blob: f016041b52299ed3535889a06c3bd8c658a5bbaf [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000016#include "llvm/ADT/APFloat.h"
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
James Molloy493e57d2015-10-26 14:10:46 +000020#include "llvm/ADT/Optional.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000021#include "llvm/ADT/STLExtras.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000022#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000023#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/Analysis/AliasAnalysis.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000028#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000029#include "llvm/Analysis/InstructionSimplify.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000030#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000031#include "llvm/Analysis/LoopInfo.h"
Adam Nemet0965da22017-10-09 23:19:02 +000032#include "llvm/Analysis/OptimizationRemarkEmitter.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000033#include "llvm/Analysis/TargetLibraryInfo.h"
34#include "llvm/IR/Argument.h"
35#include "llvm/IR/Attributes.h"
36#include "llvm/IR/BasicBlock.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000037#include "llvm/IR/CallSite.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000038#include "llvm/IR/Constant.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000039#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000040#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
Matthias Braun50ec0b52017-05-19 22:37:09 +000042#include "llvm/IR/DerivedTypes.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000043#include "llvm/IR/DiagnosticInfo.h"
Hal Finkel60db0582014-09-07 18:57:58 +000044#include "llvm/IR/Dominators.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000045#include "llvm/IR/Function.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000046#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000047#include "llvm/IR/GlobalAlias.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000048#include "llvm/IR/GlobalValue.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000049#include "llvm/IR/GlobalVariable.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000050#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000052#include "llvm/IR/Instructions.h"
53#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000054#include "llvm/IR/Intrinsics.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000055#include "llvm/IR/LLVMContext.h"
56#include "llvm/IR/Metadata.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000057#include "llvm/IR/Module.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000058#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000059#include "llvm/IR/PatternMatch.h"
Eugene Zelenko75075ef2017-09-01 21:37:29 +000060#include "llvm/IR/Type.h"
61#include "llvm/IR/User.h"
62#include "llvm/IR/Value.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Compiler.h"
66#include "llvm/Support/ErrorHandling.h"
Craig Topperb45eabc2017-04-26 16:39:58 +000067#include "llvm/Support/KnownBits.h"
Chris Lattner965c7692008-06-02 01:18:21 +000068#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000069#include <algorithm>
70#include <array>
Eugene Zelenko75075ef2017-09-01 21:37:29 +000071#include <cassert>
72#include <cstdint>
73#include <iterator>
74#include <utility>
75
Chris Lattner965c7692008-06-02 01:18:21 +000076using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000077using namespace llvm::PatternMatch;
78
79const unsigned MaxDepth = 6;
80
Philip Reames1c292272015-03-10 22:43:20 +000081// Controls the number of uses of the value searched for possible
82// dominating comparisons.
83static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000084 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000085
Craig Topper6b3940a2017-05-03 22:25:19 +000086/// Returns the bitwidth of the given scalar or pointer type. For vector types,
87/// returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000088static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000089 if (unsigned BitWidth = Ty->getScalarSizeInBits())
90 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000091
Mehdi Aminia28d91d2015-03-10 02:37:25 +000092 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000093}
Chris Lattner965c7692008-06-02 01:18:21 +000094
Benjamin Kramercfd8d902014-09-12 08:56:53 +000095namespace {
Eugene Zelenko75075ef2017-09-01 21:37:29 +000096
Hal Finkel60db0582014-09-07 18:57:58 +000097// Simplifying using an assume can only be done in a particular control-flow
98// context (the context instruction provides that context). If an assume and
99// the context instruction are not in the same block then the DT helps in
100// figuring out if we can use it.
101struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000102 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000103 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +0000104 const Instruction *CxtI;
105 const DominatorTree *DT;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000106
Sanjay Patel54656ca2017-02-06 18:26:06 +0000107 // Unlike the other analyses, this may be a nullptr because not all clients
108 // provide it currently.
109 OptimizationRemarkEmitter *ORE;
Hal Finkel60db0582014-09-07 18:57:58 +0000110
Matthias Braun37e5d792016-01-28 06:29:33 +0000111 /// Set of assumptions that should be excluded from further queries.
112 /// This is because of the potential for mutual recursion to cause
113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
114 /// classic case of this is assume(x = y), which will attempt to determine
115 /// bits in x from bits in y, which will attempt to determine bits in y from
116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
Craig Topper6e11a052017-05-08 16:22:48 +0000117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
118 /// (all of which can call computeKnownBits), and so on.
Li Huang755f75f2016-10-15 19:00:04 +0000119 std::array<const Value *, MaxDepth> Excluded;
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000120
121 unsigned NumExcluded = 0;
Matthias Braun37e5d792016-01-28 06:29:33 +0000122
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000123 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000124 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000125 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000126
127 Query(const Query &Q, const Value *NewExcl)
Sanjay Patel54656ca2017-02-06 18:26:06 +0000128 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
129 NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +0000130 Excluded = Q.Excluded;
131 Excluded[NumExcluded++] = NewExcl;
132 assert(NumExcluded <= Excluded.size());
133 }
134
135 bool isExcluded(const Value *Value) const {
136 if (NumExcluded == 0)
137 return false;
138 auto End = Excluded.begin() + NumExcluded;
139 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000140 }
141};
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000142
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000143} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000144
Sanjay Patel547e9752014-11-04 16:09:50 +0000145// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000146// the preferred context instruction (if any).
147static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
148 // If we've been provided with a context instruction, then use that (provided
149 // it has been inserted).
150 if (CxtI && CxtI->getParent())
151 return CxtI;
152
153 // If the value is really an already-inserted instruction, then use that.
154 CxtI = dyn_cast<Instruction>(V);
155 if (CxtI && CxtI->getParent())
156 return CxtI;
157
158 return nullptr;
159}
160
Craig Topperb45eabc2017-04-26 16:39:58 +0000161static void computeKnownBits(const Value *V, KnownBits &Known,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000162 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000163
Craig Topperb45eabc2017-04-26 16:39:58 +0000164void llvm::computeKnownBits(const Value *V, KnownBits &Known,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000165 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000166 AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000167 const DominatorTree *DT,
168 OptimizationRemarkEmitter *ORE) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000169 ::computeKnownBits(V, Known, Depth,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000170 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Hal Finkel60db0582014-09-07 18:57:58 +0000171}
172
Craig Topper6e11a052017-05-08 16:22:48 +0000173static KnownBits computeKnownBits(const Value *V, unsigned Depth,
174 const Query &Q);
175
176KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
177 unsigned Depth, AssumptionCache *AC,
178 const Instruction *CxtI,
Craig Toppera2025ea2017-05-24 16:53:03 +0000179 const DominatorTree *DT,
180 OptimizationRemarkEmitter *ORE) {
181 return ::computeKnownBits(V, Depth,
182 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Craig Topper6e11a052017-05-08 16:22:48 +0000183}
184
Pete Cooper35b00d52016-08-13 01:05:32 +0000185bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
186 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000187 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000188 const DominatorTree *DT) {
189 assert(LHS->getType() == RHS->getType() &&
190 "LHS and RHS should have the same type");
191 assert(LHS->getType()->isIntOrIntVectorTy() &&
192 "LHS and RHS should be integers");
193 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
Craig Topperb45eabc2017-04-26 16:39:58 +0000194 KnownBits LHSKnown(IT->getBitWidth());
195 KnownBits RHSKnown(IT->getBitWidth());
196 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT);
197 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT);
198 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
Jingyue Wuca321902015-05-14 23:53:19 +0000199}
200
Zaara Syeda3a7578c2017-05-31 17:12:38 +0000201bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
202 for (const User *U : CxtI->users()) {
203 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
204 if (IC->isEquality())
205 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
206 if (C->isNullValue())
207 continue;
208 return false;
209 }
210 return true;
211}
212
Pete Cooper35b00d52016-08-13 01:05:32 +0000213static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000214 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000215
Pete Cooper35b00d52016-08-13 01:05:32 +0000216bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
217 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000218 unsigned Depth, AssumptionCache *AC,
219 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000220 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000221 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000222 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000223}
224
Pete Cooper35b00d52016-08-13 01:05:32 +0000225static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000226
Pete Cooper35b00d52016-08-13 01:05:32 +0000227bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000228 AssumptionCache *AC, const Instruction *CxtI,
229 const DominatorTree *DT) {
230 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000231}
232
Pete Cooper35b00d52016-08-13 01:05:32 +0000233bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000234 unsigned Depth,
235 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000236 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000237 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
238 return Known.isNonNegative();
Jingyue Wu10fcea52015-08-20 18:27:04 +0000239}
240
Pete Cooper35b00d52016-08-13 01:05:32 +0000241bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000242 AssumptionCache *AC, const Instruction *CxtI,
243 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000244 if (auto *CI = dyn_cast<ConstantInt>(V))
245 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000246
Philip Reames8f12eba2016-03-09 21:31:47 +0000247 // TODO: We'd doing two recursive queries here. We should factor this such
248 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000249 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
250 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000251}
252
Pete Cooper35b00d52016-08-13 01:05:32 +0000253bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000254 AssumptionCache *AC, const Instruction *CxtI,
255 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +0000256 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
257 return Known.isNegative();
Nick Lewycky762f8a82016-04-21 00:53:14 +0000258}
259
Pete Cooper35b00d52016-08-13 01:05:32 +0000260static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000261
Pete Cooper35b00d52016-08-13 01:05:32 +0000262bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000263 const DataLayout &DL,
264 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000265 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000266 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
267 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000268 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000269}
270
Pete Cooper35b00d52016-08-13 01:05:32 +0000271static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000272 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000273
Pete Cooper35b00d52016-08-13 01:05:32 +0000274bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
275 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000276 unsigned Depth, AssumptionCache *AC,
277 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000278 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000279 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000280}
281
Pete Cooper35b00d52016-08-13 01:05:32 +0000282static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
283 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000284
Pete Cooper35b00d52016-08-13 01:05:32 +0000285unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000286 unsigned Depth, AssumptionCache *AC,
287 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000288 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000289 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000290}
291
Craig Topper8fbb74b2017-03-24 22:12:10 +0000292static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
293 bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000294 KnownBits &KnownOut, KnownBits &Known2,
Craig Topper8fbb74b2017-03-24 22:12:10 +0000295 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000296 unsigned BitWidth = KnownOut.getBitWidth();
Craig Topper8fbb74b2017-03-24 22:12:10 +0000297
298 // If an initial sequence of bits in the result is not needed, the
299 // corresponding bits in the operands are not needed.
Craig Topperb45eabc2017-04-26 16:39:58 +0000300 KnownBits LHSKnown(BitWidth);
301 computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
302 computeKnownBits(Op1, Known2, Depth + 1, Q);
Craig Topper8fbb74b2017-03-24 22:12:10 +0000303
Craig Topperb498a232017-08-08 16:29:35 +0000304 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000305}
306
Pete Cooper35b00d52016-08-13 01:05:32 +0000307static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +0000308 KnownBits &Known, KnownBits &Known2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000309 unsigned Depth, const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000310 unsigned BitWidth = Known.getBitWidth();
311 computeKnownBits(Op1, Known, Depth + 1, Q);
312 computeKnownBits(Op0, Known2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000313
314 bool isKnownNegative = false;
315 bool isKnownNonNegative = false;
316 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000317 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000318 if (Op0 == Op1) {
319 // The product of a number with itself is non-negative.
320 isKnownNonNegative = true;
321 } else {
Craig Topperca48af32017-04-29 16:43:11 +0000322 bool isKnownNonNegativeOp1 = Known.isNonNegative();
323 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
324 bool isKnownNegativeOp1 = Known.isNegative();
325 bool isKnownNegativeOp0 = Known2.isNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000326 // The product of two numbers with the same sign is non-negative.
327 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
328 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
329 // The product of a negative number and a non-negative number is either
330 // negative or zero.
331 if (!isKnownNonNegative)
332 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000333 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000334 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000335 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000336 }
337 }
338
339 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000340 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000341 // More trickiness is possible, but this is sufficient for the
342 // interesting case of alignment computation.
Craig Topper8df66c62017-05-12 17:20:30 +0000343 unsigned TrailZ = Known.countMinTrailingZeros() +
344 Known2.countMinTrailingZeros();
345 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
346 Known2.countMinLeadingZeros(),
Nick Lewyckyfa306072012-03-18 23:28:48 +0000347 BitWidth) - BitWidth;
348
349 TrailZ = std::min(TrailZ, BitWidth);
350 LeadZ = std::min(LeadZ, BitWidth);
Craig Topperf0aeee02017-05-05 17:36:09 +0000351 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000352 Known.Zero.setLowBits(TrailZ);
353 Known.Zero.setHighBits(LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000354
355 // Only make use of no-wrap flags if we failed to compute the sign bit
356 // directly. This matters if the multiplication always overflows, in
357 // which case we prefer to follow the result of the direct computation,
358 // though as the program is invoking undefined behaviour we can choose
359 // whatever we like here.
Craig Topperca48af32017-04-29 16:43:11 +0000360 if (isKnownNonNegative && !Known.isNegative())
361 Known.makeNonNegative();
362 else if (isKnownNegative && !Known.isNonNegative())
363 Known.makeNegative();
Nick Lewyckyfa306072012-03-18 23:28:48 +0000364}
365
Jingyue Wu37fcb592014-06-19 16:50:16 +0000366void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Craig Topperf42b23f2017-04-28 06:28:56 +0000367 KnownBits &Known) {
368 unsigned BitWidth = Known.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000369 unsigned NumRanges = Ranges.getNumOperands() / 2;
370 assert(NumRanges >= 1);
371
Craig Topperf42b23f2017-04-28 06:28:56 +0000372 Known.Zero.setAllBits();
373 Known.One.setAllBits();
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000374
Rafael Espindola53190532012-03-30 15:52:11 +0000375 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000376 ConstantInt *Lower =
377 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
378 ConstantInt *Upper =
379 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000380 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000381
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000382 // The first CommonPrefixBits of all values in Range are equal.
383 unsigned CommonPrefixBits =
384 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
385
386 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
Craig Topperf42b23f2017-04-28 06:28:56 +0000387 Known.One &= Range.getUnsignedMax() & Mask;
388 Known.Zero &= ~Range.getUnsignedMax() & Mask;
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000389 }
Rafael Espindola53190532012-03-30 15:52:11 +0000390}
Jay Foad5a29c362014-05-15 12:12:55 +0000391
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000392static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000393 SmallVector<const Value *, 16> WorkSet(1, I);
394 SmallPtrSet<const Value *, 32> Visited;
395 SmallPtrSet<const Value *, 16> EphValues;
396
Hal Finkelf2199b22015-10-23 20:37:08 +0000397 // The instruction defining an assumption's condition itself is always
398 // considered ephemeral to that assumption (even if it has other
399 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000400 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000401 return true;
402
Hal Finkel60db0582014-09-07 18:57:58 +0000403 while (!WorkSet.empty()) {
404 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000405 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000406 continue;
407
408 // If all uses of this value are ephemeral, then so is this value.
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000409 if (llvm::all_of(V->users(), [&](const User *U) {
410 return EphValues.count(U);
411 })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000412 if (V == E)
413 return true;
414
Hal Finkelb03dd4b2017-08-14 17:11:43 +0000415 if (V == I || isSafeToSpeculativelyExecute(V)) {
416 EphValues.insert(V);
417 if (const User *U = dyn_cast<User>(V))
418 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
419 J != JE; ++J)
420 WorkSet.push_back(*J);
421 }
Hal Finkel60db0582014-09-07 18:57:58 +0000422 }
423 }
424
425 return false;
426}
427
428// Is this an intrinsic that cannot be speculated but also cannot trap?
429static bool isAssumeLikeIntrinsic(const Instruction *I) {
430 if (const CallInst *CI = dyn_cast<CallInst>(I))
431 if (Function *F = CI->getCalledFunction())
432 switch (F->getIntrinsicID()) {
433 default: break;
434 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
435 case Intrinsic::assume:
436 case Intrinsic::dbg_declare:
437 case Intrinsic::dbg_value:
438 case Intrinsic::invariant_start:
439 case Intrinsic::invariant_end:
440 case Intrinsic::lifetime_start:
441 case Intrinsic::lifetime_end:
442 case Intrinsic::objectsize:
443 case Intrinsic::ptr_annotation:
444 case Intrinsic::var_annotation:
445 return true;
446 }
447
448 return false;
449}
450
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000451bool llvm::isValidAssumeForContext(const Instruction *Inv,
452 const Instruction *CxtI,
453 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000454 // There are two restrictions on the use of an assume:
455 // 1. The assume must dominate the context (or the control flow must
456 // reach the assume whenever it reaches the context).
457 // 2. The context must not be in the assume's set of ephemeral values
458 // (otherwise we will use the assume to prove that the condition
459 // feeding the assume is trivially true, thus causing the removal of
460 // the assume).
461
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000462 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000463 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000464 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000465 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
466 // We don't have a DT, but this trivially dominates.
467 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000468 }
469
Pete Cooper54a02552016-08-12 01:00:15 +0000470 // With or without a DT, the only remaining case we will check is if the
471 // instructions are in the same BB. Give up if that is not the case.
472 if (Inv->getParent() != CxtI->getParent())
473 return false;
474
475 // If we have a dom tree, then we now know that the assume doens't dominate
476 // the other instruction. If we don't have a dom tree then we can check if
477 // the assume is first in the BB.
478 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000479 // Search forward from the assume until we reach the context (or the end
480 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000481 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000482 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000483 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000484 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000485 }
486
Pete Cooper54a02552016-08-12 01:00:15 +0000487 // The context comes first, but they're both in the same block. Make sure
488 // there is nothing in between that might interrupt the control flow.
489 for (BasicBlock::const_iterator I =
490 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
491 I != IE; ++I)
492 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
493 return false;
494
495 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000496}
497
Craig Topperb45eabc2017-04-26 16:39:58 +0000498static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
499 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000500 // Use of assumptions is context-sensitive. If we don't have a context, we
501 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000502 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000503 return;
504
Craig Topperb45eabc2017-04-26 16:39:58 +0000505 unsigned BitWidth = Known.getBitWidth();
Hal Finkel60db0582014-09-07 18:57:58 +0000506
Hal Finkel8a9a7832017-01-11 13:24:24 +0000507 // Note that the patterns below need to be kept in sync with the code
508 // in AssumptionCache::updateAffectedValues.
509
510 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000511 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000512 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000513 CallInst *I = cast<CallInst>(AssumeVH);
514 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
515 "Got assumption for the wrong function!");
516 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000517 continue;
518
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000519 // Warning: This loop can end up being somewhat performance sensetive.
520 // We're running this loop for once for each value queried resulting in a
521 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000522
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000523 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
524 "must be an assume intrinsic");
525
526 Value *Arg = I->getArgOperand(0);
527
528 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000529 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000530 Known.setAllOnes();
Hal Finkel60db0582014-09-07 18:57:58 +0000531 return;
532 }
Sanjay Patel96669962017-01-17 18:15:49 +0000533 if (match(Arg, m_Not(m_Specific(V))) &&
534 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
535 assert(BitWidth == 1 && "assume operand is not i1?");
Craig Topperf0aeee02017-05-05 17:36:09 +0000536 Known.setAllZero();
Sanjay Patel96669962017-01-17 18:15:49 +0000537 return;
538 }
Hal Finkel60db0582014-09-07 18:57:58 +0000539
David Majnemer9b609752014-12-12 23:59:29 +0000540 // The remaining tests are all recursive, so bail out if we hit the limit.
541 if (Depth == MaxDepth)
542 continue;
543
Hal Finkel60db0582014-09-07 18:57:58 +0000544 Value *A, *B;
545 auto m_V = m_CombineOr(m_Specific(V),
546 m_CombineOr(m_PtrToInt(m_Specific(V)),
547 m_BitCast(m_Specific(V))));
548
549 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000550 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000551 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000552 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000553 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000554 KnownBits RHSKnown(BitWidth);
555 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
556 Known.Zero |= RHSKnown.Zero;
557 Known.One |= RHSKnown.One;
Hal Finkel60db0582014-09-07 18:57:58 +0000558 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000559 } else if (match(Arg,
560 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000561 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000562 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000563 KnownBits RHSKnown(BitWidth);
564 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
565 KnownBits MaskKnown(BitWidth);
566 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000567
568 // For those bits in the mask that are known to be one, we can propagate
569 // known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000570 Known.Zero |= RHSKnown.Zero & MaskKnown.One;
571 Known.One |= RHSKnown.One & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000572 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000573 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
574 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000575 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000576 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000577 KnownBits RHSKnown(BitWidth);
578 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
579 KnownBits MaskKnown(BitWidth);
580 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000581
582 // For those bits in the mask that are known to be one, we can propagate
583 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000584 Known.Zero |= RHSKnown.One & MaskKnown.One;
585 Known.One |= RHSKnown.Zero & MaskKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000586 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000587 } else if (match(Arg,
588 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000589 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000590 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000591 KnownBits RHSKnown(BitWidth);
592 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
593 KnownBits BKnown(BitWidth);
594 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000595
596 // For those bits in B that are known to be zero, we can propagate known
597 // bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000598 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
599 Known.One |= RHSKnown.One & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000600 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000601 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
602 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000603 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000604 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000605 KnownBits RHSKnown(BitWidth);
606 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
607 KnownBits BKnown(BitWidth);
608 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000609
610 // For those bits in B that are known to be zero, we can propagate
611 // inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000612 Known.Zero |= RHSKnown.One & BKnown.Zero;
613 Known.One |= RHSKnown.Zero & BKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000614 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000615 } else if (match(Arg,
616 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000617 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000618 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000619 KnownBits RHSKnown(BitWidth);
620 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
621 KnownBits BKnown(BitWidth);
622 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000623
624 // For those bits in B that are known to be zero, we can propagate known
625 // bits from the RHS to V. For those bits in B that are known to be one,
626 // we can propagate inverted known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000627 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
628 Known.One |= RHSKnown.One & BKnown.Zero;
629 Known.Zero |= RHSKnown.One & BKnown.One;
630 Known.One |= RHSKnown.Zero & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000631 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000632 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
633 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000634 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000635 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000636 KnownBits RHSKnown(BitWidth);
637 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
638 KnownBits BKnown(BitWidth);
639 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000640
641 // For those bits in B that are known to be zero, we can propagate
642 // inverted known bits from the RHS to V. For those bits in B that are
643 // known to be one, we can propagate known bits from the RHS to V.
Craig Topperb45eabc2017-04-26 16:39:58 +0000644 Known.Zero |= RHSKnown.One & BKnown.Zero;
645 Known.One |= RHSKnown.Zero & BKnown.Zero;
646 Known.Zero |= RHSKnown.Zero & BKnown.One;
647 Known.One |= RHSKnown.One & BKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000648 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000649 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
650 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000651 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000652 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000653 KnownBits RHSKnown(BitWidth);
654 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000655 // For those bits in RHS that are known, we can propagate them to known
656 // bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000657 RHSKnown.Zero.lshrInPlace(C->getZExtValue());
658 Known.Zero |= RHSKnown.Zero;
659 RHSKnown.One.lshrInPlace(C->getZExtValue());
660 Known.One |= RHSKnown.One;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000661 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000662 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
663 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000664 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000665 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000666 KnownBits RHSKnown(BitWidth);
667 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000668 // For those bits in RHS that are known, we can propagate them inverted
669 // to known bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000670 RHSKnown.One.lshrInPlace(C->getZExtValue());
671 Known.Zero |= RHSKnown.One;
672 RHSKnown.Zero.lshrInPlace(C->getZExtValue());
673 Known.One |= RHSKnown.Zero;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000674 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000675 } else if (match(Arg,
Craig Topper7b66ffe2017-06-24 06:24:04 +0000676 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000677 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000678 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000679 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000680 KnownBits RHSKnown(BitWidth);
681 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000682 // For those bits in RHS that are known, we can propagate them to known
683 // bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000684 Known.Zero |= RHSKnown.Zero << C->getZExtValue();
685 Known.One |= RHSKnown.One << C->getZExtValue();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000686 // assume(~(v >> c) = a)
Craig Topper7b66ffe2017-06-24 06:24:04 +0000687 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
Philip Reames00d3b272014-11-24 23:44:28 +0000688 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000689 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000690 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000691 KnownBits RHSKnown(BitWidth);
692 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000693 // For those bits in RHS that are known, we can propagate them inverted
694 // to known bits in V shifted to the right by C.
Craig Topperb45eabc2017-04-26 16:39:58 +0000695 Known.Zero |= RHSKnown.One << C->getZExtValue();
696 Known.One |= RHSKnown.Zero << C->getZExtValue();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000697 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000698 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000699 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000700 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000701 KnownBits RHSKnown(BitWidth);
702 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000703
Craig Topperca48af32017-04-29 16:43:11 +0000704 if (RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000705 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000706 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000707 }
708 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000709 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000710 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000711 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000712 KnownBits RHSKnown(BitWidth);
713 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000714
Craig Topperf0aeee02017-05-05 17:36:09 +0000715 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000716 // We know that the sign bit is zero.
Craig Topperca48af32017-04-29 16:43:11 +0000717 Known.makeNonNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000718 }
719 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000720 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000721 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000722 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000723 KnownBits RHSKnown(BitWidth);
724 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000725
Craig Topperca48af32017-04-29 16:43:11 +0000726 if (RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000727 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000728 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000729 }
730 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000731 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000732 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000733 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000734 KnownBits RHSKnown(BitWidth);
735 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000736
Craig Topperf0aeee02017-05-05 17:36:09 +0000737 if (RHSKnown.isZero() || RHSKnown.isNegative()) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000738 // We know that the sign bit is one.
Craig Topperca48af32017-04-29 16:43:11 +0000739 Known.makeNegative();
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000740 }
741 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000742 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000743 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000744 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000745 KnownBits RHSKnown(BitWidth);
746 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000747
748 // Whatever high bits in c are zero are known to be zero.
Craig Topper8df66c62017-05-12 17:20:30 +0000749 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
750 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000751 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000752 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000753 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000754 KnownBits RHSKnown(BitWidth);
755 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000756
757 // Whatever high bits in c are zero are known to be zero (if c is a power
758 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000759 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Craig Topper8df66c62017-05-12 17:20:30 +0000760 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000761 else
Craig Topper8df66c62017-05-12 17:20:30 +0000762 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
Hal Finkel60db0582014-09-07 18:57:58 +0000763 }
764 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000765
766 // If assumptions conflict with each other or previous known bits, then we
Sanjay Patel54656ca2017-02-06 18:26:06 +0000767 // have a logical fallacy. It's possible that the assumption is not reachable,
768 // so this isn't a real bug. On the other hand, the program may have undefined
769 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
770 // clear out the known bits, try to warn the user, and hope for the best.
Craig Topperb45eabc2017-04-26 16:39:58 +0000771 if (Known.Zero.intersects(Known.One)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000772 Known.resetAll();
Sanjay Patel54656ca2017-02-06 18:26:06 +0000773
Vivek Pandya95906582017-10-11 17:12:59 +0000774 if (Q.ORE)
775 Q.ORE->emit([&]() {
776 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
777 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
778 CxtI)
779 << "Detected conflicting code assumptions. Program may "
780 "have undefined behavior, or compiler may have "
781 "internal error.";
782 });
Sanjay Patel25f6d712017-02-01 15:41:32 +0000783 }
Hal Finkel60db0582014-09-07 18:57:58 +0000784}
785
Sanjay Patelb7d12382017-10-16 14:46:37 +0000786/// Compute known bits from a shift operator, including those with a
787/// non-constant shift amount. Known is the output of this function. Known2 is a
788/// pre-allocated temporary with the same bit width as Known. KZF and KOF are
789/// operator-specific functors that, given the known-zero or known-one bits
790/// respectively, and a shift amount, compute the implied known-zero or
791/// known-one bits of the shift operator's result respectively for that shift
792/// amount. The results from calling KZF and KOF are conservatively combined for
793/// all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000794static void computeKnownBitsFromShiftOperator(
Craig Topperb45eabc2017-04-26 16:39:58 +0000795 const Operator *I, KnownBits &Known, KnownBits &Known2,
796 unsigned Depth, const Query &Q,
David Majnemer54690dc2016-08-23 20:52:00 +0000797 function_ref<APInt(const APInt &, unsigned)> KZF,
798 function_ref<APInt(const APInt &, unsigned)> KOF) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000799 unsigned BitWidth = Known.getBitWidth();
Hal Finkelf2199b22015-10-23 20:37:08 +0000800
801 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
802 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
803
Craig Topperb45eabc2017-04-26 16:39:58 +0000804 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
805 Known.Zero = KZF(Known.Zero, ShiftAmt);
806 Known.One = KOF(Known.One, ShiftAmt);
Sanjay Patele272be72017-10-12 17:31:46 +0000807 // If the known bits conflict, this must be an overflowing left shift, so
808 // the shift result is poison. We can return anything we want. Choose 0 for
809 // the best folding opportunity.
810 if (Known.hasConflict())
811 Known.setAllZero();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000812
Hal Finkelf2199b22015-10-23 20:37:08 +0000813 return;
814 }
815
Craig Topperb45eabc2017-04-26 16:39:58 +0000816 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000817
Sanjay Patele272be72017-10-12 17:31:46 +0000818 // If the shift amount could be greater than or equal to the bit-width of the
819 // LHS, the value could be poison, but bail out because the check below is
820 // expensive. TODO: Should we just carry on?
Craig Topperb45eabc2017-04-26 16:39:58 +0000821 if ((~Known.Zero).uge(BitWidth)) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000822 Known.resetAll();
Oliver Stannard06204112017-03-14 10:13:17 +0000823 return;
824 }
825
Craig Topperb45eabc2017-04-26 16:39:58 +0000826 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
Hal Finkelf2199b22015-10-23 20:37:08 +0000827 // BitWidth > 64 and any upper bits are known, we'll end up returning the
828 // limit value (which implies all bits are known).
Craig Topperb45eabc2017-04-26 16:39:58 +0000829 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
830 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
Hal Finkelf2199b22015-10-23 20:37:08 +0000831
832 // It would be more-clearly correct to use the two temporaries for this
833 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Craig Topperf0aeee02017-05-05 17:36:09 +0000834 Known.resetAll();
Hal Finkelf2199b22015-10-23 20:37:08 +0000835
James Molloy493e57d2015-10-26 14:10:46 +0000836 // If we know the shifter operand is nonzero, we can sometimes infer more
837 // known bits. However this is expensive to compute, so be lazy about it and
838 // only compute it when absolutely necessary.
839 Optional<bool> ShifterOperandIsNonZero;
840
Hal Finkelf2199b22015-10-23 20:37:08 +0000841 // Early exit if we can't constrain any well-defined shift amount.
Craig Topperf93b7b12017-06-14 17:04:59 +0000842 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
843 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
Sanjay Patelb7d12382017-10-16 14:46:37 +0000844 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000845 if (!*ShifterOperandIsNonZero)
846 return;
847 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000848
Craig Topperb45eabc2017-04-26 16:39:58 +0000849 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000850
Craig Topperb45eabc2017-04-26 16:39:58 +0000851 Known.Zero.setAllBits();
852 Known.One.setAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000853 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
854 // Combine the shifted known input bits only for those shift amounts
855 // compatible with its known constraints.
856 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
857 continue;
858 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
859 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000860 // If we know the shifter is nonzero, we may be able to infer more known
861 // bits. This check is sunk down as far as possible to avoid the expensive
862 // call to isKnownNonZero if the cheaper checks above fail.
863 if (ShiftAmt == 0) {
864 if (!ShifterOperandIsNonZero.hasValue())
865 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000866 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000867 if (*ShifterOperandIsNonZero)
868 continue;
869 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000870
Craig Topperb45eabc2017-04-26 16:39:58 +0000871 Known.Zero &= KZF(Known2.Zero, ShiftAmt);
872 Known.One &= KOF(Known2.One, ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +0000873 }
874
Sanjay Patele272be72017-10-12 17:31:46 +0000875 // If the known bits conflict, the result is poison. Return a 0 and hope the
876 // caller can further optimize that.
877 if (Known.hasConflict())
878 Known.setAllZero();
Hal Finkelf2199b22015-10-23 20:37:08 +0000879}
880
Craig Topperb45eabc2017-04-26 16:39:58 +0000881static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
882 unsigned Depth, const Query &Q) {
883 unsigned BitWidth = Known.getBitWidth();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000884
Craig Topperb45eabc2017-04-26 16:39:58 +0000885 KnownBits Known2(Known);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000886 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000887 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000888 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000889 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +0000890 computeKnownBitsFromRangeMetadata(*MD, Known);
Jay Foad5a29c362014-05-15 12:12:55 +0000891 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000892 case Instruction::And: {
893 // If either the LHS or the RHS are Zero, the result is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +0000894 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
895 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000896
Chris Lattner965c7692008-06-02 01:18:21 +0000897 // Output known-1 bits are only known if set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000898 Known.One &= Known2.One;
Chris Lattner965c7692008-06-02 01:18:21 +0000899 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000900 Known.Zero |= Known2.Zero;
Philip Reames2d858742015-11-10 18:46:14 +0000901
902 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
903 // here we handle the more general case of adding any odd number by
904 // matching the form add(x, add(x, y)) where y is odd.
905 // TODO: This could be generalized to clearing any bit set in y where the
906 // following bit is known to be unset in y.
907 Value *Y = nullptr;
Craig Topperb45eabc2017-04-26 16:39:58 +0000908 if (!Known.Zero[0] && !Known.One[0] &&
Craig Toppera80f2042017-04-13 19:04:45 +0000909 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
910 m_Value(Y))) ||
911 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
912 m_Value(Y))))) {
Craig Topperf0aeee02017-05-05 17:36:09 +0000913 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000914 computeKnownBits(Y, Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000915 if (Known2.countMinTrailingOnes() > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +0000916 Known.Zero.setBit(0);
Philip Reames2d858742015-11-10 18:46:14 +0000917 }
Jay Foad5a29c362014-05-15 12:12:55 +0000918 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000919 }
Eugene Zelenko75075ef2017-09-01 21:37:29 +0000920 case Instruction::Or:
Craig Topperb45eabc2017-04-26 16:39:58 +0000921 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
922 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000923
Chris Lattner965c7692008-06-02 01:18:21 +0000924 // Output known-0 bits are only known if clear in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000925 Known.Zero &= Known2.Zero;
Chris Lattner965c7692008-06-02 01:18:21 +0000926 // Output known-1 are known to be set if set in either the LHS | RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000927 Known.One |= Known2.One;
Jay Foad5a29c362014-05-15 12:12:55 +0000928 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000929 case Instruction::Xor: {
Craig Topperb45eabc2017-04-26 16:39:58 +0000930 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
931 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000932
Chris Lattner965c7692008-06-02 01:18:21 +0000933 // Output known-0 bits are known if clear or set in both the LHS & RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000934 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
Chris Lattner965c7692008-06-02 01:18:21 +0000935 // Output known-1 are known to be set if set in only one of the LHS, RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +0000936 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
937 Known.Zero = std::move(KnownZeroOut);
Jay Foad5a29c362014-05-15 12:12:55 +0000938 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000939 }
940 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000941 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperb45eabc2017-04-26 16:39:58 +0000942 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
943 Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000944 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000945 }
946 case Instruction::UDiv: {
947 // For the purposes of computing leading zeros we can conservatively
948 // treat a udiv as a logical right shift by the power of 2 known to
949 // be less than the denominator.
Craig Topperb45eabc2017-04-26 16:39:58 +0000950 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000951 unsigned LeadZ = Known2.countMinLeadingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +0000952
Craig Topperf0aeee02017-05-05 17:36:09 +0000953 Known2.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +0000954 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +0000955 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
956 if (RHSMaxLeadingZeros != BitWidth)
957 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
Chris Lattner965c7692008-06-02 01:18:21 +0000958
Craig Topperb45eabc2017-04-26 16:39:58 +0000959 Known.Zero.setHighBits(LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000960 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000961 }
David Majnemera19d0f22016-08-06 08:16:00 +0000962 case Instruction::Select: {
Craig Toppere953dec2017-04-13 20:39:37 +0000963 const Value *LHS, *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000964 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
965 if (SelectPatternResult::isMinOrMax(SPF)) {
Craig Topperb45eabc2017-04-26 16:39:58 +0000966 computeKnownBits(RHS, Known, Depth + 1, Q);
967 computeKnownBits(LHS, Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000968 } else {
Craig Topperb45eabc2017-04-26 16:39:58 +0000969 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
970 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
David Majnemera19d0f22016-08-06 08:16:00 +0000971 }
972
973 unsigned MaxHighOnes = 0;
974 unsigned MaxHighZeros = 0;
975 if (SPF == SPF_SMAX) {
976 // If both sides are negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +0000977 if (Known.isNegative() && Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000978 // We can derive a lower bound on the result by taking the max of the
979 // leading one bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000980 MaxHighOnes =
981 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +0000982 // If either side is non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000983 else if (Known.isNonNegative() || Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000984 MaxHighZeros = 1;
985 } else if (SPF == SPF_SMIN) {
986 // If both sides are non-negative, the result is non-negative.
Craig Topperca48af32017-04-29 16:43:11 +0000987 if (Known.isNonNegative() && Known2.isNonNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000988 // We can derive an upper bound on the result by taking the max of the
989 // leading zero bits.
Craig Topper8df66c62017-05-12 17:20:30 +0000990 MaxHighZeros = std::max(Known.countMinLeadingZeros(),
991 Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +0000992 // If either side is negative, the result is negative.
Craig Topperca48af32017-04-29 16:43:11 +0000993 else if (Known.isNegative() || Known2.isNegative())
David Majnemera19d0f22016-08-06 08:16:00 +0000994 MaxHighOnes = 1;
995 } else if (SPF == SPF_UMAX) {
996 // We can derive a lower bound on the result by taking the max of the
997 // leading one bits.
998 MaxHighOnes =
Craig Topper8df66c62017-05-12 17:20:30 +0000999 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
David Majnemera19d0f22016-08-06 08:16:00 +00001000 } else if (SPF == SPF_UMIN) {
1001 // We can derive an upper bound on the result by taking the max of the
1002 // leading zero bits.
1003 MaxHighZeros =
Craig Topper8df66c62017-05-12 17:20:30 +00001004 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
David Majnemera19d0f22016-08-06 08:16:00 +00001005 }
1006
Chris Lattner965c7692008-06-02 01:18:21 +00001007 // Only known if known in both the LHS and RHS.
Craig Topperb45eabc2017-04-26 16:39:58 +00001008 Known.One &= Known2.One;
1009 Known.Zero &= Known2.Zero;
David Majnemera19d0f22016-08-06 08:16:00 +00001010 if (MaxHighOnes > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001011 Known.One.setHighBits(MaxHighOnes);
David Majnemera19d0f22016-08-06 08:16:00 +00001012 if (MaxHighZeros > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001013 Known.Zero.setHighBits(MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001014 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001015 }
Chris Lattner965c7692008-06-02 01:18:21 +00001016 case Instruction::FPTrunc:
1017 case Instruction::FPExt:
1018 case Instruction::FPToUI:
1019 case Instruction::FPToSI:
1020 case Instruction::SIToFP:
1021 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001022 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001023 case Instruction::PtrToInt:
1024 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001025 // Fall through and handle them the same as zext/trunc.
1026 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001027 case Instruction::ZExt:
1028 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001029 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001030
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001031 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001032 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1033 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001034 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001035
1036 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Craig Topperd938fd12017-05-03 22:07:25 +00001037 Known = Known.zextOrTrunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001038 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Craig Topperd938fd12017-05-03 22:07:25 +00001039 Known = Known.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001040 // Any top bits are known to be zero.
1041 if (BitWidth > SrcBitWidth)
Craig Topperb45eabc2017-04-26 16:39:58 +00001042 Known.Zero.setBitsFrom(SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001043 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001044 }
1045 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001046 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001047 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001048 // TODO: For now, not handling conversions like:
1049 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001050 !I->getType()->isVectorTy()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001051 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001052 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001053 }
1054 break;
1055 }
1056 case Instruction::SExt: {
1057 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001058 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001059
Craig Topperd938fd12017-05-03 22:07:25 +00001060 Known = Known.trunc(SrcBitWidth);
Craig Topperb45eabc2017-04-26 16:39:58 +00001061 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001062 // If the sign bit of the input is known set or clear, then we know the
1063 // top bits of the result.
Craig Topperd938fd12017-05-03 22:07:25 +00001064 Known = Known.sext(BitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001065 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001066 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001067 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001068 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001069 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Craig Topperd73c6b42017-03-23 07:06:39 +00001070 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1071 APInt KZResult = KnownZero << ShiftAmt;
1072 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001073 // If this shift has "nsw" keyword, then the result is either a poison
1074 // value or has the same sign bit as the first operand.
Craig Topperd23004c2017-04-17 16:38:20 +00001075 if (NSW && KnownZero.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001076 KZResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001077 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001078 };
1079
Craig Topperd73c6b42017-03-23 07:06:39 +00001080 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001081 APInt KOResult = KnownOne << ShiftAmt;
Craig Topperd23004c2017-04-17 16:38:20 +00001082 if (NSW && KnownOne.isSignBitSet())
Craig Topperd73c6b42017-03-23 07:06:39 +00001083 KOResult.setSignBit();
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001084 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001085 };
1086
Craig Topperb45eabc2017-04-26 16:39:58 +00001087 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001088 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001089 }
1090 case Instruction::LShr: {
Sanjay Patelb7d12382017-10-16 14:46:37 +00001091 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Craig Topperfc947bc2017-04-18 17:14:21 +00001092 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1093 APInt KZResult = KnownZero.lshr(ShiftAmt);
1094 // High bits known zero.
1095 KZResult.setHighBits(ShiftAmt);
1096 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001097 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001098
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001099 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001100 return KnownOne.lshr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001101 };
1102
Craig Topperb45eabc2017-04-26 16:39:58 +00001103 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001104 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001105 }
1106 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001107 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001108 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001109 return KnownZero.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001110 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001111
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001112 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Craig Topper885fa122017-03-31 20:01:16 +00001113 return KnownOne.ashr(ShiftAmt);
Hal Finkelf2199b22015-10-23 20:37:08 +00001114 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001115
Craig Topperb45eabc2017-04-26 16:39:58 +00001116 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001117 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001118 }
Chris Lattner965c7692008-06-02 01:18:21 +00001119 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001120 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001121 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001122 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001123 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001124 }
Chris Lattner965c7692008-06-02 01:18:21 +00001125 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001126 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001127 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Craig Topperb45eabc2017-04-26 16:39:58 +00001128 Known, Known2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001129 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001130 }
1131 case Instruction::SRem:
1132 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001133 APInt RA = Rem->getValue().abs();
1134 if (RA.isPowerOf2()) {
1135 APInt LowBits = RA - 1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001136 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001137
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001138 // The low bits of the first operand are unchanged by the srem.
Craig Topperb45eabc2017-04-26 16:39:58 +00001139 Known.Zero = Known2.Zero & LowBits;
1140 Known.One = Known2.One & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001141
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001142 // If the first operand is non-negative or has all low bits zero, then
1143 // the upper bits are all zero.
Craig Topperca48af32017-04-29 16:43:11 +00001144 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
Craig Topperb45eabc2017-04-26 16:39:58 +00001145 Known.Zero |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001146
1147 // If the first operand is negative and not all low bits are zero, then
1148 // the upper bits are all one.
Craig Topperca48af32017-04-29 16:43:11 +00001149 if (Known2.isNegative() && LowBits.intersects(Known2.One))
Craig Topperb45eabc2017-04-26 16:39:58 +00001150 Known.One |= ~LowBits;
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001151
Craig Topperb45eabc2017-04-26 16:39:58 +00001152 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Craig Topperda886c62017-04-16 21:46:12 +00001153 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001154 }
1155 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001156
1157 // The sign bit is the LHS's sign bit, except when the result of the
1158 // remainder is zero.
Craig Topperb45eabc2017-04-26 16:39:58 +00001159 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Craig Topperda886c62017-04-16 21:46:12 +00001160 // If it's known zero, our sign bit is also zero.
Craig Topperca48af32017-04-29 16:43:11 +00001161 if (Known2.isNonNegative())
1162 Known.makeNonNegative();
Nick Lewyckye4679792011-03-07 01:50:10 +00001163
Chris Lattner965c7692008-06-02 01:18:21 +00001164 break;
1165 case Instruction::URem: {
1166 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001167 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001168 if (RA.isPowerOf2()) {
1169 APInt LowBits = (RA - 1);
Craig Topperb45eabc2017-04-26 16:39:58 +00001170 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1171 Known.Zero |= ~LowBits;
1172 Known.One &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001173 break;
1174 }
1175 }
1176
1177 // Since the result is less than or equal to either operand, any leading
1178 // zero bits in either operand must also exist in the result.
Craig Topperb45eabc2017-04-26 16:39:58 +00001179 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1180 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001181
Craig Topper8df66c62017-05-12 17:20:30 +00001182 unsigned Leaders =
1183 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Craig Topperf0aeee02017-05-05 17:36:09 +00001184 Known.resetAll();
Craig Topperb45eabc2017-04-26 16:39:58 +00001185 Known.Zero.setHighBits(Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001186 break;
1187 }
1188
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001189 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001190 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001191 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001192 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001193 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001194
Chris Lattner965c7692008-06-02 01:18:21 +00001195 if (Align > 0)
Craig Topperb45eabc2017-04-26 16:39:58 +00001196 Known.Zero.setLowBits(countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001197 break;
1198 }
1199 case Instruction::GetElementPtr: {
1200 // Analyze all of the subscripts of this getelementptr instruction
1201 // to determine if we can prove known low zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001202 KnownBits LocalKnown(BitWidth);
1203 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
Craig Topper8df66c62017-05-12 17:20:30 +00001204 unsigned TrailZ = LocalKnown.countMinTrailingZeros();
Chris Lattner965c7692008-06-02 01:18:21 +00001205
1206 gep_type_iterator GTI = gep_type_begin(I);
1207 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1208 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001209 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001210 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001211
1212 // Handle case when index is vector zeroinitializer
1213 Constant *CIndex = cast<Constant>(Index);
1214 if (CIndex->isZeroValue())
1215 continue;
1216
1217 if (CIndex->getType()->isVectorTy())
1218 Index = CIndex->getSplatValue();
1219
Chris Lattner965c7692008-06-02 01:18:21 +00001220 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001221 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001222 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001223 TrailZ = std::min<unsigned>(TrailZ,
1224 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001225 } else {
1226 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001227 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001228 if (!IndexedTy->isSized()) {
1229 TrailZ = 0;
1230 break;
1231 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001232 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001233 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Craig Topperb45eabc2017-04-26 16:39:58 +00001234 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1235 computeKnownBits(Index, LocalKnown, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001236 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001237 unsigned(countTrailingZeros(TypeSize) +
Craig Topper8df66c62017-05-12 17:20:30 +00001238 LocalKnown.countMinTrailingZeros()));
Chris Lattner965c7692008-06-02 01:18:21 +00001239 }
1240 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001241
Craig Topperb45eabc2017-04-26 16:39:58 +00001242 Known.Zero.setLowBits(TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001243 break;
1244 }
1245 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001246 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001247 // Handle the case of a simple two-predecessor recurrence PHI.
1248 // There's a lot more that could theoretically be done here, but
1249 // this is sufficient to catch some interesting cases.
1250 if (P->getNumIncomingValues() == 2) {
1251 for (unsigned i = 0; i != 2; ++i) {
1252 Value *L = P->getIncomingValue(i);
1253 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001254 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001255 if (!LU)
1256 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001257 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001258 // Check for operations that have the property that if
1259 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001260 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001261 if (Opcode == Instruction::Add ||
1262 Opcode == Instruction::Sub ||
1263 Opcode == Instruction::And ||
1264 Opcode == Instruction::Or ||
1265 Opcode == Instruction::Mul) {
1266 Value *LL = LU->getOperand(0);
1267 Value *LR = LU->getOperand(1);
1268 // Find a recurrence.
1269 if (LL == I)
1270 L = LR;
1271 else if (LR == I)
1272 L = LL;
1273 else
1274 break;
1275 // Ok, we have a PHI of the form L op= R. Check for low
1276 // zero bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001277 computeKnownBits(R, Known2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001278
1279 // We need to take the minimum number of known bits
Craig Topperb45eabc2017-04-26 16:39:58 +00001280 KnownBits Known3(Known);
1281 computeKnownBits(L, Known3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001282
Craig Topper8df66c62017-05-12 17:20:30 +00001283 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1284 Known3.countMinTrailingZeros()));
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001285
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001286 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1287 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1288 // If initial value of recurrence is nonnegative, and we are adding
1289 // a nonnegative number with nsw, the result can only be nonnegative
1290 // or poison value regardless of the number of times we execute the
1291 // add in phi recurrence. If initial value is negative and we are
1292 // adding a negative number with nsw, the result can only be
1293 // negative or poison value. Similar arguments apply to sub and mul.
1294 //
1295 // (add non-negative, non-negative) --> non-negative
1296 // (add negative, negative) --> negative
1297 if (Opcode == Instruction::Add) {
Craig Topperca48af32017-04-29 16:43:11 +00001298 if (Known2.isNonNegative() && Known3.isNonNegative())
1299 Known.makeNonNegative();
1300 else if (Known2.isNegative() && Known3.isNegative())
1301 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001302 }
1303
1304 // (sub nsw non-negative, negative) --> non-negative
1305 // (sub nsw negative, non-negative) --> negative
1306 else if (Opcode == Instruction::Sub && LL == I) {
Craig Topperca48af32017-04-29 16:43:11 +00001307 if (Known2.isNonNegative() && Known3.isNegative())
1308 Known.makeNonNegative();
1309 else if (Known2.isNegative() && Known3.isNonNegative())
1310 Known.makeNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001311 }
1312
1313 // (mul nsw non-negative, non-negative) --> non-negative
Craig Topperca48af32017-04-29 16:43:11 +00001314 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1315 Known3.isNonNegative())
1316 Known.makeNonNegative();
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001317 }
1318
Chris Lattner965c7692008-06-02 01:18:21 +00001319 break;
1320 }
1321 }
1322 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001323
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001324 // Unreachable blocks may have zero-operand PHI nodes.
1325 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001326 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001327
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001328 // Otherwise take the unions of the known bit sets of the operands,
1329 // taking conservative care to avoid excessive recursion.
Craig Topperb45eabc2017-04-26 16:39:58 +00001330 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001331 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001332 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001333 break;
1334
Craig Topperb45eabc2017-04-26 16:39:58 +00001335 Known.Zero.setAllBits();
1336 Known.One.setAllBits();
Pete Cooper833f34d2015-05-12 20:05:31 +00001337 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001338 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001339 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001340
Craig Topperb45eabc2017-04-26 16:39:58 +00001341 Known2 = KnownBits(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001342 // Recurse, but cap the recursion to one level, because we don't
1343 // want to waste time spinning around in loops.
Craig Topperb45eabc2017-04-26 16:39:58 +00001344 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1345 Known.Zero &= Known2.Zero;
1346 Known.One &= Known2.One;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001347 // If all bits have been ruled out, there's no need to check
1348 // more operands.
Craig Topperb45eabc2017-04-26 16:39:58 +00001349 if (!Known.Zero && !Known.One)
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001350 break;
1351 }
1352 }
Chris Lattner965c7692008-06-02 01:18:21 +00001353 break;
1354 }
1355 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001356 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001357 // If range metadata is attached to this call, set known bits from that,
1358 // and then intersect with known bits based on other properties of the
1359 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001360 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Craig Topperf42b23f2017-04-28 06:28:56 +00001361 computeKnownBitsFromRangeMetadata(*MD, Known);
Pete Cooper35b00d52016-08-13 01:05:32 +00001362 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00001363 computeKnownBits(RV, Known2, Depth + 1, Q);
1364 Known.Zero |= Known2.Zero;
1365 Known.One |= Known2.One;
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001366 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001367 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001368 switch (II->getIntrinsicID()) {
1369 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001370 case Intrinsic::bitreverse:
Craig Topperb45eabc2017-04-26 16:39:58 +00001371 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1372 Known.Zero |= Known2.Zero.reverseBits();
1373 Known.One |= Known2.One.reverseBits();
Chad Rosier85204292017-01-17 17:23:51 +00001374 break;
Philip Reames675418e2015-10-06 20:20:45 +00001375 case Intrinsic::bswap:
Craig Topperb45eabc2017-04-26 16:39:58 +00001376 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1377 Known.Zero |= Known2.Zero.byteSwap();
1378 Known.One |= Known2.One.byteSwap();
Philip Reames675418e2015-10-06 20:20:45 +00001379 break;
Craig Topper868813f2017-05-08 17:22:34 +00001380 case Intrinsic::ctlz: {
1381 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1382 // If we have a known 1, its position is our upper bound.
1383 unsigned PossibleLZ = Known2.One.countLeadingZeros();
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001384 // If this call is undefined for 0, the result will be less than 2^n.
1385 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
Craig Topper868813f2017-05-08 17:22:34 +00001386 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1387 unsigned LowBits = Log2_32(PossibleLZ)+1;
1388 Known.Zero.setBitsFrom(LowBits);
1389 break;
1390 }
1391 case Intrinsic::cttz: {
1392 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1393 // If we have a known 1, its position is our upper bound.
1394 unsigned PossibleTZ = Known2.One.countTrailingZeros();
1395 // If this call is undefined for 0, the result will be less than 2^n.
1396 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1397 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1398 unsigned LowBits = Log2_32(PossibleTZ)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001399 Known.Zero.setBitsFrom(LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001400 break;
1401 }
1402 case Intrinsic::ctpop: {
Craig Topperb45eabc2017-04-26 16:39:58 +00001403 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001404 // We can bound the space the count needs. Also, bits known to be zero
1405 // can't contribute to the population.
Craig Topper8df66c62017-05-12 17:20:30 +00001406 unsigned BitsPossiblySet = Known2.countMaxPopulation();
Craig Topper66df10f2017-04-14 06:43:34 +00001407 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Craig Topperb45eabc2017-04-26 16:39:58 +00001408 Known.Zero.setBitsFrom(LowBits);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001409 // TODO: we could bound KnownOne using the lower bound on the number
1410 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001411 break;
1412 }
Chad Rosierb3628842011-05-26 23:13:19 +00001413 case Intrinsic::x86_sse42_crc32_64_64:
Craig Topperb45eabc2017-04-26 16:39:58 +00001414 Known.Zero.setBitsFrom(32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001415 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001416 }
1417 }
1418 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001419 case Instruction::ExtractElement:
1420 // Look through extract element. At the moment we keep this simple and skip
1421 // tracking the specific element. But at least we might find information
1422 // valid for all elements of the vector (for example if vector is sign
1423 // extended, shifted, etc).
Craig Topperb45eabc2017-04-26 16:39:58 +00001424 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Bjorn Pettersson39616032016-10-06 09:56:21 +00001425 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001426 case Instruction::ExtractValue:
1427 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001428 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001429 if (EVI->getNumIndices() != 1) break;
1430 if (EVI->getIndices()[0] == 0) {
1431 switch (II->getIntrinsicID()) {
1432 default: break;
1433 case Intrinsic::uadd_with_overflow:
1434 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001435 computeKnownBitsAddSub(true, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001436 II->getArgOperand(1), false, Known, Known2,
1437 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001438 break;
1439 case Intrinsic::usub_with_overflow:
1440 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001441 computeKnownBitsAddSub(false, II->getArgOperand(0),
Craig Topperb45eabc2017-04-26 16:39:58 +00001442 II->getArgOperand(1), false, Known, Known2,
1443 Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001444 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001445 case Intrinsic::umul_with_overflow:
1446 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001447 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Craig Topperb45eabc2017-04-26 16:39:58 +00001448 Known, Known2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001449 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001450 }
1451 }
1452 }
Chris Lattner965c7692008-06-02 01:18:21 +00001453 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001454}
1455
1456/// Determine which bits of V are known to be either zero or one and return
Craig Topper6e11a052017-05-08 16:22:48 +00001457/// them.
1458KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1459 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1460 computeKnownBits(V, Known, Depth, Q);
1461 return Known;
1462}
1463
1464/// Determine which bits of V are known to be either zero or one and return
Craig Topperb45eabc2017-04-26 16:39:58 +00001465/// them in the Known bit set.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001466///
1467/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1468/// we cannot optimize based on the assumption that it is zero without changing
1469/// it to be an explicit zero. If we don't change it to zero, other code could
1470/// optimized based on the contradictory assumption that it is non-zero.
1471/// Because instcombine aggressively folds operations with undef args anyway,
1472/// this won't lose us code quality.
1473///
1474/// This function is defined on values with integer type, values with pointer
1475/// type, and vectors of integers. In the case
1476/// where V is a vector, known zero, and known one values are the
1477/// same width as the vector element, and the bit is set only if it is true
1478/// for all of the elements in the vector.
Craig Topperb45eabc2017-04-26 16:39:58 +00001479void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1480 const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001481 assert(V && "No Value?");
1482 assert(Depth <= MaxDepth && "Limit Search Depth");
Craig Topperb45eabc2017-04-26 16:39:58 +00001483 unsigned BitWidth = Known.getBitWidth();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001484
Craig Topperfde47232017-07-09 07:04:03 +00001485 assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
Craig Topper95d23472017-07-09 07:04:00 +00001486 V->getType()->isPtrOrPtrVectorTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001487 "Not integer or pointer type!");
Craig Topperfde47232017-07-09 07:04:03 +00001488 assert(Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth &&
Craig Topperb45eabc2017-04-26 16:39:58 +00001489 "V and Known should have same BitWidth");
Craig Topperd73c6b42017-03-23 07:06:39 +00001490 (void)BitWidth;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001491
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001492 const APInt *C;
1493 if (match(V, m_APInt(C))) {
1494 // We know all of the bits for a scalar constant or a splat vector constant!
Craig Topperb45eabc2017-04-26 16:39:58 +00001495 Known.One = *C;
1496 Known.Zero = ~Known.One;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001497 return;
1498 }
1499 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001500 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001501 Known.setAllZero();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001502 return;
1503 }
1504 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001505 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001506 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001507 // We know that CDS must be a vector of integers. Take the intersection of
1508 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001509 Known.Zero.setAllBits(); Known.One.setAllBits();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001510 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Craig Topperb98ee582017-10-21 16:35:39 +00001511 APInt Elt = CDS->getElementAsAPInt(i);
Craig Topperb45eabc2017-04-26 16:39:58 +00001512 Known.Zero &= ~Elt;
1513 Known.One &= Elt;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001514 }
1515 return;
1516 }
1517
Pete Cooper35b00d52016-08-13 01:05:32 +00001518 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001519 // We know that CV must be a vector of integers. Take the intersection of
1520 // each element.
Craig Topperb45eabc2017-04-26 16:39:58 +00001521 Known.Zero.setAllBits(); Known.One.setAllBits();
David Majnemer3918cdd2016-05-04 06:13:33 +00001522 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1523 Constant *Element = CV->getAggregateElement(i);
1524 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1525 if (!ElementCI) {
Craig Topperf0aeee02017-05-05 17:36:09 +00001526 Known.resetAll();
David Majnemer3918cdd2016-05-04 06:13:33 +00001527 return;
1528 }
Craig Topperb98ee582017-10-21 16:35:39 +00001529 const APInt &Elt = ElementCI->getValue();
Craig Topperb45eabc2017-04-26 16:39:58 +00001530 Known.Zero &= ~Elt;
1531 Known.One &= Elt;
David Majnemer3918cdd2016-05-04 06:13:33 +00001532 }
1533 return;
1534 }
1535
Jingyue Wu12b0c282015-06-15 05:46:29 +00001536 // Start out not knowing anything.
Craig Topperf0aeee02017-05-05 17:36:09 +00001537 Known.resetAll();
Jingyue Wu12b0c282015-06-15 05:46:29 +00001538
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001539 // We can't imply anything about undefs.
1540 if (isa<UndefValue>(V))
1541 return;
1542
1543 // There's no point in looking through other users of ConstantData for
1544 // assumptions. Confirm that we've handled them all.
1545 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1546
Jingyue Wu12b0c282015-06-15 05:46:29 +00001547 // Limit search depth.
1548 // All recursive calls that increase depth must come after this.
1549 if (Depth == MaxDepth)
1550 return;
1551
1552 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1553 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001554 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001555 if (!GA->isInterposable())
Craig Topperb45eabc2017-04-26 16:39:58 +00001556 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001557 return;
1558 }
1559
Pete Cooper35b00d52016-08-13 01:05:32 +00001560 if (const Operator *I = dyn_cast<Operator>(V))
Craig Topperb45eabc2017-04-26 16:39:58 +00001561 computeKnownBitsFromOperator(I, Known, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001562
Craig Topperb45eabc2017-04-26 16:39:58 +00001563 // Aligned pointers have trailing zeros - refine Known.Zero set
Artur Pilipenko029d8532015-09-30 11:55:45 +00001564 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001565 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001566 if (Align)
Craig Topperb45eabc2017-04-26 16:39:58 +00001567 Known.Zero.setLowBits(countTrailingZeros(Align));
Artur Pilipenko029d8532015-09-30 11:55:45 +00001568 }
1569
Craig Topperb45eabc2017-04-26 16:39:58 +00001570 // computeKnownBitsFromAssume strictly refines Known.
1571 // Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001572
1573 // Check whether a nearby assume intrinsic can determine some known bits.
Craig Topperb45eabc2017-04-26 16:39:58 +00001574 computeKnownBitsFromAssume(V, Known, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001575
Craig Topperb45eabc2017-04-26 16:39:58 +00001576 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001577}
1578
Sanjay Patelaee84212014-11-04 16:27:42 +00001579/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001580/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001581/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001582/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001583bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001584 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00001585 assert(Depth <= MaxDepth && "Limit Search Depth");
1586
Pete Cooper35b00d52016-08-13 01:05:32 +00001587 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001588 if (C->isNullValue())
1589 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001590
1591 const APInt *ConstIntOrConstSplatInt;
1592 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1593 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001594 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001595
1596 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1597 // it is shifted off the end then the result is undefined.
1598 if (match(V, m_Shl(m_One(), m_Value())))
1599 return true;
1600
Craig Topperbcfd2d12017-04-20 16:56:25 +00001601 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1602 // the bottom. If it is shifted off the bottom then the result is undefined.
1603 if (match(V, m_LShr(m_SignMask(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001604 return true;
1605
1606 // The remaining tests are all recursive, so bail out if we hit the limit.
1607 if (Depth++ == MaxDepth)
1608 return false;
1609
Craig Topper9f008862014-04-15 04:59:12 +00001610 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001611 // A shift left or a logical shift right of a power of two is a power of two
1612 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001613 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001614 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001615 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001616
Pete Cooper35b00d52016-08-13 01:05:32 +00001617 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001618 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001619
Pete Cooper35b00d52016-08-13 01:05:32 +00001620 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001621 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1622 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001623
Duncan Sandsba286d72011-10-26 20:55:21 +00001624 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1625 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001626 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1627 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001628 return true;
1629 // X & (-X) is always a power of two or zero.
1630 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1631 return true;
1632 return false;
1633 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001634
David Majnemerb7d54092013-07-30 21:01:36 +00001635 // Adding a power-of-two or zero to the same power-of-two or zero yields
1636 // either the original power-of-two, a larger power-of-two or zero.
1637 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001638 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001639 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1640 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1641 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001642 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001643 return true;
1644 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1645 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001646 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001647 return true;
1648
1649 unsigned BitWidth = V->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00001650 KnownBits LHSBits(BitWidth);
1651 computeKnownBits(X, LHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001652
Craig Topperb45eabc2017-04-26 16:39:58 +00001653 KnownBits RHSBits(BitWidth);
1654 computeKnownBits(Y, RHSBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001655 // If i8 V is a power of two or zero:
1656 // ZeroBits: 1 1 1 0 1 1 1 1
1657 // ~ZeroBits: 0 0 0 1 0 0 0 0
Craig Topperb45eabc2017-04-26 16:39:58 +00001658 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
David Majnemerb7d54092013-07-30 21:01:36 +00001659 // If OrZero isn't set, we cannot give back a zero result.
1660 // Make sure either the LHS or RHS has a bit set.
Craig Topperb45eabc2017-04-26 16:39:58 +00001661 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
David Majnemerb7d54092013-07-30 21:01:36 +00001662 return true;
1663 }
1664 }
David Majnemerbeab5672013-05-18 19:30:37 +00001665
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001666 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001667 // is a power of two only if the first operand is a power of two and not
1668 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001669 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1670 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001671 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001672 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001673 }
1674
Duncan Sandsd3951082011-01-25 09:38:29 +00001675 return false;
1676}
1677
Chandler Carruth80d3e562012-12-07 02:08:58 +00001678/// \brief Test whether a GEP's result is known to be non-null.
1679///
1680/// Uses properties inherent in a GEP to try to determine whether it is known
1681/// to be non-null.
1682///
1683/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001684static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001685 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001686 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1687 return false;
1688
1689 // FIXME: Support vector-GEPs.
1690 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1691
1692 // If the base pointer is non-null, we cannot walk to a null address with an
1693 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001694 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001695 return true;
1696
Chandler Carruth80d3e562012-12-07 02:08:58 +00001697 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1698 // If so, then the GEP cannot produce a null pointer, as doing so would
1699 // inherently violate the inbounds contract within address space zero.
1700 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1701 GTI != GTE; ++GTI) {
1702 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001703 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001704 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1705 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001706 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001707 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1708 if (ElementOffset > 0)
1709 return true;
1710 continue;
1711 }
1712
1713 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001714 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001715 continue;
1716
1717 // Fast path the constant operand case both for efficiency and so we don't
1718 // increment Depth when just zipping down an all-constant GEP.
1719 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1720 if (!OpC->isZero())
1721 return true;
1722 continue;
1723 }
1724
1725 // We post-increment Depth here because while isKnownNonZero increments it
1726 // as well, when we pop back up that increment won't persist. We don't want
1727 // to recurse 10k times just because we have 10k GEP operands. We don't
1728 // bail completely out because we want to handle constant GEPs regardless
1729 // of depth.
1730 if (Depth++ >= MaxDepth)
1731 continue;
1732
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001733 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001734 return true;
1735 }
1736
1737 return false;
1738}
1739
Nuno Lopes404f1062017-09-09 18:23:11 +00001740static bool isKnownNonNullFromDominatingCondition(const Value *V,
1741 const Instruction *CtxI,
1742 const DominatorTree *DT) {
1743 assert(V->getType()->isPointerTy() && "V must be pointer type");
1744 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1745
1746 if (!CtxI || !DT)
1747 return false;
1748
1749 unsigned NumUsesExplored = 0;
1750 for (auto *U : V->users()) {
1751 // Avoid massive lists
1752 if (NumUsesExplored >= DomConditionsMaxUses)
1753 break;
1754 NumUsesExplored++;
1755
1756 // If the value is used as an argument to a call or invoke, then argument
1757 // attributes may provide an answer about null-ness.
1758 if (auto CS = ImmutableCallSite(U))
1759 if (auto *CalledFunc = CS.getCalledFunction())
1760 for (const Argument &Arg : CalledFunc->args())
1761 if (CS.getArgOperand(Arg.getArgNo()) == V &&
1762 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1763 return true;
1764
1765 // Consider only compare instructions uniquely controlling a branch
1766 CmpInst::Predicate Pred;
1767 if (!match(const_cast<User *>(U),
1768 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1769 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1770 continue;
1771
1772 for (auto *CmpU : U->users()) {
1773 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
1774 assert(BI->isConditional() && "uses a comparison!");
1775
1776 BasicBlock *NonNullSuccessor =
1777 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1778 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1779 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1780 return true;
1781 } else if (Pred == ICmpInst::ICMP_NE &&
1782 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
1783 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
1784 return true;
1785 }
1786 }
1787 }
1788
1789 return false;
1790}
1791
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001792/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1793/// ensure that the value it's attached to is never Value? 'RangeType' is
1794/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001795static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001796 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1797 assert(NumRanges >= 1);
1798 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001799 ConstantInt *Lower =
1800 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1801 ConstantInt *Upper =
1802 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001803 ConstantRange Range(Lower->getValue(), Upper->getValue());
1804 if (Range.contains(Value))
1805 return false;
1806 }
1807 return true;
1808}
1809
Sanjay Patel97e4b9872017-02-12 15:35:34 +00001810/// Return true if the given value is known to be non-zero when defined. For
1811/// vectors, return true if every element is known to be non-zero when
1812/// defined. For pointers, if the context instruction and dominator tree are
1813/// specified, perform context-sensitive analysis and return true if the
1814/// pointer couldn't possibly be null at the specified instruction.
1815/// Supports values with integer or pointer type and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001816bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001817 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001818 if (C->isNullValue())
1819 return false;
1820 if (isa<ConstantInt>(C))
1821 // Must be non-zero due to null test above.
1822 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001823
1824 // For constant vectors, check that all elements are undefined or known
1825 // non-zero to determine that the whole vector is known non-zero.
1826 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1827 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1828 Constant *Elt = C->getAggregateElement(i);
1829 if (!Elt || Elt->isNullValue())
1830 return false;
1831 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1832 return false;
1833 }
1834 return true;
1835 }
1836
Nuno Lopes404f1062017-09-09 18:23:11 +00001837 // A global variable in address space 0 is non null unless extern weak
1838 // or an absolute symbol reference. Other address spaces may have null as a
1839 // valid address for a global, so we can't assume anything.
1840 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1841 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
1842 GV->getType()->getAddressSpace() == 0)
1843 return true;
1844 } else
1845 return false;
Duncan Sandsd3951082011-01-25 09:38:29 +00001846 }
1847
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001848 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001849 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001850 // If the possible ranges don't contain zero, then the value is
1851 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001852 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001853 const APInt ZeroValue(Ty->getBitWidth(), 0);
1854 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1855 return true;
1856 }
1857 }
1858 }
1859
Nuno Lopes404f1062017-09-09 18:23:11 +00001860 // Check for pointer simplifications.
1861 if (V->getType()->isPointerTy()) {
1862 // Alloca never returns null, malloc might.
1863 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
1864 return true;
1865
1866 // A byval, inalloca, or nonnull argument is never null.
1867 if (const Argument *A = dyn_cast<Argument>(V))
1868 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
1869 return true;
1870
1871 // A Load tagged with nonnull metadata is never null.
1872 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
1873 if (LI->getMetadata(LLVMContext::MD_nonnull))
1874 return true;
1875
1876 if (auto CS = ImmutableCallSite(V))
1877 if (CS.isReturnNonNull())
1878 return true;
1879 }
1880
Duncan Sandsd3951082011-01-25 09:38:29 +00001881 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001882 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001883 return false;
1884
Nuno Lopes404f1062017-09-09 18:23:11 +00001885 // Check for recursive pointer simplifications.
Chandler Carruth80d3e562012-12-07 02:08:58 +00001886 if (V->getType()->isPointerTy()) {
Nuno Lopes404f1062017-09-09 18:23:11 +00001887 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001888 return true;
Nuno Lopes404f1062017-09-09 18:23:11 +00001889
Pete Cooper35b00d52016-08-13 01:05:32 +00001890 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001891 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001892 return true;
1893 }
1894
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001895 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001896
1897 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001898 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001899 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001900 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001901
1902 // ext X != 0 if X != 0.
1903 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001904 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001905
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001906 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001907 // if the lowest bit is shifted off the end.
Craig Topper6b3940a2017-05-03 22:25:19 +00001908 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001909 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001910 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001911 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001912 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001913
Craig Topperb45eabc2017-04-26 16:39:58 +00001914 KnownBits Known(BitWidth);
1915 computeKnownBits(X, Known, Depth, Q);
1916 if (Known.One[0])
Duncan Sandsd3951082011-01-25 09:38:29 +00001917 return true;
1918 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001919 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001920 // defined if the sign bit is shifted off the end.
1921 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001922 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001923 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001924 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001925 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001926
Craig Topper6e11a052017-05-08 16:22:48 +00001927 KnownBits Known = computeKnownBits(X, Depth, Q);
1928 if (Known.isNegative())
Duncan Sandsd3951082011-01-25 09:38:29 +00001929 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001930
1931 // If the shifter operand is a constant, and all of the bits shifted
1932 // out are known to be zero, and X is known non-zero then at least one
1933 // non-zero bit must remain.
1934 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
James Molloyb6be1eb2015-09-24 16:06:32 +00001935 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1936 // Is there a known one in the portion not shifted out?
Craig Topper8df66c62017-05-12 17:20:30 +00001937 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
James Molloyb6be1eb2015-09-24 16:06:32 +00001938 return true;
1939 // Are all the bits to be shifted out known zero?
NAKAMURA Takumi76bab1f2017-07-11 02:31:51 +00001940 if (Known.countMinTrailingZeros() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001941 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001942 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001943 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001944 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001945 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001946 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001947 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001948 // X + Y.
1949 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Craig Topper6e11a052017-05-08 16:22:48 +00001950 KnownBits XKnown = computeKnownBits(X, Depth, Q);
1951 KnownBits YKnown = computeKnownBits(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001952
1953 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001954 // zero unless both X and Y are zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001955 if (XKnown.isNonNegative() && YKnown.isNonNegative())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001956 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001957 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001958
1959 // If X and Y are both negative (as signed values) then their sum is not
1960 // zero unless both X and Y equal INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001961 if (XKnown.isNegative() && YKnown.isNegative()) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001962 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1963 // The sign bit of X is set. If some other bit is set then X is not equal
1964 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001965 if (XKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001966 return true;
1967 // The sign bit of Y is set. If some other bit is set then Y is not equal
1968 // to INT_MIN.
Craig Topper6e11a052017-05-08 16:22:48 +00001969 if (YKnown.One.intersects(Mask))
Duncan Sandsd3951082011-01-25 09:38:29 +00001970 return true;
1971 }
1972
1973 // The sum of a non-negative number and a power of two is not zero.
Craig Topper6e11a052017-05-08 16:22:48 +00001974 if (XKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001975 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001976 return true;
Craig Topper6e11a052017-05-08 16:22:48 +00001977 if (YKnown.isNonNegative() &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001978 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001979 return true;
1980 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001981 // X * Y.
1982 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001983 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001984 // If X and Y are non-zero then so is X * Y as long as the multiplication
1985 // does not overflow.
1986 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001987 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001988 return true;
1989 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001990 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001991 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001992 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1993 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001994 return true;
1995 }
James Molloy897048b2015-09-29 14:08:45 +00001996 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00001997 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00001998 // Try and detect a recurrence that monotonically increases from a
1999 // starting value, as these are common as induction variables.
2000 if (PN->getNumIncomingValues() == 2) {
2001 Value *Start = PN->getIncomingValue(0);
2002 Value *Induction = PN->getIncomingValue(1);
2003 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2004 std::swap(Start, Induction);
2005 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2006 if (!C->isZero() && !C->isNegative()) {
2007 ConstantInt *X;
2008 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2009 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2010 !X->isNegative())
2011 return true;
2012 }
2013 }
2014 }
Jun Bum Limca832662016-02-01 17:03:07 +00002015 // Check if all incoming values are non-zero constant.
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002016 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
Craig Topper79ab6432017-07-06 18:39:47 +00002017 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
Jun Bum Limca832662016-02-01 17:03:07 +00002018 });
2019 if (AllNonZeroConstants)
2020 return true;
James Molloy897048b2015-09-29 14:08:45 +00002021 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002022
Craig Topperb45eabc2017-04-26 16:39:58 +00002023 KnownBits Known(BitWidth);
2024 computeKnownBits(V, Known, Depth, Q);
2025 return Known.One != 0;
Duncan Sandsd3951082011-01-25 09:38:29 +00002026}
2027
James Molloy1d88d6f2015-10-22 13:18:42 +00002028/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00002029static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2030 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00002031 if (!BO || BO->getOpcode() != Instruction::Add)
2032 return false;
2033 Value *Op = nullptr;
2034 if (V2 == BO->getOperand(0))
2035 Op = BO->getOperand(1);
2036 else if (V2 == BO->getOperand(1))
2037 Op = BO->getOperand(0);
2038 else
2039 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002040 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002041}
2042
2043/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00002044static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
Craig Topper3002d5b2017-06-06 07:13:15 +00002045 if (V1 == V2)
James Molloy1d88d6f2015-10-22 13:18:42 +00002046 return false;
2047 if (V1->getType() != V2->getType())
2048 // We can't look through casts yet.
2049 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002050 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002051 return true;
2052
Craig Topper3002d5b2017-06-06 07:13:15 +00002053 if (V1->getType()->isIntOrIntVectorTy()) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002054 // Are any known bits in V1 contradictory to known bits in V2? If V1
2055 // has a known zero where V2 has a known one, they must not be equal.
Craig Topper8e662f72017-06-06 07:13:11 +00002056 KnownBits Known1 = computeKnownBits(V1, 0, Q);
2057 KnownBits Known2 = computeKnownBits(V2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002058
Craig Topper8365df82017-06-06 07:13:09 +00002059 if (Known1.Zero.intersects(Known2.One) ||
2060 Known2.Zero.intersects(Known1.One))
James Molloy1d88d6f2015-10-22 13:18:42 +00002061 return true;
2062 }
2063 return false;
2064}
2065
Sanjay Patelaee84212014-11-04 16:27:42 +00002066/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2067/// simplify operations downstream. Mask is known to be zero for bits that V
2068/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002069///
2070/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002071/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002072/// where V is a vector, the mask, known zero, and known one values are the
2073/// same width as the vector element, and the bit is set only if it is true
2074/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002075bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002076 const Query &Q) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002077 KnownBits Known(Mask.getBitWidth());
2078 computeKnownBits(V, Known, Depth, Q);
2079 return Mask.isSubsetOf(Known.Zero);
Chris Lattner965c7692008-06-02 01:18:21 +00002080}
2081
Sanjay Patela06d9892016-06-22 19:20:59 +00002082/// For vector constants, loop over the elements and find the constant with the
2083/// minimum number of sign bits. Return 0 if the value is not a vector constant
2084/// or if any element was not analyzed; otherwise, return the count for the
2085/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002086static unsigned computeNumSignBitsVectorConstant(const Value *V,
2087 unsigned TyBits) {
2088 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002089 if (!CV || !CV->getType()->isVectorTy())
2090 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002091
Sanjay Patela06d9892016-06-22 19:20:59 +00002092 unsigned MinSignBits = TyBits;
2093 unsigned NumElts = CV->getType()->getVectorNumElements();
2094 for (unsigned i = 0; i != NumElts; ++i) {
2095 // If we find a non-ConstantInt, bail out.
2096 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2097 if (!Elt)
2098 return 0;
2099
Craig Topper8e8b6ef2017-10-21 16:35:41 +00002100 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
Sanjay Patela06d9892016-06-22 19:20:59 +00002101 }
2102
2103 return MinSignBits;
2104}
Chris Lattner965c7692008-06-02 01:18:21 +00002105
Sanjoy Das39a684d2017-02-25 20:30:45 +00002106static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2107 const Query &Q);
2108
2109static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2110 const Query &Q) {
2111 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2112 assert(Result > 0 && "At least one sign bit needs to be present!");
2113 return Result;
2114}
2115
Sanjay Patelaee84212014-11-04 16:27:42 +00002116/// Return the number of times the sign bit of the register is replicated into
2117/// the other bits. We know that at least 1 bit is always equal to the sign bit
2118/// (itself), but other cases can give us information. For example, immediately
2119/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002120/// other, so we return 3. For vectors, return the number of sign bits for the
2121/// vector element with the mininum number of known sign bits.
Sanjoy Das39a684d2017-02-25 20:30:45 +00002122static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2123 const Query &Q) {
Craig Topper7227eba2017-08-21 22:56:12 +00002124 assert(Depth <= MaxDepth && "Limit Search Depth");
Sanjoy Das39a684d2017-02-25 20:30:45 +00002125
2126 // We return the minimum number of sign bits that are guaranteed to be present
2127 // in V, so for undef we have to conservatively return 1. We don't have the
2128 // same behavior for poison though -- that's a FIXME today.
2129
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002130 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002131 unsigned Tmp, Tmp2;
2132 unsigned FirstAnswer = 1;
2133
Jay Foada0653a32014-05-14 21:14:37 +00002134 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002135 // below.
2136
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002137 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002138 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002139
Pete Cooper35b00d52016-08-13 01:05:32 +00002140 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002141 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002142 default: break;
2143 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002144 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002145 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002146
Nadav Rotemc99a3872015-03-06 00:23:58 +00002147 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002148 const APInt *Denominator;
2149 // sdiv X, C -> adds log(C) sign bits.
2150 if (match(U->getOperand(1), m_APInt(Denominator))) {
2151
2152 // Ignore non-positive denominator.
2153 if (!Denominator->isStrictlyPositive())
2154 break;
2155
2156 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002157 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002158
2159 // Add floor(log(C)) bits to the numerator bits.
2160 return std::min(TyBits, NumBits + Denominator->logBase2());
2161 }
2162 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002163 }
2164
2165 case Instruction::SRem: {
2166 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002167 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2168 // positive constant. This let us put a lower bound on the number of sign
2169 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002170 if (match(U->getOperand(1), m_APInt(Denominator))) {
2171
2172 // Ignore non-positive denominator.
2173 if (!Denominator->isStrictlyPositive())
2174 break;
2175
2176 // Calculate the incoming numerator bits. SRem by a positive constant
2177 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002178 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002179 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002180
2181 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002182 // denominator. Given that the denominator is positive, there are two
2183 // cases:
2184 //
2185 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2186 // (1 << ceilLogBase2(C)).
2187 //
2188 // 2. the numerator is negative. Then the result range is (-C,0] and
2189 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2190 //
2191 // Thus a lower bound on the number of sign bits is `TyBits -
2192 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002193
Sanjoy Dase561fee2015-03-25 22:33:53 +00002194 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002195 return std::max(NumrBits, ResBits);
2196 }
2197 break;
2198 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002199
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002200 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002201 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002202 // ashr X, C -> adds C sign bits. Vectors too.
2203 const APInt *ShAmt;
2204 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Sanjoy Das39a684d2017-02-25 20:30:45 +00002205 unsigned ShAmtLimited = ShAmt->getZExtValue();
2206 if (ShAmtLimited >= TyBits)
2207 break; // Bad shift.
2208 Tmp += ShAmtLimited;
Chris Lattner965c7692008-06-02 01:18:21 +00002209 if (Tmp > TyBits) Tmp = TyBits;
2210 }
2211 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002212 }
2213 case Instruction::Shl: {
2214 const APInt *ShAmt;
2215 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002216 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002217 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002218 Tmp2 = ShAmt->getZExtValue();
2219 if (Tmp2 >= TyBits || // Bad shift.
2220 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2221 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002222 }
2223 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002224 }
Chris Lattner965c7692008-06-02 01:18:21 +00002225 case Instruction::And:
2226 case Instruction::Or:
2227 case Instruction::Xor: // NOT is handled here.
2228 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002229 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002230 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002231 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002232 FirstAnswer = std::min(Tmp, Tmp2);
2233 // We computed what we know about the sign bits as our first
2234 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002235 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002236 }
2237 break;
2238
2239 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002240 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002241 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002242 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002243 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002244
Chris Lattner965c7692008-06-02 01:18:21 +00002245 case Instruction::Add:
2246 // Add can have at most one carry bit. Thus we know that the output
2247 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002248 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002249 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002250
Chris Lattner965c7692008-06-02 01:18:21 +00002251 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002252 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002253 if (CRHS->isAllOnesValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002254 KnownBits Known(TyBits);
2255 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002256
Chris Lattner965c7692008-06-02 01:18:21 +00002257 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2258 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002259 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002260 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002261
Chris Lattner965c7692008-06-02 01:18:21 +00002262 // If we are subtracting one from a positive number, there is no carry
2263 // out of the result.
Craig Topperca48af32017-04-29 16:43:11 +00002264 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002265 return Tmp;
2266 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002267
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002268 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002269 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002270 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002271
Chris Lattner965c7692008-06-02 01:18:21 +00002272 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002273 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002274 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002275
Chris Lattner965c7692008-06-02 01:18:21 +00002276 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002277 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002278 if (CLHS->isNullValue()) {
Craig Topperb45eabc2017-04-26 16:39:58 +00002279 KnownBits Known(TyBits);
2280 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002281 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2282 // sign bits set.
Craig Topperb45eabc2017-04-26 16:39:58 +00002283 if ((Known.Zero | 1).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002284 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002285
Chris Lattner965c7692008-06-02 01:18:21 +00002286 // If the input is known to be positive (the sign bit is known clear),
2287 // the output of the NEG has the same number of sign bits as the input.
Craig Topperca48af32017-04-29 16:43:11 +00002288 if (Known.isNonNegative())
Chris Lattner965c7692008-06-02 01:18:21 +00002289 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002290
Chris Lattner965c7692008-06-02 01:18:21 +00002291 // Otherwise, we treat this like a SUB.
2292 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002293
Chris Lattner965c7692008-06-02 01:18:21 +00002294 // Sub can have at most one carry bit. Thus we know that the output
2295 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002296 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002297 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002298 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002299
Amjad Aboud88ffa3a2017-08-18 22:56:55 +00002300 case Instruction::Mul: {
2301 // The output of the Mul can be at most twice the valid bits in the inputs.
2302 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2303 if (SignBitsOp0 == 1) return 1; // Early out.
2304 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2305 if (SignBitsOp1 == 1) return 1;
2306 unsigned OutValidBits =
2307 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2308 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2309 }
2310
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002311 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002312 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002313 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002314 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002315 if (NumIncomingValues > 4) break;
2316 // Unreachable blocks may have zero-operand PHI nodes.
2317 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002318
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002319 // Take the minimum of all incoming values. This can't infinitely loop
2320 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002321 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002322 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002323 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002324 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002325 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002326 }
2327 return Tmp;
2328 }
2329
Chris Lattner965c7692008-06-02 01:18:21 +00002330 case Instruction::Trunc:
2331 // FIXME: it's tricky to do anything useful for this, but it is an important
2332 // case for targets like X86.
2333 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002334
2335 case Instruction::ExtractElement:
2336 // Look through extract element. At the moment we keep this simple and skip
2337 // tracking the specific element. But at least we might find information
2338 // valid for all elements of the vector (for example if vector is sign
2339 // extended, shifted, etc).
2340 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002341 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002342
Chris Lattner965c7692008-06-02 01:18:21 +00002343 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2344 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002345
2346 // If we can examine all elements of a vector constant successfully, we're
2347 // done (we can't do any better than that). If not, keep trying.
2348 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2349 return VecSignBits;
2350
Craig Topperb45eabc2017-04-26 16:39:58 +00002351 KnownBits Known(TyBits);
2352 computeKnownBits(V, Known, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002353
Sanjay Patele0536212016-06-23 17:41:59 +00002354 // If we know that the sign bit is either zero or one, determine the number of
2355 // identical bits in the top of the input value.
Craig Topper8df66c62017-05-12 17:20:30 +00002356 return std::max(FirstAnswer, Known.countMinSignBits());
Chris Lattner965c7692008-06-02 01:18:21 +00002357}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002358
Sanjay Patelaee84212014-11-04 16:27:42 +00002359/// This function computes the integer multiple of Base that equals V.
2360/// If successful, it returns true and returns the multiple in
2361/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002362/// through SExt instructions only if LookThroughSExt is true.
2363bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002364 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002365 const unsigned MaxDepth = 6;
2366
Dan Gohman6a976bb2009-11-18 00:58:27 +00002367 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002368 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002369 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002370
Chris Lattner229907c2011-07-18 04:54:35 +00002371 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002372
Dan Gohman6a976bb2009-11-18 00:58:27 +00002373 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002374
2375 if (Base == 0)
2376 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002377
Victor Hernandez47444882009-11-10 08:28:35 +00002378 if (Base == 1) {
2379 Multiple = V;
2380 return true;
2381 }
2382
2383 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2384 Constant *BaseVal = ConstantInt::get(T, Base);
2385 if (CO && CO == BaseVal) {
2386 // Multiple is 1.
2387 Multiple = ConstantInt::get(T, 1);
2388 return true;
2389 }
2390
2391 if (CI && CI->getZExtValue() % Base == 0) {
2392 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002393 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002394 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002395
Victor Hernandez47444882009-11-10 08:28:35 +00002396 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002397
Victor Hernandez47444882009-11-10 08:28:35 +00002398 Operator *I = dyn_cast<Operator>(V);
2399 if (!I) return false;
2400
2401 switch (I->getOpcode()) {
2402 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002403 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002404 if (!LookThroughSExt) return false;
2405 // otherwise fall through to ZExt
Galina Kistanova244621f2017-05-31 22:16:24 +00002406 LLVM_FALLTHROUGH;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002407 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002408 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2409 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002410 case Instruction::Shl:
2411 case Instruction::Mul: {
2412 Value *Op0 = I->getOperand(0);
2413 Value *Op1 = I->getOperand(1);
2414
2415 if (I->getOpcode() == Instruction::Shl) {
2416 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2417 if (!Op1CI) return false;
2418 // Turn Op0 << Op1 into Op0 * 2^Op1
2419 APInt Op1Int = Op1CI->getValue();
2420 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002421 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002422 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002423 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002424 }
2425
Craig Topper9f008862014-04-15 04:59:12 +00002426 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002427 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2428 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2429 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002430 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002431 MulC->getType()->getPrimitiveSizeInBits())
2432 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002433 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002434 MulC->getType()->getPrimitiveSizeInBits())
2435 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002436
Chris Lattner72d283c2010-09-05 17:20:46 +00002437 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2438 Multiple = ConstantExpr::getMul(MulC, Op1C);
2439 return true;
2440 }
Victor Hernandez47444882009-11-10 08:28:35 +00002441
2442 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2443 if (Mul0CI->getValue() == 1) {
2444 // V == Base * Op1, so return Op1
2445 Multiple = Op1;
2446 return true;
2447 }
2448 }
2449
Craig Topper9f008862014-04-15 04:59:12 +00002450 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002451 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2452 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2453 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002454 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002455 MulC->getType()->getPrimitiveSizeInBits())
2456 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002457 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002458 MulC->getType()->getPrimitiveSizeInBits())
2459 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002460
Chris Lattner72d283c2010-09-05 17:20:46 +00002461 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2462 Multiple = ConstantExpr::getMul(MulC, Op0C);
2463 return true;
2464 }
Victor Hernandez47444882009-11-10 08:28:35 +00002465
2466 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2467 if (Mul1CI->getValue() == 1) {
2468 // V == Base * Op0, so return Op0
2469 Multiple = Op0;
2470 return true;
2471 }
2472 }
Victor Hernandez47444882009-11-10 08:28:35 +00002473 }
2474 }
2475
2476 // We could not determine if V is a multiple of Base.
2477 return false;
2478}
2479
David Majnemerb4b27232016-04-19 19:10:21 +00002480Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2481 const TargetLibraryInfo *TLI) {
2482 const Function *F = ICS.getCalledFunction();
2483 if (!F)
2484 return Intrinsic::not_intrinsic;
2485
2486 if (F->isIntrinsic())
2487 return F->getIntrinsicID();
2488
2489 if (!TLI)
2490 return Intrinsic::not_intrinsic;
2491
David L. Jonesd21529f2017-01-23 23:16:46 +00002492 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002493 // We're going to make assumptions on the semantics of the functions, check
2494 // that the target knows that it's available in this environment and it does
2495 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002496 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2497 return Intrinsic::not_intrinsic;
2498
2499 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002500 return Intrinsic::not_intrinsic;
2501
2502 // Otherwise check if we have a call to a function that can be turned into a
2503 // vector intrinsic.
2504 switch (Func) {
2505 default:
2506 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002507 case LibFunc_sin:
2508 case LibFunc_sinf:
2509 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002510 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002511 case LibFunc_cos:
2512 case LibFunc_cosf:
2513 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002514 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002515 case LibFunc_exp:
2516 case LibFunc_expf:
2517 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002518 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002519 case LibFunc_exp2:
2520 case LibFunc_exp2f:
2521 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002522 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002523 case LibFunc_log:
2524 case LibFunc_logf:
2525 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002526 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002527 case LibFunc_log10:
2528 case LibFunc_log10f:
2529 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002530 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002531 case LibFunc_log2:
2532 case LibFunc_log2f:
2533 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002534 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002535 case LibFunc_fabs:
2536 case LibFunc_fabsf:
2537 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002538 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002539 case LibFunc_fmin:
2540 case LibFunc_fminf:
2541 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002542 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002543 case LibFunc_fmax:
2544 case LibFunc_fmaxf:
2545 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002546 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002547 case LibFunc_copysign:
2548 case LibFunc_copysignf:
2549 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002550 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002551 case LibFunc_floor:
2552 case LibFunc_floorf:
2553 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002554 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002555 case LibFunc_ceil:
2556 case LibFunc_ceilf:
2557 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002558 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002559 case LibFunc_trunc:
2560 case LibFunc_truncf:
2561 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002562 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002563 case LibFunc_rint:
2564 case LibFunc_rintf:
2565 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002566 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002567 case LibFunc_nearbyint:
2568 case LibFunc_nearbyintf:
2569 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002570 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002571 case LibFunc_round:
2572 case LibFunc_roundf:
2573 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002574 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002575 case LibFunc_pow:
2576 case LibFunc_powf:
2577 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002578 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002579 case LibFunc_sqrt:
2580 case LibFunc_sqrtf:
2581 case LibFunc_sqrtl:
Sanjay Patel86d24f12017-11-06 22:40:09 +00002582 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002583 }
2584
2585 return Intrinsic::not_intrinsic;
2586}
2587
Sanjay Patelaee84212014-11-04 16:27:42 +00002588/// Return true if we can prove that the specified FP value is never equal to
2589/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002590///
2591/// NOTE: this function will need to be revisited when we support non-default
2592/// rounding modes!
David Majnemer3ee5f342016-04-13 06:55:52 +00002593bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2594 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002595 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2596 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002597
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002598 if (Depth == MaxDepth)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002599 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002600
Dan Gohman80ca01c2009-07-17 20:47:02 +00002601 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002602 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002603
2604 // Check if the nsz fast-math flag is set
2605 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2606 if (FPO->hasNoSignedZeros())
2607 return true;
2608
Chris Lattnera12a6de2008-06-02 01:29:46 +00002609 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002610 if (I->getOpcode() == Instruction::FAdd)
2611 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2612 if (CFP->isNullValue())
2613 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002614
Chris Lattnera12a6de2008-06-02 01:29:46 +00002615 // sitofp and uitofp turn into +0.0 for zero.
2616 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2617 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002618
David Majnemer3ee5f342016-04-13 06:55:52 +00002619 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002620 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002621 switch (IID) {
2622 default:
2623 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002624 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002625 case Intrinsic::sqrt:
2626 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2627 // fabs(x) != -0.0
2628 case Intrinsic::fabs:
2629 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002630 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002631 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002632
Chris Lattnera12a6de2008-06-02 01:29:46 +00002633 return false;
2634}
2635
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002636/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2637/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2638/// bit despite comparing equal.
2639static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2640 const TargetLibraryInfo *TLI,
2641 bool SignBitOnly,
2642 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002643 // TODO: This function does not do the right thing when SignBitOnly is true
2644 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2645 // which flips the sign bits of NaNs. See
2646 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2647
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002648 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2649 return !CFP->getValueAPF().isNegative() ||
2650 (!SignBitOnly && CFP->getValueAPF().isZero());
2651 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002652
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002653 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002654 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002655
2656 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002657 if (!I)
2658 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002659
2660 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002661 default:
2662 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002663 // Unsigned integers are always nonnegative.
2664 case Instruction::UIToFP:
2665 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002666 case Instruction::FMul:
2667 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002668 if (I->getOperand(0) == I->getOperand(1) &&
2669 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002670 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002671
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002672 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002673 case Instruction::FAdd:
2674 case Instruction::FDiv:
2675 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002676 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2677 Depth + 1) &&
2678 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2679 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002680 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002681 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2682 Depth + 1) &&
2683 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2684 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002685 case Instruction::FPExt:
2686 case Instruction::FPTrunc:
2687 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002688 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2689 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002690 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002691 const auto *CI = cast<CallInst>(I);
2692 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002693 switch (IID) {
2694 default:
2695 break;
2696 case Intrinsic::maxnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002697 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2698 Depth + 1) ||
2699 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2700 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002701 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002702 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2703 Depth + 1) &&
2704 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2705 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002706 case Intrinsic::exp:
2707 case Intrinsic::exp2:
2708 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002709 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002710
2711 case Intrinsic::sqrt:
2712 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2713 if (!SignBitOnly)
2714 return true;
2715 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2716 CannotBeNegativeZero(CI->getOperand(0), TLI));
2717
David Majnemer3ee5f342016-04-13 06:55:52 +00002718 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002719 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002720 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002721 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002722 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002723 }
Justin Lebar322c1272017-01-27 00:58:34 +00002724 // TODO: This is not correct. Given that exp is an integer, here are the
2725 // ways that pow can return a negative value:
2726 //
2727 // pow(x, exp) --> negative if exp is odd and x is negative.
2728 // pow(-0, exp) --> -inf if exp is negative odd.
2729 // pow(-0, exp) --> -0 if exp is positive odd.
2730 // pow(-inf, exp) --> -0 if exp is negative odd.
2731 // pow(-inf, exp) --> -inf if exp is positive odd.
2732 //
2733 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2734 // but we must return false if x == -0. Unfortunately we do not currently
2735 // have a way of expressing this constraint. See details in
2736 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002737 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2738 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00002739
David Majnemer3ee5f342016-04-13 06:55:52 +00002740 case Intrinsic::fma:
2741 case Intrinsic::fmuladd:
2742 // x*x+y is non-negative if y is non-negative.
2743 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002744 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2745 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2746 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002747 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002748 break;
2749 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002750 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002751}
2752
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002753bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2754 const TargetLibraryInfo *TLI) {
2755 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2756}
2757
2758bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2759 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2760}
2761
Sanjay Patel6840c5f2017-09-05 23:13:13 +00002762bool llvm::isKnownNeverNaN(const Value *V) {
2763 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
2764
2765 // If we're told that NaNs won't happen, assume they won't.
2766 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
2767 if (FPMathOp->hasNoNaNs())
2768 return true;
2769
2770 // TODO: Handle instructions and potentially recurse like other 'isKnown'
2771 // functions. For example, the result of sitofp is never NaN.
2772
2773 // Handle scalar constants.
2774 if (auto *CFP = dyn_cast<ConstantFP>(V))
2775 return !CFP->isNaN();
2776
2777 // Bail out for constant expressions, but try to handle vector constants.
2778 if (!V->getType()->isVectorTy() || !isa<Constant>(V))
2779 return false;
2780
2781 // For vectors, verify that each element is not NaN.
2782 unsigned NumElts = V->getType()->getVectorNumElements();
2783 for (unsigned i = 0; i != NumElts; ++i) {
2784 Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
2785 if (!Elt)
2786 return false;
2787 if (isa<UndefValue>(Elt))
2788 continue;
2789 auto *CElt = dyn_cast<ConstantFP>(Elt);
2790 if (!CElt || CElt->isNaN())
2791 return false;
2792 }
2793 // All elements were confirmed not-NaN or undefined.
2794 return true;
2795}
2796
Sanjay Patelaee84212014-11-04 16:27:42 +00002797/// If the specified value can be set by repeating the same byte in memory,
2798/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002799/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2800/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2801/// byte store (e.g. i16 0x1234), return null.
2802Value *llvm::isBytewiseValue(Value *V) {
2803 // All byte-wide stores are splatable, even of arbitrary variables.
2804 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002805
2806 // Handle 'null' ConstantArrayZero etc.
2807 if (Constant *C = dyn_cast<Constant>(V))
2808 if (C->isNullValue())
2809 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002810
Chris Lattner9cb10352010-12-26 20:15:01 +00002811 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002812 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002813 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2814 if (CFP->getType()->isFloatTy())
2815 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2816 if (CFP->getType()->isDoubleTy())
2817 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2818 // Don't handle long double formats, which have strange constraints.
2819 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002820
Benjamin Kramer17d90152015-02-07 19:29:02 +00002821 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002822 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002823 if (CI->getBitWidth() % 8 == 0) {
2824 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002825
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002826 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002827 return nullptr;
2828 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002829 }
2830 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002831
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002832 // A ConstantDataArray/Vector is splatable if all its members are equal and
2833 // also splatable.
2834 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2835 Value *Elt = CA->getElementAsConstant(0);
2836 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002837 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002838 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002839
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002840 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2841 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002842 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002843
Chris Lattner9cb10352010-12-26 20:15:01 +00002844 return Val;
2845 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002846
Chris Lattner9cb10352010-12-26 20:15:01 +00002847 // Conceptually, we could handle things like:
2848 // %a = zext i8 %X to i16
2849 // %b = shl i16 %a, 8
2850 // %c = or i16 %a, %b
2851 // but until there is an example that actually needs this, it doesn't seem
2852 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002853 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002854}
2855
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002856// This is the recursive version of BuildSubAggregate. It takes a few different
2857// arguments. Idxs is the index within the nested struct From that we are
2858// looking at now (which is of type IndexedType). IdxSkip is the number of
2859// indices from Idxs that should be left out when inserting into the resulting
2860// struct. To is the result struct built so far, new insertvalue instructions
2861// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002862static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002863 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002864 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002865 Instruction *InsertBefore) {
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002866 StructType *STy = dyn_cast<StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002867 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002868 // Save the original To argument so we can modify it
2869 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002870 // General case, the type indexed by Idxs is a struct
2871 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2872 // Process each struct element recursively
2873 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002874 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002875 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002876 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002877 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002878 if (!To) {
2879 // Couldn't find any inserted value for this index? Cleanup
2880 while (PrevTo != OrigTo) {
2881 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2882 PrevTo = Del->getAggregateOperand();
2883 Del->eraseFromParent();
2884 }
2885 // Stop processing elements
2886 break;
2887 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002888 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002889 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002890 if (To)
2891 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002892 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002893 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2894 // the struct's elements had a value that was inserted directly. In the latter
2895 // case, perhaps we can't determine each of the subelements individually, but
2896 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002897
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002898 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002899 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002900
2901 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002902 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002903
2904 // Insert the value in the new (sub) aggregrate
Eugene Zelenko75075ef2017-09-01 21:37:29 +00002905 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2906 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002907}
2908
2909// This helper takes a nested struct and extracts a part of it (which is again a
2910// struct) into a new value. For example, given the struct:
2911// { a, { b, { c, d }, e } }
2912// and the indices "1, 1" this returns
2913// { c, d }.
2914//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002915// It does this by inserting an insertvalue for each element in the resulting
2916// struct, as opposed to just inserting a single struct. This will only work if
2917// each of the elements of the substruct are known (ie, inserted into From by an
2918// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002919//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002920// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002921static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002922 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002923 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002924 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002925 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002926 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002927 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002928 unsigned IdxSkip = Idxs.size();
2929
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002930 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002931}
2932
Sanjay Patelaee84212014-11-04 16:27:42 +00002933/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002934/// the scalar value indexed is already around as a register, for example if it
2935/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002936///
2937/// If InsertBefore is not null, this function will duplicate (modified)
2938/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002939Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2940 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002941 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002942 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002943 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002944 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002945 // We have indices, so V should have an indexable type.
2946 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2947 "Not looking at a struct or array?");
2948 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2949 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002950
Chris Lattner67058832012-01-25 06:48:06 +00002951 if (Constant *C = dyn_cast<Constant>(V)) {
2952 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002953 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002954 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2955 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002956
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002957 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002958 // Loop the indices for the insertvalue instruction in parallel with the
2959 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002960 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002961 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2962 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002963 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002964 // We can't handle this without inserting insertvalues
2965 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002966 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002967
2968 // The requested index identifies a part of a nested aggregate. Handle
2969 // this specially. For example,
2970 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2971 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2972 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2973 // This can be changed into
2974 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2975 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2976 // which allows the unused 0,0 element from the nested struct to be
2977 // removed.
2978 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2979 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002980 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002981
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002982 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002983 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002984 // looking for, then.
2985 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002986 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002987 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002988 }
2989 // If we end up here, the indices of the insertvalue match with those
2990 // requested (though possibly only partially). Now we recursively look at
2991 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002992 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002993 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002994 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002995 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002996
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002997 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002998 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002999 // something else, we can extract from that something else directly instead.
3000 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00003001
3002 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00003003 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003004 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00003005 SmallVector<unsigned, 5> Idxs;
3006 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003007 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00003008 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00003009
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003010 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00003011 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003012
Craig Topper1bef2c82012-12-22 19:15:35 +00003013 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00003014 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00003015
Jay Foad57aa6362011-07-13 10:26:04 +00003016 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003017 }
3018 // Otherwise, we don't know (such as, extracting from a function return value
3019 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00003020 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00003021}
Evan Chengda3db112008-06-30 07:31:25 +00003022
Sanjay Patelaee84212014-11-04 16:27:42 +00003023/// Analyze the specified pointer to see if it can be expressed as a base
3024/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00003025Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003026 const DataLayout &DL) {
3027 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00003028 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00003029
3030 // We walk up the defs but use a visited set to handle unreachable code. In
3031 // that case, we stop after accumulating the cycle once (not that it
3032 // matters).
3033 SmallPtrSet<Value *, 16> Visited;
3034 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003035 if (Ptr->getType()->isVectorTy())
3036 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00003037
Nuno Lopes368c4d02012-12-31 20:48:35 +00003038 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00003039 // If one of the values we have visited is an addrspacecast, then
3040 // the pointer type of this GEP may be different from the type
3041 // of the Ptr parameter which was passed to this function. This
3042 // means when we construct GEPOffset, we need to use the size
3043 // of GEP's pointer type rather than the size of the original
3044 // pointer type.
3045 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003046 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3047 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003048
Tom Stellard17eb3412016-10-07 14:23:29 +00003049 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003050
Nuno Lopes368c4d02012-12-31 20:48:35 +00003051 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00003052 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3053 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003054 Ptr = cast<Operator>(Ptr)->getOperand(0);
3055 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003056 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00003057 break;
3058 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00003059 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003060 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00003061 }
3062 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00003063 Offset = ByteOffset.getSExtValue();
3064 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00003065}
3066
Matthias Braun50ec0b52017-05-19 22:37:09 +00003067bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3068 unsigned CharSize) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003069 // Make sure the GEP has exactly three arguments.
3070 if (GEP->getNumOperands() != 3)
3071 return false;
3072
Matthias Braun50ec0b52017-05-19 22:37:09 +00003073 // Make sure the index-ee is a pointer to array of \p CharSize integers.
3074 // CharSize.
David L Kreitzer752c1442016-04-13 14:31:06 +00003075 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
Matthias Braun50ec0b52017-05-19 22:37:09 +00003076 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
David L Kreitzer752c1442016-04-13 14:31:06 +00003077 return false;
3078
3079 // Check to make sure that the first operand of the GEP is an integer and
3080 // has value 0 so that we are sure we're indexing into the initializer.
3081 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3082 if (!FirstIdx || !FirstIdx->isZero())
3083 return false;
3084
3085 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003086}
Chris Lattnere28618d2010-11-30 22:25:26 +00003087
Matthias Braun50ec0b52017-05-19 22:37:09 +00003088bool llvm::getConstantDataArrayInfo(const Value *V,
3089 ConstantDataArraySlice &Slice,
3090 unsigned ElementSize, uint64_t Offset) {
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003091 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00003092
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003093 // Look through bitcast instructions and geps.
3094 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00003095
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003096 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003097 // offset.
3098 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003099 // The GEP operator should be based on a pointer to string constant, and is
3100 // indexing into the string constant.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003101 if (!isGEPBasedOnPointerToString(GEP, ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003102 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003103
Evan Chengda3db112008-06-30 07:31:25 +00003104 // If the second index isn't a ConstantInt, then this is a variable index
3105 // into the array. If this occurs, we can't say anything meaningful about
3106 // the string.
3107 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003108 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003109 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003110 else
3111 return false;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003112 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3113 StartIdx + Offset);
Evan Chengda3db112008-06-30 07:31:25 +00003114 }
Nick Lewycky46209882011-10-20 00:34:35 +00003115
Evan Chengda3db112008-06-30 07:31:25 +00003116 // The GEP instruction, constant or instruction, must reference a global
3117 // variable that is a constant and is initialized. The referenced constant
3118 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003119 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003120 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003121 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003122
Matthias Braun50ec0b52017-05-19 22:37:09 +00003123 const ConstantDataArray *Array;
3124 ArrayType *ArrayTy;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003125 if (GV->getInitializer()->isNullValue()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003126 Type *GVTy = GV->getValueType();
3127 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
Sanjay Patel2ad88f82017-06-12 22:34:37 +00003128 // A zeroinitializer for the array; there is no ConstantDataArray.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003129 Array = nullptr;
3130 } else {
3131 const DataLayout &DL = GV->getParent()->getDataLayout();
3132 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3133 uint64_t Length = SizeInBytes / (ElementSize / 8);
3134 if (Length <= Offset)
3135 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003136
Matthias Braun50ec0b52017-05-19 22:37:09 +00003137 Slice.Array = nullptr;
3138 Slice.Offset = 0;
3139 Slice.Length = Length - Offset;
3140 return true;
3141 }
3142 } else {
3143 // This must be a ConstantDataArray.
3144 Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3145 if (!Array)
3146 return false;
3147 ArrayTy = Array->getType();
3148 }
3149 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003150 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003151
Matthias Braun50ec0b52017-05-19 22:37:09 +00003152 uint64_t NumElts = ArrayTy->getArrayNumElements();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003153 if (Offset > NumElts)
3154 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003155
Matthias Braun50ec0b52017-05-19 22:37:09 +00003156 Slice.Array = Array;
3157 Slice.Offset = Offset;
3158 Slice.Length = NumElts - Offset;
3159 return true;
3160}
3161
3162/// This function computes the length of a null-terminated C string pointed to
3163/// by V. If successful, it returns true and returns the string in Str.
3164/// If unsuccessful, it returns false.
3165bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3166 uint64_t Offset, bool TrimAtNul) {
3167 ConstantDataArraySlice Slice;
3168 if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3169 return false;
3170
3171 if (Slice.Array == nullptr) {
3172 if (TrimAtNul) {
3173 Str = StringRef();
3174 return true;
3175 }
3176 if (Slice.Length == 1) {
3177 Str = StringRef("", 1);
3178 return true;
3179 }
Sanjay Patelfef83e82017-06-09 14:21:18 +00003180 // We cannot instantiate a StringRef as we do not have an appropriate string
Matthias Braun50ec0b52017-05-19 22:37:09 +00003181 // of 0s at hand.
3182 return false;
3183 }
3184
3185 // Start out with the entire array in the StringRef.
3186 Str = Slice.Array->getAsString();
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003187 // Skip over 'offset' bytes.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003188 Str = Str.substr(Slice.Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003189
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003190 if (TrimAtNul) {
3191 // Trim off the \0 and anything after it. If the array is not nul
3192 // terminated, we just return the whole end of string. The client may know
3193 // some other way that the string is length-bound.
3194 Str = Str.substr(0, Str.find('\0'));
3195 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003196 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003197}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003198
3199// These next two are very similar to the above, but also look through PHI
3200// nodes.
3201// TODO: See if we can integrate these two together.
3202
Sanjay Patelaee84212014-11-04 16:27:42 +00003203/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003204/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003205static uint64_t GetStringLengthH(const Value *V,
Matthias Braun50ec0b52017-05-19 22:37:09 +00003206 SmallPtrSetImpl<const PHINode*> &PHIs,
3207 unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003208 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003209 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003210
3211 // If this is a PHI node, there are two cases: either we have already seen it
3212 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003213 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003214 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003215 return ~0ULL; // already in the set.
3216
3217 // If it was new, see if all the input strings are the same length.
3218 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003219 for (Value *IncValue : PN->incoming_values()) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003220 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003221 if (Len == 0) return 0; // Unknown length -> unknown.
3222
3223 if (Len == ~0ULL) continue;
3224
3225 if (Len != LenSoFar && LenSoFar != ~0ULL)
3226 return 0; // Disagree -> unknown.
3227 LenSoFar = Len;
3228 }
3229
3230 // Success, all agree.
3231 return LenSoFar;
3232 }
3233
3234 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003235 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braun50ec0b52017-05-19 22:37:09 +00003236 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003237 if (Len1 == 0) return 0;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003238 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003239 if (Len2 == 0) return 0;
3240 if (Len1 == ~0ULL) return Len2;
3241 if (Len2 == ~0ULL) return Len1;
3242 if (Len1 != Len2) return 0;
3243 return Len1;
3244 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003245
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003246 // Otherwise, see if we can read the string.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003247 ConstantDataArraySlice Slice;
3248 if (!getConstantDataArrayInfo(V, Slice, CharSize))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003249 return 0;
3250
Matthias Braun50ec0b52017-05-19 22:37:09 +00003251 if (Slice.Array == nullptr)
3252 return 1;
3253
3254 // Search for nul characters
3255 unsigned NullIndex = 0;
3256 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3257 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3258 break;
3259 }
3260
3261 return NullIndex + 1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003262}
3263
Sanjay Patelaee84212014-11-04 16:27:42 +00003264/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003265/// the specified pointer, return 'len+1'. If we can't, return 0.
Matthias Braun50ec0b52017-05-19 22:37:09 +00003266uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003267 if (!V->getType()->isPointerTy()) return 0;
3268
Pete Cooper35b00d52016-08-13 01:05:32 +00003269 SmallPtrSet<const PHINode*, 32> PHIs;
Matthias Braun50ec0b52017-05-19 22:37:09 +00003270 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003271 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3272 // an empty string as a length.
3273 return Len == ~0ULL ? 1 : Len;
3274}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003275
Adam Nemete2b885c2015-04-23 20:09:20 +00003276/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3277/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003278static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3279 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003280 // Find the loop-defined value.
3281 Loop *L = LI->getLoopFor(PN->getParent());
3282 if (PN->getNumIncomingValues() != 2)
3283 return true;
3284
3285 // Find the value from previous iteration.
3286 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3287 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3288 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3289 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3290 return true;
3291
3292 // If a new pointer is loaded in the loop, the pointer references a different
3293 // object in every iteration. E.g.:
3294 // for (i)
3295 // int *p = a[i];
3296 // ...
3297 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3298 if (!L->isLoopInvariant(Load->getPointerOperand()))
3299 return false;
3300 return true;
3301}
3302
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003303Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3304 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003305 if (!V->getType()->isPointerTy())
3306 return V;
3307 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3308 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3309 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003310 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3311 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003312 V = cast<Operator>(V)->getOperand(0);
3313 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003314 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003315 return V;
3316 V = GA->getAliasee();
Craig Topper85482412017-04-12 22:29:23 +00003317 } else if (isa<AllocaInst>(V)) {
3318 // An alloca can't be further simplified.
3319 return V;
Dan Gohmana4fcd242010-12-15 20:02:24 +00003320 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003321 if (auto CS = CallSite(V))
3322 if (Value *RV = CS.getReturnedArgOperand()) {
3323 V = RV;
3324 continue;
3325 }
3326
Dan Gohman05b18f12010-12-15 20:49:55 +00003327 // See if InstructionSimplify knows any relevant tricks.
3328 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003329 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Daniel Berlin4d0fe642017-04-28 19:55:38 +00003330 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003331 V = Simplified;
3332 continue;
3333 }
3334
Dan Gohmana4fcd242010-12-15 20:02:24 +00003335 return V;
3336 }
3337 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3338 }
3339 return V;
3340}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003341
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003342void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003343 const DataLayout &DL, LoopInfo *LI,
3344 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003345 SmallPtrSet<Value *, 4> Visited;
3346 SmallVector<Value *, 4> Worklist;
3347 Worklist.push_back(V);
3348 do {
3349 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003350 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003351
David Blaikie70573dc2014-11-19 07:49:26 +00003352 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003353 continue;
3354
3355 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3356 Worklist.push_back(SI->getTrueValue());
3357 Worklist.push_back(SI->getFalseValue());
3358 continue;
3359 }
3360
3361 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003362 // If this PHI changes the underlying object in every iteration of the
3363 // loop, don't look through it. Consider:
3364 // int **A;
3365 // for (i) {
3366 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3367 // Curr = A[i];
3368 // *Prev, *Curr;
3369 //
3370 // Prev is tracking Curr one iteration behind so they refer to different
3371 // underlying objects.
3372 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3373 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003374 for (Value *IncValue : PN->incoming_values())
3375 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003376 continue;
3377 }
3378
3379 Objects.push_back(P);
3380 } while (!Worklist.empty());
3381}
3382
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003383/// This is the function that does the work of looking through basic
3384/// ptrtoint+arithmetic+inttoptr sequences.
3385static const Value *getUnderlyingObjectFromInt(const Value *V) {
3386 do {
3387 if (const Operator *U = dyn_cast<Operator>(V)) {
3388 // If we find a ptrtoint, we can transfer control back to the
3389 // regular getUnderlyingObjectFromInt.
3390 if (U->getOpcode() == Instruction::PtrToInt)
3391 return U->getOperand(0);
3392 // If we find an add of a constant, a multiplied value, or a phi, it's
3393 // likely that the other operand will lead us to the base
3394 // object. We don't have to worry about the case where the
3395 // object address is somehow being computed by the multiply,
3396 // because our callers only care when the result is an
3397 // identifiable object.
3398 if (U->getOpcode() != Instruction::Add ||
3399 (!isa<ConstantInt>(U->getOperand(1)) &&
3400 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3401 !isa<PHINode>(U->getOperand(1))))
3402 return V;
3403 V = U->getOperand(0);
3404 } else {
3405 return V;
3406 }
3407 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3408 } while (true);
3409}
3410
3411/// This is a wrapper around GetUnderlyingObjects and adds support for basic
3412/// ptrtoint+arithmetic+inttoptr sequences.
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003413/// It returns false if unidentified object is found in GetUnderlyingObjects.
3414bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003415 SmallVectorImpl<Value *> &Objects,
3416 const DataLayout &DL) {
3417 SmallPtrSet<const Value *, 16> Visited;
3418 SmallVector<const Value *, 4> Working(1, V);
3419 do {
3420 V = Working.pop_back_val();
3421
3422 SmallVector<Value *, 4> Objs;
3423 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3424
3425 for (Value *V : Objs) {
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003426 if (!Visited.insert(V).second)
3427 continue;
3428 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3429 const Value *O =
3430 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3431 if (O->getType()->isPointerTy()) {
3432 Working.push_back(O);
3433 continue;
3434 }
3435 }
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003436 // If GetUnderlyingObjects fails to find an identifiable object,
3437 // getUnderlyingObjectsForCodeGen also fails for safety.
3438 if (!isIdentifiedObject(V)) {
3439 Objects.clear();
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003440 return false;
Hiroshi Inoue0bd906e2017-08-02 18:16:32 +00003441 }
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003442 Objects.push_back(const_cast<Value *>(V));
3443 }
3444 } while (!Working.empty());
Hiroshi Inoueb49b0152017-10-12 06:26:04 +00003445 return true;
Hiroshi Inoueb9417db2017-08-01 03:32:15 +00003446}
3447
Sanjay Patelaee84212014-11-04 16:27:42 +00003448/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003449bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003450 for (const User *U : V->users()) {
3451 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003452 if (!II) return false;
3453
3454 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3455 II->getIntrinsicID() != Intrinsic::lifetime_end)
3456 return false;
3457 }
3458 return true;
3459}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003460
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003461bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3462 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003463 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003464 const Operator *Inst = dyn_cast<Operator>(V);
3465 if (!Inst)
3466 return false;
3467
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003468 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3469 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3470 if (C->canTrap())
3471 return false;
3472
3473 switch (Inst->getOpcode()) {
3474 default:
3475 return true;
3476 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003477 case Instruction::URem: {
3478 // x / y is undefined if y == 0.
3479 const APInt *V;
3480 if (match(Inst->getOperand(1), m_APInt(V)))
3481 return *V != 0;
3482 return false;
3483 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003484 case Instruction::SDiv:
3485 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003486 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003487 const APInt *Numerator, *Denominator;
3488 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3489 return false;
3490 // We cannot hoist this division if the denominator is 0.
3491 if (*Denominator == 0)
3492 return false;
3493 // It's safe to hoist if the denominator is not 0 or -1.
3494 if (*Denominator != -1)
3495 return true;
3496 // At this point we know that the denominator is -1. It is safe to hoist as
3497 // long we know that the numerator is not INT_MIN.
3498 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3499 return !Numerator->isMinSignedValue();
3500 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003501 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003502 }
3503 case Instruction::Load: {
3504 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003505 if (!LI->isUnordered() ||
3506 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003507 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003508 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003509 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003510 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003511 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003512 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3513 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003514 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003515 case Instruction::Call: {
Matt Arsenaultcf5e7fe2017-04-28 21:13:09 +00003516 auto *CI = cast<const CallInst>(Inst);
3517 const Function *Callee = CI->getCalledFunction();
David Majnemer0a92f862015-08-28 21:13:39 +00003518
Matt Arsenault6a288c12017-05-03 02:26:10 +00003519 // The called function could have undefined behavior or side-effects, even
3520 // if marked readnone nounwind.
3521 return Callee && Callee->isSpeculatable();
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003522 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003523 case Instruction::VAArg:
3524 case Instruction::Alloca:
3525 case Instruction::Invoke:
3526 case Instruction::PHI:
3527 case Instruction::Store:
3528 case Instruction::Ret:
3529 case Instruction::Br:
3530 case Instruction::IndirectBr:
3531 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003532 case Instruction::Unreachable:
3533 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003534 case Instruction::AtomicRMW:
3535 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003536 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003537 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003538 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003539 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003540 case Instruction::CatchRet:
3541 case Instruction::CleanupPad:
3542 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003543 return false; // Misc instructions which have effects
3544 }
3545}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003546
Quentin Colombet6443cce2015-08-06 18:44:34 +00003547bool llvm::mayBeMemoryDependent(const Instruction &I) {
3548 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3549}
3550
Pete Cooper35b00d52016-08-13 01:05:32 +00003551OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3552 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003553 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003554 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003555 const Instruction *CxtI,
3556 const DominatorTree *DT) {
3557 // Multiplying n * m significant bits yields a result of n + m significant
3558 // bits. If the total number of significant bits does not exceed the
3559 // result bit width (minus 1), there is no overflow.
3560 // This means if we have enough leading zero bits in the operands
3561 // we can guarantee that the result does not overflow.
3562 // Ref: "Hacker's Delight" by Henry Warren
3563 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
Craig Topperb45eabc2017-04-26 16:39:58 +00003564 KnownBits LHSKnown(BitWidth);
3565 KnownBits RHSKnown(BitWidth);
3566 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
3567 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer491331a2015-01-02 07:29:43 +00003568 // Note that underestimating the number of zero bits gives a more
3569 // conservative answer.
Craig Topper8df66c62017-05-12 17:20:30 +00003570 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3571 RHSKnown.countMinLeadingZeros();
David Majnemer491331a2015-01-02 07:29:43 +00003572 // First handle the easy case: if we have enough zero bits there's
3573 // definitely no overflow.
3574 if (ZeroBits >= BitWidth)
3575 return OverflowResult::NeverOverflows;
3576
3577 // Get the largest possible values for each operand.
Craig Topperb45eabc2017-04-26 16:39:58 +00003578 APInt LHSMax = ~LHSKnown.Zero;
3579 APInt RHSMax = ~RHSKnown.Zero;
David Majnemer491331a2015-01-02 07:29:43 +00003580
3581 // We know the multiply operation doesn't overflow if the maximum values for
3582 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003583 bool MaxOverflow;
Craig Topper9b71a402017-04-19 21:09:45 +00003584 (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003585 if (!MaxOverflow)
3586 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003587
David Majnemerc8a576b2015-01-02 07:29:47 +00003588 // We know it always overflows if multiplying the smallest possible values for
3589 // the operands also results in overflow.
3590 bool MinOverflow;
Craig Topperb45eabc2017-04-26 16:39:58 +00003591 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
David Majnemerc8a576b2015-01-02 07:29:47 +00003592 if (MinOverflow)
3593 return OverflowResult::AlwaysOverflows;
3594
3595 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003596}
David Majnemer5310c1e2015-01-07 00:39:50 +00003597
Pete Cooper35b00d52016-08-13 01:05:32 +00003598OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3599 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003600 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003601 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003602 const Instruction *CxtI,
3603 const DominatorTree *DT) {
Craig Topper6e11a052017-05-08 16:22:48 +00003604 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3605 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
3606 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003607
Craig Topper6e11a052017-05-08 16:22:48 +00003608 if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003609 // The sign bit is set in both cases: this MUST overflow.
3610 // Create a simple add instruction, and insert it into the struct.
3611 return OverflowResult::AlwaysOverflows;
3612 }
3613
Craig Topper6e11a052017-05-08 16:22:48 +00003614 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
David Majnemer5310c1e2015-01-07 00:39:50 +00003615 // The sign bit is clear in both cases: this CANNOT overflow.
3616 // Create a simple add instruction, and insert it into the struct.
3617 return OverflowResult::NeverOverflows;
3618 }
3619 }
3620
3621 return OverflowResult::MayOverflow;
3622}
James Molloy71b91c22015-05-11 14:42:20 +00003623
Craig Topperbb973722017-05-15 02:44:08 +00003624/// \brief Return true if we can prove that adding the two values of the
3625/// knownbits will not overflow.
3626/// Otherwise return false.
3627static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
3628 const KnownBits &RHSKnown) {
3629 // Addition of two 2's complement numbers having opposite signs will never
3630 // overflow.
3631 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
3632 (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
3633 return true;
3634
3635 // If either of the values is known to be non-negative, adding them can only
3636 // overflow if the second is also non-negative, so we can assume that.
3637 // Two non-negative numbers will only overflow if there is a carry to the
3638 // sign bit, so we can check if even when the values are as big as possible
3639 // there is no overflow to the sign bit.
3640 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
3641 APInt MaxLHS = ~LHSKnown.Zero;
3642 MaxLHS.clearSignBit();
3643 APInt MaxRHS = ~RHSKnown.Zero;
3644 MaxRHS.clearSignBit();
3645 APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
3646 return Result.isSignBitClear();
3647 }
3648
3649 // If either of the values is known to be negative, adding them can only
3650 // overflow if the second is also negative, so we can assume that.
3651 // Two negative number will only overflow if there is no carry to the sign
3652 // bit, so we can check if even when the values are as small as possible
3653 // there is overflow to the sign bit.
3654 if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
3655 APInt MinLHS = LHSKnown.One;
3656 MinLHS.clearSignBit();
3657 APInt MinRHS = RHSKnown.One;
3658 MinRHS.clearSignBit();
3659 APInt Result = std::move(MinLHS) + std::move(MinRHS);
3660 return Result.isSignBitSet();
3661 }
3662
3663 // If we reached here it means that we know nothing about the sign bits.
3664 // In this case we can't know if there will be an overflow, since by
3665 // changing the sign bits any two values can be made to overflow.
3666 return false;
3667}
3668
Pete Cooper35b00d52016-08-13 01:05:32 +00003669static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3670 const Value *RHS,
3671 const AddOperator *Add,
3672 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003673 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003674 const Instruction *CxtI,
3675 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003676 if (Add && Add->hasNoSignedWrap()) {
3677 return OverflowResult::NeverOverflows;
3678 }
3679
Craig Topperbb973722017-05-15 02:44:08 +00003680 // If LHS and RHS each have at least two sign bits, the addition will look
3681 // like
3682 //
3683 // XX..... +
3684 // YY.....
3685 //
3686 // If the carry into the most significant position is 0, X and Y can't both
3687 // be 1 and therefore the carry out of the addition is also 0.
3688 //
3689 // If the carry into the most significant position is 1, X and Y can't both
3690 // be 0 and therefore the carry out of the addition is also 1.
3691 //
3692 // Since the carry into the most significant position is always equal to
3693 // the carry out of the addition, there is no signed overflow.
3694 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
3695 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
3696 return OverflowResult::NeverOverflows;
3697
Craig Topper6e11a052017-05-08 16:22:48 +00003698 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
3699 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003700
Craig Topperbb973722017-05-15 02:44:08 +00003701 if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
Jingyue Wu10fcea52015-08-20 18:27:04 +00003702 return OverflowResult::NeverOverflows;
Jingyue Wu10fcea52015-08-20 18:27:04 +00003703
3704 // The remaining code needs Add to be available. Early returns if not so.
3705 if (!Add)
3706 return OverflowResult::MayOverflow;
3707
3708 // If the sign of Add is the same as at least one of the operands, this add
3709 // CANNOT overflow. This is particularly useful when the sum is
3710 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3711 // operands.
3712 bool LHSOrRHSKnownNonNegative =
Craig Topper6e11a052017-05-08 16:22:48 +00003713 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
Craig Topperbb973722017-05-15 02:44:08 +00003714 bool LHSOrRHSKnownNegative =
3715 (LHSKnown.isNegative() || RHSKnown.isNegative());
Jingyue Wu10fcea52015-08-20 18:27:04 +00003716 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
Craig Topper6e11a052017-05-08 16:22:48 +00003717 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
3718 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
3719 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003720 return OverflowResult::NeverOverflows;
3721 }
3722 }
3723
3724 return OverflowResult::MayOverflow;
3725}
3726
Pete Cooper35b00d52016-08-13 01:05:32 +00003727bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3728 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003729#ifndef NDEBUG
3730 auto IID = II->getIntrinsicID();
3731 assert((IID == Intrinsic::sadd_with_overflow ||
3732 IID == Intrinsic::uadd_with_overflow ||
3733 IID == Intrinsic::ssub_with_overflow ||
3734 IID == Intrinsic::usub_with_overflow ||
3735 IID == Intrinsic::smul_with_overflow ||
3736 IID == Intrinsic::umul_with_overflow) &&
3737 "Not an overflow intrinsic!");
3738#endif
3739
Pete Cooper35b00d52016-08-13 01:05:32 +00003740 SmallVector<const BranchInst *, 2> GuardingBranches;
3741 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003742
Pete Cooper35b00d52016-08-13 01:05:32 +00003743 for (const User *U : II->users()) {
3744 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003745 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3746
3747 if (EVI->getIndices()[0] == 0)
3748 Results.push_back(EVI);
3749 else {
3750 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3751
Pete Cooper35b00d52016-08-13 01:05:32 +00003752 for (const auto *U : EVI->users())
3753 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003754 assert(B->isConditional() && "How else is it using an i1?");
3755 GuardingBranches.push_back(B);
3756 }
3757 }
3758 } else {
3759 // We are using the aggregate directly in a way we don't want to analyze
3760 // here (storing it to a global, say).
3761 return false;
3762 }
3763 }
3764
Pete Cooper35b00d52016-08-13 01:05:32 +00003765 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003766 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3767 if (!NoWrapEdge.isSingleEdge())
3768 return false;
3769
3770 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003771 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003772 // If the extractvalue itself is not executed on overflow, the we don't
3773 // need to check each use separately, since domination is transitive.
3774 if (DT.dominates(NoWrapEdge, Result->getParent()))
3775 continue;
3776
3777 for (auto &RU : Result->uses())
3778 if (!DT.dominates(NoWrapEdge, RU))
3779 return false;
3780 }
3781
3782 return true;
3783 };
3784
Eugene Zelenko75075ef2017-09-01 21:37:29 +00003785 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003786}
3787
3788
Pete Cooper35b00d52016-08-13 01:05:32 +00003789OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003790 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003791 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003792 const Instruction *CxtI,
3793 const DominatorTree *DT) {
3794 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003795 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003796}
3797
Pete Cooper35b00d52016-08-13 01:05:32 +00003798OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3799 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003800 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003801 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003802 const Instruction *CxtI,
3803 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003804 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003805}
3806
Jingyue Wu42f1d672015-07-28 18:22:40 +00003807bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003808 // A memory operation returns normally if it isn't volatile. A volatile
3809 // operation is allowed to trap.
3810 //
3811 // An atomic operation isn't guaranteed to return in a reasonable amount of
3812 // time because it's possible for another thread to interfere with it for an
3813 // arbitrary length of time, but programs aren't allowed to rely on that.
3814 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3815 return !LI->isVolatile();
3816 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3817 return !SI->isVolatile();
3818 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3819 return !CXI->isVolatile();
3820 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3821 return !RMWI->isVolatile();
3822 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3823 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003824
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003825 // If there is no successor, then execution can't transfer to it.
3826 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3827 return !CRI->unwindsToCaller();
3828 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3829 return !CatchSwitch->unwindsToCaller();
3830 if (isa<ResumeInst>(I))
3831 return false;
3832 if (isa<ReturnInst>(I))
3833 return false;
Sebastian Pop4a4d2452017-03-08 01:54:50 +00003834 if (isa<UnreachableInst>(I))
3835 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003836
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003837 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00003838 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00003839 // Call sites that throw have implicit non-local control flow.
3840 if (!CS.doesNotThrow())
3841 return false;
3842
3843 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3844 // etc. and thus not return. However, LLVM already assumes that
3845 //
3846 // - Thread exiting actions are modeled as writes to memory invisible to
3847 // the program.
3848 //
3849 // - Loops that don't have side effects (side effects are volatile/atomic
3850 // stores and IO) always terminate (see http://llvm.org/PR965).
3851 // Furthermore IO itself is also modeled as writes to memory invisible to
3852 // the program.
3853 //
3854 // We rely on those assumptions here, and use the memory effects of the call
3855 // target as a proxy for checking that it always returns.
3856
3857 // FIXME: This isn't aggressive enough; a call which only writes to a global
3858 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003859 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3860 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003861 }
3862
3863 // Other instructions return normally.
3864 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003865}
3866
3867bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3868 const Loop *L) {
3869 // The loop header is guaranteed to be executed for every iteration.
3870 //
3871 // FIXME: Relax this constraint to cover all basic blocks that are
3872 // guaranteed to be executed at every iteration.
3873 if (I->getParent() != L->getHeader()) return false;
3874
3875 for (const Instruction &LI : *L->getHeader()) {
3876 if (&LI == I) return true;
3877 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3878 }
3879 llvm_unreachable("Instruction not contained in its own parent basic block.");
3880}
3881
3882bool llvm::propagatesFullPoison(const Instruction *I) {
3883 switch (I->getOpcode()) {
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003884 case Instruction::Add:
3885 case Instruction::Sub:
3886 case Instruction::Xor:
3887 case Instruction::Trunc:
3888 case Instruction::BitCast:
3889 case Instruction::AddrSpaceCast:
Sanjoy Das5cd6c5ca2017-02-22 06:52:32 +00003890 case Instruction::Mul:
3891 case Instruction::Shl:
3892 case Instruction::GetElementPtr:
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003893 // These operations all propagate poison unconditionally. Note that poison
3894 // is not any particular value, so xor or subtraction of poison with
3895 // itself still yields poison, not zero.
3896 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003897
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003898 case Instruction::AShr:
3899 case Instruction::SExt:
3900 // For these operations, one bit of the input is replicated across
3901 // multiple output bits. A replicated poison bit is still poison.
3902 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003903
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003904 case Instruction::ICmp:
3905 // Comparing poison with any value yields poison. This is why, for
3906 // instance, x s< (x +nsw 1) can be folded to true.
3907 return true;
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003908
Sanjoy Das7b0b4082017-02-21 02:42:42 +00003909 default:
3910 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003911 }
3912}
3913
3914const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3915 switch (I->getOpcode()) {
3916 case Instruction::Store:
3917 return cast<StoreInst>(I)->getPointerOperand();
3918
3919 case Instruction::Load:
3920 return cast<LoadInst>(I)->getPointerOperand();
3921
3922 case Instruction::AtomicCmpXchg:
3923 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3924
3925 case Instruction::AtomicRMW:
3926 return cast<AtomicRMWInst>(I)->getPointerOperand();
3927
3928 case Instruction::UDiv:
3929 case Instruction::SDiv:
3930 case Instruction::URem:
3931 case Instruction::SRem:
3932 return I->getOperand(1);
3933
3934 default:
3935 return nullptr;
3936 }
3937}
3938
Sanjoy Das08989c72017-04-30 19:41:19 +00003939bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00003940 // We currently only look for uses of poison values within the same basic
3941 // block, as that makes it easier to guarantee that the uses will be
3942 // executed given that PoisonI is executed.
3943 //
3944 // FIXME: Expand this to consider uses beyond the same basic block. To do
3945 // this, look out for the distinction between post-dominance and strong
3946 // post-dominance.
3947 const BasicBlock *BB = PoisonI->getParent();
3948
3949 // Set of instructions that we have proved will yield poison if PoisonI
3950 // does.
3951 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003952 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003953 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003954 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003955
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003956 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003957
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003958 unsigned Iter = 0;
3959 while (Iter++ < MaxDepth) {
3960 for (auto &I : make_range(Begin, End)) {
3961 if (&I != PoisonI) {
3962 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3963 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3964 return true;
3965 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3966 return false;
3967 }
3968
3969 // Mark poison that propagates from I through uses of I.
3970 if (YieldsPoison.count(&I)) {
3971 for (const User *User : I.users()) {
3972 const Instruction *UserI = cast<Instruction>(User);
3973 if (propagatesFullPoison(UserI))
3974 YieldsPoison.insert(User);
3975 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003976 }
3977 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003978
3979 if (auto *NextBB = BB->getSingleSuccessor()) {
3980 if (Visited.insert(NextBB).second) {
3981 BB = NextBB;
3982 Begin = BB->getFirstNonPHI()->getIterator();
3983 End = BB->end();
3984 continue;
3985 }
3986 }
3987
3988 break;
Eugene Zelenko75075ef2017-09-01 21:37:29 +00003989 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003990 return false;
3991}
3992
Pete Cooper35b00d52016-08-13 01:05:32 +00003993static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00003994 if (FMF.noNaNs())
3995 return true;
3996
3997 if (auto *C = dyn_cast<ConstantFP>(V))
3998 return !C->isNaN();
3999 return false;
4000}
4001
Pete Cooper35b00d52016-08-13 01:05:32 +00004002static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00004003 if (auto *C = dyn_cast<ConstantFP>(V))
4004 return !C->isZero();
4005 return false;
4006}
4007
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004008/// Match clamp pattern for float types without care about NaNs or signed zeros.
4009/// Given non-min/max outer cmp/select from the clamp pattern this
4010/// function recognizes if it can be substitued by a "canonical" min/max
4011/// pattern.
4012static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4013 Value *CmpLHS, Value *CmpRHS,
4014 Value *TrueVal, Value *FalseVal,
4015 Value *&LHS, Value *&RHS) {
4016 // Try to match
4017 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4018 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4019 // and return description of the outer Max/Min.
4020
4021 // First, check if select has inverse order:
4022 if (CmpRHS == FalseVal) {
4023 std::swap(TrueVal, FalseVal);
4024 Pred = CmpInst::getInversePredicate(Pred);
4025 }
4026
4027 // Assume success now. If there's no match, callers should not use these anyway.
4028 LHS = TrueVal;
4029 RHS = FalseVal;
4030
4031 const APFloat *FC1;
4032 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4033 return {SPF_UNKNOWN, SPNB_NA, false};
4034
4035 const APFloat *FC2;
4036 switch (Pred) {
4037 case CmpInst::FCMP_OLT:
4038 case CmpInst::FCMP_OLE:
4039 case CmpInst::FCMP_ULT:
4040 case CmpInst::FCMP_ULE:
4041 if (match(FalseVal,
4042 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4043 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4044 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4045 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4046 break;
4047 case CmpInst::FCMP_OGT:
4048 case CmpInst::FCMP_OGE:
4049 case CmpInst::FCMP_UGT:
4050 case CmpInst::FCMP_UGE:
4051 if (match(FalseVal,
4052 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4053 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4054 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4055 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4056 break;
4057 default:
4058 break;
4059 }
4060
4061 return {SPF_UNKNOWN, SPNB_NA, false};
4062}
4063
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004064/// Recognize variations of:
4065/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4066static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4067 Value *CmpLHS, Value *CmpRHS,
4068 Value *TrueVal, Value *FalseVal) {
4069 // Swap the select operands and predicate to match the patterns below.
4070 if (CmpRHS != TrueVal) {
4071 Pred = ICmpInst::getSwappedPredicate(Pred);
4072 std::swap(TrueVal, FalseVal);
4073 }
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004074 const APInt *C1;
4075 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4076 const APInt *C2;
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004077 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4078 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004079 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004080 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004081
4082 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4083 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004084 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004085 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004086
4087 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4088 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004089 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004090 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004091
4092 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4093 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004094 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004095 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004096 }
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004097 return {SPF_UNKNOWN, SPNB_NA, false};
4098}
4099
4100/// Match non-obvious integer minimum and maximum sequences.
4101static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4102 Value *CmpLHS, Value *CmpRHS,
4103 Value *TrueVal, Value *FalseVal,
4104 Value *&LHS, Value *&RHS) {
4105 // Assume success. If there's no match, callers should not use these anyway.
4106 LHS = TrueVal;
4107 RHS = FalseVal;
4108
4109 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4110 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4111 return SPR;
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004112
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004113 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
Sanjay Patel819f0962016-11-13 19:30:19 +00004114 return {SPF_UNKNOWN, SPNB_NA, false};
4115
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004116 // Z = X -nsw Y
4117 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4118 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4119 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004120 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004121 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004122
4123 // Z = X -nsw Y
4124 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4125 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4126 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004127 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004128 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004129
Artur Gainullinaf7ba8f2017-10-27 20:53:41 +00004130 const APInt *C1;
Sanjay Patel819f0962016-11-13 19:30:19 +00004131 if (!match(CmpRHS, m_APInt(C1)))
4132 return {SPF_UNKNOWN, SPNB_NA, false};
4133
4134 // An unsigned min/max can be written with a signed compare.
4135 const APInt *C2;
4136 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4137 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4138 // Is the sign bit set?
4139 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4140 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004141 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004142 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004143
4144 // Is the sign bit clear?
4145 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4146 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004147 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4148 C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004149 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004150 }
4151
4152 // Look through 'not' ops to find disguised signed min/max.
4153 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4154 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4155 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004156 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004157 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004158
4159 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4160 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4161 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004162 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Nikolai Bozhenov8dcab542017-10-19 15:36:18 +00004163 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004164
4165 return {SPF_UNKNOWN, SPNB_NA, false};
4166}
4167
James Molloy134bec22015-08-11 09:12:57 +00004168static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4169 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00004170 Value *CmpLHS, Value *CmpRHS,
4171 Value *TrueVal, Value *FalseVal,
4172 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004173 LHS = CmpLHS;
4174 RHS = CmpRHS;
4175
James Molloy134bec22015-08-11 09:12:57 +00004176 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
4177 // return inconsistent results between implementations.
4178 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4179 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4180 // Therefore we behave conservatively and only proceed if at least one of the
4181 // operands is known to not be zero, or if we don't care about signed zeroes.
4182 switch (Pred) {
4183 default: break;
4184 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4185 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4186 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4187 !isKnownNonZero(CmpRHS))
4188 return {SPF_UNKNOWN, SPNB_NA, false};
4189 }
4190
4191 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4192 bool Ordered = false;
4193
4194 // When given one NaN and one non-NaN input:
4195 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4196 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4197 // ordered comparison fails), which could be NaN or non-NaN.
4198 // so here we discover exactly what NaN behavior is required/accepted.
4199 if (CmpInst::isFPPredicate(Pred)) {
4200 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4201 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4202
4203 if (LHSSafe && RHSSafe) {
4204 // Both operands are known non-NaN.
4205 NaNBehavior = SPNB_RETURNS_ANY;
4206 } else if (CmpInst::isOrdered(Pred)) {
4207 // An ordered comparison will return false when given a NaN, so it
4208 // returns the RHS.
4209 Ordered = true;
4210 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004211 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004212 NaNBehavior = SPNB_RETURNS_NAN;
4213 else if (RHSSafe)
4214 NaNBehavior = SPNB_RETURNS_OTHER;
4215 else
4216 // Completely unsafe.
4217 return {SPF_UNKNOWN, SPNB_NA, false};
4218 } else {
4219 Ordered = false;
4220 // An unordered comparison will return true when given a NaN, so it
4221 // returns the LHS.
4222 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004223 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004224 NaNBehavior = SPNB_RETURNS_OTHER;
4225 else if (RHSSafe)
4226 NaNBehavior = SPNB_RETURNS_NAN;
4227 else
4228 // Completely unsafe.
4229 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004230 }
4231 }
4232
James Molloy71b91c22015-05-11 14:42:20 +00004233 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004234 std::swap(CmpLHS, CmpRHS);
4235 Pred = CmpInst::getSwappedPredicate(Pred);
4236 if (NaNBehavior == SPNB_RETURNS_NAN)
4237 NaNBehavior = SPNB_RETURNS_OTHER;
4238 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4239 NaNBehavior = SPNB_RETURNS_NAN;
4240 Ordered = !Ordered;
4241 }
4242
4243 // ([if]cmp X, Y) ? X : Y
4244 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004245 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004246 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004247 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004248 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004249 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004250 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004251 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004252 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004253 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004254 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4255 case FCmpInst::FCMP_UGT:
4256 case FCmpInst::FCMP_UGE:
4257 case FCmpInst::FCMP_OGT:
4258 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4259 case FCmpInst::FCMP_ULT:
4260 case FCmpInst::FCMP_ULE:
4261 case FCmpInst::FCMP_OLT:
4262 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004263 }
4264 }
4265
Sanjay Patele372aec2016-10-27 15:26:10 +00004266 const APInt *C1;
4267 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004268 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4269 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4270
4271 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4272 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Sanjay Patele372aec2016-10-27 15:26:10 +00004273 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004274 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004275 }
4276
4277 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4278 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Sanjay Patele372aec2016-10-27 15:26:10 +00004279 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
James Molloy134bec22015-08-11 09:12:57 +00004280 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004281 }
4282 }
James Molloy71b91c22015-05-11 14:42:20 +00004283 }
4284
Nikolai Bozhenov1545eb32017-08-04 12:22:17 +00004285 if (CmpInst::isIntPredicate(Pred))
4286 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4287
4288 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4289 // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4290 // semantics than minNum. Be conservative in such case.
4291 if (NaNBehavior != SPNB_RETURNS_ANY ||
4292 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4293 !isKnownNonZero(CmpRHS)))
4294 return {SPF_UNKNOWN, SPNB_NA, false};
4295
4296 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004297}
James Molloy270ef8c2015-05-15 16:04:50 +00004298
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004299/// Helps to match a select pattern in case of a type mismatch.
4300///
4301/// The function processes the case when type of true and false values of a
4302/// select instruction differs from type of the cmp instruction operands because
4303/// of a cast instructon. The function checks if it is legal to move the cast
4304/// operation after "select". If yes, it returns the new second value of
4305/// "select" (with the assumption that cast is moved):
4306/// 1. As operand of cast instruction when both values of "select" are same cast
4307/// instructions.
4308/// 2. As restored constant (by applying reverse cast operation) when the first
4309/// value of the "select" is a cast operation and the second value is a
4310/// constant.
4311/// NOTE: We return only the new second value because the first value could be
4312/// accessed as operand of cast instruction.
James Molloy569cea62015-09-02 17:25:25 +00004313static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4314 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004315 auto *Cast1 = dyn_cast<CastInst>(V1);
4316 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004317 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004318
Sanjay Patel14a4b812017-01-29 16:34:57 +00004319 *CastOp = Cast1->getOpcode();
4320 Type *SrcTy = Cast1->getSrcTy();
4321 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4322 // If V1 and V2 are both the same cast from the same type, look through V1.
4323 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4324 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004325 return nullptr;
4326 }
4327
Sanjay Patel14a4b812017-01-29 16:34:57 +00004328 auto *C = dyn_cast<Constant>(V2);
4329 if (!C)
4330 return nullptr;
4331
David Majnemerd2a074b2016-04-29 18:40:34 +00004332 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00004333 switch (*CastOp) {
4334 case Instruction::ZExt:
4335 if (CmpI->isUnsigned())
4336 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4337 break;
4338 case Instruction::SExt:
4339 if (CmpI->isSigned())
4340 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4341 break;
4342 case Instruction::Trunc:
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004343 Constant *CmpConst;
Nikolai Bozhenov9723f122017-10-18 14:24:50 +00004344 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
4345 CmpConst->getType() == SrcTy) {
Nikolai Bozhenov74c047e2017-10-18 09:28:09 +00004346 // Here we have the following case:
4347 //
4348 // %cond = cmp iN %x, CmpConst
4349 // %tr = trunc iN %x to iK
4350 // %narrowsel = select i1 %cond, iK %t, iK C
4351 //
4352 // We can always move trunc after select operation:
4353 //
4354 // %cond = cmp iN %x, CmpConst
4355 // %widesel = select i1 %cond, iN %x, iN CmpConst
4356 // %tr = trunc iN %widesel to iK
4357 //
4358 // Note that C could be extended in any way because we don't care about
4359 // upper bits after truncation. It can't be abs pattern, because it would
4360 // look like:
4361 //
4362 // select i1 %cond, x, -x.
4363 //
4364 // So only min/max pattern could be matched. Such match requires widened C
4365 // == CmpConst. That is why set widened C = CmpConst, condition trunc
4366 // CmpConst == C is checked below.
4367 CastedTo = CmpConst;
4368 } else {
4369 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4370 }
Sanjay Patel14a4b812017-01-29 16:34:57 +00004371 break;
4372 case Instruction::FPTrunc:
4373 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4374 break;
4375 case Instruction::FPExt:
4376 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4377 break;
4378 case Instruction::FPToUI:
4379 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4380 break;
4381 case Instruction::FPToSI:
4382 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4383 break;
4384 case Instruction::UIToFP:
4385 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4386 break;
4387 case Instruction::SIToFP:
4388 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4389 break;
4390 default:
4391 break;
4392 }
David Majnemerd2a074b2016-04-29 18:40:34 +00004393
4394 if (!CastedTo)
4395 return nullptr;
4396
David Majnemerd2a074b2016-04-29 18:40:34 +00004397 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00004398 Constant *CastedBack =
4399 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00004400 if (CastedBack != C)
4401 return nullptr;
4402
4403 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004404}
4405
Sanjay Patele8dc0902016-05-23 17:57:54 +00004406SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004407 Instruction::CastOps *CastOp) {
4408 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004409 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004410
James Molloy134bec22015-08-11 09:12:57 +00004411 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4412 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004413
James Molloy134bec22015-08-11 09:12:57 +00004414 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004415 Value *CmpLHS = CmpI->getOperand(0);
4416 Value *CmpRHS = CmpI->getOperand(1);
4417 Value *TrueVal = SI->getTrueValue();
4418 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004419 FastMathFlags FMF;
4420 if (isa<FPMathOperator>(CmpI))
4421 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004422
4423 // Bail out early.
4424 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004425 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004426
4427 // Deal with type mismatches.
4428 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004429 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004430 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004431 cast<CastInst>(TrueVal)->getOperand(0), C,
4432 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004433 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004434 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004435 C, cast<CastInst>(FalseVal)->getOperand(0),
4436 LHS, RHS);
4437 }
James Molloy134bec22015-08-11 09:12:57 +00004438 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004439 LHS, RHS);
4440}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004441
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004442/// Return true if "icmp Pred LHS RHS" is always true.
Chad Rosiere42b44b2017-07-28 14:39:06 +00004443static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
4444 const Value *RHS, const DataLayout &DL,
4445 unsigned Depth) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004446 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004447 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4448 return true;
4449
4450 switch (Pred) {
4451 default:
4452 return false;
4453
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004454 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004455 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004456
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004457 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004458 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004459 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004460 return false;
4461 }
4462
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004463 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004464 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004465
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004466 // LHS u<= LHS +_{nuw} C for any C
4467 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004468 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004469
4470 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004471 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4472 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004473 const APInt *&CA, const APInt *&CB) {
4474 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4475 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4476 return true;
4477
4478 // If X & C == 0 then (X | C) == X +_{nuw} C
4479 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4480 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
Craig Topperb45eabc2017-04-26 16:39:58 +00004481 KnownBits Known(CA->getBitWidth());
Chad Rosiere42b44b2017-07-28 14:39:06 +00004482 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
4483 /*CxtI*/ nullptr, /*DT*/ nullptr);
Craig Topperb45eabc2017-04-26 16:39:58 +00004484 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
Sanjoy Das92568102015-11-10 23:56:20 +00004485 return true;
4486 }
4487
4488 return false;
4489 };
4490
Pete Cooper35b00d52016-08-13 01:05:32 +00004491 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004492 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004493 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4494 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004495
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004496 return false;
4497 }
4498 }
4499}
4500
4501/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004502/// ALHS ARHS" is true. Otherwise, return None.
4503static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004504isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
Chad Rosiere42b44b2017-07-28 14:39:06 +00004505 const Value *ARHS, const Value *BLHS, const Value *BRHS,
4506 const DataLayout &DL, unsigned Depth) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004507 switch (Pred) {
4508 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004509 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004510
4511 case CmpInst::ICMP_SLT:
4512 case CmpInst::ICMP_SLE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004513 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
4514 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004515 return true;
4516 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004517
4518 case CmpInst::ICMP_ULT:
4519 case CmpInst::ICMP_ULE:
Chad Rosiere42b44b2017-07-28 14:39:06 +00004520 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
4521 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004522 return true;
4523 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004524 }
4525}
4526
Chad Rosier226a7342016-05-05 17:41:19 +00004527/// Return true if the operands of the two compares match. IsSwappedOps is true
4528/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004529static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4530 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004531 bool &IsSwappedOps) {
4532
4533 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4534 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4535 return IsMatchingOps || IsSwappedOps;
4536}
4537
Chad Rosier41dd31f2016-04-20 19:15:26 +00004538/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4539/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4540/// BRHS" is false. Otherwise, return None if we can't infer anything.
4541static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004542 const Value *ALHS,
4543 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004544 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004545 const Value *BLHS,
4546 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004547 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004548 // Canonicalize the operands so they're matching.
4549 if (IsSwappedOps) {
4550 std::swap(BLHS, BRHS);
4551 BPred = ICmpInst::getSwappedPredicate(BPred);
4552 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004553 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004554 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004555 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004556 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004557
Chad Rosier41dd31f2016-04-20 19:15:26 +00004558 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004559}
4560
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004561/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4562/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4563/// C2" is false. Otherwise, return None if we can't infer anything.
4564static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004565isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4566 const ConstantInt *C1,
4567 CmpInst::Predicate BPred,
4568 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004569 assert(ALHS == BLHS && "LHS operands must match.");
4570 ConstantRange DomCR =
4571 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4572 ConstantRange CR =
4573 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4574 ConstantRange Intersection = DomCR.intersectWith(CR);
4575 ConstantRange Difference = DomCR.difference(CR);
4576 if (Intersection.isEmptySet())
4577 return false;
4578 if (Difference.isEmptySet())
4579 return true;
4580 return None;
4581}
4582
Chad Rosier2f498032017-07-28 18:47:43 +00004583/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
4584/// false. Otherwise, return None if we can't infer anything.
4585static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
4586 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004587 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00004588 unsigned Depth) {
4589 Value *ALHS = LHS->getOperand(0);
4590 Value *ARHS = LHS->getOperand(1);
Chad Rosiera72a9ff2017-07-06 20:00:25 +00004591 // The rest of the logic assumes the LHS condition is true. If that's not the
4592 // case, invert the predicate to make it so.
Chad Rosier2f498032017-07-28 18:47:43 +00004593 ICmpInst::Predicate APred =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004594 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
Chad Rosier2f498032017-07-28 18:47:43 +00004595
4596 Value *BLHS = RHS->getOperand(0);
4597 Value *BRHS = RHS->getOperand(1);
4598 ICmpInst::Predicate BPred = RHS->getPredicate();
Chad Rosiere2cbd132016-04-25 17:23:36 +00004599
Chad Rosier226a7342016-05-05 17:41:19 +00004600 // Can we infer anything when the two compares have matching operands?
4601 bool IsSwappedOps;
4602 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4603 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4604 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004605 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004606 // No amount of additional analysis will infer the second condition, so
4607 // early exit.
4608 return None;
4609 }
4610
4611 // Can we infer anything when the LHS operands match and the RHS operands are
4612 // constants (not necessarily matching)?
4613 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4614 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4615 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4616 cast<ConstantInt>(BRHS)))
4617 return Implication;
4618 // No amount of additional analysis will infer the second condition, so
4619 // early exit.
4620 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004621 }
4622
Chad Rosier41dd31f2016-04-20 19:15:26 +00004623 if (APred == BPred)
Chad Rosiere42b44b2017-07-28 14:39:06 +00004624 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
Chad Rosier41dd31f2016-04-20 19:15:26 +00004625 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004626}
Chad Rosier2f498032017-07-28 18:47:43 +00004627
Chad Rosierf73a10d2017-08-01 19:22:36 +00004628/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
4629/// false. Otherwise, return None if we can't infer anything. We expect the
4630/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
4631static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
4632 const ICmpInst *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004633 const DataLayout &DL, bool LHSIsTrue,
Chad Rosierf73a10d2017-08-01 19:22:36 +00004634 unsigned Depth) {
4635 // The LHS must be an 'or' or an 'and' instruction.
4636 assert((LHS->getOpcode() == Instruction::And ||
4637 LHS->getOpcode() == Instruction::Or) &&
4638 "Expected LHS to be 'and' or 'or'.");
4639
Davide Italiano1a943a92017-08-09 16:06:54 +00004640 assert(Depth <= MaxDepth && "Hit recursion limit");
Chad Rosierf73a10d2017-08-01 19:22:36 +00004641
4642 // If the result of an 'or' is false, then we know both legs of the 'or' are
4643 // false. Similarly, if the result of an 'and' is true, then we know both
4644 // legs of the 'and' are true.
4645 Value *ALHS, *ARHS;
Chad Rosierdfd1de62017-08-01 20:18:54 +00004646 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
4647 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
Chad Rosierf73a10d2017-08-01 19:22:36 +00004648 // FIXME: Make this non-recursion.
4649 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004650 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00004651 return Implication;
4652 if (Optional<bool> Implication =
Chad Rosierdfd1de62017-08-01 20:18:54 +00004653 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
Chad Rosierf73a10d2017-08-01 19:22:36 +00004654 return Implication;
4655 return None;
4656 }
4657 return None;
4658}
4659
Chad Rosier2f498032017-07-28 18:47:43 +00004660Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosierdfd1de62017-08-01 20:18:54 +00004661 const DataLayout &DL, bool LHSIsTrue,
Chad Rosier2f498032017-07-28 18:47:43 +00004662 unsigned Depth) {
Davide Italiano30e51942017-08-09 15:13:50 +00004663 // Bail out when we hit the limit.
4664 if (Depth == MaxDepth)
4665 return None;
4666
Chad Rosierf73a10d2017-08-01 19:22:36 +00004667 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
4668 // example.
Chad Rosier2f498032017-07-28 18:47:43 +00004669 if (LHS->getType() != RHS->getType())
4670 return None;
4671
4672 Type *OpTy = LHS->getType();
Chad Rosierf73a10d2017-08-01 19:22:36 +00004673 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
Chad Rosier2f498032017-07-28 18:47:43 +00004674
4675 // LHS ==> RHS by definition
4676 if (LHS == RHS)
Chad Rosierdfd1de62017-08-01 20:18:54 +00004677 return LHSIsTrue;
Chad Rosier2f498032017-07-28 18:47:43 +00004678
Chad Rosierf73a10d2017-08-01 19:22:36 +00004679 // FIXME: Extending the code below to handle vectors.
Chad Rosier2f498032017-07-28 18:47:43 +00004680 if (OpTy->isVectorTy())
Chad Rosier2f498032017-07-28 18:47:43 +00004681 return None;
Chad Rosierf73a10d2017-08-01 19:22:36 +00004682
Chad Rosier2f498032017-07-28 18:47:43 +00004683 assert(OpTy->isIntegerTy(1) && "implied by above");
4684
Chad Rosier2f498032017-07-28 18:47:43 +00004685 // Both LHS and RHS are icmps.
Chad Rosierf73a10d2017-08-01 19:22:36 +00004686 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
4687 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
4688 if (LHSCmp && RHSCmp)
Chad Rosierdfd1de62017-08-01 20:18:54 +00004689 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00004690
Chad Rosierf73a10d2017-08-01 19:22:36 +00004691 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be
4692 // an icmp. FIXME: Add support for and/or on the RHS.
4693 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
4694 if (LHSBO && RHSCmp) {
4695 if ((LHSBO->getOpcode() == Instruction::And ||
4696 LHSBO->getOpcode() == Instruction::Or))
Chad Rosierdfd1de62017-08-01 20:18:54 +00004697 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
Chad Rosier2f498032017-07-28 18:47:43 +00004698 }
Chad Rosierf73a10d2017-08-01 19:22:36 +00004699 return None;
Chad Rosier2f498032017-07-28 18:47:43 +00004700}