2004-10-12 01:49:27 +00004599 unsigned VarIdxNum = 0;
4600 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4601 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4602 Indexes.push_back(CI);
4603 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004604 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004605 VarIdx = GEP->getOperand(i);
4606 VarIdxNum = i-2;
4607 Indexes.push_back(0);
4608 }
4609
Andrew Trickeb6dd232012-03-26 22:33:59 +00004610 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4611 if (!VarIdx)
4612 return getCouldNotCompute();
4613
Chris Lattner673e02b2004-10-12 01:49:27 +00004614 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4615 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004616 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004617 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004618
4619 // We can only recognize very limited forms of loop index expressions, in
4620 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004621 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004622 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004623 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4624 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004625 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004626
4627 unsigned MaxSteps = MaxBruteForceIterations;
4628 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004629 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004630 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004631 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004632
4633 // Form the GEP offset.
4634 Indexes[VarIdxNum] = Val;
4635
Chris Lattnerdada5862012-01-24 05:49:24 +00004636 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4637 Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004638 if (Result == 0) break; // Cannot compute!
4639
4640 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004641 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004642 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004643 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004644#if 0
David Greene25e0e872009-12-23 22:18:14 +00004645 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004646 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4647 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004648#endif
4649 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004650 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004651 }
4652 }
Dan Gohman1c343752009-06-27 21:21:31 +00004653 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004654}
4655
4656
Chris Lattner3221ad02004-04-17 22:58:41 +00004657/// CanConstantFold - Return true if we can constant fold an instruction of the
4658/// specified type, assuming that all operands were constants.
4659static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004660 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewycky614fef62011-10-22 19:58:20 +00004661 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4662 isa<LoadInst>(I))
Chris Lattner3221ad02004-04-17 22:58:41 +00004663 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004664
Chris Lattner3221ad02004-04-17 22:58:41 +00004665 if (const CallInst *CI = dyn_cast<CallInst>(I))
4666 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004667 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004668 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004669}
4670
Andrew Trick13d31e02011-10-05 03:25:31 +00004671/// Determine whether this instruction can constant evolve within this loop
4672/// assuming its operands can all constant evolve.
4673static bool canConstantEvolve(Instruction *I, const Loop *L) {
4674 // An instruction outside of the loop can't be derived from a loop PHI.
4675 if (!L->contains(I)) return false;
4676
4677 if (isa<PHINode>(I)) {
4678 if (L->getHeader() == I->getParent())
4679 return true;
4680 else
4681 // We don't currently keep track of the control flow needed to evaluate
4682 // PHIs, so we cannot handle PHIs inside of loops.
4683 return false;
4684 }
4685
4686 // If we won't be able to constant fold this expression even if the operands
4687 // are constants, bail early.
4688 return CanConstantFold(I);
4689}
4690
4691/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4692/// recursing through each instruction operand until reaching a loop header phi.
4693static PHINode *
4694getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Trick28ab7db2011-10-05 05:58:49 +00004695 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004696
4697 // Otherwise, we can evaluate this instruction if all of its operands are
4698 // constant or derived from a PHI node themselves.
4699 PHINode *PHI = 0;
4700 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4701 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4702
4703 if (isa<Constant>(*OpI)) continue;
4704
4705 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4706 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4707
4708 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trickef8a4c22011-10-05 22:06:53 +00004709 if (!P)
4710 // If this operand is already visited, reuse the prior result.
4711 // We may have P != PHI if this is the deepest point at which the
4712 // inconsistent paths meet.
4713 P = PHIMap.lookup(OpInst);
4714 if (!P) {
4715 // Recurse and memoize the results, whether a phi is found or not.
4716 // This recursive call invalidates pointers into PHIMap.
4717 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4718 PHIMap[OpInst] = P;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004719 }
Andrew Trick28ab7db2011-10-05 05:58:49 +00004720 if (P == 0) return 0; // Not evolving from PHI
4721 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4722 PHI = P;
Andrew Trick13d31e02011-10-05 03:25:31 +00004723 }
4724 // This is a expression evolving from a constant PHI!
4725 return PHI;
4726}
4727
Chris Lattner3221ad02004-04-17 22:58:41 +00004728/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4729/// in the loop that V is derived from. We allow arbitrary operations along the
4730/// way, but the operands of an operation must either be constants or a value
4731/// derived from a constant PHI. If this expression does not fit with these
4732/// constraints, return null.
4733static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004734 Instruction *I = dyn_cast<Instruction>(V);
Andrew Trick13d31e02011-10-05 03:25:31 +00004735 if (I == 0 || !canConstantEvolve(I, L)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004736
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004737 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004738 return PN;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004739 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004740
Andrew Trick13d31e02011-10-05 03:25:31 +00004741 // Record non-constant instructions contained by the loop.
Andrew Trick28ab7db2011-10-05 05:58:49 +00004742 DenseMap<Instruction *, PHINode *> PHIMap;
4743 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattner3221ad02004-04-17 22:58:41 +00004744}
4745
4746/// EvaluateExpression - Given an expression that passes the
4747/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4748/// in the loop has the value PHIVal. If we can't fold this expression for some
4749/// reason, return null.
Andrew Trick13d31e02011-10-05 03:25:31 +00004750static Constant *EvaluateExpression(Value *V, const Loop *L,
4751 DenseMap<Instruction *, Constant *> &Vals,
Chad Rosier00737bd2011-12-01 21:29:16 +00004752 const TargetData *TD,
4753 const TargetLibraryInfo *TLI) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004754 // Convenient constant check, but redundant for recursive calls.
Reid Spencere8404342004-07-18 00:18:30 +00004755 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewycky614fef62011-10-22 19:58:20 +00004756 Instruction *I = dyn_cast<Instruction>(V);
4757 if (!I) return 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004758
Andrew Trick13d31e02011-10-05 03:25:31 +00004759 if (Constant *C = Vals.lookup(I)) return C;
4760
Nick Lewycky614fef62011-10-22 19:58:20 +00004761 // An instruction inside the loop depends on a value outside the loop that we
4762 // weren't given a mapping for, or a value such as a call inside the loop.
4763 if (!canConstantEvolve(I, L)) return 0;
4764
4765 // An unmapped PHI can be due to a branch or another loop inside this loop,
4766 // or due to this not being the initial iteration through a loop where we
4767 // couldn't compute the evolution of this particular PHI last time.
4768 if (isa<PHINode>(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004769
Dan Gohman9d4588f2010-06-22 13:15:46 +00004770 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004771
4772 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004773 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4774 if (!Operand) {
Nick Lewycky4c7f1ca2011-10-14 09:38:46 +00004775 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4776 if (!Operands[i]) return 0;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004777 continue;
4778 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004779 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
Andrew Trick28ab7db2011-10-05 05:58:49 +00004780 Vals[Operand] = C;
4781 if (!C) return 0;
4782 Operands[i] = C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004783 }
4784
Nick Lewycky614fef62011-10-22 19:58:20 +00004785 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004786 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chad Rosieraab8e282011-12-02 01:26:24 +00004787 Operands[1], TD, TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00004788 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4789 if (!LI->isVolatile())
4790 return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4791 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004792 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4793 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004794}
4795
4796/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4797/// in the header of its containing loop, we know the loop executes a
4798/// constant number of times, and the PHI node is just a recurrence
4799/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004800Constant *
4801ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004802 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004803 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004804 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004805 ConstantEvolutionLoopExitValue.find(PN);
4806 if (I != ConstantEvolutionLoopExitValue.end())
4807 return I->second;
4808
Dan Gohmane0567812010-04-08 23:03:40 +00004809 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004810 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4811
4812 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4813
Andrew Trick13d31e02011-10-05 03:25:31 +00004814 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewycky614fef62011-10-22 19:58:20 +00004815 BasicBlock *Header = L->getHeader();
4816 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick13d31e02011-10-05 03:25:31 +00004817
Chris Lattner3221ad02004-04-17 22:58:41 +00004818 // Since the loop is canonicalized, the PHI node must have two entries. One
4819 // entry must be a constant (coming in from outside of the loop), and the
4820 // second must be derived from the same PHI.
4821 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Nick Lewycky614fef62011-10-22 19:58:20 +00004822 PHINode *PHI = 0;
4823 for (BasicBlock::iterator I = Header->begin();
4824 (PHI = dyn_cast<PHINode>(I)); ++I) {
4825 Constant *StartCST =
4826 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4827 if (StartCST == 0) continue;
4828 CurrentIterVals[PHI] = StartCST;
4829 }
4830 if (!CurrentIterVals.count(PN))
4831 return RetVal = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004832
4833 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattner3221ad02004-04-17 22:58:41 +00004834
4835 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004836 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004837 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004838
Dan Gohman46bdfb02009-02-24 18:55:53 +00004839 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004840 unsigned IterationNum = 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004841 for (; ; ++IterationNum) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004842 if (IterationNum == NumIterations)
Andrew Trick13d31e02011-10-05 03:25:31 +00004843 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattner3221ad02004-04-17 22:58:41 +00004844
Nick Lewycky614fef62011-10-22 19:58:20 +00004845 // Compute the value of the PHIs for the next iteration.
Andrew Trick13d31e02011-10-05 03:25:31 +00004846 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewycky614fef62011-10-22 19:58:20 +00004847 DenseMap<Instruction *, Constant *> NextIterVals;
Chad Rosier00737bd2011-12-01 21:29:16 +00004848 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4849 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004850 if (NextPHI == 0)
4851 return 0; // Couldn't evaluate!
Andrew Trick13d31e02011-10-05 03:25:31 +00004852 NextIterVals[PN] = NextPHI;
Nick Lewycky614fef62011-10-22 19:58:20 +00004853
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004854 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4855
Nick Lewycky614fef62011-10-22 19:58:20 +00004856 // Also evaluate the other PHI nodes. However, we don't get to stop if we
4857 // cease to be able to evaluate one of them or if they stop evolving,
4858 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004859 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewycky614fef62011-10-22 19:58:20 +00004860 for (DenseMap<Instruction *, Constant *>::const_iterator
4861 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4862 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky5bef0eb2011-10-24 05:51:01 +00004863 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004864 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4865 }
4866 // We use two distinct loops because EvaluateExpression may invalidate any
4867 // iterators into CurrentIterVals.
4868 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4869 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4870 PHINode *PHI = I->first;
Nick Lewycky614fef62011-10-22 19:58:20 +00004871 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004872 if (!NextPHI) { // Not already computed.
4873 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004874 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004875 }
4876 if (NextPHI != I->second)
4877 StoppedEvolving = false;
Nick Lewycky614fef62011-10-22 19:58:20 +00004878 }
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004879
4880 // If all entries in CurrentIterVals == NextIterVals then we can stop
4881 // iterating, the loop can't continue to change.
4882 if (StoppedEvolving)
4883 return RetVal = CurrentIterVals[PN];
4884
Andrew Trick13d31e02011-10-05 03:25:31 +00004885 CurrentIterVals.swap(NextIterVals);
Chris Lattner3221ad02004-04-17 22:58:41 +00004886 }
4887}
4888
Andrew Trick5116ff62011-07-26 17:19:55 +00004889/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004890/// constant number of times (the condition evolves only from constants),
4891/// try to evaluate a few iterations of the loop until we get the exit
4892/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004893/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewycky614fef62011-10-22 19:58:20 +00004894const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4895 Value *Cond,
4896 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004897 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004898 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004899
Dan Gohmanb92654d2010-06-19 14:17:24 +00004900 // If the loop is canonicalized, the PHI will have exactly two entries.
4901 // That's the only form we support here.
4902 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4903
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004904 DenseMap<Instruction *, Constant *> CurrentIterVals;
4905 BasicBlock *Header = L->getHeader();
4906 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4907
Dan Gohmanb92654d2010-06-19 14:17:24 +00004908 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004909 // second must be derived from the same PHI.
4910 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004911 PHINode *PHI = 0;
4912 for (BasicBlock::iterator I = Header->begin();
4913 (PHI = dyn_cast<PHINode>(I)); ++I) {
4914 Constant *StartCST =
4915 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4916 if (StartCST == 0) continue;
4917 CurrentIterVals[PHI] = StartCST;
4918 }
4919 if (!CurrentIterVals.count(PN))
4920 return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004921
4922 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4923 // the loop symbolically to determine when the condition gets a value of
4924 // "ExitWhen".
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004925
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004926 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004927 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004928 ConstantInt *CondVal =
Chad Rosier00737bd2011-12-01 21:29:16 +00004929 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
4930 TD, TLI));
Chris Lattner3221ad02004-04-17 22:58:41 +00004931
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004932 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004933 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004934
Reid Spencere8019bb2007-03-01 07:25:48 +00004935 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004936 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004937 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004938 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004939
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004940 // Update all the PHI nodes for the next iteration.
4941 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004942
4943 // Create a list of which PHIs we need to compute. We want to do this before
4944 // calling EvaluateExpression on them because that may invalidate iterators
4945 // into CurrentIterVals.
4946 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004947 for (DenseMap<Instruction *, Constant *>::const_iterator
4948 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4949 PHINode *PHI = dyn_cast<PHINode>(I->first);
4950 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004951 PHIsToCompute.push_back(PHI);
4952 }
4953 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
4954 E = PHIsToCompute.end(); I != E; ++I) {
4955 PHINode *PHI = *I;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004956 Constant *&NextPHI = NextIterVals[PHI];
4957 if (NextPHI) continue; // Already computed!
4958
4959 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004960 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004961 }
4962 CurrentIterVals.swap(NextIterVals);
Chris Lattner7980fb92004-04-17 18:36:24 +00004963 }
4964
4965 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004966 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004967}
4968
Dan Gohmane7125f42009-09-03 15:00:26 +00004969/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004970/// at the specified scope in the program. The L value specifies a loop
4971/// nest to evaluate the expression at, where null is the top-level or a
4972/// specified loop is immediately inside of the loop.
4973///
4974/// This method can be used to compute the exit value for a variable defined
4975/// in a loop by querying what the value will hold in the parent loop.
4976///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004977/// In the case that a relevant loop exit value cannot be computed, the
4978/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004979const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004980 // Check to see if we've folded this expression at this loop before.
4981 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4982 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4983 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4984 if (!Pair.second)
4985 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004986
Dan Gohman42214892009-08-31 21:15:23 +00004987 // Otherwise compute it.
4988 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004989 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004990 return C;
4991}
4992
Nick Lewycky614fef62011-10-22 19:58:20 +00004993/// This builds up a Constant using the ConstantExpr interface. That way, we
4994/// will return Constants for objects which aren't represented by a
4995/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
4996/// Returns NULL if the SCEV isn't representable as a Constant.
4997static Constant *BuildConstantFromSCEV(const SCEV *V) {
4998 switch (V->getSCEVType()) {
4999 default: // TODO: smax, umax.
5000 case scCouldNotCompute:
5001 case scAddRecExpr:
5002 break;
5003 case scConstant:
5004 return cast<SCEVConstant>(V)->getValue();
5005 case scUnknown:
5006 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5007 case scSignExtend: {
5008 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5009 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5010 return ConstantExpr::getSExt(CastOp, SS->getType());
5011 break;
5012 }
5013 case scZeroExtend: {
5014 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5015 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5016 return ConstantExpr::getZExt(CastOp, SZ->getType());
5017 break;
5018 }
5019 case scTruncate: {
5020 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5021 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5022 return ConstantExpr::getTrunc(CastOp, ST->getType());
5023 break;
5024 }
5025 case scAddExpr: {
5026 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5027 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5028 if (C->getType()->isPointerTy())
5029 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5030 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5031 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5032 if (!C2) return 0;
5033
5034 // First pointer!
5035 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5036 std::swap(C, C2);
5037 // The offsets have been converted to bytes. We can add bytes to an
5038 // i8* by GEP with the byte count in the first index.
5039 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5040 }
5041
5042 // Don't bother trying to sum two pointers. We probably can't
5043 // statically compute a load that results from it anyway.
5044 if (C2->getType()->isPointerTy())
5045 return 0;
5046
5047 if (C->getType()->isPointerTy()) {
5048 if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5049 C2 = ConstantExpr::getIntegerCast(
5050 C2, Type::getInt32Ty(C->getContext()), true);
5051 C = ConstantExpr::getGetElementPtr(C, C2);
5052 } else
5053 C = ConstantExpr::getAdd(C, C2);
5054 }
5055 return C;
5056 }
5057 break;
5058 }
5059 case scMulExpr: {
5060 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5061 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5062 // Don't bother with pointers at all.
5063 if (C->getType()->isPointerTy()) return 0;
5064 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5065 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5066 if (!C2 || C2->getType()->isPointerTy()) return 0;
5067 C = ConstantExpr::getMul(C, C2);
5068 }
5069 return C;
5070 }
5071 break;
5072 }
5073 case scUDivExpr: {
5074 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5075 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5076 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5077 if (LHS->getType() == RHS->getType())
5078 return ConstantExpr::getUDiv(LHS, RHS);
5079 break;
5080 }
5081 }
5082 return 0;
5083}
5084
Dan Gohman42214892009-08-31 21:15:23 +00005085const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005086 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005087
Nick Lewycky3e630762008-02-20 06:48:22 +00005088 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00005089 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00005090 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005091 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005092 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00005093 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5094 if (PHINode *PN = dyn_cast<PHINode>(I))
5095 if (PN->getParent() == LI->getHeader()) {
5096 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00005097 // to see if the loop that contains it has a known backedge-taken
5098 // count. If so, we may be able to force computation of the exit
5099 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005100 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00005101 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00005102 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005103 // Okay, we know how many times the containing loop executes. If
5104 // this is a constant evolving PHI node, get the final value at
5105 // the specified iteration number.
5106 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00005107 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00005108 LI);
Dan Gohman09987962009-06-29 21:31:18 +00005109 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00005110 }
5111 }
5112
Reid Spencer09906f32006-12-04 21:33:23 +00005113 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00005114 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00005115 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00005116 // result. This is particularly useful for computing loop exit values.
5117 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00005118 SmallVector<Constant *, 4> Operands;
5119 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00005120 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5121 Value *Op = I->getOperand(i);
5122 if (Constant *C = dyn_cast<Constant>(Op)) {
5123 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00005124 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00005125 }
Dan Gohman11046452010-06-29 23:43:06 +00005126
5127 // If any of the operands is non-constant and if they are
5128 // non-integer and non-pointer, don't even try to analyze them
5129 // with scev techniques.
5130 if (!isSCEVable(Op->getType()))
5131 return V;
5132
5133 const SCEV *OrigV = getSCEV(Op);
5134 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5135 MadeImprovement |= OrigV != OpV;
5136
Nick Lewycky614fef62011-10-22 19:58:20 +00005137 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohman11046452010-06-29 23:43:06 +00005138 if (!C) return V;
5139 if (C->getType() != Op->getType())
5140 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5141 Op->getType(),
5142 false),
5143 C, Op->getType());
5144 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00005145 }
Dan Gohman64a845e2009-06-24 04:48:43 +00005146
Dan Gohman11046452010-06-29 23:43:06 +00005147 // Check to see if getSCEVAtScope actually made an improvement.
5148 if (MadeImprovement) {
5149 Constant *C = 0;
5150 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5151 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Chad Rosieraab8e282011-12-02 01:26:24 +00005152 Operands[0], Operands[1], TD,
5153 TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00005154 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5155 if (!LI->isVolatile())
5156 C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5157 } else
Dan Gohman11046452010-06-29 23:43:06 +00005158 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Chad Rosier00737bd2011-12-01 21:29:16 +00005159 Operands, TD, TLI);
Dan Gohman11046452010-06-29 23:43:06 +00005160 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00005161 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00005162 }
Chris Lattner3221ad02004-04-17 22:58:41 +00005163 }
5164 }
5165
5166 // This is some other type of SCEVUnknown, just return it.
5167 return V;
5168 }
5169
Dan Gohman622ed672009-05-04 22:02:23 +00005170 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005171 // Avoid performing the look-up in the common case where the specified
5172 // expression has no loop-variant portions.
5173 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005174 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005175 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005176 // Okay, at least one of these operands is loop variant but might be
5177 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00005178 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5179 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00005180 NewOps.push_back(OpAtScope);
5181
5182 for (++i; i != e; ++i) {
5183 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005184 NewOps.push_back(OpAtScope);
5185 }
5186 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005187 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005188 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005189 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005190 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005191 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00005192 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005193 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00005194 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005195 }
5196 }
5197 // If we got here, all operands are loop invariant.
5198 return Comm;
5199 }
5200
Dan Gohman622ed672009-05-04 22:02:23 +00005201 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005202 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5203 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00005204 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5205 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005206 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00005207 }
5208
5209 // If this is a loop recurrence for a loop that does not contain L, then we
5210 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00005211 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00005212 // First, attempt to evaluate each operand.
5213 // Avoid performing the look-up in the common case where the specified
5214 // expression has no loop-variant portions.
5215 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5216 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5217 if (OpAtScope == AddRec->getOperand(i))
5218 continue;
5219
5220 // Okay, at least one of these operands is loop variant but might be
5221 // foldable. Build a new instance of the folded commutative expression.
5222 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5223 AddRec->op_begin()+i);
5224 NewOps.push_back(OpAtScope);
5225 for (++i; i != e; ++i)
5226 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5227
Andrew Trick3f95c882011-04-27 01:21:25 +00005228 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00005229 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00005230 AddRec->getNoWrapFlags(SCEV::FlagNW));
5231 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00005232 // The addrec may be folded to a nonrecurrence, for example, if the
5233 // induction variable is multiplied by zero after constant folding. Go
5234 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00005235 if (!AddRec)
5236 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00005237 break;
5238 }
5239
5240 // If the scope is outside the addrec's loop, evaluate it by using the
5241 // loop exit value of the addrec.
5242 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005243 // To evaluate this recurrence, we need to know how many times the AddRec
5244 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005245 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00005246 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005247
Eli Friedmanb42a6262008-08-04 23:49:06 +00005248 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005249 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005250 }
Dan Gohman11046452010-06-29 23:43:06 +00005251
Dan Gohmand594e6f2009-05-24 23:25:42 +00005252 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00005253 }
5254
Dan Gohman622ed672009-05-04 22:02:23 +00005255 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005256 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005257 if (Op == Cast->getOperand())
5258 return Cast; // must be loop invariant
5259 return getZeroExtendExpr(Op, Cast->getType());
5260 }
5261
Dan Gohman622ed672009-05-04 22:02:23 +00005262 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005263 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005264 if (Op == Cast->getOperand())
5265 return Cast; // must be loop invariant
5266 return getSignExtendExpr(Op, Cast->getType());
5267 }
5268
Dan Gohman622ed672009-05-04 22:02:23 +00005269 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005270 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005271 if (Op == Cast->getOperand())
5272 return Cast; // must be loop invariant
5273 return getTruncateExpr(Op, Cast->getType());
5274 }
5275
Torok Edwinc23197a2009-07-14 16:55:14 +00005276 llvm_unreachable("Unknown SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005277}
5278
Dan Gohman66a7e852009-05-08 20:38:54 +00005279/// getSCEVAtScope - This is a convenience function which does
5280/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00005281const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005282 return getSCEVAtScope(getSCEV(V), L);
5283}
5284
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005285/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5286/// following equation:
5287///
5288/// A * X = B (mod N)
5289///
5290/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5291/// A and B isn't important.
5292///
5293/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005294static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005295 ScalarEvolution &SE) {
5296 uint32_t BW = A.getBitWidth();
5297 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5298 assert(A != 0 && "A must be non-zero.");
5299
5300 // 1. D = gcd(A, N)
5301 //
5302 // The gcd of A and N may have only one prime factor: 2. The number of
5303 // trailing zeros in A is its multiplicity
5304 uint32_t Mult2 = A.countTrailingZeros();
5305 // D = 2^Mult2
5306
5307 // 2. Check if B is divisible by D.
5308 //
5309 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5310 // is not less than multiplicity of this prime factor for D.
5311 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005312 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005313
5314 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5315 // modulo (N / D).
5316 //
5317 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5318 // bit width during computations.
5319 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5320 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005321 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005322 APInt I = AD.multiplicativeInverse(Mod);
5323
5324 // 4. Compute the minimum unsigned root of the equation:
5325 // I * (B / D) mod (N / D)
5326 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5327
5328 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5329 // bits.
5330 return SE.getConstant(Result.trunc(BW));
5331}
Chris Lattner53e677a2004-04-02 20:23:17 +00005332
5333/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5334/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5335/// might be the same) or two SCEVCouldNotCompute objects.
5336///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005337static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005338SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005339 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005340 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5341 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5342 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005343
Chris Lattner53e677a2004-04-02 20:23:17 +00005344 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005345 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005346 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005347 return std::make_pair(CNC, CNC);
5348 }
5349
Reid Spencere8019bb2007-03-01 07:25:48 +00005350 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005351 const APInt &L = LC->getValue()->getValue();
5352 const APInt &M = MC->getValue()->getValue();
5353 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005354 APInt Two(BitWidth, 2);
5355 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005356
Dan Gohman64a845e2009-06-24 04:48:43 +00005357 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005358 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005359 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005360 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5361 // The B coefficient is M-N/2
5362 APInt B(M);
5363 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005364
Reid Spencere8019bb2007-03-01 07:25:48 +00005365 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005366 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005367
Reid Spencere8019bb2007-03-01 07:25:48 +00005368 // Compute the B^2-4ac term.
5369 APInt SqrtTerm(B);
5370 SqrtTerm *= B;
5371 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005372
Nick Lewycky6ce24712012-08-01 09:14:36 +00005373 if (SqrtTerm.isNegative()) {
5374 // The loop is provably infinite.
5375 const SCEV *CNC = SE.getCouldNotCompute();
5376 return std::make_pair(CNC, CNC);
5377 }
5378
Reid Spencere8019bb2007-03-01 07:25:48 +00005379 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5380 // integer value or else APInt::sqrt() will assert.
5381 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005382
Dan Gohman64a845e2009-06-24 04:48:43 +00005383 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005384 // The divisions must be performed as signed divisions.
5385 APInt NegB(-B);
Nick Lewycky1cbae182011-10-03 07:10:45 +00005386 APInt TwoA(A << 1);
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005387 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005388 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005389 return std::make_pair(CNC, CNC);
5390 }
5391
Owen Andersone922c022009-07-22 00:24:57 +00005392 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005393
5394 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005395 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005396 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005397 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005398
Dan Gohman64a845e2009-06-24 04:48:43 +00005399 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005400 SE.getConstant(Solution2));
Nick Lewycky1cbae182011-10-03 07:10:45 +00005401 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005402}
5403
5404/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005405/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005406///
5407/// This is only used for loops with a "x != y" exit test. The exit condition is
5408/// now expressed as a single expression, V = x-y. So the exit test is
5409/// effectively V != 0. We know and take advantage of the fact that this
5410/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005411ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005412ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005413 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005414 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005415 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005416 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005417 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005418 }
5419
Dan Gohman35738ac2009-05-04 22:30:44 +00005420 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005421 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005422 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005423
Chris Lattner7975e3e2011-01-09 22:39:48 +00005424 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5425 // the quadratic equation to solve it.
5426 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5427 std::pair<const SCEV *,const SCEV *> Roots =
5428 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005429 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5430 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005431 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005432#if 0
David Greene25e0e872009-12-23 22:18:14 +00005433 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005434 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005435#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005436 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005437 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005438 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5439 R1->getValue(),
5440 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005441 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005442 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005443
Chris Lattner53e677a2004-04-02 20:23:17 +00005444 // We can only use this value if the chrec ends up with an exact zero
5445 // value at this index. When solving for "X*X != 5", for example, we
5446 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005447 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005448 if (Val->isZero())
5449 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005450 }
5451 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005452 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005453 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005454
Chris Lattner7975e3e2011-01-09 22:39:48 +00005455 // Otherwise we can only handle this if it is affine.
5456 if (!AddRec->isAffine())
5457 return getCouldNotCompute();
5458
5459 // If this is an affine expression, the execution count of this branch is
5460 // the minimum unsigned root of the following equation:
5461 //
5462 // Start + Step*N = 0 (mod 2^BW)
5463 //
5464 // equivalent to:
5465 //
5466 // Step*N = -Start (mod 2^BW)
5467 //
5468 // where BW is the common bit width of Start and Step.
5469
5470 // Get the initial value for the loop.
5471 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5472 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5473
5474 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005475 //
5476 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5477 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5478 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5479 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005480 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Nick Lewycky4d3bba52012-06-28 23:44:57 +00005481 if (StepC == 0 || StepC->getValue()->equalsInt(0))
Chris Lattner7975e3e2011-01-09 22:39:48 +00005482 return getCouldNotCompute();
5483
Andrew Trick3228cc22011-03-14 16:50:06 +00005484 // For positive steps (counting up until unsigned overflow):
5485 // N = -Start/Step (as unsigned)
5486 // For negative steps (counting down to zero):
5487 // N = Start/-Step
5488 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005489 bool CountDown = StepC->getValue()->getValue().isNegative();
5490 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005491
5492 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005493 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5494 // N = Distance (as unsigned)
Nick Lewycky1cbae182011-10-03 07:10:45 +00005495 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5496 ConstantRange CR = getUnsignedRange(Start);
5497 const SCEV *MaxBECount;
5498 if (!CountDown && CR.getUnsignedMin().isMinValue())
5499 // When counting up, the worst starting value is 1, not 0.
5500 MaxBECount = CR.getUnsignedMax().isMinValue()
5501 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5502 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5503 else
5504 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5505 : -CR.getUnsignedMin());
5506 return ExitLimit(Distance, MaxBECount);
5507 }
Andrew Trick635f7182011-03-09 17:23:39 +00005508
Andrew Trickdcfd4042011-03-14 17:28:02 +00005509 // If the recurrence is known not to wraparound, unsigned divide computes the
5510 // back edge count. We know that the value will either become zero (and thus
5511 // the loop terminates), that the loop will terminate through some other exit
5512 // condition first, or that the loop has undefined behavior. This means
5513 // we can't "miss" the exit value, even with nonunit stride.
5514 //
5515 // FIXME: Prove that loops always exhibits *acceptable* undefined
5516 // behavior. Loops must exhibit defined behavior until a wrapped value is
5517 // actually used. So the trip count computed by udiv could be smaller than the
5518 // number of well-defined iterations.
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005519 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
Andrew Trickdcfd4042011-03-14 17:28:02 +00005520 // FIXME: We really want an "isexact" bit for udiv.
5521 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005522 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005523 // Then, try to solve the above equation provided that Start is constant.
5524 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5525 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5526 -StartC->getValue()->getValue(),
5527 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005528 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005529}
5530
5531/// HowFarToNonZero - Return the number of times a backedge checking the
5532/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005533/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005534ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005535ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005536 // Loops that look like: while (X == 0) are very strange indeed. We don't
5537 // handle them yet except for the trivial case. This could be expanded in the
5538 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005539
Chris Lattner53e677a2004-04-02 20:23:17 +00005540 // If the value is a constant, check to see if it is known to be non-zero
5541 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005542 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005543 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005544 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005545 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005546 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005547
Chris Lattner53e677a2004-04-02 20:23:17 +00005548 // We could implement others, but I really doubt anyone writes loops like
5549 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005550 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005551}
5552
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005553/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5554/// (which may not be an immediate predecessor) which has exactly one
5555/// successor from which BB is reachable, or null if no such block is
5556/// found.
5557///
Dan Gohman005752b2010-04-15 16:19:08 +00005558std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005559ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005560 // If the block has a unique predecessor, then there is no path from the
5561 // predecessor to the block that does not go through the direct edge
5562 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005563 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005564 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005565
5566 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005567 // If the header has a unique predecessor outside the loop, it must be
5568 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005569 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005570 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005571
Dan Gohman005752b2010-04-15 16:19:08 +00005572 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005573}
5574
Dan Gohman763bad12009-06-20 00:35:32 +00005575/// HasSameValue - SCEV structural equivalence is usually sufficient for
5576/// testing whether two expressions are equal, however for the purposes of
5577/// looking for a condition guarding a loop, it can be useful to be a little
5578/// more general, since a front-end may have replicated the controlling
5579/// expression.
5580///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005581static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005582 // Quick check to see if they are the same SCEV.
5583 if (A == B) return true;
5584
5585 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5586 // two different instructions with the same value. Check for this case.
5587 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5588 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5589 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5590 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005591 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005592 return true;
5593
5594 // Otherwise assume they may have a different value.
5595 return false;
5596}
5597
Dan Gohmane9796502010-04-24 01:28:42 +00005598/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5599/// predicate Pred. Return true iff any changes were made.
5600///
5601bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005602 const SCEV *&LHS, const SCEV *&RHS,
5603 unsigned Depth) {
Dan Gohmane9796502010-04-24 01:28:42 +00005604 bool Changed = false;
5605
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005606 // If we hit the max recursion limit bail out.
5607 if (Depth >= 3)
5608 return false;
5609
Dan Gohmane9796502010-04-24 01:28:42 +00005610 // Canonicalize a constant to the right side.
5611 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5612 // Check for both operands constant.
5613 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5614 if (ConstantExpr::getICmp(Pred,
5615 LHSC->getValue(),
5616 RHSC->getValue())->isNullValue())
5617 goto trivially_false;
5618 else
5619 goto trivially_true;
5620 }
5621 // Otherwise swap the operands to put the constant on the right.
5622 std::swap(LHS, RHS);
5623 Pred = ICmpInst::getSwappedPredicate(Pred);
5624 Changed = true;
5625 }
5626
5627 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005628 // addrec's loop, put the addrec on the left. Also make a dominance check,
5629 // as both operands could be addrecs loop-invariant in each other's loop.
5630 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5631 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005632 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005633 std::swap(LHS, RHS);
5634 Pred = ICmpInst::getSwappedPredicate(Pred);
5635 Changed = true;
5636 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005637 }
Dan Gohmane9796502010-04-24 01:28:42 +00005638
5639 // If there's a constant operand, canonicalize comparisons with boundary
5640 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5641 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5642 const APInt &RA = RC->getValue()->getValue();
5643 switch (Pred) {
5644 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5645 case ICmpInst::ICMP_EQ:
5646 case ICmpInst::ICMP_NE:
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005647 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5648 if (!RA)
5649 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5650 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer127563b2012-05-30 18:42:43 +00005651 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5652 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005653 RHS = AE->getOperand(1);
5654 LHS = ME->getOperand(1);
5655 Changed = true;
5656 }
Dan Gohmane9796502010-04-24 01:28:42 +00005657 break;
5658 case ICmpInst::ICMP_UGE:
5659 if ((RA - 1).isMinValue()) {
5660 Pred = ICmpInst::ICMP_NE;
5661 RHS = getConstant(RA - 1);
5662 Changed = true;
5663 break;
5664 }
5665 if (RA.isMaxValue()) {
5666 Pred = ICmpInst::ICMP_EQ;
5667 Changed = true;
5668 break;
5669 }
5670 if (RA.isMinValue()) goto trivially_true;
5671
5672 Pred = ICmpInst::ICMP_UGT;
5673 RHS = getConstant(RA - 1);
5674 Changed = true;
5675 break;
5676 case ICmpInst::ICMP_ULE:
5677 if ((RA + 1).isMaxValue()) {
5678 Pred = ICmpInst::ICMP_NE;
5679 RHS = getConstant(RA + 1);
5680 Changed = true;
5681 break;
5682 }
5683 if (RA.isMinValue()) {
5684 Pred = ICmpInst::ICMP_EQ;
5685 Changed = true;
5686 break;
5687 }
5688 if (RA.isMaxValue()) goto trivially_true;
5689
5690 Pred = ICmpInst::ICMP_ULT;
5691 RHS = getConstant(RA + 1);
5692 Changed = true;
5693 break;
5694 case ICmpInst::ICMP_SGE:
5695 if ((RA - 1).isMinSignedValue()) {
5696 Pred = ICmpInst::ICMP_NE;
5697 RHS = getConstant(RA - 1);
5698 Changed = true;
5699 break;
5700 }
5701 if (RA.isMaxSignedValue()) {
5702 Pred = ICmpInst::ICMP_EQ;
5703 Changed = true;
5704 break;
5705 }
5706 if (RA.isMinSignedValue()) goto trivially_true;
5707
5708 Pred = ICmpInst::ICMP_SGT;
5709 RHS = getConstant(RA - 1);
5710 Changed = true;
5711 break;
5712 case ICmpInst::ICMP_SLE:
5713 if ((RA + 1).isMaxSignedValue()) {
5714 Pred = ICmpInst::ICMP_NE;
5715 RHS = getConstant(RA + 1);
5716 Changed = true;
5717 break;
5718 }
5719 if (RA.isMinSignedValue()) {
5720 Pred = ICmpInst::ICMP_EQ;
5721 Changed = true;
5722 break;
5723 }
5724 if (RA.isMaxSignedValue()) goto trivially_true;
5725
5726 Pred = ICmpInst::ICMP_SLT;
5727 RHS = getConstant(RA + 1);
5728 Changed = true;
5729 break;
5730 case ICmpInst::ICMP_UGT:
5731 if (RA.isMinValue()) {
5732 Pred = ICmpInst::ICMP_NE;
5733 Changed = true;
5734 break;
5735 }
5736 if ((RA + 1).isMaxValue()) {
5737 Pred = ICmpInst::ICMP_EQ;
5738 RHS = getConstant(RA + 1);
5739 Changed = true;
5740 break;
5741 }
5742 if (RA.isMaxValue()) goto trivially_false;
5743 break;
5744 case ICmpInst::ICMP_ULT:
5745 if (RA.isMaxValue()) {
5746 Pred = ICmpInst::ICMP_NE;
5747 Changed = true;
5748 break;
5749 }
5750 if ((RA - 1).isMinValue()) {
5751 Pred = ICmpInst::ICMP_EQ;
5752 RHS = getConstant(RA - 1);
5753 Changed = true;
5754 break;
5755 }
5756 if (RA.isMinValue()) goto trivially_false;
5757 break;
5758 case ICmpInst::ICMP_SGT:
5759 if (RA.isMinSignedValue()) {
5760 Pred = ICmpInst::ICMP_NE;
5761 Changed = true;
5762 break;
5763 }
5764 if ((RA + 1).isMaxSignedValue()) {
5765 Pred = ICmpInst::ICMP_EQ;
5766 RHS = getConstant(RA + 1);
5767 Changed = true;
5768 break;
5769 }
5770 if (RA.isMaxSignedValue()) goto trivially_false;
5771 break;
5772 case ICmpInst::ICMP_SLT:
5773 if (RA.isMaxSignedValue()) {
5774 Pred = ICmpInst::ICMP_NE;
5775 Changed = true;
5776 break;
5777 }
5778 if ((RA - 1).isMinSignedValue()) {
5779 Pred = ICmpInst::ICMP_EQ;
5780 RHS = getConstant(RA - 1);
5781 Changed = true;
5782 break;
5783 }
5784 if (RA.isMinSignedValue()) goto trivially_false;
5785 break;
5786 }
5787 }
5788
5789 // Check for obvious equality.
5790 if (HasSameValue(LHS, RHS)) {
5791 if (ICmpInst::isTrueWhenEqual(Pred))
5792 goto trivially_true;
5793 if (ICmpInst::isFalseWhenEqual(Pred))
5794 goto trivially_false;
5795 }
5796
Dan Gohman03557dc2010-05-03 16:35:17 +00005797 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5798 // adding or subtracting 1 from one of the operands.
5799 switch (Pred) {
5800 case ICmpInst::ICMP_SLE:
5801 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5802 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005803 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005804 Pred = ICmpInst::ICMP_SLT;
5805 Changed = true;
5806 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005807 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005808 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005809 Pred = ICmpInst::ICMP_SLT;
5810 Changed = true;
5811 }
5812 break;
5813 case ICmpInst::ICMP_SGE:
5814 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005815 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005816 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005817 Pred = ICmpInst::ICMP_SGT;
5818 Changed = true;
5819 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5820 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005821 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005822 Pred = ICmpInst::ICMP_SGT;
5823 Changed = true;
5824 }
5825 break;
5826 case ICmpInst::ICMP_ULE:
5827 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005828 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005829 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005830 Pred = ICmpInst::ICMP_ULT;
5831 Changed = true;
5832 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005833 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005834 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005835 Pred = ICmpInst::ICMP_ULT;
5836 Changed = true;
5837 }
5838 break;
5839 case ICmpInst::ICMP_UGE:
5840 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005841 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005842 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005843 Pred = ICmpInst::ICMP_UGT;
5844 Changed = true;
5845 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005846 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005847 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005848 Pred = ICmpInst::ICMP_UGT;
5849 Changed = true;
5850 }
5851 break;
5852 default:
5853 break;
5854 }
5855
Dan Gohmane9796502010-04-24 01:28:42 +00005856 // TODO: More simplifications are possible here.
5857
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005858 // Recursively simplify until we either hit a recursion limit or nothing
5859 // changes.
5860 if (Changed)
5861 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
5862
Dan Gohmane9796502010-04-24 01:28:42 +00005863 return Changed;
5864
5865trivially_true:
5866 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005867 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005868 Pred = ICmpInst::ICMP_EQ;
5869 return true;
5870
5871trivially_false:
5872 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005873 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005874 Pred = ICmpInst::ICMP_NE;
5875 return true;
5876}
5877
Dan Gohman85b05a22009-07-13 21:35:55 +00005878bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5879 return getSignedRange(S).getSignedMax().isNegative();
5880}
5881
5882bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5883 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5884}
5885
5886bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5887 return !getSignedRange(S).getSignedMin().isNegative();
5888}
5889
5890bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5891 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5892}
5893
5894bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5895 return isKnownNegative(S) || isKnownPositive(S);
5896}
5897
5898bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5899 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005900 // Canonicalize the inputs first.
5901 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5902
Dan Gohman53c66ea2010-04-11 22:16:48 +00005903 // If LHS or RHS is an addrec, check to see if the condition is true in
5904 // every iteration of the loop.
5905 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5906 if (isLoopEntryGuardedByCond(
5907 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5908 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005909 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005910 return true;
5911 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5912 if (isLoopEntryGuardedByCond(
5913 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5914 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005915 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005916 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005917
Dan Gohman53c66ea2010-04-11 22:16:48 +00005918 // Otherwise see what can be done with known constant ranges.
5919 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5920}
5921
5922bool
5923ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5924 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005925 if (HasSameValue(LHS, RHS))
5926 return ICmpInst::isTrueWhenEqual(Pred);
5927
Dan Gohman53c66ea2010-04-11 22:16:48 +00005928 // This code is split out from isKnownPredicate because it is called from
5929 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005930 switch (Pred) {
5931 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005932 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005933 case ICmpInst::ICMP_SGT:
5934 Pred = ICmpInst::ICMP_SLT;
5935 std::swap(LHS, RHS);
5936 case ICmpInst::ICMP_SLT: {
5937 ConstantRange LHSRange = getSignedRange(LHS);
5938 ConstantRange RHSRange = getSignedRange(RHS);
5939 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5940 return true;
5941 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5942 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005943 break;
5944 }
5945 case ICmpInst::ICMP_SGE:
5946 Pred = ICmpInst::ICMP_SLE;
5947 std::swap(LHS, RHS);
5948 case ICmpInst::ICMP_SLE: {
5949 ConstantRange LHSRange = getSignedRange(LHS);
5950 ConstantRange RHSRange = getSignedRange(RHS);
5951 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5952 return true;
5953 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5954 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005955 break;
5956 }
5957 case ICmpInst::ICMP_UGT:
5958 Pred = ICmpInst::ICMP_ULT;
5959 std::swap(LHS, RHS);
5960 case ICmpInst::ICMP_ULT: {
5961 ConstantRange LHSRange = getUnsignedRange(LHS);
5962 ConstantRange RHSRange = getUnsignedRange(RHS);
5963 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5964 return true;
5965 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5966 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005967 break;
5968 }
5969 case ICmpInst::ICMP_UGE:
5970 Pred = ICmpInst::ICMP_ULE;
5971 std::swap(LHS, RHS);
5972 case ICmpInst::ICMP_ULE: {
5973 ConstantRange LHSRange = getUnsignedRange(LHS);
5974 ConstantRange RHSRange = getUnsignedRange(RHS);
5975 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5976 return true;
5977 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5978 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005979 break;
5980 }
5981 case ICmpInst::ICMP_NE: {
5982 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5983 return true;
5984 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5985 return true;
5986
5987 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5988 if (isKnownNonZero(Diff))
5989 return true;
5990 break;
5991 }
5992 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005993 // The check at the top of the function catches the case where
5994 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005995 break;
5996 }
5997 return false;
5998}
5999
6000/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6001/// protected by a conditional between LHS and RHS. This is used to
6002/// to eliminate casts.
6003bool
6004ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6005 ICmpInst::Predicate Pred,
6006 const SCEV *LHS, const SCEV *RHS) {
6007 // Interpret a null as meaning no loop, where there is obviously no guard
6008 // (interprocedural conditions notwithstanding).
6009 if (!L) return true;
6010
6011 BasicBlock *Latch = L->getLoopLatch();
6012 if (!Latch)
6013 return false;
6014
6015 BranchInst *LoopContinuePredicate =
6016 dyn_cast<BranchInst>(Latch->getTerminator());
6017 if (!LoopContinuePredicate ||
6018 LoopContinuePredicate->isUnconditional())
6019 return false;
6020
Dan Gohmanaf08a362010-08-10 23:46:30 +00006021 return isImpliedCond(Pred, LHS, RHS,
6022 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00006023 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00006024}
6025
Dan Gohman3948d0b2010-04-11 19:27:13 +00006026/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00006027/// by a conditional between LHS and RHS. This is used to help avoid max
6028/// expressions in loop trip counts, and to eliminate casts.
6029bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00006030ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6031 ICmpInst::Predicate Pred,
6032 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00006033 // Interpret a null as meaning no loop, where there is obviously no guard
6034 // (interprocedural conditions notwithstanding).
6035 if (!L) return false;
6036
Dan Gohman859b4822009-05-18 15:36:09 +00006037 // Starting at the loop predecessor, climb up the predecessor chain, as long
6038 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00006039 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00006040 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00006041 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00006042 Pair.first;
6043 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00006044
6045 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00006046 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00006047 if (!LoopEntryPredicate ||
6048 LoopEntryPredicate->isUnconditional())
6049 continue;
6050
Dan Gohmanaf08a362010-08-10 23:46:30 +00006051 if (isImpliedCond(Pred, LHS, RHS,
6052 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00006053 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00006054 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00006055 }
6056
Dan Gohman38372182008-08-12 20:17:31 +00006057 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00006058}
6059
Andrew Trick8aa22012012-05-19 00:48:25 +00006060/// RAII wrapper to prevent recursive application of isImpliedCond.
6061/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6062/// currently evaluating isImpliedCond.
6063struct MarkPendingLoopPredicate {
6064 Value *Cond;
6065 DenseSet<Value*> &LoopPreds;
6066 bool Pending;
6067
6068 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6069 : Cond(C), LoopPreds(LP) {
6070 Pending = !LoopPreds.insert(Cond).second;
6071 }
6072 ~MarkPendingLoopPredicate() {
6073 if (!Pending)
6074 LoopPreds.erase(Cond);
6075 }
6076};
6077
Dan Gohman0f4b2852009-07-21 23:03:19 +00006078/// isImpliedCond - Test whether the condition described by Pred, LHS,
6079/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006080bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006081 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00006082 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006083 bool Inverse) {
Andrew Trick8aa22012012-05-19 00:48:25 +00006084 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6085 if (Mark.Pending)
6086 return false;
6087
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006088 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006089 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006090 if (BO->getOpcode() == Instruction::And) {
6091 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006092 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6093 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006094 } else if (BO->getOpcode() == Instruction::Or) {
6095 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006096 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6097 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006098 }
6099 }
6100
Dan Gohmanaf08a362010-08-10 23:46:30 +00006101 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006102 if (!ICI) return false;
6103
Dan Gohman85b05a22009-07-13 21:35:55 +00006104 // Bail if the ICmp's operands' types are wider than the needed type
6105 // before attempting to call getSCEV on them. This avoids infinite
6106 // recursion, since the analysis of widening casts can require loop
6107 // exit condition information for overflow checking, which would
6108 // lead back here.
6109 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00006110 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00006111 return false;
6112
Dan Gohman0f4b2852009-07-21 23:03:19 +00006113 // Now that we found a conditional branch that dominates the loop, check to
6114 // see if it is the comparison we are looking for.
6115 ICmpInst::Predicate FoundPred;
6116 if (Inverse)
6117 FoundPred = ICI->getInversePredicate();
6118 else
6119 FoundPred = ICI->getPredicate();
6120
6121 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6122 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00006123
6124 // Balance the types. The case where FoundLHS' type is wider than
6125 // LHS' type is checked for above.
6126 if (getTypeSizeInBits(LHS->getType()) >
6127 getTypeSizeInBits(FoundLHS->getType())) {
6128 if (CmpInst::isSigned(Pred)) {
6129 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6130 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6131 } else {
6132 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6133 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6134 }
6135 }
6136
Dan Gohman0f4b2852009-07-21 23:03:19 +00006137 // Canonicalize the query to match the way instcombine will have
6138 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00006139 if (SimplifyICmpOperands(Pred, LHS, RHS))
6140 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006141 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00006142 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6143 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006144 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00006145
6146 // Check to see if we can make the LHS or RHS match.
6147 if (LHS == FoundRHS || RHS == FoundLHS) {
6148 if (isa<SCEVConstant>(RHS)) {
6149 std::swap(FoundLHS, FoundRHS);
6150 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6151 } else {
6152 std::swap(LHS, RHS);
6153 Pred = ICmpInst::getSwappedPredicate(Pred);
6154 }
6155 }
6156
6157 // Check whether the found predicate is the same as the desired predicate.
6158 if (FoundPred == Pred)
6159 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6160
6161 // Check whether swapping the found predicate makes it the same as the
6162 // desired predicate.
6163 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6164 if (isa<SCEVConstant>(RHS))
6165 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6166 else
6167 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6168 RHS, LHS, FoundLHS, FoundRHS);
6169 }
6170
6171 // Check whether the actual condition is beyond sufficient.
6172 if (FoundPred == ICmpInst::ICMP_EQ)
6173 if (ICmpInst::isTrueWhenEqual(Pred))
6174 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6175 return true;
6176 if (Pred == ICmpInst::ICMP_NE)
6177 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6178 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6179 return true;
6180
6181 // Otherwise assume the worst.
6182 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006183}
6184
Dan Gohman0f4b2852009-07-21 23:03:19 +00006185/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006186/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006187/// and FoundRHS is true.
6188bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6189 const SCEV *LHS, const SCEV *RHS,
6190 const SCEV *FoundLHS,
6191 const SCEV *FoundRHS) {
6192 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6193 FoundLHS, FoundRHS) ||
6194 // ~x < ~y --> x > y
6195 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6196 getNotSCEV(FoundRHS),
6197 getNotSCEV(FoundLHS));
6198}
6199
6200/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006201/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006202/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00006203bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00006204ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6205 const SCEV *LHS, const SCEV *RHS,
6206 const SCEV *FoundLHS,
6207 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006208 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00006209 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6210 case ICmpInst::ICMP_EQ:
6211 case ICmpInst::ICMP_NE:
6212 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6213 return true;
6214 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00006215 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00006216 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006217 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6218 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006219 return true;
6220 break;
6221 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006222 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006223 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6224 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006225 return true;
6226 break;
6227 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00006228 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006229 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6230 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006231 return true;
6232 break;
6233 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006234 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006235 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6236 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006237 return true;
6238 break;
6239 }
6240
6241 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006242}
6243
Dan Gohman51f53b72009-06-21 23:46:38 +00006244/// getBECount - Subtract the end and start values and divide by the step,
6245/// rounding up, to get the number of times the backedge is executed. Return
6246/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006247const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00006248 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00006249 const SCEV *Step,
6250 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00006251 assert(!isKnownNegative(Step) &&
6252 "This code doesn't handle negative strides yet!");
6253
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006254 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00006255
6256 // When Start == End, we have an exact BECount == 0. Short-circuit this case
6257 // here because SCEV may not be able to determine that the unsigned division
6258 // after rounding is zero.
6259 if (Start == End)
6260 return getConstant(Ty, 0);
6261
Dan Gohmandeff6212010-05-03 22:09:21 +00006262 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00006263 const SCEV *Diff = getMinusSCEV(End, Start);
6264 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00006265
6266 // Add an adjustment to the difference between End and Start so that
6267 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006268 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00006269
Dan Gohman1f96e672009-09-17 18:05:20 +00006270 if (!NoWrap) {
6271 // Check Add for unsigned overflow.
6272 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006273 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00006274 getTypeSizeInBits(Ty) + 1);
6275 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6276 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6277 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6278 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6279 return getCouldNotCompute();
6280 }
Dan Gohman51f53b72009-06-21 23:46:38 +00006281
6282 return getUDivExpr(Add, Step);
6283}
6284
Chris Lattnerdb25de42005-08-15 23:33:51 +00006285/// HowManyLessThans - Return the number of times a backedge containing the
6286/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00006287/// CouldNotCompute.
Andrew Trick5116ff62011-07-26 17:19:55 +00006288ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00006289ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6290 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00006291 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00006292 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006293
Dan Gohman35738ac2009-05-04 22:30:44 +00006294 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006295 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00006296 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006297
Dan Gohman1f96e672009-09-17 18:05:20 +00006298 // Check to see if we have a flag which makes analysis easy.
Nick Lewycky89d093d2011-11-09 07:11:37 +00006299 bool NoWrap = isSigned ?
6300 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
6301 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
Dan Gohman1f96e672009-09-17 18:05:20 +00006302
Chris Lattnerdb25de42005-08-15 23:33:51 +00006303 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006304 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00006305 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00006306
Dan Gohman52fddd32010-01-26 04:40:18 +00006307 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00006308 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00006309 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006310 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00006311 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00006312 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00006313 // value and past the maximum value for its type in a single step.
6314 // Note that it's not sufficient to check NoWrap here, because even
6315 // though the value after a wrap is undefined, it's not undefined
6316 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00006317 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00006318 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00006319 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00006320 if (isSigned) {
6321 APInt Max = APInt::getSignedMaxValue(BitWidth);
6322 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6323 .slt(getSignedRange(RHS).getSignedMax()))
6324 return getCouldNotCompute();
6325 } else {
6326 APInt Max = APInt::getMaxValue(BitWidth);
6327 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6328 .ult(getUnsignedRange(RHS).getUnsignedMax()))
6329 return getCouldNotCompute();
6330 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006331 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00006332 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00006333 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006334
Dan Gohmana1af7572009-04-30 20:47:05 +00006335 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6336 // m. So, we count the number of iterations in which {n,+,s} < m is true.
6337 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00006338 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00006339
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006340 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00006341 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006342
Dan Gohmana1af7572009-04-30 20:47:05 +00006343 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006344 const SCEV *MinStart = getConstant(isSigned ?
6345 getSignedRange(Start).getSignedMin() :
6346 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006347
Dan Gohmana1af7572009-04-30 20:47:05 +00006348 // If we know that the condition is true in order to enter the loop,
6349 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006350 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6351 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006352 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006353 if (!isLoopEntryGuardedByCond(L,
6354 isSigned ? ICmpInst::ICMP_SLT :
6355 ICmpInst::ICMP_ULT,
6356 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006357 End = isSigned ? getSMaxExpr(RHS, Start)
6358 : getUMaxExpr(RHS, Start);
6359
6360 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006361 const SCEV *MaxEnd = getConstant(isSigned ?
6362 getSignedRange(End).getSignedMax() :
6363 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006364
Dan Gohman52fddd32010-01-26 04:40:18 +00006365 // If MaxEnd is within a step of the maximum integer value in its type,
6366 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006367 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006368 // compute the correct value.
6369 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006370 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006371 MaxEnd = isSigned ?
6372 getSMinExpr(MaxEnd,
6373 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6374 StepMinusOne)) :
6375 getUMinExpr(MaxEnd,
6376 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6377 StepMinusOne));
6378
Dan Gohmana1af7572009-04-30 20:47:05 +00006379 // Finally, we subtract these two values and divide, rounding up, to get
6380 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006381 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006382
6383 // The maximum backedge count is similar, except using the minimum start
6384 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006385 // If we already have an exact constant BECount, use it instead.
6386 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6387 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6388
6389 // If the stride is nonconstant, and NoWrap == true, then
6390 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6391 // exact BECount and invalid MaxBECount, which should be avoided to catch
6392 // more optimization opportunities.
6393 if (isa<SCEVCouldNotCompute>(MaxBECount))
6394 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006395
Andrew Trick5116ff62011-07-26 17:19:55 +00006396 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006397 }
6398
Dan Gohman1c343752009-06-27 21:21:31 +00006399 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006400}
6401
Chris Lattner53e677a2004-04-02 20:23:17 +00006402/// getNumIterationsInRange - Return the number of iterations of this loop that
6403/// produce values in the specified constant range. Another way of looking at
6404/// this is that it returns the first iteration number where the value is not in
6405/// the condition, thus computing the exit count. If the iteration count can't
6406/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006407const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006408 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006409 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006410 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006411
6412 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006413 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006414 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006415 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006416 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006417 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006418 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006419 if (const SCEVAddRecExpr *ShiftedAddRec =
6420 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006421 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006422 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006423 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006424 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006425 }
6426
6427 // The only time we can solve this is when we have all constant indices.
6428 // Otherwise, we cannot determine the overflow conditions.
6429 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6430 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006431 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006432
6433
6434 // Okay at this point we know that all elements of the chrec are constants and
6435 // that the start element is zero.
6436
6437 // First check to see if the range contains zero. If not, the first
6438 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006439 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006440 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006441 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006442
Chris Lattner53e677a2004-04-02 20:23:17 +00006443 if (isAffine()) {
6444 // If this is an affine expression then we have this situation:
6445 // Solve {0,+,A} in Range === Ax in Range
6446
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006447 // We know that zero is in the range. If A is positive then we know that
6448 // the upper value of the range must be the first possible exit value.
6449 // If A is negative then the lower of the range is the last possible loop
6450 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006451 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006452 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6453 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006454
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006455 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006456 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006457 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006458
6459 // Evaluate at the exit value. If we really did fall out of the valid
6460 // range, then we computed our trip count, otherwise wrap around or other
6461 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006462 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006463 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006464 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006465
6466 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006467 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006468 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006469 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006470 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006471 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006472 } else if (isQuadratic()) {
6473 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6474 // quadratic equation to solve it. To do this, we must frame our problem in
6475 // terms of figuring out when zero is crossed, instead of when
6476 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006477 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006478 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006479 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6480 // getNoWrapFlags(FlagNW)
6481 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006482
6483 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006484 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006485 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006486 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6487 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006488 if (R1) {
6489 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006490 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006491 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006492 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006493 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006494 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006495
Chris Lattner53e677a2004-04-02 20:23:17 +00006496 // Make sure the root is not off by one. The returned iteration should
6497 // not be in the range, but the previous one should be. When solving
6498 // for "X*X < 5", for example, we should not return a root of 2.
6499 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006500 R1->getValue(),
6501 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006502 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006503 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006504 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006505 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006506
Dan Gohman246b2562007-10-22 18:31:58 +00006507 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006508 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006509 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006510 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006511 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006512
Chris Lattner53e677a2004-04-02 20:23:17 +00006513 // If R1 was not in the range, then it is a good return value. Make
6514 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006515 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006516 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006517 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006518 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006519 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006520 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006521 }
6522 }
6523 }
6524
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006525 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006526}
6527
6528
6529
6530//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006531// SCEVCallbackVH Class Implementation
6532//===----------------------------------------------------------------------===//
6533
Dan Gohman1959b752009-05-19 19:22:47 +00006534void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006535 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006536 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6537 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006538 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006539 // this now dangles!
6540}
6541
Dan Gohman81f91212010-07-28 01:09:07 +00006542void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006543 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006544
Dan Gohman35738ac2009-05-04 22:30:44 +00006545 // Forget all the expressions associated with users of the old value,
6546 // so that future queries will recompute the expressions using the new
6547 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006548 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006549 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006550 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006551 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6552 UI != UE; ++UI)
6553 Worklist.push_back(*UI);
6554 while (!Worklist.empty()) {
6555 User *U = Worklist.pop_back_val();
6556 // Deleting the Old value will cause this to dangle. Postpone
6557 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006558 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006559 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006560 if (!Visited.insert(U))
6561 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006562 if (PHINode *PN = dyn_cast<PHINode>(U))
6563 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006564 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006565 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6566 UI != UE; ++UI)
6567 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006568 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006569 // Delete the Old value.
6570 if (PHINode *PN = dyn_cast<PHINode>(Old))
6571 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006572 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006573 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006574}
6575
Dan Gohman1959b752009-05-19 19:22:47 +00006576ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006577 : CallbackVH(V), SE(se) {}
6578
6579//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006580// ScalarEvolution Class Implementation
6581//===----------------------------------------------------------------------===//
6582
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006583ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006584 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006585 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006586}
6587
Chris Lattner53e677a2004-04-02 20:23:17 +00006588bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006589 this->F = &F;
6590 LI = &getAnalysis<LoopInfo>();
6591 TD = getAnalysisIfAvailable<TargetData>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006592 TLI = &getAnalysis<TargetLibraryInfo>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006593 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006594 return false;
6595}
6596
6597void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006598 // Iterate through all the SCEVUnknown instances and call their
6599 // destructors, so that they release their references to their values.
6600 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6601 U->~SCEVUnknown();
6602 FirstUnknown = 0;
6603
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006604 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006605
6606 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6607 // that a loop had multiple computable exits.
6608 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6609 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6610 I != E; ++I) {
6611 I->second.clear();
6612 }
6613
Andrew Trick8aa22012012-05-19 00:48:25 +00006614 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
6615
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006616 BackedgeTakenCounts.clear();
6617 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006618 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006619 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006620 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006621 UnsignedRanges.clear();
6622 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006623 UniqueSCEVs.clear();
6624 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006625}
6626
6627void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6628 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006629 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006630 AU.addRequiredTransitive<DominatorTree>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006631 AU.addRequired<TargetLibraryInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006632}
6633
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006634bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006635 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006636}
6637
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006638static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006639 const Loop *L) {
6640 // Print all inner loops first
6641 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6642 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006643
Dan Gohman30733292010-01-09 18:17:45 +00006644 OS << "Loop ";
6645 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6646 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006647
Dan Gohman5d984912009-12-18 01:14:11 +00006648 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006649 L->getExitBlocks(ExitBlocks);
6650 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006651 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006652
Dan Gohman46bdfb02009-02-24 18:55:53 +00006653 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6654 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006655 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006656 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006657 }
6658
Dan Gohman30733292010-01-09 18:17:45 +00006659 OS << "\n"
6660 "Loop ";
6661 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6662 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006663
6664 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6665 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6666 } else {
6667 OS << "Unpredictable max backedge-taken count. ";
6668 }
6669
6670 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006671}
6672
Dan Gohman5d984912009-12-18 01:14:11 +00006673void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006674 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006675 // out SCEV values of all instructions that are interesting. Doing
6676 // this potentially causes it to create new SCEV objects though,
6677 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006678 // observable from outside the class though, so casting away the
6679 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006680 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006681
Dan Gohman30733292010-01-09 18:17:45 +00006682 OS << "Classifying expressions for: ";
6683 WriteAsOperand(OS, F, /*PrintType=*/false);
6684 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006685 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006686 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006687 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006688 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006689 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006690 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006691
Dan Gohman0c689c52009-06-19 17:49:54 +00006692 const Loop *L = LI->getLoopFor((*I).getParent());
6693
Dan Gohman0bba49c2009-07-07 17:06:11 +00006694 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006695 if (AtUse != SV) {
6696 OS << " --> ";
6697 AtUse->print(OS);
6698 }
6699
6700 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006701 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006702 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006703 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006704 OS << "<<Unknown>>";
6705 } else {
6706 OS << *ExitValue;
6707 }
6708 }
6709
Chris Lattner53e677a2004-04-02 20:23:17 +00006710 OS << "\n";
6711 }
6712
Dan Gohman30733292010-01-09 18:17:45 +00006713 OS << "Determining loop execution counts for: ";
6714 WriteAsOperand(OS, F, /*PrintType=*/false);
6715 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006716 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6717 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006718}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006719
Dan Gohman714b5292010-11-17 23:21:44 +00006720ScalarEvolution::LoopDisposition
6721ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6722 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6723 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6724 Values.insert(std::make_pair(L, LoopVariant));
6725 if (!Pair.second)
6726 return Pair.first->second;
6727
6728 LoopDisposition D = computeLoopDisposition(S, L);
6729 return LoopDispositions[S][L] = D;
6730}
6731
6732ScalarEvolution::LoopDisposition
6733ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006734 switch (S->getSCEVType()) {
6735 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006736 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006737 case scTruncate:
6738 case scZeroExtend:
6739 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006740 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006741 case scAddRecExpr: {
6742 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6743
Dan Gohman714b5292010-11-17 23:21:44 +00006744 // If L is the addrec's loop, it's computable.
6745 if (AR->getLoop() == L)
6746 return LoopComputable;
6747
Dan Gohman17ead4f2010-11-17 21:23:15 +00006748 // Add recurrences are never invariant in the function-body (null loop).
6749 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006750 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006751
6752 // This recurrence is variant w.r.t. L if L contains AR's loop.
6753 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006754 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006755
6756 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6757 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006758 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006759
6760 // This recurrence is variant w.r.t. L if any of its operands
6761 // are variant.
6762 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6763 I != E; ++I)
6764 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006765 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006766
6767 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006768 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006769 }
6770 case scAddExpr:
6771 case scMulExpr:
6772 case scUMaxExpr:
6773 case scSMaxExpr: {
6774 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006775 bool HasVarying = false;
6776 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6777 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006778 LoopDisposition D = getLoopDisposition(*I, L);
6779 if (D == LoopVariant)
6780 return LoopVariant;
6781 if (D == LoopComputable)
6782 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006783 }
Dan Gohman714b5292010-11-17 23:21:44 +00006784 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006785 }
6786 case scUDivExpr: {
6787 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006788 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6789 if (LD == LoopVariant)
6790 return LoopVariant;
6791 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6792 if (RD == LoopVariant)
6793 return LoopVariant;
6794 return (LD == LoopInvariant && RD == LoopInvariant) ?
6795 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006796 }
6797 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006798 // All non-instruction values are loop invariant. All instructions are loop
6799 // invariant if they are not contained in the specified loop.
6800 // Instructions are never considered invariant in the function body
6801 // (null loop) because they are defined within the "loop".
6802 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6803 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6804 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006805 case scCouldNotCompute:
6806 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +00006807 default: llvm_unreachable("Unknown SCEV kind!");
Dan Gohman17ead4f2010-11-17 21:23:15 +00006808 }
Dan Gohman714b5292010-11-17 23:21:44 +00006809}
6810
6811bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6812 return getLoopDisposition(S, L) == LoopInvariant;
6813}
6814
6815bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6816 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006817}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006818
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006819ScalarEvolution::BlockDisposition
6820ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6821 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6822 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6823 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6824 if (!Pair.second)
6825 return Pair.first->second;
6826
6827 BlockDisposition D = computeBlockDisposition(S, BB);
6828 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006829}
6830
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006831ScalarEvolution::BlockDisposition
6832ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006833 switch (S->getSCEVType()) {
6834 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006835 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006836 case scTruncate:
6837 case scZeroExtend:
6838 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006839 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006840 case scAddRecExpr: {
6841 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006842 // to test for proper dominance too, because the instruction which
6843 // produces the addrec's value is a PHI, and a PHI effectively properly
6844 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006845 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6846 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006847 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006848 }
6849 // FALL THROUGH into SCEVNAryExpr handling.
6850 case scAddExpr:
6851 case scMulExpr:
6852 case scUMaxExpr:
6853 case scSMaxExpr: {
6854 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006855 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006856 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006857 I != E; ++I) {
6858 BlockDisposition D = getBlockDisposition(*I, BB);
6859 if (D == DoesNotDominateBlock)
6860 return DoesNotDominateBlock;
6861 if (D == DominatesBlock)
6862 Proper = false;
6863 }
6864 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006865 }
6866 case scUDivExpr: {
6867 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006868 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6869 BlockDisposition LD = getBlockDisposition(LHS, BB);
6870 if (LD == DoesNotDominateBlock)
6871 return DoesNotDominateBlock;
6872 BlockDisposition RD = getBlockDisposition(RHS, BB);
6873 if (RD == DoesNotDominateBlock)
6874 return DoesNotDominateBlock;
6875 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6876 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006877 }
6878 case scUnknown:
6879 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006880 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6881 if (I->getParent() == BB)
6882 return DominatesBlock;
6883 if (DT->properlyDominates(I->getParent(), BB))
6884 return ProperlyDominatesBlock;
6885 return DoesNotDominateBlock;
6886 }
6887 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006888 case scCouldNotCompute:
6889 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Andrew Trickeb6dd232012-03-26 22:33:59 +00006890 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +00006891 llvm_unreachable("Unknown SCEV kind!");
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006892 }
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006893}
6894
6895bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6896 return getBlockDisposition(S, BB) >= DominatesBlock;
6897}
6898
6899bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6900 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006901}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006902
Andrew Trick8b7036b2012-07-13 23:33:03 +00006903namespace {
6904// Search for a SCEV expression node within an expression tree.
6905// Implements SCEVTraversal::Visitor.
6906struct SCEVSearch {
6907 const SCEV *Node;
6908 bool IsFound;
6909
6910 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
6911
6912 bool follow(const SCEV *S) {
6913 IsFound |= (S == Node);
6914 return !IsFound;
6915 }
6916 bool isDone() const { return IsFound; }
6917};
6918}
6919
Dan Gohman4ce32db2010-11-17 22:27:42 +00006920bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick8b7036b2012-07-13 23:33:03 +00006921 SCEVSearch Search(Op);
6922 visitAll(S, Search);
6923 return Search.IsFound;
Dan Gohman4ce32db2010-11-17 22:27:42 +00006924}
Dan Gohman56a75682010-11-17 23:28:48 +00006925
6926void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6927 ValuesAtScopes.erase(S);
6928 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006929 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006930 UnsignedRanges.erase(S);
6931 SignedRanges.erase(S);
6932}