blob: 4e3dc60ed501d03a173d17cb3952a0c560e5c827 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chad Rosier618c1db2011-12-01 03:08:23 +000077#include "llvm/Target/TargetLibraryInfo.h"
Chris Lattner95255282006-06-28 23:17:24 +000078#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000079#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000080#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000081#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000082#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000083#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000084#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000085#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000086#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000087#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000088#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000089#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000090using namespace llvm;
91
Chris Lattner3b27d682006-12-19 22:30:33 +000092STATISTIC(NumArrayLenItCounts,
93 "Number of trip counts computed with array length");
94STATISTIC(NumTripCountsComputed,
95 "Number of loops with predictable loop counts");
96STATISTIC(NumTripCountsNotComputed,
97 "Number of loops without predictable loop counts");
98STATISTIC(NumBruteForceTripCountsComputed,
99 "Number of loops with trip counts computed by force");
100
Dan Gohman844731a2008-05-13 00:00:25 +0000101static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000102MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000104 "symbolically execute a constant "
105 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000106 cl::init(100));
107
Owen Anderson2ab36d32010-10-12 19:48:12 +0000108INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
109 "Scalar Evolution Analysis", false, true)
110INITIALIZE_PASS_DEPENDENCY(LoopInfo)
111INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Chad Rosier618c1db2011-12-01 03:08:23 +0000112INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000113INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000114 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000115char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000116
117//===----------------------------------------------------------------------===//
118// SCEV class definitions
119//===----------------------------------------------------------------------===//
120
121//===----------------------------------------------------------------------===//
122// Implementation of the SCEV class.
123//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000124
Chris Lattner53e677a2004-04-02 20:23:17 +0000125void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000126 print(dbgs());
127 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000128}
129
Dan Gohman4ce32db2010-11-17 22:27:42 +0000130void SCEV::print(raw_ostream &OS) const {
131 switch (getSCEVType()) {
132 case scConstant:
133 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
134 return;
135 case scTruncate: {
136 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
137 const SCEV *Op = Trunc->getOperand();
138 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
139 << *Trunc->getType() << ")";
140 return;
141 }
142 case scZeroExtend: {
143 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
144 const SCEV *Op = ZExt->getOperand();
145 OS << "(zext " << *Op->getType() << " " << *Op << " to "
146 << *ZExt->getType() << ")";
147 return;
148 }
149 case scSignExtend: {
150 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
151 const SCEV *Op = SExt->getOperand();
152 OS << "(sext " << *Op->getType() << " " << *Op << " to "
153 << *SExt->getType() << ")";
154 return;
155 }
156 case scAddRecExpr: {
157 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
158 OS << "{" << *AR->getOperand(0);
159 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
160 OS << ",+," << *AR->getOperand(i);
161 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000162 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000163 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000164 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000165 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000166 if (AR->getNoWrapFlags(FlagNW) &&
167 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
168 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000169 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
170 OS << ">";
171 return;
172 }
173 case scAddExpr:
174 case scMulExpr:
175 case scUMaxExpr:
176 case scSMaxExpr: {
177 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000178 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000179 switch (NAry->getSCEVType()) {
180 case scAddExpr: OpStr = " + "; break;
181 case scMulExpr: OpStr = " * "; break;
182 case scUMaxExpr: OpStr = " umax "; break;
183 case scSMaxExpr: OpStr = " smax "; break;
184 }
185 OS << "(";
186 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
187 I != E; ++I) {
188 OS << **I;
189 if (llvm::next(I) != E)
190 OS << OpStr;
191 }
192 OS << ")";
Andrew Trick121d78f2011-11-29 02:06:35 +0000193 switch (NAry->getSCEVType()) {
194 case scAddExpr:
195 case scMulExpr:
196 if (NAry->getNoWrapFlags(FlagNUW))
197 OS << "<nuw>";
198 if (NAry->getNoWrapFlags(FlagNSW))
199 OS << "<nsw>";
200 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000201 return;
202 }
203 case scUDivExpr: {
204 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
205 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
206 return;
207 }
208 case scUnknown: {
209 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000210 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000211 if (U->isSizeOf(AllocTy)) {
212 OS << "sizeof(" << *AllocTy << ")";
213 return;
214 }
215 if (U->isAlignOf(AllocTy)) {
216 OS << "alignof(" << *AllocTy << ")";
217 return;
218 }
Andrew Trick635f7182011-03-09 17:23:39 +0000219
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000220 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000221 Constant *FieldNo;
222 if (U->isOffsetOf(CTy, FieldNo)) {
223 OS << "offsetof(" << *CTy << ", ";
224 WriteAsOperand(OS, FieldNo, false);
225 OS << ")";
226 return;
227 }
Andrew Trick635f7182011-03-09 17:23:39 +0000228
Dan Gohman4ce32db2010-11-17 22:27:42 +0000229 // Otherwise just print it normally.
230 WriteAsOperand(OS, U->getValue(), false);
231 return;
232 }
233 case scCouldNotCompute:
234 OS << "***COULDNOTCOMPUTE***";
235 return;
236 default: break;
237 }
238 llvm_unreachable("Unknown SCEV kind!");
239}
240
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000241Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000242 switch (getSCEVType()) {
243 case scConstant:
244 return cast<SCEVConstant>(this)->getType();
245 case scTruncate:
246 case scZeroExtend:
247 case scSignExtend:
248 return cast<SCEVCastExpr>(this)->getType();
249 case scAddRecExpr:
250 case scMulExpr:
251 case scUMaxExpr:
252 case scSMaxExpr:
253 return cast<SCEVNAryExpr>(this)->getType();
254 case scAddExpr:
255 return cast<SCEVAddExpr>(this)->getType();
256 case scUDivExpr:
257 return cast<SCEVUDivExpr>(this)->getType();
258 case scUnknown:
259 return cast<SCEVUnknown>(this)->getType();
260 case scCouldNotCompute:
261 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +0000262 default:
263 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman4ce32db2010-11-17 22:27:42 +0000264 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000265}
266
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000267bool SCEV::isZero() const {
268 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
269 return SC->getValue()->isZero();
270 return false;
271}
272
Dan Gohman70a1fe72009-05-18 15:22:39 +0000273bool SCEV::isOne() const {
274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
275 return SC->getValue()->isOne();
276 return false;
277}
Chris Lattner53e677a2004-04-02 20:23:17 +0000278
Dan Gohman4d289bf2009-06-24 00:30:26 +0000279bool SCEV::isAllOnesValue() const {
280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
281 return SC->getValue()->isAllOnesValue();
282 return false;
283}
284
Andrew Trickf8fd8412012-01-07 00:27:31 +0000285/// isNonConstantNegative - Return true if the specified scev is negated, but
286/// not a constant.
287bool SCEV::isNonConstantNegative() const {
288 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
289 if (!Mul) return false;
290
291 // If there is a constant factor, it will be first.
292 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
293 if (!SC) return false;
294
295 // Return true if the value is negative, this matches things like (-42 * V).
296 return SC->getValue()->getValue().isNegative();
297}
298
Owen Anderson753ad612009-06-22 21:57:23 +0000299SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000300 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000301
Chris Lattner53e677a2004-04-02 20:23:17 +0000302bool SCEVCouldNotCompute::classof(const SCEV *S) {
303 return S->getSCEVType() == scCouldNotCompute;
304}
305
Dan Gohman0bba49c2009-07-07 17:06:11 +0000306const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000307 FoldingSetNodeID ID;
308 ID.AddInteger(scConstant);
309 ID.AddPointer(V);
310 void *IP = 0;
311 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000312 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000313 UniqueSCEVs.InsertNode(S, IP);
314 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000315}
Chris Lattner53e677a2004-04-02 20:23:17 +0000316
Dan Gohman0bba49c2009-07-07 17:06:11 +0000317const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000318 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000319}
320
Dan Gohman0bba49c2009-07-07 17:06:11 +0000321const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000322ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
323 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000324 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000325}
326
Dan Gohman3bf63762010-06-18 19:54:20 +0000327SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000328 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000329 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000330
Dan Gohman3bf63762010-06-18 19:54:20 +0000331SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000332 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000333 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000334 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
335 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000336 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000337}
Chris Lattner53e677a2004-04-02 20:23:17 +0000338
Dan Gohman3bf63762010-06-18 19:54:20 +0000339SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000340 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000341 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000344 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345}
346
Dan Gohman3bf63762010-06-18 19:54:20 +0000347SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000348 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000349 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000352 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000353}
354
Dan Gohmanab37f502010-08-02 23:49:30 +0000355void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000356 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000357 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000358
359 // Remove this SCEVUnknown from the uniquing map.
360 SE->UniqueSCEVs.RemoveNode(this);
361
362 // Release the value.
363 setValPtr(0);
364}
365
366void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000367 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000368 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000369
370 // Remove this SCEVUnknown from the uniquing map.
371 SE->UniqueSCEVs.RemoveNode(this);
372
373 // Update this SCEVUnknown to point to the new value. This is needed
374 // because there may still be outstanding SCEVs which still point to
375 // this SCEVUnknown.
376 setValPtr(New);
377}
378
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000379bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000380 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000381 if (VCE->getOpcode() == Instruction::PtrToInt)
382 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000383 if (CE->getOpcode() == Instruction::GetElementPtr &&
384 CE->getOperand(0)->isNullValue() &&
385 CE->getNumOperands() == 2)
386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
387 if (CI->isOne()) {
388 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
389 ->getElementType();
390 return true;
391 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000392
393 return false;
394}
395
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000396bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000398 if (VCE->getOpcode() == Instruction::PtrToInt)
399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000400 if (CE->getOpcode() == Instruction::GetElementPtr &&
401 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000402 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000403 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000404 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000405 if (!STy->isPacked() &&
406 CE->getNumOperands() == 3 &&
407 CE->getOperand(1)->isNullValue()) {
408 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
409 if (CI->isOne() &&
410 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000411 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000412 AllocTy = STy->getElementType(1);
413 return true;
414 }
415 }
416 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000417
418 return false;
419}
420
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000421bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000422 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000423 if (VCE->getOpcode() == Instruction::PtrToInt)
424 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
425 if (CE->getOpcode() == Instruction::GetElementPtr &&
426 CE->getNumOperands() == 3 &&
427 CE->getOperand(0)->isNullValue() &&
428 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000429 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000430 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
431 // Ignore vector types here so that ScalarEvolutionExpander doesn't
432 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000433 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000434 CTy = Ty;
435 FieldNo = CE->getOperand(2);
436 return true;
437 }
438 }
439
440 return false;
441}
442
Chris Lattner8d741b82004-06-20 06:23:15 +0000443//===----------------------------------------------------------------------===//
444// SCEV Utilities
445//===----------------------------------------------------------------------===//
446
447namespace {
448 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
449 /// than the complexity of the RHS. This comparator is used to canonicalize
450 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000451 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000452 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000453 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000454 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000455
Dan Gohman67ef74e2010-08-27 15:26:01 +0000456 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000457 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000458 return compare(LHS, RHS) < 0;
459 }
460
461 // Return negative, zero, or positive, if LHS is less than, equal to, or
462 // greater than RHS, respectively. A three-way result allows recursive
463 // comparisons to be more efficient.
464 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000465 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
466 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000467 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000468
Dan Gohman72861302009-05-07 14:39:04 +0000469 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000470 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
471 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000472 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000473
Dan Gohman3bf63762010-06-18 19:54:20 +0000474 // Aside from the getSCEVType() ordering, the particular ordering
475 // isn't very important except that it's beneficial to be consistent,
476 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000477 switch (LType) {
478 case scUnknown: {
479 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000480 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000481
482 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
483 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000484 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000485
486 // Order pointer values after integer values. This helps SCEVExpander
487 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000488 bool LIsPointer = LV->getType()->isPointerTy(),
489 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000490 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000491 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000492
493 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000494 unsigned LID = LV->getValueID(),
495 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000496 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000497 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000498
499 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000500 if (const Argument *LA = dyn_cast<Argument>(LV)) {
501 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
503 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000504 }
505
Dan Gohman67ef74e2010-08-27 15:26:01 +0000506 // For instructions, compare their loop depth, and their operand
507 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000508 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
509 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000510
511 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000512 const BasicBlock *LParent = LInst->getParent(),
513 *RParent = RInst->getParent();
514 if (LParent != RParent) {
515 unsigned LDepth = LI->getLoopDepth(LParent),
516 RDepth = LI->getLoopDepth(RParent);
517 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000518 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000519 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000520
521 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000522 unsigned LNumOps = LInst->getNumOperands(),
523 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000524 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000525 }
526
Dan Gohman67ef74e2010-08-27 15:26:01 +0000527 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000528 }
529
Dan Gohman67ef74e2010-08-27 15:26:01 +0000530 case scConstant: {
531 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000532 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000533
534 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000535 const APInt &LA = LC->getValue()->getValue();
536 const APInt &RA = RC->getValue()->getValue();
537 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000538 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000539 return (int)LBitWidth - (int)RBitWidth;
540 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000541 }
542
Dan Gohman67ef74e2010-08-27 15:26:01 +0000543 case scAddRecExpr: {
544 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000545 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000546
547 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000548 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
549 if (LLoop != RLoop) {
550 unsigned LDepth = LLoop->getLoopDepth(),
551 RDepth = RLoop->getLoopDepth();
552 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000553 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000554 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000555
556 // Addrec complexity grows with operand count.
557 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
558 if (LNumOps != RNumOps)
559 return (int)LNumOps - (int)RNumOps;
560
561 // Lexicographically compare.
562 for (unsigned i = 0; i != LNumOps; ++i) {
563 long X = compare(LA->getOperand(i), RA->getOperand(i));
564 if (X != 0)
565 return X;
566 }
567
568 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000569 }
570
Dan Gohman67ef74e2010-08-27 15:26:01 +0000571 case scAddExpr:
572 case scMulExpr:
573 case scSMaxExpr:
574 case scUMaxExpr: {
575 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000576 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000577
578 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000579 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
580 for (unsigned i = 0; i != LNumOps; ++i) {
581 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000582 return 1;
583 long X = compare(LC->getOperand(i), RC->getOperand(i));
584 if (X != 0)
585 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000586 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000587 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000588 }
589
Dan Gohman67ef74e2010-08-27 15:26:01 +0000590 case scUDivExpr: {
591 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000592 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000593
594 // Lexicographically compare udiv expressions.
595 long X = compare(LC->getLHS(), RC->getLHS());
596 if (X != 0)
597 return X;
598 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000599 }
600
Dan Gohman67ef74e2010-08-27 15:26:01 +0000601 case scTruncate:
602 case scZeroExtend:
603 case scSignExtend: {
604 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000605 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000606
607 // Compare cast expressions by operand.
608 return compare(LC->getOperand(), RC->getOperand());
609 }
610
611 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +0000612 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman3bf63762010-06-18 19:54:20 +0000613 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000614 }
615 };
616}
617
618/// GroupByComplexity - Given a list of SCEV objects, order them by their
619/// complexity, and group objects of the same complexity together by value.
620/// When this routine is finished, we know that any duplicates in the vector are
621/// consecutive and that complexity is monotonically increasing.
622///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000623/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000624/// results from this routine. In other words, we don't want the results of
625/// this to depend on where the addresses of various SCEV objects happened to
626/// land in memory.
627///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000628static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000629 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000630 if (Ops.size() < 2) return; // Noop
631 if (Ops.size() == 2) {
632 // This is the common case, which also happens to be trivially simple.
633 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000634 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
635 if (SCEVComplexityCompare(LI)(RHS, LHS))
636 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000637 return;
638 }
639
Dan Gohman3bf63762010-06-18 19:54:20 +0000640 // Do the rough sort by complexity.
641 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
642
643 // Now that we are sorted by complexity, group elements of the same
644 // complexity. Note that this is, at worst, N^2, but the vector is likely to
645 // be extremely short in practice. Note that we take this approach because we
646 // do not want to depend on the addresses of the objects we are grouping.
647 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
648 const SCEV *S = Ops[i];
649 unsigned Complexity = S->getSCEVType();
650
651 // If there are any objects of the same complexity and same value as this
652 // one, group them.
653 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
654 if (Ops[j] == S) { // Found a duplicate.
655 // Move it to immediately after i'th element.
656 std::swap(Ops[i+1], Ops[j]);
657 ++i; // no need to rescan it.
658 if (i == e-2) return; // Done!
659 }
660 }
661 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000662}
663
Chris Lattner53e677a2004-04-02 20:23:17 +0000664
Chris Lattner53e677a2004-04-02 20:23:17 +0000665
666//===----------------------------------------------------------------------===//
667// Simple SCEV method implementations
668//===----------------------------------------------------------------------===//
669
Eli Friedmanb42a6262008-08-04 23:49:06 +0000670/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000671/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000672static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000673 ScalarEvolution &SE,
Nick Lewycky8cfb2f82011-09-06 06:39:54 +0000674 Type *ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000675 // Handle the simplest case efficiently.
676 if (K == 1)
677 return SE.getTruncateOrZeroExtend(It, ResultTy);
678
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000679 // We are using the following formula for BC(It, K):
680 //
681 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
682 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000683 // Suppose, W is the bitwidth of the return value. We must be prepared for
684 // overflow. Hence, we must assure that the result of our computation is
685 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
686 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000687 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000688 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000689 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000690 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
691 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000692 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000693 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000694 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000695 // This formula is trivially equivalent to the previous formula. However,
696 // this formula can be implemented much more efficiently. The trick is that
697 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
698 // arithmetic. To do exact division in modular arithmetic, all we have
699 // to do is multiply by the inverse. Therefore, this step can be done at
700 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000701 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000702 // The next issue is how to safely do the division by 2^T. The way this
703 // is done is by doing the multiplication step at a width of at least W + T
704 // bits. This way, the bottom W+T bits of the product are accurate. Then,
705 // when we perform the division by 2^T (which is equivalent to a right shift
706 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
707 // truncated out after the division by 2^T.
708 //
709 // In comparison to just directly using the first formula, this technique
710 // is much more efficient; using the first formula requires W * K bits,
711 // but this formula less than W + K bits. Also, the first formula requires
712 // a division step, whereas this formula only requires multiplies and shifts.
713 //
714 // It doesn't matter whether the subtraction step is done in the calculation
715 // width or the input iteration count's width; if the subtraction overflows,
716 // the result must be zero anyway. We prefer here to do it in the width of
717 // the induction variable because it helps a lot for certain cases; CodeGen
718 // isn't smart enough to ignore the overflow, which leads to much less
719 // efficient code if the width of the subtraction is wider than the native
720 // register width.
721 //
722 // (It's possible to not widen at all by pulling out factors of 2 before
723 // the multiplication; for example, K=2 can be calculated as
724 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
725 // extra arithmetic, so it's not an obvious win, and it gets
726 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000727
Eli Friedmanb42a6262008-08-04 23:49:06 +0000728 // Protection from insane SCEVs; this bound is conservative,
729 // but it probably doesn't matter.
730 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000731 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000732
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000733 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000734
Eli Friedmanb42a6262008-08-04 23:49:06 +0000735 // Calculate K! / 2^T and T; we divide out the factors of two before
736 // multiplying for calculating K! / 2^T to avoid overflow.
737 // Other overflow doesn't matter because we only care about the bottom
738 // W bits of the result.
739 APInt OddFactorial(W, 1);
740 unsigned T = 1;
741 for (unsigned i = 3; i <= K; ++i) {
742 APInt Mult(W, i);
743 unsigned TwoFactors = Mult.countTrailingZeros();
744 T += TwoFactors;
745 Mult = Mult.lshr(TwoFactors);
746 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000747 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000748
Eli Friedmanb42a6262008-08-04 23:49:06 +0000749 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000750 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000751
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000752 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000753 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
754
755 // Calculate the multiplicative inverse of K! / 2^T;
756 // this multiplication factor will perform the exact division by
757 // K! / 2^T.
758 APInt Mod = APInt::getSignedMinValue(W+1);
759 APInt MultiplyFactor = OddFactorial.zext(W+1);
760 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
761 MultiplyFactor = MultiplyFactor.trunc(W);
762
763 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000764 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000765 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000766 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000767 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000768 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000769 Dividend = SE.getMulExpr(Dividend,
770 SE.getTruncateOrZeroExtend(S, CalculationTy));
771 }
772
773 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000774 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000775
776 // Truncate the result, and divide by K! / 2^T.
777
778 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
779 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000780}
781
Chris Lattner53e677a2004-04-02 20:23:17 +0000782/// evaluateAtIteration - Return the value of this chain of recurrences at
783/// the specified iteration number. We can evaluate this recurrence by
784/// multiplying each element in the chain by the binomial coefficient
785/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
786///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000787/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000788///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000789/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000790///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000791const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000792 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000793 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000794 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000795 // The computation is correct in the face of overflow provided that the
796 // multiplication is performed _after_ the evaluation of the binomial
797 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000798 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000799 if (isa<SCEVCouldNotCompute>(Coeff))
800 return Coeff;
801
802 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000803 }
804 return Result;
805}
806
Chris Lattner53e677a2004-04-02 20:23:17 +0000807//===----------------------------------------------------------------------===//
808// SCEV Expression folder implementations
809//===----------------------------------------------------------------------===//
810
Dan Gohman0bba49c2009-07-07 17:06:11 +0000811const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000812 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000813 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000814 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000815 assert(isSCEVable(Ty) &&
816 "This is not a conversion to a SCEVable type!");
817 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000818
Dan Gohmanc050fd92009-07-13 20:50:19 +0000819 FoldingSetNodeID ID;
820 ID.AddInteger(scTruncate);
821 ID.AddPointer(Op);
822 ID.AddPointer(Ty);
823 void *IP = 0;
824 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
825
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000826 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000827 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000828 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000829 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000830
Dan Gohman20900ca2009-04-22 16:20:48 +0000831 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000832 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000833 return getTruncateExpr(ST->getOperand(), Ty);
834
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000835 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000836 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000837 return getTruncateOrSignExtend(SS->getOperand(), Ty);
838
839 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000840 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000841 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
842
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000843 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
844 // eliminate all the truncates.
845 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
846 SmallVector<const SCEV *, 4> Operands;
847 bool hasTrunc = false;
848 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
849 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
850 hasTrunc = isa<SCEVTruncateExpr>(S);
851 Operands.push_back(S);
852 }
853 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000854 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000855 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000856 }
857
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000858 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
859 // eliminate all the truncates.
860 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
861 SmallVector<const SCEV *, 4> Operands;
862 bool hasTrunc = false;
863 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
864 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
865 hasTrunc = isa<SCEVTruncateExpr>(S);
866 Operands.push_back(S);
867 }
868 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000869 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000870 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000871 }
872
Dan Gohman6864db62009-06-18 16:24:47 +0000873 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000874 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000875 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000876 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000877 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000878 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000879 }
880
Dan Gohmanf53462d2010-07-15 20:02:11 +0000881 // As a special case, fold trunc(undef) to undef. We don't want to
882 // know too much about SCEVUnknowns, but this special case is handy
883 // and harmless.
884 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
885 if (isa<UndefValue>(U->getValue()))
886 return getSCEV(UndefValue::get(Ty));
887
Dan Gohman420ab912010-06-25 18:47:08 +0000888 // The cast wasn't folded; create an explicit cast node. We can reuse
889 // the existing insert position since if we get here, we won't have
890 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000891 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
892 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000893 UniqueSCEVs.InsertNode(S, IP);
894 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000895}
896
Dan Gohman0bba49c2009-07-07 17:06:11 +0000897const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000898 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000899 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000900 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000901 assert(isSCEVable(Ty) &&
902 "This is not a conversion to a SCEVable type!");
903 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000904
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000905 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000906 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
907 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000908 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000909
Dan Gohman20900ca2009-04-22 16:20:48 +0000910 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000911 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000912 return getZeroExtendExpr(SZ->getOperand(), Ty);
913
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000914 // Before doing any expensive analysis, check to see if we've already
915 // computed a SCEV for this Op and Ty.
916 FoldingSetNodeID ID;
917 ID.AddInteger(scZeroExtend);
918 ID.AddPointer(Op);
919 ID.AddPointer(Ty);
920 void *IP = 0;
921 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
922
Nick Lewycky630d85a2011-01-23 06:20:19 +0000923 // zext(trunc(x)) --> zext(x) or x or trunc(x)
924 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
925 // It's possible the bits taken off by the truncate were all zero bits. If
926 // so, we should be able to simplify this further.
927 const SCEV *X = ST->getOperand();
928 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000929 unsigned TruncBits = getTypeSizeInBits(ST->getType());
930 unsigned NewBits = getTypeSizeInBits(Ty);
931 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000932 CR.zextOrTrunc(NewBits)))
933 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000934 }
935
Dan Gohman01ecca22009-04-27 20:16:15 +0000936 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000937 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000938 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000939 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000940 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000941 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000942 const SCEV *Start = AR->getStart();
943 const SCEV *Step = AR->getStepRecurrence(*this);
944 unsigned BitWidth = getTypeSizeInBits(AR->getType());
945 const Loop *L = AR->getLoop();
946
Dan Gohmaneb490a72009-07-25 01:22:26 +0000947 // If we have special knowledge that this addrec won't overflow,
948 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000949 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000950 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
951 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000952 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000953
Dan Gohman01ecca22009-04-27 20:16:15 +0000954 // Check whether the backedge-taken count is SCEVCouldNotCompute.
955 // Note that this serves two purposes: It filters out loops that are
956 // simply not analyzable, and it covers the case where this code is
957 // being called from within backedge-taken count analysis, such that
958 // attempting to ask for the backedge-taken count would likely result
959 // in infinite recursion. In the later case, the analysis code will
960 // cope with a conservative value, and it will take care to purge
961 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000962 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000963 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000964 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000965 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000966
967 // Check whether the backedge-taken count can be losslessly casted to
968 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000969 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000970 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000971 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000972 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
973 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000974 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000975 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000976 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +0000977 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
978 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
979 const SCEV *WideMaxBECount =
980 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000981 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000982 getAddExpr(WideStart,
983 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000984 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +0000985 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +0000986 // Cache knowledge of AR NUW, which is propagated to this AddRec.
987 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000988 // Return the expression with the addrec on the outside.
989 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
990 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000991 L, AR->getNoWrapFlags());
992 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000993 // Similar to above, only this time treat the step value as signed.
994 // This covers loops that count down.
Dan Gohman5183cae2009-05-18 15:58:39 +0000995 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000996 getAddExpr(WideStart,
997 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000998 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +0000999 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001000 // Cache knowledge of AR NW, which is propagated to this AddRec.
1001 // Negative step causes unsigned wrap, but it still can't self-wrap.
1002 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001003 // Return the expression with the addrec on the outside.
1004 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1005 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001006 L, AR->getNoWrapFlags());
1007 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001008 }
1009
1010 // If the backedge is guarded by a comparison with the pre-inc value
1011 // the addrec is safe. Also, if the entry is guarded by a comparison
1012 // with the start value and the backedge is guarded by a comparison
1013 // with the post-inc value, the addrec is safe.
1014 if (isKnownPositive(Step)) {
1015 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1016 getUnsignedRange(Step).getUnsignedMax());
1017 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001018 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001019 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001020 AR->getPostIncExpr(*this), N))) {
1021 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1022 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001023 // Return the expression with the addrec on the outside.
1024 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1025 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001026 L, AR->getNoWrapFlags());
1027 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001028 } else if (isKnownNegative(Step)) {
1029 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1030 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001031 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1032 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001033 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001034 AR->getPostIncExpr(*this), N))) {
1035 // Cache knowledge of AR NW, which is propagated to this AddRec.
1036 // Negative step causes unsigned wrap, but it still can't self-wrap.
1037 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1038 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001039 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1040 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001041 L, AR->getNoWrapFlags());
1042 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001043 }
1044 }
1045 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001046
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001047 // The cast wasn't folded; create an explicit cast node.
1048 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001049 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001050 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1051 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001052 UniqueSCEVs.InsertNode(S, IP);
1053 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001054}
1055
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001056// Get the limit of a recurrence such that incrementing by Step cannot cause
1057// signed overflow as long as the value of the recurrence within the loop does
1058// not exceed this limit before incrementing.
1059static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1060 ICmpInst::Predicate *Pred,
1061 ScalarEvolution *SE) {
1062 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1063 if (SE->isKnownPositive(Step)) {
1064 *Pred = ICmpInst::ICMP_SLT;
1065 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1066 SE->getSignedRange(Step).getSignedMax());
1067 }
1068 if (SE->isKnownNegative(Step)) {
1069 *Pred = ICmpInst::ICMP_SGT;
1070 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1071 SE->getSignedRange(Step).getSignedMin());
1072 }
1073 return 0;
1074}
1075
1076// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1077// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1078// or postincrement sibling. This allows normalizing a sign extended AddRec as
1079// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1080// result, the expression "Step + sext(PreIncAR)" is congruent with
1081// "sext(PostIncAR)"
1082static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001083 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001084 ScalarEvolution *SE) {
1085 const Loop *L = AR->getLoop();
1086 const SCEV *Start = AR->getStart();
1087 const SCEV *Step = AR->getStepRecurrence(*SE);
1088
1089 // Check for a simple looking step prior to loop entry.
1090 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickf63ae212011-09-28 17:02:54 +00001091 if (!SA)
1092 return 0;
1093
1094 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1095 // subtraction is expensive. For this purpose, perform a quick and dirty
1096 // difference, by checking for Step in the operand list.
1097 SmallVector<const SCEV *, 4> DiffOps;
1098 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1099 I != E; ++I) {
1100 if (*I != Step)
1101 DiffOps.push_back(*I);
1102 }
1103 if (DiffOps.size() == SA->getNumOperands())
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001104 return 0;
1105
1106 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1107 // same three conditions that getSignExtendedExpr checks.
1108
1109 // 1. NSW flags on the step increment.
Andrew Trickf63ae212011-09-28 17:02:54 +00001110 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001111 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1112 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1113
Andrew Trickcf31f912011-06-01 19:14:56 +00001114 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001115 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001116
1117 // 2. Direct overflow check on the step operation's expression.
1118 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001119 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001120 const SCEV *OperandExtendedStart =
1121 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1122 SE->getSignExtendExpr(Step, WideTy));
1123 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1124 // Cache knowledge of PreAR NSW.
1125 if (PreAR)
1126 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1127 // FIXME: this optimization needs a unit test
1128 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1129 return PreStart;
1130 }
1131
1132 // 3. Loop precondition.
1133 ICmpInst::Predicate Pred;
1134 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1135
Andrew Trickcf31f912011-06-01 19:14:56 +00001136 if (OverflowLimit &&
1137 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001138 return PreStart;
1139 }
1140 return 0;
1141}
1142
1143// Get the normalized sign-extended expression for this AddRec's Start.
1144static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001145 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001146 ScalarEvolution *SE) {
1147 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1148 if (!PreStart)
1149 return SE->getSignExtendExpr(AR->getStart(), Ty);
1150
1151 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1152 SE->getSignExtendExpr(PreStart, Ty));
1153}
1154
Dan Gohman0bba49c2009-07-07 17:06:11 +00001155const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001156 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001157 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001158 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001159 assert(isSCEVable(Ty) &&
1160 "This is not a conversion to a SCEVable type!");
1161 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001162
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001163 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001164 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1165 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +00001166 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmand19534a2007-06-15 14:38:12 +00001167
Dan Gohman20900ca2009-04-22 16:20:48 +00001168 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001169 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001170 return getSignExtendExpr(SS->getOperand(), Ty);
1171
Nick Lewycky73f565e2011-01-19 15:56:12 +00001172 // sext(zext(x)) --> zext(x)
1173 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1174 return getZeroExtendExpr(SZ->getOperand(), Ty);
1175
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001176 // Before doing any expensive analysis, check to see if we've already
1177 // computed a SCEV for this Op and Ty.
1178 FoldingSetNodeID ID;
1179 ID.AddInteger(scSignExtend);
1180 ID.AddPointer(Op);
1181 ID.AddPointer(Ty);
1182 void *IP = 0;
1183 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1184
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001185 // If the input value is provably positive, build a zext instead.
1186 if (isKnownNonNegative(Op))
1187 return getZeroExtendExpr(Op, Ty);
1188
Nick Lewycky630d85a2011-01-23 06:20:19 +00001189 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1190 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1191 // It's possible the bits taken off by the truncate were all sign bits. If
1192 // so, we should be able to simplify this further.
1193 const SCEV *X = ST->getOperand();
1194 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001195 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1196 unsigned NewBits = getTypeSizeInBits(Ty);
1197 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001198 CR.sextOrTrunc(NewBits)))
1199 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001200 }
1201
Dan Gohman01ecca22009-04-27 20:16:15 +00001202 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001203 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001204 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001205 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001206 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001207 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001208 const SCEV *Start = AR->getStart();
1209 const SCEV *Step = AR->getStepRecurrence(*this);
1210 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1211 const Loop *L = AR->getLoop();
1212
Dan Gohmaneb490a72009-07-25 01:22:26 +00001213 // If we have special knowledge that this addrec won't overflow,
1214 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001215 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001216 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001217 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001218 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001219
Dan Gohman01ecca22009-04-27 20:16:15 +00001220 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1221 // Note that this serves two purposes: It filters out loops that are
1222 // simply not analyzable, and it covers the case where this code is
1223 // being called from within backedge-taken count analysis, such that
1224 // attempting to ask for the backedge-taken count would likely result
1225 // in infinite recursion. In the later case, the analysis code will
1226 // cope with a conservative value, and it will take care to purge
1227 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001228 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001229 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001230 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001231 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001232
1233 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001234 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001235 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001236 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001237 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001238 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1239 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001240 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001241 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001242 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +00001243 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1244 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1245 const SCEV *WideMaxBECount =
1246 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001247 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001248 getAddExpr(WideStart,
1249 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +00001250 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001251 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001252 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1253 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001254 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001255 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001256 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001257 L, AR->getNoWrapFlags());
1258 }
Dan Gohman850f7912009-07-16 17:34:36 +00001259 // Similar to above, only this time treat the step value as unsigned.
1260 // This covers loops that count up with an unsigned step.
Dan Gohman850f7912009-07-16 17:34:36 +00001261 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001262 getAddExpr(WideStart,
1263 getMulExpr(WideMaxBECount,
Dan Gohman850f7912009-07-16 17:34:36 +00001264 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001265 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001266 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1267 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001268 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001269 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001270 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001271 L, AR->getNoWrapFlags());
1272 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001273 }
1274
1275 // If the backedge is guarded by a comparison with the pre-inc value
1276 // the addrec is safe. Also, if the entry is guarded by a comparison
1277 // with the start value and the backedge is guarded by a comparison
1278 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001279 ICmpInst::Predicate Pred;
1280 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1281 if (OverflowLimit &&
1282 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1283 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1284 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1285 OverflowLimit)))) {
1286 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1287 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1288 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1289 getSignExtendExpr(Step, Ty),
1290 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001291 }
1292 }
1293 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001294
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001295 // The cast wasn't folded; create an explicit cast node.
1296 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001297 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001298 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1299 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001300 UniqueSCEVs.InsertNode(S, IP);
1301 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001302}
1303
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001304/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1305/// unspecified bits out to the given type.
1306///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001307const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001308 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001309 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1310 "This is not an extending conversion!");
1311 assert(isSCEVable(Ty) &&
1312 "This is not a conversion to a SCEVable type!");
1313 Ty = getEffectiveSCEVType(Ty);
1314
1315 // Sign-extend negative constants.
1316 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1317 if (SC->getValue()->getValue().isNegative())
1318 return getSignExtendExpr(Op, Ty);
1319
1320 // Peel off a truncate cast.
1321 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001322 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001323 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1324 return getAnyExtendExpr(NewOp, Ty);
1325 return getTruncateOrNoop(NewOp, Ty);
1326 }
1327
1328 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001329 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001330 if (!isa<SCEVZeroExtendExpr>(ZExt))
1331 return ZExt;
1332
1333 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001334 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001335 if (!isa<SCEVSignExtendExpr>(SExt))
1336 return SExt;
1337
Dan Gohmana10756e2010-01-21 02:09:26 +00001338 // Force the cast to be folded into the operands of an addrec.
1339 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1340 SmallVector<const SCEV *, 4> Ops;
1341 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1342 I != E; ++I)
1343 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001344 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001345 }
1346
Dan Gohmanf53462d2010-07-15 20:02:11 +00001347 // As a special case, fold anyext(undef) to undef. We don't want to
1348 // know too much about SCEVUnknowns, but this special case is handy
1349 // and harmless.
1350 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1351 if (isa<UndefValue>(U->getValue()))
1352 return getSCEV(UndefValue::get(Ty));
1353
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001354 // If the expression is obviously signed, use the sext cast value.
1355 if (isa<SCEVSMaxExpr>(Op))
1356 return SExt;
1357
1358 // Absent any other information, use the zext cast value.
1359 return ZExt;
1360}
1361
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001362/// CollectAddOperandsWithScales - Process the given Ops list, which is
1363/// a list of operands to be added under the given scale, update the given
1364/// map. This is a helper function for getAddRecExpr. As an example of
1365/// what it does, given a sequence of operands that would form an add
1366/// expression like this:
1367///
1368/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1369///
1370/// where A and B are constants, update the map with these values:
1371///
1372/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1373///
1374/// and add 13 + A*B*29 to AccumulatedConstant.
1375/// This will allow getAddRecExpr to produce this:
1376///
1377/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1378///
1379/// This form often exposes folding opportunities that are hidden in
1380/// the original operand list.
1381///
1382/// Return true iff it appears that any interesting folding opportunities
1383/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1384/// the common case where no interesting opportunities are present, and
1385/// is also used as a check to avoid infinite recursion.
1386///
1387static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001388CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1389 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001390 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001391 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001392 const APInt &Scale,
1393 ScalarEvolution &SE) {
1394 bool Interesting = false;
1395
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001396 // Iterate over the add operands. They are sorted, with constants first.
1397 unsigned i = 0;
1398 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1399 ++i;
1400 // Pull a buried constant out to the outside.
1401 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1402 Interesting = true;
1403 AccumulatedConstant += Scale * C->getValue()->getValue();
1404 }
1405
1406 // Next comes everything else. We're especially interested in multiplies
1407 // here, but they're in the middle, so just visit the rest with one loop.
1408 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001409 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1410 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1411 APInt NewScale =
1412 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1413 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1414 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001415 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001416 Interesting |=
1417 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001418 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001419 NewScale, SE);
1420 } else {
1421 // A multiplication of a constant with some other value. Update
1422 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001423 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1424 const SCEV *Key = SE.getMulExpr(MulOps);
1425 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001426 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001427 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001428 NewOps.push_back(Pair.first->first);
1429 } else {
1430 Pair.first->second += NewScale;
1431 // The map already had an entry for this value, which may indicate
1432 // a folding opportunity.
1433 Interesting = true;
1434 }
1435 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001436 } else {
1437 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001438 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001439 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001440 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001441 NewOps.push_back(Pair.first->first);
1442 } else {
1443 Pair.first->second += Scale;
1444 // The map already had an entry for this value, which may indicate
1445 // a folding opportunity.
1446 Interesting = true;
1447 }
1448 }
1449 }
1450
1451 return Interesting;
1452}
1453
1454namespace {
1455 struct APIntCompare {
1456 bool operator()(const APInt &LHS, const APInt &RHS) const {
1457 return LHS.ult(RHS);
1458 }
1459 };
1460}
1461
Dan Gohman6c0866c2009-05-24 23:45:28 +00001462/// getAddExpr - Get a canonical add expression, or something simpler if
1463/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001464const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001465 SCEV::NoWrapFlags Flags) {
1466 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1467 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001468 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001469 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001470#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001471 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001472 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001473 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001474 "SCEVAddExpr operand types don't match!");
1475#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001476
Andrew Trick3228cc22011-03-14 16:50:06 +00001477 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001478 // And vice-versa.
1479 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1480 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1481 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001482 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001483 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1484 E = Ops.end(); I != E; ++I)
1485 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001486 All = false;
1487 break;
1488 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001489 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001490 }
1491
Chris Lattner53e677a2004-04-02 20:23:17 +00001492 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001493 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001494
1495 // If there are any constants, fold them together.
1496 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001497 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001498 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001499 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001500 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001501 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001502 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1503 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001504 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001505 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001506 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001507 }
1508
1509 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001510 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001511 Ops.erase(Ops.begin());
1512 --Idx;
1513 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001514
Dan Gohmanbca091d2010-04-12 23:08:18 +00001515 if (Ops.size() == 1) return Ops[0];
1516 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001517
Dan Gohman68ff7762010-08-27 21:39:59 +00001518 // Okay, check to see if the same value occurs in the operand list more than
1519 // once. If so, merge them together into an multiply expression. Since we
1520 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001521 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001522 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001523 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001524 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001525 // Scan ahead to count how many equal operands there are.
1526 unsigned Count = 2;
1527 while (i+Count != e && Ops[i+Count] == Ops[i])
1528 ++Count;
1529 // Merge the values into a multiply.
1530 const SCEV *Scale = getConstant(Ty, Count);
1531 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1532 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001533 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001534 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001535 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001536 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001537 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001538 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001539 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001540 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001541
Dan Gohman728c7f32009-05-08 21:03:19 +00001542 // Check for truncates. If all the operands are truncated from the same
1543 // type, see if factoring out the truncate would permit the result to be
1544 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1545 // if the contents of the resulting outer trunc fold to something simple.
1546 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1547 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001548 Type *DstType = Trunc->getType();
1549 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001550 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001551 bool Ok = true;
1552 // Check all the operands to see if they can be represented in the
1553 // source type of the truncate.
1554 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1555 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1556 if (T->getOperand()->getType() != SrcType) {
1557 Ok = false;
1558 break;
1559 }
1560 LargeOps.push_back(T->getOperand());
1561 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001562 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001563 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001564 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001565 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1566 if (const SCEVTruncateExpr *T =
1567 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1568 if (T->getOperand()->getType() != SrcType) {
1569 Ok = false;
1570 break;
1571 }
1572 LargeMulOps.push_back(T->getOperand());
1573 } else if (const SCEVConstant *C =
1574 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001575 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001576 } else {
1577 Ok = false;
1578 break;
1579 }
1580 }
1581 if (Ok)
1582 LargeOps.push_back(getMulExpr(LargeMulOps));
1583 } else {
1584 Ok = false;
1585 break;
1586 }
1587 }
1588 if (Ok) {
1589 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001590 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001591 // If it folds to something simple, use it. Otherwise, don't.
1592 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1593 return getTruncateExpr(Fold, DstType);
1594 }
1595 }
1596
1597 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001598 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1599 ++Idx;
1600
1601 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001602 if (Idx < Ops.size()) {
1603 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001604 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001605 // If we have an add, expand the add operands onto the end of the operands
1606 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001607 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001608 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001609 DeletedAdd = true;
1610 }
1611
1612 // If we deleted at least one add, we added operands to the end of the list,
1613 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001614 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001615 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001616 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001617 }
1618
1619 // Skip over the add expression until we get to a multiply.
1620 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1621 ++Idx;
1622
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001623 // Check to see if there are any folding opportunities present with
1624 // operands multiplied by constant values.
1625 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1626 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001627 DenseMap<const SCEV *, APInt> M;
1628 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001629 APInt AccumulatedConstant(BitWidth, 0);
1630 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001631 Ops.data(), Ops.size(),
1632 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001633 // Some interesting folding opportunity is present, so its worthwhile to
1634 // re-generate the operands list. Group the operands by constant scale,
1635 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001636 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001637 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001638 E = NewOps.end(); I != E; ++I)
1639 MulOpLists[M.find(*I)->second].push_back(*I);
1640 // Re-generate the operands list.
1641 Ops.clear();
1642 if (AccumulatedConstant != 0)
1643 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001644 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1645 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001646 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001647 Ops.push_back(getMulExpr(getConstant(I->first),
1648 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001649 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001650 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001651 if (Ops.size() == 1)
1652 return Ops[0];
1653 return getAddExpr(Ops);
1654 }
1655 }
1656
Chris Lattner53e677a2004-04-02 20:23:17 +00001657 // If we are adding something to a multiply expression, make sure the
1658 // something is not already an operand of the multiply. If so, merge it into
1659 // the multiply.
1660 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001661 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001662 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001663 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001664 if (isa<SCEVConstant>(MulOpSCEV))
1665 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001666 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001667 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001668 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001669 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001670 if (Mul->getNumOperands() != 2) {
1671 // If the multiply has more than two operands, we must get the
1672 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001673 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1674 Mul->op_begin()+MulOp);
1675 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001676 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001677 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001678 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001679 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001680 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001681 if (Ops.size() == 2) return OuterMul;
1682 if (AddOp < Idx) {
1683 Ops.erase(Ops.begin()+AddOp);
1684 Ops.erase(Ops.begin()+Idx-1);
1685 } else {
1686 Ops.erase(Ops.begin()+Idx);
1687 Ops.erase(Ops.begin()+AddOp-1);
1688 }
1689 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001690 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001691 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001692
Chris Lattner53e677a2004-04-02 20:23:17 +00001693 // Check this multiply against other multiplies being added together.
1694 for (unsigned OtherMulIdx = Idx+1;
1695 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1696 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001697 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001698 // If MulOp occurs in OtherMul, we can fold the two multiplies
1699 // together.
1700 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1701 OMulOp != e; ++OMulOp)
1702 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1703 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001704 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001705 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001706 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001707 Mul->op_begin()+MulOp);
1708 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001709 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001710 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001711 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001712 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001713 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001714 OtherMul->op_begin()+OMulOp);
1715 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001716 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001717 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001718 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1719 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001720 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001721 Ops.erase(Ops.begin()+Idx);
1722 Ops.erase(Ops.begin()+OtherMulIdx-1);
1723 Ops.push_back(OuterMul);
1724 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001725 }
1726 }
1727 }
1728 }
1729
1730 // If there are any add recurrences in the operands list, see if any other
1731 // added values are loop invariant. If so, we can fold them into the
1732 // recurrence.
1733 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1734 ++Idx;
1735
1736 // Scan over all recurrences, trying to fold loop invariants into them.
1737 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1738 // Scan all of the other operands to this add and add them to the vector if
1739 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001740 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001741 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001742 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001743 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001744 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001745 LIOps.push_back(Ops[i]);
1746 Ops.erase(Ops.begin()+i);
1747 --i; --e;
1748 }
1749
1750 // If we found some loop invariants, fold them into the recurrence.
1751 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001752 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001753 LIOps.push_back(AddRec->getStart());
1754
Dan Gohman0bba49c2009-07-07 17:06:11 +00001755 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001756 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001757 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001758
Dan Gohmanb9f96512010-06-30 07:16:37 +00001759 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001760 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001761 // Always propagate NW.
1762 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001763 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001764
Chris Lattner53e677a2004-04-02 20:23:17 +00001765 // If all of the other operands were loop invariant, we are done.
1766 if (Ops.size() == 1) return NewRec;
1767
Nick Lewycky980e9f32011-09-06 05:08:09 +00001768 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001769 for (unsigned i = 0;; ++i)
1770 if (Ops[i] == AddRec) {
1771 Ops[i] = NewRec;
1772 break;
1773 }
Dan Gohman246b2562007-10-22 18:31:58 +00001774 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001775 }
1776
1777 // Okay, if there weren't any loop invariants to be folded, check to see if
1778 // there are multiple AddRec's with the same loop induction variable being
1779 // added together. If so, we can fold them.
1780 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001781 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1782 ++OtherIdx)
1783 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1784 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1785 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1786 AddRec->op_end());
1787 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1788 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001789 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001790 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001791 if (OtherAddRec->getLoop() == AddRecLoop) {
1792 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1793 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001794 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001795 AddRecOps.append(OtherAddRec->op_begin()+i,
1796 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001797 break;
1798 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001799 AddRecOps[i] = getAddExpr(AddRecOps[i],
1800 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001801 }
1802 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001803 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001804 // Step size has changed, so we cannot guarantee no self-wraparound.
1805 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001806 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001807 }
1808
1809 // Otherwise couldn't fold anything into this recurrence. Move onto the
1810 // next one.
1811 }
1812
1813 // Okay, it looks like we really DO need an add expr. Check to see if we
1814 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001815 FoldingSetNodeID ID;
1816 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001817 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1818 ID.AddPointer(Ops[i]);
1819 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001820 SCEVAddExpr *S =
1821 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1822 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001823 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1824 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001825 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1826 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001827 UniqueSCEVs.InsertNode(S, IP);
1828 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001829 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001830 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001831}
1832
Nick Lewyckye97728e2011-10-04 06:51:26 +00001833static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1834 uint64_t k = i*j;
1835 if (j > 1 && k / j != i) Overflow = true;
1836 return k;
1837}
1838
1839/// Compute the result of "n choose k", the binomial coefficient. If an
1840/// intermediate computation overflows, Overflow will be set and the return will
1841/// be garbage. Overflow is not cleared on absense of overflow.
1842static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1843 // We use the multiplicative formula:
1844 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1845 // At each iteration, we take the n-th term of the numeral and divide by the
1846 // (k-n)th term of the denominator. This division will always produce an
1847 // integral result, and helps reduce the chance of overflow in the
1848 // intermediate computations. However, we can still overflow even when the
1849 // final result would fit.
1850
1851 if (n == 0 || n == k) return 1;
1852 if (k > n) return 0;
1853
1854 if (k > n/2)
1855 k = n-k;
1856
1857 uint64_t r = 1;
1858 for (uint64_t i = 1; i <= k; ++i) {
1859 r = umul_ov(r, n-(i-1), Overflow);
1860 r /= i;
1861 }
1862 return r;
1863}
1864
Dan Gohman6c0866c2009-05-24 23:45:28 +00001865/// getMulExpr - Get a canonical multiply expression, or something simpler if
1866/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001867const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001868 SCEV::NoWrapFlags Flags) {
1869 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1870 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001871 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001872 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001873#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001874 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001875 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001876 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001877 "SCEVMulExpr operand types don't match!");
1878#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001879
Andrew Trick3228cc22011-03-14 16:50:06 +00001880 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001881 // And vice-versa.
1882 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1883 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1884 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001885 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001886 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1887 E = Ops.end(); I != E; ++I)
1888 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001889 All = false;
1890 break;
1891 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001892 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001893 }
1894
Chris Lattner53e677a2004-04-02 20:23:17 +00001895 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001896 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001897
1898 // If there are any constants, fold them together.
1899 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001900 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001901
1902 // C1*(C2+V) -> C1*C2 + C1*V
1903 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001904 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001905 if (Add->getNumOperands() == 2 &&
1906 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001907 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1908 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001909
Chris Lattner53e677a2004-04-02 20:23:17 +00001910 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001911 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001912 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001913 ConstantInt *Fold = ConstantInt::get(getContext(),
1914 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001915 RHSC->getValue()->getValue());
1916 Ops[0] = getConstant(Fold);
1917 Ops.erase(Ops.begin()+1); // Erase the folded element
1918 if (Ops.size() == 1) return Ops[0];
1919 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001920 }
1921
1922 // If we are left with a constant one being multiplied, strip it off.
1923 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1924 Ops.erase(Ops.begin());
1925 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001926 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001927 // If we have a multiply of zero, it will always be zero.
1928 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001929 } else if (Ops[0]->isAllOnesValue()) {
1930 // If we have a mul by -1 of an add, try distributing the -1 among the
1931 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001932 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001933 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1934 SmallVector<const SCEV *, 4> NewOps;
1935 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001936 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1937 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001938 const SCEV *Mul = getMulExpr(Ops[0], *I);
1939 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1940 NewOps.push_back(Mul);
1941 }
1942 if (AnyFolded)
1943 return getAddExpr(NewOps);
1944 }
Andrew Tricka053b212011-03-14 17:38:54 +00001945 else if (const SCEVAddRecExpr *
1946 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1947 // Negation preserves a recurrence's no self-wrap property.
1948 SmallVector<const SCEV *, 4> Operands;
1949 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1950 E = AddRec->op_end(); I != E; ++I) {
1951 Operands.push_back(getMulExpr(Ops[0], *I));
1952 }
1953 return getAddRecExpr(Operands, AddRec->getLoop(),
1954 AddRec->getNoWrapFlags(SCEV::FlagNW));
1955 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001956 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001957 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001958
1959 if (Ops.size() == 1)
1960 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001961 }
1962
1963 // Skip over the add expression until we get to a multiply.
1964 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1965 ++Idx;
1966
Chris Lattner53e677a2004-04-02 20:23:17 +00001967 // If there are mul operands inline them all into this expression.
1968 if (Idx < Ops.size()) {
1969 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001970 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001971 // If we have an mul, expand the mul operands onto the end of the operands
1972 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001973 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001974 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001975 DeletedMul = true;
1976 }
1977
1978 // If we deleted at least one mul, we added operands to the end of the list,
1979 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001980 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001981 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001982 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001983 }
1984
1985 // If there are any add recurrences in the operands list, see if any other
1986 // added values are loop invariant. If so, we can fold them into the
1987 // recurrence.
1988 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1989 ++Idx;
1990
1991 // Scan over all recurrences, trying to fold loop invariants into them.
1992 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1993 // Scan all of the other operands to this mul and add them to the vector if
1994 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001995 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001996 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001997 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001998 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001999 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002000 LIOps.push_back(Ops[i]);
2001 Ops.erase(Ops.begin()+i);
2002 --i; --e;
2003 }
2004
2005 // If we found some loop invariants, fold them into the recurrence.
2006 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00002007 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00002008 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00002009 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00002010 const SCEV *Scale = getMulExpr(LIOps);
2011 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2012 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00002013
Dan Gohmanb9f96512010-06-30 07:16:37 +00002014 // Build the new addrec. Propagate the NUW and NSW flags if both the
2015 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00002016 //
2017 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002018 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00002019 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2020 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002021
2022 // If all of the other operands were loop invariant, we are done.
2023 if (Ops.size() == 1) return NewRec;
2024
Nick Lewycky980e9f32011-09-06 05:08:09 +00002025 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00002026 for (unsigned i = 0;; ++i)
2027 if (Ops[i] == AddRec) {
2028 Ops[i] = NewRec;
2029 break;
2030 }
Dan Gohman246b2562007-10-22 18:31:58 +00002031 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002032 }
2033
2034 // Okay, if there weren't any loop invariants to be folded, check to see if
2035 // there are multiple AddRec's with the same loop induction variable being
2036 // multiplied together. If so, we can fold them.
2037 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002038 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002039 ++OtherIdx) {
Dan Gohman6a0c1252010-08-31 22:52:12 +00002040 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
Nick Lewyckye97728e2011-10-04 06:51:26 +00002041 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2042 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2043 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2044 // ]]],+,...up to x=2n}.
2045 // Note that the arguments to choose() are always integers with values
2046 // known at compile time, never SCEV objects.
Nick Lewycky28682ae2011-09-06 05:33:18 +00002047 //
Nick Lewyckye97728e2011-10-04 06:51:26 +00002048 // The implementation avoids pointless extra computations when the two
2049 // addrec's are of different length (mathematically, it's equivalent to
2050 // an infinite stream of zeros on the right).
2051 bool OpsModified = false;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002052 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2053 ++OtherIdx)
2054 if (const SCEVAddRecExpr *OtherAddRec =
2055 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2056 if (OtherAddRec->getLoop() == AddRecLoop) {
Nick Lewyckye97728e2011-10-04 06:51:26 +00002057 bool Overflow = false;
2058 Type *Ty = AddRec->getType();
2059 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2060 SmallVector<const SCEV*, 7> AddRecOps;
2061 for (int x = 0, xe = AddRec->getNumOperands() +
2062 OtherAddRec->getNumOperands() - 1;
2063 x != xe && !Overflow; ++x) {
2064 const SCEV *Term = getConstant(Ty, 0);
2065 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2066 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2067 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2068 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2069 z < ze && !Overflow; ++z) {
2070 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2071 uint64_t Coeff;
2072 if (LargerThan64Bits)
2073 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2074 else
2075 Coeff = Coeff1*Coeff2;
2076 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2077 const SCEV *Term1 = AddRec->getOperand(y-z);
2078 const SCEV *Term2 = OtherAddRec->getOperand(z);
2079 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2080 }
2081 }
2082 AddRecOps.push_back(Term);
2083 }
2084 if (!Overflow) {
Nick Lewyckyc103a082011-09-06 21:42:18 +00002085 const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
2086 AddRec->getLoop(),
2087 SCEV::FlagAnyWrap);
2088 if (Ops.size() == 2) return NewAddRec;
2089 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
2090 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Nick Lewyckye97728e2011-10-04 06:51:26 +00002091 OpsModified = true;
Nick Lewyckyc103a082011-09-06 21:42:18 +00002092 }
Dan Gohman6a0c1252010-08-31 22:52:12 +00002093 }
Nick Lewyckye97728e2011-10-04 06:51:26 +00002094 if (OpsModified)
Nick Lewyckyc103a082011-09-06 21:42:18 +00002095 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002096 }
Nick Lewyckyc103a082011-09-06 21:42:18 +00002097 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002098
2099 // Otherwise couldn't fold anything into this recurrence. Move onto the
2100 // next one.
2101 }
2102
2103 // Okay, it looks like we really DO need an mul expr. Check to see if we
2104 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002105 FoldingSetNodeID ID;
2106 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002107 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2108 ID.AddPointer(Ops[i]);
2109 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002110 SCEVMulExpr *S =
2111 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2112 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002113 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2114 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002115 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2116 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002117 UniqueSCEVs.InsertNode(S, IP);
2118 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002119 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002120 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002121}
2122
Andreas Bolka8a11c982009-08-07 22:55:26 +00002123/// getUDivExpr - Get a canonical unsigned division expression, or something
2124/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002125const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2126 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002127 assert(getEffectiveSCEVType(LHS->getType()) ==
2128 getEffectiveSCEVType(RHS->getType()) &&
2129 "SCEVUDivExpr operand types don't match!");
2130
Dan Gohman622ed672009-05-04 22:02:23 +00002131 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002132 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002133 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002134 // If the denominator is zero, the result of the udiv is undefined. Don't
2135 // try to analyze it, because the resolution chosen here may differ from
2136 // the resolution chosen in other parts of the compiler.
2137 if (!RHSC->getValue()->isZero()) {
2138 // Determine if the division can be folded into the operands of
2139 // its operands.
2140 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002141 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002142 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002143 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002144 // For non-power-of-two values, effectively round the value up to the
2145 // nearest power of two.
2146 if (!RHSC->getValue()->getValue().isPowerOf2())
2147 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002148 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002149 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002150 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2151 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002152 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2153 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2154 const APInt &StepInt = Step->getValue()->getValue();
2155 const APInt &DivInt = RHSC->getValue()->getValue();
2156 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002157 getZeroExtendExpr(AR, ExtTy) ==
2158 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2159 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002160 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002161 SmallVector<const SCEV *, 4> Operands;
2162 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2163 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002164 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002165 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002166 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002167 /// Get a canonical UDivExpr for a recurrence.
2168 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2169 // We can currently only fold X%N if X is constant.
2170 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2171 if (StartC && !DivInt.urem(StepInt) &&
2172 getZeroExtendExpr(AR, ExtTy) ==
2173 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2174 getZeroExtendExpr(Step, ExtTy),
2175 AR->getLoop(), SCEV::FlagAnyWrap)) {
2176 const APInt &StartInt = StartC->getValue()->getValue();
2177 const APInt &StartRem = StartInt.urem(StepInt);
2178 if (StartRem != 0)
2179 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2180 AR->getLoop(), SCEV::FlagNW);
2181 }
2182 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002183 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2184 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2185 SmallVector<const SCEV *, 4> Operands;
2186 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2187 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2188 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2189 // Find an operand that's safely divisible.
2190 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2191 const SCEV *Op = M->getOperand(i);
2192 const SCEV *Div = getUDivExpr(Op, RHSC);
2193 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2194 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2195 M->op_end());
2196 Operands[i] = Div;
2197 return getMulExpr(Operands);
2198 }
2199 }
Dan Gohman185cf032009-05-08 20:18:49 +00002200 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002201 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002202 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002203 SmallVector<const SCEV *, 4> Operands;
2204 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2205 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2206 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2207 Operands.clear();
2208 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2209 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2210 if (isa<SCEVUDivExpr>(Op) ||
2211 getMulExpr(Op, RHS) != A->getOperand(i))
2212 break;
2213 Operands.push_back(Op);
2214 }
2215 if (Operands.size() == A->getNumOperands())
2216 return getAddExpr(Operands);
2217 }
2218 }
Dan Gohman185cf032009-05-08 20:18:49 +00002219
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002220 // Fold if both operands are constant.
2221 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2222 Constant *LHSCV = LHSC->getValue();
2223 Constant *RHSCV = RHSC->getValue();
2224 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2225 RHSCV)));
2226 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002227 }
2228 }
2229
Dan Gohman1c343752009-06-27 21:21:31 +00002230 FoldingSetNodeID ID;
2231 ID.AddInteger(scUDivExpr);
2232 ID.AddPointer(LHS);
2233 ID.AddPointer(RHS);
2234 void *IP = 0;
2235 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002236 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2237 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002238 UniqueSCEVs.InsertNode(S, IP);
2239 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002240}
2241
2242
Dan Gohman6c0866c2009-05-24 23:45:28 +00002243/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2244/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002245const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2246 const Loop *L,
2247 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002248 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002249 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002250 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002251 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002252 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002253 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002254 }
2255
2256 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002257 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002258}
2259
Dan Gohman6c0866c2009-05-24 23:45:28 +00002260/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2261/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002262const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002263ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002264 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002265 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002266#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002267 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002268 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002269 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002270 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002271 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002272 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002273 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002274#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002275
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002276 if (Operands.back()->isZero()) {
2277 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002278 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002279 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002280
Dan Gohmanbc028532010-02-19 18:49:22 +00002281 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2282 // use that information to infer NUW and NSW flags. However, computing a
2283 // BE count requires calling getAddRecExpr, so we may not yet have a
2284 // meaningful BE count at this point (and if we don't, we'd be stuck
2285 // with a SCEVCouldNotCompute as the cached BE count).
2286
Andrew Trick3228cc22011-03-14 16:50:06 +00002287 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002288 // And vice-versa.
2289 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2290 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2291 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002292 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002293 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2294 E = Operands.end(); I != E; ++I)
2295 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002296 All = false;
2297 break;
2298 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002299 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002300 }
2301
Dan Gohmand9cc7492008-08-08 18:33:12 +00002302 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002303 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002304 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002305 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002306 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002307 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002308 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002309 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002310 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002311 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002312 // AddRecs require their operands be loop-invariant with respect to their
2313 // loops. Don't perform this transformation if it would break this
2314 // requirement.
2315 bool AllInvariant = true;
2316 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002317 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002318 AllInvariant = false;
2319 break;
2320 }
2321 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002322 // Create a recurrence for the outer loop with the same step size.
2323 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002324 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2325 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002326 SCEV::NoWrapFlags OuterFlags =
2327 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002328
2329 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002330 AllInvariant = true;
2331 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002332 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002333 AllInvariant = false;
2334 break;
2335 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002336 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002337 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002338 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002339 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2340 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002341 SCEV::NoWrapFlags InnerFlags =
2342 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002343 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2344 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002345 }
2346 // Reset Operands to its original state.
2347 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002348 }
2349 }
2350
Dan Gohman67847532010-01-19 22:27:22 +00002351 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2352 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002353 FoldingSetNodeID ID;
2354 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002355 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2356 ID.AddPointer(Operands[i]);
2357 ID.AddPointer(L);
2358 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002359 SCEVAddRecExpr *S =
2360 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2361 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002362 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2363 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002364 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2365 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002366 UniqueSCEVs.InsertNode(S, IP);
2367 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002368 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002369 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002370}
2371
Dan Gohman9311ef62009-06-24 14:49:00 +00002372const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2373 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002374 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002375 Ops.push_back(LHS);
2376 Ops.push_back(RHS);
2377 return getSMaxExpr(Ops);
2378}
2379
Dan Gohman0bba49c2009-07-07 17:06:11 +00002380const SCEV *
2381ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002382 assert(!Ops.empty() && "Cannot get empty smax!");
2383 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002384#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002385 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002386 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002387 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002388 "SCEVSMaxExpr operand types don't match!");
2389#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002390
2391 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002392 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002393
2394 // If there are any constants, fold them together.
2395 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002396 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002397 ++Idx;
2398 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002399 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002400 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002401 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002402 APIntOps::smax(LHSC->getValue()->getValue(),
2403 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002404 Ops[0] = getConstant(Fold);
2405 Ops.erase(Ops.begin()+1); // Erase the folded element
2406 if (Ops.size() == 1) return Ops[0];
2407 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002408 }
2409
Dan Gohmane5aceed2009-06-24 14:46:22 +00002410 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002411 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2412 Ops.erase(Ops.begin());
2413 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002414 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2415 // If we have an smax with a constant maximum-int, it will always be
2416 // maximum-int.
2417 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002418 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002419
Dan Gohman3ab13122010-04-13 16:49:23 +00002420 if (Ops.size() == 1) return Ops[0];
2421 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002422
2423 // Find the first SMax
2424 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2425 ++Idx;
2426
2427 // Check to see if one of the operands is an SMax. If so, expand its operands
2428 // onto our operand list, and recurse to simplify.
2429 if (Idx < Ops.size()) {
2430 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002431 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002432 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002433 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002434 DeletedSMax = true;
2435 }
2436
2437 if (DeletedSMax)
2438 return getSMaxExpr(Ops);
2439 }
2440
2441 // Okay, check to see if the same value occurs in the operand list twice. If
2442 // so, delete one. Since we sorted the list, these values are required to
2443 // be adjacent.
2444 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002445 // X smax Y smax Y --> X smax Y
2446 // X smax Y --> X, if X is always greater than Y
2447 if (Ops[i] == Ops[i+1] ||
2448 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2449 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2450 --i; --e;
2451 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002452 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2453 --i; --e;
2454 }
2455
2456 if (Ops.size() == 1) return Ops[0];
2457
2458 assert(!Ops.empty() && "Reduced smax down to nothing!");
2459
Nick Lewycky3e630762008-02-20 06:48:22 +00002460 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002461 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002462 FoldingSetNodeID ID;
2463 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002464 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2465 ID.AddPointer(Ops[i]);
2466 void *IP = 0;
2467 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002468 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2469 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002470 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2471 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002472 UniqueSCEVs.InsertNode(S, IP);
2473 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002474}
2475
Dan Gohman9311ef62009-06-24 14:49:00 +00002476const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2477 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002478 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002479 Ops.push_back(LHS);
2480 Ops.push_back(RHS);
2481 return getUMaxExpr(Ops);
2482}
2483
Dan Gohman0bba49c2009-07-07 17:06:11 +00002484const SCEV *
2485ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002486 assert(!Ops.empty() && "Cannot get empty umax!");
2487 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002488#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002489 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002490 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002491 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002492 "SCEVUMaxExpr operand types don't match!");
2493#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002494
2495 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002496 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002497
2498 // If there are any constants, fold them together.
2499 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002500 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002501 ++Idx;
2502 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002503 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002504 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002505 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002506 APIntOps::umax(LHSC->getValue()->getValue(),
2507 RHSC->getValue()->getValue()));
2508 Ops[0] = getConstant(Fold);
2509 Ops.erase(Ops.begin()+1); // Erase the folded element
2510 if (Ops.size() == 1) return Ops[0];
2511 LHSC = cast<SCEVConstant>(Ops[0]);
2512 }
2513
Dan Gohmane5aceed2009-06-24 14:46:22 +00002514 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002515 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2516 Ops.erase(Ops.begin());
2517 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002518 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2519 // If we have an umax with a constant maximum-int, it will always be
2520 // maximum-int.
2521 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002522 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002523
Dan Gohman3ab13122010-04-13 16:49:23 +00002524 if (Ops.size() == 1) return Ops[0];
2525 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002526
2527 // Find the first UMax
2528 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2529 ++Idx;
2530
2531 // Check to see if one of the operands is a UMax. If so, expand its operands
2532 // onto our operand list, and recurse to simplify.
2533 if (Idx < Ops.size()) {
2534 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002535 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002536 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002537 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002538 DeletedUMax = true;
2539 }
2540
2541 if (DeletedUMax)
2542 return getUMaxExpr(Ops);
2543 }
2544
2545 // Okay, check to see if the same value occurs in the operand list twice. If
2546 // so, delete one. Since we sorted the list, these values are required to
2547 // be adjacent.
2548 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002549 // X umax Y umax Y --> X umax Y
2550 // X umax Y --> X, if X is always greater than Y
2551 if (Ops[i] == Ops[i+1] ||
2552 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2553 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2554 --i; --e;
2555 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002556 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2557 --i; --e;
2558 }
2559
2560 if (Ops.size() == 1) return Ops[0];
2561
2562 assert(!Ops.empty() && "Reduced umax down to nothing!");
2563
2564 // Okay, it looks like we really DO need a umax expr. Check to see if we
2565 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002566 FoldingSetNodeID ID;
2567 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002568 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2569 ID.AddPointer(Ops[i]);
2570 void *IP = 0;
2571 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002572 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2573 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002574 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2575 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002576 UniqueSCEVs.InsertNode(S, IP);
2577 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002578}
2579
Dan Gohman9311ef62009-06-24 14:49:00 +00002580const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2581 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002582 // ~smax(~x, ~y) == smin(x, y).
2583 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2584}
2585
Dan Gohman9311ef62009-06-24 14:49:00 +00002586const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2587 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002588 // ~umax(~x, ~y) == umin(x, y)
2589 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2590}
2591
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002592const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002593 // If we have TargetData, we can bypass creating a target-independent
2594 // constant expression and then folding it back into a ConstantInt.
2595 // This is just a compile-time optimization.
2596 if (TD)
2597 return getConstant(TD->getIntPtrType(getContext()),
2598 TD->getTypeAllocSize(AllocTy));
2599
Dan Gohman4f8eea82010-02-01 18:27:38 +00002600 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2601 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002602 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002603 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002604 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002605 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2606}
2607
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002608const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002609 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2610 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002611 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002612 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002613 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002614 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2615}
2616
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002617const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002618 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002619 // If we have TargetData, we can bypass creating a target-independent
2620 // constant expression and then folding it back into a ConstantInt.
2621 // This is just a compile-time optimization.
2622 if (TD)
2623 return getConstant(TD->getIntPtrType(getContext()),
2624 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2625
Dan Gohman0f5efe52010-01-28 02:15:55 +00002626 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2627 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002628 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002629 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002630 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002631 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002632}
2633
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002634const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002635 Constant *FieldNo) {
2636 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002637 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002638 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002639 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002640 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002641 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002642}
2643
Dan Gohman0bba49c2009-07-07 17:06:11 +00002644const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002645 // Don't attempt to do anything other than create a SCEVUnknown object
2646 // here. createSCEV only calls getUnknown after checking for all other
2647 // interesting possibilities, and any other code that calls getUnknown
2648 // is doing so in order to hide a value from SCEV canonicalization.
2649
Dan Gohman1c343752009-06-27 21:21:31 +00002650 FoldingSetNodeID ID;
2651 ID.AddInteger(scUnknown);
2652 ID.AddPointer(V);
2653 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002654 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2655 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2656 "Stale SCEVUnknown in uniquing map!");
2657 return S;
2658 }
2659 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2660 FirstUnknown);
2661 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002662 UniqueSCEVs.InsertNode(S, IP);
2663 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002664}
2665
Chris Lattner53e677a2004-04-02 20:23:17 +00002666//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002667// Basic SCEV Analysis and PHI Idiom Recognition Code
2668//
2669
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002670/// isSCEVable - Test if values of the given type are analyzable within
2671/// the SCEV framework. This primarily includes integer types, and it
2672/// can optionally include pointer types if the ScalarEvolution class
2673/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002674bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002675 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002676 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002677}
2678
2679/// getTypeSizeInBits - Return the size in bits of the specified type,
2680/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002681uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002682 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2683
2684 // If we have a TargetData, use it!
2685 if (TD)
2686 return TD->getTypeSizeInBits(Ty);
2687
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002688 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002689 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002690 return Ty->getPrimitiveSizeInBits();
2691
2692 // The only other support type is pointer. Without TargetData, conservatively
2693 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002694 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002695 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002696}
2697
2698/// getEffectiveSCEVType - Return a type with the same bitwidth as
2699/// the given type and which represents how SCEV will treat the given
2700/// type, for which isSCEVable must return true. For pointer types,
2701/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002702Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002703 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2704
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002705 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002706 return Ty;
2707
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002708 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002709 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002710 if (TD) return TD->getIntPtrType(getContext());
2711
2712 // Without TargetData, conservatively assume pointers are 64-bit.
2713 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002714}
Chris Lattner53e677a2004-04-02 20:23:17 +00002715
Dan Gohman0bba49c2009-07-07 17:06:11 +00002716const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002717 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002718}
2719
Chris Lattner53e677a2004-04-02 20:23:17 +00002720/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2721/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002722const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002723 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002724
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002725 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2726 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002727 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002728
2729 // The process of creating a SCEV for V may have caused other SCEVs
2730 // to have been created, so it's necessary to insert the new entry
2731 // from scratch, rather than trying to remember the insert position
2732 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002733 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002734 return S;
2735}
2736
Dan Gohman2d1be872009-04-16 03:18:22 +00002737/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2738///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002739const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002740 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002741 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002742 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002743
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002744 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002745 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002746 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002747 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002748}
2749
2750/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002751const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002752 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002753 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002754 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002755
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002756 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002757 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002758 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002759 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002760 return getMinusSCEV(AllOnes, V);
2761}
2762
Andrew Trick3228cc22011-03-14 16:50:06 +00002763/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002764const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002765 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002766 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2767
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002768 // Fast path: X - X --> 0.
2769 if (LHS == RHS)
2770 return getConstant(LHS->getType(), 0);
2771
Dan Gohman2d1be872009-04-16 03:18:22 +00002772 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002773 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002774}
2775
2776/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2777/// input value to the specified type. If the type must be extended, it is zero
2778/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002779const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002780ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2781 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002782 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2783 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002784 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002785 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002786 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002787 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002788 return getTruncateExpr(V, Ty);
2789 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002790}
2791
2792/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2793/// input value to the specified type. If the type must be extended, it is sign
2794/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002795const SCEV *
2796ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002797 Type *Ty) {
2798 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002799 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2800 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002801 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002802 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002803 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002804 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002805 return getTruncateExpr(V, Ty);
2806 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002807}
2808
Dan Gohman467c4302009-05-13 03:46:30 +00002809/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2810/// input value to the specified type. If the type must be extended, it is zero
2811/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002812const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002813ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2814 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002815 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2816 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002817 "Cannot noop or zero extend with non-integer arguments!");
2818 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2819 "getNoopOrZeroExtend cannot truncate!");
2820 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2821 return V; // No conversion
2822 return getZeroExtendExpr(V, Ty);
2823}
2824
2825/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2826/// input value to the specified type. If the type must be extended, it is sign
2827/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002828const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002829ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2830 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002831 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2832 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002833 "Cannot noop or sign extend with non-integer arguments!");
2834 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2835 "getNoopOrSignExtend cannot truncate!");
2836 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2837 return V; // No conversion
2838 return getSignExtendExpr(V, Ty);
2839}
2840
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002841/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2842/// the input value to the specified type. If the type must be extended,
2843/// it is extended with unspecified bits. The conversion must not be
2844/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002845const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002846ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2847 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002848 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2849 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002850 "Cannot noop or any extend with non-integer arguments!");
2851 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2852 "getNoopOrAnyExtend cannot truncate!");
2853 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2854 return V; // No conversion
2855 return getAnyExtendExpr(V, Ty);
2856}
2857
Dan Gohman467c4302009-05-13 03:46:30 +00002858/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2859/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002860const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002861ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2862 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002863 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2864 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002865 "Cannot truncate or noop with non-integer arguments!");
2866 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2867 "getTruncateOrNoop cannot extend!");
2868 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2869 return V; // No conversion
2870 return getTruncateExpr(V, Ty);
2871}
2872
Dan Gohmana334aa72009-06-22 00:31:57 +00002873/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2874/// the types using zero-extension, and then perform a umax operation
2875/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002876const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2877 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002878 const SCEV *PromotedLHS = LHS;
2879 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002880
2881 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2882 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2883 else
2884 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2885
2886 return getUMaxExpr(PromotedLHS, PromotedRHS);
2887}
2888
Dan Gohmanc9759e82009-06-22 15:03:27 +00002889/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2890/// the types using zero-extension, and then perform a umin operation
2891/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002892const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2893 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002894 const SCEV *PromotedLHS = LHS;
2895 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002896
2897 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2898 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2899 else
2900 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2901
2902 return getUMinExpr(PromotedLHS, PromotedRHS);
2903}
2904
Andrew Trickb12a7542011-03-17 23:51:11 +00002905/// getPointerBase - Transitively follow the chain of pointer-type operands
2906/// until reaching a SCEV that does not have a single pointer operand. This
2907/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2908/// but corner cases do exist.
2909const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2910 // A pointer operand may evaluate to a nonpointer expression, such as null.
2911 if (!V->getType()->isPointerTy())
2912 return V;
2913
2914 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2915 return getPointerBase(Cast->getOperand());
2916 }
2917 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2918 const SCEV *PtrOp = 0;
2919 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2920 I != E; ++I) {
2921 if ((*I)->getType()->isPointerTy()) {
2922 // Cannot find the base of an expression with multiple pointer operands.
2923 if (PtrOp)
2924 return V;
2925 PtrOp = *I;
2926 }
2927 }
2928 if (!PtrOp)
2929 return V;
2930 return getPointerBase(PtrOp);
2931 }
2932 return V;
2933}
2934
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002935/// PushDefUseChildren - Push users of the given Instruction
2936/// onto the given Worklist.
2937static void
2938PushDefUseChildren(Instruction *I,
2939 SmallVectorImpl<Instruction *> &Worklist) {
2940 // Push the def-use children onto the Worklist stack.
2941 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2942 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002943 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002944}
2945
2946/// ForgetSymbolicValue - This looks up computed SCEV values for all
2947/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002948/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002949/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002950void
Dan Gohman85669632010-02-25 06:57:05 +00002951ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002952 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002953 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002954
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002955 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002956 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002957 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002958 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002959 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002960
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002961 ValueExprMapType::iterator It =
2962 ValueExprMap.find(static_cast<Value *>(I));
2963 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002964 const SCEV *Old = It->second;
2965
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002966 // Short-circuit the def-use traversal if the symbolic name
2967 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002968 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002969 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002970
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002971 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002972 // structure, it's a PHI that's in the progress of being computed
2973 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2974 // additional loop trip count information isn't going to change anything.
2975 // In the second case, createNodeForPHI will perform the necessary
2976 // updates on its own when it gets to that point. In the third, we do
2977 // want to forget the SCEVUnknown.
2978 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002979 !isa<SCEVUnknown>(Old) ||
2980 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002981 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002982 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002983 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002984 }
2985
2986 PushDefUseChildren(I, Worklist);
2987 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002988}
Chris Lattner53e677a2004-04-02 20:23:17 +00002989
2990/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2991/// a loop header, making it a potential recurrence, or it doesn't.
2992///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002993const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002994 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2995 if (L->getHeader() == PN->getParent()) {
2996 // The loop may have multiple entrances or multiple exits; we can analyze
2997 // this phi as an addrec if it has a unique entry value and a unique
2998 // backedge value.
2999 Value *BEValueV = 0, *StartValueV = 0;
3000 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3001 Value *V = PN->getIncomingValue(i);
3002 if (L->contains(PN->getIncomingBlock(i))) {
3003 if (!BEValueV) {
3004 BEValueV = V;
3005 } else if (BEValueV != V) {
3006 BEValueV = 0;
3007 break;
3008 }
3009 } else if (!StartValueV) {
3010 StartValueV = V;
3011 } else if (StartValueV != V) {
3012 StartValueV = 0;
3013 break;
3014 }
3015 }
3016 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003017 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003018 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003019 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003020 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003021 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00003022
3023 // Using this symbolic name for the PHI, analyze the value coming around
3024 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003025 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00003026
3027 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3028 // has a special value for the first iteration of the loop.
3029
3030 // If the value coming around the backedge is an add with the symbolic
3031 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00003032 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003033 // If there is a single occurrence of the symbolic value, replace it
3034 // with a recurrence.
3035 unsigned FoundIndex = Add->getNumOperands();
3036 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3037 if (Add->getOperand(i) == SymbolicName)
3038 if (FoundIndex == e) {
3039 FoundIndex = i;
3040 break;
3041 }
3042
3043 if (FoundIndex != Add->getNumOperands()) {
3044 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003045 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00003046 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3047 if (i != FoundIndex)
3048 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00003049 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00003050
3051 // This is not a valid addrec if the step amount is varying each
3052 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003053 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00003054 (isa<SCEVAddRecExpr>(Accum) &&
3055 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003056 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00003057
3058 // If the increment doesn't overflow, then neither the addrec nor
3059 // the post-increment will overflow.
3060 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3061 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003062 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003063 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003064 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00003065 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00003066 dyn_cast<GEPOperator>(BEValueV)) {
3067 // If the increment is an inbounds GEP, then we know the address
3068 // space cannot be wrapped around. We cannot make any guarantee
3069 // about signed or unsigned overflow because pointers are
3070 // unsigned but we may have a negative index from the base
3071 // pointer.
3072 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00003073 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003074 }
3075
Dan Gohman27dead42010-04-12 07:49:36 +00003076 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00003077 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00003078
Dan Gohmana10756e2010-01-21 02:09:26 +00003079 // Since the no-wrap flags are on the increment, they apply to the
3080 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003081 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003082 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003083 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003084
3085 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003086 // to be symbolic. We now need to go back and purge all of the
3087 // entries for the scalars that use the symbolic expression.
3088 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003089 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003090 return PHISCEV;
3091 }
3092 }
Dan Gohman622ed672009-05-04 22:02:23 +00003093 } else if (const SCEVAddRecExpr *AddRec =
3094 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003095 // Otherwise, this could be a loop like this:
3096 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3097 // In this case, j = {1,+,1} and BEValue is j.
3098 // Because the other in-value of i (0) fits the evolution of BEValue
3099 // i really is an addrec evolution.
3100 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003101 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003102
3103 // If StartVal = j.start - j.stride, we can use StartVal as the
3104 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003105 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003106 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003107 // FIXME: For constant StartVal, we should be able to infer
3108 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003109 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003110 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3111 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003112
3113 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003114 // to be symbolic. We now need to go back and purge all of the
3115 // entries for the scalars that use the symbolic expression.
3116 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003117 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003118 return PHISCEV;
3119 }
3120 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003121 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003122 }
Dan Gohman27dead42010-04-12 07:49:36 +00003123 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003124
Dan Gohman85669632010-02-25 06:57:05 +00003125 // If the PHI has a single incoming value, follow that value, unless the
3126 // PHI's incoming blocks are in a different loop, in which case doing so
3127 // risks breaking LCSSA form. Instcombine would normally zap these, but
3128 // it doesn't have DominatorTree information, so it may miss cases.
Chad Rosier618c1db2011-12-01 03:08:23 +00003129 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003130 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003131 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003132
Chris Lattner53e677a2004-04-02 20:23:17 +00003133 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003134 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003135}
3136
Dan Gohman26466c02009-05-08 20:26:55 +00003137/// createNodeForGEP - Expand GEP instructions into add and multiply
3138/// operations. This allows them to be analyzed by regular SCEV code.
3139///
Dan Gohmand281ed22009-12-18 02:09:29 +00003140const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003141
Dan Gohmanb9f96512010-06-30 07:16:37 +00003142 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3143 // Add expression, because the Instruction may be guarded by control flow
3144 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003145 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003146 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003147
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003148 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003149 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003150 // Don't attempt to analyze GEPs over unsized objects.
3151 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3152 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003153 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003154 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003155 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003156 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003157 I != E; ++I) {
3158 Value *Index = *I;
3159 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003160 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003161 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003162 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00003163 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3164
Dan Gohmanb9f96512010-06-30 07:16:37 +00003165 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003166 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003167 } else {
3168 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003169 const SCEV *ElementSize = getSizeOfExpr(*GTI);
3170 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003171 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003172 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3173
Dan Gohmanb9f96512010-06-30 07:16:37 +00003174 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003175 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3176 isInBounds ? SCEV::FlagNSW :
3177 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003178
3179 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003180 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003181 }
3182 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003183
3184 // Get the SCEV for the GEP base.
3185 const SCEV *BaseS = getSCEV(Base);
3186
Dan Gohmanb9f96512010-06-30 07:16:37 +00003187 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003188 return getAddExpr(BaseS, TotalOffset,
Benjamin Kramer86df0622012-04-17 06:33:57 +00003189 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003190}
3191
Nick Lewycky83bb0052007-11-22 07:59:40 +00003192/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3193/// guaranteed to end in (at every loop iteration). It is, at the same time,
3194/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3195/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003196uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003197ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003198 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003199 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003200
Dan Gohman622ed672009-05-04 22:02:23 +00003201 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003202 return std::min(GetMinTrailingZeros(T->getOperand()),
3203 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003204
Dan Gohman622ed672009-05-04 22:02:23 +00003205 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003206 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3207 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3208 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003209 }
3210
Dan Gohman622ed672009-05-04 22:02:23 +00003211 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003212 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3213 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3214 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003215 }
3216
Dan Gohman622ed672009-05-04 22:02:23 +00003217 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003218 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003219 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003220 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003221 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003222 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003223 }
3224
Dan Gohman622ed672009-05-04 22:02:23 +00003225 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003226 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003227 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3228 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003229 for (unsigned i = 1, e = M->getNumOperands();
3230 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003231 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003232 BitWidth);
3233 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003234 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003235
Dan Gohman622ed672009-05-04 22:02:23 +00003236 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003237 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003238 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003239 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003240 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003241 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003242 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003243
Dan Gohman622ed672009-05-04 22:02:23 +00003244 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003245 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003246 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003247 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003248 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003249 return MinOpRes;
3250 }
3251
Dan Gohman622ed672009-05-04 22:02:23 +00003252 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003253 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003254 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003255 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003256 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003257 return MinOpRes;
3258 }
3259
Dan Gohman2c364ad2009-06-19 23:29:04 +00003260 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3261 // For a SCEVUnknown, ask ValueTracking.
3262 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohman2c364ad2009-06-19 23:29:04 +00003263 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003264 ComputeMaskedBits(U->getValue(), Zeros, Ones);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003265 return Zeros.countTrailingOnes();
3266 }
3267
3268 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003269 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003270}
Chris Lattner53e677a2004-04-02 20:23:17 +00003271
Dan Gohman85b05a22009-07-13 21:35:55 +00003272/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3273///
3274ConstantRange
3275ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003276 // See if we've computed this range already.
3277 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3278 if (I != UnsignedRanges.end())
3279 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003280
3281 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003282 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003283
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003284 unsigned BitWidth = getTypeSizeInBits(S->getType());
3285 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3286
3287 // If the value has known zeros, the maximum unsigned value will have those
3288 // known zeros as well.
3289 uint32_t TZ = GetMinTrailingZeros(S);
3290 if (TZ != 0)
3291 ConservativeResult =
3292 ConstantRange(APInt::getMinValue(BitWidth),
3293 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3294
Dan Gohman85b05a22009-07-13 21:35:55 +00003295 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3296 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3297 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3298 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003299 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003300 }
3301
3302 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3303 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3304 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3305 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003306 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003307 }
3308
3309 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3310 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3311 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3312 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003313 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003314 }
3315
3316 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3317 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3318 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3319 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003320 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003321 }
3322
3323 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3324 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3325 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003326 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003327 }
3328
3329 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3330 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003331 return setUnsignedRange(ZExt,
3332 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003333 }
3334
3335 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3336 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003337 return setUnsignedRange(SExt,
3338 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003339 }
3340
3341 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3342 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003343 return setUnsignedRange(Trunc,
3344 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003345 }
3346
Dan Gohman85b05a22009-07-13 21:35:55 +00003347 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003348 // If there's no unsigned wrap, the value will never be less than its
3349 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003350 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003351 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003352 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003353 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003354 ConservativeResult.intersectWith(
3355 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003356
3357 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003358 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003359 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003360 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003361 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3362 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003363 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3364
3365 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003366 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003367
3368 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003369 ConstantRange StepRange = getSignedRange(Step);
3370 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3371 ConstantRange EndRange =
3372 StartRange.add(MaxBECountRange.multiply(StepRange));
3373
3374 // Check for overflow. This must be done with ConstantRange arithmetic
3375 // because we could be called from within the ScalarEvolution overflow
3376 // checking code.
3377 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3378 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3379 ConstantRange ExtMaxBECountRange =
3380 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3381 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3382 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3383 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003384 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003385
Dan Gohman85b05a22009-07-13 21:35:55 +00003386 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3387 EndRange.getUnsignedMin());
3388 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3389 EndRange.getUnsignedMax());
3390 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003391 return setUnsignedRange(AddRec, ConservativeResult);
3392 return setUnsignedRange(AddRec,
3393 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003394 }
3395 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003396
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003397 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003398 }
3399
3400 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3401 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003402 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003403 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003404 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003405 return setUnsignedRange(U, ConservativeResult);
3406 return setUnsignedRange(U,
3407 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003408 }
3409
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003410 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003411}
3412
Dan Gohman85b05a22009-07-13 21:35:55 +00003413/// getSignedRange - Determine the signed range for a particular SCEV.
3414///
3415ConstantRange
3416ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003417 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003418 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3419 if (I != SignedRanges.end())
3420 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003421
Dan Gohman85b05a22009-07-13 21:35:55 +00003422 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003423 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003424
Dan Gohman52fddd32010-01-26 04:40:18 +00003425 unsigned BitWidth = getTypeSizeInBits(S->getType());
3426 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3427
3428 // If the value has known zeros, the maximum signed value will have those
3429 // known zeros as well.
3430 uint32_t TZ = GetMinTrailingZeros(S);
3431 if (TZ != 0)
3432 ConservativeResult =
3433 ConstantRange(APInt::getSignedMinValue(BitWidth),
3434 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3435
Dan Gohman85b05a22009-07-13 21:35:55 +00003436 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3437 ConstantRange X = getSignedRange(Add->getOperand(0));
3438 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3439 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003440 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003441 }
3442
Dan Gohman85b05a22009-07-13 21:35:55 +00003443 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3444 ConstantRange X = getSignedRange(Mul->getOperand(0));
3445 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3446 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003447 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003448 }
3449
Dan Gohman85b05a22009-07-13 21:35:55 +00003450 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3451 ConstantRange X = getSignedRange(SMax->getOperand(0));
3452 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3453 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003454 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003455 }
Dan Gohman62849c02009-06-24 01:05:09 +00003456
Dan Gohman85b05a22009-07-13 21:35:55 +00003457 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3458 ConstantRange X = getSignedRange(UMax->getOperand(0));
3459 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3460 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003461 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003462 }
Dan Gohman62849c02009-06-24 01:05:09 +00003463
Dan Gohman85b05a22009-07-13 21:35:55 +00003464 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3465 ConstantRange X = getSignedRange(UDiv->getLHS());
3466 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003467 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003468 }
Dan Gohman62849c02009-06-24 01:05:09 +00003469
Dan Gohman85b05a22009-07-13 21:35:55 +00003470 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3471 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003472 return setSignedRange(ZExt,
3473 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003474 }
3475
3476 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3477 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003478 return setSignedRange(SExt,
3479 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003480 }
3481
3482 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3483 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003484 return setSignedRange(Trunc,
3485 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003486 }
3487
Dan Gohman85b05a22009-07-13 21:35:55 +00003488 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003489 // If there's no signed wrap, and all the operands have the same sign or
3490 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003491 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003492 bool AllNonNeg = true;
3493 bool AllNonPos = true;
3494 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3495 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3496 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3497 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003498 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003499 ConservativeResult = ConservativeResult.intersectWith(
3500 ConstantRange(APInt(BitWidth, 0),
3501 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003502 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003503 ConservativeResult = ConservativeResult.intersectWith(
3504 ConstantRange(APInt::getSignedMinValue(BitWidth),
3505 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003506 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003507
3508 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003509 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003510 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003511 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003512 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3513 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003514 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3515
3516 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003517 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003518
3519 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003520 ConstantRange StepRange = getSignedRange(Step);
3521 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3522 ConstantRange EndRange =
3523 StartRange.add(MaxBECountRange.multiply(StepRange));
3524
3525 // Check for overflow. This must be done with ConstantRange arithmetic
3526 // because we could be called from within the ScalarEvolution overflow
3527 // checking code.
3528 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3529 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3530 ConstantRange ExtMaxBECountRange =
3531 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3532 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3533 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3534 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003535 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003536
Dan Gohman85b05a22009-07-13 21:35:55 +00003537 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3538 EndRange.getSignedMin());
3539 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3540 EndRange.getSignedMax());
3541 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003542 return setSignedRange(AddRec, ConservativeResult);
3543 return setSignedRange(AddRec,
3544 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003545 }
Dan Gohman62849c02009-06-24 01:05:09 +00003546 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003547
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003548 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003549 }
3550
Dan Gohman2c364ad2009-06-19 23:29:04 +00003551 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3552 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003553 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003554 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003555 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3556 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003557 return setSignedRange(U, ConservativeResult);
3558 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003559 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003560 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003561 }
3562
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003563 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003564}
3565
Chris Lattner53e677a2004-04-02 20:23:17 +00003566/// createSCEV - We know that there is no SCEV for the specified value.
3567/// Analyze the expression.
3568///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003569const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003570 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003571 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003572
Dan Gohman6c459a22008-06-22 19:56:46 +00003573 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003574 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003575 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003576
3577 // Don't attempt to analyze instructions in blocks that aren't
3578 // reachable. Such instructions don't matter, and they aren't required
3579 // to obey basic rules for definitions dominating uses which this
3580 // analysis depends on.
3581 if (!DT->isReachableFromEntry(I->getParent()))
3582 return getUnknown(V);
3583 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003584 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003585 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3586 return getConstant(CI);
3587 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003588 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003589 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3590 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003591 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003592 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003593
Dan Gohmanca178902009-07-17 20:47:02 +00003594 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003595 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003596 case Instruction::Add: {
3597 // The simple thing to do would be to just call getSCEV on both operands
3598 // and call getAddExpr with the result. However if we're looking at a
3599 // bunch of things all added together, this can be quite inefficient,
3600 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3601 // Instead, gather up all the operands and make a single getAddExpr call.
3602 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickecb35ec2011-11-29 02:16:38 +00003603 //
3604 // Don't apply this instruction's NSW or NUW flags to the new
3605 // expression. The instruction may be guarded by control flow that the
3606 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3607 // mapped to the same SCEV expression, and it would be incorrect to transfer
3608 // NSW/NUW semantics to those operations.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003609 SmallVector<const SCEV *, 4> AddOps;
3610 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003611 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3612 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3613 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3614 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003615 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003616 const SCEV *Op1 = getSCEV(U->getOperand(1));
3617 if (Opcode == Instruction::Sub)
3618 AddOps.push_back(getNegativeSCEV(Op1));
3619 else
3620 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003621 }
3622 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickecb35ec2011-11-29 02:16:38 +00003623 return getAddExpr(AddOps);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003624 }
3625 case Instruction::Mul: {
Andrew Trickecb35ec2011-11-29 02:16:38 +00003626 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003627 SmallVector<const SCEV *, 4> MulOps;
3628 MulOps.push_back(getSCEV(U->getOperand(1)));
3629 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003630 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003631 Op = U->getOperand(0)) {
3632 U = cast<Operator>(Op);
3633 MulOps.push_back(getSCEV(U->getOperand(1)));
3634 }
3635 MulOps.push_back(getSCEV(U->getOperand(0)));
3636 return getMulExpr(MulOps);
3637 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003638 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003639 return getUDivExpr(getSCEV(U->getOperand(0)),
3640 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003641 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003642 return getMinusSCEV(getSCEV(U->getOperand(0)),
3643 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003644 case Instruction::And:
3645 // For an expression like x&255 that merely masks off the high bits,
3646 // use zext(trunc(x)) as the SCEV expression.
3647 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003648 if (CI->isNullValue())
3649 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003650 if (CI->isAllOnesValue())
3651 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003652 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003653
3654 // Instcombine's ShrinkDemandedConstant may strip bits out of
3655 // constants, obscuring what would otherwise be a low-bits mask.
3656 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3657 // knew about to reconstruct a low-bits mask value.
3658 unsigned LZ = A.countLeadingZeros();
3659 unsigned BitWidth = A.getBitWidth();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003660 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003661 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003662
3663 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3664
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003665 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003666 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003667 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003668 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003669 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003670 }
3671 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003672
Dan Gohman6c459a22008-06-22 19:56:46 +00003673 case Instruction::Or:
3674 // If the RHS of the Or is a constant, we may have something like:
3675 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3676 // optimizations will transparently handle this case.
3677 //
3678 // In order for this transformation to be safe, the LHS must be of the
3679 // form X*(2^n) and the Or constant must be less than 2^n.
3680 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003681 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003682 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003683 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003684 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3685 // Build a plain add SCEV.
3686 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3687 // If the LHS of the add was an addrec and it has no-wrap flags,
3688 // transfer the no-wrap flags, since an or won't introduce a wrap.
3689 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3690 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003691 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3692 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003693 }
3694 return S;
3695 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003696 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003697 break;
3698 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003699 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003700 // If the RHS of the xor is a signbit, then this is just an add.
3701 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003702 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003703 return getAddExpr(getSCEV(U->getOperand(0)),
3704 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003705
3706 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003707 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003708 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003709
3710 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3711 // This is a variant of the check for xor with -1, and it handles
3712 // the case where instcombine has trimmed non-demanded bits out
3713 // of an xor with -1.
3714 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3715 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3716 if (BO->getOpcode() == Instruction::And &&
3717 LCI->getValue() == CI->getValue())
3718 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003719 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003720 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003721 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003722 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003723 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3724
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003725 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003726 // mask off the high bits. Complement the operand and
3727 // re-apply the zext.
3728 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3729 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3730
3731 // If C is a single bit, it may be in the sign-bit position
3732 // before the zero-extend. In this case, represent the xor
3733 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003734 APInt Trunc = CI->getValue().trunc(Z0TySize);
3735 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003736 Trunc.isSignBit())
3737 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3738 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003739 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003740 }
3741 break;
3742
3743 case Instruction::Shl:
3744 // Turn shift left of a constant amount into a multiply.
3745 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003746 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003747
3748 // If the shift count is not less than the bitwidth, the result of
3749 // the shift is undefined. Don't try to analyze it, because the
3750 // resolution chosen here may differ from the resolution chosen in
3751 // other parts of the compiler.
3752 if (SA->getValue().uge(BitWidth))
3753 break;
3754
Owen Andersoneed707b2009-07-24 23:12:02 +00003755 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003756 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003757 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003758 }
3759 break;
3760
Nick Lewycky01eaf802008-07-07 06:15:49 +00003761 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003762 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003763 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003764 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003765
3766 // If the shift count is not less than the bitwidth, the result of
3767 // the shift is undefined. Don't try to analyze it, because the
3768 // resolution chosen here may differ from the resolution chosen in
3769 // other parts of the compiler.
3770 if (SA->getValue().uge(BitWidth))
3771 break;
3772
Owen Andersoneed707b2009-07-24 23:12:02 +00003773 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003774 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003775 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003776 }
3777 break;
3778
Dan Gohman4ee29af2009-04-21 02:26:00 +00003779 case Instruction::AShr:
3780 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3781 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003782 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003783 if (L->getOpcode() == Instruction::Shl &&
3784 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003785 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3786
3787 // If the shift count is not less than the bitwidth, the result of
3788 // the shift is undefined. Don't try to analyze it, because the
3789 // resolution chosen here may differ from the resolution chosen in
3790 // other parts of the compiler.
3791 if (CI->getValue().uge(BitWidth))
3792 break;
3793
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003794 uint64_t Amt = BitWidth - CI->getZExtValue();
3795 if (Amt == BitWidth)
3796 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003797 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003798 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003799 IntegerType::get(getContext(),
3800 Amt)),
3801 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003802 }
3803 break;
3804
Dan Gohman6c459a22008-06-22 19:56:46 +00003805 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003806 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003807
3808 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003809 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003810
3811 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003812 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003813
3814 case Instruction::BitCast:
3815 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003816 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003817 return getSCEV(U->getOperand(0));
3818 break;
3819
Dan Gohman4f8eea82010-02-01 18:27:38 +00003820 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3821 // lead to pointer expressions which cannot safely be expanded to GEPs,
3822 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3823 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003824
Dan Gohman26466c02009-05-08 20:26:55 +00003825 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003826 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003827
Dan Gohman6c459a22008-06-22 19:56:46 +00003828 case Instruction::PHI:
3829 return createNodeForPHI(cast<PHINode>(U));
3830
3831 case Instruction::Select:
3832 // This could be a smax or umax that was lowered earlier.
3833 // Try to recover it.
3834 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3835 Value *LHS = ICI->getOperand(0);
3836 Value *RHS = ICI->getOperand(1);
3837 switch (ICI->getPredicate()) {
3838 case ICmpInst::ICMP_SLT:
3839 case ICmpInst::ICMP_SLE:
3840 std::swap(LHS, RHS);
3841 // fall through
3842 case ICmpInst::ICMP_SGT:
3843 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003844 // a >s b ? a+x : b+x -> smax(a, b)+x
3845 // a >s b ? b+x : a+x -> smin(a, b)+x
3846 if (LHS->getType() == U->getType()) {
3847 const SCEV *LS = getSCEV(LHS);
3848 const SCEV *RS = getSCEV(RHS);
3849 const SCEV *LA = getSCEV(U->getOperand(1));
3850 const SCEV *RA = getSCEV(U->getOperand(2));
3851 const SCEV *LDiff = getMinusSCEV(LA, LS);
3852 const SCEV *RDiff = getMinusSCEV(RA, RS);
3853 if (LDiff == RDiff)
3854 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3855 LDiff = getMinusSCEV(LA, RS);
3856 RDiff = getMinusSCEV(RA, LS);
3857 if (LDiff == RDiff)
3858 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3859 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003860 break;
3861 case ICmpInst::ICMP_ULT:
3862 case ICmpInst::ICMP_ULE:
3863 std::swap(LHS, RHS);
3864 // fall through
3865 case ICmpInst::ICMP_UGT:
3866 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003867 // a >u b ? a+x : b+x -> umax(a, b)+x
3868 // a >u b ? b+x : a+x -> umin(a, b)+x
3869 if (LHS->getType() == U->getType()) {
3870 const SCEV *LS = getSCEV(LHS);
3871 const SCEV *RS = getSCEV(RHS);
3872 const SCEV *LA = getSCEV(U->getOperand(1));
3873 const SCEV *RA = getSCEV(U->getOperand(2));
3874 const SCEV *LDiff = getMinusSCEV(LA, LS);
3875 const SCEV *RDiff = getMinusSCEV(RA, RS);
3876 if (LDiff == RDiff)
3877 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3878 LDiff = getMinusSCEV(LA, RS);
3879 RDiff = getMinusSCEV(RA, LS);
3880 if (LDiff == RDiff)
3881 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3882 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003883 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003884 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003885 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3886 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003887 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003888 cast<ConstantInt>(RHS)->isZero()) {
3889 const SCEV *One = getConstant(LHS->getType(), 1);
3890 const SCEV *LS = getSCEV(LHS);
3891 const SCEV *LA = getSCEV(U->getOperand(1));
3892 const SCEV *RA = getSCEV(U->getOperand(2));
3893 const SCEV *LDiff = getMinusSCEV(LA, LS);
3894 const SCEV *RDiff = getMinusSCEV(RA, One);
3895 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003896 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003897 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003898 break;
3899 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003900 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3901 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003902 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003903 cast<ConstantInt>(RHS)->isZero()) {
3904 const SCEV *One = getConstant(LHS->getType(), 1);
3905 const SCEV *LS = getSCEV(LHS);
3906 const SCEV *LA = getSCEV(U->getOperand(1));
3907 const SCEV *RA = getSCEV(U->getOperand(2));
3908 const SCEV *LDiff = getMinusSCEV(LA, One);
3909 const SCEV *RDiff = getMinusSCEV(RA, LS);
3910 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003911 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003912 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003913 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003914 default:
3915 break;
3916 }
3917 }
3918
3919 default: // We cannot analyze this expression.
3920 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003921 }
3922
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003923 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003924}
3925
3926
3927
3928//===----------------------------------------------------------------------===//
3929// Iteration Count Computation Code
3930//
3931
Andrew Trickb1831c62011-08-11 23:36:16 +00003932/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Trick3eada312012-01-11 06:52:55 +00003933/// normal unsigned value. Returns 0 if the trip count is unknown or not
3934/// constant. Will also return 0 if the maximum trip count is very large (>=
3935/// 2^32).
3936///
3937/// This "trip count" assumes that control exits via ExitingBlock. More
3938/// precisely, it is the number of times that control may reach ExitingBlock
3939/// before taking the branch. For loops with multiple exits, it may not be the
3940/// number times that the loop header executes because the loop may exit
3941/// prematurely via another branch.
3942unsigned ScalarEvolution::
3943getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) {
Andrew Trickb1831c62011-08-11 23:36:16 +00003944 const SCEVConstant *ExitCount =
Andrew Trick3eada312012-01-11 06:52:55 +00003945 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trickb1831c62011-08-11 23:36:16 +00003946 if (!ExitCount)
3947 return 0;
3948
3949 ConstantInt *ExitConst = ExitCount->getValue();
3950
3951 // Guard against huge trip counts.
3952 if (ExitConst->getValue().getActiveBits() > 32)
3953 return 0;
3954
3955 // In case of integer overflow, this returns 0, which is correct.
3956 return ((unsigned)ExitConst->getZExtValue()) + 1;
3957}
3958
3959/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3960/// trip count of this loop as a normal unsigned value, if possible. This
3961/// means that the actual trip count is always a multiple of the returned
3962/// value (don't forget the trip count could very well be zero as well!).
3963///
3964/// Returns 1 if the trip count is unknown or not guaranteed to be the
3965/// multiple of a constant (which is also the case if the trip count is simply
3966/// constant, use getSmallConstantTripCount for that case), Will also return 1
3967/// if the trip count is very large (>= 2^32).
Andrew Trick3eada312012-01-11 06:52:55 +00003968///
3969/// As explained in the comments for getSmallConstantTripCount, this assumes
3970/// that control exits the loop via ExitingBlock.
3971unsigned ScalarEvolution::
3972getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) {
3973 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trickb1831c62011-08-11 23:36:16 +00003974 if (ExitCount == getCouldNotCompute())
3975 return 1;
3976
3977 // Get the trip count from the BE count by adding 1.
3978 const SCEV *TCMul = getAddExpr(ExitCount,
3979 getConstant(ExitCount->getType(), 1));
3980 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3981 // to factor simple cases.
3982 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3983 TCMul = Mul->getOperand(0);
3984
3985 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3986 if (!MulC)
3987 return 1;
3988
3989 ConstantInt *Result = MulC->getValue();
3990
3991 // Guard against huge trip counts.
3992 if (!Result || Result->getValue().getActiveBits() > 32)
3993 return 1;
3994
3995 return (unsigned)Result->getZExtValue();
3996}
3997
Andrew Trick5116ff62011-07-26 17:19:55 +00003998// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickfcb43562011-08-02 04:23:35 +00003999// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00004000// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00004001const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4002 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00004003}
4004
Dan Gohman46bdfb02009-02-24 18:55:53 +00004005/// getBackedgeTakenCount - If the specified loop has a predictable
4006/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4007/// object. The backedge-taken count is the number of times the loop header
4008/// will be branched to from within the loop. This is one less than the
4009/// trip count of the loop, since it doesn't count the first iteration,
4010/// when the header is branched to from outside the loop.
4011///
4012/// Note that it is not valid to call this method on a loop without a
4013/// loop-invariant backedge-taken count (see
4014/// hasLoopInvariantBackedgeTakenCount).
4015///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004016const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004017 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004018}
4019
4020/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4021/// return the least SCEV value that is known never to be less than the
4022/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004023const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004024 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004025}
4026
Dan Gohman59ae6b92009-07-08 19:23:34 +00004027/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4028/// onto the given Worklist.
4029static void
4030PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4031 BasicBlock *Header = L->getHeader();
4032
4033 // Push all Loop-header PHIs onto the Worklist stack.
4034 for (BasicBlock::iterator I = Header->begin();
4035 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4036 Worklist.push_back(PN);
4037}
4038
Dan Gohmana1af7572009-04-30 20:47:05 +00004039const ScalarEvolution::BackedgeTakenInfo &
4040ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004041 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004042 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00004043 // update the value. The temporary CouldNotCompute value tells SCEV
4044 // code elsewhere that it shouldn't attempt to request a new
4045 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004046 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00004047 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00004048 if (!Pair.second)
4049 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00004050
Andrew Trick5116ff62011-07-26 17:19:55 +00004051 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4052 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4053 // must be cleared in this scope.
4054 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4055
4056 if (Result.getExact(this) != getCouldNotCompute()) {
4057 assert(isLoopInvariant(Result.getExact(this), L) &&
4058 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00004059 "Computed backedge-taken count isn't loop invariant for loop!");
4060 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00004061 }
4062 else if (Result.getMax(this) == getCouldNotCompute() &&
4063 isa<PHINode>(L->getHeader()->begin())) {
4064 // Only count loops that have phi nodes as not being computable.
4065 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00004066 }
Dan Gohmana1af7572009-04-30 20:47:05 +00004067
Chris Lattnerf1859892011-01-09 02:16:18 +00004068 // Now that we know more about the trip count for this loop, forget any
4069 // existing SCEV values for PHI nodes in this loop since they are only
4070 // conservative estimates made without the benefit of trip count
4071 // information. This is similar to the code in forgetLoop, except that
4072 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00004073 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00004074 SmallVector<Instruction *, 16> Worklist;
4075 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004076
Chris Lattnerf1859892011-01-09 02:16:18 +00004077 SmallPtrSet<Instruction *, 8> Visited;
4078 while (!Worklist.empty()) {
4079 Instruction *I = Worklist.pop_back_val();
4080 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004081
Chris Lattnerf1859892011-01-09 02:16:18 +00004082 ValueExprMapType::iterator It =
4083 ValueExprMap.find(static_cast<Value *>(I));
4084 if (It != ValueExprMap.end()) {
4085 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00004086
Chris Lattnerf1859892011-01-09 02:16:18 +00004087 // SCEVUnknown for a PHI either means that it has an unrecognized
4088 // structure, or it's a PHI that's in the progress of being computed
4089 // by createNodeForPHI. In the former case, additional loop trip
4090 // count information isn't going to change anything. In the later
4091 // case, createNodeForPHI will perform the necessary updates on its
4092 // own when it gets to that point.
4093 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4094 forgetMemoizedResults(Old);
4095 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004096 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004097 if (PHINode *PN = dyn_cast<PHINode>(I))
4098 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004099 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004100
4101 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004102 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004103 }
Dan Gohman308bec32011-04-25 22:48:29 +00004104
4105 // Re-lookup the insert position, since the call to
4106 // ComputeBackedgeTakenCount above could result in a
4107 // recusive call to getBackedgeTakenInfo (on a different
4108 // loop), which would invalidate the iterator computed
4109 // earlier.
4110 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004111}
4112
Dan Gohman4c7279a2009-10-31 15:04:55 +00004113/// forgetLoop - This method should be called by the client when it has
4114/// changed a loop in a way that may effect ScalarEvolution's ability to
4115/// compute a trip count, or if the loop is deleted.
4116void ScalarEvolution::forgetLoop(const Loop *L) {
4117 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004118 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4119 BackedgeTakenCounts.find(L);
4120 if (BTCPos != BackedgeTakenCounts.end()) {
4121 BTCPos->second.clear();
4122 BackedgeTakenCounts.erase(BTCPos);
4123 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004124
Dan Gohman4c7279a2009-10-31 15:04:55 +00004125 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004126 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004127 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004128
Dan Gohman59ae6b92009-07-08 19:23:34 +00004129 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004130 while (!Worklist.empty()) {
4131 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004132 if (!Visited.insert(I)) continue;
4133
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004134 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4135 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004136 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004137 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004138 if (PHINode *PN = dyn_cast<PHINode>(I))
4139 ConstantEvolutionLoopExitValue.erase(PN);
4140 }
4141
4142 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004143 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004144
4145 // Forget all contained loops too, to avoid dangling entries in the
4146 // ValuesAtScopes map.
4147 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4148 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004149}
4150
Eric Christophere6cbfa62010-07-29 01:25:38 +00004151/// forgetValue - This method should be called by the client when it has
4152/// changed a value in a way that may effect its value, or which may
4153/// disconnect it from a def-use chain linking it to a loop.
4154void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004155 Instruction *I = dyn_cast<Instruction>(V);
4156 if (!I) return;
4157
4158 // Drop information about expressions based on loop-header PHIs.
4159 SmallVector<Instruction *, 16> Worklist;
4160 Worklist.push_back(I);
4161
4162 SmallPtrSet<Instruction *, 8> Visited;
4163 while (!Worklist.empty()) {
4164 I = Worklist.pop_back_val();
4165 if (!Visited.insert(I)) continue;
4166
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004167 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4168 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004169 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004170 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004171 if (PHINode *PN = dyn_cast<PHINode>(I))
4172 ConstantEvolutionLoopExitValue.erase(PN);
4173 }
4174
4175 PushDefUseChildren(I, Worklist);
4176 }
4177}
4178
Andrew Trick5116ff62011-07-26 17:19:55 +00004179/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004180/// exits. A computable result can only be return for loops with a single exit.
4181/// Returning the minimum taken count among all exits is incorrect because one
4182/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4183/// the limit of each loop test is never skipped. This is a valid assumption as
4184/// long as the loop exits via that test. For precise results, it is the
4185/// caller's responsibility to specify the relevant loop exit using
4186/// getExact(ExitingBlock, SE).
Andrew Trick5116ff62011-07-26 17:19:55 +00004187const SCEV *
4188ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4189 // If any exits were not computable, the loop is not computable.
4190 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4191
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004192 // We need exactly one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004193 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004194 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4195
4196 const SCEV *BECount = 0;
4197 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4198 ENT != 0; ENT = ENT->getNextExit()) {
4199
4200 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4201
4202 if (!BECount)
4203 BECount = ENT->ExactNotTaken;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004204 else if (BECount != ENT->ExactNotTaken)
4205 return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004206 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004207 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004208 return BECount;
4209}
4210
4211/// getExact - Get the exact not taken count for this loop exit.
4212const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004213ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004214 ScalarEvolution *SE) const {
4215 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4216 ENT != 0; ENT = ENT->getNextExit()) {
4217
Andrew Trickfcb43562011-08-02 04:23:35 +00004218 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004219 return ENT->ExactNotTaken;
4220 }
4221 return SE->getCouldNotCompute();
4222}
4223
4224/// getMax - Get the max backedge taken count for the loop.
4225const SCEV *
4226ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4227 return Max ? Max : SE->getCouldNotCompute();
4228}
4229
4230/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4231/// computable exit into a persistent ExitNotTakenInfo array.
4232ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4233 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4234 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4235
4236 if (!Complete)
4237 ExitNotTaken.setIncomplete();
4238
4239 unsigned NumExits = ExitCounts.size();
4240 if (NumExits == 0) return;
4241
Andrew Trickfcb43562011-08-02 04:23:35 +00004242 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004243 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4244 if (NumExits == 1) return;
4245
4246 // Handle the rare case of multiple computable exits.
4247 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4248
4249 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4250 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4251 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004252 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004253 ENT->ExactNotTaken = ExitCounts[i].second;
4254 }
4255}
4256
4257/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4258void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004259 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004260 ExitNotTaken.ExactNotTaken = 0;
4261 delete[] ExitNotTaken.getNextExit();
4262}
4263
Dan Gohman46bdfb02009-02-24 18:55:53 +00004264/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4265/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004266ScalarEvolution::BackedgeTakenInfo
4267ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004268 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004269 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004270
Dan Gohmana334aa72009-06-22 00:31:57 +00004271 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004272 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004273 bool CouldComputeBECount = true;
4274 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004275 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004276 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4277 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004278 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004279 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004280 CouldComputeBECount = false;
4281 else
4282 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4283
Dan Gohman1c343752009-06-27 21:21:31 +00004284 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004285 MaxBECount = EL.Max;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004286 else if (EL.Max != getCouldNotCompute()) {
4287 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4288 // skip some loop tests. Taking the max over the exits is sufficiently
4289 // conservative. TODO: We could do better taking into consideration
4290 // that (1) the loop has unit stride (2) the last loop test is
4291 // less-than/greater-than (3) any loop test is less-than/greater-than AND
4292 // falls-through some constant times less then the other tests.
4293 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4294 }
Dan Gohmana334aa72009-06-22 00:31:57 +00004295 }
4296
Andrew Trick5116ff62011-07-26 17:19:55 +00004297 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004298}
4299
Andrew Trick5116ff62011-07-26 17:19:55 +00004300/// ComputeExitLimit - Compute the number of times the backedge of the specified
4301/// loop will execute if it exits via the specified block.
4302ScalarEvolution::ExitLimit
4303ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004304
4305 // Okay, we've chosen an exiting block. See what condition causes us to
4306 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004307 //
4308 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004309 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004310 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004311 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004312
Chris Lattner8b0e3602007-01-07 02:24:26 +00004313 // At this point, we know we have a conditional branch that determines whether
4314 // the loop is exited. However, we don't know if the branch is executed each
4315 // time through the loop. If not, then the execution count of the branch will
4316 // not be equal to the trip count of the loop.
4317 //
4318 // Currently we check for this by checking to see if the Exit branch goes to
4319 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004320 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004321 // loop header. This is common for un-rotated loops.
4322 //
4323 // If both of those tests fail, walk up the unique predecessor chain to the
4324 // header, stopping if there is an edge that doesn't exit the loop. If the
4325 // header is reached, the execution count of the branch will be equal to the
4326 // trip count of the loop.
4327 //
4328 // More extensive analysis could be done to handle more cases here.
4329 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004330 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004331 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004332 ExitBr->getParent() != L->getHeader()) {
4333 // The simple checks failed, try climbing the unique predecessor chain
4334 // up to the header.
4335 bool Ok = false;
4336 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4337 BasicBlock *Pred = BB->getUniquePredecessor();
4338 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004339 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004340 TerminatorInst *PredTerm = Pred->getTerminator();
4341 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4342 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4343 if (PredSucc == BB)
4344 continue;
4345 // If the predecessor has a successor that isn't BB and isn't
4346 // outside the loop, assume the worst.
4347 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004348 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004349 }
4350 if (Pred == L->getHeader()) {
4351 Ok = true;
4352 break;
4353 }
4354 BB = Pred;
4355 }
4356 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004357 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004358 }
4359
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004360 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004361 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4362 ExitBr->getSuccessor(0),
4363 ExitBr->getSuccessor(1));
Dan Gohmana334aa72009-06-22 00:31:57 +00004364}
4365
Andrew Trick5116ff62011-07-26 17:19:55 +00004366/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004367/// backedge of the specified loop will execute if its exit condition
4368/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004369ScalarEvolution::ExitLimit
4370ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4371 Value *ExitCond,
4372 BasicBlock *TBB,
4373 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004374 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004375 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4376 if (BO->getOpcode() == Instruction::And) {
4377 // Recurse on the operands of the and.
Andrew Trick5116ff62011-07-26 17:19:55 +00004378 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4379 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004380 const SCEV *BECount = getCouldNotCompute();
4381 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004382 if (L->contains(TBB)) {
4383 // Both conditions must be true for the loop to continue executing.
4384 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004385 if (EL0.Exact == getCouldNotCompute() ||
4386 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004387 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004388 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004389 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4390 if (EL0.Max == getCouldNotCompute())
4391 MaxBECount = EL1.Max;
4392 else if (EL1.Max == getCouldNotCompute())
4393 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004394 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004395 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004396 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004397 // Both conditions must be true at the same time for the loop to exit.
4398 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004399 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004400 if (EL0.Max == EL1.Max)
4401 MaxBECount = EL0.Max;
4402 if (EL0.Exact == EL1.Exact)
4403 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004404 }
4405
Andrew Trick5116ff62011-07-26 17:19:55 +00004406 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004407 }
4408 if (BO->getOpcode() == Instruction::Or) {
4409 // Recurse on the operands of the or.
Andrew Trick5116ff62011-07-26 17:19:55 +00004410 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4411 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004412 const SCEV *BECount = getCouldNotCompute();
4413 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004414 if (L->contains(FBB)) {
4415 // Both conditions must be false for the loop to continue executing.
4416 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004417 if (EL0.Exact == getCouldNotCompute() ||
4418 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004419 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004420 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004421 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4422 if (EL0.Max == getCouldNotCompute())
4423 MaxBECount = EL1.Max;
4424 else if (EL1.Max == getCouldNotCompute())
4425 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004426 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004427 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004428 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004429 // Both conditions must be false at the same time for the loop to exit.
4430 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004431 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004432 if (EL0.Max == EL1.Max)
4433 MaxBECount = EL0.Max;
4434 if (EL0.Exact == EL1.Exact)
4435 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004436 }
4437
Andrew Trick5116ff62011-07-26 17:19:55 +00004438 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004439 }
4440 }
4441
4442 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004443 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004444 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5116ff62011-07-26 17:19:55 +00004445 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004446
Dan Gohman00cb5b72010-02-19 18:12:07 +00004447 // Check for a constant condition. These are normally stripped out by
4448 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4449 // preserve the CFG and is temporarily leaving constant conditions
4450 // in place.
4451 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4452 if (L->contains(FBB) == !CI->getZExtValue())
4453 // The backedge is always taken.
4454 return getCouldNotCompute();
4455 else
4456 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004457 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004458 }
4459
Eli Friedman361e54d2009-05-09 12:32:42 +00004460 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004461 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004462}
4463
Andrew Trick5116ff62011-07-26 17:19:55 +00004464/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004465/// backedge of the specified loop will execute if its exit condition
4466/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004467ScalarEvolution::ExitLimit
4468ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4469 ICmpInst *ExitCond,
4470 BasicBlock *TBB,
4471 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004472
Reid Spencere4d87aa2006-12-23 06:05:41 +00004473 // If the condition was exit on true, convert the condition to exit on false
4474 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004475 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004476 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004477 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004478 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004479
4480 // Handle common loops like: for (X = "string"; *X; ++X)
4481 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4482 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004483 ExitLimit ItCnt =
4484 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004485 if (ItCnt.hasAnyInfo())
4486 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004487 }
4488
Dan Gohman0bba49c2009-07-07 17:06:11 +00004489 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4490 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004491
4492 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004493 LHS = getSCEVAtScope(LHS, L);
4494 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004495
Dan Gohman64a845e2009-06-24 04:48:43 +00004496 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004497 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004498 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004499 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004500 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004501 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004502 }
4503
Dan Gohman03557dc2010-05-03 16:35:17 +00004504 // Simplify the operands before analyzing them.
4505 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4506
Chris Lattner53e677a2004-04-02 20:23:17 +00004507 // If we have a comparison of a chrec against a constant, try to use value
4508 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004509 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4510 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004511 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004512 // Form the constant range.
4513 ConstantRange CompRange(
4514 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004515
Dan Gohman0bba49c2009-07-07 17:06:11 +00004516 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004517 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004518 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004519
Chris Lattner53e677a2004-04-02 20:23:17 +00004520 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004521 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004522 // Convert to: while (X-Y != 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004523 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4524 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004525 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004526 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004527 case ICmpInst::ICMP_EQ: { // while (X == Y)
4528 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004529 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4530 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004531 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004532 }
4533 case ICmpInst::ICMP_SLT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004534 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4535 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004536 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004537 }
4538 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004539 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004540 getNotSCEV(RHS), L, true);
Andrew Trick5116ff62011-07-26 17:19:55 +00004541 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004542 break;
4543 }
4544 case ICmpInst::ICMP_ULT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004545 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4546 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004547 break;
4548 }
4549 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004550 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004551 getNotSCEV(RHS), L, false);
Andrew Trick5116ff62011-07-26 17:19:55 +00004552 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004553 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004554 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004555 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004556#if 0
David Greene25e0e872009-12-23 22:18:14 +00004557 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004558 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004559 dbgs() << "[unsigned] ";
4560 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004561 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004562 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004563#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004564 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004565 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004566 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004567}
4568
Chris Lattner673e02b2004-10-12 01:49:27 +00004569static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004570EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4571 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004572 const SCEV *InVal = SE.getConstant(C);
4573 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004574 assert(isa<SCEVConstant>(Val) &&
4575 "Evaluation of SCEV at constant didn't fold correctly?");
4576 return cast<SCEVConstant>(Val)->getValue();
4577}
4578
Andrew Trick5116ff62011-07-26 17:19:55 +00004579/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004580/// 'icmp op load X, cst', try to see if we can compute the backedge
4581/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004582ScalarEvolution::ExitLimit
4583ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4584 LoadInst *LI,
4585 Constant *RHS,
4586 const Loop *L,
4587 ICmpInst::Predicate predicate) {
4588
Dan Gohman1c343752009-06-27 21:21:31 +00004589 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004590
4591 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004592 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004593 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004594 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004595
4596 // Make sure that it is really a constant global we are gepping, with an
4597 // initializer, and make sure the first IDX is really 0.
4598 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004599 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004600 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4601 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004602 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004603
4604 // Okay, we allow one non-constant index into the GEP instruction.
4605 Value *VarIdx = 0;
Chris Lattnerdada5862012-01-24 05:49:24 +00004606 std::vector<Constant*> Indexes;
Chris Lattner673e02b2004-10-12 01:49:27 +00004607 unsigned VarIdxNum = 0;
4608 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4609 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4610 Indexes.push_back(CI);
4611 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004612 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004613 VarIdx = GEP->getOperand(i);
4614 VarIdxNum = i-2;
4615 Indexes.push_back(0);
4616 }
4617
Andrew Trickeb6dd232012-03-26 22:33:59 +00004618 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4619 if (!VarIdx)
4620 return getCouldNotCompute();
4621
Chris Lattner673e02b2004-10-12 01:49:27 +00004622 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4623 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004624 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004625 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004626
4627 // We can only recognize very limited forms of loop index expressions, in
4628 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004629 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004630 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004631 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4632 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004633 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004634
4635 unsigned MaxSteps = MaxBruteForceIterations;
4636 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004637 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004638 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004639 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004640
4641 // Form the GEP offset.
4642 Indexes[VarIdxNum] = Val;
4643
Chris Lattnerdada5862012-01-24 05:49:24 +00004644 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4645 Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004646 if (Result == 0) break; // Cannot compute!
4647
4648 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004649 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004650 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004651 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004652#if 0
David Greene25e0e872009-12-23 22:18:14 +00004653 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004654 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4655 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004656#endif
4657 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004658 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004659 }
4660 }
Dan Gohman1c343752009-06-27 21:21:31 +00004661 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004662}
4663
4664
Chris Lattner3221ad02004-04-17 22:58:41 +00004665/// CanConstantFold - Return true if we can constant fold an instruction of the
4666/// specified type, assuming that all operands were constants.
4667static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004668 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewycky614fef62011-10-22 19:58:20 +00004669 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4670 isa<LoadInst>(I))
Chris Lattner3221ad02004-04-17 22:58:41 +00004671 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004672
Chris Lattner3221ad02004-04-17 22:58:41 +00004673 if (const CallInst *CI = dyn_cast<CallInst>(I))
4674 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004675 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004676 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004677}
4678
Andrew Trick13d31e02011-10-05 03:25:31 +00004679/// Determine whether this instruction can constant evolve within this loop
4680/// assuming its operands can all constant evolve.
4681static bool canConstantEvolve(Instruction *I, const Loop *L) {
4682 // An instruction outside of the loop can't be derived from a loop PHI.
4683 if (!L->contains(I)) return false;
4684
4685 if (isa<PHINode>(I)) {
4686 if (L->getHeader() == I->getParent())
4687 return true;
4688 else
4689 // We don't currently keep track of the control flow needed to evaluate
4690 // PHIs, so we cannot handle PHIs inside of loops.
4691 return false;
4692 }
4693
4694 // If we won't be able to constant fold this expression even if the operands
4695 // are constants, bail early.
4696 return CanConstantFold(I);
4697}
4698
4699/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4700/// recursing through each instruction operand until reaching a loop header phi.
4701static PHINode *
4702getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Trick28ab7db2011-10-05 05:58:49 +00004703 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004704
4705 // Otherwise, we can evaluate this instruction if all of its operands are
4706 // constant or derived from a PHI node themselves.
4707 PHINode *PHI = 0;
4708 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4709 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4710
4711 if (isa<Constant>(*OpI)) continue;
4712
4713 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4714 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4715
4716 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trickef8a4c22011-10-05 22:06:53 +00004717 if (!P)
4718 // If this operand is already visited, reuse the prior result.
4719 // We may have P != PHI if this is the deepest point at which the
4720 // inconsistent paths meet.
4721 P = PHIMap.lookup(OpInst);
4722 if (!P) {
4723 // Recurse and memoize the results, whether a phi is found or not.
4724 // This recursive call invalidates pointers into PHIMap.
4725 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4726 PHIMap[OpInst] = P;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004727 }
Andrew Trick28ab7db2011-10-05 05:58:49 +00004728 if (P == 0) return 0; // Not evolving from PHI
4729 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4730 PHI = P;
Andrew Trick13d31e02011-10-05 03:25:31 +00004731 }
4732 // This is a expression evolving from a constant PHI!
4733 return PHI;
4734}
4735
Chris Lattner3221ad02004-04-17 22:58:41 +00004736/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4737/// in the loop that V is derived from. We allow arbitrary operations along the
4738/// way, but the operands of an operation must either be constants or a value
4739/// derived from a constant PHI. If this expression does not fit with these
4740/// constraints, return null.
4741static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004742 Instruction *I = dyn_cast<Instruction>(V);
Andrew Trick13d31e02011-10-05 03:25:31 +00004743 if (I == 0 || !canConstantEvolve(I, L)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004744
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004745 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004746 return PN;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004747 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004748
Andrew Trick13d31e02011-10-05 03:25:31 +00004749 // Record non-constant instructions contained by the loop.
Andrew Trick28ab7db2011-10-05 05:58:49 +00004750 DenseMap<Instruction *, PHINode *> PHIMap;
4751 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattner3221ad02004-04-17 22:58:41 +00004752}
4753
4754/// EvaluateExpression - Given an expression that passes the
4755/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4756/// in the loop has the value PHIVal. If we can't fold this expression for some
4757/// reason, return null.
Andrew Trick13d31e02011-10-05 03:25:31 +00004758static Constant *EvaluateExpression(Value *V, const Loop *L,
4759 DenseMap<Instruction *, Constant *> &Vals,
Chad Rosier00737bd2011-12-01 21:29:16 +00004760 const TargetData *TD,
4761 const TargetLibraryInfo *TLI) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004762 // Convenient constant check, but redundant for recursive calls.
Reid Spencere8404342004-07-18 00:18:30 +00004763 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewycky614fef62011-10-22 19:58:20 +00004764 Instruction *I = dyn_cast<Instruction>(V);
4765 if (!I) return 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004766
Andrew Trick13d31e02011-10-05 03:25:31 +00004767 if (Constant *C = Vals.lookup(I)) return C;
4768
Nick Lewycky614fef62011-10-22 19:58:20 +00004769 // An instruction inside the loop depends on a value outside the loop that we
4770 // weren't given a mapping for, or a value such as a call inside the loop.
4771 if (!canConstantEvolve(I, L)) return 0;
4772
4773 // An unmapped PHI can be due to a branch or another loop inside this loop,
4774 // or due to this not being the initial iteration through a loop where we
4775 // couldn't compute the evolution of this particular PHI last time.
4776 if (isa<PHINode>(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004777
Dan Gohman9d4588f2010-06-22 13:15:46 +00004778 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004779
4780 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004781 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4782 if (!Operand) {
Nick Lewycky4c7f1ca2011-10-14 09:38:46 +00004783 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4784 if (!Operands[i]) return 0;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004785 continue;
4786 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004787 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
Andrew Trick28ab7db2011-10-05 05:58:49 +00004788 Vals[Operand] = C;
4789 if (!C) return 0;
4790 Operands[i] = C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004791 }
4792
Nick Lewycky614fef62011-10-22 19:58:20 +00004793 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004794 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chad Rosieraab8e282011-12-02 01:26:24 +00004795 Operands[1], TD, TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00004796 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4797 if (!LI->isVolatile())
4798 return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4799 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004800 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4801 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004802}
4803
4804/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4805/// in the header of its containing loop, we know the loop executes a
4806/// constant number of times, and the PHI node is just a recurrence
4807/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004808Constant *
4809ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004810 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004811 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004812 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004813 ConstantEvolutionLoopExitValue.find(PN);
4814 if (I != ConstantEvolutionLoopExitValue.end())
4815 return I->second;
4816
Dan Gohmane0567812010-04-08 23:03:40 +00004817 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004818 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4819
4820 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4821
Andrew Trick13d31e02011-10-05 03:25:31 +00004822 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewycky614fef62011-10-22 19:58:20 +00004823 BasicBlock *Header = L->getHeader();
4824 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick13d31e02011-10-05 03:25:31 +00004825
Chris Lattner3221ad02004-04-17 22:58:41 +00004826 // Since the loop is canonicalized, the PHI node must have two entries. One
4827 // entry must be a constant (coming in from outside of the loop), and the
4828 // second must be derived from the same PHI.
4829 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Nick Lewycky614fef62011-10-22 19:58:20 +00004830 PHINode *PHI = 0;
4831 for (BasicBlock::iterator I = Header->begin();
4832 (PHI = dyn_cast<PHINode>(I)); ++I) {
4833 Constant *StartCST =
4834 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4835 if (StartCST == 0) continue;
4836 CurrentIterVals[PHI] = StartCST;
4837 }
4838 if (!CurrentIterVals.count(PN))
4839 return RetVal = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004840
4841 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattner3221ad02004-04-17 22:58:41 +00004842
4843 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004844 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004845 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004846
Dan Gohman46bdfb02009-02-24 18:55:53 +00004847 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004848 unsigned IterationNum = 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004849 for (; ; ++IterationNum) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004850 if (IterationNum == NumIterations)
Andrew Trick13d31e02011-10-05 03:25:31 +00004851 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattner3221ad02004-04-17 22:58:41 +00004852
Nick Lewycky614fef62011-10-22 19:58:20 +00004853 // Compute the value of the PHIs for the next iteration.
Andrew Trick13d31e02011-10-05 03:25:31 +00004854 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewycky614fef62011-10-22 19:58:20 +00004855 DenseMap<Instruction *, Constant *> NextIterVals;
Chad Rosier00737bd2011-12-01 21:29:16 +00004856 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4857 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004858 if (NextPHI == 0)
4859 return 0; // Couldn't evaluate!
Andrew Trick13d31e02011-10-05 03:25:31 +00004860 NextIterVals[PN] = NextPHI;
Nick Lewycky614fef62011-10-22 19:58:20 +00004861
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004862 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4863
Nick Lewycky614fef62011-10-22 19:58:20 +00004864 // Also evaluate the other PHI nodes. However, we don't get to stop if we
4865 // cease to be able to evaluate one of them or if they stop evolving,
4866 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004867 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewycky614fef62011-10-22 19:58:20 +00004868 for (DenseMap<Instruction *, Constant *>::const_iterator
4869 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4870 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky5bef0eb2011-10-24 05:51:01 +00004871 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004872 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4873 }
4874 // We use two distinct loops because EvaluateExpression may invalidate any
4875 // iterators into CurrentIterVals.
4876 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4877 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4878 PHINode *PHI = I->first;
Nick Lewycky614fef62011-10-22 19:58:20 +00004879 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004880 if (!NextPHI) { // Not already computed.
4881 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004882 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004883 }
4884 if (NextPHI != I->second)
4885 StoppedEvolving = false;
Nick Lewycky614fef62011-10-22 19:58:20 +00004886 }
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004887
4888 // If all entries in CurrentIterVals == NextIterVals then we can stop
4889 // iterating, the loop can't continue to change.
4890 if (StoppedEvolving)
4891 return RetVal = CurrentIterVals[PN];
4892
Andrew Trick13d31e02011-10-05 03:25:31 +00004893 CurrentIterVals.swap(NextIterVals);
Chris Lattner3221ad02004-04-17 22:58:41 +00004894 }
4895}
4896
Andrew Trick5116ff62011-07-26 17:19:55 +00004897/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004898/// constant number of times (the condition evolves only from constants),
4899/// try to evaluate a few iterations of the loop until we get the exit
4900/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004901/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewycky614fef62011-10-22 19:58:20 +00004902const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4903 Value *Cond,
4904 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004905 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004906 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004907
Dan Gohmanb92654d2010-06-19 14:17:24 +00004908 // If the loop is canonicalized, the PHI will have exactly two entries.
4909 // That's the only form we support here.
4910 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4911
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004912 DenseMap<Instruction *, Constant *> CurrentIterVals;
4913 BasicBlock *Header = L->getHeader();
4914 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4915
Dan Gohmanb92654d2010-06-19 14:17:24 +00004916 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004917 // second must be derived from the same PHI.
4918 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004919 PHINode *PHI = 0;
4920 for (BasicBlock::iterator I = Header->begin();
4921 (PHI = dyn_cast<PHINode>(I)); ++I) {
4922 Constant *StartCST =
4923 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4924 if (StartCST == 0) continue;
4925 CurrentIterVals[PHI] = StartCST;
4926 }
4927 if (!CurrentIterVals.count(PN))
4928 return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004929
4930 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4931 // the loop symbolically to determine when the condition gets a value of
4932 // "ExitWhen".
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004933
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004934 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004935 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004936 ConstantInt *CondVal =
Chad Rosier00737bd2011-12-01 21:29:16 +00004937 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
4938 TD, TLI));
Chris Lattner3221ad02004-04-17 22:58:41 +00004939
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004940 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004941 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004942
Reid Spencere8019bb2007-03-01 07:25:48 +00004943 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004944 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004945 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004946 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004947
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004948 // Update all the PHI nodes for the next iteration.
4949 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004950
4951 // Create a list of which PHIs we need to compute. We want to do this before
4952 // calling EvaluateExpression on them because that may invalidate iterators
4953 // into CurrentIterVals.
4954 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004955 for (DenseMap<Instruction *, Constant *>::const_iterator
4956 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4957 PHINode *PHI = dyn_cast<PHINode>(I->first);
4958 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004959 PHIsToCompute.push_back(PHI);
4960 }
4961 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
4962 E = PHIsToCompute.end(); I != E; ++I) {
4963 PHINode *PHI = *I;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004964 Constant *&NextPHI = NextIterVals[PHI];
4965 if (NextPHI) continue; // Already computed!
4966
4967 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004968 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004969 }
4970 CurrentIterVals.swap(NextIterVals);
Chris Lattner7980fb92004-04-17 18:36:24 +00004971 }
4972
4973 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004974 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004975}
4976
Dan Gohmane7125f42009-09-03 15:00:26 +00004977/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004978/// at the specified scope in the program. The L value specifies a loop
4979/// nest to evaluate the expression at, where null is the top-level or a
4980/// specified loop is immediately inside of the loop.
4981///
4982/// This method can be used to compute the exit value for a variable defined
4983/// in a loop by querying what the value will hold in the parent loop.
4984///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004985/// In the case that a relevant loop exit value cannot be computed, the
4986/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004987const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004988 // Check to see if we've folded this expression at this loop before.
4989 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4990 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4991 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4992 if (!Pair.second)
4993 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004994
Dan Gohman42214892009-08-31 21:15:23 +00004995 // Otherwise compute it.
4996 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004997 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004998 return C;
4999}
5000
Nick Lewycky614fef62011-10-22 19:58:20 +00005001/// This builds up a Constant using the ConstantExpr interface. That way, we
5002/// will return Constants for objects which aren't represented by a
5003/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5004/// Returns NULL if the SCEV isn't representable as a Constant.
5005static Constant *BuildConstantFromSCEV(const SCEV *V) {
5006 switch (V->getSCEVType()) {
5007 default: // TODO: smax, umax.
5008 case scCouldNotCompute:
5009 case scAddRecExpr:
5010 break;
5011 case scConstant:
5012 return cast<SCEVConstant>(V)->getValue();
5013 case scUnknown:
5014 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5015 case scSignExtend: {
5016 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5017 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5018 return ConstantExpr::getSExt(CastOp, SS->getType());
5019 break;
5020 }
5021 case scZeroExtend: {
5022 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5023 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5024 return ConstantExpr::getZExt(CastOp, SZ->getType());
5025 break;
5026 }
5027 case scTruncate: {
5028 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5029 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5030 return ConstantExpr::getTrunc(CastOp, ST->getType());
5031 break;
5032 }
5033 case scAddExpr: {
5034 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5035 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5036 if (C->getType()->isPointerTy())
5037 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5038 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5039 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5040 if (!C2) return 0;
5041
5042 // First pointer!
5043 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5044 std::swap(C, C2);
5045 // The offsets have been converted to bytes. We can add bytes to an
5046 // i8* by GEP with the byte count in the first index.
5047 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5048 }
5049
5050 // Don't bother trying to sum two pointers. We probably can't
5051 // statically compute a load that results from it anyway.
5052 if (C2->getType()->isPointerTy())
5053 return 0;
5054
5055 if (C->getType()->isPointerTy()) {
5056 if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5057 C2 = ConstantExpr::getIntegerCast(
5058 C2, Type::getInt32Ty(C->getContext()), true);
5059 C = ConstantExpr::getGetElementPtr(C, C2);
5060 } else
5061 C = ConstantExpr::getAdd(C, C2);
5062 }
5063 return C;
5064 }
5065 break;
5066 }
5067 case scMulExpr: {
5068 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5069 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5070 // Don't bother with pointers at all.
5071 if (C->getType()->isPointerTy()) return 0;
5072 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5073 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5074 if (!C2 || C2->getType()->isPointerTy()) return 0;
5075 C = ConstantExpr::getMul(C, C2);
5076 }
5077 return C;
5078 }
5079 break;
5080 }
5081 case scUDivExpr: {
5082 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5083 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5084 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5085 if (LHS->getType() == RHS->getType())
5086 return ConstantExpr::getUDiv(LHS, RHS);
5087 break;
5088 }
5089 }
5090 return 0;
5091}
5092
Dan Gohman42214892009-08-31 21:15:23 +00005093const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005094 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005095
Nick Lewycky3e630762008-02-20 06:48:22 +00005096 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00005097 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00005098 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005099 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005100 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00005101 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5102 if (PHINode *PN = dyn_cast<PHINode>(I))
5103 if (PN->getParent() == LI->getHeader()) {
5104 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00005105 // to see if the loop that contains it has a known backedge-taken
5106 // count. If so, we may be able to force computation of the exit
5107 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005108 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00005109 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00005110 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005111 // Okay, we know how many times the containing loop executes. If
5112 // this is a constant evolving PHI node, get the final value at
5113 // the specified iteration number.
5114 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00005115 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00005116 LI);
Dan Gohman09987962009-06-29 21:31:18 +00005117 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00005118 }
5119 }
5120
Reid Spencer09906f32006-12-04 21:33:23 +00005121 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00005122 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00005123 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00005124 // result. This is particularly useful for computing loop exit values.
5125 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00005126 SmallVector<Constant *, 4> Operands;
5127 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00005128 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5129 Value *Op = I->getOperand(i);
5130 if (Constant *C = dyn_cast<Constant>(Op)) {
5131 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00005132 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00005133 }
Dan Gohman11046452010-06-29 23:43:06 +00005134
5135 // If any of the operands is non-constant and if they are
5136 // non-integer and non-pointer, don't even try to analyze them
5137 // with scev techniques.
5138 if (!isSCEVable(Op->getType()))
5139 return V;
5140
5141 const SCEV *OrigV = getSCEV(Op);
5142 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5143 MadeImprovement |= OrigV != OpV;
5144
Nick Lewycky614fef62011-10-22 19:58:20 +00005145 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohman11046452010-06-29 23:43:06 +00005146 if (!C) return V;
5147 if (C->getType() != Op->getType())
5148 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5149 Op->getType(),
5150 false),
5151 C, Op->getType());
5152 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00005153 }
Dan Gohman64a845e2009-06-24 04:48:43 +00005154
Dan Gohman11046452010-06-29 23:43:06 +00005155 // Check to see if getSCEVAtScope actually made an improvement.
5156 if (MadeImprovement) {
5157 Constant *C = 0;
5158 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5159 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Chad Rosieraab8e282011-12-02 01:26:24 +00005160 Operands[0], Operands[1], TD,
5161 TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00005162 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5163 if (!LI->isVolatile())
5164 C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5165 } else
Dan Gohman11046452010-06-29 23:43:06 +00005166 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Chad Rosier00737bd2011-12-01 21:29:16 +00005167 Operands, TD, TLI);
Dan Gohman11046452010-06-29 23:43:06 +00005168 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00005169 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00005170 }
Chris Lattner3221ad02004-04-17 22:58:41 +00005171 }
5172 }
5173
5174 // This is some other type of SCEVUnknown, just return it.
5175 return V;
5176 }
5177
Dan Gohman622ed672009-05-04 22:02:23 +00005178 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005179 // Avoid performing the look-up in the common case where the specified
5180 // expression has no loop-variant portions.
5181 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005182 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005183 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005184 // Okay, at least one of these operands is loop variant but might be
5185 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00005186 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5187 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00005188 NewOps.push_back(OpAtScope);
5189
5190 for (++i; i != e; ++i) {
5191 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005192 NewOps.push_back(OpAtScope);
5193 }
5194 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005195 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005196 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005197 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005198 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005199 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00005200 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005201 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00005202 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005203 }
5204 }
5205 // If we got here, all operands are loop invariant.
5206 return Comm;
5207 }
5208
Dan Gohman622ed672009-05-04 22:02:23 +00005209 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005210 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5211 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00005212 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5213 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005214 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00005215 }
5216
5217 // If this is a loop recurrence for a loop that does not contain L, then we
5218 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00005219 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00005220 // First, attempt to evaluate each operand.
5221 // Avoid performing the look-up in the common case where the specified
5222 // expression has no loop-variant portions.
5223 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5224 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5225 if (OpAtScope == AddRec->getOperand(i))
5226 continue;
5227
5228 // Okay, at least one of these operands is loop variant but might be
5229 // foldable. Build a new instance of the folded commutative expression.
5230 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5231 AddRec->op_begin()+i);
5232 NewOps.push_back(OpAtScope);
5233 for (++i; i != e; ++i)
5234 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5235
Andrew Trick3f95c882011-04-27 01:21:25 +00005236 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00005237 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00005238 AddRec->getNoWrapFlags(SCEV::FlagNW));
5239 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00005240 // The addrec may be folded to a nonrecurrence, for example, if the
5241 // induction variable is multiplied by zero after constant folding. Go
5242 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00005243 if (!AddRec)
5244 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00005245 break;
5246 }
5247
5248 // If the scope is outside the addrec's loop, evaluate it by using the
5249 // loop exit value of the addrec.
5250 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005251 // To evaluate this recurrence, we need to know how many times the AddRec
5252 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005253 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00005254 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005255
Eli Friedmanb42a6262008-08-04 23:49:06 +00005256 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005257 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005258 }
Dan Gohman11046452010-06-29 23:43:06 +00005259
Dan Gohmand594e6f2009-05-24 23:25:42 +00005260 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00005261 }
5262
Dan Gohman622ed672009-05-04 22:02:23 +00005263 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005264 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005265 if (Op == Cast->getOperand())
5266 return Cast; // must be loop invariant
5267 return getZeroExtendExpr(Op, Cast->getType());
5268 }
5269
Dan Gohman622ed672009-05-04 22:02:23 +00005270 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005271 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005272 if (Op == Cast->getOperand())
5273 return Cast; // must be loop invariant
5274 return getSignExtendExpr(Op, Cast->getType());
5275 }
5276
Dan Gohman622ed672009-05-04 22:02:23 +00005277 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005278 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005279 if (Op == Cast->getOperand())
5280 return Cast; // must be loop invariant
5281 return getTruncateExpr(Op, Cast->getType());
5282 }
5283
Torok Edwinc23197a2009-07-14 16:55:14 +00005284 llvm_unreachable("Unknown SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005285}
5286
Dan Gohman66a7e852009-05-08 20:38:54 +00005287/// getSCEVAtScope - This is a convenience function which does
5288/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00005289const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005290 return getSCEVAtScope(getSCEV(V), L);
5291}
5292
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005293/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5294/// following equation:
5295///
5296/// A * X = B (mod N)
5297///
5298/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5299/// A and B isn't important.
5300///
5301/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005302static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005303 ScalarEvolution &SE) {
5304 uint32_t BW = A.getBitWidth();
5305 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5306 assert(A != 0 && "A must be non-zero.");
5307
5308 // 1. D = gcd(A, N)
5309 //
5310 // The gcd of A and N may have only one prime factor: 2. The number of
5311 // trailing zeros in A is its multiplicity
5312 uint32_t Mult2 = A.countTrailingZeros();
5313 // D = 2^Mult2
5314
5315 // 2. Check if B is divisible by D.
5316 //
5317 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5318 // is not less than multiplicity of this prime factor for D.
5319 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005320 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005321
5322 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5323 // modulo (N / D).
5324 //
5325 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5326 // bit width during computations.
5327 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5328 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005329 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005330 APInt I = AD.multiplicativeInverse(Mod);
5331
5332 // 4. Compute the minimum unsigned root of the equation:
5333 // I * (B / D) mod (N / D)
5334 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5335
5336 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5337 // bits.
5338 return SE.getConstant(Result.trunc(BW));
5339}
Chris Lattner53e677a2004-04-02 20:23:17 +00005340
5341/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5342/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5343/// might be the same) or two SCEVCouldNotCompute objects.
5344///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005345static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005346SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005347 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005348 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5349 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5350 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005351
Chris Lattner53e677a2004-04-02 20:23:17 +00005352 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005353 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005354 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005355 return std::make_pair(CNC, CNC);
5356 }
5357
Reid Spencere8019bb2007-03-01 07:25:48 +00005358 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005359 const APInt &L = LC->getValue()->getValue();
5360 const APInt &M = MC->getValue()->getValue();
5361 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005362 APInt Two(BitWidth, 2);
5363 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005364
Dan Gohman64a845e2009-06-24 04:48:43 +00005365 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005366 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005367 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005368 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5369 // The B coefficient is M-N/2
5370 APInt B(M);
5371 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005372
Reid Spencere8019bb2007-03-01 07:25:48 +00005373 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005374 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005375
Reid Spencere8019bb2007-03-01 07:25:48 +00005376 // Compute the B^2-4ac term.
5377 APInt SqrtTerm(B);
5378 SqrtTerm *= B;
5379 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005380
Reid Spencere8019bb2007-03-01 07:25:48 +00005381 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5382 // integer value or else APInt::sqrt() will assert.
5383 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005384
Dan Gohman64a845e2009-06-24 04:48:43 +00005385 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005386 // The divisions must be performed as signed divisions.
5387 APInt NegB(-B);
Nick Lewycky1cbae182011-10-03 07:10:45 +00005388 APInt TwoA(A << 1);
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005389 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005390 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005391 return std::make_pair(CNC, CNC);
5392 }
5393
Owen Andersone922c022009-07-22 00:24:57 +00005394 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005395
5396 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005397 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005398 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005399 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005400
Dan Gohman64a845e2009-06-24 04:48:43 +00005401 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005402 SE.getConstant(Solution2));
Nick Lewycky1cbae182011-10-03 07:10:45 +00005403 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005404}
5405
5406/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005407/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005408///
5409/// This is only used for loops with a "x != y" exit test. The exit condition is
5410/// now expressed as a single expression, V = x-y. So the exit test is
5411/// effectively V != 0. We know and take advantage of the fact that this
5412/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005413ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005414ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005415 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005416 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005417 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005418 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005419 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005420 }
5421
Dan Gohman35738ac2009-05-04 22:30:44 +00005422 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005423 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005424 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005425
Chris Lattner7975e3e2011-01-09 22:39:48 +00005426 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5427 // the quadratic equation to solve it.
5428 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5429 std::pair<const SCEV *,const SCEV *> Roots =
5430 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005431 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5432 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005433 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005434#if 0
David Greene25e0e872009-12-23 22:18:14 +00005435 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005436 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005437#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005438 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005439 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005440 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5441 R1->getValue(),
5442 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005443 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005444 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005445
Chris Lattner53e677a2004-04-02 20:23:17 +00005446 // We can only use this value if the chrec ends up with an exact zero
5447 // value at this index. When solving for "X*X != 5", for example, we
5448 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005449 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005450 if (Val->isZero())
5451 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005452 }
5453 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005454 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005455 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005456
Chris Lattner7975e3e2011-01-09 22:39:48 +00005457 // Otherwise we can only handle this if it is affine.
5458 if (!AddRec->isAffine())
5459 return getCouldNotCompute();
5460
5461 // If this is an affine expression, the execution count of this branch is
5462 // the minimum unsigned root of the following equation:
5463 //
5464 // Start + Step*N = 0 (mod 2^BW)
5465 //
5466 // equivalent to:
5467 //
5468 // Step*N = -Start (mod 2^BW)
5469 //
5470 // where BW is the common bit width of Start and Step.
5471
5472 // Get the initial value for the loop.
5473 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5474 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5475
5476 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005477 //
5478 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5479 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5480 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5481 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005482 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5483 if (StepC == 0)
5484 return getCouldNotCompute();
5485
Andrew Trick3228cc22011-03-14 16:50:06 +00005486 // For positive steps (counting up until unsigned overflow):
5487 // N = -Start/Step (as unsigned)
5488 // For negative steps (counting down to zero):
5489 // N = Start/-Step
5490 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005491 bool CountDown = StepC->getValue()->getValue().isNegative();
5492 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005493
5494 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005495 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5496 // N = Distance (as unsigned)
Nick Lewycky1cbae182011-10-03 07:10:45 +00005497 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5498 ConstantRange CR = getUnsignedRange(Start);
5499 const SCEV *MaxBECount;
5500 if (!CountDown && CR.getUnsignedMin().isMinValue())
5501 // When counting up, the worst starting value is 1, not 0.
5502 MaxBECount = CR.getUnsignedMax().isMinValue()
5503 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5504 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5505 else
5506 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5507 : -CR.getUnsignedMin());
5508 return ExitLimit(Distance, MaxBECount);
5509 }
Andrew Trick635f7182011-03-09 17:23:39 +00005510
Andrew Trickdcfd4042011-03-14 17:28:02 +00005511 // If the recurrence is known not to wraparound, unsigned divide computes the
5512 // back edge count. We know that the value will either become zero (and thus
5513 // the loop terminates), that the loop will terminate through some other exit
5514 // condition first, or that the loop has undefined behavior. This means
5515 // we can't "miss" the exit value, even with nonunit stride.
5516 //
5517 // FIXME: Prove that loops always exhibits *acceptable* undefined
5518 // behavior. Loops must exhibit defined behavior until a wrapped value is
5519 // actually used. So the trip count computed by udiv could be smaller than the
5520 // number of well-defined iterations.
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005521 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
Andrew Trickdcfd4042011-03-14 17:28:02 +00005522 // FIXME: We really want an "isexact" bit for udiv.
5523 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005524 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005525 // Then, try to solve the above equation provided that Start is constant.
5526 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5527 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5528 -StartC->getValue()->getValue(),
5529 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005530 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005531}
5532
5533/// HowFarToNonZero - Return the number of times a backedge checking the
5534/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005535/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005536ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005537ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005538 // Loops that look like: while (X == 0) are very strange indeed. We don't
5539 // handle them yet except for the trivial case. This could be expanded in the
5540 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005541
Chris Lattner53e677a2004-04-02 20:23:17 +00005542 // If the value is a constant, check to see if it is known to be non-zero
5543 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005544 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005545 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005546 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005547 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005548 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005549
Chris Lattner53e677a2004-04-02 20:23:17 +00005550 // We could implement others, but I really doubt anyone writes loops like
5551 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005552 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005553}
5554
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005555/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5556/// (which may not be an immediate predecessor) which has exactly one
5557/// successor from which BB is reachable, or null if no such block is
5558/// found.
5559///
Dan Gohman005752b2010-04-15 16:19:08 +00005560std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005561ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005562 // If the block has a unique predecessor, then there is no path from the
5563 // predecessor to the block that does not go through the direct edge
5564 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005565 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005566 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005567
5568 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005569 // If the header has a unique predecessor outside the loop, it must be
5570 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005571 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005572 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005573
Dan Gohman005752b2010-04-15 16:19:08 +00005574 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005575}
5576
Dan Gohman763bad12009-06-20 00:35:32 +00005577/// HasSameValue - SCEV structural equivalence is usually sufficient for
5578/// testing whether two expressions are equal, however for the purposes of
5579/// looking for a condition guarding a loop, it can be useful to be a little
5580/// more general, since a front-end may have replicated the controlling
5581/// expression.
5582///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005583static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005584 // Quick check to see if they are the same SCEV.
5585 if (A == B) return true;
5586
5587 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5588 // two different instructions with the same value. Check for this case.
5589 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5590 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5591 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5592 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005593 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005594 return true;
5595
5596 // Otherwise assume they may have a different value.
5597 return false;
5598}
5599
Dan Gohmane9796502010-04-24 01:28:42 +00005600/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5601/// predicate Pred. Return true iff any changes were made.
5602///
5603bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5604 const SCEV *&LHS, const SCEV *&RHS) {
5605 bool Changed = false;
5606
5607 // Canonicalize a constant to the right side.
5608 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5609 // Check for both operands constant.
5610 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5611 if (ConstantExpr::getICmp(Pred,
5612 LHSC->getValue(),
5613 RHSC->getValue())->isNullValue())
5614 goto trivially_false;
5615 else
5616 goto trivially_true;
5617 }
5618 // Otherwise swap the operands to put the constant on the right.
5619 std::swap(LHS, RHS);
5620 Pred = ICmpInst::getSwappedPredicate(Pred);
5621 Changed = true;
5622 }
5623
5624 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005625 // addrec's loop, put the addrec on the left. Also make a dominance check,
5626 // as both operands could be addrecs loop-invariant in each other's loop.
5627 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5628 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005629 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005630 std::swap(LHS, RHS);
5631 Pred = ICmpInst::getSwappedPredicate(Pred);
5632 Changed = true;
5633 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005634 }
Dan Gohmane9796502010-04-24 01:28:42 +00005635
5636 // If there's a constant operand, canonicalize comparisons with boundary
5637 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5638 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5639 const APInt &RA = RC->getValue()->getValue();
5640 switch (Pred) {
5641 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5642 case ICmpInst::ICMP_EQ:
5643 case ICmpInst::ICMP_NE:
5644 break;
5645 case ICmpInst::ICMP_UGE:
5646 if ((RA - 1).isMinValue()) {
5647 Pred = ICmpInst::ICMP_NE;
5648 RHS = getConstant(RA - 1);
5649 Changed = true;
5650 break;
5651 }
5652 if (RA.isMaxValue()) {
5653 Pred = ICmpInst::ICMP_EQ;
5654 Changed = true;
5655 break;
5656 }
5657 if (RA.isMinValue()) goto trivially_true;
5658
5659 Pred = ICmpInst::ICMP_UGT;
5660 RHS = getConstant(RA - 1);
5661 Changed = true;
5662 break;
5663 case ICmpInst::ICMP_ULE:
5664 if ((RA + 1).isMaxValue()) {
5665 Pred = ICmpInst::ICMP_NE;
5666 RHS = getConstant(RA + 1);
5667 Changed = true;
5668 break;
5669 }
5670 if (RA.isMinValue()) {
5671 Pred = ICmpInst::ICMP_EQ;
5672 Changed = true;
5673 break;
5674 }
5675 if (RA.isMaxValue()) goto trivially_true;
5676
5677 Pred = ICmpInst::ICMP_ULT;
5678 RHS = getConstant(RA + 1);
5679 Changed = true;
5680 break;
5681 case ICmpInst::ICMP_SGE:
5682 if ((RA - 1).isMinSignedValue()) {
5683 Pred = ICmpInst::ICMP_NE;
5684 RHS = getConstant(RA - 1);
5685 Changed = true;
5686 break;
5687 }
5688 if (RA.isMaxSignedValue()) {
5689 Pred = ICmpInst::ICMP_EQ;
5690 Changed = true;
5691 break;
5692 }
5693 if (RA.isMinSignedValue()) goto trivially_true;
5694
5695 Pred = ICmpInst::ICMP_SGT;
5696 RHS = getConstant(RA - 1);
5697 Changed = true;
5698 break;
5699 case ICmpInst::ICMP_SLE:
5700 if ((RA + 1).isMaxSignedValue()) {
5701 Pred = ICmpInst::ICMP_NE;
5702 RHS = getConstant(RA + 1);
5703 Changed = true;
5704 break;
5705 }
5706 if (RA.isMinSignedValue()) {
5707 Pred = ICmpInst::ICMP_EQ;
5708 Changed = true;
5709 break;
5710 }
5711 if (RA.isMaxSignedValue()) goto trivially_true;
5712
5713 Pred = ICmpInst::ICMP_SLT;
5714 RHS = getConstant(RA + 1);
5715 Changed = true;
5716 break;
5717 case ICmpInst::ICMP_UGT:
5718 if (RA.isMinValue()) {
5719 Pred = ICmpInst::ICMP_NE;
5720 Changed = true;
5721 break;
5722 }
5723 if ((RA + 1).isMaxValue()) {
5724 Pred = ICmpInst::ICMP_EQ;
5725 RHS = getConstant(RA + 1);
5726 Changed = true;
5727 break;
5728 }
5729 if (RA.isMaxValue()) goto trivially_false;
5730 break;
5731 case ICmpInst::ICMP_ULT:
5732 if (RA.isMaxValue()) {
5733 Pred = ICmpInst::ICMP_NE;
5734 Changed = true;
5735 break;
5736 }
5737 if ((RA - 1).isMinValue()) {
5738 Pred = ICmpInst::ICMP_EQ;
5739 RHS = getConstant(RA - 1);
5740 Changed = true;
5741 break;
5742 }
5743 if (RA.isMinValue()) goto trivially_false;
5744 break;
5745 case ICmpInst::ICMP_SGT:
5746 if (RA.isMinSignedValue()) {
5747 Pred = ICmpInst::ICMP_NE;
5748 Changed = true;
5749 break;
5750 }
5751 if ((RA + 1).isMaxSignedValue()) {
5752 Pred = ICmpInst::ICMP_EQ;
5753 RHS = getConstant(RA + 1);
5754 Changed = true;
5755 break;
5756 }
5757 if (RA.isMaxSignedValue()) goto trivially_false;
5758 break;
5759 case ICmpInst::ICMP_SLT:
5760 if (RA.isMaxSignedValue()) {
5761 Pred = ICmpInst::ICMP_NE;
5762 Changed = true;
5763 break;
5764 }
5765 if ((RA - 1).isMinSignedValue()) {
5766 Pred = ICmpInst::ICMP_EQ;
5767 RHS = getConstant(RA - 1);
5768 Changed = true;
5769 break;
5770 }
5771 if (RA.isMinSignedValue()) goto trivially_false;
5772 break;
5773 }
5774 }
5775
5776 // Check for obvious equality.
5777 if (HasSameValue(LHS, RHS)) {
5778 if (ICmpInst::isTrueWhenEqual(Pred))
5779 goto trivially_true;
5780 if (ICmpInst::isFalseWhenEqual(Pred))
5781 goto trivially_false;
5782 }
5783
Dan Gohman03557dc2010-05-03 16:35:17 +00005784 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5785 // adding or subtracting 1 from one of the operands.
5786 switch (Pred) {
5787 case ICmpInst::ICMP_SLE:
5788 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5789 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005790 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005791 Pred = ICmpInst::ICMP_SLT;
5792 Changed = true;
5793 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005794 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005795 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005796 Pred = ICmpInst::ICMP_SLT;
5797 Changed = true;
5798 }
5799 break;
5800 case ICmpInst::ICMP_SGE:
5801 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005802 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005803 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005804 Pred = ICmpInst::ICMP_SGT;
5805 Changed = true;
5806 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5807 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005808 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005809 Pred = ICmpInst::ICMP_SGT;
5810 Changed = true;
5811 }
5812 break;
5813 case ICmpInst::ICMP_ULE:
5814 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005815 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005816 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005817 Pred = ICmpInst::ICMP_ULT;
5818 Changed = true;
5819 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005820 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005821 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005822 Pred = ICmpInst::ICMP_ULT;
5823 Changed = true;
5824 }
5825 break;
5826 case ICmpInst::ICMP_UGE:
5827 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005828 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005829 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005830 Pred = ICmpInst::ICMP_UGT;
5831 Changed = true;
5832 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005833 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005834 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005835 Pred = ICmpInst::ICMP_UGT;
5836 Changed = true;
5837 }
5838 break;
5839 default:
5840 break;
5841 }
5842
Dan Gohmane9796502010-04-24 01:28:42 +00005843 // TODO: More simplifications are possible here.
5844
5845 return Changed;
5846
5847trivially_true:
5848 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005849 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005850 Pred = ICmpInst::ICMP_EQ;
5851 return true;
5852
5853trivially_false:
5854 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005855 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005856 Pred = ICmpInst::ICMP_NE;
5857 return true;
5858}
5859
Dan Gohman85b05a22009-07-13 21:35:55 +00005860bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5861 return getSignedRange(S).getSignedMax().isNegative();
5862}
5863
5864bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5865 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5866}
5867
5868bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5869 return !getSignedRange(S).getSignedMin().isNegative();
5870}
5871
5872bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5873 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5874}
5875
5876bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5877 return isKnownNegative(S) || isKnownPositive(S);
5878}
5879
5880bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5881 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005882 // Canonicalize the inputs first.
5883 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5884
Dan Gohman53c66ea2010-04-11 22:16:48 +00005885 // If LHS or RHS is an addrec, check to see if the condition is true in
5886 // every iteration of the loop.
5887 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5888 if (isLoopEntryGuardedByCond(
5889 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5890 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005891 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005892 return true;
5893 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5894 if (isLoopEntryGuardedByCond(
5895 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5896 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005897 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005898 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005899
Dan Gohman53c66ea2010-04-11 22:16:48 +00005900 // Otherwise see what can be done with known constant ranges.
5901 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5902}
5903
5904bool
5905ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5906 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005907 if (HasSameValue(LHS, RHS))
5908 return ICmpInst::isTrueWhenEqual(Pred);
5909
Dan Gohman53c66ea2010-04-11 22:16:48 +00005910 // This code is split out from isKnownPredicate because it is called from
5911 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005912 switch (Pred) {
5913 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005914 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005915 case ICmpInst::ICMP_SGT:
5916 Pred = ICmpInst::ICMP_SLT;
5917 std::swap(LHS, RHS);
5918 case ICmpInst::ICMP_SLT: {
5919 ConstantRange LHSRange = getSignedRange(LHS);
5920 ConstantRange RHSRange = getSignedRange(RHS);
5921 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5922 return true;
5923 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5924 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005925 break;
5926 }
5927 case ICmpInst::ICMP_SGE:
5928 Pred = ICmpInst::ICMP_SLE;
5929 std::swap(LHS, RHS);
5930 case ICmpInst::ICMP_SLE: {
5931 ConstantRange LHSRange = getSignedRange(LHS);
5932 ConstantRange RHSRange = getSignedRange(RHS);
5933 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5934 return true;
5935 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5936 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005937 break;
5938 }
5939 case ICmpInst::ICMP_UGT:
5940 Pred = ICmpInst::ICMP_ULT;
5941 std::swap(LHS, RHS);
5942 case ICmpInst::ICMP_ULT: {
5943 ConstantRange LHSRange = getUnsignedRange(LHS);
5944 ConstantRange RHSRange = getUnsignedRange(RHS);
5945 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5946 return true;
5947 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5948 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005949 break;
5950 }
5951 case ICmpInst::ICMP_UGE:
5952 Pred = ICmpInst::ICMP_ULE;
5953 std::swap(LHS, RHS);
5954 case ICmpInst::ICMP_ULE: {
5955 ConstantRange LHSRange = getUnsignedRange(LHS);
5956 ConstantRange RHSRange = getUnsignedRange(RHS);
5957 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5958 return true;
5959 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5960 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005961 break;
5962 }
5963 case ICmpInst::ICMP_NE: {
5964 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5965 return true;
5966 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5967 return true;
5968
5969 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5970 if (isKnownNonZero(Diff))
5971 return true;
5972 break;
5973 }
5974 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005975 // The check at the top of the function catches the case where
5976 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005977 break;
5978 }
5979 return false;
5980}
5981
5982/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5983/// protected by a conditional between LHS and RHS. This is used to
5984/// to eliminate casts.
5985bool
5986ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5987 ICmpInst::Predicate Pred,
5988 const SCEV *LHS, const SCEV *RHS) {
5989 // Interpret a null as meaning no loop, where there is obviously no guard
5990 // (interprocedural conditions notwithstanding).
5991 if (!L) return true;
5992
5993 BasicBlock *Latch = L->getLoopLatch();
5994 if (!Latch)
5995 return false;
5996
5997 BranchInst *LoopContinuePredicate =
5998 dyn_cast<BranchInst>(Latch->getTerminator());
5999 if (!LoopContinuePredicate ||
6000 LoopContinuePredicate->isUnconditional())
6001 return false;
6002
Dan Gohmanaf08a362010-08-10 23:46:30 +00006003 return isImpliedCond(Pred, LHS, RHS,
6004 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00006005 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00006006}
6007
Dan Gohman3948d0b2010-04-11 19:27:13 +00006008/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00006009/// by a conditional between LHS and RHS. This is used to help avoid max
6010/// expressions in loop trip counts, and to eliminate casts.
6011bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00006012ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6013 ICmpInst::Predicate Pred,
6014 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00006015 // Interpret a null as meaning no loop, where there is obviously no guard
6016 // (interprocedural conditions notwithstanding).
6017 if (!L) return false;
6018
Dan Gohman859b4822009-05-18 15:36:09 +00006019 // Starting at the loop predecessor, climb up the predecessor chain, as long
6020 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00006021 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00006022 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00006023 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00006024 Pair.first;
6025 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00006026
6027 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00006028 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00006029 if (!LoopEntryPredicate ||
6030 LoopEntryPredicate->isUnconditional())
6031 continue;
6032
Dan Gohmanaf08a362010-08-10 23:46:30 +00006033 if (isImpliedCond(Pred, LHS, RHS,
6034 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00006035 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00006036 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00006037 }
6038
Dan Gohman38372182008-08-12 20:17:31 +00006039 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00006040}
6041
Andrew Trick8aa22012012-05-19 00:48:25 +00006042/// RAII wrapper to prevent recursive application of isImpliedCond.
6043/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6044/// currently evaluating isImpliedCond.
6045struct MarkPendingLoopPredicate {
6046 Value *Cond;
6047 DenseSet<Value*> &LoopPreds;
6048 bool Pending;
6049
6050 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6051 : Cond(C), LoopPreds(LP) {
6052 Pending = !LoopPreds.insert(Cond).second;
6053 }
6054 ~MarkPendingLoopPredicate() {
6055 if (!Pending)
6056 LoopPreds.erase(Cond);
6057 }
6058};
6059
Dan Gohman0f4b2852009-07-21 23:03:19 +00006060/// isImpliedCond - Test whether the condition described by Pred, LHS,
6061/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006062bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006063 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00006064 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006065 bool Inverse) {
Andrew Trick8aa22012012-05-19 00:48:25 +00006066 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6067 if (Mark.Pending)
6068 return false;
6069
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006070 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006071 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006072 if (BO->getOpcode() == Instruction::And) {
6073 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006074 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6075 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006076 } else if (BO->getOpcode() == Instruction::Or) {
6077 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006078 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6079 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006080 }
6081 }
6082
Dan Gohmanaf08a362010-08-10 23:46:30 +00006083 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006084 if (!ICI) return false;
6085
Dan Gohman85b05a22009-07-13 21:35:55 +00006086 // Bail if the ICmp's operands' types are wider than the needed type
6087 // before attempting to call getSCEV on them. This avoids infinite
6088 // recursion, since the analysis of widening casts can require loop
6089 // exit condition information for overflow checking, which would
6090 // lead back here.
6091 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00006092 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00006093 return false;
6094
Dan Gohman0f4b2852009-07-21 23:03:19 +00006095 // Now that we found a conditional branch that dominates the loop, check to
6096 // see if it is the comparison we are looking for.
6097 ICmpInst::Predicate FoundPred;
6098 if (Inverse)
6099 FoundPred = ICI->getInversePredicate();
6100 else
6101 FoundPred = ICI->getPredicate();
6102
6103 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6104 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00006105
6106 // Balance the types. The case where FoundLHS' type is wider than
6107 // LHS' type is checked for above.
6108 if (getTypeSizeInBits(LHS->getType()) >
6109 getTypeSizeInBits(FoundLHS->getType())) {
6110 if (CmpInst::isSigned(Pred)) {
6111 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6112 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6113 } else {
6114 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6115 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6116 }
6117 }
6118
Dan Gohman0f4b2852009-07-21 23:03:19 +00006119 // Canonicalize the query to match the way instcombine will have
6120 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00006121 if (SimplifyICmpOperands(Pred, LHS, RHS))
6122 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006123 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00006124 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6125 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006126 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00006127
6128 // Check to see if we can make the LHS or RHS match.
6129 if (LHS == FoundRHS || RHS == FoundLHS) {
6130 if (isa<SCEVConstant>(RHS)) {
6131 std::swap(FoundLHS, FoundRHS);
6132 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6133 } else {
6134 std::swap(LHS, RHS);
6135 Pred = ICmpInst::getSwappedPredicate(Pred);
6136 }
6137 }
6138
6139 // Check whether the found predicate is the same as the desired predicate.
6140 if (FoundPred == Pred)
6141 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6142
6143 // Check whether swapping the found predicate makes it the same as the
6144 // desired predicate.
6145 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6146 if (isa<SCEVConstant>(RHS))
6147 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6148 else
6149 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6150 RHS, LHS, FoundLHS, FoundRHS);
6151 }
6152
6153 // Check whether the actual condition is beyond sufficient.
6154 if (FoundPred == ICmpInst::ICMP_EQ)
6155 if (ICmpInst::isTrueWhenEqual(Pred))
6156 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6157 return true;
6158 if (Pred == ICmpInst::ICMP_NE)
6159 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6160 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6161 return true;
6162
6163 // Otherwise assume the worst.
6164 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006165}
6166
Dan Gohman0f4b2852009-07-21 23:03:19 +00006167/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006168/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006169/// and FoundRHS is true.
6170bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6171 const SCEV *LHS, const SCEV *RHS,
6172 const SCEV *FoundLHS,
6173 const SCEV *FoundRHS) {
6174 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6175 FoundLHS, FoundRHS) ||
6176 // ~x < ~y --> x > y
6177 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6178 getNotSCEV(FoundRHS),
6179 getNotSCEV(FoundLHS));
6180}
6181
6182/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006183/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006184/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00006185bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00006186ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6187 const SCEV *LHS, const SCEV *RHS,
6188 const SCEV *FoundLHS,
6189 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006190 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00006191 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6192 case ICmpInst::ICMP_EQ:
6193 case ICmpInst::ICMP_NE:
6194 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6195 return true;
6196 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00006197 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00006198 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006199 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6200 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006201 return true;
6202 break;
6203 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006204 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006205 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6206 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006207 return true;
6208 break;
6209 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00006210 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006211 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6212 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006213 return true;
6214 break;
6215 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006216 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006217 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6218 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006219 return true;
6220 break;
6221 }
6222
6223 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006224}
6225
Dan Gohman51f53b72009-06-21 23:46:38 +00006226/// getBECount - Subtract the end and start values and divide by the step,
6227/// rounding up, to get the number of times the backedge is executed. Return
6228/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006229const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00006230 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00006231 const SCEV *Step,
6232 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00006233 assert(!isKnownNegative(Step) &&
6234 "This code doesn't handle negative strides yet!");
6235
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006236 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00006237
6238 // When Start == End, we have an exact BECount == 0. Short-circuit this case
6239 // here because SCEV may not be able to determine that the unsigned division
6240 // after rounding is zero.
6241 if (Start == End)
6242 return getConstant(Ty, 0);
6243
Dan Gohmandeff6212010-05-03 22:09:21 +00006244 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00006245 const SCEV *Diff = getMinusSCEV(End, Start);
6246 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00006247
6248 // Add an adjustment to the difference between End and Start so that
6249 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006250 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00006251
Dan Gohman1f96e672009-09-17 18:05:20 +00006252 if (!NoWrap) {
6253 // Check Add for unsigned overflow.
6254 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006255 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00006256 getTypeSizeInBits(Ty) + 1);
6257 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6258 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6259 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6260 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6261 return getCouldNotCompute();
6262 }
Dan Gohman51f53b72009-06-21 23:46:38 +00006263
6264 return getUDivExpr(Add, Step);
6265}
6266
Chris Lattnerdb25de42005-08-15 23:33:51 +00006267/// HowManyLessThans - Return the number of times a backedge containing the
6268/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00006269/// CouldNotCompute.
Andrew Trick5116ff62011-07-26 17:19:55 +00006270ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00006271ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6272 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00006273 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00006274 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006275
Dan Gohman35738ac2009-05-04 22:30:44 +00006276 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006277 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00006278 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006279
Dan Gohman1f96e672009-09-17 18:05:20 +00006280 // Check to see if we have a flag which makes analysis easy.
Nick Lewycky89d093d2011-11-09 07:11:37 +00006281 bool NoWrap = isSigned ?
6282 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
6283 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
Dan Gohman1f96e672009-09-17 18:05:20 +00006284
Chris Lattnerdb25de42005-08-15 23:33:51 +00006285 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006286 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00006287 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00006288
Dan Gohman52fddd32010-01-26 04:40:18 +00006289 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00006290 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00006291 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006292 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00006293 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00006294 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00006295 // value and past the maximum value for its type in a single step.
6296 // Note that it's not sufficient to check NoWrap here, because even
6297 // though the value after a wrap is undefined, it's not undefined
6298 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00006299 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00006300 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00006301 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00006302 if (isSigned) {
6303 APInt Max = APInt::getSignedMaxValue(BitWidth);
6304 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6305 .slt(getSignedRange(RHS).getSignedMax()))
6306 return getCouldNotCompute();
6307 } else {
6308 APInt Max = APInt::getMaxValue(BitWidth);
6309 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6310 .ult(getUnsignedRange(RHS).getUnsignedMax()))
6311 return getCouldNotCompute();
6312 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006313 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00006314 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00006315 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006316
Dan Gohmana1af7572009-04-30 20:47:05 +00006317 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6318 // m. So, we count the number of iterations in which {n,+,s} < m is true.
6319 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00006320 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00006321
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006322 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00006323 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006324
Dan Gohmana1af7572009-04-30 20:47:05 +00006325 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006326 const SCEV *MinStart = getConstant(isSigned ?
6327 getSignedRange(Start).getSignedMin() :
6328 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006329
Dan Gohmana1af7572009-04-30 20:47:05 +00006330 // If we know that the condition is true in order to enter the loop,
6331 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006332 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6333 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006334 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006335 if (!isLoopEntryGuardedByCond(L,
6336 isSigned ? ICmpInst::ICMP_SLT :
6337 ICmpInst::ICMP_ULT,
6338 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006339 End = isSigned ? getSMaxExpr(RHS, Start)
6340 : getUMaxExpr(RHS, Start);
6341
6342 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006343 const SCEV *MaxEnd = getConstant(isSigned ?
6344 getSignedRange(End).getSignedMax() :
6345 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006346
Dan Gohman52fddd32010-01-26 04:40:18 +00006347 // If MaxEnd is within a step of the maximum integer value in its type,
6348 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006349 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006350 // compute the correct value.
6351 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006352 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006353 MaxEnd = isSigned ?
6354 getSMinExpr(MaxEnd,
6355 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6356 StepMinusOne)) :
6357 getUMinExpr(MaxEnd,
6358 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6359 StepMinusOne));
6360
Dan Gohmana1af7572009-04-30 20:47:05 +00006361 // Finally, we subtract these two values and divide, rounding up, to get
6362 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006363 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006364
6365 // The maximum backedge count is similar, except using the minimum start
6366 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006367 // If we already have an exact constant BECount, use it instead.
6368 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6369 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6370
6371 // If the stride is nonconstant, and NoWrap == true, then
6372 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6373 // exact BECount and invalid MaxBECount, which should be avoided to catch
6374 // more optimization opportunities.
6375 if (isa<SCEVCouldNotCompute>(MaxBECount))
6376 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006377
Andrew Trick5116ff62011-07-26 17:19:55 +00006378 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006379 }
6380
Dan Gohman1c343752009-06-27 21:21:31 +00006381 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006382}
6383
Chris Lattner53e677a2004-04-02 20:23:17 +00006384/// getNumIterationsInRange - Return the number of iterations of this loop that
6385/// produce values in the specified constant range. Another way of looking at
6386/// this is that it returns the first iteration number where the value is not in
6387/// the condition, thus computing the exit count. If the iteration count can't
6388/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006389const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006390 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006391 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006392 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006393
6394 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006395 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006396 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006397 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006398 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006399 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006400 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006401 if (const SCEVAddRecExpr *ShiftedAddRec =
6402 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006403 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006404 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006405 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006406 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006407 }
6408
6409 // The only time we can solve this is when we have all constant indices.
6410 // Otherwise, we cannot determine the overflow conditions.
6411 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6412 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006413 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006414
6415
6416 // Okay at this point we know that all elements of the chrec are constants and
6417 // that the start element is zero.
6418
6419 // First check to see if the range contains zero. If not, the first
6420 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006421 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006422 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006423 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006424
Chris Lattner53e677a2004-04-02 20:23:17 +00006425 if (isAffine()) {
6426 // If this is an affine expression then we have this situation:
6427 // Solve {0,+,A} in Range === Ax in Range
6428
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006429 // We know that zero is in the range. If A is positive then we know that
6430 // the upper value of the range must be the first possible exit value.
6431 // If A is negative then the lower of the range is the last possible loop
6432 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006433 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006434 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6435 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006436
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006437 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006438 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006439 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006440
6441 // Evaluate at the exit value. If we really did fall out of the valid
6442 // range, then we computed our trip count, otherwise wrap around or other
6443 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006444 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006445 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006446 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006447
6448 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006449 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006450 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006451 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006452 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006453 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006454 } else if (isQuadratic()) {
6455 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6456 // quadratic equation to solve it. To do this, we must frame our problem in
6457 // terms of figuring out when zero is crossed, instead of when
6458 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006459 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006460 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006461 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6462 // getNoWrapFlags(FlagNW)
6463 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006464
6465 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006466 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006467 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006468 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6469 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006470 if (R1) {
6471 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006472 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006473 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006474 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006475 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006476 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006477
Chris Lattner53e677a2004-04-02 20:23:17 +00006478 // Make sure the root is not off by one. The returned iteration should
6479 // not be in the range, but the previous one should be. When solving
6480 // for "X*X < 5", for example, we should not return a root of 2.
6481 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006482 R1->getValue(),
6483 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006484 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006485 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006486 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006487 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006488
Dan Gohman246b2562007-10-22 18:31:58 +00006489 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006490 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006491 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006492 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006493 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006494
Chris Lattner53e677a2004-04-02 20:23:17 +00006495 // If R1 was not in the range, then it is a good return value. Make
6496 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006497 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006498 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006499 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006500 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006501 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006502 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006503 }
6504 }
6505 }
6506
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006507 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006508}
6509
6510
6511
6512//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006513// SCEVCallbackVH Class Implementation
6514//===----------------------------------------------------------------------===//
6515
Dan Gohman1959b752009-05-19 19:22:47 +00006516void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006517 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006518 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6519 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006520 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006521 // this now dangles!
6522}
6523
Dan Gohman81f91212010-07-28 01:09:07 +00006524void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006525 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006526
Dan Gohman35738ac2009-05-04 22:30:44 +00006527 // Forget all the expressions associated with users of the old value,
6528 // so that future queries will recompute the expressions using the new
6529 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006530 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006531 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006532 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006533 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6534 UI != UE; ++UI)
6535 Worklist.push_back(*UI);
6536 while (!Worklist.empty()) {
6537 User *U = Worklist.pop_back_val();
6538 // Deleting the Old value will cause this to dangle. Postpone
6539 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006540 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006541 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006542 if (!Visited.insert(U))
6543 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006544 if (PHINode *PN = dyn_cast<PHINode>(U))
6545 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006546 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006547 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6548 UI != UE; ++UI)
6549 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006550 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006551 // Delete the Old value.
6552 if (PHINode *PN = dyn_cast<PHINode>(Old))
6553 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006554 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006555 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006556}
6557
Dan Gohman1959b752009-05-19 19:22:47 +00006558ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006559 : CallbackVH(V), SE(se) {}
6560
6561//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006562// ScalarEvolution Class Implementation
6563//===----------------------------------------------------------------------===//
6564
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006565ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006566 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006567 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006568}
6569
Chris Lattner53e677a2004-04-02 20:23:17 +00006570bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006571 this->F = &F;
6572 LI = &getAnalysis<LoopInfo>();
6573 TD = getAnalysisIfAvailable<TargetData>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006574 TLI = &getAnalysis<TargetLibraryInfo>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006575 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006576 return false;
6577}
6578
6579void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006580 // Iterate through all the SCEVUnknown instances and call their
6581 // destructors, so that they release their references to their values.
6582 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6583 U->~SCEVUnknown();
6584 FirstUnknown = 0;
6585
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006586 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006587
6588 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6589 // that a loop had multiple computable exits.
6590 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6591 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6592 I != E; ++I) {
6593 I->second.clear();
6594 }
6595
Andrew Trick8aa22012012-05-19 00:48:25 +00006596 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
6597
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006598 BackedgeTakenCounts.clear();
6599 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006600 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006601 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006602 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006603 UnsignedRanges.clear();
6604 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006605 UniqueSCEVs.clear();
6606 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006607}
6608
6609void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6610 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006611 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006612 AU.addRequiredTransitive<DominatorTree>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006613 AU.addRequired<TargetLibraryInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006614}
6615
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006616bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006617 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006618}
6619
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006620static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006621 const Loop *L) {
6622 // Print all inner loops first
6623 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6624 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006625
Dan Gohman30733292010-01-09 18:17:45 +00006626 OS << "Loop ";
6627 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6628 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006629
Dan Gohman5d984912009-12-18 01:14:11 +00006630 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006631 L->getExitBlocks(ExitBlocks);
6632 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006633 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006634
Dan Gohman46bdfb02009-02-24 18:55:53 +00006635 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6636 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006637 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006638 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006639 }
6640
Dan Gohman30733292010-01-09 18:17:45 +00006641 OS << "\n"
6642 "Loop ";
6643 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6644 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006645
6646 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6647 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6648 } else {
6649 OS << "Unpredictable max backedge-taken count. ";
6650 }
6651
6652 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006653}
6654
Dan Gohman5d984912009-12-18 01:14:11 +00006655void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006656 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006657 // out SCEV values of all instructions that are interesting. Doing
6658 // this potentially causes it to create new SCEV objects though,
6659 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006660 // observable from outside the class though, so casting away the
6661 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006662 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006663
Dan Gohman30733292010-01-09 18:17:45 +00006664 OS << "Classifying expressions for: ";
6665 WriteAsOperand(OS, F, /*PrintType=*/false);
6666 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006667 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006668 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006669 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006670 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006671 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006672 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006673
Dan Gohman0c689c52009-06-19 17:49:54 +00006674 const Loop *L = LI->getLoopFor((*I).getParent());
6675
Dan Gohman0bba49c2009-07-07 17:06:11 +00006676 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006677 if (AtUse != SV) {
6678 OS << " --> ";
6679 AtUse->print(OS);
6680 }
6681
6682 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006683 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006684 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006685 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006686 OS << "<<Unknown>>";
6687 } else {
6688 OS << *ExitValue;
6689 }
6690 }
6691
Chris Lattner53e677a2004-04-02 20:23:17 +00006692 OS << "\n";
6693 }
6694
Dan Gohman30733292010-01-09 18:17:45 +00006695 OS << "Determining loop execution counts for: ";
6696 WriteAsOperand(OS, F, /*PrintType=*/false);
6697 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006698 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6699 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006700}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006701
Dan Gohman714b5292010-11-17 23:21:44 +00006702ScalarEvolution::LoopDisposition
6703ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6704 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6705 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6706 Values.insert(std::make_pair(L, LoopVariant));
6707 if (!Pair.second)
6708 return Pair.first->second;
6709
6710 LoopDisposition D = computeLoopDisposition(S, L);
6711 return LoopDispositions[S][L] = D;
6712}
6713
6714ScalarEvolution::LoopDisposition
6715ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006716 switch (S->getSCEVType()) {
6717 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006718 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006719 case scTruncate:
6720 case scZeroExtend:
6721 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006722 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006723 case scAddRecExpr: {
6724 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6725
Dan Gohman714b5292010-11-17 23:21:44 +00006726 // If L is the addrec's loop, it's computable.
6727 if (AR->getLoop() == L)
6728 return LoopComputable;
6729
Dan Gohman17ead4f2010-11-17 21:23:15 +00006730 // Add recurrences are never invariant in the function-body (null loop).
6731 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006732 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006733
6734 // This recurrence is variant w.r.t. L if L contains AR's loop.
6735 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006736 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006737
6738 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6739 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006740 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006741
6742 // This recurrence is variant w.r.t. L if any of its operands
6743 // are variant.
6744 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6745 I != E; ++I)
6746 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006747 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006748
6749 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006750 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006751 }
6752 case scAddExpr:
6753 case scMulExpr:
6754 case scUMaxExpr:
6755 case scSMaxExpr: {
6756 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006757 bool HasVarying = false;
6758 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6759 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006760 LoopDisposition D = getLoopDisposition(*I, L);
6761 if (D == LoopVariant)
6762 return LoopVariant;
6763 if (D == LoopComputable)
6764 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006765 }
Dan Gohman714b5292010-11-17 23:21:44 +00006766 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006767 }
6768 case scUDivExpr: {
6769 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006770 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6771 if (LD == LoopVariant)
6772 return LoopVariant;
6773 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6774 if (RD == LoopVariant)
6775 return LoopVariant;
6776 return (LD == LoopInvariant && RD == LoopInvariant) ?
6777 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006778 }
6779 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006780 // All non-instruction values are loop invariant. All instructions are loop
6781 // invariant if they are not contained in the specified loop.
6782 // Instructions are never considered invariant in the function body
6783 // (null loop) because they are defined within the "loop".
6784 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6785 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6786 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006787 case scCouldNotCompute:
6788 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +00006789 default: llvm_unreachable("Unknown SCEV kind!");
Dan Gohman17ead4f2010-11-17 21:23:15 +00006790 }
Dan Gohman714b5292010-11-17 23:21:44 +00006791}
6792
6793bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6794 return getLoopDisposition(S, L) == LoopInvariant;
6795}
6796
6797bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6798 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006799}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006800
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006801ScalarEvolution::BlockDisposition
6802ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6803 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6804 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6805 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6806 if (!Pair.second)
6807 return Pair.first->second;
6808
6809 BlockDisposition D = computeBlockDisposition(S, BB);
6810 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006811}
6812
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006813ScalarEvolution::BlockDisposition
6814ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006815 switch (S->getSCEVType()) {
6816 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006817 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006818 case scTruncate:
6819 case scZeroExtend:
6820 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006821 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006822 case scAddRecExpr: {
6823 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006824 // to test for proper dominance too, because the instruction which
6825 // produces the addrec's value is a PHI, and a PHI effectively properly
6826 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006827 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6828 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006829 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006830 }
6831 // FALL THROUGH into SCEVNAryExpr handling.
6832 case scAddExpr:
6833 case scMulExpr:
6834 case scUMaxExpr:
6835 case scSMaxExpr: {
6836 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006837 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006838 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006839 I != E; ++I) {
6840 BlockDisposition D = getBlockDisposition(*I, BB);
6841 if (D == DoesNotDominateBlock)
6842 return DoesNotDominateBlock;
6843 if (D == DominatesBlock)
6844 Proper = false;
6845 }
6846 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006847 }
6848 case scUDivExpr: {
6849 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006850 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6851 BlockDisposition LD = getBlockDisposition(LHS, BB);
6852 if (LD == DoesNotDominateBlock)
6853 return DoesNotDominateBlock;
6854 BlockDisposition RD = getBlockDisposition(RHS, BB);
6855 if (RD == DoesNotDominateBlock)
6856 return DoesNotDominateBlock;
6857 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6858 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006859 }
6860 case scUnknown:
6861 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006862 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6863 if (I->getParent() == BB)
6864 return DominatesBlock;
6865 if (DT->properlyDominates(I->getParent(), BB))
6866 return ProperlyDominatesBlock;
6867 return DoesNotDominateBlock;
6868 }
6869 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006870 case scCouldNotCompute:
6871 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Andrew Trickeb6dd232012-03-26 22:33:59 +00006872 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +00006873 llvm_unreachable("Unknown SCEV kind!");
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006874 }
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006875}
6876
6877bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6878 return getBlockDisposition(S, BB) >= DominatesBlock;
6879}
6880
6881bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6882 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006883}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006884
6885bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Dan Gohmanac844612012-05-10 17:21:30 +00006886 SmallVector<const SCEV *, 8> Worklist;
6887 Worklist.push_back(S);
6888 do {
6889 S = Worklist.pop_back_val();
6890
6891 switch (S->getSCEVType()) {
6892 case scConstant:
6893 break;
6894 case scTruncate:
6895 case scZeroExtend:
6896 case scSignExtend: {
6897 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6898 const SCEV *CastOp = Cast->getOperand();
6899 if (Op == CastOp)
Dan Gohman4ce32db2010-11-17 22:27:42 +00006900 return true;
Dan Gohmanac844612012-05-10 17:21:30 +00006901 Worklist.push_back(CastOp);
6902 break;
Dan Gohman4ce32db2010-11-17 22:27:42 +00006903 }
Dan Gohmanac844612012-05-10 17:21:30 +00006904 case scAddRecExpr:
6905 case scAddExpr:
6906 case scMulExpr:
6907 case scUMaxExpr:
6908 case scSMaxExpr: {
6909 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6910 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6911 I != E; ++I) {
6912 const SCEV *NAryOp = *I;
6913 if (NAryOp == Op)
6914 return true;
6915 Worklist.push_back(NAryOp);
6916 }
6917 break;
6918 }
6919 case scUDivExpr: {
6920 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6921 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6922 if (LHS == Op || RHS == Op)
6923 return true;
6924 Worklist.push_back(LHS);
6925 Worklist.push_back(RHS);
6926 break;
6927 }
6928 case scUnknown:
6929 break;
6930 case scCouldNotCompute:
6931 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6932 default:
6933 llvm_unreachable("Unknown SCEV kind!");
6934 }
6935 } while (!Worklist.empty());
6936
6937 return false;
Dan Gohman4ce32db2010-11-17 22:27:42 +00006938}
Dan Gohman56a75682010-11-17 23:28:48 +00006939
6940void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6941 ValuesAtScopes.erase(S);
6942 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006943 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006944 UnsignedRanges.erase(S);
6945 SignedRanges.erase(S);
6946}