blob: 3f7845f89f7af80605c314b1138adb54e42bdc9d [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
Tim Northover675a0962014-06-13 14:24:23 +0000120 %0 = add i32 %X, %X ; yields i32:%0
121 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000443A symbol with ``internal`` or ``private`` linkage must have ``default``
444visibility.
445
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000446.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000447
Nico Rieck7157bb72014-01-14 15:22:47 +0000448DLL Storage Classes
449-------------------
450
451All Global Variables, Functions and Aliases can have one of the following
452DLL storage class:
453
454``dllimport``
455 "``dllimport``" causes the compiler to reference a function or variable via
456 a global pointer to a pointer that is set up by the DLL exporting the
457 symbol. On Microsoft Windows targets, the pointer name is formed by
458 combining ``__imp_`` and the function or variable name.
459``dllexport``
460 "``dllexport``" causes the compiler to provide a global pointer to a pointer
461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
462 Microsoft Windows targets, the pointer name is formed by combining
463 ``__imp_`` and the function or variable name. Since this storage class
464 exists for defining a dll interface, the compiler, assembler and linker know
465 it is externally referenced and must refrain from deleting the symbol.
466
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000467.. _tls_model:
468
469Thread Local Storage Models
470---------------------------
471
472A variable may be defined as ``thread_local``, which means that it will
473not be shared by threads (each thread will have a separated copy of the
474variable). Not all targets support thread-local variables. Optionally, a
475TLS model may be specified:
476
477``localdynamic``
478 For variables that are only used within the current shared library.
479``initialexec``
480 For variables in modules that will not be loaded dynamically.
481``localexec``
482 For variables defined in the executable and only used within it.
483
484If no explicit model is given, the "general dynamic" model is used.
485
486The models correspond to the ELF TLS models; see `ELF Handling For
487Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
488more information on under which circumstances the different models may
489be used. The target may choose a different TLS model if the specified
490model is not supported, or if a better choice of model can be made.
491
492A model can also be specified in a alias, but then it only governs how
493the alias is accessed. It will not have any effect in the aliasee.
494
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000495.. _namedtypes:
496
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000497Structure Types
498---------------
Sean Silvab084af42012-12-07 10:36:55 +0000499
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000500LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
501types <t_struct>`. Literal types are uniqued structurally, but identified types
502are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
503to forward declare a type which is not yet available.
504
505An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000506
507.. code-block:: llvm
508
509 %mytype = type { %mytype*, i32 }
510
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000511Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
512literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000513
514.. _globalvars:
515
516Global Variables
517----------------
518
519Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000520instead of run-time.
521
Bob Wilson85b24f22014-06-12 20:40:33 +0000522Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000523
524Global variables in other translation units can also be declared, in which
525case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000526
Bob Wilson85b24f22014-06-12 20:40:33 +0000527Either global variable definitions or declarations may have an explicit section
528to be placed in and may have an optional explicit alignment specified.
529
Michael Gottesman006039c2013-01-31 05:48:48 +0000530A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000531the contents of the variable will **never** be modified (enabling better
532optimization, allowing the global data to be placed in the read-only
533section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000534initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000535variable.
536
537LLVM explicitly allows *declarations* of global variables to be marked
538constant, even if the final definition of the global is not. This
539capability can be used to enable slightly better optimization of the
540program, but requires the language definition to guarantee that
541optimizations based on the 'constantness' are valid for the translation
542units that do not include the definition.
543
544As SSA values, global variables define pointer values that are in scope
545(i.e. they dominate) all basic blocks in the program. Global variables
546always define a pointer to their "content" type because they describe a
547region of memory, and all memory objects in LLVM are accessed through
548pointers.
549
550Global variables can be marked with ``unnamed_addr`` which indicates
551that the address is not significant, only the content. Constants marked
552like this can be merged with other constants if they have the same
553initializer. Note that a constant with significant address *can* be
554merged with a ``unnamed_addr`` constant, the result being a constant
555whose address is significant.
556
557A global variable may be declared to reside in a target-specific
558numbered address space. For targets that support them, address spaces
559may affect how optimizations are performed and/or what target
560instructions are used to access the variable. The default address space
561is zero. The address space qualifier must precede any other attributes.
562
563LLVM allows an explicit section to be specified for globals. If the
564target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000565Additionally, the global can placed in a comdat if the target has the necessary
566support.
Sean Silvab084af42012-12-07 10:36:55 +0000567
Michael Gottesmane743a302013-02-04 03:22:00 +0000568By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000569variables defined within the module are not modified from their
570initial values before the start of the global initializer. This is
571true even for variables potentially accessible from outside the
572module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000573``@llvm.used`` or dllexported variables. This assumption may be suppressed
574by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000575
Sean Silvab084af42012-12-07 10:36:55 +0000576An explicit alignment may be specified for a global, which must be a
577power of 2. If not present, or if the alignment is set to zero, the
578alignment of the global is set by the target to whatever it feels
579convenient. If an explicit alignment is specified, the global is forced
580to have exactly that alignment. Targets and optimizers are not allowed
581to over-align the global if the global has an assigned section. In this
582case, the extra alignment could be observable: for example, code could
583assume that the globals are densely packed in their section and try to
584iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000585iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000586
Nico Rieck7157bb72014-01-14 15:22:47 +0000587Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
588
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000589Variables and aliasaes can have a
590:ref:`Thread Local Storage Model <tls_model>`.
591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Syntax::
593
594 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000595 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000596 <global | constant> <Type> [<InitializerConstant>]
597 [, section "name"] [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000598
Sean Silvab084af42012-12-07 10:36:55 +0000599For example, the following defines a global in a numbered address space
600with an initializer, section, and alignment:
601
602.. code-block:: llvm
603
604 @G = addrspace(5) constant float 1.0, section "foo", align 4
605
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000606The following example just declares a global variable
607
608.. code-block:: llvm
609
610 @G = external global i32
611
Sean Silvab084af42012-12-07 10:36:55 +0000612The following example defines a thread-local global with the
613``initialexec`` TLS model:
614
615.. code-block:: llvm
616
617 @G = thread_local(initialexec) global i32 0, align 4
618
619.. _functionstructure:
620
621Functions
622---------
623
624LLVM function definitions consist of the "``define``" keyword, an
625optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000626style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
627an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000628an optional ``unnamed_addr`` attribute, a return type, an optional
629:ref:`parameter attribute <paramattrs>` for the return type, a function
630name, a (possibly empty) argument list (each with optional :ref:`parameter
631attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000632an optional section, an optional alignment,
633an optional :ref:`comdat <langref_comdats>`,
634an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000635curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000636
637LLVM function declarations consist of the "``declare``" keyword, an
638optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000639style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
640an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000641an optional ``unnamed_addr`` attribute, a return type, an optional
642:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000643name, a possibly empty list of arguments, an optional alignment, an optional
644:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000645
Bill Wendling6822ecb2013-10-27 05:09:12 +0000646A function definition contains a list of basic blocks, forming the CFG (Control
647Flow Graph) for the function. Each basic block may optionally start with a label
648(giving the basic block a symbol table entry), contains a list of instructions,
649and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
650function return). If an explicit label is not provided, a block is assigned an
651implicit numbered label, using the next value from the same counter as used for
652unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
653entry block does not have an explicit label, it will be assigned label "%0",
654then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000655
656The first basic block in a function is special in two ways: it is
657immediately executed on entrance to the function, and it is not allowed
658to have predecessor basic blocks (i.e. there can not be any branches to
659the entry block of a function). Because the block can have no
660predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
661
662LLVM allows an explicit section to be specified for functions. If the
663target supports it, it will emit functions to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000664Additionally, the function can placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000665
666An explicit alignment may be specified for a function. If not present,
667or if the alignment is set to zero, the alignment of the function is set
668by the target to whatever it feels convenient. If an explicit alignment
669is specified, the function is forced to have at least that much
670alignment. All alignments must be a power of 2.
671
672If the ``unnamed_addr`` attribute is given, the address is know to not
673be significant and two identical functions can be merged.
674
675Syntax::
676
Nico Rieck7157bb72014-01-14 15:22:47 +0000677 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000678 [cconv] [ret attrs]
679 <ResultType> @<FunctionName> ([argument list])
David Majnemerdad0a642014-06-27 18:19:56 +0000680 [unnamed_addr] [fn Attrs] [section "name"] [comdat $<ComdatName>]
681 [align N] [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000682
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000683.. _langref_aliases:
684
Sean Silvab084af42012-12-07 10:36:55 +0000685Aliases
686-------
687
Rafael Espindola64c1e182014-06-03 02:41:57 +0000688Aliases, unlike function or variables, don't create any new data. They
689are just a new symbol and metadata for an existing position.
690
691Aliases have a name and an aliasee that is either a global value or a
692constant expression.
693
Nico Rieck7157bb72014-01-14 15:22:47 +0000694Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000695:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
696<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000697
698Syntax::
699
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000700 @<Name> = [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000701
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000702The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000703``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000704might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000705
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000706Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000707the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
708to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000709
Rafael Espindola64c1e182014-06-03 02:41:57 +0000710Since aliases are only a second name, some restrictions apply, of which
711some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000712
Rafael Espindola64c1e182014-06-03 02:41:57 +0000713* The expression defining the aliasee must be computable at assembly
714 time. Since it is just a name, no relocations can be used.
715
716* No alias in the expression can be weak as the possibility of the
717 intermediate alias being overridden cannot be represented in an
718 object file.
719
720* No global value in the expression can be a declaration, since that
721 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000722
David Majnemerdad0a642014-06-27 18:19:56 +0000723.. _langref_comdats:
724
725Comdats
726-------
727
728Comdat IR provides access to COFF and ELF object file COMDAT functionality.
729
730Comdats have a name which represents the COMDAT key. All global objects which
731specify this key will only end up in the final object file if the linker chooses
732that key over some other key. Aliases are placed in the same COMDAT that their
733aliasee computes to, if any.
734
735Comdats have a selection kind to provide input on how the linker should
736choose between keys in two different object files.
737
738Syntax::
739
740 $<Name> = comdat SelectionKind
741
742The selection kind must be one of the following:
743
744``any``
745 The linker may choose any COMDAT key, the choice is arbitrary.
746``exactmatch``
747 The linker may choose any COMDAT key but the sections must contain the
748 same data.
749``largest``
750 The linker will choose the section containing the largest COMDAT key.
751``noduplicates``
752 The linker requires that only section with this COMDAT key exist.
753``samesize``
754 The linker may choose any COMDAT key but the sections must contain the
755 same amount of data.
756
757Note that the Mach-O platform doesn't support COMDATs and ELF only supports
758``any`` as a selection kind.
759
760Here is an example of a COMDAT group where a function will only be selected if
761the COMDAT key's section is the largest:
762
763.. code-block:: llvm
764
765 $foo = comdat largest
766 @foo = global i32 2, comdat $foo
767
768 define void @bar() comdat $foo {
769 ret void
770 }
771
772In a COFF object file, this will create a COMDAT section with selection kind
773``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
774and another COMDAT section with selection kind
775``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
776section and contains the contents of the ``@baz`` symbol.
777
778There are some restrictions on the properties of the global object.
779It, or an alias to it, must have the same name as the COMDAT group when
780targeting COFF.
781The contents and size of this object may be used during link-time to determine
782which COMDAT groups get selected depending on the selection kind.
783Because the name of the object must match the name of the COMDAT group, the
784linkage of the global object must not be local; local symbols can get renamed
785if a collision occurs in the symbol table.
786
787The combined use of COMDATS and section attributes may yield surprising results.
788For example:
789
790.. code-block:: llvm
791
792 $foo = comdat any
793 $bar = comdat any
794 @g1 = global i32 42, section "sec", comdat $foo
795 @g2 = global i32 42, section "sec", comdat $bar
796
797From the object file perspective, this requires the creation of two sections
798with the same name. This is necessary because both globals belong to different
799COMDAT groups and COMDATs, at the object file level, are represented by
800sections.
801
802Note that certain IR constructs like global variables and functions may create
803COMDATs in the object file in addition to any which are specified using COMDAT
804IR. This arises, for example, when a global variable has linkonce_odr linkage.
805
Sean Silvab084af42012-12-07 10:36:55 +0000806.. _namedmetadatastructure:
807
808Named Metadata
809--------------
810
811Named metadata is a collection of metadata. :ref:`Metadata
812nodes <metadata>` (but not metadata strings) are the only valid
813operands for a named metadata.
814
815Syntax::
816
817 ; Some unnamed metadata nodes, which are referenced by the named metadata.
818 !0 = metadata !{metadata !"zero"}
819 !1 = metadata !{metadata !"one"}
820 !2 = metadata !{metadata !"two"}
821 ; A named metadata.
822 !name = !{!0, !1, !2}
823
824.. _paramattrs:
825
826Parameter Attributes
827--------------------
828
829The return type and each parameter of a function type may have a set of
830*parameter attributes* associated with them. Parameter attributes are
831used to communicate additional information about the result or
832parameters of a function. Parameter attributes are considered to be part
833of the function, not of the function type, so functions with different
834parameter attributes can have the same function type.
835
836Parameter attributes are simple keywords that follow the type specified.
837If multiple parameter attributes are needed, they are space separated.
838For example:
839
840.. code-block:: llvm
841
842 declare i32 @printf(i8* noalias nocapture, ...)
843 declare i32 @atoi(i8 zeroext)
844 declare signext i8 @returns_signed_char()
845
846Note that any attributes for the function result (``nounwind``,
847``readonly``) come immediately after the argument list.
848
849Currently, only the following parameter attributes are defined:
850
851``zeroext``
852 This indicates to the code generator that the parameter or return
853 value should be zero-extended to the extent required by the target's
854 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
855 the caller (for a parameter) or the callee (for a return value).
856``signext``
857 This indicates to the code generator that the parameter or return
858 value should be sign-extended to the extent required by the target's
859 ABI (which is usually 32-bits) by the caller (for a parameter) or
860 the callee (for a return value).
861``inreg``
862 This indicates that this parameter or return value should be treated
863 in a special target-dependent fashion during while emitting code for
864 a function call or return (usually, by putting it in a register as
865 opposed to memory, though some targets use it to distinguish between
866 two different kinds of registers). Use of this attribute is
867 target-specific.
868``byval``
869 This indicates that the pointer parameter should really be passed by
870 value to the function. The attribute implies that a hidden copy of
871 the pointee is made between the caller and the callee, so the callee
872 is unable to modify the value in the caller. This attribute is only
873 valid on LLVM pointer arguments. It is generally used to pass
874 structs and arrays by value, but is also valid on pointers to
875 scalars. The copy is considered to belong to the caller not the
876 callee (for example, ``readonly`` functions should not write to
877 ``byval`` parameters). This is not a valid attribute for return
878 values.
879
880 The byval attribute also supports specifying an alignment with the
881 align attribute. It indicates the alignment of the stack slot to
882 form and the known alignment of the pointer specified to the call
883 site. If the alignment is not specified, then the code generator
884 makes a target-specific assumption.
885
Reid Klecknera534a382013-12-19 02:14:12 +0000886.. _attr_inalloca:
887
888``inalloca``
889
Reid Kleckner60d3a832014-01-16 22:59:24 +0000890 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000891 address of outgoing stack arguments. An ``inalloca`` argument must
892 be a pointer to stack memory produced by an ``alloca`` instruction.
893 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000894 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000895 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000896
Reid Kleckner436c42e2014-01-17 23:58:17 +0000897 An argument allocation may be used by a call at most once because
898 the call may deallocate it. The ``inalloca`` attribute cannot be
899 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000900 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
901 ``inalloca`` attribute also disables LLVM's implicit lowering of
902 large aggregate return values, which means that frontend authors
903 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000904
Reid Kleckner60d3a832014-01-16 22:59:24 +0000905 When the call site is reached, the argument allocation must have
906 been the most recent stack allocation that is still live, or the
907 results are undefined. It is possible to allocate additional stack
908 space after an argument allocation and before its call site, but it
909 must be cleared off with :ref:`llvm.stackrestore
910 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000911
912 See :doc:`InAlloca` for more information on how to use this
913 attribute.
914
Sean Silvab084af42012-12-07 10:36:55 +0000915``sret``
916 This indicates that the pointer parameter specifies the address of a
917 structure that is the return value of the function in the source
918 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000919 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000920 not to trap and to be properly aligned. This may only be applied to
921 the first parameter. This is not a valid attribute for return
922 values.
Sean Silva1703e702014-04-08 21:06:22 +0000923
924.. _noalias:
925
Sean Silvab084af42012-12-07 10:36:55 +0000926``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000927 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000928 the argument or return value do not alias pointer values which are
929 not *based* on it, ignoring certain "irrelevant" dependencies. For a
930 call to the parent function, dependencies between memory references
931 from before or after the call and from those during the call are
932 "irrelevant" to the ``noalias`` keyword for the arguments and return
933 value used in that call. The caller shares the responsibility with
934 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000935 details, please see the discussion of the NoAlias response in :ref:`alias
936 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000937
938 Note that this definition of ``noalias`` is intentionally similar
939 to the definition of ``restrict`` in C99 for function arguments,
940 though it is slightly weaker.
941
942 For function return values, C99's ``restrict`` is not meaningful,
943 while LLVM's ``noalias`` is.
944``nocapture``
945 This indicates that the callee does not make any copies of the
946 pointer that outlive the callee itself. This is not a valid
947 attribute for return values.
948
949.. _nest:
950
951``nest``
952 This indicates that the pointer parameter can be excised using the
953 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000954 attribute for return values and can only be applied to one parameter.
955
956``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000957 This indicates that the function always returns the argument as its return
958 value. This is an optimization hint to the code generator when generating
959 the caller, allowing tail call optimization and omission of register saves
960 and restores in some cases; it is not checked or enforced when generating
961 the callee. The parameter and the function return type must be valid
962 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
963 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000964
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000965``nonnull``
966 This indicates that the parameter or return pointer is not null. This
967 attribute may only be applied to pointer typed parameters. This is not
968 checked or enforced by LLVM, the caller must ensure that the pointer
969 passed in is non-null, or the callee must ensure that the returned pointer
970 is non-null.
971
Hal Finkelb0407ba2014-07-18 15:51:28 +0000972``dereferenceable(<n>)``
973 This indicates that the parameter or return pointer is dereferenceable. This
974 attribute may only be applied to pointer typed parameters. A pointer that
975 is dereferenceable can be loaded from speculatively without a risk of
976 trapping. The number of bytes known to be dereferenceable must be provided
977 in parentheses. It is legal for the number of bytes to be less than the
978 size of the pointee type. The ``nonnull`` attribute does not imply
979 dereferenceability (consider a pointer to one element past the end of an
980 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
981 ``addrspace(0)`` (which is the default address space).
982
Sean Silvab084af42012-12-07 10:36:55 +0000983.. _gc:
984
985Garbage Collector Names
986-----------------------
987
988Each function may specify a garbage collector name, which is simply a
989string:
990
991.. code-block:: llvm
992
993 define void @f() gc "name" { ... }
994
995The compiler declares the supported values of *name*. Specifying a
996collector which will cause the compiler to alter its output in order to
997support the named garbage collection algorithm.
998
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000999.. _prefixdata:
1000
1001Prefix Data
1002-----------
1003
1004Prefix data is data associated with a function which the code generator
1005will emit immediately before the function body. The purpose of this feature
1006is to allow frontends to associate language-specific runtime metadata with
1007specific functions and make it available through the function pointer while
1008still allowing the function pointer to be called. To access the data for a
1009given function, a program may bitcast the function pointer to a pointer to
1010the constant's type. This implies that the IR symbol points to the start
1011of the prefix data.
1012
1013To maintain the semantics of ordinary function calls, the prefix data must
1014have a particular format. Specifically, it must begin with a sequence of
1015bytes which decode to a sequence of machine instructions, valid for the
1016module's target, which transfer control to the point immediately succeeding
1017the prefix data, without performing any other visible action. This allows
1018the inliner and other passes to reason about the semantics of the function
1019definition without needing to reason about the prefix data. Obviously this
1020makes the format of the prefix data highly target dependent.
1021
Peter Collingbourne213358a2013-09-23 20:14:21 +00001022Prefix data is laid out as if it were an initializer for a global variable
1023of the prefix data's type. No padding is automatically placed between the
1024prefix data and the function body. If padding is required, it must be part
1025of the prefix data.
1026
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001027A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
1028which encodes the ``nop`` instruction:
1029
1030.. code-block:: llvm
1031
1032 define void @f() prefix i8 144 { ... }
1033
1034Generally prefix data can be formed by encoding a relative branch instruction
1035which skips the metadata, as in this example of valid prefix data for the
1036x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1037
1038.. code-block:: llvm
1039
1040 %0 = type <{ i8, i8, i8* }>
1041
1042 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
1043
1044A function may have prefix data but no body. This has similar semantics
1045to the ``available_externally`` linkage in that the data may be used by the
1046optimizers but will not be emitted in the object file.
1047
Bill Wendling63b88192013-02-06 06:52:58 +00001048.. _attrgrp:
1049
1050Attribute Groups
1051----------------
1052
1053Attribute groups are groups of attributes that are referenced by objects within
1054the IR. They are important for keeping ``.ll`` files readable, because a lot of
1055functions will use the same set of attributes. In the degenerative case of a
1056``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1057group will capture the important command line flags used to build that file.
1058
1059An attribute group is a module-level object. To use an attribute group, an
1060object references the attribute group's ID (e.g. ``#37``). An object may refer
1061to more than one attribute group. In that situation, the attributes from the
1062different groups are merged.
1063
1064Here is an example of attribute groups for a function that should always be
1065inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1066
1067.. code-block:: llvm
1068
1069 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001070 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001071
1072 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001073 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001074
1075 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1076 define void @f() #0 #1 { ... }
1077
Sean Silvab084af42012-12-07 10:36:55 +00001078.. _fnattrs:
1079
1080Function Attributes
1081-------------------
1082
1083Function attributes are set to communicate additional information about
1084a function. Function attributes are considered to be part of the
1085function, not of the function type, so functions with different function
1086attributes can have the same function type.
1087
1088Function attributes are simple keywords that follow the type specified.
1089If multiple attributes are needed, they are space separated. For
1090example:
1091
1092.. code-block:: llvm
1093
1094 define void @f() noinline { ... }
1095 define void @f() alwaysinline { ... }
1096 define void @f() alwaysinline optsize { ... }
1097 define void @f() optsize { ... }
1098
Sean Silvab084af42012-12-07 10:36:55 +00001099``alignstack(<n>)``
1100 This attribute indicates that, when emitting the prologue and
1101 epilogue, the backend should forcibly align the stack pointer.
1102 Specify the desired alignment, which must be a power of two, in
1103 parentheses.
1104``alwaysinline``
1105 This attribute indicates that the inliner should attempt to inline
1106 this function into callers whenever possible, ignoring any active
1107 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001108``builtin``
1109 This indicates that the callee function at a call site should be
1110 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001111 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +00001112 direct calls to functions which are declared with the ``nobuiltin``
1113 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001114``cold``
1115 This attribute indicates that this function is rarely called. When
1116 computing edge weights, basic blocks post-dominated by a cold
1117 function call are also considered to be cold; and, thus, given low
1118 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001119``inlinehint``
1120 This attribute indicates that the source code contained a hint that
1121 inlining this function is desirable (such as the "inline" keyword in
1122 C/C++). It is just a hint; it imposes no requirements on the
1123 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001124``jumptable``
1125 This attribute indicates that the function should be added to a
1126 jump-instruction table at code-generation time, and that all address-taken
1127 references to this function should be replaced with a reference to the
1128 appropriate jump-instruction-table function pointer. Note that this creates
1129 a new pointer for the original function, which means that code that depends
1130 on function-pointer identity can break. So, any function annotated with
1131 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001132``minsize``
1133 This attribute suggests that optimization passes and code generator
1134 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001135 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001136 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001137``naked``
1138 This attribute disables prologue / epilogue emission for the
1139 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001140``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001141 This indicates that the callee function at a call site is not recognized as
1142 a built-in function. LLVM will retain the original call and not replace it
1143 with equivalent code based on the semantics of the built-in function, unless
1144 the call site uses the ``builtin`` attribute. This is valid at call sites
1145 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001146``noduplicate``
1147 This attribute indicates that calls to the function cannot be
1148 duplicated. A call to a ``noduplicate`` function may be moved
1149 within its parent function, but may not be duplicated within
1150 its parent function.
1151
1152 A function containing a ``noduplicate`` call may still
1153 be an inlining candidate, provided that the call is not
1154 duplicated by inlining. That implies that the function has
1155 internal linkage and only has one call site, so the original
1156 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001157``noimplicitfloat``
1158 This attributes disables implicit floating point instructions.
1159``noinline``
1160 This attribute indicates that the inliner should never inline this
1161 function in any situation. This attribute may not be used together
1162 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001163``nonlazybind``
1164 This attribute suppresses lazy symbol binding for the function. This
1165 may make calls to the function faster, at the cost of extra program
1166 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001167``noredzone``
1168 This attribute indicates that the code generator should not use a
1169 red zone, even if the target-specific ABI normally permits it.
1170``noreturn``
1171 This function attribute indicates that the function never returns
1172 normally. This produces undefined behavior at runtime if the
1173 function ever does dynamically return.
1174``nounwind``
1175 This function attribute indicates that the function never returns
1176 with an unwind or exceptional control flow. If the function does
1177 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001178``optnone``
1179 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001180 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001181 exception of interprocedural optimization passes.
1182 This attribute cannot be used together with the ``alwaysinline``
1183 attribute; this attribute is also incompatible
1184 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001185
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001186 This attribute requires the ``noinline`` attribute to be specified on
1187 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001188 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001189 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001190``optsize``
1191 This attribute suggests that optimization passes and code generator
1192 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001193 and otherwise do optimizations specifically to reduce code size as
1194 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001195``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001196 On a function, this attribute indicates that the function computes its
1197 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001198 without dereferencing any pointer arguments or otherwise accessing
1199 any mutable state (e.g. memory, control registers, etc) visible to
1200 caller functions. It does not write through any pointer arguments
1201 (including ``byval`` arguments) and never changes any state visible
1202 to callers. This means that it cannot unwind exceptions by calling
1203 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001204
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001205 On an argument, this attribute indicates that the function does not
1206 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001207 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001208``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001209 On a function, this attribute indicates that the function does not write
1210 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001211 modify any state (e.g. memory, control registers, etc) visible to
1212 caller functions. It may dereference pointer arguments and read
1213 state that may be set in the caller. A readonly function always
1214 returns the same value (or unwinds an exception identically) when
1215 called with the same set of arguments and global state. It cannot
1216 unwind an exception by calling the ``C++`` exception throwing
1217 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001218
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001219 On an argument, this attribute indicates that the function does not write
1220 through this pointer argument, even though it may write to the memory that
1221 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001222``returns_twice``
1223 This attribute indicates that this function can return twice. The C
1224 ``setjmp`` is an example of such a function. The compiler disables
1225 some optimizations (like tail calls) in the caller of these
1226 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001227``sanitize_address``
1228 This attribute indicates that AddressSanitizer checks
1229 (dynamic address safety analysis) are enabled for this function.
1230``sanitize_memory``
1231 This attribute indicates that MemorySanitizer checks (dynamic detection
1232 of accesses to uninitialized memory) are enabled for this function.
1233``sanitize_thread``
1234 This attribute indicates that ThreadSanitizer checks
1235 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001236``ssp``
1237 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001238 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001239 placed on the stack before the local variables that's checked upon
1240 return from the function to see if it has been overwritten. A
1241 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001242 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001243
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001244 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1245 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1246 - Calls to alloca() with variable sizes or constant sizes greater than
1247 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001248
Josh Magee24c7f062014-02-01 01:36:16 +00001249 Variables that are identified as requiring a protector will be arranged
1250 on the stack such that they are adjacent to the stack protector guard.
1251
Sean Silvab084af42012-12-07 10:36:55 +00001252 If a function that has an ``ssp`` attribute is inlined into a
1253 function that doesn't have an ``ssp`` attribute, then the resulting
1254 function will have an ``ssp`` attribute.
1255``sspreq``
1256 This attribute indicates that the function should *always* emit a
1257 stack smashing protector. This overrides the ``ssp`` function
1258 attribute.
1259
Josh Magee24c7f062014-02-01 01:36:16 +00001260 Variables that are identified as requiring a protector will be arranged
1261 on the stack such that they are adjacent to the stack protector guard.
1262 The specific layout rules are:
1263
1264 #. Large arrays and structures containing large arrays
1265 (``>= ssp-buffer-size``) are closest to the stack protector.
1266 #. Small arrays and structures containing small arrays
1267 (``< ssp-buffer-size``) are 2nd closest to the protector.
1268 #. Variables that have had their address taken are 3rd closest to the
1269 protector.
1270
Sean Silvab084af42012-12-07 10:36:55 +00001271 If a function that has an ``sspreq`` attribute is inlined into a
1272 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001273 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1274 an ``sspreq`` attribute.
1275``sspstrong``
1276 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001277 protector. This attribute causes a strong heuristic to be used when
1278 determining if a function needs stack protectors. The strong heuristic
1279 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001280
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001281 - Arrays of any size and type
1282 - Aggregates containing an array of any size and type.
1283 - Calls to alloca().
1284 - Local variables that have had their address taken.
1285
Josh Magee24c7f062014-02-01 01:36:16 +00001286 Variables that are identified as requiring a protector will be arranged
1287 on the stack such that they are adjacent to the stack protector guard.
1288 The specific layout rules are:
1289
1290 #. Large arrays and structures containing large arrays
1291 (``>= ssp-buffer-size``) are closest to the stack protector.
1292 #. Small arrays and structures containing small arrays
1293 (``< ssp-buffer-size``) are 2nd closest to the protector.
1294 #. Variables that have had their address taken are 3rd closest to the
1295 protector.
1296
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001297 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001298
1299 If a function that has an ``sspstrong`` attribute is inlined into a
1300 function that doesn't have an ``sspstrong`` attribute, then the
1301 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001302``uwtable``
1303 This attribute indicates that the ABI being targeted requires that
1304 an unwind table entry be produce for this function even if we can
1305 show that no exceptions passes by it. This is normally the case for
1306 the ELF x86-64 abi, but it can be disabled for some compilation
1307 units.
Sean Silvab084af42012-12-07 10:36:55 +00001308
1309.. _moduleasm:
1310
1311Module-Level Inline Assembly
1312----------------------------
1313
1314Modules may contain "module-level inline asm" blocks, which corresponds
1315to the GCC "file scope inline asm" blocks. These blocks are internally
1316concatenated by LLVM and treated as a single unit, but may be separated
1317in the ``.ll`` file if desired. The syntax is very simple:
1318
1319.. code-block:: llvm
1320
1321 module asm "inline asm code goes here"
1322 module asm "more can go here"
1323
1324The strings can contain any character by escaping non-printable
1325characters. The escape sequence used is simply "\\xx" where "xx" is the
1326two digit hex code for the number.
1327
1328The inline asm code is simply printed to the machine code .s file when
1329assembly code is generated.
1330
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001331.. _langref_datalayout:
1332
Sean Silvab084af42012-12-07 10:36:55 +00001333Data Layout
1334-----------
1335
1336A module may specify a target specific data layout string that specifies
1337how data is to be laid out in memory. The syntax for the data layout is
1338simply:
1339
1340.. code-block:: llvm
1341
1342 target datalayout = "layout specification"
1343
1344The *layout specification* consists of a list of specifications
1345separated by the minus sign character ('-'). Each specification starts
1346with a letter and may include other information after the letter to
1347define some aspect of the data layout. The specifications accepted are
1348as follows:
1349
1350``E``
1351 Specifies that the target lays out data in big-endian form. That is,
1352 the bits with the most significance have the lowest address
1353 location.
1354``e``
1355 Specifies that the target lays out data in little-endian form. That
1356 is, the bits with the least significance have the lowest address
1357 location.
1358``S<size>``
1359 Specifies the natural alignment of the stack in bits. Alignment
1360 promotion of stack variables is limited to the natural stack
1361 alignment to avoid dynamic stack realignment. The stack alignment
1362 must be a multiple of 8-bits. If omitted, the natural stack
1363 alignment defaults to "unspecified", which does not prevent any
1364 alignment promotions.
1365``p[n]:<size>:<abi>:<pref>``
1366 This specifies the *size* of a pointer and its ``<abi>`` and
1367 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001368 bits. The address space, ``n`` is optional, and if not specified,
1369 denotes the default address space 0. The value of ``n`` must be
1370 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001371``i<size>:<abi>:<pref>``
1372 This specifies the alignment for an integer type of a given bit
1373 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1374``v<size>:<abi>:<pref>``
1375 This specifies the alignment for a vector type of a given bit
1376 ``<size>``.
1377``f<size>:<abi>:<pref>``
1378 This specifies the alignment for a floating point type of a given bit
1379 ``<size>``. Only values of ``<size>`` that are supported by the target
1380 will work. 32 (float) and 64 (double) are supported on all targets; 80
1381 or 128 (different flavors of long double) are also supported on some
1382 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001383``a:<abi>:<pref>``
1384 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001385``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001386 If present, specifies that llvm names are mangled in the output. The
1387 options are
1388
1389 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1390 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1391 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1392 symbols get a ``_`` prefix.
1393 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1394 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001395``n<size1>:<size2>:<size3>...``
1396 This specifies a set of native integer widths for the target CPU in
1397 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1398 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1399 this set are considered to support most general arithmetic operations
1400 efficiently.
1401
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001402On every specification that takes a ``<abi>:<pref>``, specifying the
1403``<pref>`` alignment is optional. If omitted, the preceding ``:``
1404should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1405
Sean Silvab084af42012-12-07 10:36:55 +00001406When constructing the data layout for a given target, LLVM starts with a
1407default set of specifications which are then (possibly) overridden by
1408the specifications in the ``datalayout`` keyword. The default
1409specifications are given in this list:
1410
1411- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001412- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1413- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1414 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001415- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001416- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1417- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1418- ``i16:16:16`` - i16 is 16-bit aligned
1419- ``i32:32:32`` - i32 is 32-bit aligned
1420- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1421 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001422- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001423- ``f32:32:32`` - float is 32-bit aligned
1424- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001425- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001426- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1427- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001428- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001429
1430When LLVM is determining the alignment for a given type, it uses the
1431following rules:
1432
1433#. If the type sought is an exact match for one of the specifications,
1434 that specification is used.
1435#. If no match is found, and the type sought is an integer type, then
1436 the smallest integer type that is larger than the bitwidth of the
1437 sought type is used. If none of the specifications are larger than
1438 the bitwidth then the largest integer type is used. For example,
1439 given the default specifications above, the i7 type will use the
1440 alignment of i8 (next largest) while both i65 and i256 will use the
1441 alignment of i64 (largest specified).
1442#. If no match is found, and the type sought is a vector type, then the
1443 largest vector type that is smaller than the sought vector type will
1444 be used as a fall back. This happens because <128 x double> can be
1445 implemented in terms of 64 <2 x double>, for example.
1446
1447The function of the data layout string may not be what you expect.
1448Notably, this is not a specification from the frontend of what alignment
1449the code generator should use.
1450
1451Instead, if specified, the target data layout is required to match what
1452the ultimate *code generator* expects. This string is used by the
1453mid-level optimizers to improve code, and this only works if it matches
1454what the ultimate code generator uses. If you would like to generate IR
1455that does not embed this target-specific detail into the IR, then you
1456don't have to specify the string. This will disable some optimizations
1457that require precise layout information, but this also prevents those
1458optimizations from introducing target specificity into the IR.
1459
Bill Wendling5cc90842013-10-18 23:41:25 +00001460.. _langref_triple:
1461
1462Target Triple
1463-------------
1464
1465A module may specify a target triple string that describes the target
1466host. The syntax for the target triple is simply:
1467
1468.. code-block:: llvm
1469
1470 target triple = "x86_64-apple-macosx10.7.0"
1471
1472The *target triple* string consists of a series of identifiers delimited
1473by the minus sign character ('-'). The canonical forms are:
1474
1475::
1476
1477 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1478 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1479
1480This information is passed along to the backend so that it generates
1481code for the proper architecture. It's possible to override this on the
1482command line with the ``-mtriple`` command line option.
1483
Sean Silvab084af42012-12-07 10:36:55 +00001484.. _pointeraliasing:
1485
1486Pointer Aliasing Rules
1487----------------------
1488
1489Any memory access must be done through a pointer value associated with
1490an address range of the memory access, otherwise the behavior is
1491undefined. Pointer values are associated with address ranges according
1492to the following rules:
1493
1494- A pointer value is associated with the addresses associated with any
1495 value it is *based* on.
1496- An address of a global variable is associated with the address range
1497 of the variable's storage.
1498- The result value of an allocation instruction is associated with the
1499 address range of the allocated storage.
1500- A null pointer in the default address-space is associated with no
1501 address.
1502- An integer constant other than zero or a pointer value returned from
1503 a function not defined within LLVM may be associated with address
1504 ranges allocated through mechanisms other than those provided by
1505 LLVM. Such ranges shall not overlap with any ranges of addresses
1506 allocated by mechanisms provided by LLVM.
1507
1508A pointer value is *based* on another pointer value according to the
1509following rules:
1510
1511- A pointer value formed from a ``getelementptr`` operation is *based*
1512 on the first operand of the ``getelementptr``.
1513- The result value of a ``bitcast`` is *based* on the operand of the
1514 ``bitcast``.
1515- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1516 values that contribute (directly or indirectly) to the computation of
1517 the pointer's value.
1518- The "*based* on" relationship is transitive.
1519
1520Note that this definition of *"based"* is intentionally similar to the
1521definition of *"based"* in C99, though it is slightly weaker.
1522
1523LLVM IR does not associate types with memory. The result type of a
1524``load`` merely indicates the size and alignment of the memory from
1525which to load, as well as the interpretation of the value. The first
1526operand type of a ``store`` similarly only indicates the size and
1527alignment of the store.
1528
1529Consequently, type-based alias analysis, aka TBAA, aka
1530``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1531:ref:`Metadata <metadata>` may be used to encode additional information
1532which specialized optimization passes may use to implement type-based
1533alias analysis.
1534
1535.. _volatile:
1536
1537Volatile Memory Accesses
1538------------------------
1539
1540Certain memory accesses, such as :ref:`load <i_load>`'s,
1541:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1542marked ``volatile``. The optimizers must not change the number of
1543volatile operations or change their order of execution relative to other
1544volatile operations. The optimizers *may* change the order of volatile
1545operations relative to non-volatile operations. This is not Java's
1546"volatile" and has no cross-thread synchronization behavior.
1547
Andrew Trick89fc5a62013-01-30 21:19:35 +00001548IR-level volatile loads and stores cannot safely be optimized into
1549llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1550flagged volatile. Likewise, the backend should never split or merge
1551target-legal volatile load/store instructions.
1552
Andrew Trick7e6f9282013-01-31 00:49:39 +00001553.. admonition:: Rationale
1554
1555 Platforms may rely on volatile loads and stores of natively supported
1556 data width to be executed as single instruction. For example, in C
1557 this holds for an l-value of volatile primitive type with native
1558 hardware support, but not necessarily for aggregate types. The
1559 frontend upholds these expectations, which are intentionally
1560 unspecified in the IR. The rules above ensure that IR transformation
1561 do not violate the frontend's contract with the language.
1562
Sean Silvab084af42012-12-07 10:36:55 +00001563.. _memmodel:
1564
1565Memory Model for Concurrent Operations
1566--------------------------------------
1567
1568The LLVM IR does not define any way to start parallel threads of
1569execution or to register signal handlers. Nonetheless, there are
1570platform-specific ways to create them, and we define LLVM IR's behavior
1571in their presence. This model is inspired by the C++0x memory model.
1572
1573For a more informal introduction to this model, see the :doc:`Atomics`.
1574
1575We define a *happens-before* partial order as the least partial order
1576that
1577
1578- Is a superset of single-thread program order, and
1579- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1580 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1581 techniques, like pthread locks, thread creation, thread joining,
1582 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1583 Constraints <ordering>`).
1584
1585Note that program order does not introduce *happens-before* edges
1586between a thread and signals executing inside that thread.
1587
1588Every (defined) read operation (load instructions, memcpy, atomic
1589loads/read-modify-writes, etc.) R reads a series of bytes written by
1590(defined) write operations (store instructions, atomic
1591stores/read-modify-writes, memcpy, etc.). For the purposes of this
1592section, initialized globals are considered to have a write of the
1593initializer which is atomic and happens before any other read or write
1594of the memory in question. For each byte of a read R, R\ :sub:`byte`
1595may see any write to the same byte, except:
1596
1597- If write\ :sub:`1` happens before write\ :sub:`2`, and
1598 write\ :sub:`2` happens before R\ :sub:`byte`, then
1599 R\ :sub:`byte` does not see write\ :sub:`1`.
1600- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1601 R\ :sub:`byte` does not see write\ :sub:`3`.
1602
1603Given that definition, R\ :sub:`byte` is defined as follows:
1604
1605- If R is volatile, the result is target-dependent. (Volatile is
1606 supposed to give guarantees which can support ``sig_atomic_t`` in
1607 C/C++, and may be used for accesses to addresses which do not behave
1608 like normal memory. It does not generally provide cross-thread
1609 synchronization.)
1610- Otherwise, if there is no write to the same byte that happens before
1611 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1612- Otherwise, if R\ :sub:`byte` may see exactly one write,
1613 R\ :sub:`byte` returns the value written by that write.
1614- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1615 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1616 Memory Ordering Constraints <ordering>` section for additional
1617 constraints on how the choice is made.
1618- Otherwise R\ :sub:`byte` returns ``undef``.
1619
1620R returns the value composed of the series of bytes it read. This
1621implies that some bytes within the value may be ``undef`` **without**
1622the entire value being ``undef``. Note that this only defines the
1623semantics of the operation; it doesn't mean that targets will emit more
1624than one instruction to read the series of bytes.
1625
1626Note that in cases where none of the atomic intrinsics are used, this
1627model places only one restriction on IR transformations on top of what
1628is required for single-threaded execution: introducing a store to a byte
1629which might not otherwise be stored is not allowed in general.
1630(Specifically, in the case where another thread might write to and read
1631from an address, introducing a store can change a load that may see
1632exactly one write into a load that may see multiple writes.)
1633
1634.. _ordering:
1635
1636Atomic Memory Ordering Constraints
1637----------------------------------
1638
1639Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1640:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1641:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001642ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001643the same address they *synchronize with*. These semantics are borrowed
1644from Java and C++0x, but are somewhat more colloquial. If these
1645descriptions aren't precise enough, check those specs (see spec
1646references in the :doc:`atomics guide <Atomics>`).
1647:ref:`fence <i_fence>` instructions treat these orderings somewhat
1648differently since they don't take an address. See that instruction's
1649documentation for details.
1650
1651For a simpler introduction to the ordering constraints, see the
1652:doc:`Atomics`.
1653
1654``unordered``
1655 The set of values that can be read is governed by the happens-before
1656 partial order. A value cannot be read unless some operation wrote
1657 it. This is intended to provide a guarantee strong enough to model
1658 Java's non-volatile shared variables. This ordering cannot be
1659 specified for read-modify-write operations; it is not strong enough
1660 to make them atomic in any interesting way.
1661``monotonic``
1662 In addition to the guarantees of ``unordered``, there is a single
1663 total order for modifications by ``monotonic`` operations on each
1664 address. All modification orders must be compatible with the
1665 happens-before order. There is no guarantee that the modification
1666 orders can be combined to a global total order for the whole program
1667 (and this often will not be possible). The read in an atomic
1668 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1669 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1670 order immediately before the value it writes. If one atomic read
1671 happens before another atomic read of the same address, the later
1672 read must see the same value or a later value in the address's
1673 modification order. This disallows reordering of ``monotonic`` (or
1674 stronger) operations on the same address. If an address is written
1675 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1676 read that address repeatedly, the other threads must eventually see
1677 the write. This corresponds to the C++0x/C1x
1678 ``memory_order_relaxed``.
1679``acquire``
1680 In addition to the guarantees of ``monotonic``, a
1681 *synchronizes-with* edge may be formed with a ``release`` operation.
1682 This is intended to model C++'s ``memory_order_acquire``.
1683``release``
1684 In addition to the guarantees of ``monotonic``, if this operation
1685 writes a value which is subsequently read by an ``acquire``
1686 operation, it *synchronizes-with* that operation. (This isn't a
1687 complete description; see the C++0x definition of a release
1688 sequence.) This corresponds to the C++0x/C1x
1689 ``memory_order_release``.
1690``acq_rel`` (acquire+release)
1691 Acts as both an ``acquire`` and ``release`` operation on its
1692 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1693``seq_cst`` (sequentially consistent)
1694 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1695 operation which only reads, ``release`` for an operation which only
1696 writes), there is a global total order on all
1697 sequentially-consistent operations on all addresses, which is
1698 consistent with the *happens-before* partial order and with the
1699 modification orders of all the affected addresses. Each
1700 sequentially-consistent read sees the last preceding write to the
1701 same address in this global order. This corresponds to the C++0x/C1x
1702 ``memory_order_seq_cst`` and Java volatile.
1703
1704.. _singlethread:
1705
1706If an atomic operation is marked ``singlethread``, it only *synchronizes
1707with* or participates in modification and seq\_cst total orderings with
1708other operations running in the same thread (for example, in signal
1709handlers).
1710
1711.. _fastmath:
1712
1713Fast-Math Flags
1714---------------
1715
1716LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1717:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1718:ref:`frem <i_frem>`) have the following flags that can set to enable
1719otherwise unsafe floating point operations
1720
1721``nnan``
1722 No NaNs - Allow optimizations to assume the arguments and result are not
1723 NaN. Such optimizations are required to retain defined behavior over
1724 NaNs, but the value of the result is undefined.
1725
1726``ninf``
1727 No Infs - Allow optimizations to assume the arguments and result are not
1728 +/-Inf. Such optimizations are required to retain defined behavior over
1729 +/-Inf, but the value of the result is undefined.
1730
1731``nsz``
1732 No Signed Zeros - Allow optimizations to treat the sign of a zero
1733 argument or result as insignificant.
1734
1735``arcp``
1736 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1737 argument rather than perform division.
1738
1739``fast``
1740 Fast - Allow algebraically equivalent transformations that may
1741 dramatically change results in floating point (e.g. reassociate). This
1742 flag implies all the others.
1743
1744.. _typesystem:
1745
1746Type System
1747===========
1748
1749The LLVM type system is one of the most important features of the
1750intermediate representation. Being typed enables a number of
1751optimizations to be performed on the intermediate representation
1752directly, without having to do extra analyses on the side before the
1753transformation. A strong type system makes it easier to read the
1754generated code and enables novel analyses and transformations that are
1755not feasible to perform on normal three address code representations.
1756
Rafael Espindola08013342013-12-07 19:34:20 +00001757.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001758
Rafael Espindola08013342013-12-07 19:34:20 +00001759Void Type
1760---------
Sean Silvab084af42012-12-07 10:36:55 +00001761
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001762:Overview:
1763
Rafael Espindola08013342013-12-07 19:34:20 +00001764
1765The void type does not represent any value and has no size.
1766
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001767:Syntax:
1768
Rafael Espindola08013342013-12-07 19:34:20 +00001769
1770::
1771
1772 void
Sean Silvab084af42012-12-07 10:36:55 +00001773
1774
Rafael Espindola08013342013-12-07 19:34:20 +00001775.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001776
Rafael Espindola08013342013-12-07 19:34:20 +00001777Function Type
1778-------------
Sean Silvab084af42012-12-07 10:36:55 +00001779
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001780:Overview:
1781
Sean Silvab084af42012-12-07 10:36:55 +00001782
Rafael Espindola08013342013-12-07 19:34:20 +00001783The function type can be thought of as a function signature. It consists of a
1784return type and a list of formal parameter types. The return type of a function
1785type is a void type or first class type --- except for :ref:`label <t_label>`
1786and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001787
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001788:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001789
Rafael Espindola08013342013-12-07 19:34:20 +00001790::
Sean Silvab084af42012-12-07 10:36:55 +00001791
Rafael Espindola08013342013-12-07 19:34:20 +00001792 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001793
Rafael Espindola08013342013-12-07 19:34:20 +00001794...where '``<parameter list>``' is a comma-separated list of type
1795specifiers. Optionally, the parameter list may include a type ``...``, which
1796indicates that the function takes a variable number of arguments. Variable
1797argument functions can access their arguments with the :ref:`variable argument
1798handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1799except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001800
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001801:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001802
Rafael Espindola08013342013-12-07 19:34:20 +00001803+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1804| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1805+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1806| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1807+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1808| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1809+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1810| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1811+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1812
1813.. _t_firstclass:
1814
1815First Class Types
1816-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001817
1818The :ref:`first class <t_firstclass>` types are perhaps the most important.
1819Values of these types are the only ones which can be produced by
1820instructions.
1821
Rafael Espindola08013342013-12-07 19:34:20 +00001822.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001823
Rafael Espindola08013342013-12-07 19:34:20 +00001824Single Value Types
1825^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001826
Rafael Espindola08013342013-12-07 19:34:20 +00001827These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001828
1829.. _t_integer:
1830
1831Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001832""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001833
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001834:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001835
1836The integer type is a very simple type that simply specifies an
1837arbitrary bit width for the integer type desired. Any bit width from 1
1838bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1839
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001840:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001841
1842::
1843
1844 iN
1845
1846The number of bits the integer will occupy is specified by the ``N``
1847value.
1848
1849Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001850*********
Sean Silvab084af42012-12-07 10:36:55 +00001851
1852+----------------+------------------------------------------------+
1853| ``i1`` | a single-bit integer. |
1854+----------------+------------------------------------------------+
1855| ``i32`` | a 32-bit integer. |
1856+----------------+------------------------------------------------+
1857| ``i1942652`` | a really big integer of over 1 million bits. |
1858+----------------+------------------------------------------------+
1859
1860.. _t_floating:
1861
1862Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001863""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001864
1865.. list-table::
1866 :header-rows: 1
1867
1868 * - Type
1869 - Description
1870
1871 * - ``half``
1872 - 16-bit floating point value
1873
1874 * - ``float``
1875 - 32-bit floating point value
1876
1877 * - ``double``
1878 - 64-bit floating point value
1879
1880 * - ``fp128``
1881 - 128-bit floating point value (112-bit mantissa)
1882
1883 * - ``x86_fp80``
1884 - 80-bit floating point value (X87)
1885
1886 * - ``ppc_fp128``
1887 - 128-bit floating point value (two 64-bits)
1888
Reid Kleckner9a16d082014-03-05 02:41:37 +00001889X86_mmx Type
1890""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001891
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001892:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001893
Reid Kleckner9a16d082014-03-05 02:41:37 +00001894The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001895machine. The operations allowed on it are quite limited: parameters and
1896return values, load and store, and bitcast. User-specified MMX
1897instructions are represented as intrinsic or asm calls with arguments
1898and/or results of this type. There are no arrays, vectors or constants
1899of this type.
1900
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001901:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001902
1903::
1904
Reid Kleckner9a16d082014-03-05 02:41:37 +00001905 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001906
Sean Silvab084af42012-12-07 10:36:55 +00001907
Rafael Espindola08013342013-12-07 19:34:20 +00001908.. _t_pointer:
1909
1910Pointer Type
1911""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001912
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001913:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001914
Rafael Espindola08013342013-12-07 19:34:20 +00001915The pointer type is used to specify memory locations. Pointers are
1916commonly used to reference objects in memory.
1917
1918Pointer types may have an optional address space attribute defining the
1919numbered address space where the pointed-to object resides. The default
1920address space is number zero. The semantics of non-zero address spaces
1921are target-specific.
1922
1923Note that LLVM does not permit pointers to void (``void*``) nor does it
1924permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001925
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001926:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001927
1928::
1929
Rafael Espindola08013342013-12-07 19:34:20 +00001930 <type> *
1931
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001932:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001933
1934+-------------------------+--------------------------------------------------------------------------------------------------------------+
1935| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1936+-------------------------+--------------------------------------------------------------------------------------------------------------+
1937| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1938+-------------------------+--------------------------------------------------------------------------------------------------------------+
1939| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1940+-------------------------+--------------------------------------------------------------------------------------------------------------+
1941
1942.. _t_vector:
1943
1944Vector Type
1945"""""""""""
1946
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001947:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001948
1949A vector type is a simple derived type that represents a vector of
1950elements. Vector types are used when multiple primitive data are
1951operated in parallel using a single instruction (SIMD). A vector type
1952requires a size (number of elements) and an underlying primitive data
1953type. Vector types are considered :ref:`first class <t_firstclass>`.
1954
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001955:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001956
1957::
1958
1959 < <# elements> x <elementtype> >
1960
1961The number of elements is a constant integer value larger than 0;
1962elementtype may be any integer or floating point type, or a pointer to
1963these types. Vectors of size zero are not allowed.
1964
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001965:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001966
1967+-------------------+--------------------------------------------------+
1968| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1969+-------------------+--------------------------------------------------+
1970| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1971+-------------------+--------------------------------------------------+
1972| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1973+-------------------+--------------------------------------------------+
1974| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1975+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001976
1977.. _t_label:
1978
1979Label Type
1980^^^^^^^^^^
1981
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001982:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001983
1984The label type represents code labels.
1985
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001986:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001987
1988::
1989
1990 label
1991
1992.. _t_metadata:
1993
1994Metadata Type
1995^^^^^^^^^^^^^
1996
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001997:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001998
1999The metadata type represents embedded metadata. No derived types may be
2000created from metadata except for :ref:`function <t_function>` arguments.
2001
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002002:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002003
2004::
2005
2006 metadata
2007
Sean Silvab084af42012-12-07 10:36:55 +00002008.. _t_aggregate:
2009
2010Aggregate Types
2011^^^^^^^^^^^^^^^
2012
2013Aggregate Types are a subset of derived types that can contain multiple
2014member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2015aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2016aggregate types.
2017
2018.. _t_array:
2019
2020Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002021""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002022
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002023:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002024
2025The array type is a very simple derived type that arranges elements
2026sequentially in memory. The array type requires a size (number of
2027elements) and an underlying data type.
2028
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002029:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002030
2031::
2032
2033 [<# elements> x <elementtype>]
2034
2035The number of elements is a constant integer value; ``elementtype`` may
2036be any type with a size.
2037
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002038:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002039
2040+------------------+--------------------------------------+
2041| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2042+------------------+--------------------------------------+
2043| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2044+------------------+--------------------------------------+
2045| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2046+------------------+--------------------------------------+
2047
2048Here are some examples of multidimensional arrays:
2049
2050+-----------------------------+----------------------------------------------------------+
2051| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2052+-----------------------------+----------------------------------------------------------+
2053| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2054+-----------------------------+----------------------------------------------------------+
2055| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2056+-----------------------------+----------------------------------------------------------+
2057
2058There is no restriction on indexing beyond the end of the array implied
2059by a static type (though there are restrictions on indexing beyond the
2060bounds of an allocated object in some cases). This means that
2061single-dimension 'variable sized array' addressing can be implemented in
2062LLVM with a zero length array type. An implementation of 'pascal style
2063arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2064example.
2065
Sean Silvab084af42012-12-07 10:36:55 +00002066.. _t_struct:
2067
2068Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002069""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002070
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002071:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002072
2073The structure type is used to represent a collection of data members
2074together in memory. The elements of a structure may be any type that has
2075a size.
2076
2077Structures in memory are accessed using '``load``' and '``store``' by
2078getting a pointer to a field with the '``getelementptr``' instruction.
2079Structures in registers are accessed using the '``extractvalue``' and
2080'``insertvalue``' instructions.
2081
2082Structures may optionally be "packed" structures, which indicate that
2083the alignment of the struct is one byte, and that there is no padding
2084between the elements. In non-packed structs, padding between field types
2085is inserted as defined by the DataLayout string in the module, which is
2086required to match what the underlying code generator expects.
2087
2088Structures can either be "literal" or "identified". A literal structure
2089is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2090identified types are always defined at the top level with a name.
2091Literal types are uniqued by their contents and can never be recursive
2092or opaque since there is no way to write one. Identified types can be
2093recursive, can be opaqued, and are never uniqued.
2094
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002095:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002096
2097::
2098
2099 %T1 = type { <type list> } ; Identified normal struct type
2100 %T2 = type <{ <type list> }> ; Identified packed struct type
2101
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002102:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002103
2104+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2105| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2106+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002107| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002108+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2109| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2110+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2111
2112.. _t_opaque:
2113
2114Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002115""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002116
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002117:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002118
2119Opaque structure types are used to represent named structure types that
2120do not have a body specified. This corresponds (for example) to the C
2121notion of a forward declared structure.
2122
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002123:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002124
2125::
2126
2127 %X = type opaque
2128 %52 = type opaque
2129
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002130:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002131
2132+--------------+-------------------+
2133| ``opaque`` | An opaque type. |
2134+--------------+-------------------+
2135
Sean Silva1703e702014-04-08 21:06:22 +00002136.. _constants:
2137
Sean Silvab084af42012-12-07 10:36:55 +00002138Constants
2139=========
2140
2141LLVM has several different basic types of constants. This section
2142describes them all and their syntax.
2143
2144Simple Constants
2145----------------
2146
2147**Boolean constants**
2148 The two strings '``true``' and '``false``' are both valid constants
2149 of the ``i1`` type.
2150**Integer constants**
2151 Standard integers (such as '4') are constants of the
2152 :ref:`integer <t_integer>` type. Negative numbers may be used with
2153 integer types.
2154**Floating point constants**
2155 Floating point constants use standard decimal notation (e.g.
2156 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2157 hexadecimal notation (see below). The assembler requires the exact
2158 decimal value of a floating-point constant. For example, the
2159 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2160 decimal in binary. Floating point constants must have a :ref:`floating
2161 point <t_floating>` type.
2162**Null pointer constants**
2163 The identifier '``null``' is recognized as a null pointer constant
2164 and must be of :ref:`pointer type <t_pointer>`.
2165
2166The one non-intuitive notation for constants is the hexadecimal form of
2167floating point constants. For example, the form
2168'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2169than) '``double 4.5e+15``'. The only time hexadecimal floating point
2170constants are required (and the only time that they are generated by the
2171disassembler) is when a floating point constant must be emitted but it
2172cannot be represented as a decimal floating point number in a reasonable
2173number of digits. For example, NaN's, infinities, and other special
2174values are represented in their IEEE hexadecimal format so that assembly
2175and disassembly do not cause any bits to change in the constants.
2176
2177When using the hexadecimal form, constants of types half, float, and
2178double are represented using the 16-digit form shown above (which
2179matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002180must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002181precision, respectively. Hexadecimal format is always used for long
2182double, and there are three forms of long double. The 80-bit format used
2183by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2184128-bit format used by PowerPC (two adjacent doubles) is represented by
2185``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002186represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2187will only work if they match the long double format on your target.
2188The IEEE 16-bit format (half precision) is represented by ``0xH``
2189followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2190(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002191
Reid Kleckner9a16d082014-03-05 02:41:37 +00002192There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002193
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002194.. _complexconstants:
2195
Sean Silvab084af42012-12-07 10:36:55 +00002196Complex Constants
2197-----------------
2198
2199Complex constants are a (potentially recursive) combination of simple
2200constants and smaller complex constants.
2201
2202**Structure constants**
2203 Structure constants are represented with notation similar to
2204 structure type definitions (a comma separated list of elements,
2205 surrounded by braces (``{}``)). For example:
2206 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2207 "``@G = external global i32``". Structure constants must have
2208 :ref:`structure type <t_struct>`, and the number and types of elements
2209 must match those specified by the type.
2210**Array constants**
2211 Array constants are represented with notation similar to array type
2212 definitions (a comma separated list of elements, surrounded by
2213 square brackets (``[]``)). For example:
2214 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2215 :ref:`array type <t_array>`, and the number and types of elements must
2216 match those specified by the type.
2217**Vector constants**
2218 Vector constants are represented with notation similar to vector
2219 type definitions (a comma separated list of elements, surrounded by
2220 less-than/greater-than's (``<>``)). For example:
2221 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2222 must have :ref:`vector type <t_vector>`, and the number and types of
2223 elements must match those specified by the type.
2224**Zero initialization**
2225 The string '``zeroinitializer``' can be used to zero initialize a
2226 value to zero of *any* type, including scalar and
2227 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2228 having to print large zero initializers (e.g. for large arrays) and
2229 is always exactly equivalent to using explicit zero initializers.
2230**Metadata node**
2231 A metadata node is a structure-like constant with :ref:`metadata
2232 type <t_metadata>`. For example:
2233 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2234 constants that are meant to be interpreted as part of the
2235 instruction stream, metadata is a place to attach additional
2236 information such as debug info.
2237
2238Global Variable and Function Addresses
2239--------------------------------------
2240
2241The addresses of :ref:`global variables <globalvars>` and
2242:ref:`functions <functionstructure>` are always implicitly valid
2243(link-time) constants. These constants are explicitly referenced when
2244the :ref:`identifier for the global <identifiers>` is used and always have
2245:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2246file:
2247
2248.. code-block:: llvm
2249
2250 @X = global i32 17
2251 @Y = global i32 42
2252 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2253
2254.. _undefvalues:
2255
2256Undefined Values
2257----------------
2258
2259The string '``undef``' can be used anywhere a constant is expected, and
2260indicates that the user of the value may receive an unspecified
2261bit-pattern. Undefined values may be of any type (other than '``label``'
2262or '``void``') and be used anywhere a constant is permitted.
2263
2264Undefined values are useful because they indicate to the compiler that
2265the program is well defined no matter what value is used. This gives the
2266compiler more freedom to optimize. Here are some examples of
2267(potentially surprising) transformations that are valid (in pseudo IR):
2268
2269.. code-block:: llvm
2270
2271 %A = add %X, undef
2272 %B = sub %X, undef
2273 %C = xor %X, undef
2274 Safe:
2275 %A = undef
2276 %B = undef
2277 %C = undef
2278
2279This is safe because all of the output bits are affected by the undef
2280bits. Any output bit can have a zero or one depending on the input bits.
2281
2282.. code-block:: llvm
2283
2284 %A = or %X, undef
2285 %B = and %X, undef
2286 Safe:
2287 %A = -1
2288 %B = 0
2289 Unsafe:
2290 %A = undef
2291 %B = undef
2292
2293These logical operations have bits that are not always affected by the
2294input. For example, if ``%X`` has a zero bit, then the output of the
2295'``and``' operation will always be a zero for that bit, no matter what
2296the corresponding bit from the '``undef``' is. As such, it is unsafe to
2297optimize or assume that the result of the '``and``' is '``undef``'.
2298However, it is safe to assume that all bits of the '``undef``' could be
22990, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2300all the bits of the '``undef``' operand to the '``or``' could be set,
2301allowing the '``or``' to be folded to -1.
2302
2303.. code-block:: llvm
2304
2305 %A = select undef, %X, %Y
2306 %B = select undef, 42, %Y
2307 %C = select %X, %Y, undef
2308 Safe:
2309 %A = %X (or %Y)
2310 %B = 42 (or %Y)
2311 %C = %Y
2312 Unsafe:
2313 %A = undef
2314 %B = undef
2315 %C = undef
2316
2317This set of examples shows that undefined '``select``' (and conditional
2318branch) conditions can go *either way*, but they have to come from one
2319of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2320both known to have a clear low bit, then ``%A`` would have to have a
2321cleared low bit. However, in the ``%C`` example, the optimizer is
2322allowed to assume that the '``undef``' operand could be the same as
2323``%Y``, allowing the whole '``select``' to be eliminated.
2324
2325.. code-block:: llvm
2326
2327 %A = xor undef, undef
2328
2329 %B = undef
2330 %C = xor %B, %B
2331
2332 %D = undef
2333 %E = icmp lt %D, 4
2334 %F = icmp gte %D, 4
2335
2336 Safe:
2337 %A = undef
2338 %B = undef
2339 %C = undef
2340 %D = undef
2341 %E = undef
2342 %F = undef
2343
2344This example points out that two '``undef``' operands are not
2345necessarily the same. This can be surprising to people (and also matches
2346C semantics) where they assume that "``X^X``" is always zero, even if
2347``X`` is undefined. This isn't true for a number of reasons, but the
2348short answer is that an '``undef``' "variable" can arbitrarily change
2349its value over its "live range". This is true because the variable
2350doesn't actually *have a live range*. Instead, the value is logically
2351read from arbitrary registers that happen to be around when needed, so
2352the value is not necessarily consistent over time. In fact, ``%A`` and
2353``%C`` need to have the same semantics or the core LLVM "replace all
2354uses with" concept would not hold.
2355
2356.. code-block:: llvm
2357
2358 %A = fdiv undef, %X
2359 %B = fdiv %X, undef
2360 Safe:
2361 %A = undef
2362 b: unreachable
2363
2364These examples show the crucial difference between an *undefined value*
2365and *undefined behavior*. An undefined value (like '``undef``') is
2366allowed to have an arbitrary bit-pattern. This means that the ``%A``
2367operation can be constant folded to '``undef``', because the '``undef``'
2368could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2369However, in the second example, we can make a more aggressive
2370assumption: because the ``undef`` is allowed to be an arbitrary value,
2371we are allowed to assume that it could be zero. Since a divide by zero
2372has *undefined behavior*, we are allowed to assume that the operation
2373does not execute at all. This allows us to delete the divide and all
2374code after it. Because the undefined operation "can't happen", the
2375optimizer can assume that it occurs in dead code.
2376
2377.. code-block:: llvm
2378
2379 a: store undef -> %X
2380 b: store %X -> undef
2381 Safe:
2382 a: <deleted>
2383 b: unreachable
2384
2385These examples reiterate the ``fdiv`` example: a store *of* an undefined
2386value can be assumed to not have any effect; we can assume that the
2387value is overwritten with bits that happen to match what was already
2388there. However, a store *to* an undefined location could clobber
2389arbitrary memory, therefore, it has undefined behavior.
2390
2391.. _poisonvalues:
2392
2393Poison Values
2394-------------
2395
2396Poison values are similar to :ref:`undef values <undefvalues>`, however
2397they also represent the fact that an instruction or constant expression
2398which cannot evoke side effects has nevertheless detected a condition
2399which results in undefined behavior.
2400
2401There is currently no way of representing a poison value in the IR; they
2402only exist when produced by operations such as :ref:`add <i_add>` with
2403the ``nsw`` flag.
2404
2405Poison value behavior is defined in terms of value *dependence*:
2406
2407- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2408- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2409 their dynamic predecessor basic block.
2410- Function arguments depend on the corresponding actual argument values
2411 in the dynamic callers of their functions.
2412- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2413 instructions that dynamically transfer control back to them.
2414- :ref:`Invoke <i_invoke>` instructions depend on the
2415 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2416 call instructions that dynamically transfer control back to them.
2417- Non-volatile loads and stores depend on the most recent stores to all
2418 of the referenced memory addresses, following the order in the IR
2419 (including loads and stores implied by intrinsics such as
2420 :ref:`@llvm.memcpy <int_memcpy>`.)
2421- An instruction with externally visible side effects depends on the
2422 most recent preceding instruction with externally visible side
2423 effects, following the order in the IR. (This includes :ref:`volatile
2424 operations <volatile>`.)
2425- An instruction *control-depends* on a :ref:`terminator
2426 instruction <terminators>` if the terminator instruction has
2427 multiple successors and the instruction is always executed when
2428 control transfers to one of the successors, and may not be executed
2429 when control is transferred to another.
2430- Additionally, an instruction also *control-depends* on a terminator
2431 instruction if the set of instructions it otherwise depends on would
2432 be different if the terminator had transferred control to a different
2433 successor.
2434- Dependence is transitive.
2435
2436Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2437with the additional affect that any instruction which has a *dependence*
2438on a poison value has undefined behavior.
2439
2440Here are some examples:
2441
2442.. code-block:: llvm
2443
2444 entry:
2445 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2446 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2447 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2448 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2449
2450 store i32 %poison, i32* @g ; Poison value stored to memory.
2451 %poison2 = load i32* @g ; Poison value loaded back from memory.
2452
2453 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2454
2455 %narrowaddr = bitcast i32* @g to i16*
2456 %wideaddr = bitcast i32* @g to i64*
2457 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2458 %poison4 = load i64* %wideaddr ; Returns a poison value.
2459
2460 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2461 br i1 %cmp, label %true, label %end ; Branch to either destination.
2462
2463 true:
2464 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2465 ; it has undefined behavior.
2466 br label %end
2467
2468 end:
2469 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2470 ; Both edges into this PHI are
2471 ; control-dependent on %cmp, so this
2472 ; always results in a poison value.
2473
2474 store volatile i32 0, i32* @g ; This would depend on the store in %true
2475 ; if %cmp is true, or the store in %entry
2476 ; otherwise, so this is undefined behavior.
2477
2478 br i1 %cmp, label %second_true, label %second_end
2479 ; The same branch again, but this time the
2480 ; true block doesn't have side effects.
2481
2482 second_true:
2483 ; No side effects!
2484 ret void
2485
2486 second_end:
2487 store volatile i32 0, i32* @g ; This time, the instruction always depends
2488 ; on the store in %end. Also, it is
2489 ; control-equivalent to %end, so this is
2490 ; well-defined (ignoring earlier undefined
2491 ; behavior in this example).
2492
2493.. _blockaddress:
2494
2495Addresses of Basic Blocks
2496-------------------------
2497
2498``blockaddress(@function, %block)``
2499
2500The '``blockaddress``' constant computes the address of the specified
2501basic block in the specified function, and always has an ``i8*`` type.
2502Taking the address of the entry block is illegal.
2503
2504This value only has defined behavior when used as an operand to the
2505':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2506against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002507undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002508no label is equal to the null pointer. This may be passed around as an
2509opaque pointer sized value as long as the bits are not inspected. This
2510allows ``ptrtoint`` and arithmetic to be performed on these values so
2511long as the original value is reconstituted before the ``indirectbr``
2512instruction.
2513
2514Finally, some targets may provide defined semantics when using the value
2515as the operand to an inline assembly, but that is target specific.
2516
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002517.. _constantexprs:
2518
Sean Silvab084af42012-12-07 10:36:55 +00002519Constant Expressions
2520--------------------
2521
2522Constant expressions are used to allow expressions involving other
2523constants to be used as constants. Constant expressions may be of any
2524:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2525that does not have side effects (e.g. load and call are not supported).
2526The following is the syntax for constant expressions:
2527
2528``trunc (CST to TYPE)``
2529 Truncate a constant to another type. The bit size of CST must be
2530 larger than the bit size of TYPE. Both types must be integers.
2531``zext (CST to TYPE)``
2532 Zero extend a constant to another type. The bit size of CST must be
2533 smaller than the bit size of TYPE. Both types must be integers.
2534``sext (CST to TYPE)``
2535 Sign extend a constant to another type. The bit size of CST must be
2536 smaller than the bit size of TYPE. Both types must be integers.
2537``fptrunc (CST to TYPE)``
2538 Truncate a floating point constant to another floating point type.
2539 The size of CST must be larger than the size of TYPE. Both types
2540 must be floating point.
2541``fpext (CST to TYPE)``
2542 Floating point extend a constant to another type. The size of CST
2543 must be smaller or equal to the size of TYPE. Both types must be
2544 floating point.
2545``fptoui (CST to TYPE)``
2546 Convert a floating point constant to the corresponding unsigned
2547 integer constant. TYPE must be a scalar or vector integer type. CST
2548 must be of scalar or vector floating point type. Both CST and TYPE
2549 must be scalars, or vectors of the same number of elements. If the
2550 value won't fit in the integer type, the results are undefined.
2551``fptosi (CST to TYPE)``
2552 Convert a floating point constant to the corresponding signed
2553 integer constant. TYPE must be a scalar or vector integer type. CST
2554 must be of scalar or vector floating point type. Both CST and TYPE
2555 must be scalars, or vectors of the same number of elements. If the
2556 value won't fit in the integer type, the results are undefined.
2557``uitofp (CST to TYPE)``
2558 Convert an unsigned integer constant to the corresponding floating
2559 point constant. TYPE must be a scalar or vector floating point type.
2560 CST must be of scalar or vector integer type. Both CST and TYPE must
2561 be scalars, or vectors of the same number of elements. If the value
2562 won't fit in the floating point type, the results are undefined.
2563``sitofp (CST to TYPE)``
2564 Convert a signed integer constant to the corresponding floating
2565 point constant. TYPE must be a scalar or vector floating point type.
2566 CST must be of scalar or vector integer type. Both CST and TYPE must
2567 be scalars, or vectors of the same number of elements. If the value
2568 won't fit in the floating point type, the results are undefined.
2569``ptrtoint (CST to TYPE)``
2570 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002571 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002572 pointer type. The ``CST`` value is zero extended, truncated, or
2573 unchanged to make it fit in ``TYPE``.
2574``inttoptr (CST to TYPE)``
2575 Convert an integer constant to a pointer constant. TYPE must be a
2576 pointer type. CST must be of integer type. The CST value is zero
2577 extended, truncated, or unchanged to make it fit in a pointer size.
2578 This one is *really* dangerous!
2579``bitcast (CST to TYPE)``
2580 Convert a constant, CST, to another TYPE. The constraints of the
2581 operands are the same as those for the :ref:`bitcast
2582 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002583``addrspacecast (CST to TYPE)``
2584 Convert a constant pointer or constant vector of pointer, CST, to another
2585 TYPE in a different address space. The constraints of the operands are the
2586 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002587``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2588 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2589 constants. As with the :ref:`getelementptr <i_getelementptr>`
2590 instruction, the index list may have zero or more indexes, which are
2591 required to make sense for the type of "CSTPTR".
2592``select (COND, VAL1, VAL2)``
2593 Perform the :ref:`select operation <i_select>` on constants.
2594``icmp COND (VAL1, VAL2)``
2595 Performs the :ref:`icmp operation <i_icmp>` on constants.
2596``fcmp COND (VAL1, VAL2)``
2597 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2598``extractelement (VAL, IDX)``
2599 Perform the :ref:`extractelement operation <i_extractelement>` on
2600 constants.
2601``insertelement (VAL, ELT, IDX)``
2602 Perform the :ref:`insertelement operation <i_insertelement>` on
2603 constants.
2604``shufflevector (VEC1, VEC2, IDXMASK)``
2605 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2606 constants.
2607``extractvalue (VAL, IDX0, IDX1, ...)``
2608 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2609 constants. The index list is interpreted in a similar manner as
2610 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2611 least one index value must be specified.
2612``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2613 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2614 The index list is interpreted in a similar manner as indices in a
2615 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2616 value must be specified.
2617``OPCODE (LHS, RHS)``
2618 Perform the specified operation of the LHS and RHS constants. OPCODE
2619 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2620 binary <bitwiseops>` operations. The constraints on operands are
2621 the same as those for the corresponding instruction (e.g. no bitwise
2622 operations on floating point values are allowed).
2623
2624Other Values
2625============
2626
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002627.. _inlineasmexprs:
2628
Sean Silvab084af42012-12-07 10:36:55 +00002629Inline Assembler Expressions
2630----------------------------
2631
2632LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2633Inline Assembly <moduleasm>`) through the use of a special value. This
2634value represents the inline assembler as a string (containing the
2635instructions to emit), a list of operand constraints (stored as a
2636string), a flag that indicates whether or not the inline asm expression
2637has side effects, and a flag indicating whether the function containing
2638the asm needs to align its stack conservatively. An example inline
2639assembler expression is:
2640
2641.. code-block:: llvm
2642
2643 i32 (i32) asm "bswap $0", "=r,r"
2644
2645Inline assembler expressions may **only** be used as the callee operand
2646of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2647Thus, typically we have:
2648
2649.. code-block:: llvm
2650
2651 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2652
2653Inline asms with side effects not visible in the constraint list must be
2654marked as having side effects. This is done through the use of the
2655'``sideeffect``' keyword, like so:
2656
2657.. code-block:: llvm
2658
2659 call void asm sideeffect "eieio", ""()
2660
2661In some cases inline asms will contain code that will not work unless
2662the stack is aligned in some way, such as calls or SSE instructions on
2663x86, yet will not contain code that does that alignment within the asm.
2664The compiler should make conservative assumptions about what the asm
2665might contain and should generate its usual stack alignment code in the
2666prologue if the '``alignstack``' keyword is present:
2667
2668.. code-block:: llvm
2669
2670 call void asm alignstack "eieio", ""()
2671
2672Inline asms also support using non-standard assembly dialects. The
2673assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2674the inline asm is using the Intel dialect. Currently, ATT and Intel are
2675the only supported dialects. An example is:
2676
2677.. code-block:: llvm
2678
2679 call void asm inteldialect "eieio", ""()
2680
2681If multiple keywords appear the '``sideeffect``' keyword must come
2682first, the '``alignstack``' keyword second and the '``inteldialect``'
2683keyword last.
2684
2685Inline Asm Metadata
2686^^^^^^^^^^^^^^^^^^^
2687
2688The call instructions that wrap inline asm nodes may have a
2689"``!srcloc``" MDNode attached to it that contains a list of constant
2690integers. If present, the code generator will use the integer as the
2691location cookie value when report errors through the ``LLVMContext``
2692error reporting mechanisms. This allows a front-end to correlate backend
2693errors that occur with inline asm back to the source code that produced
2694it. For example:
2695
2696.. code-block:: llvm
2697
2698 call void asm sideeffect "something bad", ""(), !srcloc !42
2699 ...
2700 !42 = !{ i32 1234567 }
2701
2702It is up to the front-end to make sense of the magic numbers it places
2703in the IR. If the MDNode contains multiple constants, the code generator
2704will use the one that corresponds to the line of the asm that the error
2705occurs on.
2706
2707.. _metadata:
2708
2709Metadata Nodes and Metadata Strings
2710-----------------------------------
2711
2712LLVM IR allows metadata to be attached to instructions in the program
2713that can convey extra information about the code to the optimizers and
2714code generator. One example application of metadata is source-level
2715debug information. There are two metadata primitives: strings and nodes.
2716All metadata has the ``metadata`` type and is identified in syntax by a
2717preceding exclamation point ('``!``').
2718
2719A metadata string is a string surrounded by double quotes. It can
2720contain any character by escaping non-printable characters with
2721"``\xx``" where "``xx``" is the two digit hex code. For example:
2722"``!"test\00"``".
2723
2724Metadata nodes are represented with notation similar to structure
2725constants (a comma separated list of elements, surrounded by braces and
2726preceded by an exclamation point). Metadata nodes can have any values as
2727their operand. For example:
2728
2729.. code-block:: llvm
2730
2731 !{ metadata !"test\00", i32 10}
2732
2733A :ref:`named metadata <namedmetadatastructure>` is a collection of
2734metadata nodes, which can be looked up in the module symbol table. For
2735example:
2736
2737.. code-block:: llvm
2738
2739 !foo = metadata !{!4, !3}
2740
2741Metadata can be used as function arguments. Here ``llvm.dbg.value``
2742function is using two metadata arguments:
2743
2744.. code-block:: llvm
2745
2746 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2747
2748Metadata can be attached with an instruction. Here metadata ``!21`` is
2749attached to the ``add`` instruction using the ``!dbg`` identifier:
2750
2751.. code-block:: llvm
2752
2753 %indvar.next = add i64 %indvar, 1, !dbg !21
2754
2755More information about specific metadata nodes recognized by the
2756optimizers and code generator is found below.
2757
2758'``tbaa``' Metadata
2759^^^^^^^^^^^^^^^^^^^
2760
2761In LLVM IR, memory does not have types, so LLVM's own type system is not
2762suitable for doing TBAA. Instead, metadata is added to the IR to
2763describe a type system of a higher level language. This can be used to
2764implement typical C/C++ TBAA, but it can also be used to implement
2765custom alias analysis behavior for other languages.
2766
2767The current metadata format is very simple. TBAA metadata nodes have up
2768to three fields, e.g.:
2769
2770.. code-block:: llvm
2771
2772 !0 = metadata !{ metadata !"an example type tree" }
2773 !1 = metadata !{ metadata !"int", metadata !0 }
2774 !2 = metadata !{ metadata !"float", metadata !0 }
2775 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2776
2777The first field is an identity field. It can be any value, usually a
2778metadata string, which uniquely identifies the type. The most important
2779name in the tree is the name of the root node. Two trees with different
2780root node names are entirely disjoint, even if they have leaves with
2781common names.
2782
2783The second field identifies the type's parent node in the tree, or is
2784null or omitted for a root node. A type is considered to alias all of
2785its descendants and all of its ancestors in the tree. Also, a type is
2786considered to alias all types in other trees, so that bitcode produced
2787from multiple front-ends is handled conservatively.
2788
2789If the third field is present, it's an integer which if equal to 1
2790indicates that the type is "constant" (meaning
2791``pointsToConstantMemory`` should return true; see `other useful
2792AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2793
2794'``tbaa.struct``' Metadata
2795^^^^^^^^^^^^^^^^^^^^^^^^^^
2796
2797The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2798aggregate assignment operations in C and similar languages, however it
2799is defined to copy a contiguous region of memory, which is more than
2800strictly necessary for aggregate types which contain holes due to
2801padding. Also, it doesn't contain any TBAA information about the fields
2802of the aggregate.
2803
2804``!tbaa.struct`` metadata can describe which memory subregions in a
2805memcpy are padding and what the TBAA tags of the struct are.
2806
2807The current metadata format is very simple. ``!tbaa.struct`` metadata
2808nodes are a list of operands which are in conceptual groups of three.
2809For each group of three, the first operand gives the byte offset of a
2810field in bytes, the second gives its size in bytes, and the third gives
2811its tbaa tag. e.g.:
2812
2813.. code-block:: llvm
2814
2815 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2816
2817This describes a struct with two fields. The first is at offset 0 bytes
2818with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2819and has size 4 bytes and has tbaa tag !2.
2820
2821Note that the fields need not be contiguous. In this example, there is a
28224 byte gap between the two fields. This gap represents padding which
2823does not carry useful data and need not be preserved.
2824
2825'``fpmath``' Metadata
2826^^^^^^^^^^^^^^^^^^^^^
2827
2828``fpmath`` metadata may be attached to any instruction of floating point
2829type. It can be used to express the maximum acceptable error in the
2830result of that instruction, in ULPs, thus potentially allowing the
2831compiler to use a more efficient but less accurate method of computing
2832it. ULP is defined as follows:
2833
2834 If ``x`` is a real number that lies between two finite consecutive
2835 floating-point numbers ``a`` and ``b``, without being equal to one
2836 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2837 distance between the two non-equal finite floating-point numbers
2838 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2839
2840The metadata node shall consist of a single positive floating point
2841number representing the maximum relative error, for example:
2842
2843.. code-block:: llvm
2844
2845 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2846
2847'``range``' Metadata
2848^^^^^^^^^^^^^^^^^^^^
2849
Jingyue Wu37fcb592014-06-19 16:50:16 +00002850``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
2851integer types. It expresses the possible ranges the loaded value or the value
2852returned by the called function at this call site is in. The ranges are
2853represented with a flattened list of integers. The loaded value or the value
2854returned is known to be in the union of the ranges defined by each consecutive
2855pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00002856
2857- The type must match the type loaded by the instruction.
2858- The pair ``a,b`` represents the range ``[a,b)``.
2859- Both ``a`` and ``b`` are constants.
2860- The range is allowed to wrap.
2861- The range should not represent the full or empty set. That is,
2862 ``a!=b``.
2863
2864In addition, the pairs must be in signed order of the lower bound and
2865they must be non-contiguous.
2866
2867Examples:
2868
2869.. code-block:: llvm
2870
2871 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2872 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00002873 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
2874 %d = invoke i8 @bar() to label %cont
2875 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00002876 ...
2877 !0 = metadata !{ i8 0, i8 2 }
2878 !1 = metadata !{ i8 255, i8 2 }
2879 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2880 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2881
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002882'``llvm.loop``'
2883^^^^^^^^^^^^^^^
2884
2885It is sometimes useful to attach information to loop constructs. Currently,
2886loop metadata is implemented as metadata attached to the branch instruction
2887in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002888guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002889specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002890
2891The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002892itself to avoid merging it with any other identifier metadata, e.g.,
2893during module linkage or function inlining. That is, each loop should refer
2894to their own identification metadata even if they reside in separate functions.
2895The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002896constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002897
2898.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002899
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002900 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002901 !1 = metadata !{ metadata !1 }
2902
Mark Heffernan893752a2014-07-18 19:24:51 +00002903The loop identifier metadata can be used to specify additional
2904per-loop metadata. Any operands after the first operand can be treated
2905as user-defined metadata. For example the ``llvm.loop.unroll.count``
2906suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002907
Paul Redmond5fdf8362013-05-28 20:00:34 +00002908.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002909
Paul Redmond5fdf8362013-05-28 20:00:34 +00002910 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2911 ...
2912 !0 = metadata !{ metadata !0, metadata !1 }
Mark Heffernan893752a2014-07-18 19:24:51 +00002913 !1 = metadata !{ metadata !"llvm.loop.vectorize.width", i32 4 }
2914
2915'``llvm.loop.vectorize``'
2916^^^^^^^^^^^^^^^^^^^^^^^^^
2917
2918Metadata prefixed with ``llvm.loop.vectorize`` is used to control
2919per-loop vectorization parameters such as vectorization width and
2920interleave count. ``llvm.loop.vectorize`` metadata should be used in
2921conjunction with ``llvm.loop`` loop identification metadata. The
2922``llvm.loop.vectorize`` metadata are only optimization hints and the
2923vectorizer will only vectorize loops if it believes it is safe to do
2924so. The ``llvm.mem.parallel_loop_access`` metadata which contains
2925information about loop-carried memory dependencies can be helpful in
2926determining the safety of loop vectorization.
2927
2928'``llvm.loop.vectorize.unroll``' Metadata
2929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2930
2931This metadata suggests an interleave count to the loop vectorizer.
2932The first operand is the string ``llvm.loop.vectorize.unroll`` and the
2933second operand is an integer specifying the interleave count. For
2934example:
2935
2936.. code-block:: llvm
2937
2938 !0 = metadata !{ metadata !"llvm.loop.vectorize.unroll", i32 4 }
2939
2940Note that setting ``llvm.loop.vectorize.unroll`` to 1 disables
2941interleaving multiple iterations of the loop. If
2942``llvm.loop.vectorize.unroll`` is set to 0 then the interleave count
2943will be determined automatically.
2944
2945'``llvm.loop.vectorize.width``' Metadata
2946^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2947
2948This metadata sets the target width of the vectorizer. The first
2949operand is the string ``llvm.loop.vectorize.width`` and the second
2950operand is an integer specifying the width. For example:
2951
2952.. code-block:: llvm
2953
2954 !0 = metadata !{ metadata !"llvm.loop.vectorize.width", i32 4 }
2955
2956Note that setting ``llvm.loop.vectorize.width`` to 1 disables
2957vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
29580 or if the loop does not have this metadata the width will be
2959determined automatically.
2960
2961'``llvm.loop.unroll``'
2962^^^^^^^^^^^^^^^^^^^^^^
2963
2964Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
2965optimization hints such as the unroll factor. ``llvm.loop.unroll``
2966metadata should be used in conjunction with ``llvm.loop`` loop
2967identification metadata. The ``llvm.loop.unroll`` metadata are only
2968optimization hints and the unrolling will only be performed if the
2969optimizer believes it is safe to do so.
2970
2971'``llvm.loop.unroll.enable``' Metadata
2972^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2973
2974This metadata either disables loop unrolling or suggests that the loop
2975be unrolled fully. The first operand is the string
2976``llvm.loop.unroll.enable`` and the second operand is a bit. If the
2977bit operand value is 0 loop unrolling is disabled. A value of 1
2978indicates that the loop should be fully unrolled. For example:
2979
2980.. code-block:: llvm
2981
2982 !0 = metadata !{ metadata !"llvm.loop.unroll.enable", i1 0 }
2983 !1 = metadata !{ metadata !"llvm.loop.unroll.enable", i1 1 }
2984
2985'``llvm.loop.unroll.count``' Metadata
2986^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2987
2988This metadata suggests an unroll factor to the loop unroller. The
2989first operand is the string ``llvm.loop.unroll.count`` and the second
2990operand is a positive integer specifying the unroll factor. For
2991example:
2992
2993.. code-block:: llvm
2994
2995 !0 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
2996
2997If the trip count of the loop is less than the unroll count the loop
2998will be partially unrolled.
2999
3000If a loop has both a ``llvm.loop.unroll.enable`` metadata and
3001``llvm.loop.unroll.count`` metadata the behavior depends upon the
3002value of the ``llvm.loop.unroll.enable`` operand. If the value is 0,
3003the loop will not be unrolled. If the value is 1, the loop will be
3004unrolled with a factor determined by the ``llvm.loop.unroll.count``
3005operand effectively ignoring the ``llvm.loop.unroll.enable`` metadata.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003006
3007'``llvm.mem``'
3008^^^^^^^^^^^^^^^
3009
3010Metadata types used to annotate memory accesses with information helpful
3011for optimizations are prefixed with ``llvm.mem``.
3012
3013'``llvm.mem.parallel_loop_access``' Metadata
3014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3015
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003016The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3017or metadata containing a list of loop identifiers for nested loops.
3018The metadata is attached to memory accessing instructions and denotes that
3019no loop carried memory dependence exist between it and other instructions denoted
3020with the same loop identifier.
3021
3022Precisely, given two instructions ``m1`` and ``m2`` that both have the
3023``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3024set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003025carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003026``L2``.
3027
3028As a special case, if all memory accessing instructions in a loop have
3029``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3030loop has no loop carried memory dependences and is considered to be a parallel
3031loop.
3032
3033Note that if not all memory access instructions have such metadata referring to
3034the loop, then the loop is considered not being trivially parallel. Additional
3035memory dependence analysis is required to make that determination. As a fail
3036safe mechanism, this causes loops that were originally parallel to be considered
3037sequential (if optimization passes that are unaware of the parallel semantics
3038insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003039
3040Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003041both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003042metadata types that refer to the same loop identifier metadata.
3043
3044.. code-block:: llvm
3045
3046 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003047 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003048 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003049 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003050 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003051 ...
3052 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003053
3054 for.end:
3055 ...
3056 !0 = metadata !{ metadata !0 }
3057
3058It is also possible to have nested parallel loops. In that case the
3059memory accesses refer to a list of loop identifier metadata nodes instead of
3060the loop identifier metadata node directly:
3061
3062.. code-block:: llvm
3063
3064 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003065 ...
3066 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3067 ...
3068 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003069
3070 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003071 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003072 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003073 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003074 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003075 ...
3076 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003077
3078 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003079 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003080 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003081 ...
3082 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003083
3084 outer.for.end: ; preds = %for.body
3085 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00003086 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
3087 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
3088 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003089
Sean Silvab084af42012-12-07 10:36:55 +00003090Module Flags Metadata
3091=====================
3092
3093Information about the module as a whole is difficult to convey to LLVM's
3094subsystems. The LLVM IR isn't sufficient to transmit this information.
3095The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003096this. These flags are in the form of key / value pairs --- much like a
3097dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003098look it up.
3099
3100The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3101Each triplet has the following form:
3102
3103- The first element is a *behavior* flag, which specifies the behavior
3104 when two (or more) modules are merged together, and it encounters two
3105 (or more) metadata with the same ID. The supported behaviors are
3106 described below.
3107- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003108 metadata. Each module may only have one flag entry for each unique ID (not
3109 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003110- The third element is the value of the flag.
3111
3112When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003113``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3114each unique metadata ID string, there will be exactly one entry in the merged
3115modules ``llvm.module.flags`` metadata table, and the value for that entry will
3116be determined by the merge behavior flag, as described below. The only exception
3117is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003118
3119The following behaviors are supported:
3120
3121.. list-table::
3122 :header-rows: 1
3123 :widths: 10 90
3124
3125 * - Value
3126 - Behavior
3127
3128 * - 1
3129 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003130 Emits an error if two values disagree, otherwise the resulting value
3131 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003132
3133 * - 2
3134 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003135 Emits a warning if two values disagree. The result value will be the
3136 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003137
3138 * - 3
3139 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003140 Adds a requirement that another module flag be present and have a
3141 specified value after linking is performed. The value must be a
3142 metadata pair, where the first element of the pair is the ID of the
3143 module flag to be restricted, and the second element of the pair is
3144 the value the module flag should be restricted to. This behavior can
3145 be used to restrict the allowable results (via triggering of an
3146 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003147
3148 * - 4
3149 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003150 Uses the specified value, regardless of the behavior or value of the
3151 other module. If both modules specify **Override**, but the values
3152 differ, an error will be emitted.
3153
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003154 * - 5
3155 - **Append**
3156 Appends the two values, which are required to be metadata nodes.
3157
3158 * - 6
3159 - **AppendUnique**
3160 Appends the two values, which are required to be metadata
3161 nodes. However, duplicate entries in the second list are dropped
3162 during the append operation.
3163
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003164It is an error for a particular unique flag ID to have multiple behaviors,
3165except in the case of **Require** (which adds restrictions on another metadata
3166value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003167
3168An example of module flags:
3169
3170.. code-block:: llvm
3171
3172 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3173 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3174 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3175 !3 = metadata !{ i32 3, metadata !"qux",
3176 metadata !{
3177 metadata !"foo", i32 1
3178 }
3179 }
3180 !llvm.module.flags = !{ !0, !1, !2, !3 }
3181
3182- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3183 if two or more ``!"foo"`` flags are seen is to emit an error if their
3184 values are not equal.
3185
3186- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3187 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003188 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003189
3190- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3191 behavior if two or more ``!"qux"`` flags are seen is to emit a
3192 warning if their values are not equal.
3193
3194- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3195
3196 ::
3197
3198 metadata !{ metadata !"foo", i32 1 }
3199
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003200 The behavior is to emit an error if the ``llvm.module.flags`` does not
3201 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3202 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003203
3204Objective-C Garbage Collection Module Flags Metadata
3205----------------------------------------------------
3206
3207On the Mach-O platform, Objective-C stores metadata about garbage
3208collection in a special section called "image info". The metadata
3209consists of a version number and a bitmask specifying what types of
3210garbage collection are supported (if any) by the file. If two or more
3211modules are linked together their garbage collection metadata needs to
3212be merged rather than appended together.
3213
3214The Objective-C garbage collection module flags metadata consists of the
3215following key-value pairs:
3216
3217.. list-table::
3218 :header-rows: 1
3219 :widths: 30 70
3220
3221 * - Key
3222 - Value
3223
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003224 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003225 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003226
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003227 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003228 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003229 always 0.
3230
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003231 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003232 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003233 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3234 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3235 Objective-C ABI version 2.
3236
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003237 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003238 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003239 not. Valid values are 0, for no garbage collection, and 2, for garbage
3240 collection supported.
3241
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003242 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003243 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003244 If present, its value must be 6. This flag requires that the
3245 ``Objective-C Garbage Collection`` flag have the value 2.
3246
3247Some important flag interactions:
3248
3249- If a module with ``Objective-C Garbage Collection`` set to 0 is
3250 merged with a module with ``Objective-C Garbage Collection`` set to
3251 2, then the resulting module has the
3252 ``Objective-C Garbage Collection`` flag set to 0.
3253- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3254 merged with a module with ``Objective-C GC Only`` set to 6.
3255
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003256Automatic Linker Flags Module Flags Metadata
3257--------------------------------------------
3258
3259Some targets support embedding flags to the linker inside individual object
3260files. Typically this is used in conjunction with language extensions which
3261allow source files to explicitly declare the libraries they depend on, and have
3262these automatically be transmitted to the linker via object files.
3263
3264These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003265using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003266to be ``AppendUnique``, and the value for the key is expected to be a metadata
3267node which should be a list of other metadata nodes, each of which should be a
3268list of metadata strings defining linker options.
3269
3270For example, the following metadata section specifies two separate sets of
3271linker options, presumably to link against ``libz`` and the ``Cocoa``
3272framework::
3273
Michael Liaoa7699082013-03-06 18:24:34 +00003274 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003275 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003276 metadata !{ metadata !"-lz" },
3277 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003278 !llvm.module.flags = !{ !0 }
3279
3280The metadata encoding as lists of lists of options, as opposed to a collapsed
3281list of options, is chosen so that the IR encoding can use multiple option
3282strings to specify e.g., a single library, while still having that specifier be
3283preserved as an atomic element that can be recognized by a target specific
3284assembly writer or object file emitter.
3285
3286Each individual option is required to be either a valid option for the target's
3287linker, or an option that is reserved by the target specific assembly writer or
3288object file emitter. No other aspect of these options is defined by the IR.
3289
Oliver Stannard5dc29342014-06-20 10:08:11 +00003290C type width Module Flags Metadata
3291----------------------------------
3292
3293The ARM backend emits a section into each generated object file describing the
3294options that it was compiled with (in a compiler-independent way) to prevent
3295linking incompatible objects, and to allow automatic library selection. Some
3296of these options are not visible at the IR level, namely wchar_t width and enum
3297width.
3298
3299To pass this information to the backend, these options are encoded in module
3300flags metadata, using the following key-value pairs:
3301
3302.. list-table::
3303 :header-rows: 1
3304 :widths: 30 70
3305
3306 * - Key
3307 - Value
3308
3309 * - short_wchar
3310 - * 0 --- sizeof(wchar_t) == 4
3311 * 1 --- sizeof(wchar_t) == 2
3312
3313 * - short_enum
3314 - * 0 --- Enums are at least as large as an ``int``.
3315 * 1 --- Enums are stored in the smallest integer type which can
3316 represent all of its values.
3317
3318For example, the following metadata section specifies that the module was
3319compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3320enum is the smallest type which can represent all of its values::
3321
3322 !llvm.module.flags = !{!0, !1}
3323 !0 = metadata !{i32 1, metadata !"short_wchar", i32 1}
3324 !1 = metadata !{i32 1, metadata !"short_enum", i32 0}
3325
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003326.. _intrinsicglobalvariables:
3327
Sean Silvab084af42012-12-07 10:36:55 +00003328Intrinsic Global Variables
3329==========================
3330
3331LLVM has a number of "magic" global variables that contain data that
3332affect code generation or other IR semantics. These are documented here.
3333All globals of this sort should have a section specified as
3334"``llvm.metadata``". This section and all globals that start with
3335"``llvm.``" are reserved for use by LLVM.
3336
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003337.. _gv_llvmused:
3338
Sean Silvab084af42012-12-07 10:36:55 +00003339The '``llvm.used``' Global Variable
3340-----------------------------------
3341
Rafael Espindola74f2e462013-04-22 14:58:02 +00003342The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003343:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003344pointers to named global variables, functions and aliases which may optionally
3345have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003346use of it is:
3347
3348.. code-block:: llvm
3349
3350 @X = global i8 4
3351 @Y = global i32 123
3352
3353 @llvm.used = appending global [2 x i8*] [
3354 i8* @X,
3355 i8* bitcast (i32* @Y to i8*)
3356 ], section "llvm.metadata"
3357
Rafael Espindola74f2e462013-04-22 14:58:02 +00003358If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3359and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003360symbol that it cannot see (which is why they have to be named). For example, if
3361a variable has internal linkage and no references other than that from the
3362``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3363references from inline asms and other things the compiler cannot "see", and
3364corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003365
3366On some targets, the code generator must emit a directive to the
3367assembler or object file to prevent the assembler and linker from
3368molesting the symbol.
3369
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003370.. _gv_llvmcompilerused:
3371
Sean Silvab084af42012-12-07 10:36:55 +00003372The '``llvm.compiler.used``' Global Variable
3373--------------------------------------------
3374
3375The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3376directive, except that it only prevents the compiler from touching the
3377symbol. On targets that support it, this allows an intelligent linker to
3378optimize references to the symbol without being impeded as it would be
3379by ``@llvm.used``.
3380
3381This is a rare construct that should only be used in rare circumstances,
3382and should not be exposed to source languages.
3383
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003384.. _gv_llvmglobalctors:
3385
Sean Silvab084af42012-12-07 10:36:55 +00003386The '``llvm.global_ctors``' Global Variable
3387-------------------------------------------
3388
3389.. code-block:: llvm
3390
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003391 %0 = type { i32, void ()*, i8* }
3392 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003393
3394The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003395functions, priorities, and an optional associated global or function.
3396The functions referenced by this array will be called in ascending order
3397of priority (i.e. lowest first) when the module is loaded. The order of
3398functions with the same priority is not defined.
3399
3400If the third field is present, non-null, and points to a global variable
3401or function, the initializer function will only run if the associated
3402data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003403
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003404.. _llvmglobaldtors:
3405
Sean Silvab084af42012-12-07 10:36:55 +00003406The '``llvm.global_dtors``' Global Variable
3407-------------------------------------------
3408
3409.. code-block:: llvm
3410
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003411 %0 = type { i32, void ()*, i8* }
3412 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003413
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003414The ``@llvm.global_dtors`` array contains a list of destructor
3415functions, priorities, and an optional associated global or function.
3416The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003417order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003418order of functions with the same priority is not defined.
3419
3420If the third field is present, non-null, and points to a global variable
3421or function, the destructor function will only run if the associated
3422data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003423
3424Instruction Reference
3425=====================
3426
3427The LLVM instruction set consists of several different classifications
3428of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3429instructions <binaryops>`, :ref:`bitwise binary
3430instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3431:ref:`other instructions <otherops>`.
3432
3433.. _terminators:
3434
3435Terminator Instructions
3436-----------------------
3437
3438As mentioned :ref:`previously <functionstructure>`, every basic block in a
3439program ends with a "Terminator" instruction, which indicates which
3440block should be executed after the current block is finished. These
3441terminator instructions typically yield a '``void``' value: they produce
3442control flow, not values (the one exception being the
3443':ref:`invoke <i_invoke>`' instruction).
3444
3445The terminator instructions are: ':ref:`ret <i_ret>`',
3446':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3447':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3448':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3449
3450.. _i_ret:
3451
3452'``ret``' Instruction
3453^^^^^^^^^^^^^^^^^^^^^
3454
3455Syntax:
3456"""""""
3457
3458::
3459
3460 ret <type> <value> ; Return a value from a non-void function
3461 ret void ; Return from void function
3462
3463Overview:
3464"""""""""
3465
3466The '``ret``' instruction is used to return control flow (and optionally
3467a value) from a function back to the caller.
3468
3469There are two forms of the '``ret``' instruction: one that returns a
3470value and then causes control flow, and one that just causes control
3471flow to occur.
3472
3473Arguments:
3474""""""""""
3475
3476The '``ret``' instruction optionally accepts a single argument, the
3477return value. The type of the return value must be a ':ref:`first
3478class <t_firstclass>`' type.
3479
3480A function is not :ref:`well formed <wellformed>` if it it has a non-void
3481return type and contains a '``ret``' instruction with no return value or
3482a return value with a type that does not match its type, or if it has a
3483void return type and contains a '``ret``' instruction with a return
3484value.
3485
3486Semantics:
3487""""""""""
3488
3489When the '``ret``' instruction is executed, control flow returns back to
3490the calling function's context. If the caller is a
3491":ref:`call <i_call>`" instruction, execution continues at the
3492instruction after the call. If the caller was an
3493":ref:`invoke <i_invoke>`" instruction, execution continues at the
3494beginning of the "normal" destination block. If the instruction returns
3495a value, that value shall set the call or invoke instruction's return
3496value.
3497
3498Example:
3499""""""""
3500
3501.. code-block:: llvm
3502
3503 ret i32 5 ; Return an integer value of 5
3504 ret void ; Return from a void function
3505 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3506
3507.. _i_br:
3508
3509'``br``' Instruction
3510^^^^^^^^^^^^^^^^^^^^
3511
3512Syntax:
3513"""""""
3514
3515::
3516
3517 br i1 <cond>, label <iftrue>, label <iffalse>
3518 br label <dest> ; Unconditional branch
3519
3520Overview:
3521"""""""""
3522
3523The '``br``' instruction is used to cause control flow to transfer to a
3524different basic block in the current function. There are two forms of
3525this instruction, corresponding to a conditional branch and an
3526unconditional branch.
3527
3528Arguments:
3529""""""""""
3530
3531The conditional branch form of the '``br``' instruction takes a single
3532'``i1``' value and two '``label``' values. The unconditional form of the
3533'``br``' instruction takes a single '``label``' value as a target.
3534
3535Semantics:
3536""""""""""
3537
3538Upon execution of a conditional '``br``' instruction, the '``i1``'
3539argument is evaluated. If the value is ``true``, control flows to the
3540'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3541to the '``iffalse``' ``label`` argument.
3542
3543Example:
3544""""""""
3545
3546.. code-block:: llvm
3547
3548 Test:
3549 %cond = icmp eq i32 %a, %b
3550 br i1 %cond, label %IfEqual, label %IfUnequal
3551 IfEqual:
3552 ret i32 1
3553 IfUnequal:
3554 ret i32 0
3555
3556.. _i_switch:
3557
3558'``switch``' Instruction
3559^^^^^^^^^^^^^^^^^^^^^^^^
3560
3561Syntax:
3562"""""""
3563
3564::
3565
3566 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3567
3568Overview:
3569"""""""""
3570
3571The '``switch``' instruction is used to transfer control flow to one of
3572several different places. It is a generalization of the '``br``'
3573instruction, allowing a branch to occur to one of many possible
3574destinations.
3575
3576Arguments:
3577""""""""""
3578
3579The '``switch``' instruction uses three parameters: an integer
3580comparison value '``value``', a default '``label``' destination, and an
3581array of pairs of comparison value constants and '``label``'s. The table
3582is not allowed to contain duplicate constant entries.
3583
3584Semantics:
3585""""""""""
3586
3587The ``switch`` instruction specifies a table of values and destinations.
3588When the '``switch``' instruction is executed, this table is searched
3589for the given value. If the value is found, control flow is transferred
3590to the corresponding destination; otherwise, control flow is transferred
3591to the default destination.
3592
3593Implementation:
3594"""""""""""""""
3595
3596Depending on properties of the target machine and the particular
3597``switch`` instruction, this instruction may be code generated in
3598different ways. For example, it could be generated as a series of
3599chained conditional branches or with a lookup table.
3600
3601Example:
3602""""""""
3603
3604.. code-block:: llvm
3605
3606 ; Emulate a conditional br instruction
3607 %Val = zext i1 %value to i32
3608 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3609
3610 ; Emulate an unconditional br instruction
3611 switch i32 0, label %dest [ ]
3612
3613 ; Implement a jump table:
3614 switch i32 %val, label %otherwise [ i32 0, label %onzero
3615 i32 1, label %onone
3616 i32 2, label %ontwo ]
3617
3618.. _i_indirectbr:
3619
3620'``indirectbr``' Instruction
3621^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3622
3623Syntax:
3624"""""""
3625
3626::
3627
3628 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3629
3630Overview:
3631"""""""""
3632
3633The '``indirectbr``' instruction implements an indirect branch to a
3634label within the current function, whose address is specified by
3635"``address``". Address must be derived from a
3636:ref:`blockaddress <blockaddress>` constant.
3637
3638Arguments:
3639""""""""""
3640
3641The '``address``' argument is the address of the label to jump to. The
3642rest of the arguments indicate the full set of possible destinations
3643that the address may point to. Blocks are allowed to occur multiple
3644times in the destination list, though this isn't particularly useful.
3645
3646This destination list is required so that dataflow analysis has an
3647accurate understanding of the CFG.
3648
3649Semantics:
3650""""""""""
3651
3652Control transfers to the block specified in the address argument. All
3653possible destination blocks must be listed in the label list, otherwise
3654this instruction has undefined behavior. This implies that jumps to
3655labels defined in other functions have undefined behavior as well.
3656
3657Implementation:
3658"""""""""""""""
3659
3660This is typically implemented with a jump through a register.
3661
3662Example:
3663""""""""
3664
3665.. code-block:: llvm
3666
3667 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3668
3669.. _i_invoke:
3670
3671'``invoke``' Instruction
3672^^^^^^^^^^^^^^^^^^^^^^^^
3673
3674Syntax:
3675"""""""
3676
3677::
3678
3679 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3680 to label <normal label> unwind label <exception label>
3681
3682Overview:
3683"""""""""
3684
3685The '``invoke``' instruction causes control to transfer to a specified
3686function, with the possibility of control flow transfer to either the
3687'``normal``' label or the '``exception``' label. If the callee function
3688returns with the "``ret``" instruction, control flow will return to the
3689"normal" label. If the callee (or any indirect callees) returns via the
3690":ref:`resume <i_resume>`" instruction or other exception handling
3691mechanism, control is interrupted and continued at the dynamically
3692nearest "exception" label.
3693
3694The '``exception``' label is a `landing
3695pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3696'``exception``' label is required to have the
3697":ref:`landingpad <i_landingpad>`" instruction, which contains the
3698information about the behavior of the program after unwinding happens,
3699as its first non-PHI instruction. The restrictions on the
3700"``landingpad``" instruction's tightly couples it to the "``invoke``"
3701instruction, so that the important information contained within the
3702"``landingpad``" instruction can't be lost through normal code motion.
3703
3704Arguments:
3705""""""""""
3706
3707This instruction requires several arguments:
3708
3709#. The optional "cconv" marker indicates which :ref:`calling
3710 convention <callingconv>` the call should use. If none is
3711 specified, the call defaults to using C calling conventions.
3712#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3713 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3714 are valid here.
3715#. '``ptr to function ty``': shall be the signature of the pointer to
3716 function value being invoked. In most cases, this is a direct
3717 function invocation, but indirect ``invoke``'s are just as possible,
3718 branching off an arbitrary pointer to function value.
3719#. '``function ptr val``': An LLVM value containing a pointer to a
3720 function to be invoked.
3721#. '``function args``': argument list whose types match the function
3722 signature argument types and parameter attributes. All arguments must
3723 be of :ref:`first class <t_firstclass>` type. If the function signature
3724 indicates the function accepts a variable number of arguments, the
3725 extra arguments can be specified.
3726#. '``normal label``': the label reached when the called function
3727 executes a '``ret``' instruction.
3728#. '``exception label``': the label reached when a callee returns via
3729 the :ref:`resume <i_resume>` instruction or other exception handling
3730 mechanism.
3731#. The optional :ref:`function attributes <fnattrs>` list. Only
3732 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3733 attributes are valid here.
3734
3735Semantics:
3736""""""""""
3737
3738This instruction is designed to operate as a standard '``call``'
3739instruction in most regards. The primary difference is that it
3740establishes an association with a label, which is used by the runtime
3741library to unwind the stack.
3742
3743This instruction is used in languages with destructors to ensure that
3744proper cleanup is performed in the case of either a ``longjmp`` or a
3745thrown exception. Additionally, this is important for implementation of
3746'``catch``' clauses in high-level languages that support them.
3747
3748For the purposes of the SSA form, the definition of the value returned
3749by the '``invoke``' instruction is deemed to occur on the edge from the
3750current block to the "normal" label. If the callee unwinds then no
3751return value is available.
3752
3753Example:
3754""""""""
3755
3756.. code-block:: llvm
3757
3758 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003759 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003760 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003761 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003762
3763.. _i_resume:
3764
3765'``resume``' Instruction
3766^^^^^^^^^^^^^^^^^^^^^^^^
3767
3768Syntax:
3769"""""""
3770
3771::
3772
3773 resume <type> <value>
3774
3775Overview:
3776"""""""""
3777
3778The '``resume``' instruction is a terminator instruction that has no
3779successors.
3780
3781Arguments:
3782""""""""""
3783
3784The '``resume``' instruction requires one argument, which must have the
3785same type as the result of any '``landingpad``' instruction in the same
3786function.
3787
3788Semantics:
3789""""""""""
3790
3791The '``resume``' instruction resumes propagation of an existing
3792(in-flight) exception whose unwinding was interrupted with a
3793:ref:`landingpad <i_landingpad>` instruction.
3794
3795Example:
3796""""""""
3797
3798.. code-block:: llvm
3799
3800 resume { i8*, i32 } %exn
3801
3802.. _i_unreachable:
3803
3804'``unreachable``' Instruction
3805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3806
3807Syntax:
3808"""""""
3809
3810::
3811
3812 unreachable
3813
3814Overview:
3815"""""""""
3816
3817The '``unreachable``' instruction has no defined semantics. This
3818instruction is used to inform the optimizer that a particular portion of
3819the code is not reachable. This can be used to indicate that the code
3820after a no-return function cannot be reached, and other facts.
3821
3822Semantics:
3823""""""""""
3824
3825The '``unreachable``' instruction has no defined semantics.
3826
3827.. _binaryops:
3828
3829Binary Operations
3830-----------------
3831
3832Binary operators are used to do most of the computation in a program.
3833They require two operands of the same type, execute an operation on
3834them, and produce a single value. The operands might represent multiple
3835data, as is the case with the :ref:`vector <t_vector>` data type. The
3836result value has the same type as its operands.
3837
3838There are several different binary operators:
3839
3840.. _i_add:
3841
3842'``add``' Instruction
3843^^^^^^^^^^^^^^^^^^^^^
3844
3845Syntax:
3846"""""""
3847
3848::
3849
Tim Northover675a0962014-06-13 14:24:23 +00003850 <result> = add <ty> <op1>, <op2> ; yields ty:result
3851 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
3852 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
3853 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003854
3855Overview:
3856"""""""""
3857
3858The '``add``' instruction returns the sum of its two operands.
3859
3860Arguments:
3861""""""""""
3862
3863The two arguments to the '``add``' instruction must be
3864:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3865arguments must have identical types.
3866
3867Semantics:
3868""""""""""
3869
3870The value produced is the integer sum of the two operands.
3871
3872If the sum has unsigned overflow, the result returned is the
3873mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3874the result.
3875
3876Because LLVM integers use a two's complement representation, this
3877instruction is appropriate for both signed and unsigned integers.
3878
3879``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3880respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3881result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3882unsigned and/or signed overflow, respectively, occurs.
3883
3884Example:
3885""""""""
3886
3887.. code-block:: llvm
3888
Tim Northover675a0962014-06-13 14:24:23 +00003889 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00003890
3891.. _i_fadd:
3892
3893'``fadd``' Instruction
3894^^^^^^^^^^^^^^^^^^^^^^
3895
3896Syntax:
3897"""""""
3898
3899::
3900
Tim Northover675a0962014-06-13 14:24:23 +00003901 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003902
3903Overview:
3904"""""""""
3905
3906The '``fadd``' instruction returns the sum of its two operands.
3907
3908Arguments:
3909""""""""""
3910
3911The two arguments to the '``fadd``' instruction must be :ref:`floating
3912point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3913Both arguments must have identical types.
3914
3915Semantics:
3916""""""""""
3917
3918The value produced is the floating point sum of the two operands. This
3919instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3920which are optimization hints to enable otherwise unsafe floating point
3921optimizations:
3922
3923Example:
3924""""""""
3925
3926.. code-block:: llvm
3927
Tim Northover675a0962014-06-13 14:24:23 +00003928 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00003929
3930'``sub``' Instruction
3931^^^^^^^^^^^^^^^^^^^^^
3932
3933Syntax:
3934"""""""
3935
3936::
3937
Tim Northover675a0962014-06-13 14:24:23 +00003938 <result> = sub <ty> <op1>, <op2> ; yields ty:result
3939 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
3940 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
3941 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003942
3943Overview:
3944"""""""""
3945
3946The '``sub``' instruction returns the difference of its two operands.
3947
3948Note that the '``sub``' instruction is used to represent the '``neg``'
3949instruction present in most other intermediate representations.
3950
3951Arguments:
3952""""""""""
3953
3954The two arguments to the '``sub``' instruction must be
3955:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3956arguments must have identical types.
3957
3958Semantics:
3959""""""""""
3960
3961The value produced is the integer difference of the two operands.
3962
3963If the difference has unsigned overflow, the result returned is the
3964mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3965the result.
3966
3967Because LLVM integers use a two's complement representation, this
3968instruction is appropriate for both signed and unsigned integers.
3969
3970``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3971respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3972result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3973unsigned and/or signed overflow, respectively, occurs.
3974
3975Example:
3976""""""""
3977
3978.. code-block:: llvm
3979
Tim Northover675a0962014-06-13 14:24:23 +00003980 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
3981 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00003982
3983.. _i_fsub:
3984
3985'``fsub``' Instruction
3986^^^^^^^^^^^^^^^^^^^^^^
3987
3988Syntax:
3989"""""""
3990
3991::
3992
Tim Northover675a0962014-06-13 14:24:23 +00003993 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003994
3995Overview:
3996"""""""""
3997
3998The '``fsub``' instruction returns the difference of its two operands.
3999
4000Note that the '``fsub``' instruction is used to represent the '``fneg``'
4001instruction present in most other intermediate representations.
4002
4003Arguments:
4004""""""""""
4005
4006The two arguments to the '``fsub``' instruction must be :ref:`floating
4007point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4008Both arguments must have identical types.
4009
4010Semantics:
4011""""""""""
4012
4013The value produced is the floating point difference of the two operands.
4014This instruction can also take any number of :ref:`fast-math
4015flags <fastmath>`, which are optimization hints to enable otherwise
4016unsafe floating point optimizations:
4017
4018Example:
4019""""""""
4020
4021.. code-block:: llvm
4022
Tim Northover675a0962014-06-13 14:24:23 +00004023 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4024 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004025
4026'``mul``' Instruction
4027^^^^^^^^^^^^^^^^^^^^^
4028
4029Syntax:
4030"""""""
4031
4032::
4033
Tim Northover675a0962014-06-13 14:24:23 +00004034 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4035 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4036 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4037 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004038
4039Overview:
4040"""""""""
4041
4042The '``mul``' instruction returns the product of its two operands.
4043
4044Arguments:
4045""""""""""
4046
4047The two arguments to the '``mul``' instruction must be
4048:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4049arguments must have identical types.
4050
4051Semantics:
4052""""""""""
4053
4054The value produced is the integer product of the two operands.
4055
4056If the result of the multiplication has unsigned overflow, the result
4057returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4058bit width of the result.
4059
4060Because LLVM integers use a two's complement representation, and the
4061result is the same width as the operands, this instruction returns the
4062correct result for both signed and unsigned integers. If a full product
4063(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4064sign-extended or zero-extended as appropriate to the width of the full
4065product.
4066
4067``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4068respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4069result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4070unsigned and/or signed overflow, respectively, occurs.
4071
4072Example:
4073""""""""
4074
4075.. code-block:: llvm
4076
Tim Northover675a0962014-06-13 14:24:23 +00004077 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004078
4079.. _i_fmul:
4080
4081'``fmul``' Instruction
4082^^^^^^^^^^^^^^^^^^^^^^
4083
4084Syntax:
4085"""""""
4086
4087::
4088
Tim Northover675a0962014-06-13 14:24:23 +00004089 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004090
4091Overview:
4092"""""""""
4093
4094The '``fmul``' instruction returns the product of its two operands.
4095
4096Arguments:
4097""""""""""
4098
4099The two arguments to the '``fmul``' instruction must be :ref:`floating
4100point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4101Both arguments must have identical types.
4102
4103Semantics:
4104""""""""""
4105
4106The value produced is the floating point product of the two operands.
4107This instruction can also take any number of :ref:`fast-math
4108flags <fastmath>`, which are optimization hints to enable otherwise
4109unsafe floating point optimizations:
4110
4111Example:
4112""""""""
4113
4114.. code-block:: llvm
4115
Tim Northover675a0962014-06-13 14:24:23 +00004116 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004117
4118'``udiv``' Instruction
4119^^^^^^^^^^^^^^^^^^^^^^
4120
4121Syntax:
4122"""""""
4123
4124::
4125
Tim Northover675a0962014-06-13 14:24:23 +00004126 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4127 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004128
4129Overview:
4130"""""""""
4131
4132The '``udiv``' instruction returns the quotient of its two operands.
4133
4134Arguments:
4135""""""""""
4136
4137The two arguments to the '``udiv``' instruction must be
4138:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4139arguments must have identical types.
4140
4141Semantics:
4142""""""""""
4143
4144The value produced is the unsigned integer quotient of the two operands.
4145
4146Note that unsigned integer division and signed integer division are
4147distinct operations; for signed integer division, use '``sdiv``'.
4148
4149Division by zero leads to undefined behavior.
4150
4151If the ``exact`` keyword is present, the result value of the ``udiv`` is
4152a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4153such, "((a udiv exact b) mul b) == a").
4154
4155Example:
4156""""""""
4157
4158.. code-block:: llvm
4159
Tim Northover675a0962014-06-13 14:24:23 +00004160 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004161
4162'``sdiv``' Instruction
4163^^^^^^^^^^^^^^^^^^^^^^
4164
4165Syntax:
4166"""""""
4167
4168::
4169
Tim Northover675a0962014-06-13 14:24:23 +00004170 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4171 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004172
4173Overview:
4174"""""""""
4175
4176The '``sdiv``' instruction returns the quotient of its two operands.
4177
4178Arguments:
4179""""""""""
4180
4181The two arguments to the '``sdiv``' instruction must be
4182:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4183arguments must have identical types.
4184
4185Semantics:
4186""""""""""
4187
4188The value produced is the signed integer quotient of the two operands
4189rounded towards zero.
4190
4191Note that signed integer division and unsigned integer division are
4192distinct operations; for unsigned integer division, use '``udiv``'.
4193
4194Division by zero leads to undefined behavior. Overflow also leads to
4195undefined behavior; this is a rare case, but can occur, for example, by
4196doing a 32-bit division of -2147483648 by -1.
4197
4198If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4199a :ref:`poison value <poisonvalues>` if the result would be rounded.
4200
4201Example:
4202""""""""
4203
4204.. code-block:: llvm
4205
Tim Northover675a0962014-06-13 14:24:23 +00004206 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004207
4208.. _i_fdiv:
4209
4210'``fdiv``' Instruction
4211^^^^^^^^^^^^^^^^^^^^^^
4212
4213Syntax:
4214"""""""
4215
4216::
4217
Tim Northover675a0962014-06-13 14:24:23 +00004218 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004219
4220Overview:
4221"""""""""
4222
4223The '``fdiv``' instruction returns the quotient of its two operands.
4224
4225Arguments:
4226""""""""""
4227
4228The two arguments to the '``fdiv``' instruction must be :ref:`floating
4229point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4230Both arguments must have identical types.
4231
4232Semantics:
4233""""""""""
4234
4235The value produced is the floating point quotient of the two operands.
4236This instruction can also take any number of :ref:`fast-math
4237flags <fastmath>`, which are optimization hints to enable otherwise
4238unsafe floating point optimizations:
4239
4240Example:
4241""""""""
4242
4243.. code-block:: llvm
4244
Tim Northover675a0962014-06-13 14:24:23 +00004245 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004246
4247'``urem``' Instruction
4248^^^^^^^^^^^^^^^^^^^^^^
4249
4250Syntax:
4251"""""""
4252
4253::
4254
Tim Northover675a0962014-06-13 14:24:23 +00004255 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004256
4257Overview:
4258"""""""""
4259
4260The '``urem``' instruction returns the remainder from the unsigned
4261division of its two arguments.
4262
4263Arguments:
4264""""""""""
4265
4266The two arguments to the '``urem``' instruction must be
4267:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4268arguments must have identical types.
4269
4270Semantics:
4271""""""""""
4272
4273This instruction returns the unsigned integer *remainder* of a division.
4274This instruction always performs an unsigned division to get the
4275remainder.
4276
4277Note that unsigned integer remainder and signed integer remainder are
4278distinct operations; for signed integer remainder, use '``srem``'.
4279
4280Taking the remainder of a division by zero leads to undefined behavior.
4281
4282Example:
4283""""""""
4284
4285.. code-block:: llvm
4286
Tim Northover675a0962014-06-13 14:24:23 +00004287 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004288
4289'``srem``' Instruction
4290^^^^^^^^^^^^^^^^^^^^^^
4291
4292Syntax:
4293"""""""
4294
4295::
4296
Tim Northover675a0962014-06-13 14:24:23 +00004297 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004298
4299Overview:
4300"""""""""
4301
4302The '``srem``' instruction returns the remainder from the signed
4303division of its two operands. This instruction can also take
4304:ref:`vector <t_vector>` versions of the values in which case the elements
4305must be integers.
4306
4307Arguments:
4308""""""""""
4309
4310The two arguments to the '``srem``' instruction must be
4311:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4312arguments must have identical types.
4313
4314Semantics:
4315""""""""""
4316
4317This instruction returns the *remainder* of a division (where the result
4318is either zero or has the same sign as the dividend, ``op1``), not the
4319*modulo* operator (where the result is either zero or has the same sign
4320as the divisor, ``op2``) of a value. For more information about the
4321difference, see `The Math
4322Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4323table of how this is implemented in various languages, please see
4324`Wikipedia: modulo
4325operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4326
4327Note that signed integer remainder and unsigned integer remainder are
4328distinct operations; for unsigned integer remainder, use '``urem``'.
4329
4330Taking the remainder of a division by zero leads to undefined behavior.
4331Overflow also leads to undefined behavior; this is a rare case, but can
4332occur, for example, by taking the remainder of a 32-bit division of
4333-2147483648 by -1. (The remainder doesn't actually overflow, but this
4334rule lets srem be implemented using instructions that return both the
4335result of the division and the remainder.)
4336
4337Example:
4338""""""""
4339
4340.. code-block:: llvm
4341
Tim Northover675a0962014-06-13 14:24:23 +00004342 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004343
4344.. _i_frem:
4345
4346'``frem``' Instruction
4347^^^^^^^^^^^^^^^^^^^^^^
4348
4349Syntax:
4350"""""""
4351
4352::
4353
Tim Northover675a0962014-06-13 14:24:23 +00004354 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004355
4356Overview:
4357"""""""""
4358
4359The '``frem``' instruction returns the remainder from the division of
4360its two operands.
4361
4362Arguments:
4363""""""""""
4364
4365The two arguments to the '``frem``' instruction must be :ref:`floating
4366point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4367Both arguments must have identical types.
4368
4369Semantics:
4370""""""""""
4371
4372This instruction returns the *remainder* of a division. The remainder
4373has the same sign as the dividend. This instruction can also take any
4374number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4375to enable otherwise unsafe floating point optimizations:
4376
4377Example:
4378""""""""
4379
4380.. code-block:: llvm
4381
Tim Northover675a0962014-06-13 14:24:23 +00004382 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004383
4384.. _bitwiseops:
4385
4386Bitwise Binary Operations
4387-------------------------
4388
4389Bitwise binary operators are used to do various forms of bit-twiddling
4390in a program. They are generally very efficient instructions and can
4391commonly be strength reduced from other instructions. They require two
4392operands of the same type, execute an operation on them, and produce a
4393single value. The resulting value is the same type as its operands.
4394
4395'``shl``' Instruction
4396^^^^^^^^^^^^^^^^^^^^^
4397
4398Syntax:
4399"""""""
4400
4401::
4402
Tim Northover675a0962014-06-13 14:24:23 +00004403 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4404 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4405 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4406 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004407
4408Overview:
4409"""""""""
4410
4411The '``shl``' instruction returns the first operand shifted to the left
4412a specified number of bits.
4413
4414Arguments:
4415""""""""""
4416
4417Both arguments to the '``shl``' instruction must be the same
4418:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4419'``op2``' is treated as an unsigned value.
4420
4421Semantics:
4422""""""""""
4423
4424The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4425where ``n`` is the width of the result. If ``op2`` is (statically or
4426dynamically) negative or equal to or larger than the number of bits in
4427``op1``, the result is undefined. If the arguments are vectors, each
4428vector element of ``op1`` is shifted by the corresponding shift amount
4429in ``op2``.
4430
4431If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4432value <poisonvalues>` if it shifts out any non-zero bits. If the
4433``nsw`` keyword is present, then the shift produces a :ref:`poison
4434value <poisonvalues>` if it shifts out any bits that disagree with the
4435resultant sign bit. As such, NUW/NSW have the same semantics as they
4436would if the shift were expressed as a mul instruction with the same
4437nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4438
4439Example:
4440""""""""
4441
4442.. code-block:: llvm
4443
Tim Northover675a0962014-06-13 14:24:23 +00004444 <result> = shl i32 4, %var ; yields i32: 4 << %var
4445 <result> = shl i32 4, 2 ; yields i32: 16
4446 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004447 <result> = shl i32 1, 32 ; undefined
4448 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4449
4450'``lshr``' Instruction
4451^^^^^^^^^^^^^^^^^^^^^^
4452
4453Syntax:
4454"""""""
4455
4456::
4457
Tim Northover675a0962014-06-13 14:24:23 +00004458 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4459 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004460
4461Overview:
4462"""""""""
4463
4464The '``lshr``' instruction (logical shift right) returns the first
4465operand shifted to the right a specified number of bits with zero fill.
4466
4467Arguments:
4468""""""""""
4469
4470Both arguments to the '``lshr``' instruction must be the same
4471:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4472'``op2``' is treated as an unsigned value.
4473
4474Semantics:
4475""""""""""
4476
4477This instruction always performs a logical shift right operation. The
4478most significant bits of the result will be filled with zero bits after
4479the shift. If ``op2`` is (statically or dynamically) equal to or larger
4480than the number of bits in ``op1``, the result is undefined. If the
4481arguments are vectors, each vector element of ``op1`` is shifted by the
4482corresponding shift amount in ``op2``.
4483
4484If the ``exact`` keyword is present, the result value of the ``lshr`` is
4485a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4486non-zero.
4487
4488Example:
4489""""""""
4490
4491.. code-block:: llvm
4492
Tim Northover675a0962014-06-13 14:24:23 +00004493 <result> = lshr i32 4, 1 ; yields i32:result = 2
4494 <result> = lshr i32 4, 2 ; yields i32:result = 1
4495 <result> = lshr i8 4, 3 ; yields i8:result = 0
4496 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004497 <result> = lshr i32 1, 32 ; undefined
4498 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4499
4500'``ashr``' Instruction
4501^^^^^^^^^^^^^^^^^^^^^^
4502
4503Syntax:
4504"""""""
4505
4506::
4507
Tim Northover675a0962014-06-13 14:24:23 +00004508 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4509 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004510
4511Overview:
4512"""""""""
4513
4514The '``ashr``' instruction (arithmetic shift right) returns the first
4515operand shifted to the right a specified number of bits with sign
4516extension.
4517
4518Arguments:
4519""""""""""
4520
4521Both arguments to the '``ashr``' instruction must be the same
4522:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4523'``op2``' is treated as an unsigned value.
4524
4525Semantics:
4526""""""""""
4527
4528This instruction always performs an arithmetic shift right operation,
4529The most significant bits of the result will be filled with the sign bit
4530of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4531than the number of bits in ``op1``, the result is undefined. If the
4532arguments are vectors, each vector element of ``op1`` is shifted by the
4533corresponding shift amount in ``op2``.
4534
4535If the ``exact`` keyword is present, the result value of the ``ashr`` is
4536a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4537non-zero.
4538
4539Example:
4540""""""""
4541
4542.. code-block:: llvm
4543
Tim Northover675a0962014-06-13 14:24:23 +00004544 <result> = ashr i32 4, 1 ; yields i32:result = 2
4545 <result> = ashr i32 4, 2 ; yields i32:result = 1
4546 <result> = ashr i8 4, 3 ; yields i8:result = 0
4547 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004548 <result> = ashr i32 1, 32 ; undefined
4549 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4550
4551'``and``' Instruction
4552^^^^^^^^^^^^^^^^^^^^^
4553
4554Syntax:
4555"""""""
4556
4557::
4558
Tim Northover675a0962014-06-13 14:24:23 +00004559 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004560
4561Overview:
4562"""""""""
4563
4564The '``and``' instruction returns the bitwise logical and of its two
4565operands.
4566
4567Arguments:
4568""""""""""
4569
4570The two arguments to the '``and``' instruction must be
4571:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4572arguments must have identical types.
4573
4574Semantics:
4575""""""""""
4576
4577The truth table used for the '``and``' instruction is:
4578
4579+-----+-----+-----+
4580| In0 | In1 | Out |
4581+-----+-----+-----+
4582| 0 | 0 | 0 |
4583+-----+-----+-----+
4584| 0 | 1 | 0 |
4585+-----+-----+-----+
4586| 1 | 0 | 0 |
4587+-----+-----+-----+
4588| 1 | 1 | 1 |
4589+-----+-----+-----+
4590
4591Example:
4592""""""""
4593
4594.. code-block:: llvm
4595
Tim Northover675a0962014-06-13 14:24:23 +00004596 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4597 <result> = and i32 15, 40 ; yields i32:result = 8
4598 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004599
4600'``or``' Instruction
4601^^^^^^^^^^^^^^^^^^^^
4602
4603Syntax:
4604"""""""
4605
4606::
4607
Tim Northover675a0962014-06-13 14:24:23 +00004608 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004609
4610Overview:
4611"""""""""
4612
4613The '``or``' instruction returns the bitwise logical inclusive or of its
4614two operands.
4615
4616Arguments:
4617""""""""""
4618
4619The two arguments to the '``or``' instruction must be
4620:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4621arguments must have identical types.
4622
4623Semantics:
4624""""""""""
4625
4626The truth table used for the '``or``' instruction is:
4627
4628+-----+-----+-----+
4629| In0 | In1 | Out |
4630+-----+-----+-----+
4631| 0 | 0 | 0 |
4632+-----+-----+-----+
4633| 0 | 1 | 1 |
4634+-----+-----+-----+
4635| 1 | 0 | 1 |
4636+-----+-----+-----+
4637| 1 | 1 | 1 |
4638+-----+-----+-----+
4639
4640Example:
4641""""""""
4642
4643::
4644
Tim Northover675a0962014-06-13 14:24:23 +00004645 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4646 <result> = or i32 15, 40 ; yields i32:result = 47
4647 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004648
4649'``xor``' Instruction
4650^^^^^^^^^^^^^^^^^^^^^
4651
4652Syntax:
4653"""""""
4654
4655::
4656
Tim Northover675a0962014-06-13 14:24:23 +00004657 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004658
4659Overview:
4660"""""""""
4661
4662The '``xor``' instruction returns the bitwise logical exclusive or of
4663its two operands. The ``xor`` is used to implement the "one's
4664complement" operation, which is the "~" operator in C.
4665
4666Arguments:
4667""""""""""
4668
4669The two arguments to the '``xor``' instruction must be
4670:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4671arguments must have identical types.
4672
4673Semantics:
4674""""""""""
4675
4676The truth table used for the '``xor``' instruction is:
4677
4678+-----+-----+-----+
4679| In0 | In1 | Out |
4680+-----+-----+-----+
4681| 0 | 0 | 0 |
4682+-----+-----+-----+
4683| 0 | 1 | 1 |
4684+-----+-----+-----+
4685| 1 | 0 | 1 |
4686+-----+-----+-----+
4687| 1 | 1 | 0 |
4688+-----+-----+-----+
4689
4690Example:
4691""""""""
4692
4693.. code-block:: llvm
4694
Tim Northover675a0962014-06-13 14:24:23 +00004695 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4696 <result> = xor i32 15, 40 ; yields i32:result = 39
4697 <result> = xor i32 4, 8 ; yields i32:result = 12
4698 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004699
4700Vector Operations
4701-----------------
4702
4703LLVM supports several instructions to represent vector operations in a
4704target-independent manner. These instructions cover the element-access
4705and vector-specific operations needed to process vectors effectively.
4706While LLVM does directly support these vector operations, many
4707sophisticated algorithms will want to use target-specific intrinsics to
4708take full advantage of a specific target.
4709
4710.. _i_extractelement:
4711
4712'``extractelement``' Instruction
4713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4714
4715Syntax:
4716"""""""
4717
4718::
4719
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004720 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004721
4722Overview:
4723"""""""""
4724
4725The '``extractelement``' instruction extracts a single scalar element
4726from a vector at a specified index.
4727
4728Arguments:
4729""""""""""
4730
4731The first operand of an '``extractelement``' instruction is a value of
4732:ref:`vector <t_vector>` type. The second operand is an index indicating
4733the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004734variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004735
4736Semantics:
4737""""""""""
4738
4739The result is a scalar of the same type as the element type of ``val``.
4740Its value is the value at position ``idx`` of ``val``. If ``idx``
4741exceeds the length of ``val``, the results are undefined.
4742
4743Example:
4744""""""""
4745
4746.. code-block:: llvm
4747
4748 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4749
4750.. _i_insertelement:
4751
4752'``insertelement``' Instruction
4753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4754
4755Syntax:
4756"""""""
4757
4758::
4759
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004760 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004761
4762Overview:
4763"""""""""
4764
4765The '``insertelement``' instruction inserts a scalar element into a
4766vector at a specified index.
4767
4768Arguments:
4769""""""""""
4770
4771The first operand of an '``insertelement``' instruction is a value of
4772:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4773type must equal the element type of the first operand. The third operand
4774is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004775index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004776
4777Semantics:
4778""""""""""
4779
4780The result is a vector of the same type as ``val``. Its element values
4781are those of ``val`` except at position ``idx``, where it gets the value
4782``elt``. If ``idx`` exceeds the length of ``val``, the results are
4783undefined.
4784
4785Example:
4786""""""""
4787
4788.. code-block:: llvm
4789
4790 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4791
4792.. _i_shufflevector:
4793
4794'``shufflevector``' Instruction
4795^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4796
4797Syntax:
4798"""""""
4799
4800::
4801
4802 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4803
4804Overview:
4805"""""""""
4806
4807The '``shufflevector``' instruction constructs a permutation of elements
4808from two input vectors, returning a vector with the same element type as
4809the input and length that is the same as the shuffle mask.
4810
4811Arguments:
4812""""""""""
4813
4814The first two operands of a '``shufflevector``' instruction are vectors
4815with the same type. The third argument is a shuffle mask whose element
4816type is always 'i32'. The result of the instruction is a vector whose
4817length is the same as the shuffle mask and whose element type is the
4818same as the element type of the first two operands.
4819
4820The shuffle mask operand is required to be a constant vector with either
4821constant integer or undef values.
4822
4823Semantics:
4824""""""""""
4825
4826The elements of the two input vectors are numbered from left to right
4827across both of the vectors. The shuffle mask operand specifies, for each
4828element of the result vector, which element of the two input vectors the
4829result element gets. The element selector may be undef (meaning "don't
4830care") and the second operand may be undef if performing a shuffle from
4831only one vector.
4832
4833Example:
4834""""""""
4835
4836.. code-block:: llvm
4837
4838 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4839 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4840 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4841 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4842 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4843 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4844 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4845 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4846
4847Aggregate Operations
4848--------------------
4849
4850LLVM supports several instructions for working with
4851:ref:`aggregate <t_aggregate>` values.
4852
4853.. _i_extractvalue:
4854
4855'``extractvalue``' Instruction
4856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4857
4858Syntax:
4859"""""""
4860
4861::
4862
4863 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4864
4865Overview:
4866"""""""""
4867
4868The '``extractvalue``' instruction extracts the value of a member field
4869from an :ref:`aggregate <t_aggregate>` value.
4870
4871Arguments:
4872""""""""""
4873
4874The first operand of an '``extractvalue``' instruction is a value of
4875:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4876constant indices to specify which value to extract in a similar manner
4877as indices in a '``getelementptr``' instruction.
4878
4879The major differences to ``getelementptr`` indexing are:
4880
4881- Since the value being indexed is not a pointer, the first index is
4882 omitted and assumed to be zero.
4883- At least one index must be specified.
4884- Not only struct indices but also array indices must be in bounds.
4885
4886Semantics:
4887""""""""""
4888
4889The result is the value at the position in the aggregate specified by
4890the index operands.
4891
4892Example:
4893""""""""
4894
4895.. code-block:: llvm
4896
4897 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4898
4899.. _i_insertvalue:
4900
4901'``insertvalue``' Instruction
4902^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4903
4904Syntax:
4905"""""""
4906
4907::
4908
4909 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4910
4911Overview:
4912"""""""""
4913
4914The '``insertvalue``' instruction inserts a value into a member field in
4915an :ref:`aggregate <t_aggregate>` value.
4916
4917Arguments:
4918""""""""""
4919
4920The first operand of an '``insertvalue``' instruction is a value of
4921:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4922a first-class value to insert. The following operands are constant
4923indices indicating the position at which to insert the value in a
4924similar manner as indices in a '``extractvalue``' instruction. The value
4925to insert must have the same type as the value identified by the
4926indices.
4927
4928Semantics:
4929""""""""""
4930
4931The result is an aggregate of the same type as ``val``. Its value is
4932that of ``val`` except that the value at the position specified by the
4933indices is that of ``elt``.
4934
4935Example:
4936""""""""
4937
4938.. code-block:: llvm
4939
4940 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4941 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4942 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4943
4944.. _memoryops:
4945
4946Memory Access and Addressing Operations
4947---------------------------------------
4948
4949A key design point of an SSA-based representation is how it represents
4950memory. In LLVM, no memory locations are in SSA form, which makes things
4951very simple. This section describes how to read, write, and allocate
4952memory in LLVM.
4953
4954.. _i_alloca:
4955
4956'``alloca``' Instruction
4957^^^^^^^^^^^^^^^^^^^^^^^^
4958
4959Syntax:
4960"""""""
4961
4962::
4963
Tim Northover675a0962014-06-13 14:24:23 +00004964 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00004965
4966Overview:
4967"""""""""
4968
4969The '``alloca``' instruction allocates memory on the stack frame of the
4970currently executing function, to be automatically released when this
4971function returns to its caller. The object is always allocated in the
4972generic address space (address space zero).
4973
4974Arguments:
4975""""""""""
4976
4977The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4978bytes of memory on the runtime stack, returning a pointer of the
4979appropriate type to the program. If "NumElements" is specified, it is
4980the number of elements allocated, otherwise "NumElements" is defaulted
4981to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00004982allocation is guaranteed to be aligned to at least that boundary. The
4983alignment may not be greater than ``1 << 29``. If not specified, or if
4984zero, the target can choose to align the allocation on any convenient
4985boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00004986
4987'``type``' may be any sized type.
4988
4989Semantics:
4990""""""""""
4991
4992Memory is allocated; a pointer is returned. The operation is undefined
4993if there is insufficient stack space for the allocation. '``alloca``'d
4994memory is automatically released when the function returns. The
4995'``alloca``' instruction is commonly used to represent automatic
4996variables that must have an address available. When the function returns
4997(either with the ``ret`` or ``resume`` instructions), the memory is
4998reclaimed. Allocating zero bytes is legal, but the result is undefined.
4999The order in which memory is allocated (ie., which way the stack grows)
5000is not specified.
5001
5002Example:
5003""""""""
5004
5005.. code-block:: llvm
5006
Tim Northover675a0962014-06-13 14:24:23 +00005007 %ptr = alloca i32 ; yields i32*:ptr
5008 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5009 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5010 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005011
5012.. _i_load:
5013
5014'``load``' Instruction
5015^^^^^^^^^^^^^^^^^^^^^^
5016
5017Syntax:
5018"""""""
5019
5020::
5021
5022 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
5023 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5024 !<index> = !{ i32 1 }
5025
5026Overview:
5027"""""""""
5028
5029The '``load``' instruction is used to read from memory.
5030
5031Arguments:
5032""""""""""
5033
Eli Bendersky239a78b2013-04-17 20:17:08 +00005034The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00005035from which to load. The pointer must point to a :ref:`first
5036class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5037then the optimizer is not allowed to modify the number or order of
5038execution of this ``load`` with other :ref:`volatile
5039operations <volatile>`.
5040
5041If the ``load`` is marked as ``atomic``, it takes an extra
5042:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5043``release`` and ``acq_rel`` orderings are not valid on ``load``
5044instructions. Atomic loads produce :ref:`defined <memmodel>` results
5045when they may see multiple atomic stores. The type of the pointee must
5046be an integer type whose bit width is a power of two greater than or
5047equal to eight and less than or equal to a target-specific size limit.
5048``align`` must be explicitly specified on atomic loads, and the load has
5049undefined behavior if the alignment is not set to a value which is at
5050least the size in bytes of the pointee. ``!nontemporal`` does not have
5051any defined semantics for atomic loads.
5052
5053The optional constant ``align`` argument specifies the alignment of the
5054operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005055or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005056alignment for the target. It is the responsibility of the code emitter
5057to ensure that the alignment information is correct. Overestimating the
5058alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005059may produce less efficient code. An alignment of 1 is always safe. The
5060maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005061
5062The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005063metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005064``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005065metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005066that this load is not expected to be reused in the cache. The code
5067generator may select special instructions to save cache bandwidth, such
5068as the ``MOVNT`` instruction on x86.
5069
5070The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005071metadata name ``<index>`` corresponding to a metadata node with no
5072entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00005073instruction tells the optimizer and code generator that this load
5074address points to memory which does not change value during program
5075execution. The optimizer may then move this load around, for example, by
5076hoisting it out of loops using loop invariant code motion.
5077
5078Semantics:
5079""""""""""
5080
5081The location of memory pointed to is loaded. If the value being loaded
5082is of scalar type then the number of bytes read does not exceed the
5083minimum number of bytes needed to hold all bits of the type. For
5084example, loading an ``i24`` reads at most three bytes. When loading a
5085value of a type like ``i20`` with a size that is not an integral number
5086of bytes, the result is undefined if the value was not originally
5087written using a store of the same type.
5088
5089Examples:
5090"""""""""
5091
5092.. code-block:: llvm
5093
Tim Northover675a0962014-06-13 14:24:23 +00005094 %ptr = alloca i32 ; yields i32*:ptr
5095 store i32 3, i32* %ptr ; yields void
5096 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005097
5098.. _i_store:
5099
5100'``store``' Instruction
5101^^^^^^^^^^^^^^^^^^^^^^^
5102
5103Syntax:
5104"""""""
5105
5106::
5107
Tim Northover675a0962014-06-13 14:24:23 +00005108 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5109 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005110
5111Overview:
5112"""""""""
5113
5114The '``store``' instruction is used to write to memory.
5115
5116Arguments:
5117""""""""""
5118
Eli Benderskyca380842013-04-17 17:17:20 +00005119There are two arguments to the ``store`` instruction: a value to store
5120and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005121operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005122the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005123then the optimizer is not allowed to modify the number or order of
5124execution of this ``store`` with other :ref:`volatile
5125operations <volatile>`.
5126
5127If the ``store`` is marked as ``atomic``, it takes an extra
5128:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5129``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5130instructions. Atomic loads produce :ref:`defined <memmodel>` results
5131when they may see multiple atomic stores. The type of the pointee must
5132be an integer type whose bit width is a power of two greater than or
5133equal to eight and less than or equal to a target-specific size limit.
5134``align`` must be explicitly specified on atomic stores, and the store
5135has undefined behavior if the alignment is not set to a value which is
5136at least the size in bytes of the pointee. ``!nontemporal`` does not
5137have any defined semantics for atomic stores.
5138
Eli Benderskyca380842013-04-17 17:17:20 +00005139The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005140operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005141or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005142alignment for the target. It is the responsibility of the code emitter
5143to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005144alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005145alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005146safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005147
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005148The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005149name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005150value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005151tells the optimizer and code generator that this load is not expected to
5152be reused in the cache. The code generator may select special
5153instructions to save cache bandwidth, such as the MOVNT instruction on
5154x86.
5155
5156Semantics:
5157""""""""""
5158
Eli Benderskyca380842013-04-17 17:17:20 +00005159The contents of memory are updated to contain ``<value>`` at the
5160location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005161of scalar type then the number of bytes written does not exceed the
5162minimum number of bytes needed to hold all bits of the type. For
5163example, storing an ``i24`` writes at most three bytes. When writing a
5164value of a type like ``i20`` with a size that is not an integral number
5165of bytes, it is unspecified what happens to the extra bits that do not
5166belong to the type, but they will typically be overwritten.
5167
5168Example:
5169""""""""
5170
5171.. code-block:: llvm
5172
Tim Northover675a0962014-06-13 14:24:23 +00005173 %ptr = alloca i32 ; yields i32*:ptr
5174 store i32 3, i32* %ptr ; yields void
5175 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005176
5177.. _i_fence:
5178
5179'``fence``' Instruction
5180^^^^^^^^^^^^^^^^^^^^^^^
5181
5182Syntax:
5183"""""""
5184
5185::
5186
Tim Northover675a0962014-06-13 14:24:23 +00005187 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005188
5189Overview:
5190"""""""""
5191
5192The '``fence``' instruction is used to introduce happens-before edges
5193between operations.
5194
5195Arguments:
5196""""""""""
5197
5198'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5199defines what *synchronizes-with* edges they add. They can only be given
5200``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5201
5202Semantics:
5203""""""""""
5204
5205A fence A which has (at least) ``release`` ordering semantics
5206*synchronizes with* a fence B with (at least) ``acquire`` ordering
5207semantics if and only if there exist atomic operations X and Y, both
5208operating on some atomic object M, such that A is sequenced before X, X
5209modifies M (either directly or through some side effect of a sequence
5210headed by X), Y is sequenced before B, and Y observes M. This provides a
5211*happens-before* dependency between A and B. Rather than an explicit
5212``fence``, one (but not both) of the atomic operations X or Y might
5213provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5214still *synchronize-with* the explicit ``fence`` and establish the
5215*happens-before* edge.
5216
5217A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5218``acquire`` and ``release`` semantics specified above, participates in
5219the global program order of other ``seq_cst`` operations and/or fences.
5220
5221The optional ":ref:`singlethread <singlethread>`" argument specifies
5222that the fence only synchronizes with other fences in the same thread.
5223(This is useful for interacting with signal handlers.)
5224
5225Example:
5226""""""""
5227
5228.. code-block:: llvm
5229
Tim Northover675a0962014-06-13 14:24:23 +00005230 fence acquire ; yields void
5231 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005232
5233.. _i_cmpxchg:
5234
5235'``cmpxchg``' Instruction
5236^^^^^^^^^^^^^^^^^^^^^^^^^
5237
5238Syntax:
5239"""""""
5240
5241::
5242
Tim Northover675a0962014-06-13 14:24:23 +00005243 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005244
5245Overview:
5246"""""""""
5247
5248The '``cmpxchg``' instruction is used to atomically modify memory. It
5249loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005250equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005251
5252Arguments:
5253""""""""""
5254
5255There are three arguments to the '``cmpxchg``' instruction: an address
5256to operate on, a value to compare to the value currently be at that
5257address, and a new value to place at that address if the compared values
5258are equal. The type of '<cmp>' must be an integer type whose bit width
5259is a power of two greater than or equal to eight and less than or equal
5260to a target-specific size limit. '<cmp>' and '<new>' must have the same
5261type, and the type of '<pointer>' must be a pointer to that type. If the
5262``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5263to modify the number or order of execution of this ``cmpxchg`` with
5264other :ref:`volatile operations <volatile>`.
5265
Tim Northovere94a5182014-03-11 10:48:52 +00005266The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005267``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5268must be at least ``monotonic``, the ordering constraint on failure must be no
5269stronger than that on success, and the failure ordering cannot be either
5270``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005271
5272The optional "``singlethread``" argument declares that the ``cmpxchg``
5273is only atomic with respect to code (usually signal handlers) running in
5274the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5275respect to all other code in the system.
5276
5277The pointer passed into cmpxchg must have alignment greater than or
5278equal to the size in memory of the operand.
5279
5280Semantics:
5281""""""""""
5282
Tim Northover420a2162014-06-13 14:24:07 +00005283The contents of memory at the location specified by the '``<pointer>``' operand
5284is read and compared to '``<cmp>``'; if the read value is the equal, the
5285'``<new>``' is written. The original value at the location is returned, together
5286with a flag indicating success (true) or failure (false).
5287
5288If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5289permitted: the operation may not write ``<new>`` even if the comparison
5290matched.
5291
5292If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5293if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005294
Tim Northovere94a5182014-03-11 10:48:52 +00005295A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5296identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5297load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005298
5299Example:
5300""""""""
5301
5302.. code-block:: llvm
5303
5304 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005305 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005306 br label %loop
5307
5308 loop:
5309 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5310 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005311 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005312 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5313 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005314 br i1 %success, label %done, label %loop
5315
5316 done:
5317 ...
5318
5319.. _i_atomicrmw:
5320
5321'``atomicrmw``' Instruction
5322^^^^^^^^^^^^^^^^^^^^^^^^^^^
5323
5324Syntax:
5325"""""""
5326
5327::
5328
Tim Northover675a0962014-06-13 14:24:23 +00005329 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005330
5331Overview:
5332"""""""""
5333
5334The '``atomicrmw``' instruction is used to atomically modify memory.
5335
5336Arguments:
5337""""""""""
5338
5339There are three arguments to the '``atomicrmw``' instruction: an
5340operation to apply, an address whose value to modify, an argument to the
5341operation. The operation must be one of the following keywords:
5342
5343- xchg
5344- add
5345- sub
5346- and
5347- nand
5348- or
5349- xor
5350- max
5351- min
5352- umax
5353- umin
5354
5355The type of '<value>' must be an integer type whose bit width is a power
5356of two greater than or equal to eight and less than or equal to a
5357target-specific size limit. The type of the '``<pointer>``' operand must
5358be a pointer to that type. If the ``atomicrmw`` is marked as
5359``volatile``, then the optimizer is not allowed to modify the number or
5360order of execution of this ``atomicrmw`` with other :ref:`volatile
5361operations <volatile>`.
5362
5363Semantics:
5364""""""""""
5365
5366The contents of memory at the location specified by the '``<pointer>``'
5367operand are atomically read, modified, and written back. The original
5368value at the location is returned. The modification is specified by the
5369operation argument:
5370
5371- xchg: ``*ptr = val``
5372- add: ``*ptr = *ptr + val``
5373- sub: ``*ptr = *ptr - val``
5374- and: ``*ptr = *ptr & val``
5375- nand: ``*ptr = ~(*ptr & val)``
5376- or: ``*ptr = *ptr | val``
5377- xor: ``*ptr = *ptr ^ val``
5378- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5379- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5380- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5381 comparison)
5382- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5383 comparison)
5384
5385Example:
5386""""""""
5387
5388.. code-block:: llvm
5389
Tim Northover675a0962014-06-13 14:24:23 +00005390 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005391
5392.. _i_getelementptr:
5393
5394'``getelementptr``' Instruction
5395^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5396
5397Syntax:
5398"""""""
5399
5400::
5401
5402 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5403 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5404 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5405
5406Overview:
5407"""""""""
5408
5409The '``getelementptr``' instruction is used to get the address of a
5410subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5411address calculation only and does not access memory.
5412
5413Arguments:
5414""""""""""
5415
5416The first argument is always a pointer or a vector of pointers, and
5417forms the basis of the calculation. The remaining arguments are indices
5418that indicate which of the elements of the aggregate object are indexed.
5419The interpretation of each index is dependent on the type being indexed
5420into. The first index always indexes the pointer value given as the
5421first argument, the second index indexes a value of the type pointed to
5422(not necessarily the value directly pointed to, since the first index
5423can be non-zero), etc. The first type indexed into must be a pointer
5424value, subsequent types can be arrays, vectors, and structs. Note that
5425subsequent types being indexed into can never be pointers, since that
5426would require loading the pointer before continuing calculation.
5427
5428The type of each index argument depends on the type it is indexing into.
5429When indexing into a (optionally packed) structure, only ``i32`` integer
5430**constants** are allowed (when using a vector of indices they must all
5431be the **same** ``i32`` integer constant). When indexing into an array,
5432pointer or vector, integers of any width are allowed, and they are not
5433required to be constant. These integers are treated as signed values
5434where relevant.
5435
5436For example, let's consider a C code fragment and how it gets compiled
5437to LLVM:
5438
5439.. code-block:: c
5440
5441 struct RT {
5442 char A;
5443 int B[10][20];
5444 char C;
5445 };
5446 struct ST {
5447 int X;
5448 double Y;
5449 struct RT Z;
5450 };
5451
5452 int *foo(struct ST *s) {
5453 return &s[1].Z.B[5][13];
5454 }
5455
5456The LLVM code generated by Clang is:
5457
5458.. code-block:: llvm
5459
5460 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5461 %struct.ST = type { i32, double, %struct.RT }
5462
5463 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5464 entry:
5465 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5466 ret i32* %arrayidx
5467 }
5468
5469Semantics:
5470""""""""""
5471
5472In the example above, the first index is indexing into the
5473'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5474= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5475indexes into the third element of the structure, yielding a
5476'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5477structure. The third index indexes into the second element of the
5478structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5479dimensions of the array are subscripted into, yielding an '``i32``'
5480type. The '``getelementptr``' instruction returns a pointer to this
5481element, thus computing a value of '``i32*``' type.
5482
5483Note that it is perfectly legal to index partially through a structure,
5484returning a pointer to an inner element. Because of this, the LLVM code
5485for the given testcase is equivalent to:
5486
5487.. code-block:: llvm
5488
5489 define i32* @foo(%struct.ST* %s) {
5490 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5491 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5492 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5493 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5494 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5495 ret i32* %t5
5496 }
5497
5498If the ``inbounds`` keyword is present, the result value of the
5499``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5500pointer is not an *in bounds* address of an allocated object, or if any
5501of the addresses that would be formed by successive addition of the
5502offsets implied by the indices to the base address with infinitely
5503precise signed arithmetic are not an *in bounds* address of that
5504allocated object. The *in bounds* addresses for an allocated object are
5505all the addresses that point into the object, plus the address one byte
5506past the end. In cases where the base is a vector of pointers the
5507``inbounds`` keyword applies to each of the computations element-wise.
5508
5509If the ``inbounds`` keyword is not present, the offsets are added to the
5510base address with silently-wrapping two's complement arithmetic. If the
5511offsets have a different width from the pointer, they are sign-extended
5512or truncated to the width of the pointer. The result value of the
5513``getelementptr`` may be outside the object pointed to by the base
5514pointer. The result value may not necessarily be used to access memory
5515though, even if it happens to point into allocated storage. See the
5516:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5517information.
5518
5519The getelementptr instruction is often confusing. For some more insight
5520into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5521
5522Example:
5523""""""""
5524
5525.. code-block:: llvm
5526
5527 ; yields [12 x i8]*:aptr
5528 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5529 ; yields i8*:vptr
5530 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5531 ; yields i8*:eptr
5532 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5533 ; yields i32*:iptr
5534 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5535
5536In cases where the pointer argument is a vector of pointers, each index
5537must be a vector with the same number of elements. For example:
5538
5539.. code-block:: llvm
5540
5541 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5542
5543Conversion Operations
5544---------------------
5545
5546The instructions in this category are the conversion instructions
5547(casting) which all take a single operand and a type. They perform
5548various bit conversions on the operand.
5549
5550'``trunc .. to``' Instruction
5551^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5552
5553Syntax:
5554"""""""
5555
5556::
5557
5558 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5559
5560Overview:
5561"""""""""
5562
5563The '``trunc``' instruction truncates its operand to the type ``ty2``.
5564
5565Arguments:
5566""""""""""
5567
5568The '``trunc``' instruction takes a value to trunc, and a type to trunc
5569it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5570of the same number of integers. The bit size of the ``value`` must be
5571larger than the bit size of the destination type, ``ty2``. Equal sized
5572types are not allowed.
5573
5574Semantics:
5575""""""""""
5576
5577The '``trunc``' instruction truncates the high order bits in ``value``
5578and converts the remaining bits to ``ty2``. Since the source size must
5579be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5580It will always truncate bits.
5581
5582Example:
5583""""""""
5584
5585.. code-block:: llvm
5586
5587 %X = trunc i32 257 to i8 ; yields i8:1
5588 %Y = trunc i32 123 to i1 ; yields i1:true
5589 %Z = trunc i32 122 to i1 ; yields i1:false
5590 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5591
5592'``zext .. to``' Instruction
5593^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5594
5595Syntax:
5596"""""""
5597
5598::
5599
5600 <result> = zext <ty> <value> to <ty2> ; yields ty2
5601
5602Overview:
5603"""""""""
5604
5605The '``zext``' instruction zero extends its operand to type ``ty2``.
5606
5607Arguments:
5608""""""""""
5609
5610The '``zext``' instruction takes a value to cast, and a type to cast it
5611to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5612the same number of integers. The bit size of the ``value`` must be
5613smaller than the bit size of the destination type, ``ty2``.
5614
5615Semantics:
5616""""""""""
5617
5618The ``zext`` fills the high order bits of the ``value`` with zero bits
5619until it reaches the size of the destination type, ``ty2``.
5620
5621When zero extending from i1, the result will always be either 0 or 1.
5622
5623Example:
5624""""""""
5625
5626.. code-block:: llvm
5627
5628 %X = zext i32 257 to i64 ; yields i64:257
5629 %Y = zext i1 true to i32 ; yields i32:1
5630 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5631
5632'``sext .. to``' Instruction
5633^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5634
5635Syntax:
5636"""""""
5637
5638::
5639
5640 <result> = sext <ty> <value> to <ty2> ; yields ty2
5641
5642Overview:
5643"""""""""
5644
5645The '``sext``' sign extends ``value`` to the type ``ty2``.
5646
5647Arguments:
5648""""""""""
5649
5650The '``sext``' instruction takes a value to cast, and a type to cast it
5651to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5652the same number of integers. The bit size of the ``value`` must be
5653smaller than the bit size of the destination type, ``ty2``.
5654
5655Semantics:
5656""""""""""
5657
5658The '``sext``' instruction performs a sign extension by copying the sign
5659bit (highest order bit) of the ``value`` until it reaches the bit size
5660of the type ``ty2``.
5661
5662When sign extending from i1, the extension always results in -1 or 0.
5663
5664Example:
5665""""""""
5666
5667.. code-block:: llvm
5668
5669 %X = sext i8 -1 to i16 ; yields i16 :65535
5670 %Y = sext i1 true to i32 ; yields i32:-1
5671 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5672
5673'``fptrunc .. to``' Instruction
5674^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5675
5676Syntax:
5677"""""""
5678
5679::
5680
5681 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5682
5683Overview:
5684"""""""""
5685
5686The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5687
5688Arguments:
5689""""""""""
5690
5691The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5692value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5693The size of ``value`` must be larger than the size of ``ty2``. This
5694implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5695
5696Semantics:
5697""""""""""
5698
5699The '``fptrunc``' instruction truncates a ``value`` from a larger
5700:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5701point <t_floating>` type. If the value cannot fit within the
5702destination type, ``ty2``, then the results are undefined.
5703
5704Example:
5705""""""""
5706
5707.. code-block:: llvm
5708
5709 %X = fptrunc double 123.0 to float ; yields float:123.0
5710 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5711
5712'``fpext .. to``' Instruction
5713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5714
5715Syntax:
5716"""""""
5717
5718::
5719
5720 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5721
5722Overview:
5723"""""""""
5724
5725The '``fpext``' extends a floating point ``value`` to a larger floating
5726point value.
5727
5728Arguments:
5729""""""""""
5730
5731The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5732``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5733to. The source type must be smaller than the destination type.
5734
5735Semantics:
5736""""""""""
5737
5738The '``fpext``' instruction extends the ``value`` from a smaller
5739:ref:`floating point <t_floating>` type to a larger :ref:`floating
5740point <t_floating>` type. The ``fpext`` cannot be used to make a
5741*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5742*no-op cast* for a floating point cast.
5743
5744Example:
5745""""""""
5746
5747.. code-block:: llvm
5748
5749 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5750 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5751
5752'``fptoui .. to``' Instruction
5753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5754
5755Syntax:
5756"""""""
5757
5758::
5759
5760 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5761
5762Overview:
5763"""""""""
5764
5765The '``fptoui``' converts a floating point ``value`` to its unsigned
5766integer equivalent of type ``ty2``.
5767
5768Arguments:
5769""""""""""
5770
5771The '``fptoui``' instruction takes a value to cast, which must be a
5772scalar or vector :ref:`floating point <t_floating>` value, and a type to
5773cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5774``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5775type with the same number of elements as ``ty``
5776
5777Semantics:
5778""""""""""
5779
5780The '``fptoui``' instruction converts its :ref:`floating
5781point <t_floating>` operand into the nearest (rounding towards zero)
5782unsigned integer value. If the value cannot fit in ``ty2``, the results
5783are undefined.
5784
5785Example:
5786""""""""
5787
5788.. code-block:: llvm
5789
5790 %X = fptoui double 123.0 to i32 ; yields i32:123
5791 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5792 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5793
5794'``fptosi .. to``' Instruction
5795^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5796
5797Syntax:
5798"""""""
5799
5800::
5801
5802 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5803
5804Overview:
5805"""""""""
5806
5807The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5808``value`` to type ``ty2``.
5809
5810Arguments:
5811""""""""""
5812
5813The '``fptosi``' instruction takes a value to cast, which must be a
5814scalar or vector :ref:`floating point <t_floating>` value, and a type to
5815cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5816``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5817type with the same number of elements as ``ty``
5818
5819Semantics:
5820""""""""""
5821
5822The '``fptosi``' instruction converts its :ref:`floating
5823point <t_floating>` operand into the nearest (rounding towards zero)
5824signed integer value. If the value cannot fit in ``ty2``, the results
5825are undefined.
5826
5827Example:
5828""""""""
5829
5830.. code-block:: llvm
5831
5832 %X = fptosi double -123.0 to i32 ; yields i32:-123
5833 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5834 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5835
5836'``uitofp .. to``' Instruction
5837^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5838
5839Syntax:
5840"""""""
5841
5842::
5843
5844 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5845
5846Overview:
5847"""""""""
5848
5849The '``uitofp``' instruction regards ``value`` as an unsigned integer
5850and converts that value to the ``ty2`` type.
5851
5852Arguments:
5853""""""""""
5854
5855The '``uitofp``' instruction takes a value to cast, which must be a
5856scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5857``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5858``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5859type with the same number of elements as ``ty``
5860
5861Semantics:
5862""""""""""
5863
5864The '``uitofp``' instruction interprets its operand as an unsigned
5865integer quantity and converts it to the corresponding floating point
5866value. If the value cannot fit in the floating point value, the results
5867are undefined.
5868
5869Example:
5870""""""""
5871
5872.. code-block:: llvm
5873
5874 %X = uitofp i32 257 to float ; yields float:257.0
5875 %Y = uitofp i8 -1 to double ; yields double:255.0
5876
5877'``sitofp .. to``' Instruction
5878^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5879
5880Syntax:
5881"""""""
5882
5883::
5884
5885 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5886
5887Overview:
5888"""""""""
5889
5890The '``sitofp``' instruction regards ``value`` as a signed integer and
5891converts that value to the ``ty2`` type.
5892
5893Arguments:
5894""""""""""
5895
5896The '``sitofp``' instruction takes a value to cast, which must be a
5897scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5898``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5899``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5900type with the same number of elements as ``ty``
5901
5902Semantics:
5903""""""""""
5904
5905The '``sitofp``' instruction interprets its operand as a signed integer
5906quantity and converts it to the corresponding floating point value. If
5907the value cannot fit in the floating point value, the results are
5908undefined.
5909
5910Example:
5911""""""""
5912
5913.. code-block:: llvm
5914
5915 %X = sitofp i32 257 to float ; yields float:257.0
5916 %Y = sitofp i8 -1 to double ; yields double:-1.0
5917
5918.. _i_ptrtoint:
5919
5920'``ptrtoint .. to``' Instruction
5921^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5922
5923Syntax:
5924"""""""
5925
5926::
5927
5928 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5929
5930Overview:
5931"""""""""
5932
5933The '``ptrtoint``' instruction converts the pointer or a vector of
5934pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5935
5936Arguments:
5937""""""""""
5938
5939The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5940a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5941type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5942a vector of integers type.
5943
5944Semantics:
5945""""""""""
5946
5947The '``ptrtoint``' instruction converts ``value`` to integer type
5948``ty2`` by interpreting the pointer value as an integer and either
5949truncating or zero extending that value to the size of the integer type.
5950If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5951``value`` is larger than ``ty2`` then a truncation is done. If they are
5952the same size, then nothing is done (*no-op cast*) other than a type
5953change.
5954
5955Example:
5956""""""""
5957
5958.. code-block:: llvm
5959
5960 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5961 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5962 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5963
5964.. _i_inttoptr:
5965
5966'``inttoptr .. to``' Instruction
5967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5968
5969Syntax:
5970"""""""
5971
5972::
5973
5974 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5975
5976Overview:
5977"""""""""
5978
5979The '``inttoptr``' instruction converts an integer ``value`` to a
5980pointer type, ``ty2``.
5981
5982Arguments:
5983""""""""""
5984
5985The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5986cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5987type.
5988
5989Semantics:
5990""""""""""
5991
5992The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5993applying either a zero extension or a truncation depending on the size
5994of the integer ``value``. If ``value`` is larger than the size of a
5995pointer then a truncation is done. If ``value`` is smaller than the size
5996of a pointer then a zero extension is done. If they are the same size,
5997nothing is done (*no-op cast*).
5998
5999Example:
6000""""""""
6001
6002.. code-block:: llvm
6003
6004 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6005 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6006 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6007 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6008
6009.. _i_bitcast:
6010
6011'``bitcast .. to``' Instruction
6012^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6013
6014Syntax:
6015"""""""
6016
6017::
6018
6019 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6020
6021Overview:
6022"""""""""
6023
6024The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6025changing any bits.
6026
6027Arguments:
6028""""""""""
6029
6030The '``bitcast``' instruction takes a value to cast, which must be a
6031non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006032also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6033bit sizes of ``value`` and the destination type, ``ty2``, must be
6034identical. If the source type is a pointer, the destination type must
6035also be a pointer of the same size. This instruction supports bitwise
6036conversion of vectors to integers and to vectors of other types (as
6037long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006038
6039Semantics:
6040""""""""""
6041
Matt Arsenault24b49c42013-07-31 17:49:08 +00006042The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6043is always a *no-op cast* because no bits change with this
6044conversion. The conversion is done as if the ``value`` had been stored
6045to memory and read back as type ``ty2``. Pointer (or vector of
6046pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006047pointers) types with the same address space through this instruction.
6048To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6049or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006050
6051Example:
6052""""""""
6053
6054.. code-block:: llvm
6055
6056 %X = bitcast i8 255 to i8 ; yields i8 :-1
6057 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6058 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6059 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6060
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006061.. _i_addrspacecast:
6062
6063'``addrspacecast .. to``' Instruction
6064^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6065
6066Syntax:
6067"""""""
6068
6069::
6070
6071 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6072
6073Overview:
6074"""""""""
6075
6076The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6077address space ``n`` to type ``pty2`` in address space ``m``.
6078
6079Arguments:
6080""""""""""
6081
6082The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6083to cast and a pointer type to cast it to, which must have a different
6084address space.
6085
6086Semantics:
6087""""""""""
6088
6089The '``addrspacecast``' instruction converts the pointer value
6090``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006091value modification, depending on the target and the address space
6092pair. Pointer conversions within the same address space must be
6093performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006094conversion is legal then both result and operand refer to the same memory
6095location.
6096
6097Example:
6098""""""""
6099
6100.. code-block:: llvm
6101
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006102 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6103 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6104 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006105
Sean Silvab084af42012-12-07 10:36:55 +00006106.. _otherops:
6107
6108Other Operations
6109----------------
6110
6111The instructions in this category are the "miscellaneous" instructions,
6112which defy better classification.
6113
6114.. _i_icmp:
6115
6116'``icmp``' Instruction
6117^^^^^^^^^^^^^^^^^^^^^^
6118
6119Syntax:
6120"""""""
6121
6122::
6123
Tim Northover675a0962014-06-13 14:24:23 +00006124 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006125
6126Overview:
6127"""""""""
6128
6129The '``icmp``' instruction returns a boolean value or a vector of
6130boolean values based on comparison of its two integer, integer vector,
6131pointer, or pointer vector operands.
6132
6133Arguments:
6134""""""""""
6135
6136The '``icmp``' instruction takes three operands. The first operand is
6137the condition code indicating the kind of comparison to perform. It is
6138not a value, just a keyword. The possible condition code are:
6139
6140#. ``eq``: equal
6141#. ``ne``: not equal
6142#. ``ugt``: unsigned greater than
6143#. ``uge``: unsigned greater or equal
6144#. ``ult``: unsigned less than
6145#. ``ule``: unsigned less or equal
6146#. ``sgt``: signed greater than
6147#. ``sge``: signed greater or equal
6148#. ``slt``: signed less than
6149#. ``sle``: signed less or equal
6150
6151The remaining two arguments must be :ref:`integer <t_integer>` or
6152:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6153must also be identical types.
6154
6155Semantics:
6156""""""""""
6157
6158The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6159code given as ``cond``. The comparison performed always yields either an
6160:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6161
6162#. ``eq``: yields ``true`` if the operands are equal, ``false``
6163 otherwise. No sign interpretation is necessary or performed.
6164#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6165 otherwise. No sign interpretation is necessary or performed.
6166#. ``ugt``: interprets the operands as unsigned values and yields
6167 ``true`` if ``op1`` is greater than ``op2``.
6168#. ``uge``: interprets the operands as unsigned values and yields
6169 ``true`` if ``op1`` is greater than or equal to ``op2``.
6170#. ``ult``: interprets the operands as unsigned values and yields
6171 ``true`` if ``op1`` is less than ``op2``.
6172#. ``ule``: interprets the operands as unsigned values and yields
6173 ``true`` if ``op1`` is less than or equal to ``op2``.
6174#. ``sgt``: interprets the operands as signed values and yields ``true``
6175 if ``op1`` is greater than ``op2``.
6176#. ``sge``: interprets the operands as signed values and yields ``true``
6177 if ``op1`` is greater than or equal to ``op2``.
6178#. ``slt``: interprets the operands as signed values and yields ``true``
6179 if ``op1`` is less than ``op2``.
6180#. ``sle``: interprets the operands as signed values and yields ``true``
6181 if ``op1`` is less than or equal to ``op2``.
6182
6183If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6184are compared as if they were integers.
6185
6186If the operands are integer vectors, then they are compared element by
6187element. The result is an ``i1`` vector with the same number of elements
6188as the values being compared. Otherwise, the result is an ``i1``.
6189
6190Example:
6191""""""""
6192
6193.. code-block:: llvm
6194
6195 <result> = icmp eq i32 4, 5 ; yields: result=false
6196 <result> = icmp ne float* %X, %X ; yields: result=false
6197 <result> = icmp ult i16 4, 5 ; yields: result=true
6198 <result> = icmp sgt i16 4, 5 ; yields: result=false
6199 <result> = icmp ule i16 -4, 5 ; yields: result=false
6200 <result> = icmp sge i16 4, 5 ; yields: result=false
6201
6202Note that the code generator does not yet support vector types with the
6203``icmp`` instruction.
6204
6205.. _i_fcmp:
6206
6207'``fcmp``' Instruction
6208^^^^^^^^^^^^^^^^^^^^^^
6209
6210Syntax:
6211"""""""
6212
6213::
6214
Tim Northover675a0962014-06-13 14:24:23 +00006215 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006216
6217Overview:
6218"""""""""
6219
6220The '``fcmp``' instruction returns a boolean value or vector of boolean
6221values based on comparison of its operands.
6222
6223If the operands are floating point scalars, then the result type is a
6224boolean (:ref:`i1 <t_integer>`).
6225
6226If the operands are floating point vectors, then the result type is a
6227vector of boolean with the same number of elements as the operands being
6228compared.
6229
6230Arguments:
6231""""""""""
6232
6233The '``fcmp``' instruction takes three operands. The first operand is
6234the condition code indicating the kind of comparison to perform. It is
6235not a value, just a keyword. The possible condition code are:
6236
6237#. ``false``: no comparison, always returns false
6238#. ``oeq``: ordered and equal
6239#. ``ogt``: ordered and greater than
6240#. ``oge``: ordered and greater than or equal
6241#. ``olt``: ordered and less than
6242#. ``ole``: ordered and less than or equal
6243#. ``one``: ordered and not equal
6244#. ``ord``: ordered (no nans)
6245#. ``ueq``: unordered or equal
6246#. ``ugt``: unordered or greater than
6247#. ``uge``: unordered or greater than or equal
6248#. ``ult``: unordered or less than
6249#. ``ule``: unordered or less than or equal
6250#. ``une``: unordered or not equal
6251#. ``uno``: unordered (either nans)
6252#. ``true``: no comparison, always returns true
6253
6254*Ordered* means that neither operand is a QNAN while *unordered* means
6255that either operand may be a QNAN.
6256
6257Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6258point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6259type. They must have identical types.
6260
6261Semantics:
6262""""""""""
6263
6264The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6265condition code given as ``cond``. If the operands are vectors, then the
6266vectors are compared element by element. Each comparison performed
6267always yields an :ref:`i1 <t_integer>` result, as follows:
6268
6269#. ``false``: always yields ``false``, regardless of operands.
6270#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6271 is equal to ``op2``.
6272#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6273 is greater than ``op2``.
6274#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6275 is greater than or equal to ``op2``.
6276#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6277 is less than ``op2``.
6278#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6279 is less than or equal to ``op2``.
6280#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6281 is not equal to ``op2``.
6282#. ``ord``: yields ``true`` if both operands are not a QNAN.
6283#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6284 equal to ``op2``.
6285#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6286 greater than ``op2``.
6287#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6288 greater than or equal to ``op2``.
6289#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6290 less than ``op2``.
6291#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6292 less than or equal to ``op2``.
6293#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6294 not equal to ``op2``.
6295#. ``uno``: yields ``true`` if either operand is a QNAN.
6296#. ``true``: always yields ``true``, regardless of operands.
6297
6298Example:
6299""""""""
6300
6301.. code-block:: llvm
6302
6303 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6304 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6305 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6306 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6307
6308Note that the code generator does not yet support vector types with the
6309``fcmp`` instruction.
6310
6311.. _i_phi:
6312
6313'``phi``' Instruction
6314^^^^^^^^^^^^^^^^^^^^^
6315
6316Syntax:
6317"""""""
6318
6319::
6320
6321 <result> = phi <ty> [ <val0>, <label0>], ...
6322
6323Overview:
6324"""""""""
6325
6326The '``phi``' instruction is used to implement the φ node in the SSA
6327graph representing the function.
6328
6329Arguments:
6330""""""""""
6331
6332The type of the incoming values is specified with the first type field.
6333After this, the '``phi``' instruction takes a list of pairs as
6334arguments, with one pair for each predecessor basic block of the current
6335block. Only values of :ref:`first class <t_firstclass>` type may be used as
6336the value arguments to the PHI node. Only labels may be used as the
6337label arguments.
6338
6339There must be no non-phi instructions between the start of a basic block
6340and the PHI instructions: i.e. PHI instructions must be first in a basic
6341block.
6342
6343For the purposes of the SSA form, the use of each incoming value is
6344deemed to occur on the edge from the corresponding predecessor block to
6345the current block (but after any definition of an '``invoke``'
6346instruction's return value on the same edge).
6347
6348Semantics:
6349""""""""""
6350
6351At runtime, the '``phi``' instruction logically takes on the value
6352specified by the pair corresponding to the predecessor basic block that
6353executed just prior to the current block.
6354
6355Example:
6356""""""""
6357
6358.. code-block:: llvm
6359
6360 Loop: ; Infinite loop that counts from 0 on up...
6361 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6362 %nextindvar = add i32 %indvar, 1
6363 br label %Loop
6364
6365.. _i_select:
6366
6367'``select``' Instruction
6368^^^^^^^^^^^^^^^^^^^^^^^^
6369
6370Syntax:
6371"""""""
6372
6373::
6374
6375 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6376
6377 selty is either i1 or {<N x i1>}
6378
6379Overview:
6380"""""""""
6381
6382The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006383condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006384
6385Arguments:
6386""""""""""
6387
6388The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6389values indicating the condition, and two values of the same :ref:`first
6390class <t_firstclass>` type. If the val1/val2 are vectors and the
6391condition is a scalar, then entire vectors are selected, not individual
6392elements.
6393
6394Semantics:
6395""""""""""
6396
6397If the condition is an i1 and it evaluates to 1, the instruction returns
6398the first value argument; otherwise, it returns the second value
6399argument.
6400
6401If the condition is a vector of i1, then the value arguments must be
6402vectors of the same size, and the selection is done element by element.
6403
6404Example:
6405""""""""
6406
6407.. code-block:: llvm
6408
6409 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6410
6411.. _i_call:
6412
6413'``call``' Instruction
6414^^^^^^^^^^^^^^^^^^^^^^
6415
6416Syntax:
6417"""""""
6418
6419::
6420
Reid Kleckner5772b772014-04-24 20:14:34 +00006421 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006422
6423Overview:
6424"""""""""
6425
6426The '``call``' instruction represents a simple function call.
6427
6428Arguments:
6429""""""""""
6430
6431This instruction requires several arguments:
6432
Reid Kleckner5772b772014-04-24 20:14:34 +00006433#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6434 should perform tail call optimization. The ``tail`` marker is a hint that
6435 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6436 means that the call must be tail call optimized in order for the program to
6437 be correct. The ``musttail`` marker provides these guarantees:
6438
6439 #. The call will not cause unbounded stack growth if it is part of a
6440 recursive cycle in the call graph.
6441 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6442 forwarded in place.
6443
6444 Both markers imply that the callee does not access allocas or varargs from
6445 the caller. Calls marked ``musttail`` must obey the following additional
6446 rules:
6447
6448 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6449 or a pointer bitcast followed by a ret instruction.
6450 - The ret instruction must return the (possibly bitcasted) value
6451 produced by the call or void.
6452 - The caller and callee prototypes must match. Pointer types of
6453 parameters or return types may differ in pointee type, but not
6454 in address space.
6455 - The calling conventions of the caller and callee must match.
6456 - All ABI-impacting function attributes, such as sret, byval, inreg,
6457 returned, and inalloca, must match.
6458
6459 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6460 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006461
6462 - Caller and callee both have the calling convention ``fastcc``.
6463 - The call is in tail position (ret immediately follows call and ret
6464 uses value of call or is void).
6465 - Option ``-tailcallopt`` is enabled, or
6466 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006467 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006468 met. <CodeGenerator.html#tailcallopt>`_
6469
6470#. The optional "cconv" marker indicates which :ref:`calling
6471 convention <callingconv>` the call should use. If none is
6472 specified, the call defaults to using C calling conventions. The
6473 calling convention of the call must match the calling convention of
6474 the target function, or else the behavior is undefined.
6475#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6476 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6477 are valid here.
6478#. '``ty``': the type of the call instruction itself which is also the
6479 type of the return value. Functions that return no value are marked
6480 ``void``.
6481#. '``fnty``': shall be the signature of the pointer to function value
6482 being invoked. The argument types must match the types implied by
6483 this signature. This type can be omitted if the function is not
6484 varargs and if the function type does not return a pointer to a
6485 function.
6486#. '``fnptrval``': An LLVM value containing a pointer to a function to
6487 be invoked. In most cases, this is a direct function invocation, but
6488 indirect ``call``'s are just as possible, calling an arbitrary pointer
6489 to function value.
6490#. '``function args``': argument list whose types match the function
6491 signature argument types and parameter attributes. All arguments must
6492 be of :ref:`first class <t_firstclass>` type. If the function signature
6493 indicates the function accepts a variable number of arguments, the
6494 extra arguments can be specified.
6495#. The optional :ref:`function attributes <fnattrs>` list. Only
6496 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6497 attributes are valid here.
6498
6499Semantics:
6500""""""""""
6501
6502The '``call``' instruction is used to cause control flow to transfer to
6503a specified function, with its incoming arguments bound to the specified
6504values. Upon a '``ret``' instruction in the called function, control
6505flow continues with the instruction after the function call, and the
6506return value of the function is bound to the result argument.
6507
6508Example:
6509""""""""
6510
6511.. code-block:: llvm
6512
6513 %retval = call i32 @test(i32 %argc)
6514 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6515 %X = tail call i32 @foo() ; yields i32
6516 %Y = tail call fastcc i32 @foo() ; yields i32
6517 call void %foo(i8 97 signext)
6518
6519 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006520 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006521 %gr = extractvalue %struct.A %r, 0 ; yields i32
6522 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6523 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6524 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6525
6526llvm treats calls to some functions with names and arguments that match
6527the standard C99 library as being the C99 library functions, and may
6528perform optimizations or generate code for them under that assumption.
6529This is something we'd like to change in the future to provide better
6530support for freestanding environments and non-C-based languages.
6531
6532.. _i_va_arg:
6533
6534'``va_arg``' Instruction
6535^^^^^^^^^^^^^^^^^^^^^^^^
6536
6537Syntax:
6538"""""""
6539
6540::
6541
6542 <resultval> = va_arg <va_list*> <arglist>, <argty>
6543
6544Overview:
6545"""""""""
6546
6547The '``va_arg``' instruction is used to access arguments passed through
6548the "variable argument" area of a function call. It is used to implement
6549the ``va_arg`` macro in C.
6550
6551Arguments:
6552""""""""""
6553
6554This instruction takes a ``va_list*`` value and the type of the
6555argument. It returns a value of the specified argument type and
6556increments the ``va_list`` to point to the next argument. The actual
6557type of ``va_list`` is target specific.
6558
6559Semantics:
6560""""""""""
6561
6562The '``va_arg``' instruction loads an argument of the specified type
6563from the specified ``va_list`` and causes the ``va_list`` to point to
6564the next argument. For more information, see the variable argument
6565handling :ref:`Intrinsic Functions <int_varargs>`.
6566
6567It is legal for this instruction to be called in a function which does
6568not take a variable number of arguments, for example, the ``vfprintf``
6569function.
6570
6571``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6572function <intrinsics>` because it takes a type as an argument.
6573
6574Example:
6575""""""""
6576
6577See the :ref:`variable argument processing <int_varargs>` section.
6578
6579Note that the code generator does not yet fully support va\_arg on many
6580targets. Also, it does not currently support va\_arg with aggregate
6581types on any target.
6582
6583.. _i_landingpad:
6584
6585'``landingpad``' Instruction
6586^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6587
6588Syntax:
6589"""""""
6590
6591::
6592
6593 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6594 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6595
6596 <clause> := catch <type> <value>
6597 <clause> := filter <array constant type> <array constant>
6598
6599Overview:
6600"""""""""
6601
6602The '``landingpad``' instruction is used by `LLVM's exception handling
6603system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006604is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006605code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6606defines values supplied by the personality function (``pers_fn``) upon
6607re-entry to the function. The ``resultval`` has the type ``resultty``.
6608
6609Arguments:
6610""""""""""
6611
6612This instruction takes a ``pers_fn`` value. This is the personality
6613function associated with the unwinding mechanism. The optional
6614``cleanup`` flag indicates that the landing pad block is a cleanup.
6615
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006616A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006617contains the global variable representing the "type" that may be caught
6618or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6619clause takes an array constant as its argument. Use
6620"``[0 x i8**] undef``" for a filter which cannot throw. The
6621'``landingpad``' instruction must contain *at least* one ``clause`` or
6622the ``cleanup`` flag.
6623
6624Semantics:
6625""""""""""
6626
6627The '``landingpad``' instruction defines the values which are set by the
6628personality function (``pers_fn``) upon re-entry to the function, and
6629therefore the "result type" of the ``landingpad`` instruction. As with
6630calling conventions, how the personality function results are
6631represented in LLVM IR is target specific.
6632
6633The clauses are applied in order from top to bottom. If two
6634``landingpad`` instructions are merged together through inlining, the
6635clauses from the calling function are appended to the list of clauses.
6636When the call stack is being unwound due to an exception being thrown,
6637the exception is compared against each ``clause`` in turn. If it doesn't
6638match any of the clauses, and the ``cleanup`` flag is not set, then
6639unwinding continues further up the call stack.
6640
6641The ``landingpad`` instruction has several restrictions:
6642
6643- A landing pad block is a basic block which is the unwind destination
6644 of an '``invoke``' instruction.
6645- A landing pad block must have a '``landingpad``' instruction as its
6646 first non-PHI instruction.
6647- There can be only one '``landingpad``' instruction within the landing
6648 pad block.
6649- A basic block that is not a landing pad block may not include a
6650 '``landingpad``' instruction.
6651- All '``landingpad``' instructions in a function must have the same
6652 personality function.
6653
6654Example:
6655""""""""
6656
6657.. code-block:: llvm
6658
6659 ;; A landing pad which can catch an integer.
6660 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6661 catch i8** @_ZTIi
6662 ;; A landing pad that is a cleanup.
6663 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6664 cleanup
6665 ;; A landing pad which can catch an integer and can only throw a double.
6666 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6667 catch i8** @_ZTIi
6668 filter [1 x i8**] [@_ZTId]
6669
6670.. _intrinsics:
6671
6672Intrinsic Functions
6673===================
6674
6675LLVM supports the notion of an "intrinsic function". These functions
6676have well known names and semantics and are required to follow certain
6677restrictions. Overall, these intrinsics represent an extension mechanism
6678for the LLVM language that does not require changing all of the
6679transformations in LLVM when adding to the language (or the bitcode
6680reader/writer, the parser, etc...).
6681
6682Intrinsic function names must all start with an "``llvm.``" prefix. This
6683prefix is reserved in LLVM for intrinsic names; thus, function names may
6684not begin with this prefix. Intrinsic functions must always be external
6685functions: you cannot define the body of intrinsic functions. Intrinsic
6686functions may only be used in call or invoke instructions: it is illegal
6687to take the address of an intrinsic function. Additionally, because
6688intrinsic functions are part of the LLVM language, it is required if any
6689are added that they be documented here.
6690
6691Some intrinsic functions can be overloaded, i.e., the intrinsic
6692represents a family of functions that perform the same operation but on
6693different data types. Because LLVM can represent over 8 million
6694different integer types, overloading is used commonly to allow an
6695intrinsic function to operate on any integer type. One or more of the
6696argument types or the result type can be overloaded to accept any
6697integer type. Argument types may also be defined as exactly matching a
6698previous argument's type or the result type. This allows an intrinsic
6699function which accepts multiple arguments, but needs all of them to be
6700of the same type, to only be overloaded with respect to a single
6701argument or the result.
6702
6703Overloaded intrinsics will have the names of its overloaded argument
6704types encoded into its function name, each preceded by a period. Only
6705those types which are overloaded result in a name suffix. Arguments
6706whose type is matched against another type do not. For example, the
6707``llvm.ctpop`` function can take an integer of any width and returns an
6708integer of exactly the same integer width. This leads to a family of
6709functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6710``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6711overloaded, and only one type suffix is required. Because the argument's
6712type is matched against the return type, it does not require its own
6713name suffix.
6714
6715To learn how to add an intrinsic function, please see the `Extending
6716LLVM Guide <ExtendingLLVM.html>`_.
6717
6718.. _int_varargs:
6719
6720Variable Argument Handling Intrinsics
6721-------------------------------------
6722
6723Variable argument support is defined in LLVM with the
6724:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6725functions. These functions are related to the similarly named macros
6726defined in the ``<stdarg.h>`` header file.
6727
6728All of these functions operate on arguments that use a target-specific
6729value type "``va_list``". The LLVM assembly language reference manual
6730does not define what this type is, so all transformations should be
6731prepared to handle these functions regardless of the type used.
6732
6733This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6734variable argument handling intrinsic functions are used.
6735
6736.. code-block:: llvm
6737
6738 define i32 @test(i32 %X, ...) {
6739 ; Initialize variable argument processing
6740 %ap = alloca i8*
6741 %ap2 = bitcast i8** %ap to i8*
6742 call void @llvm.va_start(i8* %ap2)
6743
6744 ; Read a single integer argument
6745 %tmp = va_arg i8** %ap, i32
6746
6747 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6748 %aq = alloca i8*
6749 %aq2 = bitcast i8** %aq to i8*
6750 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6751 call void @llvm.va_end(i8* %aq2)
6752
6753 ; Stop processing of arguments.
6754 call void @llvm.va_end(i8* %ap2)
6755 ret i32 %tmp
6756 }
6757
6758 declare void @llvm.va_start(i8*)
6759 declare void @llvm.va_copy(i8*, i8*)
6760 declare void @llvm.va_end(i8*)
6761
6762.. _int_va_start:
6763
6764'``llvm.va_start``' Intrinsic
6765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6766
6767Syntax:
6768"""""""
6769
6770::
6771
Nick Lewycky04f6de02013-09-11 22:04:52 +00006772 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006773
6774Overview:
6775"""""""""
6776
6777The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6778subsequent use by ``va_arg``.
6779
6780Arguments:
6781""""""""""
6782
6783The argument is a pointer to a ``va_list`` element to initialize.
6784
6785Semantics:
6786""""""""""
6787
6788The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6789available in C. In a target-dependent way, it initializes the
6790``va_list`` element to which the argument points, so that the next call
6791to ``va_arg`` will produce the first variable argument passed to the
6792function. Unlike the C ``va_start`` macro, this intrinsic does not need
6793to know the last argument of the function as the compiler can figure
6794that out.
6795
6796'``llvm.va_end``' Intrinsic
6797^^^^^^^^^^^^^^^^^^^^^^^^^^^
6798
6799Syntax:
6800"""""""
6801
6802::
6803
6804 declare void @llvm.va_end(i8* <arglist>)
6805
6806Overview:
6807"""""""""
6808
6809The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6810initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6811
6812Arguments:
6813""""""""""
6814
6815The argument is a pointer to a ``va_list`` to destroy.
6816
6817Semantics:
6818""""""""""
6819
6820The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6821available in C. In a target-dependent way, it destroys the ``va_list``
6822element to which the argument points. Calls to
6823:ref:`llvm.va_start <int_va_start>` and
6824:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6825``llvm.va_end``.
6826
6827.. _int_va_copy:
6828
6829'``llvm.va_copy``' Intrinsic
6830^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6831
6832Syntax:
6833"""""""
6834
6835::
6836
6837 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6838
6839Overview:
6840"""""""""
6841
6842The '``llvm.va_copy``' intrinsic copies the current argument position
6843from the source argument list to the destination argument list.
6844
6845Arguments:
6846""""""""""
6847
6848The first argument is a pointer to a ``va_list`` element to initialize.
6849The second argument is a pointer to a ``va_list`` element to copy from.
6850
6851Semantics:
6852""""""""""
6853
6854The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6855available in C. In a target-dependent way, it copies the source
6856``va_list`` element into the destination ``va_list`` element. This
6857intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6858arbitrarily complex and require, for example, memory allocation.
6859
6860Accurate Garbage Collection Intrinsics
6861--------------------------------------
6862
6863LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6864(GC) requires the implementation and generation of these intrinsics.
6865These intrinsics allow identification of :ref:`GC roots on the
6866stack <int_gcroot>`, as well as garbage collector implementations that
6867require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6868Front-ends for type-safe garbage collected languages should generate
6869these intrinsics to make use of the LLVM garbage collectors. For more
6870details, see `Accurate Garbage Collection with
6871LLVM <GarbageCollection.html>`_.
6872
6873The garbage collection intrinsics only operate on objects in the generic
6874address space (address space zero).
6875
6876.. _int_gcroot:
6877
6878'``llvm.gcroot``' Intrinsic
6879^^^^^^^^^^^^^^^^^^^^^^^^^^^
6880
6881Syntax:
6882"""""""
6883
6884::
6885
6886 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6887
6888Overview:
6889"""""""""
6890
6891The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6892the code generator, and allows some metadata to be associated with it.
6893
6894Arguments:
6895""""""""""
6896
6897The first argument specifies the address of a stack object that contains
6898the root pointer. The second pointer (which must be either a constant or
6899a global value address) contains the meta-data to be associated with the
6900root.
6901
6902Semantics:
6903""""""""""
6904
6905At runtime, a call to this intrinsic stores a null pointer into the
6906"ptrloc" location. At compile-time, the code generator generates
6907information to allow the runtime to find the pointer at GC safe points.
6908The '``llvm.gcroot``' intrinsic may only be used in a function which
6909:ref:`specifies a GC algorithm <gc>`.
6910
6911.. _int_gcread:
6912
6913'``llvm.gcread``' Intrinsic
6914^^^^^^^^^^^^^^^^^^^^^^^^^^^
6915
6916Syntax:
6917"""""""
6918
6919::
6920
6921 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6922
6923Overview:
6924"""""""""
6925
6926The '``llvm.gcread``' intrinsic identifies reads of references from heap
6927locations, allowing garbage collector implementations that require read
6928barriers.
6929
6930Arguments:
6931""""""""""
6932
6933The second argument is the address to read from, which should be an
6934address allocated from the garbage collector. The first object is a
6935pointer to the start of the referenced object, if needed by the language
6936runtime (otherwise null).
6937
6938Semantics:
6939""""""""""
6940
6941The '``llvm.gcread``' intrinsic has the same semantics as a load
6942instruction, but may be replaced with substantially more complex code by
6943the garbage collector runtime, as needed. The '``llvm.gcread``'
6944intrinsic may only be used in a function which :ref:`specifies a GC
6945algorithm <gc>`.
6946
6947.. _int_gcwrite:
6948
6949'``llvm.gcwrite``' Intrinsic
6950^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6951
6952Syntax:
6953"""""""
6954
6955::
6956
6957 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6958
6959Overview:
6960"""""""""
6961
6962The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6963locations, allowing garbage collector implementations that require write
6964barriers (such as generational or reference counting collectors).
6965
6966Arguments:
6967""""""""""
6968
6969The first argument is the reference to store, the second is the start of
6970the object to store it to, and the third is the address of the field of
6971Obj to store to. If the runtime does not require a pointer to the
6972object, Obj may be null.
6973
6974Semantics:
6975""""""""""
6976
6977The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6978instruction, but may be replaced with substantially more complex code by
6979the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6980intrinsic may only be used in a function which :ref:`specifies a GC
6981algorithm <gc>`.
6982
6983Code Generator Intrinsics
6984-------------------------
6985
6986These intrinsics are provided by LLVM to expose special features that
6987may only be implemented with code generator support.
6988
6989'``llvm.returnaddress``' Intrinsic
6990^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6991
6992Syntax:
6993"""""""
6994
6995::
6996
6997 declare i8 *@llvm.returnaddress(i32 <level>)
6998
6999Overview:
7000"""""""""
7001
7002The '``llvm.returnaddress``' intrinsic attempts to compute a
7003target-specific value indicating the return address of the current
7004function or one of its callers.
7005
7006Arguments:
7007""""""""""
7008
7009The argument to this intrinsic indicates which function to return the
7010address for. Zero indicates the calling function, one indicates its
7011caller, etc. The argument is **required** to be a constant integer
7012value.
7013
7014Semantics:
7015""""""""""
7016
7017The '``llvm.returnaddress``' intrinsic either returns a pointer
7018indicating the return address of the specified call frame, or zero if it
7019cannot be identified. The value returned by this intrinsic is likely to
7020be incorrect or 0 for arguments other than zero, so it should only be
7021used for debugging purposes.
7022
7023Note that calling this intrinsic does not prevent function inlining or
7024other aggressive transformations, so the value returned may not be that
7025of the obvious source-language caller.
7026
7027'``llvm.frameaddress``' Intrinsic
7028^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7029
7030Syntax:
7031"""""""
7032
7033::
7034
7035 declare i8* @llvm.frameaddress(i32 <level>)
7036
7037Overview:
7038"""""""""
7039
7040The '``llvm.frameaddress``' intrinsic attempts to return the
7041target-specific frame pointer value for the specified stack frame.
7042
7043Arguments:
7044""""""""""
7045
7046The argument to this intrinsic indicates which function to return the
7047frame pointer for. Zero indicates the calling function, one indicates
7048its caller, etc. The argument is **required** to be a constant integer
7049value.
7050
7051Semantics:
7052""""""""""
7053
7054The '``llvm.frameaddress``' intrinsic either returns a pointer
7055indicating the frame address of the specified call frame, or zero if it
7056cannot be identified. The value returned by this intrinsic is likely to
7057be incorrect or 0 for arguments other than zero, so it should only be
7058used for debugging purposes.
7059
7060Note that calling this intrinsic does not prevent function inlining or
7061other aggressive transformations, so the value returned may not be that
7062of the obvious source-language caller.
7063
Renato Golinc7aea402014-05-06 16:51:25 +00007064.. _int_read_register:
7065.. _int_write_register:
7066
7067'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7068^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7069
7070Syntax:
7071"""""""
7072
7073::
7074
7075 declare i32 @llvm.read_register.i32(metadata)
7076 declare i64 @llvm.read_register.i64(metadata)
7077 declare void @llvm.write_register.i32(metadata, i32 @value)
7078 declare void @llvm.write_register.i64(metadata, i64 @value)
7079 !0 = metadata !{metadata !"sp\00"}
7080
7081Overview:
7082"""""""""
7083
7084The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7085provides access to the named register. The register must be valid on
7086the architecture being compiled to. The type needs to be compatible
7087with the register being read.
7088
7089Semantics:
7090""""""""""
7091
7092The '``llvm.read_register``' intrinsic returns the current value of the
7093register, where possible. The '``llvm.write_register``' intrinsic sets
7094the current value of the register, where possible.
7095
7096This is useful to implement named register global variables that need
7097to always be mapped to a specific register, as is common practice on
7098bare-metal programs including OS kernels.
7099
7100The compiler doesn't check for register availability or use of the used
7101register in surrounding code, including inline assembly. Because of that,
7102allocatable registers are not supported.
7103
7104Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007105architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007106work is needed to support other registers and even more so, allocatable
7107registers.
7108
Sean Silvab084af42012-12-07 10:36:55 +00007109.. _int_stacksave:
7110
7111'``llvm.stacksave``' Intrinsic
7112^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7113
7114Syntax:
7115"""""""
7116
7117::
7118
7119 declare i8* @llvm.stacksave()
7120
7121Overview:
7122"""""""""
7123
7124The '``llvm.stacksave``' intrinsic is used to remember the current state
7125of the function stack, for use with
7126:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7127implementing language features like scoped automatic variable sized
7128arrays in C99.
7129
7130Semantics:
7131""""""""""
7132
7133This intrinsic returns a opaque pointer value that can be passed to
7134:ref:`llvm.stackrestore <int_stackrestore>`. When an
7135``llvm.stackrestore`` intrinsic is executed with a value saved from
7136``llvm.stacksave``, it effectively restores the state of the stack to
7137the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7138practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7139were allocated after the ``llvm.stacksave`` was executed.
7140
7141.. _int_stackrestore:
7142
7143'``llvm.stackrestore``' Intrinsic
7144^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7145
7146Syntax:
7147"""""""
7148
7149::
7150
7151 declare void @llvm.stackrestore(i8* %ptr)
7152
7153Overview:
7154"""""""""
7155
7156The '``llvm.stackrestore``' intrinsic is used to restore the state of
7157the function stack to the state it was in when the corresponding
7158:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7159useful for implementing language features like scoped automatic variable
7160sized arrays in C99.
7161
7162Semantics:
7163""""""""""
7164
7165See the description for :ref:`llvm.stacksave <int_stacksave>`.
7166
7167'``llvm.prefetch``' Intrinsic
7168^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7169
7170Syntax:
7171"""""""
7172
7173::
7174
7175 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7176
7177Overview:
7178"""""""""
7179
7180The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7181insert a prefetch instruction if supported; otherwise, it is a noop.
7182Prefetches have no effect on the behavior of the program but can change
7183its performance characteristics.
7184
7185Arguments:
7186""""""""""
7187
7188``address`` is the address to be prefetched, ``rw`` is the specifier
7189determining if the fetch should be for a read (0) or write (1), and
7190``locality`` is a temporal locality specifier ranging from (0) - no
7191locality, to (3) - extremely local keep in cache. The ``cache type``
7192specifies whether the prefetch is performed on the data (1) or
7193instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7194arguments must be constant integers.
7195
7196Semantics:
7197""""""""""
7198
7199This intrinsic does not modify the behavior of the program. In
7200particular, prefetches cannot trap and do not produce a value. On
7201targets that support this intrinsic, the prefetch can provide hints to
7202the processor cache for better performance.
7203
7204'``llvm.pcmarker``' Intrinsic
7205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7206
7207Syntax:
7208"""""""
7209
7210::
7211
7212 declare void @llvm.pcmarker(i32 <id>)
7213
7214Overview:
7215"""""""""
7216
7217The '``llvm.pcmarker``' intrinsic is a method to export a Program
7218Counter (PC) in a region of code to simulators and other tools. The
7219method is target specific, but it is expected that the marker will use
7220exported symbols to transmit the PC of the marker. The marker makes no
7221guarantees that it will remain with any specific instruction after
7222optimizations. It is possible that the presence of a marker will inhibit
7223optimizations. The intended use is to be inserted after optimizations to
7224allow correlations of simulation runs.
7225
7226Arguments:
7227""""""""""
7228
7229``id`` is a numerical id identifying the marker.
7230
7231Semantics:
7232""""""""""
7233
7234This intrinsic does not modify the behavior of the program. Backends
7235that do not support this intrinsic may ignore it.
7236
7237'``llvm.readcyclecounter``' Intrinsic
7238^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7239
7240Syntax:
7241"""""""
7242
7243::
7244
7245 declare i64 @llvm.readcyclecounter()
7246
7247Overview:
7248"""""""""
7249
7250The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7251counter register (or similar low latency, high accuracy clocks) on those
7252targets that support it. On X86, it should map to RDTSC. On Alpha, it
7253should map to RPCC. As the backing counters overflow quickly (on the
7254order of 9 seconds on alpha), this should only be used for small
7255timings.
7256
7257Semantics:
7258""""""""""
7259
7260When directly supported, reading the cycle counter should not modify any
7261memory. Implementations are allowed to either return a application
7262specific value or a system wide value. On backends without support, this
7263is lowered to a constant 0.
7264
Tim Northoverbc933082013-05-23 19:11:20 +00007265Note that runtime support may be conditional on the privilege-level code is
7266running at and the host platform.
7267
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007268'``llvm.clear_cache``' Intrinsic
7269^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7270
7271Syntax:
7272"""""""
7273
7274::
7275
7276 declare void @llvm.clear_cache(i8*, i8*)
7277
7278Overview:
7279"""""""""
7280
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007281The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7282in the specified range to the execution unit of the processor. On
7283targets with non-unified instruction and data cache, the implementation
7284flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007285
7286Semantics:
7287""""""""""
7288
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007289On platforms with coherent instruction and data caches (e.g. x86), this
7290intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007291cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007292instructions or a system call, if cache flushing requires special
7293privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007294
Sean Silvad02bf3e2014-04-07 22:29:53 +00007295The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007296time library.
Renato Golin93010e62014-03-26 14:01:32 +00007297
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007298This instrinsic does *not* empty the instruction pipeline. Modifications
7299of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007300
Sean Silvab084af42012-12-07 10:36:55 +00007301Standard C Library Intrinsics
7302-----------------------------
7303
7304LLVM provides intrinsics for a few important standard C library
7305functions. These intrinsics allow source-language front-ends to pass
7306information about the alignment of the pointer arguments to the code
7307generator, providing opportunity for more efficient code generation.
7308
7309.. _int_memcpy:
7310
7311'``llvm.memcpy``' Intrinsic
7312^^^^^^^^^^^^^^^^^^^^^^^^^^^
7313
7314Syntax:
7315"""""""
7316
7317This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7318integer bit width and for different address spaces. Not all targets
7319support all bit widths however.
7320
7321::
7322
7323 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7324 i32 <len>, i32 <align>, i1 <isvolatile>)
7325 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7326 i64 <len>, i32 <align>, i1 <isvolatile>)
7327
7328Overview:
7329"""""""""
7330
7331The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7332source location to the destination location.
7333
7334Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7335intrinsics do not return a value, takes extra alignment/isvolatile
7336arguments and the pointers can be in specified address spaces.
7337
7338Arguments:
7339""""""""""
7340
7341The first argument is a pointer to the destination, the second is a
7342pointer to the source. The third argument is an integer argument
7343specifying the number of bytes to copy, the fourth argument is the
7344alignment of the source and destination locations, and the fifth is a
7345boolean indicating a volatile access.
7346
7347If the call to this intrinsic has an alignment value that is not 0 or 1,
7348then the caller guarantees that both the source and destination pointers
7349are aligned to that boundary.
7350
7351If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7352a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7353very cleanly specified and it is unwise to depend on it.
7354
7355Semantics:
7356""""""""""
7357
7358The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7359source location to the destination location, which are not allowed to
7360overlap. It copies "len" bytes of memory over. If the argument is known
7361to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007362argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007363
7364'``llvm.memmove``' Intrinsic
7365^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7366
7367Syntax:
7368"""""""
7369
7370This is an overloaded intrinsic. You can use llvm.memmove on any integer
7371bit width and for different address space. Not all targets support all
7372bit widths however.
7373
7374::
7375
7376 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7377 i32 <len>, i32 <align>, i1 <isvolatile>)
7378 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7379 i64 <len>, i32 <align>, i1 <isvolatile>)
7380
7381Overview:
7382"""""""""
7383
7384The '``llvm.memmove.*``' intrinsics move a block of memory from the
7385source location to the destination location. It is similar to the
7386'``llvm.memcpy``' intrinsic but allows the two memory locations to
7387overlap.
7388
7389Note that, unlike the standard libc function, the ``llvm.memmove.*``
7390intrinsics do not return a value, takes extra alignment/isvolatile
7391arguments and the pointers can be in specified address spaces.
7392
7393Arguments:
7394""""""""""
7395
7396The first argument is a pointer to the destination, the second is a
7397pointer to the source. The third argument is an integer argument
7398specifying the number of bytes to copy, the fourth argument is the
7399alignment of the source and destination locations, and the fifth is a
7400boolean indicating a volatile access.
7401
7402If the call to this intrinsic has an alignment value that is not 0 or 1,
7403then the caller guarantees that the source and destination pointers are
7404aligned to that boundary.
7405
7406If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7407is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7408not very cleanly specified and it is unwise to depend on it.
7409
7410Semantics:
7411""""""""""
7412
7413The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7414source location to the destination location, which may overlap. It
7415copies "len" bytes of memory over. If the argument is known to be
7416aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007417otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007418
7419'``llvm.memset.*``' Intrinsics
7420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7421
7422Syntax:
7423"""""""
7424
7425This is an overloaded intrinsic. You can use llvm.memset on any integer
7426bit width and for different address spaces. However, not all targets
7427support all bit widths.
7428
7429::
7430
7431 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7432 i32 <len>, i32 <align>, i1 <isvolatile>)
7433 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7434 i64 <len>, i32 <align>, i1 <isvolatile>)
7435
7436Overview:
7437"""""""""
7438
7439The '``llvm.memset.*``' intrinsics fill a block of memory with a
7440particular byte value.
7441
7442Note that, unlike the standard libc function, the ``llvm.memset``
7443intrinsic does not return a value and takes extra alignment/volatile
7444arguments. Also, the destination can be in an arbitrary address space.
7445
7446Arguments:
7447""""""""""
7448
7449The first argument is a pointer to the destination to fill, the second
7450is the byte value with which to fill it, the third argument is an
7451integer argument specifying the number of bytes to fill, and the fourth
7452argument is the known alignment of the destination location.
7453
7454If the call to this intrinsic has an alignment value that is not 0 or 1,
7455then the caller guarantees that the destination pointer is aligned to
7456that boundary.
7457
7458If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7459a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7460very cleanly specified and it is unwise to depend on it.
7461
7462Semantics:
7463""""""""""
7464
7465The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7466at the destination location. If the argument is known to be aligned to
7467some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007468it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007469
7470'``llvm.sqrt.*``' Intrinsic
7471^^^^^^^^^^^^^^^^^^^^^^^^^^^
7472
7473Syntax:
7474"""""""
7475
7476This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7477floating point or vector of floating point type. Not all targets support
7478all types however.
7479
7480::
7481
7482 declare float @llvm.sqrt.f32(float %Val)
7483 declare double @llvm.sqrt.f64(double %Val)
7484 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7485 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7486 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7487
7488Overview:
7489"""""""""
7490
7491The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7492returning the same value as the libm '``sqrt``' functions would. Unlike
7493``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7494negative numbers other than -0.0 (which allows for better optimization,
7495because there is no need to worry about errno being set).
7496``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7497
7498Arguments:
7499""""""""""
7500
7501The argument and return value are floating point numbers of the same
7502type.
7503
7504Semantics:
7505""""""""""
7506
7507This function returns the sqrt of the specified operand if it is a
7508nonnegative floating point number.
7509
7510'``llvm.powi.*``' Intrinsic
7511^^^^^^^^^^^^^^^^^^^^^^^^^^^
7512
7513Syntax:
7514"""""""
7515
7516This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7517floating point or vector of floating point type. Not all targets support
7518all types however.
7519
7520::
7521
7522 declare float @llvm.powi.f32(float %Val, i32 %power)
7523 declare double @llvm.powi.f64(double %Val, i32 %power)
7524 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7525 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7526 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7527
7528Overview:
7529"""""""""
7530
7531The '``llvm.powi.*``' intrinsics return the first operand raised to the
7532specified (positive or negative) power. The order of evaluation of
7533multiplications is not defined. When a vector of floating point type is
7534used, the second argument remains a scalar integer value.
7535
7536Arguments:
7537""""""""""
7538
7539The second argument is an integer power, and the first is a value to
7540raise to that power.
7541
7542Semantics:
7543""""""""""
7544
7545This function returns the first value raised to the second power with an
7546unspecified sequence of rounding operations.
7547
7548'``llvm.sin.*``' Intrinsic
7549^^^^^^^^^^^^^^^^^^^^^^^^^^
7550
7551Syntax:
7552"""""""
7553
7554This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7555floating point or vector of floating point type. Not all targets support
7556all types however.
7557
7558::
7559
7560 declare float @llvm.sin.f32(float %Val)
7561 declare double @llvm.sin.f64(double %Val)
7562 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7563 declare fp128 @llvm.sin.f128(fp128 %Val)
7564 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7565
7566Overview:
7567"""""""""
7568
7569The '``llvm.sin.*``' intrinsics return the sine of the operand.
7570
7571Arguments:
7572""""""""""
7573
7574The argument and return value are floating point numbers of the same
7575type.
7576
7577Semantics:
7578""""""""""
7579
7580This function returns the sine of the specified operand, returning the
7581same values as the libm ``sin`` functions would, and handles error
7582conditions in the same way.
7583
7584'``llvm.cos.*``' Intrinsic
7585^^^^^^^^^^^^^^^^^^^^^^^^^^
7586
7587Syntax:
7588"""""""
7589
7590This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7591floating point or vector of floating point type. Not all targets support
7592all types however.
7593
7594::
7595
7596 declare float @llvm.cos.f32(float %Val)
7597 declare double @llvm.cos.f64(double %Val)
7598 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7599 declare fp128 @llvm.cos.f128(fp128 %Val)
7600 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7601
7602Overview:
7603"""""""""
7604
7605The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7606
7607Arguments:
7608""""""""""
7609
7610The argument and return value are floating point numbers of the same
7611type.
7612
7613Semantics:
7614""""""""""
7615
7616This function returns the cosine of the specified operand, returning the
7617same values as the libm ``cos`` functions would, and handles error
7618conditions in the same way.
7619
7620'``llvm.pow.*``' Intrinsic
7621^^^^^^^^^^^^^^^^^^^^^^^^^^
7622
7623Syntax:
7624"""""""
7625
7626This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7627floating point or vector of floating point type. Not all targets support
7628all types however.
7629
7630::
7631
7632 declare float @llvm.pow.f32(float %Val, float %Power)
7633 declare double @llvm.pow.f64(double %Val, double %Power)
7634 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7635 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7636 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7637
7638Overview:
7639"""""""""
7640
7641The '``llvm.pow.*``' intrinsics return the first operand raised to the
7642specified (positive or negative) power.
7643
7644Arguments:
7645""""""""""
7646
7647The second argument is a floating point power, and the first is a value
7648to raise to that power.
7649
7650Semantics:
7651""""""""""
7652
7653This function returns the first value raised to the second power,
7654returning the same values as the libm ``pow`` functions would, and
7655handles error conditions in the same way.
7656
7657'``llvm.exp.*``' Intrinsic
7658^^^^^^^^^^^^^^^^^^^^^^^^^^
7659
7660Syntax:
7661"""""""
7662
7663This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7664floating point or vector of floating point type. Not all targets support
7665all types however.
7666
7667::
7668
7669 declare float @llvm.exp.f32(float %Val)
7670 declare double @llvm.exp.f64(double %Val)
7671 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7672 declare fp128 @llvm.exp.f128(fp128 %Val)
7673 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7674
7675Overview:
7676"""""""""
7677
7678The '``llvm.exp.*``' intrinsics perform the exp function.
7679
7680Arguments:
7681""""""""""
7682
7683The argument and return value are floating point numbers of the same
7684type.
7685
7686Semantics:
7687""""""""""
7688
7689This function returns the same values as the libm ``exp`` functions
7690would, and handles error conditions in the same way.
7691
7692'``llvm.exp2.*``' Intrinsic
7693^^^^^^^^^^^^^^^^^^^^^^^^^^^
7694
7695Syntax:
7696"""""""
7697
7698This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7699floating point or vector of floating point type. Not all targets support
7700all types however.
7701
7702::
7703
7704 declare float @llvm.exp2.f32(float %Val)
7705 declare double @llvm.exp2.f64(double %Val)
7706 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7707 declare fp128 @llvm.exp2.f128(fp128 %Val)
7708 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7709
7710Overview:
7711"""""""""
7712
7713The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7714
7715Arguments:
7716""""""""""
7717
7718The argument and return value are floating point numbers of the same
7719type.
7720
7721Semantics:
7722""""""""""
7723
7724This function returns the same values as the libm ``exp2`` functions
7725would, and handles error conditions in the same way.
7726
7727'``llvm.log.*``' Intrinsic
7728^^^^^^^^^^^^^^^^^^^^^^^^^^
7729
7730Syntax:
7731"""""""
7732
7733This is an overloaded intrinsic. You can use ``llvm.log`` on any
7734floating point or vector of floating point type. Not all targets support
7735all types however.
7736
7737::
7738
7739 declare float @llvm.log.f32(float %Val)
7740 declare double @llvm.log.f64(double %Val)
7741 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7742 declare fp128 @llvm.log.f128(fp128 %Val)
7743 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7744
7745Overview:
7746"""""""""
7747
7748The '``llvm.log.*``' intrinsics perform the log function.
7749
7750Arguments:
7751""""""""""
7752
7753The argument and return value are floating point numbers of the same
7754type.
7755
7756Semantics:
7757""""""""""
7758
7759This function returns the same values as the libm ``log`` functions
7760would, and handles error conditions in the same way.
7761
7762'``llvm.log10.*``' Intrinsic
7763^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7764
7765Syntax:
7766"""""""
7767
7768This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7769floating point or vector of floating point type. Not all targets support
7770all types however.
7771
7772::
7773
7774 declare float @llvm.log10.f32(float %Val)
7775 declare double @llvm.log10.f64(double %Val)
7776 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7777 declare fp128 @llvm.log10.f128(fp128 %Val)
7778 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7779
7780Overview:
7781"""""""""
7782
7783The '``llvm.log10.*``' intrinsics perform the log10 function.
7784
7785Arguments:
7786""""""""""
7787
7788The argument and return value are floating point numbers of the same
7789type.
7790
7791Semantics:
7792""""""""""
7793
7794This function returns the same values as the libm ``log10`` functions
7795would, and handles error conditions in the same way.
7796
7797'``llvm.log2.*``' Intrinsic
7798^^^^^^^^^^^^^^^^^^^^^^^^^^^
7799
7800Syntax:
7801"""""""
7802
7803This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7804floating point or vector of floating point type. Not all targets support
7805all types however.
7806
7807::
7808
7809 declare float @llvm.log2.f32(float %Val)
7810 declare double @llvm.log2.f64(double %Val)
7811 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7812 declare fp128 @llvm.log2.f128(fp128 %Val)
7813 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7814
7815Overview:
7816"""""""""
7817
7818The '``llvm.log2.*``' intrinsics perform the log2 function.
7819
7820Arguments:
7821""""""""""
7822
7823The argument and return value are floating point numbers of the same
7824type.
7825
7826Semantics:
7827""""""""""
7828
7829This function returns the same values as the libm ``log2`` functions
7830would, and handles error conditions in the same way.
7831
7832'``llvm.fma.*``' Intrinsic
7833^^^^^^^^^^^^^^^^^^^^^^^^^^
7834
7835Syntax:
7836"""""""
7837
7838This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7839floating point or vector of floating point type. Not all targets support
7840all types however.
7841
7842::
7843
7844 declare float @llvm.fma.f32(float %a, float %b, float %c)
7845 declare double @llvm.fma.f64(double %a, double %b, double %c)
7846 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7847 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7848 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7849
7850Overview:
7851"""""""""
7852
7853The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7854operation.
7855
7856Arguments:
7857""""""""""
7858
7859The argument and return value are floating point numbers of the same
7860type.
7861
7862Semantics:
7863""""""""""
7864
7865This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007866would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007867
7868'``llvm.fabs.*``' Intrinsic
7869^^^^^^^^^^^^^^^^^^^^^^^^^^^
7870
7871Syntax:
7872"""""""
7873
7874This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7875floating point or vector of floating point type. Not all targets support
7876all types however.
7877
7878::
7879
7880 declare float @llvm.fabs.f32(float %Val)
7881 declare double @llvm.fabs.f64(double %Val)
7882 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7883 declare fp128 @llvm.fabs.f128(fp128 %Val)
7884 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7885
7886Overview:
7887"""""""""
7888
7889The '``llvm.fabs.*``' intrinsics return the absolute value of the
7890operand.
7891
7892Arguments:
7893""""""""""
7894
7895The argument and return value are floating point numbers of the same
7896type.
7897
7898Semantics:
7899""""""""""
7900
7901This function returns the same values as the libm ``fabs`` functions
7902would, and handles error conditions in the same way.
7903
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007904'``llvm.copysign.*``' Intrinsic
7905^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7906
7907Syntax:
7908"""""""
7909
7910This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7911floating point or vector of floating point type. Not all targets support
7912all types however.
7913
7914::
7915
7916 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7917 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7918 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7919 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7920 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7921
7922Overview:
7923"""""""""
7924
7925The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7926first operand and the sign of the second operand.
7927
7928Arguments:
7929""""""""""
7930
7931The arguments and return value are floating point numbers of the same
7932type.
7933
7934Semantics:
7935""""""""""
7936
7937This function returns the same values as the libm ``copysign``
7938functions would, and handles error conditions in the same way.
7939
Sean Silvab084af42012-12-07 10:36:55 +00007940'``llvm.floor.*``' Intrinsic
7941^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7942
7943Syntax:
7944"""""""
7945
7946This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7947floating point or vector of floating point type. Not all targets support
7948all types however.
7949
7950::
7951
7952 declare float @llvm.floor.f32(float %Val)
7953 declare double @llvm.floor.f64(double %Val)
7954 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7955 declare fp128 @llvm.floor.f128(fp128 %Val)
7956 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7957
7958Overview:
7959"""""""""
7960
7961The '``llvm.floor.*``' intrinsics return the floor of the operand.
7962
7963Arguments:
7964""""""""""
7965
7966The argument and return value are floating point numbers of the same
7967type.
7968
7969Semantics:
7970""""""""""
7971
7972This function returns the same values as the libm ``floor`` functions
7973would, and handles error conditions in the same way.
7974
7975'``llvm.ceil.*``' Intrinsic
7976^^^^^^^^^^^^^^^^^^^^^^^^^^^
7977
7978Syntax:
7979"""""""
7980
7981This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7982floating point or vector of floating point type. Not all targets support
7983all types however.
7984
7985::
7986
7987 declare float @llvm.ceil.f32(float %Val)
7988 declare double @llvm.ceil.f64(double %Val)
7989 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7990 declare fp128 @llvm.ceil.f128(fp128 %Val)
7991 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7992
7993Overview:
7994"""""""""
7995
7996The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7997
7998Arguments:
7999""""""""""
8000
8001The argument and return value are floating point numbers of the same
8002type.
8003
8004Semantics:
8005""""""""""
8006
8007This function returns the same values as the libm ``ceil`` functions
8008would, and handles error conditions in the same way.
8009
8010'``llvm.trunc.*``' Intrinsic
8011^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8012
8013Syntax:
8014"""""""
8015
8016This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8017floating point or vector of floating point type. Not all targets support
8018all types however.
8019
8020::
8021
8022 declare float @llvm.trunc.f32(float %Val)
8023 declare double @llvm.trunc.f64(double %Val)
8024 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8025 declare fp128 @llvm.trunc.f128(fp128 %Val)
8026 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8027
8028Overview:
8029"""""""""
8030
8031The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8032nearest integer not larger in magnitude than the operand.
8033
8034Arguments:
8035""""""""""
8036
8037The argument and return value are floating point numbers of the same
8038type.
8039
8040Semantics:
8041""""""""""
8042
8043This function returns the same values as the libm ``trunc`` functions
8044would, and handles error conditions in the same way.
8045
8046'``llvm.rint.*``' Intrinsic
8047^^^^^^^^^^^^^^^^^^^^^^^^^^^
8048
8049Syntax:
8050"""""""
8051
8052This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8053floating point or vector of floating point type. Not all targets support
8054all types however.
8055
8056::
8057
8058 declare float @llvm.rint.f32(float %Val)
8059 declare double @llvm.rint.f64(double %Val)
8060 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8061 declare fp128 @llvm.rint.f128(fp128 %Val)
8062 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8063
8064Overview:
8065"""""""""
8066
8067The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8068nearest integer. It may raise an inexact floating-point exception if the
8069operand isn't an integer.
8070
8071Arguments:
8072""""""""""
8073
8074The argument and return value are floating point numbers of the same
8075type.
8076
8077Semantics:
8078""""""""""
8079
8080This function returns the same values as the libm ``rint`` functions
8081would, and handles error conditions in the same way.
8082
8083'``llvm.nearbyint.*``' Intrinsic
8084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8085
8086Syntax:
8087"""""""
8088
8089This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8090floating point or vector of floating point type. Not all targets support
8091all types however.
8092
8093::
8094
8095 declare float @llvm.nearbyint.f32(float %Val)
8096 declare double @llvm.nearbyint.f64(double %Val)
8097 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8098 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8099 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8100
8101Overview:
8102"""""""""
8103
8104The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8105nearest integer.
8106
8107Arguments:
8108""""""""""
8109
8110The argument and return value are floating point numbers of the same
8111type.
8112
8113Semantics:
8114""""""""""
8115
8116This function returns the same values as the libm ``nearbyint``
8117functions would, and handles error conditions in the same way.
8118
Hal Finkel171817e2013-08-07 22:49:12 +00008119'``llvm.round.*``' Intrinsic
8120^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8121
8122Syntax:
8123"""""""
8124
8125This is an overloaded intrinsic. You can use ``llvm.round`` on any
8126floating point or vector of floating point type. Not all targets support
8127all types however.
8128
8129::
8130
8131 declare float @llvm.round.f32(float %Val)
8132 declare double @llvm.round.f64(double %Val)
8133 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8134 declare fp128 @llvm.round.f128(fp128 %Val)
8135 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8136
8137Overview:
8138"""""""""
8139
8140The '``llvm.round.*``' intrinsics returns the operand rounded to the
8141nearest integer.
8142
8143Arguments:
8144""""""""""
8145
8146The argument and return value are floating point numbers of the same
8147type.
8148
8149Semantics:
8150""""""""""
8151
8152This function returns the same values as the libm ``round``
8153functions would, and handles error conditions in the same way.
8154
Sean Silvab084af42012-12-07 10:36:55 +00008155Bit Manipulation Intrinsics
8156---------------------------
8157
8158LLVM provides intrinsics for a few important bit manipulation
8159operations. These allow efficient code generation for some algorithms.
8160
8161'``llvm.bswap.*``' Intrinsics
8162^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8163
8164Syntax:
8165"""""""
8166
8167This is an overloaded intrinsic function. You can use bswap on any
8168integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8169
8170::
8171
8172 declare i16 @llvm.bswap.i16(i16 <id>)
8173 declare i32 @llvm.bswap.i32(i32 <id>)
8174 declare i64 @llvm.bswap.i64(i64 <id>)
8175
8176Overview:
8177"""""""""
8178
8179The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8180values with an even number of bytes (positive multiple of 16 bits).
8181These are useful for performing operations on data that is not in the
8182target's native byte order.
8183
8184Semantics:
8185""""""""""
8186
8187The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8188and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8189intrinsic returns an i32 value that has the four bytes of the input i32
8190swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8191returned i32 will have its bytes in 3, 2, 1, 0 order. The
8192``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8193concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8194respectively).
8195
8196'``llvm.ctpop.*``' Intrinsic
8197^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8198
8199Syntax:
8200"""""""
8201
8202This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8203bit width, or on any vector with integer elements. Not all targets
8204support all bit widths or vector types, however.
8205
8206::
8207
8208 declare i8 @llvm.ctpop.i8(i8 <src>)
8209 declare i16 @llvm.ctpop.i16(i16 <src>)
8210 declare i32 @llvm.ctpop.i32(i32 <src>)
8211 declare i64 @llvm.ctpop.i64(i64 <src>)
8212 declare i256 @llvm.ctpop.i256(i256 <src>)
8213 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8214
8215Overview:
8216"""""""""
8217
8218The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8219in a value.
8220
8221Arguments:
8222""""""""""
8223
8224The only argument is the value to be counted. The argument may be of any
8225integer type, or a vector with integer elements. The return type must
8226match the argument type.
8227
8228Semantics:
8229""""""""""
8230
8231The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8232each element of a vector.
8233
8234'``llvm.ctlz.*``' Intrinsic
8235^^^^^^^^^^^^^^^^^^^^^^^^^^^
8236
8237Syntax:
8238"""""""
8239
8240This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8241integer bit width, or any vector whose elements are integers. Not all
8242targets support all bit widths or vector types, however.
8243
8244::
8245
8246 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8247 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8248 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8249 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8250 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8251 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8252
8253Overview:
8254"""""""""
8255
8256The '``llvm.ctlz``' family of intrinsic functions counts the number of
8257leading zeros in a variable.
8258
8259Arguments:
8260""""""""""
8261
8262The first argument is the value to be counted. This argument may be of
8263any integer type, or a vectory with integer element type. The return
8264type must match the first argument type.
8265
8266The second argument must be a constant and is a flag to indicate whether
8267the intrinsic should ensure that a zero as the first argument produces a
8268defined result. Historically some architectures did not provide a
8269defined result for zero values as efficiently, and many algorithms are
8270now predicated on avoiding zero-value inputs.
8271
8272Semantics:
8273""""""""""
8274
8275The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8276zeros in a variable, or within each element of the vector. If
8277``src == 0`` then the result is the size in bits of the type of ``src``
8278if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8279``llvm.ctlz(i32 2) = 30``.
8280
8281'``llvm.cttz.*``' Intrinsic
8282^^^^^^^^^^^^^^^^^^^^^^^^^^^
8283
8284Syntax:
8285"""""""
8286
8287This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8288integer bit width, or any vector of integer elements. Not all targets
8289support all bit widths or vector types, however.
8290
8291::
8292
8293 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8294 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8295 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8296 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8297 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8298 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8299
8300Overview:
8301"""""""""
8302
8303The '``llvm.cttz``' family of intrinsic functions counts the number of
8304trailing zeros.
8305
8306Arguments:
8307""""""""""
8308
8309The first argument is the value to be counted. This argument may be of
8310any integer type, or a vectory with integer element type. The return
8311type must match the first argument type.
8312
8313The second argument must be a constant and is a flag to indicate whether
8314the intrinsic should ensure that a zero as the first argument produces a
8315defined result. Historically some architectures did not provide a
8316defined result for zero values as efficiently, and many algorithms are
8317now predicated on avoiding zero-value inputs.
8318
8319Semantics:
8320""""""""""
8321
8322The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8323zeros in a variable, or within each element of a vector. If ``src == 0``
8324then the result is the size in bits of the type of ``src`` if
8325``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8326``llvm.cttz(2) = 1``.
8327
8328Arithmetic with Overflow Intrinsics
8329-----------------------------------
8330
8331LLVM provides intrinsics for some arithmetic with overflow operations.
8332
8333'``llvm.sadd.with.overflow.*``' Intrinsics
8334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8335
8336Syntax:
8337"""""""
8338
8339This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8340on any integer bit width.
8341
8342::
8343
8344 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8345 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8346 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8347
8348Overview:
8349"""""""""
8350
8351The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8352a signed addition of the two arguments, and indicate whether an overflow
8353occurred during the signed summation.
8354
8355Arguments:
8356""""""""""
8357
8358The arguments (%a and %b) and the first element of the result structure
8359may be of integer types of any bit width, but they must have the same
8360bit width. The second element of the result structure must be of type
8361``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8362addition.
8363
8364Semantics:
8365""""""""""
8366
8367The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008368a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008369first element of which is the signed summation, and the second element
8370of which is a bit specifying if the signed summation resulted in an
8371overflow.
8372
8373Examples:
8374"""""""""
8375
8376.. code-block:: llvm
8377
8378 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8379 %sum = extractvalue {i32, i1} %res, 0
8380 %obit = extractvalue {i32, i1} %res, 1
8381 br i1 %obit, label %overflow, label %normal
8382
8383'``llvm.uadd.with.overflow.*``' Intrinsics
8384^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8385
8386Syntax:
8387"""""""
8388
8389This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8390on any integer bit width.
8391
8392::
8393
8394 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8395 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8396 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8397
8398Overview:
8399"""""""""
8400
8401The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8402an unsigned addition of the two arguments, and indicate whether a carry
8403occurred during the unsigned summation.
8404
8405Arguments:
8406""""""""""
8407
8408The arguments (%a and %b) and the first element of the result structure
8409may be of integer types of any bit width, but they must have the same
8410bit width. The second element of the result structure must be of type
8411``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8412addition.
8413
8414Semantics:
8415""""""""""
8416
8417The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008418an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008419first element of which is the sum, and the second element of which is a
8420bit specifying if the unsigned summation resulted in a carry.
8421
8422Examples:
8423"""""""""
8424
8425.. code-block:: llvm
8426
8427 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8428 %sum = extractvalue {i32, i1} %res, 0
8429 %obit = extractvalue {i32, i1} %res, 1
8430 br i1 %obit, label %carry, label %normal
8431
8432'``llvm.ssub.with.overflow.*``' Intrinsics
8433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8434
8435Syntax:
8436"""""""
8437
8438This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8439on any integer bit width.
8440
8441::
8442
8443 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8444 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8445 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8446
8447Overview:
8448"""""""""
8449
8450The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8451a signed subtraction of the two arguments, and indicate whether an
8452overflow occurred during the signed subtraction.
8453
8454Arguments:
8455""""""""""
8456
8457The arguments (%a and %b) and the first element of the result structure
8458may be of integer types of any bit width, but they must have the same
8459bit width. The second element of the result structure must be of type
8460``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8461subtraction.
8462
8463Semantics:
8464""""""""""
8465
8466The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008467a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008468first element of which is the subtraction, and the second element of
8469which is a bit specifying if the signed subtraction resulted in an
8470overflow.
8471
8472Examples:
8473"""""""""
8474
8475.. code-block:: llvm
8476
8477 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8478 %sum = extractvalue {i32, i1} %res, 0
8479 %obit = extractvalue {i32, i1} %res, 1
8480 br i1 %obit, label %overflow, label %normal
8481
8482'``llvm.usub.with.overflow.*``' Intrinsics
8483^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8484
8485Syntax:
8486"""""""
8487
8488This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8489on any integer bit width.
8490
8491::
8492
8493 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8494 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8495 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8496
8497Overview:
8498"""""""""
8499
8500The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8501an unsigned subtraction of the two arguments, and indicate whether an
8502overflow occurred during the unsigned subtraction.
8503
8504Arguments:
8505""""""""""
8506
8507The arguments (%a and %b) and the first element of the result structure
8508may be of integer types of any bit width, but they must have the same
8509bit width. The second element of the result structure must be of type
8510``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8511subtraction.
8512
8513Semantics:
8514""""""""""
8515
8516The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008517an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008518the first element of which is the subtraction, and the second element of
8519which is a bit specifying if the unsigned subtraction resulted in an
8520overflow.
8521
8522Examples:
8523"""""""""
8524
8525.. code-block:: llvm
8526
8527 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8528 %sum = extractvalue {i32, i1} %res, 0
8529 %obit = extractvalue {i32, i1} %res, 1
8530 br i1 %obit, label %overflow, label %normal
8531
8532'``llvm.smul.with.overflow.*``' Intrinsics
8533^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8534
8535Syntax:
8536"""""""
8537
8538This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8539on any integer bit width.
8540
8541::
8542
8543 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8544 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8545 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8546
8547Overview:
8548"""""""""
8549
8550The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8551a signed multiplication of the two arguments, and indicate whether an
8552overflow occurred during the signed multiplication.
8553
8554Arguments:
8555""""""""""
8556
8557The arguments (%a and %b) and the first element of the result structure
8558may be of integer types of any bit width, but they must have the same
8559bit width. The second element of the result structure must be of type
8560``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8561multiplication.
8562
8563Semantics:
8564""""""""""
8565
8566The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008567a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008568the first element of which is the multiplication, and the second element
8569of which is a bit specifying if the signed multiplication resulted in an
8570overflow.
8571
8572Examples:
8573"""""""""
8574
8575.. code-block:: llvm
8576
8577 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8578 %sum = extractvalue {i32, i1} %res, 0
8579 %obit = extractvalue {i32, i1} %res, 1
8580 br i1 %obit, label %overflow, label %normal
8581
8582'``llvm.umul.with.overflow.*``' Intrinsics
8583^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8584
8585Syntax:
8586"""""""
8587
8588This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8589on any integer bit width.
8590
8591::
8592
8593 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8594 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8595 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8596
8597Overview:
8598"""""""""
8599
8600The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8601a unsigned multiplication of the two arguments, and indicate whether an
8602overflow occurred during the unsigned multiplication.
8603
8604Arguments:
8605""""""""""
8606
8607The arguments (%a and %b) and the first element of the result structure
8608may be of integer types of any bit width, but they must have the same
8609bit width. The second element of the result structure must be of type
8610``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8611multiplication.
8612
8613Semantics:
8614""""""""""
8615
8616The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008617an unsigned multiplication of the two arguments. They return a structure ---
8618the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008619element of which is a bit specifying if the unsigned multiplication
8620resulted in an overflow.
8621
8622Examples:
8623"""""""""
8624
8625.. code-block:: llvm
8626
8627 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8628 %sum = extractvalue {i32, i1} %res, 0
8629 %obit = extractvalue {i32, i1} %res, 1
8630 br i1 %obit, label %overflow, label %normal
8631
8632Specialised Arithmetic Intrinsics
8633---------------------------------
8634
8635'``llvm.fmuladd.*``' Intrinsic
8636^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8637
8638Syntax:
8639"""""""
8640
8641::
8642
8643 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8644 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8645
8646Overview:
8647"""""""""
8648
8649The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008650expressions that can be fused if the code generator determines that (a) the
8651target instruction set has support for a fused operation, and (b) that the
8652fused operation is more efficient than the equivalent, separate pair of mul
8653and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008654
8655Arguments:
8656""""""""""
8657
8658The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8659multiplicands, a and b, and an addend c.
8660
8661Semantics:
8662""""""""""
8663
8664The expression:
8665
8666::
8667
8668 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8669
8670is equivalent to the expression a \* b + c, except that rounding will
8671not be performed between the multiplication and addition steps if the
8672code generator fuses the operations. Fusion is not guaranteed, even if
8673the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008674corresponding llvm.fma.\* intrinsic function should be used
8675instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008676
8677Examples:
8678"""""""""
8679
8680.. code-block:: llvm
8681
Tim Northover675a0962014-06-13 14:24:23 +00008682 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00008683
8684Half Precision Floating Point Intrinsics
8685----------------------------------------
8686
8687For most target platforms, half precision floating point is a
8688storage-only format. This means that it is a dense encoding (in memory)
8689but does not support computation in the format.
8690
8691This means that code must first load the half-precision floating point
8692value as an i16, then convert it to float with
8693:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8694then be performed on the float value (including extending to double
8695etc). To store the value back to memory, it is first converted to float
8696if needed, then converted to i16 with
8697:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8698i16 value.
8699
8700.. _int_convert_to_fp16:
8701
8702'``llvm.convert.to.fp16``' Intrinsic
8703^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8704
8705Syntax:
8706"""""""
8707
8708::
8709
Tim Northoverfd7e4242014-07-17 10:51:23 +00008710 declare i16 @llvm.convert.to.fp16.f32(float %a)
8711 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00008712
8713Overview:
8714"""""""""
8715
Tim Northoverfd7e4242014-07-17 10:51:23 +00008716The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8717conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00008718
8719Arguments:
8720""""""""""
8721
8722The intrinsic function contains single argument - the value to be
8723converted.
8724
8725Semantics:
8726""""""""""
8727
Tim Northoverfd7e4242014-07-17 10:51:23 +00008728The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8729conventional floating point format to half precision floating point format. The
8730return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00008731
8732Examples:
8733"""""""""
8734
8735.. code-block:: llvm
8736
Tim Northoverfd7e4242014-07-17 10:51:23 +00008737 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00008738 store i16 %res, i16* @x, align 2
8739
8740.. _int_convert_from_fp16:
8741
8742'``llvm.convert.from.fp16``' Intrinsic
8743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8744
8745Syntax:
8746"""""""
8747
8748::
8749
Tim Northoverfd7e4242014-07-17 10:51:23 +00008750 declare float @llvm.convert.from.fp16.f32(i16 %a)
8751 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008752
8753Overview:
8754"""""""""
8755
8756The '``llvm.convert.from.fp16``' intrinsic function performs a
8757conversion from half precision floating point format to single precision
8758floating point format.
8759
8760Arguments:
8761""""""""""
8762
8763The intrinsic function contains single argument - the value to be
8764converted.
8765
8766Semantics:
8767""""""""""
8768
8769The '``llvm.convert.from.fp16``' intrinsic function performs a
8770conversion from half single precision floating point format to single
8771precision floating point format. The input half-float value is
8772represented by an ``i16`` value.
8773
8774Examples:
8775"""""""""
8776
8777.. code-block:: llvm
8778
8779 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00008780 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008781
8782Debugger Intrinsics
8783-------------------
8784
8785The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8786prefix), are described in the `LLVM Source Level
8787Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8788document.
8789
8790Exception Handling Intrinsics
8791-----------------------------
8792
8793The LLVM exception handling intrinsics (which all start with
8794``llvm.eh.`` prefix), are described in the `LLVM Exception
8795Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8796
8797.. _int_trampoline:
8798
8799Trampoline Intrinsics
8800---------------------
8801
8802These intrinsics make it possible to excise one parameter, marked with
8803the :ref:`nest <nest>` attribute, from a function. The result is a
8804callable function pointer lacking the nest parameter - the caller does
8805not need to provide a value for it. Instead, the value to use is stored
8806in advance in a "trampoline", a block of memory usually allocated on the
8807stack, which also contains code to splice the nest value into the
8808argument list. This is used to implement the GCC nested function address
8809extension.
8810
8811For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8812then the resulting function pointer has signature ``i32 (i32, i32)*``.
8813It can be created as follows:
8814
8815.. code-block:: llvm
8816
8817 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8818 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8819 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8820 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8821 %fp = bitcast i8* %p to i32 (i32, i32)*
8822
8823The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8824``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8825
8826.. _int_it:
8827
8828'``llvm.init.trampoline``' Intrinsic
8829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8830
8831Syntax:
8832"""""""
8833
8834::
8835
8836 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8837
8838Overview:
8839"""""""""
8840
8841This fills the memory pointed to by ``tramp`` with executable code,
8842turning it into a trampoline.
8843
8844Arguments:
8845""""""""""
8846
8847The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8848pointers. The ``tramp`` argument must point to a sufficiently large and
8849sufficiently aligned block of memory; this memory is written to by the
8850intrinsic. Note that the size and the alignment are target-specific -
8851LLVM currently provides no portable way of determining them, so a
8852front-end that generates this intrinsic needs to have some
8853target-specific knowledge. The ``func`` argument must hold a function
8854bitcast to an ``i8*``.
8855
8856Semantics:
8857""""""""""
8858
8859The block of memory pointed to by ``tramp`` is filled with target
8860dependent code, turning it into a function. Then ``tramp`` needs to be
8861passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8862be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8863function's signature is the same as that of ``func`` with any arguments
8864marked with the ``nest`` attribute removed. At most one such ``nest``
8865argument is allowed, and it must be of pointer type. Calling the new
8866function is equivalent to calling ``func`` with the same argument list,
8867but with ``nval`` used for the missing ``nest`` argument. If, after
8868calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8869modified, then the effect of any later call to the returned function
8870pointer is undefined.
8871
8872.. _int_at:
8873
8874'``llvm.adjust.trampoline``' Intrinsic
8875^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8876
8877Syntax:
8878"""""""
8879
8880::
8881
8882 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8883
8884Overview:
8885"""""""""
8886
8887This performs any required machine-specific adjustment to the address of
8888a trampoline (passed as ``tramp``).
8889
8890Arguments:
8891""""""""""
8892
8893``tramp`` must point to a block of memory which already has trampoline
8894code filled in by a previous call to
8895:ref:`llvm.init.trampoline <int_it>`.
8896
8897Semantics:
8898""""""""""
8899
8900On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00008901different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00008902intrinsic returns the executable address corresponding to ``tramp``
8903after performing the required machine specific adjustments. The pointer
8904returned can then be :ref:`bitcast and executed <int_trampoline>`.
8905
8906Memory Use Markers
8907------------------
8908
Sanjay Patel69bf48e2014-07-04 19:40:43 +00008909This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00008910memory objects and ranges where variables are immutable.
8911
Reid Klecknera534a382013-12-19 02:14:12 +00008912.. _int_lifestart:
8913
Sean Silvab084af42012-12-07 10:36:55 +00008914'``llvm.lifetime.start``' Intrinsic
8915^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8916
8917Syntax:
8918"""""""
8919
8920::
8921
8922 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8923
8924Overview:
8925"""""""""
8926
8927The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8928object's lifetime.
8929
8930Arguments:
8931""""""""""
8932
8933The first argument is a constant integer representing the size of the
8934object, or -1 if it is variable sized. The second argument is a pointer
8935to the object.
8936
8937Semantics:
8938""""""""""
8939
8940This intrinsic indicates that before this point in the code, the value
8941of the memory pointed to by ``ptr`` is dead. This means that it is known
8942to never be used and has an undefined value. A load from the pointer
8943that precedes this intrinsic can be replaced with ``'undef'``.
8944
Reid Klecknera534a382013-12-19 02:14:12 +00008945.. _int_lifeend:
8946
Sean Silvab084af42012-12-07 10:36:55 +00008947'``llvm.lifetime.end``' Intrinsic
8948^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8949
8950Syntax:
8951"""""""
8952
8953::
8954
8955 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8956
8957Overview:
8958"""""""""
8959
8960The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8961object's lifetime.
8962
8963Arguments:
8964""""""""""
8965
8966The first argument is a constant integer representing the size of the
8967object, or -1 if it is variable sized. The second argument is a pointer
8968to the object.
8969
8970Semantics:
8971""""""""""
8972
8973This intrinsic indicates that after this point in the code, the value of
8974the memory pointed to by ``ptr`` is dead. This means that it is known to
8975never be used and has an undefined value. Any stores into the memory
8976object following this intrinsic may be removed as dead.
8977
8978'``llvm.invariant.start``' Intrinsic
8979^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8980
8981Syntax:
8982"""""""
8983
8984::
8985
8986 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8987
8988Overview:
8989"""""""""
8990
8991The '``llvm.invariant.start``' intrinsic specifies that the contents of
8992a memory object will not change.
8993
8994Arguments:
8995""""""""""
8996
8997The first argument is a constant integer representing the size of the
8998object, or -1 if it is variable sized. The second argument is a pointer
8999to the object.
9000
9001Semantics:
9002""""""""""
9003
9004This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9005the return value, the referenced memory location is constant and
9006unchanging.
9007
9008'``llvm.invariant.end``' Intrinsic
9009^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9010
9011Syntax:
9012"""""""
9013
9014::
9015
9016 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9017
9018Overview:
9019"""""""""
9020
9021The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9022memory object are mutable.
9023
9024Arguments:
9025""""""""""
9026
9027The first argument is the matching ``llvm.invariant.start`` intrinsic.
9028The second argument is a constant integer representing the size of the
9029object, or -1 if it is variable sized and the third argument is a
9030pointer to the object.
9031
9032Semantics:
9033""""""""""
9034
9035This intrinsic indicates that the memory is mutable again.
9036
9037General Intrinsics
9038------------------
9039
9040This class of intrinsics is designed to be generic and has no specific
9041purpose.
9042
9043'``llvm.var.annotation``' Intrinsic
9044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9045
9046Syntax:
9047"""""""
9048
9049::
9050
9051 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9052
9053Overview:
9054"""""""""
9055
9056The '``llvm.var.annotation``' intrinsic.
9057
9058Arguments:
9059""""""""""
9060
9061The first argument is a pointer to a value, the second is a pointer to a
9062global string, the third is a pointer to a global string which is the
9063source file name, and the last argument is the line number.
9064
9065Semantics:
9066""""""""""
9067
9068This intrinsic allows annotation of local variables with arbitrary
9069strings. This can be useful for special purpose optimizations that want
9070to look for these annotations. These have no other defined use; they are
9071ignored by code generation and optimization.
9072
Michael Gottesman88d18832013-03-26 00:34:27 +00009073'``llvm.ptr.annotation.*``' Intrinsic
9074^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9075
9076Syntax:
9077"""""""
9078
9079This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9080pointer to an integer of any width. *NOTE* you must specify an address space for
9081the pointer. The identifier for the default address space is the integer
9082'``0``'.
9083
9084::
9085
9086 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9087 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9088 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9089 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9090 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9091
9092Overview:
9093"""""""""
9094
9095The '``llvm.ptr.annotation``' intrinsic.
9096
9097Arguments:
9098""""""""""
9099
9100The first argument is a pointer to an integer value of arbitrary bitwidth
9101(result of some expression), the second is a pointer to a global string, the
9102third is a pointer to a global string which is the source file name, and the
9103last argument is the line number. It returns the value of the first argument.
9104
9105Semantics:
9106""""""""""
9107
9108This intrinsic allows annotation of a pointer to an integer with arbitrary
9109strings. This can be useful for special purpose optimizations that want to look
9110for these annotations. These have no other defined use; they are ignored by code
9111generation and optimization.
9112
Sean Silvab084af42012-12-07 10:36:55 +00009113'``llvm.annotation.*``' Intrinsic
9114^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9115
9116Syntax:
9117"""""""
9118
9119This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9120any integer bit width.
9121
9122::
9123
9124 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9125 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9126 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9127 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9128 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9129
9130Overview:
9131"""""""""
9132
9133The '``llvm.annotation``' intrinsic.
9134
9135Arguments:
9136""""""""""
9137
9138The first argument is an integer value (result of some expression), the
9139second is a pointer to a global string, the third is a pointer to a
9140global string which is the source file name, and the last argument is
9141the line number. It returns the value of the first argument.
9142
9143Semantics:
9144""""""""""
9145
9146This intrinsic allows annotations to be put on arbitrary expressions
9147with arbitrary strings. This can be useful for special purpose
9148optimizations that want to look for these annotations. These have no
9149other defined use; they are ignored by code generation and optimization.
9150
9151'``llvm.trap``' Intrinsic
9152^^^^^^^^^^^^^^^^^^^^^^^^^
9153
9154Syntax:
9155"""""""
9156
9157::
9158
9159 declare void @llvm.trap() noreturn nounwind
9160
9161Overview:
9162"""""""""
9163
9164The '``llvm.trap``' intrinsic.
9165
9166Arguments:
9167""""""""""
9168
9169None.
9170
9171Semantics:
9172""""""""""
9173
9174This intrinsic is lowered to the target dependent trap instruction. If
9175the target does not have a trap instruction, this intrinsic will be
9176lowered to a call of the ``abort()`` function.
9177
9178'``llvm.debugtrap``' Intrinsic
9179^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9180
9181Syntax:
9182"""""""
9183
9184::
9185
9186 declare void @llvm.debugtrap() nounwind
9187
9188Overview:
9189"""""""""
9190
9191The '``llvm.debugtrap``' intrinsic.
9192
9193Arguments:
9194""""""""""
9195
9196None.
9197
9198Semantics:
9199""""""""""
9200
9201This intrinsic is lowered to code which is intended to cause an
9202execution trap with the intention of requesting the attention of a
9203debugger.
9204
9205'``llvm.stackprotector``' Intrinsic
9206^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9207
9208Syntax:
9209"""""""
9210
9211::
9212
9213 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9214
9215Overview:
9216"""""""""
9217
9218The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9219onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9220is placed on the stack before local variables.
9221
9222Arguments:
9223""""""""""
9224
9225The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9226The first argument is the value loaded from the stack guard
9227``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9228enough space to hold the value of the guard.
9229
9230Semantics:
9231""""""""""
9232
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009233This intrinsic causes the prologue/epilogue inserter to force the position of
9234the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9235to ensure that if a local variable on the stack is overwritten, it will destroy
9236the value of the guard. When the function exits, the guard on the stack is
9237checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9238different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9239calling the ``__stack_chk_fail()`` function.
9240
9241'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009243
9244Syntax:
9245"""""""
9246
9247::
9248
9249 declare void @llvm.stackprotectorcheck(i8** <guard>)
9250
9251Overview:
9252"""""""""
9253
9254The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009255created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009256``__stack_chk_fail()`` function.
9257
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009258Arguments:
9259""""""""""
9260
9261The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9262the variable ``@__stack_chk_guard``.
9263
9264Semantics:
9265""""""""""
9266
9267This intrinsic is provided to perform the stack protector check by comparing
9268``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9269values do not match call the ``__stack_chk_fail()`` function.
9270
9271The reason to provide this as an IR level intrinsic instead of implementing it
9272via other IR operations is that in order to perform this operation at the IR
9273level without an intrinsic, one would need to create additional basic blocks to
9274handle the success/failure cases. This makes it difficult to stop the stack
9275protector check from disrupting sibling tail calls in Codegen. With this
9276intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009277codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009278
Sean Silvab084af42012-12-07 10:36:55 +00009279'``llvm.objectsize``' Intrinsic
9280^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9281
9282Syntax:
9283"""""""
9284
9285::
9286
9287 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9288 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9289
9290Overview:
9291"""""""""
9292
9293The ``llvm.objectsize`` intrinsic is designed to provide information to
9294the optimizers to determine at compile time whether a) an operation
9295(like memcpy) will overflow a buffer that corresponds to an object, or
9296b) that a runtime check for overflow isn't necessary. An object in this
9297context means an allocation of a specific class, structure, array, or
9298other object.
9299
9300Arguments:
9301""""""""""
9302
9303The ``llvm.objectsize`` intrinsic takes two arguments. The first
9304argument is a pointer to or into the ``object``. The second argument is
9305a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9306or -1 (if false) when the object size is unknown. The second argument
9307only accepts constants.
9308
9309Semantics:
9310""""""""""
9311
9312The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9313the size of the object concerned. If the size cannot be determined at
9314compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9315on the ``min`` argument).
9316
9317'``llvm.expect``' Intrinsic
9318^^^^^^^^^^^^^^^^^^^^^^^^^^^
9319
9320Syntax:
9321"""""""
9322
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009323This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9324integer bit width.
9325
Sean Silvab084af42012-12-07 10:36:55 +00009326::
9327
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009328 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009329 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9330 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9331
9332Overview:
9333"""""""""
9334
9335The ``llvm.expect`` intrinsic provides information about expected (the
9336most probable) value of ``val``, which can be used by optimizers.
9337
9338Arguments:
9339""""""""""
9340
9341The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9342a value. The second argument is an expected value, this needs to be a
9343constant value, variables are not allowed.
9344
9345Semantics:
9346""""""""""
9347
9348This intrinsic is lowered to the ``val``.
9349
9350'``llvm.donothing``' Intrinsic
9351^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9352
9353Syntax:
9354"""""""
9355
9356::
9357
9358 declare void @llvm.donothing() nounwind readnone
9359
9360Overview:
9361"""""""""
9362
9363The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9364only intrinsic that can be called with an invoke instruction.
9365
9366Arguments:
9367""""""""""
9368
9369None.
9370
9371Semantics:
9372""""""""""
9373
9374This intrinsic does nothing, and it's removed by optimizers and ignored
9375by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009376
9377Stack Map Intrinsics
9378--------------------
9379
9380LLVM provides experimental intrinsics to support runtime patching
9381mechanisms commonly desired in dynamic language JITs. These intrinsics
9382are described in :doc:`StackMaps`.