blob: 867ef741da17dac5f1f0ce9b3fd96f779dcf9ae4 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
Tim Northover675a0962014-06-13 14:24:23 +0000120 %0 = add i32 %X, %X ; yields i32:%0
121 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000443A symbol with ``internal`` or ``private`` linkage must have ``default``
444visibility.
445
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000446.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000447
Nico Rieck7157bb72014-01-14 15:22:47 +0000448DLL Storage Classes
449-------------------
450
451All Global Variables, Functions and Aliases can have one of the following
452DLL storage class:
453
454``dllimport``
455 "``dllimport``" causes the compiler to reference a function or variable via
456 a global pointer to a pointer that is set up by the DLL exporting the
457 symbol. On Microsoft Windows targets, the pointer name is formed by
458 combining ``__imp_`` and the function or variable name.
459``dllexport``
460 "``dllexport``" causes the compiler to provide a global pointer to a pointer
461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
462 Microsoft Windows targets, the pointer name is formed by combining
463 ``__imp_`` and the function or variable name. Since this storage class
464 exists for defining a dll interface, the compiler, assembler and linker know
465 it is externally referenced and must refrain from deleting the symbol.
466
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000467.. _tls_model:
468
469Thread Local Storage Models
470---------------------------
471
472A variable may be defined as ``thread_local``, which means that it will
473not be shared by threads (each thread will have a separated copy of the
474variable). Not all targets support thread-local variables. Optionally, a
475TLS model may be specified:
476
477``localdynamic``
478 For variables that are only used within the current shared library.
479``initialexec``
480 For variables in modules that will not be loaded dynamically.
481``localexec``
482 For variables defined in the executable and only used within it.
483
484If no explicit model is given, the "general dynamic" model is used.
485
486The models correspond to the ELF TLS models; see `ELF Handling For
487Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
488more information on under which circumstances the different models may
489be used. The target may choose a different TLS model if the specified
490model is not supported, or if a better choice of model can be made.
491
492A model can also be specified in a alias, but then it only governs how
493the alias is accessed. It will not have any effect in the aliasee.
494
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000495.. _namedtypes:
496
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000497Structure Types
498---------------
Sean Silvab084af42012-12-07 10:36:55 +0000499
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000500LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
501types <t_struct>`. Literal types are uniqued structurally, but identified types
502are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
503to forward declare a type which is not yet available.
504
505An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000506
507.. code-block:: llvm
508
509 %mytype = type { %mytype*, i32 }
510
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000511Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
512literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000513
514.. _globalvars:
515
516Global Variables
517----------------
518
519Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000520instead of run-time.
521
Bob Wilson85b24f22014-06-12 20:40:33 +0000522Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000523
524Global variables in other translation units can also be declared, in which
525case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000526
Bob Wilson85b24f22014-06-12 20:40:33 +0000527Either global variable definitions or declarations may have an explicit section
528to be placed in and may have an optional explicit alignment specified.
529
Michael Gottesman006039c2013-01-31 05:48:48 +0000530A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000531the contents of the variable will **never** be modified (enabling better
532optimization, allowing the global data to be placed in the read-only
533section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000534initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000535variable.
536
537LLVM explicitly allows *declarations* of global variables to be marked
538constant, even if the final definition of the global is not. This
539capability can be used to enable slightly better optimization of the
540program, but requires the language definition to guarantee that
541optimizations based on the 'constantness' are valid for the translation
542units that do not include the definition.
543
544As SSA values, global variables define pointer values that are in scope
545(i.e. they dominate) all basic blocks in the program. Global variables
546always define a pointer to their "content" type because they describe a
547region of memory, and all memory objects in LLVM are accessed through
548pointers.
549
550Global variables can be marked with ``unnamed_addr`` which indicates
551that the address is not significant, only the content. Constants marked
552like this can be merged with other constants if they have the same
553initializer. Note that a constant with significant address *can* be
554merged with a ``unnamed_addr`` constant, the result being a constant
555whose address is significant.
556
557A global variable may be declared to reside in a target-specific
558numbered address space. For targets that support them, address spaces
559may affect how optimizations are performed and/or what target
560instructions are used to access the variable. The default address space
561is zero. The address space qualifier must precede any other attributes.
562
563LLVM allows an explicit section to be specified for globals. If the
564target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000565Additionally, the global can placed in a comdat if the target has the necessary
566support.
Sean Silvab084af42012-12-07 10:36:55 +0000567
Michael Gottesmane743a302013-02-04 03:22:00 +0000568By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000569variables defined within the module are not modified from their
570initial values before the start of the global initializer. This is
571true even for variables potentially accessible from outside the
572module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000573``@llvm.used`` or dllexported variables. This assumption may be suppressed
574by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000575
Sean Silvab084af42012-12-07 10:36:55 +0000576An explicit alignment may be specified for a global, which must be a
577power of 2. If not present, or if the alignment is set to zero, the
578alignment of the global is set by the target to whatever it feels
579convenient. If an explicit alignment is specified, the global is forced
580to have exactly that alignment. Targets and optimizers are not allowed
581to over-align the global if the global has an assigned section. In this
582case, the extra alignment could be observable: for example, code could
583assume that the globals are densely packed in their section and try to
584iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000585iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000586
Nico Rieck7157bb72014-01-14 15:22:47 +0000587Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
588
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000589Variables and aliasaes can have a
590:ref:`Thread Local Storage Model <tls_model>`.
591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Syntax::
593
594 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000595 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000596 <global | constant> <Type> [<InitializerConstant>]
597 [, section "name"] [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000598
Sean Silvab084af42012-12-07 10:36:55 +0000599For example, the following defines a global in a numbered address space
600with an initializer, section, and alignment:
601
602.. code-block:: llvm
603
604 @G = addrspace(5) constant float 1.0, section "foo", align 4
605
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000606The following example just declares a global variable
607
608.. code-block:: llvm
609
610 @G = external global i32
611
Sean Silvab084af42012-12-07 10:36:55 +0000612The following example defines a thread-local global with the
613``initialexec`` TLS model:
614
615.. code-block:: llvm
616
617 @G = thread_local(initialexec) global i32 0, align 4
618
619.. _functionstructure:
620
621Functions
622---------
623
624LLVM function definitions consist of the "``define``" keyword, an
625optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000626style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
627an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000628an optional ``unnamed_addr`` attribute, a return type, an optional
629:ref:`parameter attribute <paramattrs>` for the return type, a function
630name, a (possibly empty) argument list (each with optional :ref:`parameter
631attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000632an optional section, an optional alignment,
633an optional :ref:`comdat <langref_comdats>`,
634an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000635curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000636
637LLVM function declarations consist of the "``declare``" keyword, an
638optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000639style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
640an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000641an optional ``unnamed_addr`` attribute, a return type, an optional
642:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000643name, a possibly empty list of arguments, an optional alignment, an optional
644:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000645
Bill Wendling6822ecb2013-10-27 05:09:12 +0000646A function definition contains a list of basic blocks, forming the CFG (Control
647Flow Graph) for the function. Each basic block may optionally start with a label
648(giving the basic block a symbol table entry), contains a list of instructions,
649and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
650function return). If an explicit label is not provided, a block is assigned an
651implicit numbered label, using the next value from the same counter as used for
652unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
653entry block does not have an explicit label, it will be assigned label "%0",
654then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000655
656The first basic block in a function is special in two ways: it is
657immediately executed on entrance to the function, and it is not allowed
658to have predecessor basic blocks (i.e. there can not be any branches to
659the entry block of a function). Because the block can have no
660predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
661
662LLVM allows an explicit section to be specified for functions. If the
663target supports it, it will emit functions to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000664Additionally, the function can placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000665
666An explicit alignment may be specified for a function. If not present,
667or if the alignment is set to zero, the alignment of the function is set
668by the target to whatever it feels convenient. If an explicit alignment
669is specified, the function is forced to have at least that much
670alignment. All alignments must be a power of 2.
671
672If the ``unnamed_addr`` attribute is given, the address is know to not
673be significant and two identical functions can be merged.
674
675Syntax::
676
Nico Rieck7157bb72014-01-14 15:22:47 +0000677 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000678 [cconv] [ret attrs]
679 <ResultType> @<FunctionName> ([argument list])
David Majnemerdad0a642014-06-27 18:19:56 +0000680 [unnamed_addr] [fn Attrs] [section "name"] [comdat $<ComdatName>]
681 [align N] [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000682
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000683.. _langref_aliases:
684
Sean Silvab084af42012-12-07 10:36:55 +0000685Aliases
686-------
687
Rafael Espindola64c1e182014-06-03 02:41:57 +0000688Aliases, unlike function or variables, don't create any new data. They
689are just a new symbol and metadata for an existing position.
690
691Aliases have a name and an aliasee that is either a global value or a
692constant expression.
693
Nico Rieck7157bb72014-01-14 15:22:47 +0000694Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000695:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
696<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000697
698Syntax::
699
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000700 @<Name> = [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000701
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000702The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000703``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000704might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000705
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000706Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000707the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
708to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000709
Rafael Espindola64c1e182014-06-03 02:41:57 +0000710Since aliases are only a second name, some restrictions apply, of which
711some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000712
Rafael Espindola64c1e182014-06-03 02:41:57 +0000713* The expression defining the aliasee must be computable at assembly
714 time. Since it is just a name, no relocations can be used.
715
716* No alias in the expression can be weak as the possibility of the
717 intermediate alias being overridden cannot be represented in an
718 object file.
719
720* No global value in the expression can be a declaration, since that
721 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000722
David Majnemerdad0a642014-06-27 18:19:56 +0000723.. _langref_comdats:
724
725Comdats
726-------
727
728Comdat IR provides access to COFF and ELF object file COMDAT functionality.
729
730Comdats have a name which represents the COMDAT key. All global objects which
731specify this key will only end up in the final object file if the linker chooses
732that key over some other key. Aliases are placed in the same COMDAT that their
733aliasee computes to, if any.
734
735Comdats have a selection kind to provide input on how the linker should
736choose between keys in two different object files.
737
738Syntax::
739
740 $<Name> = comdat SelectionKind
741
742The selection kind must be one of the following:
743
744``any``
745 The linker may choose any COMDAT key, the choice is arbitrary.
746``exactmatch``
747 The linker may choose any COMDAT key but the sections must contain the
748 same data.
749``largest``
750 The linker will choose the section containing the largest COMDAT key.
751``noduplicates``
752 The linker requires that only section with this COMDAT key exist.
753``samesize``
754 The linker may choose any COMDAT key but the sections must contain the
755 same amount of data.
756
757Note that the Mach-O platform doesn't support COMDATs and ELF only supports
758``any`` as a selection kind.
759
760Here is an example of a COMDAT group where a function will only be selected if
761the COMDAT key's section is the largest:
762
763.. code-block:: llvm
764
765 $foo = comdat largest
766 @foo = global i32 2, comdat $foo
767
768 define void @bar() comdat $foo {
769 ret void
770 }
771
772In a COFF object file, this will create a COMDAT section with selection kind
773``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
774and another COMDAT section with selection kind
775``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
776section and contains the contents of the ``@baz`` symbol.
777
778There are some restrictions on the properties of the global object.
779It, or an alias to it, must have the same name as the COMDAT group when
780targeting COFF.
781The contents and size of this object may be used during link-time to determine
782which COMDAT groups get selected depending on the selection kind.
783Because the name of the object must match the name of the COMDAT group, the
784linkage of the global object must not be local; local symbols can get renamed
785if a collision occurs in the symbol table.
786
787The combined use of COMDATS and section attributes may yield surprising results.
788For example:
789
790.. code-block:: llvm
791
792 $foo = comdat any
793 $bar = comdat any
794 @g1 = global i32 42, section "sec", comdat $foo
795 @g2 = global i32 42, section "sec", comdat $bar
796
797From the object file perspective, this requires the creation of two sections
798with the same name. This is necessary because both globals belong to different
799COMDAT groups and COMDATs, at the object file level, are represented by
800sections.
801
802Note that certain IR constructs like global variables and functions may create
803COMDATs in the object file in addition to any which are specified using COMDAT
804IR. This arises, for example, when a global variable has linkonce_odr linkage.
805
Sean Silvab084af42012-12-07 10:36:55 +0000806.. _namedmetadatastructure:
807
808Named Metadata
809--------------
810
811Named metadata is a collection of metadata. :ref:`Metadata
812nodes <metadata>` (but not metadata strings) are the only valid
813operands for a named metadata.
814
815Syntax::
816
817 ; Some unnamed metadata nodes, which are referenced by the named metadata.
818 !0 = metadata !{metadata !"zero"}
819 !1 = metadata !{metadata !"one"}
820 !2 = metadata !{metadata !"two"}
821 ; A named metadata.
822 !name = !{!0, !1, !2}
823
824.. _paramattrs:
825
826Parameter Attributes
827--------------------
828
829The return type and each parameter of a function type may have a set of
830*parameter attributes* associated with them. Parameter attributes are
831used to communicate additional information about the result or
832parameters of a function. Parameter attributes are considered to be part
833of the function, not of the function type, so functions with different
834parameter attributes can have the same function type.
835
836Parameter attributes are simple keywords that follow the type specified.
837If multiple parameter attributes are needed, they are space separated.
838For example:
839
840.. code-block:: llvm
841
842 declare i32 @printf(i8* noalias nocapture, ...)
843 declare i32 @atoi(i8 zeroext)
844 declare signext i8 @returns_signed_char()
845
846Note that any attributes for the function result (``nounwind``,
847``readonly``) come immediately after the argument list.
848
849Currently, only the following parameter attributes are defined:
850
851``zeroext``
852 This indicates to the code generator that the parameter or return
853 value should be zero-extended to the extent required by the target's
854 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
855 the caller (for a parameter) or the callee (for a return value).
856``signext``
857 This indicates to the code generator that the parameter or return
858 value should be sign-extended to the extent required by the target's
859 ABI (which is usually 32-bits) by the caller (for a parameter) or
860 the callee (for a return value).
861``inreg``
862 This indicates that this parameter or return value should be treated
863 in a special target-dependent fashion during while emitting code for
864 a function call or return (usually, by putting it in a register as
865 opposed to memory, though some targets use it to distinguish between
866 two different kinds of registers). Use of this attribute is
867 target-specific.
868``byval``
869 This indicates that the pointer parameter should really be passed by
870 value to the function. The attribute implies that a hidden copy of
871 the pointee is made between the caller and the callee, so the callee
872 is unable to modify the value in the caller. This attribute is only
873 valid on LLVM pointer arguments. It is generally used to pass
874 structs and arrays by value, but is also valid on pointers to
875 scalars. The copy is considered to belong to the caller not the
876 callee (for example, ``readonly`` functions should not write to
877 ``byval`` parameters). This is not a valid attribute for return
878 values.
879
880 The byval attribute also supports specifying an alignment with the
881 align attribute. It indicates the alignment of the stack slot to
882 form and the known alignment of the pointer specified to the call
883 site. If the alignment is not specified, then the code generator
884 makes a target-specific assumption.
885
Reid Klecknera534a382013-12-19 02:14:12 +0000886.. _attr_inalloca:
887
888``inalloca``
889
Reid Kleckner60d3a832014-01-16 22:59:24 +0000890 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000891 address of outgoing stack arguments. An ``inalloca`` argument must
892 be a pointer to stack memory produced by an ``alloca`` instruction.
893 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000894 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000895 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000896
Reid Kleckner436c42e2014-01-17 23:58:17 +0000897 An argument allocation may be used by a call at most once because
898 the call may deallocate it. The ``inalloca`` attribute cannot be
899 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000900 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
901 ``inalloca`` attribute also disables LLVM's implicit lowering of
902 large aggregate return values, which means that frontend authors
903 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000904
Reid Kleckner60d3a832014-01-16 22:59:24 +0000905 When the call site is reached, the argument allocation must have
906 been the most recent stack allocation that is still live, or the
907 results are undefined. It is possible to allocate additional stack
908 space after an argument allocation and before its call site, but it
909 must be cleared off with :ref:`llvm.stackrestore
910 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000911
912 See :doc:`InAlloca` for more information on how to use this
913 attribute.
914
Sean Silvab084af42012-12-07 10:36:55 +0000915``sret``
916 This indicates that the pointer parameter specifies the address of a
917 structure that is the return value of the function in the source
918 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000919 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000920 not to trap and to be properly aligned. This may only be applied to
921 the first parameter. This is not a valid attribute for return
922 values.
Sean Silva1703e702014-04-08 21:06:22 +0000923
924.. _noalias:
925
Sean Silvab084af42012-12-07 10:36:55 +0000926``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000927 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000928 the argument or return value do not alias pointer values which are
929 not *based* on it, ignoring certain "irrelevant" dependencies. For a
930 call to the parent function, dependencies between memory references
931 from before or after the call and from those during the call are
932 "irrelevant" to the ``noalias`` keyword for the arguments and return
933 value used in that call. The caller shares the responsibility with
934 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000935 details, please see the discussion of the NoAlias response in :ref:`alias
936 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000937
938 Note that this definition of ``noalias`` is intentionally similar
939 to the definition of ``restrict`` in C99 for function arguments,
940 though it is slightly weaker.
941
942 For function return values, C99's ``restrict`` is not meaningful,
943 while LLVM's ``noalias`` is.
944``nocapture``
945 This indicates that the callee does not make any copies of the
946 pointer that outlive the callee itself. This is not a valid
947 attribute for return values.
948
949.. _nest:
950
951``nest``
952 This indicates that the pointer parameter can be excised using the
953 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000954 attribute for return values and can only be applied to one parameter.
955
956``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000957 This indicates that the function always returns the argument as its return
958 value. This is an optimization hint to the code generator when generating
959 the caller, allowing tail call optimization and omission of register saves
960 and restores in some cases; it is not checked or enforced when generating
961 the callee. The parameter and the function return type must be valid
962 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
963 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000964
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000965``nonnull``
966 This indicates that the parameter or return pointer is not null. This
967 attribute may only be applied to pointer typed parameters. This is not
968 checked or enforced by LLVM, the caller must ensure that the pointer
969 passed in is non-null, or the callee must ensure that the returned pointer
970 is non-null.
971
Hal Finkelb0407ba2014-07-18 15:51:28 +0000972``dereferenceable(<n>)``
973 This indicates that the parameter or return pointer is dereferenceable. This
974 attribute may only be applied to pointer typed parameters. A pointer that
975 is dereferenceable can be loaded from speculatively without a risk of
976 trapping. The number of bytes known to be dereferenceable must be provided
977 in parentheses. It is legal for the number of bytes to be less than the
978 size of the pointee type. The ``nonnull`` attribute does not imply
979 dereferenceability (consider a pointer to one element past the end of an
980 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
981 ``addrspace(0)`` (which is the default address space).
982
Sean Silvab084af42012-12-07 10:36:55 +0000983.. _gc:
984
985Garbage Collector Names
986-----------------------
987
988Each function may specify a garbage collector name, which is simply a
989string:
990
991.. code-block:: llvm
992
993 define void @f() gc "name" { ... }
994
995The compiler declares the supported values of *name*. Specifying a
996collector which will cause the compiler to alter its output in order to
997support the named garbage collection algorithm.
998
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000999.. _prefixdata:
1000
1001Prefix Data
1002-----------
1003
1004Prefix data is data associated with a function which the code generator
1005will emit immediately before the function body. The purpose of this feature
1006is to allow frontends to associate language-specific runtime metadata with
1007specific functions and make it available through the function pointer while
1008still allowing the function pointer to be called. To access the data for a
1009given function, a program may bitcast the function pointer to a pointer to
1010the constant's type. This implies that the IR symbol points to the start
1011of the prefix data.
1012
1013To maintain the semantics of ordinary function calls, the prefix data must
1014have a particular format. Specifically, it must begin with a sequence of
1015bytes which decode to a sequence of machine instructions, valid for the
1016module's target, which transfer control to the point immediately succeeding
1017the prefix data, without performing any other visible action. This allows
1018the inliner and other passes to reason about the semantics of the function
1019definition without needing to reason about the prefix data. Obviously this
1020makes the format of the prefix data highly target dependent.
1021
Peter Collingbourne213358a2013-09-23 20:14:21 +00001022Prefix data is laid out as if it were an initializer for a global variable
1023of the prefix data's type. No padding is automatically placed between the
1024prefix data and the function body. If padding is required, it must be part
1025of the prefix data.
1026
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001027A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
1028which encodes the ``nop`` instruction:
1029
1030.. code-block:: llvm
1031
1032 define void @f() prefix i8 144 { ... }
1033
1034Generally prefix data can be formed by encoding a relative branch instruction
1035which skips the metadata, as in this example of valid prefix data for the
1036x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1037
1038.. code-block:: llvm
1039
1040 %0 = type <{ i8, i8, i8* }>
1041
1042 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
1043
1044A function may have prefix data but no body. This has similar semantics
1045to the ``available_externally`` linkage in that the data may be used by the
1046optimizers but will not be emitted in the object file.
1047
Bill Wendling63b88192013-02-06 06:52:58 +00001048.. _attrgrp:
1049
1050Attribute Groups
1051----------------
1052
1053Attribute groups are groups of attributes that are referenced by objects within
1054the IR. They are important for keeping ``.ll`` files readable, because a lot of
1055functions will use the same set of attributes. In the degenerative case of a
1056``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1057group will capture the important command line flags used to build that file.
1058
1059An attribute group is a module-level object. To use an attribute group, an
1060object references the attribute group's ID (e.g. ``#37``). An object may refer
1061to more than one attribute group. In that situation, the attributes from the
1062different groups are merged.
1063
1064Here is an example of attribute groups for a function that should always be
1065inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1066
1067.. code-block:: llvm
1068
1069 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001070 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001071
1072 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001073 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001074
1075 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1076 define void @f() #0 #1 { ... }
1077
Sean Silvab084af42012-12-07 10:36:55 +00001078.. _fnattrs:
1079
1080Function Attributes
1081-------------------
1082
1083Function attributes are set to communicate additional information about
1084a function. Function attributes are considered to be part of the
1085function, not of the function type, so functions with different function
1086attributes can have the same function type.
1087
1088Function attributes are simple keywords that follow the type specified.
1089If multiple attributes are needed, they are space separated. For
1090example:
1091
1092.. code-block:: llvm
1093
1094 define void @f() noinline { ... }
1095 define void @f() alwaysinline { ... }
1096 define void @f() alwaysinline optsize { ... }
1097 define void @f() optsize { ... }
1098
Sean Silvab084af42012-12-07 10:36:55 +00001099``alignstack(<n>)``
1100 This attribute indicates that, when emitting the prologue and
1101 epilogue, the backend should forcibly align the stack pointer.
1102 Specify the desired alignment, which must be a power of two, in
1103 parentheses.
1104``alwaysinline``
1105 This attribute indicates that the inliner should attempt to inline
1106 this function into callers whenever possible, ignoring any active
1107 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001108``builtin``
1109 This indicates that the callee function at a call site should be
1110 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001111 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +00001112 direct calls to functions which are declared with the ``nobuiltin``
1113 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001114``cold``
1115 This attribute indicates that this function is rarely called. When
1116 computing edge weights, basic blocks post-dominated by a cold
1117 function call are also considered to be cold; and, thus, given low
1118 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001119``inlinehint``
1120 This attribute indicates that the source code contained a hint that
1121 inlining this function is desirable (such as the "inline" keyword in
1122 C/C++). It is just a hint; it imposes no requirements on the
1123 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001124``jumptable``
1125 This attribute indicates that the function should be added to a
1126 jump-instruction table at code-generation time, and that all address-taken
1127 references to this function should be replaced with a reference to the
1128 appropriate jump-instruction-table function pointer. Note that this creates
1129 a new pointer for the original function, which means that code that depends
1130 on function-pointer identity can break. So, any function annotated with
1131 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001132``minsize``
1133 This attribute suggests that optimization passes and code generator
1134 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001135 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001136 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001137``naked``
1138 This attribute disables prologue / epilogue emission for the
1139 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001140``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001141 This indicates that the callee function at a call site is not recognized as
1142 a built-in function. LLVM will retain the original call and not replace it
1143 with equivalent code based on the semantics of the built-in function, unless
1144 the call site uses the ``builtin`` attribute. This is valid at call sites
1145 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001146``noduplicate``
1147 This attribute indicates that calls to the function cannot be
1148 duplicated. A call to a ``noduplicate`` function may be moved
1149 within its parent function, but may not be duplicated within
1150 its parent function.
1151
1152 A function containing a ``noduplicate`` call may still
1153 be an inlining candidate, provided that the call is not
1154 duplicated by inlining. That implies that the function has
1155 internal linkage and only has one call site, so the original
1156 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001157``noimplicitfloat``
1158 This attributes disables implicit floating point instructions.
1159``noinline``
1160 This attribute indicates that the inliner should never inline this
1161 function in any situation. This attribute may not be used together
1162 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001163``nonlazybind``
1164 This attribute suppresses lazy symbol binding for the function. This
1165 may make calls to the function faster, at the cost of extra program
1166 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001167``noredzone``
1168 This attribute indicates that the code generator should not use a
1169 red zone, even if the target-specific ABI normally permits it.
1170``noreturn``
1171 This function attribute indicates that the function never returns
1172 normally. This produces undefined behavior at runtime if the
1173 function ever does dynamically return.
1174``nounwind``
1175 This function attribute indicates that the function never returns
1176 with an unwind or exceptional control flow. If the function does
1177 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001178``optnone``
1179 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001180 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001181 exception of interprocedural optimization passes.
1182 This attribute cannot be used together with the ``alwaysinline``
1183 attribute; this attribute is also incompatible
1184 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001185
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001186 This attribute requires the ``noinline`` attribute to be specified on
1187 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001188 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001189 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001190``optsize``
1191 This attribute suggests that optimization passes and code generator
1192 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001193 and otherwise do optimizations specifically to reduce code size as
1194 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001195``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001196 On a function, this attribute indicates that the function computes its
1197 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001198 without dereferencing any pointer arguments or otherwise accessing
1199 any mutable state (e.g. memory, control registers, etc) visible to
1200 caller functions. It does not write through any pointer arguments
1201 (including ``byval`` arguments) and never changes any state visible
1202 to callers. This means that it cannot unwind exceptions by calling
1203 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001204
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001205 On an argument, this attribute indicates that the function does not
1206 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001207 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001208``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001209 On a function, this attribute indicates that the function does not write
1210 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001211 modify any state (e.g. memory, control registers, etc) visible to
1212 caller functions. It may dereference pointer arguments and read
1213 state that may be set in the caller. A readonly function always
1214 returns the same value (or unwinds an exception identically) when
1215 called with the same set of arguments and global state. It cannot
1216 unwind an exception by calling the ``C++`` exception throwing
1217 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001218
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001219 On an argument, this attribute indicates that the function does not write
1220 through this pointer argument, even though it may write to the memory that
1221 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001222``returns_twice``
1223 This attribute indicates that this function can return twice. The C
1224 ``setjmp`` is an example of such a function. The compiler disables
1225 some optimizations (like tail calls) in the caller of these
1226 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001227``sanitize_address``
1228 This attribute indicates that AddressSanitizer checks
1229 (dynamic address safety analysis) are enabled for this function.
1230``sanitize_memory``
1231 This attribute indicates that MemorySanitizer checks (dynamic detection
1232 of accesses to uninitialized memory) are enabled for this function.
1233``sanitize_thread``
1234 This attribute indicates that ThreadSanitizer checks
1235 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001236``ssp``
1237 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001238 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001239 placed on the stack before the local variables that's checked upon
1240 return from the function to see if it has been overwritten. A
1241 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001242 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001243
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001244 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1245 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1246 - Calls to alloca() with variable sizes or constant sizes greater than
1247 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001248
Josh Magee24c7f062014-02-01 01:36:16 +00001249 Variables that are identified as requiring a protector will be arranged
1250 on the stack such that they are adjacent to the stack protector guard.
1251
Sean Silvab084af42012-12-07 10:36:55 +00001252 If a function that has an ``ssp`` attribute is inlined into a
1253 function that doesn't have an ``ssp`` attribute, then the resulting
1254 function will have an ``ssp`` attribute.
1255``sspreq``
1256 This attribute indicates that the function should *always* emit a
1257 stack smashing protector. This overrides the ``ssp`` function
1258 attribute.
1259
Josh Magee24c7f062014-02-01 01:36:16 +00001260 Variables that are identified as requiring a protector will be arranged
1261 on the stack such that they are adjacent to the stack protector guard.
1262 The specific layout rules are:
1263
1264 #. Large arrays and structures containing large arrays
1265 (``>= ssp-buffer-size``) are closest to the stack protector.
1266 #. Small arrays and structures containing small arrays
1267 (``< ssp-buffer-size``) are 2nd closest to the protector.
1268 #. Variables that have had their address taken are 3rd closest to the
1269 protector.
1270
Sean Silvab084af42012-12-07 10:36:55 +00001271 If a function that has an ``sspreq`` attribute is inlined into a
1272 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001273 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1274 an ``sspreq`` attribute.
1275``sspstrong``
1276 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001277 protector. This attribute causes a strong heuristic to be used when
1278 determining if a function needs stack protectors. The strong heuristic
1279 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001280
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001281 - Arrays of any size and type
1282 - Aggregates containing an array of any size and type.
1283 - Calls to alloca().
1284 - Local variables that have had their address taken.
1285
Josh Magee24c7f062014-02-01 01:36:16 +00001286 Variables that are identified as requiring a protector will be arranged
1287 on the stack such that they are adjacent to the stack protector guard.
1288 The specific layout rules are:
1289
1290 #. Large arrays and structures containing large arrays
1291 (``>= ssp-buffer-size``) are closest to the stack protector.
1292 #. Small arrays and structures containing small arrays
1293 (``< ssp-buffer-size``) are 2nd closest to the protector.
1294 #. Variables that have had their address taken are 3rd closest to the
1295 protector.
1296
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001297 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001298
1299 If a function that has an ``sspstrong`` attribute is inlined into a
1300 function that doesn't have an ``sspstrong`` attribute, then the
1301 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001302``uwtable``
1303 This attribute indicates that the ABI being targeted requires that
1304 an unwind table entry be produce for this function even if we can
1305 show that no exceptions passes by it. This is normally the case for
1306 the ELF x86-64 abi, but it can be disabled for some compilation
1307 units.
Sean Silvab084af42012-12-07 10:36:55 +00001308
1309.. _moduleasm:
1310
1311Module-Level Inline Assembly
1312----------------------------
1313
1314Modules may contain "module-level inline asm" blocks, which corresponds
1315to the GCC "file scope inline asm" blocks. These blocks are internally
1316concatenated by LLVM and treated as a single unit, but may be separated
1317in the ``.ll`` file if desired. The syntax is very simple:
1318
1319.. code-block:: llvm
1320
1321 module asm "inline asm code goes here"
1322 module asm "more can go here"
1323
1324The strings can contain any character by escaping non-printable
1325characters. The escape sequence used is simply "\\xx" where "xx" is the
1326two digit hex code for the number.
1327
1328The inline asm code is simply printed to the machine code .s file when
1329assembly code is generated.
1330
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001331.. _langref_datalayout:
1332
Sean Silvab084af42012-12-07 10:36:55 +00001333Data Layout
1334-----------
1335
1336A module may specify a target specific data layout string that specifies
1337how data is to be laid out in memory. The syntax for the data layout is
1338simply:
1339
1340.. code-block:: llvm
1341
1342 target datalayout = "layout specification"
1343
1344The *layout specification* consists of a list of specifications
1345separated by the minus sign character ('-'). Each specification starts
1346with a letter and may include other information after the letter to
1347define some aspect of the data layout. The specifications accepted are
1348as follows:
1349
1350``E``
1351 Specifies that the target lays out data in big-endian form. That is,
1352 the bits with the most significance have the lowest address
1353 location.
1354``e``
1355 Specifies that the target lays out data in little-endian form. That
1356 is, the bits with the least significance have the lowest address
1357 location.
1358``S<size>``
1359 Specifies the natural alignment of the stack in bits. Alignment
1360 promotion of stack variables is limited to the natural stack
1361 alignment to avoid dynamic stack realignment. The stack alignment
1362 must be a multiple of 8-bits. If omitted, the natural stack
1363 alignment defaults to "unspecified", which does not prevent any
1364 alignment promotions.
1365``p[n]:<size>:<abi>:<pref>``
1366 This specifies the *size* of a pointer and its ``<abi>`` and
1367 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001368 bits. The address space, ``n`` is optional, and if not specified,
1369 denotes the default address space 0. The value of ``n`` must be
1370 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001371``i<size>:<abi>:<pref>``
1372 This specifies the alignment for an integer type of a given bit
1373 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1374``v<size>:<abi>:<pref>``
1375 This specifies the alignment for a vector type of a given bit
1376 ``<size>``.
1377``f<size>:<abi>:<pref>``
1378 This specifies the alignment for a floating point type of a given bit
1379 ``<size>``. Only values of ``<size>`` that are supported by the target
1380 will work. 32 (float) and 64 (double) are supported on all targets; 80
1381 or 128 (different flavors of long double) are also supported on some
1382 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001383``a:<abi>:<pref>``
1384 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001385``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001386 If present, specifies that llvm names are mangled in the output. The
1387 options are
1388
1389 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1390 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1391 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1392 symbols get a ``_`` prefix.
1393 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1394 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001395``n<size1>:<size2>:<size3>...``
1396 This specifies a set of native integer widths for the target CPU in
1397 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1398 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1399 this set are considered to support most general arithmetic operations
1400 efficiently.
1401
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001402On every specification that takes a ``<abi>:<pref>``, specifying the
1403``<pref>`` alignment is optional. If omitted, the preceding ``:``
1404should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1405
Sean Silvab084af42012-12-07 10:36:55 +00001406When constructing the data layout for a given target, LLVM starts with a
1407default set of specifications which are then (possibly) overridden by
1408the specifications in the ``datalayout`` keyword. The default
1409specifications are given in this list:
1410
1411- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001412- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1413- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1414 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001415- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001416- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1417- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1418- ``i16:16:16`` - i16 is 16-bit aligned
1419- ``i32:32:32`` - i32 is 32-bit aligned
1420- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1421 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001422- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001423- ``f32:32:32`` - float is 32-bit aligned
1424- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001425- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001426- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1427- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001428- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001429
1430When LLVM is determining the alignment for a given type, it uses the
1431following rules:
1432
1433#. If the type sought is an exact match for one of the specifications,
1434 that specification is used.
1435#. If no match is found, and the type sought is an integer type, then
1436 the smallest integer type that is larger than the bitwidth of the
1437 sought type is used. If none of the specifications are larger than
1438 the bitwidth then the largest integer type is used. For example,
1439 given the default specifications above, the i7 type will use the
1440 alignment of i8 (next largest) while both i65 and i256 will use the
1441 alignment of i64 (largest specified).
1442#. If no match is found, and the type sought is a vector type, then the
1443 largest vector type that is smaller than the sought vector type will
1444 be used as a fall back. This happens because <128 x double> can be
1445 implemented in terms of 64 <2 x double>, for example.
1446
1447The function of the data layout string may not be what you expect.
1448Notably, this is not a specification from the frontend of what alignment
1449the code generator should use.
1450
1451Instead, if specified, the target data layout is required to match what
1452the ultimate *code generator* expects. This string is used by the
1453mid-level optimizers to improve code, and this only works if it matches
1454what the ultimate code generator uses. If you would like to generate IR
1455that does not embed this target-specific detail into the IR, then you
1456don't have to specify the string. This will disable some optimizations
1457that require precise layout information, but this also prevents those
1458optimizations from introducing target specificity into the IR.
1459
Bill Wendling5cc90842013-10-18 23:41:25 +00001460.. _langref_triple:
1461
1462Target Triple
1463-------------
1464
1465A module may specify a target triple string that describes the target
1466host. The syntax for the target triple is simply:
1467
1468.. code-block:: llvm
1469
1470 target triple = "x86_64-apple-macosx10.7.0"
1471
1472The *target triple* string consists of a series of identifiers delimited
1473by the minus sign character ('-'). The canonical forms are:
1474
1475::
1476
1477 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1478 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1479
1480This information is passed along to the backend so that it generates
1481code for the proper architecture. It's possible to override this on the
1482command line with the ``-mtriple`` command line option.
1483
Sean Silvab084af42012-12-07 10:36:55 +00001484.. _pointeraliasing:
1485
1486Pointer Aliasing Rules
1487----------------------
1488
1489Any memory access must be done through a pointer value associated with
1490an address range of the memory access, otherwise the behavior is
1491undefined. Pointer values are associated with address ranges according
1492to the following rules:
1493
1494- A pointer value is associated with the addresses associated with any
1495 value it is *based* on.
1496- An address of a global variable is associated with the address range
1497 of the variable's storage.
1498- The result value of an allocation instruction is associated with the
1499 address range of the allocated storage.
1500- A null pointer in the default address-space is associated with no
1501 address.
1502- An integer constant other than zero or a pointer value returned from
1503 a function not defined within LLVM may be associated with address
1504 ranges allocated through mechanisms other than those provided by
1505 LLVM. Such ranges shall not overlap with any ranges of addresses
1506 allocated by mechanisms provided by LLVM.
1507
1508A pointer value is *based* on another pointer value according to the
1509following rules:
1510
1511- A pointer value formed from a ``getelementptr`` operation is *based*
1512 on the first operand of the ``getelementptr``.
1513- The result value of a ``bitcast`` is *based* on the operand of the
1514 ``bitcast``.
1515- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1516 values that contribute (directly or indirectly) to the computation of
1517 the pointer's value.
1518- The "*based* on" relationship is transitive.
1519
1520Note that this definition of *"based"* is intentionally similar to the
1521definition of *"based"* in C99, though it is slightly weaker.
1522
1523LLVM IR does not associate types with memory. The result type of a
1524``load`` merely indicates the size and alignment of the memory from
1525which to load, as well as the interpretation of the value. The first
1526operand type of a ``store`` similarly only indicates the size and
1527alignment of the store.
1528
1529Consequently, type-based alias analysis, aka TBAA, aka
1530``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1531:ref:`Metadata <metadata>` may be used to encode additional information
1532which specialized optimization passes may use to implement type-based
1533alias analysis.
1534
1535.. _volatile:
1536
1537Volatile Memory Accesses
1538------------------------
1539
1540Certain memory accesses, such as :ref:`load <i_load>`'s,
1541:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1542marked ``volatile``. The optimizers must not change the number of
1543volatile operations or change their order of execution relative to other
1544volatile operations. The optimizers *may* change the order of volatile
1545operations relative to non-volatile operations. This is not Java's
1546"volatile" and has no cross-thread synchronization behavior.
1547
Andrew Trick89fc5a62013-01-30 21:19:35 +00001548IR-level volatile loads and stores cannot safely be optimized into
1549llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1550flagged volatile. Likewise, the backend should never split or merge
1551target-legal volatile load/store instructions.
1552
Andrew Trick7e6f9282013-01-31 00:49:39 +00001553.. admonition:: Rationale
1554
1555 Platforms may rely on volatile loads and stores of natively supported
1556 data width to be executed as single instruction. For example, in C
1557 this holds for an l-value of volatile primitive type with native
1558 hardware support, but not necessarily for aggregate types. The
1559 frontend upholds these expectations, which are intentionally
1560 unspecified in the IR. The rules above ensure that IR transformation
1561 do not violate the frontend's contract with the language.
1562
Sean Silvab084af42012-12-07 10:36:55 +00001563.. _memmodel:
1564
1565Memory Model for Concurrent Operations
1566--------------------------------------
1567
1568The LLVM IR does not define any way to start parallel threads of
1569execution or to register signal handlers. Nonetheless, there are
1570platform-specific ways to create them, and we define LLVM IR's behavior
1571in their presence. This model is inspired by the C++0x memory model.
1572
1573For a more informal introduction to this model, see the :doc:`Atomics`.
1574
1575We define a *happens-before* partial order as the least partial order
1576that
1577
1578- Is a superset of single-thread program order, and
1579- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1580 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1581 techniques, like pthread locks, thread creation, thread joining,
1582 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1583 Constraints <ordering>`).
1584
1585Note that program order does not introduce *happens-before* edges
1586between a thread and signals executing inside that thread.
1587
1588Every (defined) read operation (load instructions, memcpy, atomic
1589loads/read-modify-writes, etc.) R reads a series of bytes written by
1590(defined) write operations (store instructions, atomic
1591stores/read-modify-writes, memcpy, etc.). For the purposes of this
1592section, initialized globals are considered to have a write of the
1593initializer which is atomic and happens before any other read or write
1594of the memory in question. For each byte of a read R, R\ :sub:`byte`
1595may see any write to the same byte, except:
1596
1597- If write\ :sub:`1` happens before write\ :sub:`2`, and
1598 write\ :sub:`2` happens before R\ :sub:`byte`, then
1599 R\ :sub:`byte` does not see write\ :sub:`1`.
1600- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1601 R\ :sub:`byte` does not see write\ :sub:`3`.
1602
1603Given that definition, R\ :sub:`byte` is defined as follows:
1604
1605- If R is volatile, the result is target-dependent. (Volatile is
1606 supposed to give guarantees which can support ``sig_atomic_t`` in
1607 C/C++, and may be used for accesses to addresses which do not behave
1608 like normal memory. It does not generally provide cross-thread
1609 synchronization.)
1610- Otherwise, if there is no write to the same byte that happens before
1611 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1612- Otherwise, if R\ :sub:`byte` may see exactly one write,
1613 R\ :sub:`byte` returns the value written by that write.
1614- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1615 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1616 Memory Ordering Constraints <ordering>` section for additional
1617 constraints on how the choice is made.
1618- Otherwise R\ :sub:`byte` returns ``undef``.
1619
1620R returns the value composed of the series of bytes it read. This
1621implies that some bytes within the value may be ``undef`` **without**
1622the entire value being ``undef``. Note that this only defines the
1623semantics of the operation; it doesn't mean that targets will emit more
1624than one instruction to read the series of bytes.
1625
1626Note that in cases where none of the atomic intrinsics are used, this
1627model places only one restriction on IR transformations on top of what
1628is required for single-threaded execution: introducing a store to a byte
1629which might not otherwise be stored is not allowed in general.
1630(Specifically, in the case where another thread might write to and read
1631from an address, introducing a store can change a load that may see
1632exactly one write into a load that may see multiple writes.)
1633
1634.. _ordering:
1635
1636Atomic Memory Ordering Constraints
1637----------------------------------
1638
1639Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1640:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1641:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001642ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001643the same address they *synchronize with*. These semantics are borrowed
1644from Java and C++0x, but are somewhat more colloquial. If these
1645descriptions aren't precise enough, check those specs (see spec
1646references in the :doc:`atomics guide <Atomics>`).
1647:ref:`fence <i_fence>` instructions treat these orderings somewhat
1648differently since they don't take an address. See that instruction's
1649documentation for details.
1650
1651For a simpler introduction to the ordering constraints, see the
1652:doc:`Atomics`.
1653
1654``unordered``
1655 The set of values that can be read is governed by the happens-before
1656 partial order. A value cannot be read unless some operation wrote
1657 it. This is intended to provide a guarantee strong enough to model
1658 Java's non-volatile shared variables. This ordering cannot be
1659 specified for read-modify-write operations; it is not strong enough
1660 to make them atomic in any interesting way.
1661``monotonic``
1662 In addition to the guarantees of ``unordered``, there is a single
1663 total order for modifications by ``monotonic`` operations on each
1664 address. All modification orders must be compatible with the
1665 happens-before order. There is no guarantee that the modification
1666 orders can be combined to a global total order for the whole program
1667 (and this often will not be possible). The read in an atomic
1668 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1669 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1670 order immediately before the value it writes. If one atomic read
1671 happens before another atomic read of the same address, the later
1672 read must see the same value or a later value in the address's
1673 modification order. This disallows reordering of ``monotonic`` (or
1674 stronger) operations on the same address. If an address is written
1675 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1676 read that address repeatedly, the other threads must eventually see
1677 the write. This corresponds to the C++0x/C1x
1678 ``memory_order_relaxed``.
1679``acquire``
1680 In addition to the guarantees of ``monotonic``, a
1681 *synchronizes-with* edge may be formed with a ``release`` operation.
1682 This is intended to model C++'s ``memory_order_acquire``.
1683``release``
1684 In addition to the guarantees of ``monotonic``, if this operation
1685 writes a value which is subsequently read by an ``acquire``
1686 operation, it *synchronizes-with* that operation. (This isn't a
1687 complete description; see the C++0x definition of a release
1688 sequence.) This corresponds to the C++0x/C1x
1689 ``memory_order_release``.
1690``acq_rel`` (acquire+release)
1691 Acts as both an ``acquire`` and ``release`` operation on its
1692 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1693``seq_cst`` (sequentially consistent)
1694 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1695 operation which only reads, ``release`` for an operation which only
1696 writes), there is a global total order on all
1697 sequentially-consistent operations on all addresses, which is
1698 consistent with the *happens-before* partial order and with the
1699 modification orders of all the affected addresses. Each
1700 sequentially-consistent read sees the last preceding write to the
1701 same address in this global order. This corresponds to the C++0x/C1x
1702 ``memory_order_seq_cst`` and Java volatile.
1703
1704.. _singlethread:
1705
1706If an atomic operation is marked ``singlethread``, it only *synchronizes
1707with* or participates in modification and seq\_cst total orderings with
1708other operations running in the same thread (for example, in signal
1709handlers).
1710
1711.. _fastmath:
1712
1713Fast-Math Flags
1714---------------
1715
1716LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1717:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1718:ref:`frem <i_frem>`) have the following flags that can set to enable
1719otherwise unsafe floating point operations
1720
1721``nnan``
1722 No NaNs - Allow optimizations to assume the arguments and result are not
1723 NaN. Such optimizations are required to retain defined behavior over
1724 NaNs, but the value of the result is undefined.
1725
1726``ninf``
1727 No Infs - Allow optimizations to assume the arguments and result are not
1728 +/-Inf. Such optimizations are required to retain defined behavior over
1729 +/-Inf, but the value of the result is undefined.
1730
1731``nsz``
1732 No Signed Zeros - Allow optimizations to treat the sign of a zero
1733 argument or result as insignificant.
1734
1735``arcp``
1736 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1737 argument rather than perform division.
1738
1739``fast``
1740 Fast - Allow algebraically equivalent transformations that may
1741 dramatically change results in floating point (e.g. reassociate). This
1742 flag implies all the others.
1743
1744.. _typesystem:
1745
1746Type System
1747===========
1748
1749The LLVM type system is one of the most important features of the
1750intermediate representation. Being typed enables a number of
1751optimizations to be performed on the intermediate representation
1752directly, without having to do extra analyses on the side before the
1753transformation. A strong type system makes it easier to read the
1754generated code and enables novel analyses and transformations that are
1755not feasible to perform on normal three address code representations.
1756
Rafael Espindola08013342013-12-07 19:34:20 +00001757.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001758
Rafael Espindola08013342013-12-07 19:34:20 +00001759Void Type
1760---------
Sean Silvab084af42012-12-07 10:36:55 +00001761
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001762:Overview:
1763
Rafael Espindola08013342013-12-07 19:34:20 +00001764
1765The void type does not represent any value and has no size.
1766
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001767:Syntax:
1768
Rafael Espindola08013342013-12-07 19:34:20 +00001769
1770::
1771
1772 void
Sean Silvab084af42012-12-07 10:36:55 +00001773
1774
Rafael Espindola08013342013-12-07 19:34:20 +00001775.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001776
Rafael Espindola08013342013-12-07 19:34:20 +00001777Function Type
1778-------------
Sean Silvab084af42012-12-07 10:36:55 +00001779
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001780:Overview:
1781
Sean Silvab084af42012-12-07 10:36:55 +00001782
Rafael Espindola08013342013-12-07 19:34:20 +00001783The function type can be thought of as a function signature. It consists of a
1784return type and a list of formal parameter types. The return type of a function
1785type is a void type or first class type --- except for :ref:`label <t_label>`
1786and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001787
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001788:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001789
Rafael Espindola08013342013-12-07 19:34:20 +00001790::
Sean Silvab084af42012-12-07 10:36:55 +00001791
Rafael Espindola08013342013-12-07 19:34:20 +00001792 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001793
Rafael Espindola08013342013-12-07 19:34:20 +00001794...where '``<parameter list>``' is a comma-separated list of type
1795specifiers. Optionally, the parameter list may include a type ``...``, which
1796indicates that the function takes a variable number of arguments. Variable
1797argument functions can access their arguments with the :ref:`variable argument
1798handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1799except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001800
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001801:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001802
Rafael Espindola08013342013-12-07 19:34:20 +00001803+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1804| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1805+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1806| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1807+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1808| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1809+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1810| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1811+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1812
1813.. _t_firstclass:
1814
1815First Class Types
1816-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001817
1818The :ref:`first class <t_firstclass>` types are perhaps the most important.
1819Values of these types are the only ones which can be produced by
1820instructions.
1821
Rafael Espindola08013342013-12-07 19:34:20 +00001822.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001823
Rafael Espindola08013342013-12-07 19:34:20 +00001824Single Value Types
1825^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001826
Rafael Espindola08013342013-12-07 19:34:20 +00001827These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001828
1829.. _t_integer:
1830
1831Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001832""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001833
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001834:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001835
1836The integer type is a very simple type that simply specifies an
1837arbitrary bit width for the integer type desired. Any bit width from 1
1838bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1839
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001840:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001841
1842::
1843
1844 iN
1845
1846The number of bits the integer will occupy is specified by the ``N``
1847value.
1848
1849Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001850*********
Sean Silvab084af42012-12-07 10:36:55 +00001851
1852+----------------+------------------------------------------------+
1853| ``i1`` | a single-bit integer. |
1854+----------------+------------------------------------------------+
1855| ``i32`` | a 32-bit integer. |
1856+----------------+------------------------------------------------+
1857| ``i1942652`` | a really big integer of over 1 million bits. |
1858+----------------+------------------------------------------------+
1859
1860.. _t_floating:
1861
1862Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001863""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001864
1865.. list-table::
1866 :header-rows: 1
1867
1868 * - Type
1869 - Description
1870
1871 * - ``half``
1872 - 16-bit floating point value
1873
1874 * - ``float``
1875 - 32-bit floating point value
1876
1877 * - ``double``
1878 - 64-bit floating point value
1879
1880 * - ``fp128``
1881 - 128-bit floating point value (112-bit mantissa)
1882
1883 * - ``x86_fp80``
1884 - 80-bit floating point value (X87)
1885
1886 * - ``ppc_fp128``
1887 - 128-bit floating point value (two 64-bits)
1888
Reid Kleckner9a16d082014-03-05 02:41:37 +00001889X86_mmx Type
1890""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001891
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001892:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001893
Reid Kleckner9a16d082014-03-05 02:41:37 +00001894The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001895machine. The operations allowed on it are quite limited: parameters and
1896return values, load and store, and bitcast. User-specified MMX
1897instructions are represented as intrinsic or asm calls with arguments
1898and/or results of this type. There are no arrays, vectors or constants
1899of this type.
1900
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001901:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001902
1903::
1904
Reid Kleckner9a16d082014-03-05 02:41:37 +00001905 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001906
Sean Silvab084af42012-12-07 10:36:55 +00001907
Rafael Espindola08013342013-12-07 19:34:20 +00001908.. _t_pointer:
1909
1910Pointer Type
1911""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001912
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001913:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001914
Rafael Espindola08013342013-12-07 19:34:20 +00001915The pointer type is used to specify memory locations. Pointers are
1916commonly used to reference objects in memory.
1917
1918Pointer types may have an optional address space attribute defining the
1919numbered address space where the pointed-to object resides. The default
1920address space is number zero. The semantics of non-zero address spaces
1921are target-specific.
1922
1923Note that LLVM does not permit pointers to void (``void*``) nor does it
1924permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001925
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001926:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001927
1928::
1929
Rafael Espindola08013342013-12-07 19:34:20 +00001930 <type> *
1931
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001932:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001933
1934+-------------------------+--------------------------------------------------------------------------------------------------------------+
1935| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1936+-------------------------+--------------------------------------------------------------------------------------------------------------+
1937| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1938+-------------------------+--------------------------------------------------------------------------------------------------------------+
1939| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1940+-------------------------+--------------------------------------------------------------------------------------------------------------+
1941
1942.. _t_vector:
1943
1944Vector Type
1945"""""""""""
1946
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001947:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001948
1949A vector type is a simple derived type that represents a vector of
1950elements. Vector types are used when multiple primitive data are
1951operated in parallel using a single instruction (SIMD). A vector type
1952requires a size (number of elements) and an underlying primitive data
1953type. Vector types are considered :ref:`first class <t_firstclass>`.
1954
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001955:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001956
1957::
1958
1959 < <# elements> x <elementtype> >
1960
1961The number of elements is a constant integer value larger than 0;
1962elementtype may be any integer or floating point type, or a pointer to
1963these types. Vectors of size zero are not allowed.
1964
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001965:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001966
1967+-------------------+--------------------------------------------------+
1968| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1969+-------------------+--------------------------------------------------+
1970| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1971+-------------------+--------------------------------------------------+
1972| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1973+-------------------+--------------------------------------------------+
1974| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1975+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001976
1977.. _t_label:
1978
1979Label Type
1980^^^^^^^^^^
1981
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001982:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001983
1984The label type represents code labels.
1985
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001986:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001987
1988::
1989
1990 label
1991
1992.. _t_metadata:
1993
1994Metadata Type
1995^^^^^^^^^^^^^
1996
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001997:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001998
1999The metadata type represents embedded metadata. No derived types may be
2000created from metadata except for :ref:`function <t_function>` arguments.
2001
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002002:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002003
2004::
2005
2006 metadata
2007
Sean Silvab084af42012-12-07 10:36:55 +00002008.. _t_aggregate:
2009
2010Aggregate Types
2011^^^^^^^^^^^^^^^
2012
2013Aggregate Types are a subset of derived types that can contain multiple
2014member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2015aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2016aggregate types.
2017
2018.. _t_array:
2019
2020Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002021""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002022
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002023:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002024
2025The array type is a very simple derived type that arranges elements
2026sequentially in memory. The array type requires a size (number of
2027elements) and an underlying data type.
2028
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002029:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002030
2031::
2032
2033 [<# elements> x <elementtype>]
2034
2035The number of elements is a constant integer value; ``elementtype`` may
2036be any type with a size.
2037
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002038:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002039
2040+------------------+--------------------------------------+
2041| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2042+------------------+--------------------------------------+
2043| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2044+------------------+--------------------------------------+
2045| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2046+------------------+--------------------------------------+
2047
2048Here are some examples of multidimensional arrays:
2049
2050+-----------------------------+----------------------------------------------------------+
2051| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2052+-----------------------------+----------------------------------------------------------+
2053| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2054+-----------------------------+----------------------------------------------------------+
2055| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2056+-----------------------------+----------------------------------------------------------+
2057
2058There is no restriction on indexing beyond the end of the array implied
2059by a static type (though there are restrictions on indexing beyond the
2060bounds of an allocated object in some cases). This means that
2061single-dimension 'variable sized array' addressing can be implemented in
2062LLVM with a zero length array type. An implementation of 'pascal style
2063arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2064example.
2065
Sean Silvab084af42012-12-07 10:36:55 +00002066.. _t_struct:
2067
2068Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002069""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002070
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002071:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002072
2073The structure type is used to represent a collection of data members
2074together in memory. The elements of a structure may be any type that has
2075a size.
2076
2077Structures in memory are accessed using '``load``' and '``store``' by
2078getting a pointer to a field with the '``getelementptr``' instruction.
2079Structures in registers are accessed using the '``extractvalue``' and
2080'``insertvalue``' instructions.
2081
2082Structures may optionally be "packed" structures, which indicate that
2083the alignment of the struct is one byte, and that there is no padding
2084between the elements. In non-packed structs, padding between field types
2085is inserted as defined by the DataLayout string in the module, which is
2086required to match what the underlying code generator expects.
2087
2088Structures can either be "literal" or "identified". A literal structure
2089is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2090identified types are always defined at the top level with a name.
2091Literal types are uniqued by their contents and can never be recursive
2092or opaque since there is no way to write one. Identified types can be
2093recursive, can be opaqued, and are never uniqued.
2094
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002095:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002096
2097::
2098
2099 %T1 = type { <type list> } ; Identified normal struct type
2100 %T2 = type <{ <type list> }> ; Identified packed struct type
2101
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002102:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002103
2104+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2105| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2106+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002107| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002108+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2109| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2110+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2111
2112.. _t_opaque:
2113
2114Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002115""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002116
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002117:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002118
2119Opaque structure types are used to represent named structure types that
2120do not have a body specified. This corresponds (for example) to the C
2121notion of a forward declared structure.
2122
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002123:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002124
2125::
2126
2127 %X = type opaque
2128 %52 = type opaque
2129
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002130:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002131
2132+--------------+-------------------+
2133| ``opaque`` | An opaque type. |
2134+--------------+-------------------+
2135
Sean Silva1703e702014-04-08 21:06:22 +00002136.. _constants:
2137
Sean Silvab084af42012-12-07 10:36:55 +00002138Constants
2139=========
2140
2141LLVM has several different basic types of constants. This section
2142describes them all and their syntax.
2143
2144Simple Constants
2145----------------
2146
2147**Boolean constants**
2148 The two strings '``true``' and '``false``' are both valid constants
2149 of the ``i1`` type.
2150**Integer constants**
2151 Standard integers (such as '4') are constants of the
2152 :ref:`integer <t_integer>` type. Negative numbers may be used with
2153 integer types.
2154**Floating point constants**
2155 Floating point constants use standard decimal notation (e.g.
2156 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2157 hexadecimal notation (see below). The assembler requires the exact
2158 decimal value of a floating-point constant. For example, the
2159 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2160 decimal in binary. Floating point constants must have a :ref:`floating
2161 point <t_floating>` type.
2162**Null pointer constants**
2163 The identifier '``null``' is recognized as a null pointer constant
2164 and must be of :ref:`pointer type <t_pointer>`.
2165
2166The one non-intuitive notation for constants is the hexadecimal form of
2167floating point constants. For example, the form
2168'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2169than) '``double 4.5e+15``'. The only time hexadecimal floating point
2170constants are required (and the only time that they are generated by the
2171disassembler) is when a floating point constant must be emitted but it
2172cannot be represented as a decimal floating point number in a reasonable
2173number of digits. For example, NaN's, infinities, and other special
2174values are represented in their IEEE hexadecimal format so that assembly
2175and disassembly do not cause any bits to change in the constants.
2176
2177When using the hexadecimal form, constants of types half, float, and
2178double are represented using the 16-digit form shown above (which
2179matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002180must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002181precision, respectively. Hexadecimal format is always used for long
2182double, and there are three forms of long double. The 80-bit format used
2183by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2184128-bit format used by PowerPC (two adjacent doubles) is represented by
2185``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002186represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2187will only work if they match the long double format on your target.
2188The IEEE 16-bit format (half precision) is represented by ``0xH``
2189followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2190(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002191
Reid Kleckner9a16d082014-03-05 02:41:37 +00002192There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002193
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002194.. _complexconstants:
2195
Sean Silvab084af42012-12-07 10:36:55 +00002196Complex Constants
2197-----------------
2198
2199Complex constants are a (potentially recursive) combination of simple
2200constants and smaller complex constants.
2201
2202**Structure constants**
2203 Structure constants are represented with notation similar to
2204 structure type definitions (a comma separated list of elements,
2205 surrounded by braces (``{}``)). For example:
2206 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2207 "``@G = external global i32``". Structure constants must have
2208 :ref:`structure type <t_struct>`, and the number and types of elements
2209 must match those specified by the type.
2210**Array constants**
2211 Array constants are represented with notation similar to array type
2212 definitions (a comma separated list of elements, surrounded by
2213 square brackets (``[]``)). For example:
2214 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2215 :ref:`array type <t_array>`, and the number and types of elements must
2216 match those specified by the type.
2217**Vector constants**
2218 Vector constants are represented with notation similar to vector
2219 type definitions (a comma separated list of elements, surrounded by
2220 less-than/greater-than's (``<>``)). For example:
2221 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2222 must have :ref:`vector type <t_vector>`, and the number and types of
2223 elements must match those specified by the type.
2224**Zero initialization**
2225 The string '``zeroinitializer``' can be used to zero initialize a
2226 value to zero of *any* type, including scalar and
2227 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2228 having to print large zero initializers (e.g. for large arrays) and
2229 is always exactly equivalent to using explicit zero initializers.
2230**Metadata node**
2231 A metadata node is a structure-like constant with :ref:`metadata
2232 type <t_metadata>`. For example:
2233 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2234 constants that are meant to be interpreted as part of the
2235 instruction stream, metadata is a place to attach additional
2236 information such as debug info.
2237
2238Global Variable and Function Addresses
2239--------------------------------------
2240
2241The addresses of :ref:`global variables <globalvars>` and
2242:ref:`functions <functionstructure>` are always implicitly valid
2243(link-time) constants. These constants are explicitly referenced when
2244the :ref:`identifier for the global <identifiers>` is used and always have
2245:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2246file:
2247
2248.. code-block:: llvm
2249
2250 @X = global i32 17
2251 @Y = global i32 42
2252 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2253
2254.. _undefvalues:
2255
2256Undefined Values
2257----------------
2258
2259The string '``undef``' can be used anywhere a constant is expected, and
2260indicates that the user of the value may receive an unspecified
2261bit-pattern. Undefined values may be of any type (other than '``label``'
2262or '``void``') and be used anywhere a constant is permitted.
2263
2264Undefined values are useful because they indicate to the compiler that
2265the program is well defined no matter what value is used. This gives the
2266compiler more freedom to optimize. Here are some examples of
2267(potentially surprising) transformations that are valid (in pseudo IR):
2268
2269.. code-block:: llvm
2270
2271 %A = add %X, undef
2272 %B = sub %X, undef
2273 %C = xor %X, undef
2274 Safe:
2275 %A = undef
2276 %B = undef
2277 %C = undef
2278
2279This is safe because all of the output bits are affected by the undef
2280bits. Any output bit can have a zero or one depending on the input bits.
2281
2282.. code-block:: llvm
2283
2284 %A = or %X, undef
2285 %B = and %X, undef
2286 Safe:
2287 %A = -1
2288 %B = 0
2289 Unsafe:
2290 %A = undef
2291 %B = undef
2292
2293These logical operations have bits that are not always affected by the
2294input. For example, if ``%X`` has a zero bit, then the output of the
2295'``and``' operation will always be a zero for that bit, no matter what
2296the corresponding bit from the '``undef``' is. As such, it is unsafe to
2297optimize or assume that the result of the '``and``' is '``undef``'.
2298However, it is safe to assume that all bits of the '``undef``' could be
22990, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2300all the bits of the '``undef``' operand to the '``or``' could be set,
2301allowing the '``or``' to be folded to -1.
2302
2303.. code-block:: llvm
2304
2305 %A = select undef, %X, %Y
2306 %B = select undef, 42, %Y
2307 %C = select %X, %Y, undef
2308 Safe:
2309 %A = %X (or %Y)
2310 %B = 42 (or %Y)
2311 %C = %Y
2312 Unsafe:
2313 %A = undef
2314 %B = undef
2315 %C = undef
2316
2317This set of examples shows that undefined '``select``' (and conditional
2318branch) conditions can go *either way*, but they have to come from one
2319of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2320both known to have a clear low bit, then ``%A`` would have to have a
2321cleared low bit. However, in the ``%C`` example, the optimizer is
2322allowed to assume that the '``undef``' operand could be the same as
2323``%Y``, allowing the whole '``select``' to be eliminated.
2324
2325.. code-block:: llvm
2326
2327 %A = xor undef, undef
2328
2329 %B = undef
2330 %C = xor %B, %B
2331
2332 %D = undef
2333 %E = icmp lt %D, 4
2334 %F = icmp gte %D, 4
2335
2336 Safe:
2337 %A = undef
2338 %B = undef
2339 %C = undef
2340 %D = undef
2341 %E = undef
2342 %F = undef
2343
2344This example points out that two '``undef``' operands are not
2345necessarily the same. This can be surprising to people (and also matches
2346C semantics) where they assume that "``X^X``" is always zero, even if
2347``X`` is undefined. This isn't true for a number of reasons, but the
2348short answer is that an '``undef``' "variable" can arbitrarily change
2349its value over its "live range". This is true because the variable
2350doesn't actually *have a live range*. Instead, the value is logically
2351read from arbitrary registers that happen to be around when needed, so
2352the value is not necessarily consistent over time. In fact, ``%A`` and
2353``%C`` need to have the same semantics or the core LLVM "replace all
2354uses with" concept would not hold.
2355
2356.. code-block:: llvm
2357
2358 %A = fdiv undef, %X
2359 %B = fdiv %X, undef
2360 Safe:
2361 %A = undef
2362 b: unreachable
2363
2364These examples show the crucial difference between an *undefined value*
2365and *undefined behavior*. An undefined value (like '``undef``') is
2366allowed to have an arbitrary bit-pattern. This means that the ``%A``
2367operation can be constant folded to '``undef``', because the '``undef``'
2368could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2369However, in the second example, we can make a more aggressive
2370assumption: because the ``undef`` is allowed to be an arbitrary value,
2371we are allowed to assume that it could be zero. Since a divide by zero
2372has *undefined behavior*, we are allowed to assume that the operation
2373does not execute at all. This allows us to delete the divide and all
2374code after it. Because the undefined operation "can't happen", the
2375optimizer can assume that it occurs in dead code.
2376
2377.. code-block:: llvm
2378
2379 a: store undef -> %X
2380 b: store %X -> undef
2381 Safe:
2382 a: <deleted>
2383 b: unreachable
2384
2385These examples reiterate the ``fdiv`` example: a store *of* an undefined
2386value can be assumed to not have any effect; we can assume that the
2387value is overwritten with bits that happen to match what was already
2388there. However, a store *to* an undefined location could clobber
2389arbitrary memory, therefore, it has undefined behavior.
2390
2391.. _poisonvalues:
2392
2393Poison Values
2394-------------
2395
2396Poison values are similar to :ref:`undef values <undefvalues>`, however
2397they also represent the fact that an instruction or constant expression
2398which cannot evoke side effects has nevertheless detected a condition
2399which results in undefined behavior.
2400
2401There is currently no way of representing a poison value in the IR; they
2402only exist when produced by operations such as :ref:`add <i_add>` with
2403the ``nsw`` flag.
2404
2405Poison value behavior is defined in terms of value *dependence*:
2406
2407- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2408- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2409 their dynamic predecessor basic block.
2410- Function arguments depend on the corresponding actual argument values
2411 in the dynamic callers of their functions.
2412- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2413 instructions that dynamically transfer control back to them.
2414- :ref:`Invoke <i_invoke>` instructions depend on the
2415 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2416 call instructions that dynamically transfer control back to them.
2417- Non-volatile loads and stores depend on the most recent stores to all
2418 of the referenced memory addresses, following the order in the IR
2419 (including loads and stores implied by intrinsics such as
2420 :ref:`@llvm.memcpy <int_memcpy>`.)
2421- An instruction with externally visible side effects depends on the
2422 most recent preceding instruction with externally visible side
2423 effects, following the order in the IR. (This includes :ref:`volatile
2424 operations <volatile>`.)
2425- An instruction *control-depends* on a :ref:`terminator
2426 instruction <terminators>` if the terminator instruction has
2427 multiple successors and the instruction is always executed when
2428 control transfers to one of the successors, and may not be executed
2429 when control is transferred to another.
2430- Additionally, an instruction also *control-depends* on a terminator
2431 instruction if the set of instructions it otherwise depends on would
2432 be different if the terminator had transferred control to a different
2433 successor.
2434- Dependence is transitive.
2435
2436Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2437with the additional affect that any instruction which has a *dependence*
2438on a poison value has undefined behavior.
2439
2440Here are some examples:
2441
2442.. code-block:: llvm
2443
2444 entry:
2445 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2446 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2447 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2448 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2449
2450 store i32 %poison, i32* @g ; Poison value stored to memory.
2451 %poison2 = load i32* @g ; Poison value loaded back from memory.
2452
2453 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2454
2455 %narrowaddr = bitcast i32* @g to i16*
2456 %wideaddr = bitcast i32* @g to i64*
2457 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2458 %poison4 = load i64* %wideaddr ; Returns a poison value.
2459
2460 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2461 br i1 %cmp, label %true, label %end ; Branch to either destination.
2462
2463 true:
2464 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2465 ; it has undefined behavior.
2466 br label %end
2467
2468 end:
2469 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2470 ; Both edges into this PHI are
2471 ; control-dependent on %cmp, so this
2472 ; always results in a poison value.
2473
2474 store volatile i32 0, i32* @g ; This would depend on the store in %true
2475 ; if %cmp is true, or the store in %entry
2476 ; otherwise, so this is undefined behavior.
2477
2478 br i1 %cmp, label %second_true, label %second_end
2479 ; The same branch again, but this time the
2480 ; true block doesn't have side effects.
2481
2482 second_true:
2483 ; No side effects!
2484 ret void
2485
2486 second_end:
2487 store volatile i32 0, i32* @g ; This time, the instruction always depends
2488 ; on the store in %end. Also, it is
2489 ; control-equivalent to %end, so this is
2490 ; well-defined (ignoring earlier undefined
2491 ; behavior in this example).
2492
2493.. _blockaddress:
2494
2495Addresses of Basic Blocks
2496-------------------------
2497
2498``blockaddress(@function, %block)``
2499
2500The '``blockaddress``' constant computes the address of the specified
2501basic block in the specified function, and always has an ``i8*`` type.
2502Taking the address of the entry block is illegal.
2503
2504This value only has defined behavior when used as an operand to the
2505':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2506against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002507undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002508no label is equal to the null pointer. This may be passed around as an
2509opaque pointer sized value as long as the bits are not inspected. This
2510allows ``ptrtoint`` and arithmetic to be performed on these values so
2511long as the original value is reconstituted before the ``indirectbr``
2512instruction.
2513
2514Finally, some targets may provide defined semantics when using the value
2515as the operand to an inline assembly, but that is target specific.
2516
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002517.. _constantexprs:
2518
Sean Silvab084af42012-12-07 10:36:55 +00002519Constant Expressions
2520--------------------
2521
2522Constant expressions are used to allow expressions involving other
2523constants to be used as constants. Constant expressions may be of any
2524:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2525that does not have side effects (e.g. load and call are not supported).
2526The following is the syntax for constant expressions:
2527
2528``trunc (CST to TYPE)``
2529 Truncate a constant to another type. The bit size of CST must be
2530 larger than the bit size of TYPE. Both types must be integers.
2531``zext (CST to TYPE)``
2532 Zero extend a constant to another type. The bit size of CST must be
2533 smaller than the bit size of TYPE. Both types must be integers.
2534``sext (CST to TYPE)``
2535 Sign extend a constant to another type. The bit size of CST must be
2536 smaller than the bit size of TYPE. Both types must be integers.
2537``fptrunc (CST to TYPE)``
2538 Truncate a floating point constant to another floating point type.
2539 The size of CST must be larger than the size of TYPE. Both types
2540 must be floating point.
2541``fpext (CST to TYPE)``
2542 Floating point extend a constant to another type. The size of CST
2543 must be smaller or equal to the size of TYPE. Both types must be
2544 floating point.
2545``fptoui (CST to TYPE)``
2546 Convert a floating point constant to the corresponding unsigned
2547 integer constant. TYPE must be a scalar or vector integer type. CST
2548 must be of scalar or vector floating point type. Both CST and TYPE
2549 must be scalars, or vectors of the same number of elements. If the
2550 value won't fit in the integer type, the results are undefined.
2551``fptosi (CST to TYPE)``
2552 Convert a floating point constant to the corresponding signed
2553 integer constant. TYPE must be a scalar or vector integer type. CST
2554 must be of scalar or vector floating point type. Both CST and TYPE
2555 must be scalars, or vectors of the same number of elements. If the
2556 value won't fit in the integer type, the results are undefined.
2557``uitofp (CST to TYPE)``
2558 Convert an unsigned integer constant to the corresponding floating
2559 point constant. TYPE must be a scalar or vector floating point type.
2560 CST must be of scalar or vector integer type. Both CST and TYPE must
2561 be scalars, or vectors of the same number of elements. If the value
2562 won't fit in the floating point type, the results are undefined.
2563``sitofp (CST to TYPE)``
2564 Convert a signed integer constant to the corresponding floating
2565 point constant. TYPE must be a scalar or vector floating point type.
2566 CST must be of scalar or vector integer type. Both CST and TYPE must
2567 be scalars, or vectors of the same number of elements. If the value
2568 won't fit in the floating point type, the results are undefined.
2569``ptrtoint (CST to TYPE)``
2570 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002571 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002572 pointer type. The ``CST`` value is zero extended, truncated, or
2573 unchanged to make it fit in ``TYPE``.
2574``inttoptr (CST to TYPE)``
2575 Convert an integer constant to a pointer constant. TYPE must be a
2576 pointer type. CST must be of integer type. The CST value is zero
2577 extended, truncated, or unchanged to make it fit in a pointer size.
2578 This one is *really* dangerous!
2579``bitcast (CST to TYPE)``
2580 Convert a constant, CST, to another TYPE. The constraints of the
2581 operands are the same as those for the :ref:`bitcast
2582 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002583``addrspacecast (CST to TYPE)``
2584 Convert a constant pointer or constant vector of pointer, CST, to another
2585 TYPE in a different address space. The constraints of the operands are the
2586 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002587``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2588 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2589 constants. As with the :ref:`getelementptr <i_getelementptr>`
2590 instruction, the index list may have zero or more indexes, which are
2591 required to make sense for the type of "CSTPTR".
2592``select (COND, VAL1, VAL2)``
2593 Perform the :ref:`select operation <i_select>` on constants.
2594``icmp COND (VAL1, VAL2)``
2595 Performs the :ref:`icmp operation <i_icmp>` on constants.
2596``fcmp COND (VAL1, VAL2)``
2597 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2598``extractelement (VAL, IDX)``
2599 Perform the :ref:`extractelement operation <i_extractelement>` on
2600 constants.
2601``insertelement (VAL, ELT, IDX)``
2602 Perform the :ref:`insertelement operation <i_insertelement>` on
2603 constants.
2604``shufflevector (VEC1, VEC2, IDXMASK)``
2605 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2606 constants.
2607``extractvalue (VAL, IDX0, IDX1, ...)``
2608 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2609 constants. The index list is interpreted in a similar manner as
2610 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2611 least one index value must be specified.
2612``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2613 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2614 The index list is interpreted in a similar manner as indices in a
2615 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2616 value must be specified.
2617``OPCODE (LHS, RHS)``
2618 Perform the specified operation of the LHS and RHS constants. OPCODE
2619 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2620 binary <bitwiseops>` operations. The constraints on operands are
2621 the same as those for the corresponding instruction (e.g. no bitwise
2622 operations on floating point values are allowed).
2623
2624Other Values
2625============
2626
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002627.. _inlineasmexprs:
2628
Sean Silvab084af42012-12-07 10:36:55 +00002629Inline Assembler Expressions
2630----------------------------
2631
2632LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2633Inline Assembly <moduleasm>`) through the use of a special value. This
2634value represents the inline assembler as a string (containing the
2635instructions to emit), a list of operand constraints (stored as a
2636string), a flag that indicates whether or not the inline asm expression
2637has side effects, and a flag indicating whether the function containing
2638the asm needs to align its stack conservatively. An example inline
2639assembler expression is:
2640
2641.. code-block:: llvm
2642
2643 i32 (i32) asm "bswap $0", "=r,r"
2644
2645Inline assembler expressions may **only** be used as the callee operand
2646of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2647Thus, typically we have:
2648
2649.. code-block:: llvm
2650
2651 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2652
2653Inline asms with side effects not visible in the constraint list must be
2654marked as having side effects. This is done through the use of the
2655'``sideeffect``' keyword, like so:
2656
2657.. code-block:: llvm
2658
2659 call void asm sideeffect "eieio", ""()
2660
2661In some cases inline asms will contain code that will not work unless
2662the stack is aligned in some way, such as calls or SSE instructions on
2663x86, yet will not contain code that does that alignment within the asm.
2664The compiler should make conservative assumptions about what the asm
2665might contain and should generate its usual stack alignment code in the
2666prologue if the '``alignstack``' keyword is present:
2667
2668.. code-block:: llvm
2669
2670 call void asm alignstack "eieio", ""()
2671
2672Inline asms also support using non-standard assembly dialects. The
2673assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2674the inline asm is using the Intel dialect. Currently, ATT and Intel are
2675the only supported dialects. An example is:
2676
2677.. code-block:: llvm
2678
2679 call void asm inteldialect "eieio", ""()
2680
2681If multiple keywords appear the '``sideeffect``' keyword must come
2682first, the '``alignstack``' keyword second and the '``inteldialect``'
2683keyword last.
2684
2685Inline Asm Metadata
2686^^^^^^^^^^^^^^^^^^^
2687
2688The call instructions that wrap inline asm nodes may have a
2689"``!srcloc``" MDNode attached to it that contains a list of constant
2690integers. If present, the code generator will use the integer as the
2691location cookie value when report errors through the ``LLVMContext``
2692error reporting mechanisms. This allows a front-end to correlate backend
2693errors that occur with inline asm back to the source code that produced
2694it. For example:
2695
2696.. code-block:: llvm
2697
2698 call void asm sideeffect "something bad", ""(), !srcloc !42
2699 ...
2700 !42 = !{ i32 1234567 }
2701
2702It is up to the front-end to make sense of the magic numbers it places
2703in the IR. If the MDNode contains multiple constants, the code generator
2704will use the one that corresponds to the line of the asm that the error
2705occurs on.
2706
2707.. _metadata:
2708
2709Metadata Nodes and Metadata Strings
2710-----------------------------------
2711
2712LLVM IR allows metadata to be attached to instructions in the program
2713that can convey extra information about the code to the optimizers and
2714code generator. One example application of metadata is source-level
2715debug information. There are two metadata primitives: strings and nodes.
2716All metadata has the ``metadata`` type and is identified in syntax by a
2717preceding exclamation point ('``!``').
2718
2719A metadata string is a string surrounded by double quotes. It can
2720contain any character by escaping non-printable characters with
2721"``\xx``" where "``xx``" is the two digit hex code. For example:
2722"``!"test\00"``".
2723
2724Metadata nodes are represented with notation similar to structure
2725constants (a comma separated list of elements, surrounded by braces and
2726preceded by an exclamation point). Metadata nodes can have any values as
2727their operand. For example:
2728
2729.. code-block:: llvm
2730
2731 !{ metadata !"test\00", i32 10}
2732
2733A :ref:`named metadata <namedmetadatastructure>` is a collection of
2734metadata nodes, which can be looked up in the module symbol table. For
2735example:
2736
2737.. code-block:: llvm
2738
2739 !foo = metadata !{!4, !3}
2740
2741Metadata can be used as function arguments. Here ``llvm.dbg.value``
2742function is using two metadata arguments:
2743
2744.. code-block:: llvm
2745
2746 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2747
2748Metadata can be attached with an instruction. Here metadata ``!21`` is
2749attached to the ``add`` instruction using the ``!dbg`` identifier:
2750
2751.. code-block:: llvm
2752
2753 %indvar.next = add i64 %indvar, 1, !dbg !21
2754
2755More information about specific metadata nodes recognized by the
2756optimizers and code generator is found below.
2757
2758'``tbaa``' Metadata
2759^^^^^^^^^^^^^^^^^^^
2760
2761In LLVM IR, memory does not have types, so LLVM's own type system is not
2762suitable for doing TBAA. Instead, metadata is added to the IR to
2763describe a type system of a higher level language. This can be used to
2764implement typical C/C++ TBAA, but it can also be used to implement
2765custom alias analysis behavior for other languages.
2766
2767The current metadata format is very simple. TBAA metadata nodes have up
2768to three fields, e.g.:
2769
2770.. code-block:: llvm
2771
2772 !0 = metadata !{ metadata !"an example type tree" }
2773 !1 = metadata !{ metadata !"int", metadata !0 }
2774 !2 = metadata !{ metadata !"float", metadata !0 }
2775 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2776
2777The first field is an identity field. It can be any value, usually a
2778metadata string, which uniquely identifies the type. The most important
2779name in the tree is the name of the root node. Two trees with different
2780root node names are entirely disjoint, even if they have leaves with
2781common names.
2782
2783The second field identifies the type's parent node in the tree, or is
2784null or omitted for a root node. A type is considered to alias all of
2785its descendants and all of its ancestors in the tree. Also, a type is
2786considered to alias all types in other trees, so that bitcode produced
2787from multiple front-ends is handled conservatively.
2788
2789If the third field is present, it's an integer which if equal to 1
2790indicates that the type is "constant" (meaning
2791``pointsToConstantMemory`` should return true; see `other useful
2792AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2793
2794'``tbaa.struct``' Metadata
2795^^^^^^^^^^^^^^^^^^^^^^^^^^
2796
2797The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2798aggregate assignment operations in C and similar languages, however it
2799is defined to copy a contiguous region of memory, which is more than
2800strictly necessary for aggregate types which contain holes due to
2801padding. Also, it doesn't contain any TBAA information about the fields
2802of the aggregate.
2803
2804``!tbaa.struct`` metadata can describe which memory subregions in a
2805memcpy are padding and what the TBAA tags of the struct are.
2806
2807The current metadata format is very simple. ``!tbaa.struct`` metadata
2808nodes are a list of operands which are in conceptual groups of three.
2809For each group of three, the first operand gives the byte offset of a
2810field in bytes, the second gives its size in bytes, and the third gives
2811its tbaa tag. e.g.:
2812
2813.. code-block:: llvm
2814
2815 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2816
2817This describes a struct with two fields. The first is at offset 0 bytes
2818with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2819and has size 4 bytes and has tbaa tag !2.
2820
2821Note that the fields need not be contiguous. In this example, there is a
28224 byte gap between the two fields. This gap represents padding which
2823does not carry useful data and need not be preserved.
2824
2825'``fpmath``' Metadata
2826^^^^^^^^^^^^^^^^^^^^^
2827
2828``fpmath`` metadata may be attached to any instruction of floating point
2829type. It can be used to express the maximum acceptable error in the
2830result of that instruction, in ULPs, thus potentially allowing the
2831compiler to use a more efficient but less accurate method of computing
2832it. ULP is defined as follows:
2833
2834 If ``x`` is a real number that lies between two finite consecutive
2835 floating-point numbers ``a`` and ``b``, without being equal to one
2836 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2837 distance between the two non-equal finite floating-point numbers
2838 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2839
2840The metadata node shall consist of a single positive floating point
2841number representing the maximum relative error, for example:
2842
2843.. code-block:: llvm
2844
2845 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2846
2847'``range``' Metadata
2848^^^^^^^^^^^^^^^^^^^^
2849
Jingyue Wu37fcb592014-06-19 16:50:16 +00002850``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
2851integer types. It expresses the possible ranges the loaded value or the value
2852returned by the called function at this call site is in. The ranges are
2853represented with a flattened list of integers. The loaded value or the value
2854returned is known to be in the union of the ranges defined by each consecutive
2855pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00002856
2857- The type must match the type loaded by the instruction.
2858- The pair ``a,b`` represents the range ``[a,b)``.
2859- Both ``a`` and ``b`` are constants.
2860- The range is allowed to wrap.
2861- The range should not represent the full or empty set. That is,
2862 ``a!=b``.
2863
2864In addition, the pairs must be in signed order of the lower bound and
2865they must be non-contiguous.
2866
2867Examples:
2868
2869.. code-block:: llvm
2870
2871 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2872 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00002873 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
2874 %d = invoke i8 @bar() to label %cont
2875 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00002876 ...
2877 !0 = metadata !{ i8 0, i8 2 }
2878 !1 = metadata !{ i8 255, i8 2 }
2879 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2880 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2881
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002882'``llvm.loop``'
2883^^^^^^^^^^^^^^^
2884
2885It is sometimes useful to attach information to loop constructs. Currently,
2886loop metadata is implemented as metadata attached to the branch instruction
2887in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002888guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002889specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002890
2891The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002892itself to avoid merging it with any other identifier metadata, e.g.,
2893during module linkage or function inlining. That is, each loop should refer
2894to their own identification metadata even if they reside in separate functions.
2895The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002896constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002897
2898.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002899
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002900 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002901 !1 = metadata !{ metadata !1 }
2902
Mark Heffernan893752a2014-07-18 19:24:51 +00002903The loop identifier metadata can be used to specify additional
2904per-loop metadata. Any operands after the first operand can be treated
2905as user-defined metadata. For example the ``llvm.loop.unroll.count``
2906suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002907
Paul Redmond5fdf8362013-05-28 20:00:34 +00002908.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002909
Paul Redmond5fdf8362013-05-28 20:00:34 +00002910 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2911 ...
2912 !0 = metadata !{ metadata !0, metadata !1 }
Mark Heffernan9d20e422014-07-21 23:11:03 +00002913 !1 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00002914
Mark Heffernan9d20e422014-07-21 23:11:03 +00002915'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
2916^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00002917
Mark Heffernan9d20e422014-07-21 23:11:03 +00002918Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
2919used to control per-loop vectorization and interleaving parameters such as
2920vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00002921conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00002922``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
2923optimization hints and the optimizer will only interleave and vectorize loops if
2924it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
2925which contains information about loop-carried memory dependencies can be helpful
2926in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00002927
Mark Heffernan9d20e422014-07-21 23:11:03 +00002928'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00002929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2930
Mark Heffernan9d20e422014-07-21 23:11:03 +00002931This metadata suggests an interleave count to the loop interleaver.
2932The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00002933second operand is an integer specifying the interleave count. For
2934example:
2935
2936.. code-block:: llvm
2937
Mark Heffernan9d20e422014-07-21 23:11:03 +00002938 !0 = metadata !{ metadata !"llvm.loop.interleave.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00002939
Mark Heffernan9d20e422014-07-21 23:11:03 +00002940Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
2941multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
2942then the interleave count will be determined automatically.
2943
2944'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00002945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00002946
2947This metadata selectively enables or disables vectorization for the loop. The
2948first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
2949is a bit. If the bit operand value is 1 vectorization is enabled. A value of
29500 disables vectorization:
2951
2952.. code-block:: llvm
2953
2954 !0 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 0 }
2955 !1 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 1 }
Mark Heffernan893752a2014-07-18 19:24:51 +00002956
2957'``llvm.loop.vectorize.width``' Metadata
2958^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2959
2960This metadata sets the target width of the vectorizer. The first
2961operand is the string ``llvm.loop.vectorize.width`` and the second
2962operand is an integer specifying the width. For example:
2963
2964.. code-block:: llvm
2965
2966 !0 = metadata !{ metadata !"llvm.loop.vectorize.width", i32 4 }
2967
2968Note that setting ``llvm.loop.vectorize.width`` to 1 disables
2969vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
29700 or if the loop does not have this metadata the width will be
2971determined automatically.
2972
2973'``llvm.loop.unroll``'
2974^^^^^^^^^^^^^^^^^^^^^^
2975
2976Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
2977optimization hints such as the unroll factor. ``llvm.loop.unroll``
2978metadata should be used in conjunction with ``llvm.loop`` loop
2979identification metadata. The ``llvm.loop.unroll`` metadata are only
2980optimization hints and the unrolling will only be performed if the
2981optimizer believes it is safe to do so.
2982
2983'``llvm.loop.unroll.enable``' Metadata
2984^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2985
2986This metadata either disables loop unrolling or suggests that the loop
2987be unrolled fully. The first operand is the string
2988``llvm.loop.unroll.enable`` and the second operand is a bit. If the
2989bit operand value is 0 loop unrolling is disabled. A value of 1
2990indicates that the loop should be fully unrolled. For example:
2991
2992.. code-block:: llvm
2993
2994 !0 = metadata !{ metadata !"llvm.loop.unroll.enable", i1 0 }
2995 !1 = metadata !{ metadata !"llvm.loop.unroll.enable", i1 1 }
2996
2997'``llvm.loop.unroll.count``' Metadata
2998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2999
3000This metadata suggests an unroll factor to the loop unroller. The
3001first operand is the string ``llvm.loop.unroll.count`` and the second
3002operand is a positive integer specifying the unroll factor. For
3003example:
3004
3005.. code-block:: llvm
3006
3007 !0 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
3008
3009If the trip count of the loop is less than the unroll count the loop
3010will be partially unrolled.
3011
3012If a loop has both a ``llvm.loop.unroll.enable`` metadata and
3013``llvm.loop.unroll.count`` metadata the behavior depends upon the
3014value of the ``llvm.loop.unroll.enable`` operand. If the value is 0,
3015the loop will not be unrolled. If the value is 1, the loop will be
3016unrolled with a factor determined by the ``llvm.loop.unroll.count``
3017operand effectively ignoring the ``llvm.loop.unroll.enable`` metadata.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003018
3019'``llvm.mem``'
3020^^^^^^^^^^^^^^^
3021
3022Metadata types used to annotate memory accesses with information helpful
3023for optimizations are prefixed with ``llvm.mem``.
3024
3025'``llvm.mem.parallel_loop_access``' Metadata
3026^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3027
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003028The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3029or metadata containing a list of loop identifiers for nested loops.
3030The metadata is attached to memory accessing instructions and denotes that
3031no loop carried memory dependence exist between it and other instructions denoted
3032with the same loop identifier.
3033
3034Precisely, given two instructions ``m1`` and ``m2`` that both have the
3035``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3036set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003037carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003038``L2``.
3039
3040As a special case, if all memory accessing instructions in a loop have
3041``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3042loop has no loop carried memory dependences and is considered to be a parallel
3043loop.
3044
3045Note that if not all memory access instructions have such metadata referring to
3046the loop, then the loop is considered not being trivially parallel. Additional
3047memory dependence analysis is required to make that determination. As a fail
3048safe mechanism, this causes loops that were originally parallel to be considered
3049sequential (if optimization passes that are unaware of the parallel semantics
3050insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003051
3052Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003053both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003054metadata types that refer to the same loop identifier metadata.
3055
3056.. code-block:: llvm
3057
3058 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003059 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003060 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003061 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003062 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003063 ...
3064 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003065
3066 for.end:
3067 ...
3068 !0 = metadata !{ metadata !0 }
3069
3070It is also possible to have nested parallel loops. In that case the
3071memory accesses refer to a list of loop identifier metadata nodes instead of
3072the loop identifier metadata node directly:
3073
3074.. code-block:: llvm
3075
3076 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003077 ...
3078 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3079 ...
3080 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003081
3082 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003083 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003084 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003085 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003086 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003087 ...
3088 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003089
3090 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003091 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003092 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003093 ...
3094 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003095
3096 outer.for.end: ; preds = %for.body
3097 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00003098 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
3099 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
3100 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003101
Sean Silvab084af42012-12-07 10:36:55 +00003102Module Flags Metadata
3103=====================
3104
3105Information about the module as a whole is difficult to convey to LLVM's
3106subsystems. The LLVM IR isn't sufficient to transmit this information.
3107The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003108this. These flags are in the form of key / value pairs --- much like a
3109dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003110look it up.
3111
3112The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3113Each triplet has the following form:
3114
3115- The first element is a *behavior* flag, which specifies the behavior
3116 when two (or more) modules are merged together, and it encounters two
3117 (or more) metadata with the same ID. The supported behaviors are
3118 described below.
3119- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003120 metadata. Each module may only have one flag entry for each unique ID (not
3121 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003122- The third element is the value of the flag.
3123
3124When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003125``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3126each unique metadata ID string, there will be exactly one entry in the merged
3127modules ``llvm.module.flags`` metadata table, and the value for that entry will
3128be determined by the merge behavior flag, as described below. The only exception
3129is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003130
3131The following behaviors are supported:
3132
3133.. list-table::
3134 :header-rows: 1
3135 :widths: 10 90
3136
3137 * - Value
3138 - Behavior
3139
3140 * - 1
3141 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003142 Emits an error if two values disagree, otherwise the resulting value
3143 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003144
3145 * - 2
3146 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003147 Emits a warning if two values disagree. The result value will be the
3148 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003149
3150 * - 3
3151 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003152 Adds a requirement that another module flag be present and have a
3153 specified value after linking is performed. The value must be a
3154 metadata pair, where the first element of the pair is the ID of the
3155 module flag to be restricted, and the second element of the pair is
3156 the value the module flag should be restricted to. This behavior can
3157 be used to restrict the allowable results (via triggering of an
3158 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003159
3160 * - 4
3161 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003162 Uses the specified value, regardless of the behavior or value of the
3163 other module. If both modules specify **Override**, but the values
3164 differ, an error will be emitted.
3165
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003166 * - 5
3167 - **Append**
3168 Appends the two values, which are required to be metadata nodes.
3169
3170 * - 6
3171 - **AppendUnique**
3172 Appends the two values, which are required to be metadata
3173 nodes. However, duplicate entries in the second list are dropped
3174 during the append operation.
3175
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003176It is an error for a particular unique flag ID to have multiple behaviors,
3177except in the case of **Require** (which adds restrictions on another metadata
3178value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003179
3180An example of module flags:
3181
3182.. code-block:: llvm
3183
3184 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3185 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3186 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3187 !3 = metadata !{ i32 3, metadata !"qux",
3188 metadata !{
3189 metadata !"foo", i32 1
3190 }
3191 }
3192 !llvm.module.flags = !{ !0, !1, !2, !3 }
3193
3194- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3195 if two or more ``!"foo"`` flags are seen is to emit an error if their
3196 values are not equal.
3197
3198- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3199 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003200 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003201
3202- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3203 behavior if two or more ``!"qux"`` flags are seen is to emit a
3204 warning if their values are not equal.
3205
3206- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3207
3208 ::
3209
3210 metadata !{ metadata !"foo", i32 1 }
3211
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003212 The behavior is to emit an error if the ``llvm.module.flags`` does not
3213 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3214 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003215
3216Objective-C Garbage Collection Module Flags Metadata
3217----------------------------------------------------
3218
3219On the Mach-O platform, Objective-C stores metadata about garbage
3220collection in a special section called "image info". The metadata
3221consists of a version number and a bitmask specifying what types of
3222garbage collection are supported (if any) by the file. If two or more
3223modules are linked together their garbage collection metadata needs to
3224be merged rather than appended together.
3225
3226The Objective-C garbage collection module flags metadata consists of the
3227following key-value pairs:
3228
3229.. list-table::
3230 :header-rows: 1
3231 :widths: 30 70
3232
3233 * - Key
3234 - Value
3235
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003236 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003237 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003238
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003239 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003240 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003241 always 0.
3242
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003243 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003244 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003245 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3246 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3247 Objective-C ABI version 2.
3248
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003249 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003250 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003251 not. Valid values are 0, for no garbage collection, and 2, for garbage
3252 collection supported.
3253
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003254 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003255 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003256 If present, its value must be 6. This flag requires that the
3257 ``Objective-C Garbage Collection`` flag have the value 2.
3258
3259Some important flag interactions:
3260
3261- If a module with ``Objective-C Garbage Collection`` set to 0 is
3262 merged with a module with ``Objective-C Garbage Collection`` set to
3263 2, then the resulting module has the
3264 ``Objective-C Garbage Collection`` flag set to 0.
3265- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3266 merged with a module with ``Objective-C GC Only`` set to 6.
3267
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003268Automatic Linker Flags Module Flags Metadata
3269--------------------------------------------
3270
3271Some targets support embedding flags to the linker inside individual object
3272files. Typically this is used in conjunction with language extensions which
3273allow source files to explicitly declare the libraries they depend on, and have
3274these automatically be transmitted to the linker via object files.
3275
3276These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003277using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003278to be ``AppendUnique``, and the value for the key is expected to be a metadata
3279node which should be a list of other metadata nodes, each of which should be a
3280list of metadata strings defining linker options.
3281
3282For example, the following metadata section specifies two separate sets of
3283linker options, presumably to link against ``libz`` and the ``Cocoa``
3284framework::
3285
Michael Liaoa7699082013-03-06 18:24:34 +00003286 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003287 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003288 metadata !{ metadata !"-lz" },
3289 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003290 !llvm.module.flags = !{ !0 }
3291
3292The metadata encoding as lists of lists of options, as opposed to a collapsed
3293list of options, is chosen so that the IR encoding can use multiple option
3294strings to specify e.g., a single library, while still having that specifier be
3295preserved as an atomic element that can be recognized by a target specific
3296assembly writer or object file emitter.
3297
3298Each individual option is required to be either a valid option for the target's
3299linker, or an option that is reserved by the target specific assembly writer or
3300object file emitter. No other aspect of these options is defined by the IR.
3301
Oliver Stannard5dc29342014-06-20 10:08:11 +00003302C type width Module Flags Metadata
3303----------------------------------
3304
3305The ARM backend emits a section into each generated object file describing the
3306options that it was compiled with (in a compiler-independent way) to prevent
3307linking incompatible objects, and to allow automatic library selection. Some
3308of these options are not visible at the IR level, namely wchar_t width and enum
3309width.
3310
3311To pass this information to the backend, these options are encoded in module
3312flags metadata, using the following key-value pairs:
3313
3314.. list-table::
3315 :header-rows: 1
3316 :widths: 30 70
3317
3318 * - Key
3319 - Value
3320
3321 * - short_wchar
3322 - * 0 --- sizeof(wchar_t) == 4
3323 * 1 --- sizeof(wchar_t) == 2
3324
3325 * - short_enum
3326 - * 0 --- Enums are at least as large as an ``int``.
3327 * 1 --- Enums are stored in the smallest integer type which can
3328 represent all of its values.
3329
3330For example, the following metadata section specifies that the module was
3331compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3332enum is the smallest type which can represent all of its values::
3333
3334 !llvm.module.flags = !{!0, !1}
3335 !0 = metadata !{i32 1, metadata !"short_wchar", i32 1}
3336 !1 = metadata !{i32 1, metadata !"short_enum", i32 0}
3337
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003338.. _intrinsicglobalvariables:
3339
Sean Silvab084af42012-12-07 10:36:55 +00003340Intrinsic Global Variables
3341==========================
3342
3343LLVM has a number of "magic" global variables that contain data that
3344affect code generation or other IR semantics. These are documented here.
3345All globals of this sort should have a section specified as
3346"``llvm.metadata``". This section and all globals that start with
3347"``llvm.``" are reserved for use by LLVM.
3348
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003349.. _gv_llvmused:
3350
Sean Silvab084af42012-12-07 10:36:55 +00003351The '``llvm.used``' Global Variable
3352-----------------------------------
3353
Rafael Espindola74f2e462013-04-22 14:58:02 +00003354The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003355:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003356pointers to named global variables, functions and aliases which may optionally
3357have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003358use of it is:
3359
3360.. code-block:: llvm
3361
3362 @X = global i8 4
3363 @Y = global i32 123
3364
3365 @llvm.used = appending global [2 x i8*] [
3366 i8* @X,
3367 i8* bitcast (i32* @Y to i8*)
3368 ], section "llvm.metadata"
3369
Rafael Espindola74f2e462013-04-22 14:58:02 +00003370If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3371and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003372symbol that it cannot see (which is why they have to be named). For example, if
3373a variable has internal linkage and no references other than that from the
3374``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3375references from inline asms and other things the compiler cannot "see", and
3376corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003377
3378On some targets, the code generator must emit a directive to the
3379assembler or object file to prevent the assembler and linker from
3380molesting the symbol.
3381
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003382.. _gv_llvmcompilerused:
3383
Sean Silvab084af42012-12-07 10:36:55 +00003384The '``llvm.compiler.used``' Global Variable
3385--------------------------------------------
3386
3387The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3388directive, except that it only prevents the compiler from touching the
3389symbol. On targets that support it, this allows an intelligent linker to
3390optimize references to the symbol without being impeded as it would be
3391by ``@llvm.used``.
3392
3393This is a rare construct that should only be used in rare circumstances,
3394and should not be exposed to source languages.
3395
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003396.. _gv_llvmglobalctors:
3397
Sean Silvab084af42012-12-07 10:36:55 +00003398The '``llvm.global_ctors``' Global Variable
3399-------------------------------------------
3400
3401.. code-block:: llvm
3402
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003403 %0 = type { i32, void ()*, i8* }
3404 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003405
3406The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003407functions, priorities, and an optional associated global or function.
3408The functions referenced by this array will be called in ascending order
3409of priority (i.e. lowest first) when the module is loaded. The order of
3410functions with the same priority is not defined.
3411
3412If the third field is present, non-null, and points to a global variable
3413or function, the initializer function will only run if the associated
3414data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003415
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003416.. _llvmglobaldtors:
3417
Sean Silvab084af42012-12-07 10:36:55 +00003418The '``llvm.global_dtors``' Global Variable
3419-------------------------------------------
3420
3421.. code-block:: llvm
3422
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003423 %0 = type { i32, void ()*, i8* }
3424 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003425
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003426The ``@llvm.global_dtors`` array contains a list of destructor
3427functions, priorities, and an optional associated global or function.
3428The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003429order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003430order of functions with the same priority is not defined.
3431
3432If the third field is present, non-null, and points to a global variable
3433or function, the destructor function will only run if the associated
3434data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003435
3436Instruction Reference
3437=====================
3438
3439The LLVM instruction set consists of several different classifications
3440of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3441instructions <binaryops>`, :ref:`bitwise binary
3442instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3443:ref:`other instructions <otherops>`.
3444
3445.. _terminators:
3446
3447Terminator Instructions
3448-----------------------
3449
3450As mentioned :ref:`previously <functionstructure>`, every basic block in a
3451program ends with a "Terminator" instruction, which indicates which
3452block should be executed after the current block is finished. These
3453terminator instructions typically yield a '``void``' value: they produce
3454control flow, not values (the one exception being the
3455':ref:`invoke <i_invoke>`' instruction).
3456
3457The terminator instructions are: ':ref:`ret <i_ret>`',
3458':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3459':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3460':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3461
3462.. _i_ret:
3463
3464'``ret``' Instruction
3465^^^^^^^^^^^^^^^^^^^^^
3466
3467Syntax:
3468"""""""
3469
3470::
3471
3472 ret <type> <value> ; Return a value from a non-void function
3473 ret void ; Return from void function
3474
3475Overview:
3476"""""""""
3477
3478The '``ret``' instruction is used to return control flow (and optionally
3479a value) from a function back to the caller.
3480
3481There are two forms of the '``ret``' instruction: one that returns a
3482value and then causes control flow, and one that just causes control
3483flow to occur.
3484
3485Arguments:
3486""""""""""
3487
3488The '``ret``' instruction optionally accepts a single argument, the
3489return value. The type of the return value must be a ':ref:`first
3490class <t_firstclass>`' type.
3491
3492A function is not :ref:`well formed <wellformed>` if it it has a non-void
3493return type and contains a '``ret``' instruction with no return value or
3494a return value with a type that does not match its type, or if it has a
3495void return type and contains a '``ret``' instruction with a return
3496value.
3497
3498Semantics:
3499""""""""""
3500
3501When the '``ret``' instruction is executed, control flow returns back to
3502the calling function's context. If the caller is a
3503":ref:`call <i_call>`" instruction, execution continues at the
3504instruction after the call. If the caller was an
3505":ref:`invoke <i_invoke>`" instruction, execution continues at the
3506beginning of the "normal" destination block. If the instruction returns
3507a value, that value shall set the call or invoke instruction's return
3508value.
3509
3510Example:
3511""""""""
3512
3513.. code-block:: llvm
3514
3515 ret i32 5 ; Return an integer value of 5
3516 ret void ; Return from a void function
3517 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3518
3519.. _i_br:
3520
3521'``br``' Instruction
3522^^^^^^^^^^^^^^^^^^^^
3523
3524Syntax:
3525"""""""
3526
3527::
3528
3529 br i1 <cond>, label <iftrue>, label <iffalse>
3530 br label <dest> ; Unconditional branch
3531
3532Overview:
3533"""""""""
3534
3535The '``br``' instruction is used to cause control flow to transfer to a
3536different basic block in the current function. There are two forms of
3537this instruction, corresponding to a conditional branch and an
3538unconditional branch.
3539
3540Arguments:
3541""""""""""
3542
3543The conditional branch form of the '``br``' instruction takes a single
3544'``i1``' value and two '``label``' values. The unconditional form of the
3545'``br``' instruction takes a single '``label``' value as a target.
3546
3547Semantics:
3548""""""""""
3549
3550Upon execution of a conditional '``br``' instruction, the '``i1``'
3551argument is evaluated. If the value is ``true``, control flows to the
3552'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3553to the '``iffalse``' ``label`` argument.
3554
3555Example:
3556""""""""
3557
3558.. code-block:: llvm
3559
3560 Test:
3561 %cond = icmp eq i32 %a, %b
3562 br i1 %cond, label %IfEqual, label %IfUnequal
3563 IfEqual:
3564 ret i32 1
3565 IfUnequal:
3566 ret i32 0
3567
3568.. _i_switch:
3569
3570'``switch``' Instruction
3571^^^^^^^^^^^^^^^^^^^^^^^^
3572
3573Syntax:
3574"""""""
3575
3576::
3577
3578 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3579
3580Overview:
3581"""""""""
3582
3583The '``switch``' instruction is used to transfer control flow to one of
3584several different places. It is a generalization of the '``br``'
3585instruction, allowing a branch to occur to one of many possible
3586destinations.
3587
3588Arguments:
3589""""""""""
3590
3591The '``switch``' instruction uses three parameters: an integer
3592comparison value '``value``', a default '``label``' destination, and an
3593array of pairs of comparison value constants and '``label``'s. The table
3594is not allowed to contain duplicate constant entries.
3595
3596Semantics:
3597""""""""""
3598
3599The ``switch`` instruction specifies a table of values and destinations.
3600When the '``switch``' instruction is executed, this table is searched
3601for the given value. If the value is found, control flow is transferred
3602to the corresponding destination; otherwise, control flow is transferred
3603to the default destination.
3604
3605Implementation:
3606"""""""""""""""
3607
3608Depending on properties of the target machine and the particular
3609``switch`` instruction, this instruction may be code generated in
3610different ways. For example, it could be generated as a series of
3611chained conditional branches or with a lookup table.
3612
3613Example:
3614""""""""
3615
3616.. code-block:: llvm
3617
3618 ; Emulate a conditional br instruction
3619 %Val = zext i1 %value to i32
3620 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3621
3622 ; Emulate an unconditional br instruction
3623 switch i32 0, label %dest [ ]
3624
3625 ; Implement a jump table:
3626 switch i32 %val, label %otherwise [ i32 0, label %onzero
3627 i32 1, label %onone
3628 i32 2, label %ontwo ]
3629
3630.. _i_indirectbr:
3631
3632'``indirectbr``' Instruction
3633^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3634
3635Syntax:
3636"""""""
3637
3638::
3639
3640 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3641
3642Overview:
3643"""""""""
3644
3645The '``indirectbr``' instruction implements an indirect branch to a
3646label within the current function, whose address is specified by
3647"``address``". Address must be derived from a
3648:ref:`blockaddress <blockaddress>` constant.
3649
3650Arguments:
3651""""""""""
3652
3653The '``address``' argument is the address of the label to jump to. The
3654rest of the arguments indicate the full set of possible destinations
3655that the address may point to. Blocks are allowed to occur multiple
3656times in the destination list, though this isn't particularly useful.
3657
3658This destination list is required so that dataflow analysis has an
3659accurate understanding of the CFG.
3660
3661Semantics:
3662""""""""""
3663
3664Control transfers to the block specified in the address argument. All
3665possible destination blocks must be listed in the label list, otherwise
3666this instruction has undefined behavior. This implies that jumps to
3667labels defined in other functions have undefined behavior as well.
3668
3669Implementation:
3670"""""""""""""""
3671
3672This is typically implemented with a jump through a register.
3673
3674Example:
3675""""""""
3676
3677.. code-block:: llvm
3678
3679 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3680
3681.. _i_invoke:
3682
3683'``invoke``' Instruction
3684^^^^^^^^^^^^^^^^^^^^^^^^
3685
3686Syntax:
3687"""""""
3688
3689::
3690
3691 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3692 to label <normal label> unwind label <exception label>
3693
3694Overview:
3695"""""""""
3696
3697The '``invoke``' instruction causes control to transfer to a specified
3698function, with the possibility of control flow transfer to either the
3699'``normal``' label or the '``exception``' label. If the callee function
3700returns with the "``ret``" instruction, control flow will return to the
3701"normal" label. If the callee (or any indirect callees) returns via the
3702":ref:`resume <i_resume>`" instruction or other exception handling
3703mechanism, control is interrupted and continued at the dynamically
3704nearest "exception" label.
3705
3706The '``exception``' label is a `landing
3707pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3708'``exception``' label is required to have the
3709":ref:`landingpad <i_landingpad>`" instruction, which contains the
3710information about the behavior of the program after unwinding happens,
3711as its first non-PHI instruction. The restrictions on the
3712"``landingpad``" instruction's tightly couples it to the "``invoke``"
3713instruction, so that the important information contained within the
3714"``landingpad``" instruction can't be lost through normal code motion.
3715
3716Arguments:
3717""""""""""
3718
3719This instruction requires several arguments:
3720
3721#. The optional "cconv" marker indicates which :ref:`calling
3722 convention <callingconv>` the call should use. If none is
3723 specified, the call defaults to using C calling conventions.
3724#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3725 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3726 are valid here.
3727#. '``ptr to function ty``': shall be the signature of the pointer to
3728 function value being invoked. In most cases, this is a direct
3729 function invocation, but indirect ``invoke``'s are just as possible,
3730 branching off an arbitrary pointer to function value.
3731#. '``function ptr val``': An LLVM value containing a pointer to a
3732 function to be invoked.
3733#. '``function args``': argument list whose types match the function
3734 signature argument types and parameter attributes. All arguments must
3735 be of :ref:`first class <t_firstclass>` type. If the function signature
3736 indicates the function accepts a variable number of arguments, the
3737 extra arguments can be specified.
3738#. '``normal label``': the label reached when the called function
3739 executes a '``ret``' instruction.
3740#. '``exception label``': the label reached when a callee returns via
3741 the :ref:`resume <i_resume>` instruction or other exception handling
3742 mechanism.
3743#. The optional :ref:`function attributes <fnattrs>` list. Only
3744 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3745 attributes are valid here.
3746
3747Semantics:
3748""""""""""
3749
3750This instruction is designed to operate as a standard '``call``'
3751instruction in most regards. The primary difference is that it
3752establishes an association with a label, which is used by the runtime
3753library to unwind the stack.
3754
3755This instruction is used in languages with destructors to ensure that
3756proper cleanup is performed in the case of either a ``longjmp`` or a
3757thrown exception. Additionally, this is important for implementation of
3758'``catch``' clauses in high-level languages that support them.
3759
3760For the purposes of the SSA form, the definition of the value returned
3761by the '``invoke``' instruction is deemed to occur on the edge from the
3762current block to the "normal" label. If the callee unwinds then no
3763return value is available.
3764
3765Example:
3766""""""""
3767
3768.. code-block:: llvm
3769
3770 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003771 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003772 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003773 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003774
3775.. _i_resume:
3776
3777'``resume``' Instruction
3778^^^^^^^^^^^^^^^^^^^^^^^^
3779
3780Syntax:
3781"""""""
3782
3783::
3784
3785 resume <type> <value>
3786
3787Overview:
3788"""""""""
3789
3790The '``resume``' instruction is a terminator instruction that has no
3791successors.
3792
3793Arguments:
3794""""""""""
3795
3796The '``resume``' instruction requires one argument, which must have the
3797same type as the result of any '``landingpad``' instruction in the same
3798function.
3799
3800Semantics:
3801""""""""""
3802
3803The '``resume``' instruction resumes propagation of an existing
3804(in-flight) exception whose unwinding was interrupted with a
3805:ref:`landingpad <i_landingpad>` instruction.
3806
3807Example:
3808""""""""
3809
3810.. code-block:: llvm
3811
3812 resume { i8*, i32 } %exn
3813
3814.. _i_unreachable:
3815
3816'``unreachable``' Instruction
3817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3818
3819Syntax:
3820"""""""
3821
3822::
3823
3824 unreachable
3825
3826Overview:
3827"""""""""
3828
3829The '``unreachable``' instruction has no defined semantics. This
3830instruction is used to inform the optimizer that a particular portion of
3831the code is not reachable. This can be used to indicate that the code
3832after a no-return function cannot be reached, and other facts.
3833
3834Semantics:
3835""""""""""
3836
3837The '``unreachable``' instruction has no defined semantics.
3838
3839.. _binaryops:
3840
3841Binary Operations
3842-----------------
3843
3844Binary operators are used to do most of the computation in a program.
3845They require two operands of the same type, execute an operation on
3846them, and produce a single value. The operands might represent multiple
3847data, as is the case with the :ref:`vector <t_vector>` data type. The
3848result value has the same type as its operands.
3849
3850There are several different binary operators:
3851
3852.. _i_add:
3853
3854'``add``' Instruction
3855^^^^^^^^^^^^^^^^^^^^^
3856
3857Syntax:
3858"""""""
3859
3860::
3861
Tim Northover675a0962014-06-13 14:24:23 +00003862 <result> = add <ty> <op1>, <op2> ; yields ty:result
3863 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
3864 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
3865 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003866
3867Overview:
3868"""""""""
3869
3870The '``add``' instruction returns the sum of its two operands.
3871
3872Arguments:
3873""""""""""
3874
3875The two arguments to the '``add``' instruction must be
3876:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3877arguments must have identical types.
3878
3879Semantics:
3880""""""""""
3881
3882The value produced is the integer sum of the two operands.
3883
3884If the sum has unsigned overflow, the result returned is the
3885mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3886the result.
3887
3888Because LLVM integers use a two's complement representation, this
3889instruction is appropriate for both signed and unsigned integers.
3890
3891``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3892respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3893result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3894unsigned and/or signed overflow, respectively, occurs.
3895
3896Example:
3897""""""""
3898
3899.. code-block:: llvm
3900
Tim Northover675a0962014-06-13 14:24:23 +00003901 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00003902
3903.. _i_fadd:
3904
3905'``fadd``' Instruction
3906^^^^^^^^^^^^^^^^^^^^^^
3907
3908Syntax:
3909"""""""
3910
3911::
3912
Tim Northover675a0962014-06-13 14:24:23 +00003913 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003914
3915Overview:
3916"""""""""
3917
3918The '``fadd``' instruction returns the sum of its two operands.
3919
3920Arguments:
3921""""""""""
3922
3923The two arguments to the '``fadd``' instruction must be :ref:`floating
3924point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3925Both arguments must have identical types.
3926
3927Semantics:
3928""""""""""
3929
3930The value produced is the floating point sum of the two operands. This
3931instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3932which are optimization hints to enable otherwise unsafe floating point
3933optimizations:
3934
3935Example:
3936""""""""
3937
3938.. code-block:: llvm
3939
Tim Northover675a0962014-06-13 14:24:23 +00003940 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00003941
3942'``sub``' Instruction
3943^^^^^^^^^^^^^^^^^^^^^
3944
3945Syntax:
3946"""""""
3947
3948::
3949
Tim Northover675a0962014-06-13 14:24:23 +00003950 <result> = sub <ty> <op1>, <op2> ; yields ty:result
3951 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
3952 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
3953 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003954
3955Overview:
3956"""""""""
3957
3958The '``sub``' instruction returns the difference of its two operands.
3959
3960Note that the '``sub``' instruction is used to represent the '``neg``'
3961instruction present in most other intermediate representations.
3962
3963Arguments:
3964""""""""""
3965
3966The two arguments to the '``sub``' instruction must be
3967:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3968arguments must have identical types.
3969
3970Semantics:
3971""""""""""
3972
3973The value produced is the integer difference of the two operands.
3974
3975If the difference has unsigned overflow, the result returned is the
3976mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3977the result.
3978
3979Because LLVM integers use a two's complement representation, this
3980instruction is appropriate for both signed and unsigned integers.
3981
3982``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3983respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3984result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3985unsigned and/or signed overflow, respectively, occurs.
3986
3987Example:
3988""""""""
3989
3990.. code-block:: llvm
3991
Tim Northover675a0962014-06-13 14:24:23 +00003992 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
3993 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00003994
3995.. _i_fsub:
3996
3997'``fsub``' Instruction
3998^^^^^^^^^^^^^^^^^^^^^^
3999
4000Syntax:
4001"""""""
4002
4003::
4004
Tim Northover675a0962014-06-13 14:24:23 +00004005 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004006
4007Overview:
4008"""""""""
4009
4010The '``fsub``' instruction returns the difference of its two operands.
4011
4012Note that the '``fsub``' instruction is used to represent the '``fneg``'
4013instruction present in most other intermediate representations.
4014
4015Arguments:
4016""""""""""
4017
4018The two arguments to the '``fsub``' instruction must be :ref:`floating
4019point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4020Both arguments must have identical types.
4021
4022Semantics:
4023""""""""""
4024
4025The value produced is the floating point difference of the two operands.
4026This instruction can also take any number of :ref:`fast-math
4027flags <fastmath>`, which are optimization hints to enable otherwise
4028unsafe floating point optimizations:
4029
4030Example:
4031""""""""
4032
4033.. code-block:: llvm
4034
Tim Northover675a0962014-06-13 14:24:23 +00004035 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4036 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004037
4038'``mul``' Instruction
4039^^^^^^^^^^^^^^^^^^^^^
4040
4041Syntax:
4042"""""""
4043
4044::
4045
Tim Northover675a0962014-06-13 14:24:23 +00004046 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4047 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4048 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4049 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004050
4051Overview:
4052"""""""""
4053
4054The '``mul``' instruction returns the product of its two operands.
4055
4056Arguments:
4057""""""""""
4058
4059The two arguments to the '``mul``' instruction must be
4060:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4061arguments must have identical types.
4062
4063Semantics:
4064""""""""""
4065
4066The value produced is the integer product of the two operands.
4067
4068If the result of the multiplication has unsigned overflow, the result
4069returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4070bit width of the result.
4071
4072Because LLVM integers use a two's complement representation, and the
4073result is the same width as the operands, this instruction returns the
4074correct result for both signed and unsigned integers. If a full product
4075(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4076sign-extended or zero-extended as appropriate to the width of the full
4077product.
4078
4079``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4080respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4081result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4082unsigned and/or signed overflow, respectively, occurs.
4083
4084Example:
4085""""""""
4086
4087.. code-block:: llvm
4088
Tim Northover675a0962014-06-13 14:24:23 +00004089 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004090
4091.. _i_fmul:
4092
4093'``fmul``' Instruction
4094^^^^^^^^^^^^^^^^^^^^^^
4095
4096Syntax:
4097"""""""
4098
4099::
4100
Tim Northover675a0962014-06-13 14:24:23 +00004101 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004102
4103Overview:
4104"""""""""
4105
4106The '``fmul``' instruction returns the product of its two operands.
4107
4108Arguments:
4109""""""""""
4110
4111The two arguments to the '``fmul``' instruction must be :ref:`floating
4112point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4113Both arguments must have identical types.
4114
4115Semantics:
4116""""""""""
4117
4118The value produced is the floating point product of the two operands.
4119This instruction can also take any number of :ref:`fast-math
4120flags <fastmath>`, which are optimization hints to enable otherwise
4121unsafe floating point optimizations:
4122
4123Example:
4124""""""""
4125
4126.. code-block:: llvm
4127
Tim Northover675a0962014-06-13 14:24:23 +00004128 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004129
4130'``udiv``' Instruction
4131^^^^^^^^^^^^^^^^^^^^^^
4132
4133Syntax:
4134"""""""
4135
4136::
4137
Tim Northover675a0962014-06-13 14:24:23 +00004138 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4139 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004140
4141Overview:
4142"""""""""
4143
4144The '``udiv``' instruction returns the quotient of its two operands.
4145
4146Arguments:
4147""""""""""
4148
4149The two arguments to the '``udiv``' instruction must be
4150:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4151arguments must have identical types.
4152
4153Semantics:
4154""""""""""
4155
4156The value produced is the unsigned integer quotient of the two operands.
4157
4158Note that unsigned integer division and signed integer division are
4159distinct operations; for signed integer division, use '``sdiv``'.
4160
4161Division by zero leads to undefined behavior.
4162
4163If the ``exact`` keyword is present, the result value of the ``udiv`` is
4164a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4165such, "((a udiv exact b) mul b) == a").
4166
4167Example:
4168""""""""
4169
4170.. code-block:: llvm
4171
Tim Northover675a0962014-06-13 14:24:23 +00004172 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004173
4174'``sdiv``' Instruction
4175^^^^^^^^^^^^^^^^^^^^^^
4176
4177Syntax:
4178"""""""
4179
4180::
4181
Tim Northover675a0962014-06-13 14:24:23 +00004182 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4183 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004184
4185Overview:
4186"""""""""
4187
4188The '``sdiv``' instruction returns the quotient of its two operands.
4189
4190Arguments:
4191""""""""""
4192
4193The two arguments to the '``sdiv``' instruction must be
4194:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4195arguments must have identical types.
4196
4197Semantics:
4198""""""""""
4199
4200The value produced is the signed integer quotient of the two operands
4201rounded towards zero.
4202
4203Note that signed integer division and unsigned integer division are
4204distinct operations; for unsigned integer division, use '``udiv``'.
4205
4206Division by zero leads to undefined behavior. Overflow also leads to
4207undefined behavior; this is a rare case, but can occur, for example, by
4208doing a 32-bit division of -2147483648 by -1.
4209
4210If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4211a :ref:`poison value <poisonvalues>` if the result would be rounded.
4212
4213Example:
4214""""""""
4215
4216.. code-block:: llvm
4217
Tim Northover675a0962014-06-13 14:24:23 +00004218 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004219
4220.. _i_fdiv:
4221
4222'``fdiv``' Instruction
4223^^^^^^^^^^^^^^^^^^^^^^
4224
4225Syntax:
4226"""""""
4227
4228::
4229
Tim Northover675a0962014-06-13 14:24:23 +00004230 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004231
4232Overview:
4233"""""""""
4234
4235The '``fdiv``' instruction returns the quotient of its two operands.
4236
4237Arguments:
4238""""""""""
4239
4240The two arguments to the '``fdiv``' instruction must be :ref:`floating
4241point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4242Both arguments must have identical types.
4243
4244Semantics:
4245""""""""""
4246
4247The value produced is the floating point quotient of the two operands.
4248This instruction can also take any number of :ref:`fast-math
4249flags <fastmath>`, which are optimization hints to enable otherwise
4250unsafe floating point optimizations:
4251
4252Example:
4253""""""""
4254
4255.. code-block:: llvm
4256
Tim Northover675a0962014-06-13 14:24:23 +00004257 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004258
4259'``urem``' Instruction
4260^^^^^^^^^^^^^^^^^^^^^^
4261
4262Syntax:
4263"""""""
4264
4265::
4266
Tim Northover675a0962014-06-13 14:24:23 +00004267 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004268
4269Overview:
4270"""""""""
4271
4272The '``urem``' instruction returns the remainder from the unsigned
4273division of its two arguments.
4274
4275Arguments:
4276""""""""""
4277
4278The two arguments to the '``urem``' instruction must be
4279:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4280arguments must have identical types.
4281
4282Semantics:
4283""""""""""
4284
4285This instruction returns the unsigned integer *remainder* of a division.
4286This instruction always performs an unsigned division to get the
4287remainder.
4288
4289Note that unsigned integer remainder and signed integer remainder are
4290distinct operations; for signed integer remainder, use '``srem``'.
4291
4292Taking the remainder of a division by zero leads to undefined behavior.
4293
4294Example:
4295""""""""
4296
4297.. code-block:: llvm
4298
Tim Northover675a0962014-06-13 14:24:23 +00004299 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004300
4301'``srem``' Instruction
4302^^^^^^^^^^^^^^^^^^^^^^
4303
4304Syntax:
4305"""""""
4306
4307::
4308
Tim Northover675a0962014-06-13 14:24:23 +00004309 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004310
4311Overview:
4312"""""""""
4313
4314The '``srem``' instruction returns the remainder from the signed
4315division of its two operands. This instruction can also take
4316:ref:`vector <t_vector>` versions of the values in which case the elements
4317must be integers.
4318
4319Arguments:
4320""""""""""
4321
4322The two arguments to the '``srem``' instruction must be
4323:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4324arguments must have identical types.
4325
4326Semantics:
4327""""""""""
4328
4329This instruction returns the *remainder* of a division (where the result
4330is either zero or has the same sign as the dividend, ``op1``), not the
4331*modulo* operator (where the result is either zero or has the same sign
4332as the divisor, ``op2``) of a value. For more information about the
4333difference, see `The Math
4334Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4335table of how this is implemented in various languages, please see
4336`Wikipedia: modulo
4337operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4338
4339Note that signed integer remainder and unsigned integer remainder are
4340distinct operations; for unsigned integer remainder, use '``urem``'.
4341
4342Taking the remainder of a division by zero leads to undefined behavior.
4343Overflow also leads to undefined behavior; this is a rare case, but can
4344occur, for example, by taking the remainder of a 32-bit division of
4345-2147483648 by -1. (The remainder doesn't actually overflow, but this
4346rule lets srem be implemented using instructions that return both the
4347result of the division and the remainder.)
4348
4349Example:
4350""""""""
4351
4352.. code-block:: llvm
4353
Tim Northover675a0962014-06-13 14:24:23 +00004354 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004355
4356.. _i_frem:
4357
4358'``frem``' Instruction
4359^^^^^^^^^^^^^^^^^^^^^^
4360
4361Syntax:
4362"""""""
4363
4364::
4365
Tim Northover675a0962014-06-13 14:24:23 +00004366 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004367
4368Overview:
4369"""""""""
4370
4371The '``frem``' instruction returns the remainder from the division of
4372its two operands.
4373
4374Arguments:
4375""""""""""
4376
4377The two arguments to the '``frem``' instruction must be :ref:`floating
4378point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4379Both arguments must have identical types.
4380
4381Semantics:
4382""""""""""
4383
4384This instruction returns the *remainder* of a division. The remainder
4385has the same sign as the dividend. This instruction can also take any
4386number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4387to enable otherwise unsafe floating point optimizations:
4388
4389Example:
4390""""""""
4391
4392.. code-block:: llvm
4393
Tim Northover675a0962014-06-13 14:24:23 +00004394 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004395
4396.. _bitwiseops:
4397
4398Bitwise Binary Operations
4399-------------------------
4400
4401Bitwise binary operators are used to do various forms of bit-twiddling
4402in a program. They are generally very efficient instructions and can
4403commonly be strength reduced from other instructions. They require two
4404operands of the same type, execute an operation on them, and produce a
4405single value. The resulting value is the same type as its operands.
4406
4407'``shl``' Instruction
4408^^^^^^^^^^^^^^^^^^^^^
4409
4410Syntax:
4411"""""""
4412
4413::
4414
Tim Northover675a0962014-06-13 14:24:23 +00004415 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4416 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4417 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4418 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004419
4420Overview:
4421"""""""""
4422
4423The '``shl``' instruction returns the first operand shifted to the left
4424a specified number of bits.
4425
4426Arguments:
4427""""""""""
4428
4429Both arguments to the '``shl``' instruction must be the same
4430:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4431'``op2``' is treated as an unsigned value.
4432
4433Semantics:
4434""""""""""
4435
4436The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4437where ``n`` is the width of the result. If ``op2`` is (statically or
4438dynamically) negative or equal to or larger than the number of bits in
4439``op1``, the result is undefined. If the arguments are vectors, each
4440vector element of ``op1`` is shifted by the corresponding shift amount
4441in ``op2``.
4442
4443If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4444value <poisonvalues>` if it shifts out any non-zero bits. If the
4445``nsw`` keyword is present, then the shift produces a :ref:`poison
4446value <poisonvalues>` if it shifts out any bits that disagree with the
4447resultant sign bit. As such, NUW/NSW have the same semantics as they
4448would if the shift were expressed as a mul instruction with the same
4449nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4450
4451Example:
4452""""""""
4453
4454.. code-block:: llvm
4455
Tim Northover675a0962014-06-13 14:24:23 +00004456 <result> = shl i32 4, %var ; yields i32: 4 << %var
4457 <result> = shl i32 4, 2 ; yields i32: 16
4458 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004459 <result> = shl i32 1, 32 ; undefined
4460 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4461
4462'``lshr``' Instruction
4463^^^^^^^^^^^^^^^^^^^^^^
4464
4465Syntax:
4466"""""""
4467
4468::
4469
Tim Northover675a0962014-06-13 14:24:23 +00004470 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4471 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004472
4473Overview:
4474"""""""""
4475
4476The '``lshr``' instruction (logical shift right) returns the first
4477operand shifted to the right a specified number of bits with zero fill.
4478
4479Arguments:
4480""""""""""
4481
4482Both arguments to the '``lshr``' instruction must be the same
4483:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4484'``op2``' is treated as an unsigned value.
4485
4486Semantics:
4487""""""""""
4488
4489This instruction always performs a logical shift right operation. The
4490most significant bits of the result will be filled with zero bits after
4491the shift. If ``op2`` is (statically or dynamically) equal to or larger
4492than the number of bits in ``op1``, the result is undefined. If the
4493arguments are vectors, each vector element of ``op1`` is shifted by the
4494corresponding shift amount in ``op2``.
4495
4496If the ``exact`` keyword is present, the result value of the ``lshr`` is
4497a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4498non-zero.
4499
4500Example:
4501""""""""
4502
4503.. code-block:: llvm
4504
Tim Northover675a0962014-06-13 14:24:23 +00004505 <result> = lshr i32 4, 1 ; yields i32:result = 2
4506 <result> = lshr i32 4, 2 ; yields i32:result = 1
4507 <result> = lshr i8 4, 3 ; yields i8:result = 0
4508 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004509 <result> = lshr i32 1, 32 ; undefined
4510 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4511
4512'``ashr``' Instruction
4513^^^^^^^^^^^^^^^^^^^^^^
4514
4515Syntax:
4516"""""""
4517
4518::
4519
Tim Northover675a0962014-06-13 14:24:23 +00004520 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4521 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004522
4523Overview:
4524"""""""""
4525
4526The '``ashr``' instruction (arithmetic shift right) returns the first
4527operand shifted to the right a specified number of bits with sign
4528extension.
4529
4530Arguments:
4531""""""""""
4532
4533Both arguments to the '``ashr``' instruction must be the same
4534:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4535'``op2``' is treated as an unsigned value.
4536
4537Semantics:
4538""""""""""
4539
4540This instruction always performs an arithmetic shift right operation,
4541The most significant bits of the result will be filled with the sign bit
4542of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4543than the number of bits in ``op1``, the result is undefined. If the
4544arguments are vectors, each vector element of ``op1`` is shifted by the
4545corresponding shift amount in ``op2``.
4546
4547If the ``exact`` keyword is present, the result value of the ``ashr`` is
4548a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4549non-zero.
4550
4551Example:
4552""""""""
4553
4554.. code-block:: llvm
4555
Tim Northover675a0962014-06-13 14:24:23 +00004556 <result> = ashr i32 4, 1 ; yields i32:result = 2
4557 <result> = ashr i32 4, 2 ; yields i32:result = 1
4558 <result> = ashr i8 4, 3 ; yields i8:result = 0
4559 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004560 <result> = ashr i32 1, 32 ; undefined
4561 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4562
4563'``and``' Instruction
4564^^^^^^^^^^^^^^^^^^^^^
4565
4566Syntax:
4567"""""""
4568
4569::
4570
Tim Northover675a0962014-06-13 14:24:23 +00004571 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004572
4573Overview:
4574"""""""""
4575
4576The '``and``' instruction returns the bitwise logical and of its two
4577operands.
4578
4579Arguments:
4580""""""""""
4581
4582The two arguments to the '``and``' instruction must be
4583:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4584arguments must have identical types.
4585
4586Semantics:
4587""""""""""
4588
4589The truth table used for the '``and``' instruction is:
4590
4591+-----+-----+-----+
4592| In0 | In1 | Out |
4593+-----+-----+-----+
4594| 0 | 0 | 0 |
4595+-----+-----+-----+
4596| 0 | 1 | 0 |
4597+-----+-----+-----+
4598| 1 | 0 | 0 |
4599+-----+-----+-----+
4600| 1 | 1 | 1 |
4601+-----+-----+-----+
4602
4603Example:
4604""""""""
4605
4606.. code-block:: llvm
4607
Tim Northover675a0962014-06-13 14:24:23 +00004608 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4609 <result> = and i32 15, 40 ; yields i32:result = 8
4610 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004611
4612'``or``' Instruction
4613^^^^^^^^^^^^^^^^^^^^
4614
4615Syntax:
4616"""""""
4617
4618::
4619
Tim Northover675a0962014-06-13 14:24:23 +00004620 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004621
4622Overview:
4623"""""""""
4624
4625The '``or``' instruction returns the bitwise logical inclusive or of its
4626two operands.
4627
4628Arguments:
4629""""""""""
4630
4631The two arguments to the '``or``' instruction must be
4632:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4633arguments must have identical types.
4634
4635Semantics:
4636""""""""""
4637
4638The truth table used for the '``or``' instruction is:
4639
4640+-----+-----+-----+
4641| In0 | In1 | Out |
4642+-----+-----+-----+
4643| 0 | 0 | 0 |
4644+-----+-----+-----+
4645| 0 | 1 | 1 |
4646+-----+-----+-----+
4647| 1 | 0 | 1 |
4648+-----+-----+-----+
4649| 1 | 1 | 1 |
4650+-----+-----+-----+
4651
4652Example:
4653""""""""
4654
4655::
4656
Tim Northover675a0962014-06-13 14:24:23 +00004657 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4658 <result> = or i32 15, 40 ; yields i32:result = 47
4659 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004660
4661'``xor``' Instruction
4662^^^^^^^^^^^^^^^^^^^^^
4663
4664Syntax:
4665"""""""
4666
4667::
4668
Tim Northover675a0962014-06-13 14:24:23 +00004669 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004670
4671Overview:
4672"""""""""
4673
4674The '``xor``' instruction returns the bitwise logical exclusive or of
4675its two operands. The ``xor`` is used to implement the "one's
4676complement" operation, which is the "~" operator in C.
4677
4678Arguments:
4679""""""""""
4680
4681The two arguments to the '``xor``' instruction must be
4682:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4683arguments must have identical types.
4684
4685Semantics:
4686""""""""""
4687
4688The truth table used for the '``xor``' instruction is:
4689
4690+-----+-----+-----+
4691| In0 | In1 | Out |
4692+-----+-----+-----+
4693| 0 | 0 | 0 |
4694+-----+-----+-----+
4695| 0 | 1 | 1 |
4696+-----+-----+-----+
4697| 1 | 0 | 1 |
4698+-----+-----+-----+
4699| 1 | 1 | 0 |
4700+-----+-----+-----+
4701
4702Example:
4703""""""""
4704
4705.. code-block:: llvm
4706
Tim Northover675a0962014-06-13 14:24:23 +00004707 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4708 <result> = xor i32 15, 40 ; yields i32:result = 39
4709 <result> = xor i32 4, 8 ; yields i32:result = 12
4710 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004711
4712Vector Operations
4713-----------------
4714
4715LLVM supports several instructions to represent vector operations in a
4716target-independent manner. These instructions cover the element-access
4717and vector-specific operations needed to process vectors effectively.
4718While LLVM does directly support these vector operations, many
4719sophisticated algorithms will want to use target-specific intrinsics to
4720take full advantage of a specific target.
4721
4722.. _i_extractelement:
4723
4724'``extractelement``' Instruction
4725^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4726
4727Syntax:
4728"""""""
4729
4730::
4731
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004732 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004733
4734Overview:
4735"""""""""
4736
4737The '``extractelement``' instruction extracts a single scalar element
4738from a vector at a specified index.
4739
4740Arguments:
4741""""""""""
4742
4743The first operand of an '``extractelement``' instruction is a value of
4744:ref:`vector <t_vector>` type. The second operand is an index indicating
4745the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004746variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004747
4748Semantics:
4749""""""""""
4750
4751The result is a scalar of the same type as the element type of ``val``.
4752Its value is the value at position ``idx`` of ``val``. If ``idx``
4753exceeds the length of ``val``, the results are undefined.
4754
4755Example:
4756""""""""
4757
4758.. code-block:: llvm
4759
4760 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4761
4762.. _i_insertelement:
4763
4764'``insertelement``' Instruction
4765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4766
4767Syntax:
4768"""""""
4769
4770::
4771
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004772 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004773
4774Overview:
4775"""""""""
4776
4777The '``insertelement``' instruction inserts a scalar element into a
4778vector at a specified index.
4779
4780Arguments:
4781""""""""""
4782
4783The first operand of an '``insertelement``' instruction is a value of
4784:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4785type must equal the element type of the first operand. The third operand
4786is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004787index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004788
4789Semantics:
4790""""""""""
4791
4792The result is a vector of the same type as ``val``. Its element values
4793are those of ``val`` except at position ``idx``, where it gets the value
4794``elt``. If ``idx`` exceeds the length of ``val``, the results are
4795undefined.
4796
4797Example:
4798""""""""
4799
4800.. code-block:: llvm
4801
4802 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4803
4804.. _i_shufflevector:
4805
4806'``shufflevector``' Instruction
4807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4808
4809Syntax:
4810"""""""
4811
4812::
4813
4814 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4815
4816Overview:
4817"""""""""
4818
4819The '``shufflevector``' instruction constructs a permutation of elements
4820from two input vectors, returning a vector with the same element type as
4821the input and length that is the same as the shuffle mask.
4822
4823Arguments:
4824""""""""""
4825
4826The first two operands of a '``shufflevector``' instruction are vectors
4827with the same type. The third argument is a shuffle mask whose element
4828type is always 'i32'. The result of the instruction is a vector whose
4829length is the same as the shuffle mask and whose element type is the
4830same as the element type of the first two operands.
4831
4832The shuffle mask operand is required to be a constant vector with either
4833constant integer or undef values.
4834
4835Semantics:
4836""""""""""
4837
4838The elements of the two input vectors are numbered from left to right
4839across both of the vectors. The shuffle mask operand specifies, for each
4840element of the result vector, which element of the two input vectors the
4841result element gets. The element selector may be undef (meaning "don't
4842care") and the second operand may be undef if performing a shuffle from
4843only one vector.
4844
4845Example:
4846""""""""
4847
4848.. code-block:: llvm
4849
4850 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4851 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4852 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4853 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4854 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4855 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4856 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4857 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4858
4859Aggregate Operations
4860--------------------
4861
4862LLVM supports several instructions for working with
4863:ref:`aggregate <t_aggregate>` values.
4864
4865.. _i_extractvalue:
4866
4867'``extractvalue``' Instruction
4868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4869
4870Syntax:
4871"""""""
4872
4873::
4874
4875 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4876
4877Overview:
4878"""""""""
4879
4880The '``extractvalue``' instruction extracts the value of a member field
4881from an :ref:`aggregate <t_aggregate>` value.
4882
4883Arguments:
4884""""""""""
4885
4886The first operand of an '``extractvalue``' instruction is a value of
4887:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4888constant indices to specify which value to extract in a similar manner
4889as indices in a '``getelementptr``' instruction.
4890
4891The major differences to ``getelementptr`` indexing are:
4892
4893- Since the value being indexed is not a pointer, the first index is
4894 omitted and assumed to be zero.
4895- At least one index must be specified.
4896- Not only struct indices but also array indices must be in bounds.
4897
4898Semantics:
4899""""""""""
4900
4901The result is the value at the position in the aggregate specified by
4902the index operands.
4903
4904Example:
4905""""""""
4906
4907.. code-block:: llvm
4908
4909 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4910
4911.. _i_insertvalue:
4912
4913'``insertvalue``' Instruction
4914^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4915
4916Syntax:
4917"""""""
4918
4919::
4920
4921 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4922
4923Overview:
4924"""""""""
4925
4926The '``insertvalue``' instruction inserts a value into a member field in
4927an :ref:`aggregate <t_aggregate>` value.
4928
4929Arguments:
4930""""""""""
4931
4932The first operand of an '``insertvalue``' instruction is a value of
4933:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4934a first-class value to insert. The following operands are constant
4935indices indicating the position at which to insert the value in a
4936similar manner as indices in a '``extractvalue``' instruction. The value
4937to insert must have the same type as the value identified by the
4938indices.
4939
4940Semantics:
4941""""""""""
4942
4943The result is an aggregate of the same type as ``val``. Its value is
4944that of ``val`` except that the value at the position specified by the
4945indices is that of ``elt``.
4946
4947Example:
4948""""""""
4949
4950.. code-block:: llvm
4951
4952 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4953 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4954 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4955
4956.. _memoryops:
4957
4958Memory Access and Addressing Operations
4959---------------------------------------
4960
4961A key design point of an SSA-based representation is how it represents
4962memory. In LLVM, no memory locations are in SSA form, which makes things
4963very simple. This section describes how to read, write, and allocate
4964memory in LLVM.
4965
4966.. _i_alloca:
4967
4968'``alloca``' Instruction
4969^^^^^^^^^^^^^^^^^^^^^^^^
4970
4971Syntax:
4972"""""""
4973
4974::
4975
Tim Northover675a0962014-06-13 14:24:23 +00004976 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00004977
4978Overview:
4979"""""""""
4980
4981The '``alloca``' instruction allocates memory on the stack frame of the
4982currently executing function, to be automatically released when this
4983function returns to its caller. The object is always allocated in the
4984generic address space (address space zero).
4985
4986Arguments:
4987""""""""""
4988
4989The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4990bytes of memory on the runtime stack, returning a pointer of the
4991appropriate type to the program. If "NumElements" is specified, it is
4992the number of elements allocated, otherwise "NumElements" is defaulted
4993to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00004994allocation is guaranteed to be aligned to at least that boundary. The
4995alignment may not be greater than ``1 << 29``. If not specified, or if
4996zero, the target can choose to align the allocation on any convenient
4997boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00004998
4999'``type``' may be any sized type.
5000
5001Semantics:
5002""""""""""
5003
5004Memory is allocated; a pointer is returned. The operation is undefined
5005if there is insufficient stack space for the allocation. '``alloca``'d
5006memory is automatically released when the function returns. The
5007'``alloca``' instruction is commonly used to represent automatic
5008variables that must have an address available. When the function returns
5009(either with the ``ret`` or ``resume`` instructions), the memory is
5010reclaimed. Allocating zero bytes is legal, but the result is undefined.
5011The order in which memory is allocated (ie., which way the stack grows)
5012is not specified.
5013
5014Example:
5015""""""""
5016
5017.. code-block:: llvm
5018
Tim Northover675a0962014-06-13 14:24:23 +00005019 %ptr = alloca i32 ; yields i32*:ptr
5020 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5021 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5022 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005023
5024.. _i_load:
5025
5026'``load``' Instruction
5027^^^^^^^^^^^^^^^^^^^^^^
5028
5029Syntax:
5030"""""""
5031
5032::
5033
5034 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
5035 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5036 !<index> = !{ i32 1 }
5037
5038Overview:
5039"""""""""
5040
5041The '``load``' instruction is used to read from memory.
5042
5043Arguments:
5044""""""""""
5045
Eli Bendersky239a78b2013-04-17 20:17:08 +00005046The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00005047from which to load. The pointer must point to a :ref:`first
5048class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5049then the optimizer is not allowed to modify the number or order of
5050execution of this ``load`` with other :ref:`volatile
5051operations <volatile>`.
5052
5053If the ``load`` is marked as ``atomic``, it takes an extra
5054:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5055``release`` and ``acq_rel`` orderings are not valid on ``load``
5056instructions. Atomic loads produce :ref:`defined <memmodel>` results
5057when they may see multiple atomic stores. The type of the pointee must
5058be an integer type whose bit width is a power of two greater than or
5059equal to eight and less than or equal to a target-specific size limit.
5060``align`` must be explicitly specified on atomic loads, and the load has
5061undefined behavior if the alignment is not set to a value which is at
5062least the size in bytes of the pointee. ``!nontemporal`` does not have
5063any defined semantics for atomic loads.
5064
5065The optional constant ``align`` argument specifies the alignment of the
5066operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005067or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005068alignment for the target. It is the responsibility of the code emitter
5069to ensure that the alignment information is correct. Overestimating the
5070alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005071may produce less efficient code. An alignment of 1 is always safe. The
5072maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005073
5074The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005075metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005076``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005077metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005078that this load is not expected to be reused in the cache. The code
5079generator may select special instructions to save cache bandwidth, such
5080as the ``MOVNT`` instruction on x86.
5081
5082The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005083metadata name ``<index>`` corresponding to a metadata node with no
5084entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00005085instruction tells the optimizer and code generator that this load
5086address points to memory which does not change value during program
5087execution. The optimizer may then move this load around, for example, by
5088hoisting it out of loops using loop invariant code motion.
5089
5090Semantics:
5091""""""""""
5092
5093The location of memory pointed to is loaded. If the value being loaded
5094is of scalar type then the number of bytes read does not exceed the
5095minimum number of bytes needed to hold all bits of the type. For
5096example, loading an ``i24`` reads at most three bytes. When loading a
5097value of a type like ``i20`` with a size that is not an integral number
5098of bytes, the result is undefined if the value was not originally
5099written using a store of the same type.
5100
5101Examples:
5102"""""""""
5103
5104.. code-block:: llvm
5105
Tim Northover675a0962014-06-13 14:24:23 +00005106 %ptr = alloca i32 ; yields i32*:ptr
5107 store i32 3, i32* %ptr ; yields void
5108 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005109
5110.. _i_store:
5111
5112'``store``' Instruction
5113^^^^^^^^^^^^^^^^^^^^^^^
5114
5115Syntax:
5116"""""""
5117
5118::
5119
Tim Northover675a0962014-06-13 14:24:23 +00005120 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5121 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005122
5123Overview:
5124"""""""""
5125
5126The '``store``' instruction is used to write to memory.
5127
5128Arguments:
5129""""""""""
5130
Eli Benderskyca380842013-04-17 17:17:20 +00005131There are two arguments to the ``store`` instruction: a value to store
5132and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005133operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005134the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005135then the optimizer is not allowed to modify the number or order of
5136execution of this ``store`` with other :ref:`volatile
5137operations <volatile>`.
5138
5139If the ``store`` is marked as ``atomic``, it takes an extra
5140:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5141``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5142instructions. Atomic loads produce :ref:`defined <memmodel>` results
5143when they may see multiple atomic stores. The type of the pointee must
5144be an integer type whose bit width is a power of two greater than or
5145equal to eight and less than or equal to a target-specific size limit.
5146``align`` must be explicitly specified on atomic stores, and the store
5147has undefined behavior if the alignment is not set to a value which is
5148at least the size in bytes of the pointee. ``!nontemporal`` does not
5149have any defined semantics for atomic stores.
5150
Eli Benderskyca380842013-04-17 17:17:20 +00005151The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005152operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005153or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005154alignment for the target. It is the responsibility of the code emitter
5155to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005156alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005157alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005158safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005159
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005160The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005161name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005162value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005163tells the optimizer and code generator that this load is not expected to
5164be reused in the cache. The code generator may select special
5165instructions to save cache bandwidth, such as the MOVNT instruction on
5166x86.
5167
5168Semantics:
5169""""""""""
5170
Eli Benderskyca380842013-04-17 17:17:20 +00005171The contents of memory are updated to contain ``<value>`` at the
5172location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005173of scalar type then the number of bytes written does not exceed the
5174minimum number of bytes needed to hold all bits of the type. For
5175example, storing an ``i24`` writes at most three bytes. When writing a
5176value of a type like ``i20`` with a size that is not an integral number
5177of bytes, it is unspecified what happens to the extra bits that do not
5178belong to the type, but they will typically be overwritten.
5179
5180Example:
5181""""""""
5182
5183.. code-block:: llvm
5184
Tim Northover675a0962014-06-13 14:24:23 +00005185 %ptr = alloca i32 ; yields i32*:ptr
5186 store i32 3, i32* %ptr ; yields void
5187 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005188
5189.. _i_fence:
5190
5191'``fence``' Instruction
5192^^^^^^^^^^^^^^^^^^^^^^^
5193
5194Syntax:
5195"""""""
5196
5197::
5198
Tim Northover675a0962014-06-13 14:24:23 +00005199 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005200
5201Overview:
5202"""""""""
5203
5204The '``fence``' instruction is used to introduce happens-before edges
5205between operations.
5206
5207Arguments:
5208""""""""""
5209
5210'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5211defines what *synchronizes-with* edges they add. They can only be given
5212``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5213
5214Semantics:
5215""""""""""
5216
5217A fence A which has (at least) ``release`` ordering semantics
5218*synchronizes with* a fence B with (at least) ``acquire`` ordering
5219semantics if and only if there exist atomic operations X and Y, both
5220operating on some atomic object M, such that A is sequenced before X, X
5221modifies M (either directly or through some side effect of a sequence
5222headed by X), Y is sequenced before B, and Y observes M. This provides a
5223*happens-before* dependency between A and B. Rather than an explicit
5224``fence``, one (but not both) of the atomic operations X or Y might
5225provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5226still *synchronize-with* the explicit ``fence`` and establish the
5227*happens-before* edge.
5228
5229A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5230``acquire`` and ``release`` semantics specified above, participates in
5231the global program order of other ``seq_cst`` operations and/or fences.
5232
5233The optional ":ref:`singlethread <singlethread>`" argument specifies
5234that the fence only synchronizes with other fences in the same thread.
5235(This is useful for interacting with signal handlers.)
5236
5237Example:
5238""""""""
5239
5240.. code-block:: llvm
5241
Tim Northover675a0962014-06-13 14:24:23 +00005242 fence acquire ; yields void
5243 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005244
5245.. _i_cmpxchg:
5246
5247'``cmpxchg``' Instruction
5248^^^^^^^^^^^^^^^^^^^^^^^^^
5249
5250Syntax:
5251"""""""
5252
5253::
5254
Tim Northover675a0962014-06-13 14:24:23 +00005255 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005256
5257Overview:
5258"""""""""
5259
5260The '``cmpxchg``' instruction is used to atomically modify memory. It
5261loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005262equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005263
5264Arguments:
5265""""""""""
5266
5267There are three arguments to the '``cmpxchg``' instruction: an address
5268to operate on, a value to compare to the value currently be at that
5269address, and a new value to place at that address if the compared values
5270are equal. The type of '<cmp>' must be an integer type whose bit width
5271is a power of two greater than or equal to eight and less than or equal
5272to a target-specific size limit. '<cmp>' and '<new>' must have the same
5273type, and the type of '<pointer>' must be a pointer to that type. If the
5274``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5275to modify the number or order of execution of this ``cmpxchg`` with
5276other :ref:`volatile operations <volatile>`.
5277
Tim Northovere94a5182014-03-11 10:48:52 +00005278The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005279``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5280must be at least ``monotonic``, the ordering constraint on failure must be no
5281stronger than that on success, and the failure ordering cannot be either
5282``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005283
5284The optional "``singlethread``" argument declares that the ``cmpxchg``
5285is only atomic with respect to code (usually signal handlers) running in
5286the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5287respect to all other code in the system.
5288
5289The pointer passed into cmpxchg must have alignment greater than or
5290equal to the size in memory of the operand.
5291
5292Semantics:
5293""""""""""
5294
Tim Northover420a2162014-06-13 14:24:07 +00005295The contents of memory at the location specified by the '``<pointer>``' operand
5296is read and compared to '``<cmp>``'; if the read value is the equal, the
5297'``<new>``' is written. The original value at the location is returned, together
5298with a flag indicating success (true) or failure (false).
5299
5300If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5301permitted: the operation may not write ``<new>`` even if the comparison
5302matched.
5303
5304If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5305if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005306
Tim Northovere94a5182014-03-11 10:48:52 +00005307A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5308identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5309load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005310
5311Example:
5312""""""""
5313
5314.. code-block:: llvm
5315
5316 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005317 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005318 br label %loop
5319
5320 loop:
5321 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5322 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005323 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005324 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5325 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005326 br i1 %success, label %done, label %loop
5327
5328 done:
5329 ...
5330
5331.. _i_atomicrmw:
5332
5333'``atomicrmw``' Instruction
5334^^^^^^^^^^^^^^^^^^^^^^^^^^^
5335
5336Syntax:
5337"""""""
5338
5339::
5340
Tim Northover675a0962014-06-13 14:24:23 +00005341 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005342
5343Overview:
5344"""""""""
5345
5346The '``atomicrmw``' instruction is used to atomically modify memory.
5347
5348Arguments:
5349""""""""""
5350
5351There are three arguments to the '``atomicrmw``' instruction: an
5352operation to apply, an address whose value to modify, an argument to the
5353operation. The operation must be one of the following keywords:
5354
5355- xchg
5356- add
5357- sub
5358- and
5359- nand
5360- or
5361- xor
5362- max
5363- min
5364- umax
5365- umin
5366
5367The type of '<value>' must be an integer type whose bit width is a power
5368of two greater than or equal to eight and less than or equal to a
5369target-specific size limit. The type of the '``<pointer>``' operand must
5370be a pointer to that type. If the ``atomicrmw`` is marked as
5371``volatile``, then the optimizer is not allowed to modify the number or
5372order of execution of this ``atomicrmw`` with other :ref:`volatile
5373operations <volatile>`.
5374
5375Semantics:
5376""""""""""
5377
5378The contents of memory at the location specified by the '``<pointer>``'
5379operand are atomically read, modified, and written back. The original
5380value at the location is returned. The modification is specified by the
5381operation argument:
5382
5383- xchg: ``*ptr = val``
5384- add: ``*ptr = *ptr + val``
5385- sub: ``*ptr = *ptr - val``
5386- and: ``*ptr = *ptr & val``
5387- nand: ``*ptr = ~(*ptr & val)``
5388- or: ``*ptr = *ptr | val``
5389- xor: ``*ptr = *ptr ^ val``
5390- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5391- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5392- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5393 comparison)
5394- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5395 comparison)
5396
5397Example:
5398""""""""
5399
5400.. code-block:: llvm
5401
Tim Northover675a0962014-06-13 14:24:23 +00005402 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005403
5404.. _i_getelementptr:
5405
5406'``getelementptr``' Instruction
5407^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5408
5409Syntax:
5410"""""""
5411
5412::
5413
5414 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5415 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5416 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5417
5418Overview:
5419"""""""""
5420
5421The '``getelementptr``' instruction is used to get the address of a
5422subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5423address calculation only and does not access memory.
5424
5425Arguments:
5426""""""""""
5427
5428The first argument is always a pointer or a vector of pointers, and
5429forms the basis of the calculation. The remaining arguments are indices
5430that indicate which of the elements of the aggregate object are indexed.
5431The interpretation of each index is dependent on the type being indexed
5432into. The first index always indexes the pointer value given as the
5433first argument, the second index indexes a value of the type pointed to
5434(not necessarily the value directly pointed to, since the first index
5435can be non-zero), etc. The first type indexed into must be a pointer
5436value, subsequent types can be arrays, vectors, and structs. Note that
5437subsequent types being indexed into can never be pointers, since that
5438would require loading the pointer before continuing calculation.
5439
5440The type of each index argument depends on the type it is indexing into.
5441When indexing into a (optionally packed) structure, only ``i32`` integer
5442**constants** are allowed (when using a vector of indices they must all
5443be the **same** ``i32`` integer constant). When indexing into an array,
5444pointer or vector, integers of any width are allowed, and they are not
5445required to be constant. These integers are treated as signed values
5446where relevant.
5447
5448For example, let's consider a C code fragment and how it gets compiled
5449to LLVM:
5450
5451.. code-block:: c
5452
5453 struct RT {
5454 char A;
5455 int B[10][20];
5456 char C;
5457 };
5458 struct ST {
5459 int X;
5460 double Y;
5461 struct RT Z;
5462 };
5463
5464 int *foo(struct ST *s) {
5465 return &s[1].Z.B[5][13];
5466 }
5467
5468The LLVM code generated by Clang is:
5469
5470.. code-block:: llvm
5471
5472 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5473 %struct.ST = type { i32, double, %struct.RT }
5474
5475 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5476 entry:
5477 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5478 ret i32* %arrayidx
5479 }
5480
5481Semantics:
5482""""""""""
5483
5484In the example above, the first index is indexing into the
5485'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5486= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5487indexes into the third element of the structure, yielding a
5488'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5489structure. The third index indexes into the second element of the
5490structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5491dimensions of the array are subscripted into, yielding an '``i32``'
5492type. The '``getelementptr``' instruction returns a pointer to this
5493element, thus computing a value of '``i32*``' type.
5494
5495Note that it is perfectly legal to index partially through a structure,
5496returning a pointer to an inner element. Because of this, the LLVM code
5497for the given testcase is equivalent to:
5498
5499.. code-block:: llvm
5500
5501 define i32* @foo(%struct.ST* %s) {
5502 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5503 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5504 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5505 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5506 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5507 ret i32* %t5
5508 }
5509
5510If the ``inbounds`` keyword is present, the result value of the
5511``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5512pointer is not an *in bounds* address of an allocated object, or if any
5513of the addresses that would be formed by successive addition of the
5514offsets implied by the indices to the base address with infinitely
5515precise signed arithmetic are not an *in bounds* address of that
5516allocated object. The *in bounds* addresses for an allocated object are
5517all the addresses that point into the object, plus the address one byte
5518past the end. In cases where the base is a vector of pointers the
5519``inbounds`` keyword applies to each of the computations element-wise.
5520
5521If the ``inbounds`` keyword is not present, the offsets are added to the
5522base address with silently-wrapping two's complement arithmetic. If the
5523offsets have a different width from the pointer, they are sign-extended
5524or truncated to the width of the pointer. The result value of the
5525``getelementptr`` may be outside the object pointed to by the base
5526pointer. The result value may not necessarily be used to access memory
5527though, even if it happens to point into allocated storage. See the
5528:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5529information.
5530
5531The getelementptr instruction is often confusing. For some more insight
5532into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5533
5534Example:
5535""""""""
5536
5537.. code-block:: llvm
5538
5539 ; yields [12 x i8]*:aptr
5540 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5541 ; yields i8*:vptr
5542 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5543 ; yields i8*:eptr
5544 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5545 ; yields i32*:iptr
5546 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5547
5548In cases where the pointer argument is a vector of pointers, each index
5549must be a vector with the same number of elements. For example:
5550
5551.. code-block:: llvm
5552
5553 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5554
5555Conversion Operations
5556---------------------
5557
5558The instructions in this category are the conversion instructions
5559(casting) which all take a single operand and a type. They perform
5560various bit conversions on the operand.
5561
5562'``trunc .. to``' Instruction
5563^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5564
5565Syntax:
5566"""""""
5567
5568::
5569
5570 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5571
5572Overview:
5573"""""""""
5574
5575The '``trunc``' instruction truncates its operand to the type ``ty2``.
5576
5577Arguments:
5578""""""""""
5579
5580The '``trunc``' instruction takes a value to trunc, and a type to trunc
5581it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5582of the same number of integers. The bit size of the ``value`` must be
5583larger than the bit size of the destination type, ``ty2``. Equal sized
5584types are not allowed.
5585
5586Semantics:
5587""""""""""
5588
5589The '``trunc``' instruction truncates the high order bits in ``value``
5590and converts the remaining bits to ``ty2``. Since the source size must
5591be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5592It will always truncate bits.
5593
5594Example:
5595""""""""
5596
5597.. code-block:: llvm
5598
5599 %X = trunc i32 257 to i8 ; yields i8:1
5600 %Y = trunc i32 123 to i1 ; yields i1:true
5601 %Z = trunc i32 122 to i1 ; yields i1:false
5602 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5603
5604'``zext .. to``' Instruction
5605^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5606
5607Syntax:
5608"""""""
5609
5610::
5611
5612 <result> = zext <ty> <value> to <ty2> ; yields ty2
5613
5614Overview:
5615"""""""""
5616
5617The '``zext``' instruction zero extends its operand to type ``ty2``.
5618
5619Arguments:
5620""""""""""
5621
5622The '``zext``' instruction takes a value to cast, and a type to cast it
5623to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5624the same number of integers. The bit size of the ``value`` must be
5625smaller than the bit size of the destination type, ``ty2``.
5626
5627Semantics:
5628""""""""""
5629
5630The ``zext`` fills the high order bits of the ``value`` with zero bits
5631until it reaches the size of the destination type, ``ty2``.
5632
5633When zero extending from i1, the result will always be either 0 or 1.
5634
5635Example:
5636""""""""
5637
5638.. code-block:: llvm
5639
5640 %X = zext i32 257 to i64 ; yields i64:257
5641 %Y = zext i1 true to i32 ; yields i32:1
5642 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5643
5644'``sext .. to``' Instruction
5645^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5646
5647Syntax:
5648"""""""
5649
5650::
5651
5652 <result> = sext <ty> <value> to <ty2> ; yields ty2
5653
5654Overview:
5655"""""""""
5656
5657The '``sext``' sign extends ``value`` to the type ``ty2``.
5658
5659Arguments:
5660""""""""""
5661
5662The '``sext``' instruction takes a value to cast, and a type to cast it
5663to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5664the same number of integers. The bit size of the ``value`` must be
5665smaller than the bit size of the destination type, ``ty2``.
5666
5667Semantics:
5668""""""""""
5669
5670The '``sext``' instruction performs a sign extension by copying the sign
5671bit (highest order bit) of the ``value`` until it reaches the bit size
5672of the type ``ty2``.
5673
5674When sign extending from i1, the extension always results in -1 or 0.
5675
5676Example:
5677""""""""
5678
5679.. code-block:: llvm
5680
5681 %X = sext i8 -1 to i16 ; yields i16 :65535
5682 %Y = sext i1 true to i32 ; yields i32:-1
5683 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5684
5685'``fptrunc .. to``' Instruction
5686^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5687
5688Syntax:
5689"""""""
5690
5691::
5692
5693 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5694
5695Overview:
5696"""""""""
5697
5698The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5699
5700Arguments:
5701""""""""""
5702
5703The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5704value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5705The size of ``value`` must be larger than the size of ``ty2``. This
5706implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5707
5708Semantics:
5709""""""""""
5710
5711The '``fptrunc``' instruction truncates a ``value`` from a larger
5712:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5713point <t_floating>` type. If the value cannot fit within the
5714destination type, ``ty2``, then the results are undefined.
5715
5716Example:
5717""""""""
5718
5719.. code-block:: llvm
5720
5721 %X = fptrunc double 123.0 to float ; yields float:123.0
5722 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5723
5724'``fpext .. to``' Instruction
5725^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5726
5727Syntax:
5728"""""""
5729
5730::
5731
5732 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5733
5734Overview:
5735"""""""""
5736
5737The '``fpext``' extends a floating point ``value`` to a larger floating
5738point value.
5739
5740Arguments:
5741""""""""""
5742
5743The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5744``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5745to. The source type must be smaller than the destination type.
5746
5747Semantics:
5748""""""""""
5749
5750The '``fpext``' instruction extends the ``value`` from a smaller
5751:ref:`floating point <t_floating>` type to a larger :ref:`floating
5752point <t_floating>` type. The ``fpext`` cannot be used to make a
5753*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5754*no-op cast* for a floating point cast.
5755
5756Example:
5757""""""""
5758
5759.. code-block:: llvm
5760
5761 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5762 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5763
5764'``fptoui .. to``' Instruction
5765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5766
5767Syntax:
5768"""""""
5769
5770::
5771
5772 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5773
5774Overview:
5775"""""""""
5776
5777The '``fptoui``' converts a floating point ``value`` to its unsigned
5778integer equivalent of type ``ty2``.
5779
5780Arguments:
5781""""""""""
5782
5783The '``fptoui``' instruction takes a value to cast, which must be a
5784scalar or vector :ref:`floating point <t_floating>` value, and a type to
5785cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5786``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5787type with the same number of elements as ``ty``
5788
5789Semantics:
5790""""""""""
5791
5792The '``fptoui``' instruction converts its :ref:`floating
5793point <t_floating>` operand into the nearest (rounding towards zero)
5794unsigned integer value. If the value cannot fit in ``ty2``, the results
5795are undefined.
5796
5797Example:
5798""""""""
5799
5800.. code-block:: llvm
5801
5802 %X = fptoui double 123.0 to i32 ; yields i32:123
5803 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5804 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5805
5806'``fptosi .. to``' Instruction
5807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5808
5809Syntax:
5810"""""""
5811
5812::
5813
5814 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5815
5816Overview:
5817"""""""""
5818
5819The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5820``value`` to type ``ty2``.
5821
5822Arguments:
5823""""""""""
5824
5825The '``fptosi``' instruction takes a value to cast, which must be a
5826scalar or vector :ref:`floating point <t_floating>` value, and a type to
5827cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5828``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5829type with the same number of elements as ``ty``
5830
5831Semantics:
5832""""""""""
5833
5834The '``fptosi``' instruction converts its :ref:`floating
5835point <t_floating>` operand into the nearest (rounding towards zero)
5836signed integer value. If the value cannot fit in ``ty2``, the results
5837are undefined.
5838
5839Example:
5840""""""""
5841
5842.. code-block:: llvm
5843
5844 %X = fptosi double -123.0 to i32 ; yields i32:-123
5845 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5846 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5847
5848'``uitofp .. to``' Instruction
5849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5850
5851Syntax:
5852"""""""
5853
5854::
5855
5856 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5857
5858Overview:
5859"""""""""
5860
5861The '``uitofp``' instruction regards ``value`` as an unsigned integer
5862and converts that value to the ``ty2`` type.
5863
5864Arguments:
5865""""""""""
5866
5867The '``uitofp``' instruction takes a value to cast, which must be a
5868scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5869``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5870``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5871type with the same number of elements as ``ty``
5872
5873Semantics:
5874""""""""""
5875
5876The '``uitofp``' instruction interprets its operand as an unsigned
5877integer quantity and converts it to the corresponding floating point
5878value. If the value cannot fit in the floating point value, the results
5879are undefined.
5880
5881Example:
5882""""""""
5883
5884.. code-block:: llvm
5885
5886 %X = uitofp i32 257 to float ; yields float:257.0
5887 %Y = uitofp i8 -1 to double ; yields double:255.0
5888
5889'``sitofp .. to``' Instruction
5890^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5891
5892Syntax:
5893"""""""
5894
5895::
5896
5897 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5898
5899Overview:
5900"""""""""
5901
5902The '``sitofp``' instruction regards ``value`` as a signed integer and
5903converts that value to the ``ty2`` type.
5904
5905Arguments:
5906""""""""""
5907
5908The '``sitofp``' instruction takes a value to cast, which must be a
5909scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5910``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5911``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5912type with the same number of elements as ``ty``
5913
5914Semantics:
5915""""""""""
5916
5917The '``sitofp``' instruction interprets its operand as a signed integer
5918quantity and converts it to the corresponding floating point value. If
5919the value cannot fit in the floating point value, the results are
5920undefined.
5921
5922Example:
5923""""""""
5924
5925.. code-block:: llvm
5926
5927 %X = sitofp i32 257 to float ; yields float:257.0
5928 %Y = sitofp i8 -1 to double ; yields double:-1.0
5929
5930.. _i_ptrtoint:
5931
5932'``ptrtoint .. to``' Instruction
5933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5934
5935Syntax:
5936"""""""
5937
5938::
5939
5940 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5941
5942Overview:
5943"""""""""
5944
5945The '``ptrtoint``' instruction converts the pointer or a vector of
5946pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5947
5948Arguments:
5949""""""""""
5950
5951The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5952a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5953type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5954a vector of integers type.
5955
5956Semantics:
5957""""""""""
5958
5959The '``ptrtoint``' instruction converts ``value`` to integer type
5960``ty2`` by interpreting the pointer value as an integer and either
5961truncating or zero extending that value to the size of the integer type.
5962If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5963``value`` is larger than ``ty2`` then a truncation is done. If they are
5964the same size, then nothing is done (*no-op cast*) other than a type
5965change.
5966
5967Example:
5968""""""""
5969
5970.. code-block:: llvm
5971
5972 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5973 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5974 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5975
5976.. _i_inttoptr:
5977
5978'``inttoptr .. to``' Instruction
5979^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5980
5981Syntax:
5982"""""""
5983
5984::
5985
5986 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5987
5988Overview:
5989"""""""""
5990
5991The '``inttoptr``' instruction converts an integer ``value`` to a
5992pointer type, ``ty2``.
5993
5994Arguments:
5995""""""""""
5996
5997The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5998cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5999type.
6000
6001Semantics:
6002""""""""""
6003
6004The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6005applying either a zero extension or a truncation depending on the size
6006of the integer ``value``. If ``value`` is larger than the size of a
6007pointer then a truncation is done. If ``value`` is smaller than the size
6008of a pointer then a zero extension is done. If they are the same size,
6009nothing is done (*no-op cast*).
6010
6011Example:
6012""""""""
6013
6014.. code-block:: llvm
6015
6016 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6017 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6018 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6019 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6020
6021.. _i_bitcast:
6022
6023'``bitcast .. to``' Instruction
6024^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6025
6026Syntax:
6027"""""""
6028
6029::
6030
6031 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6032
6033Overview:
6034"""""""""
6035
6036The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6037changing any bits.
6038
6039Arguments:
6040""""""""""
6041
6042The '``bitcast``' instruction takes a value to cast, which must be a
6043non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006044also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6045bit sizes of ``value`` and the destination type, ``ty2``, must be
6046identical. If the source type is a pointer, the destination type must
6047also be a pointer of the same size. This instruction supports bitwise
6048conversion of vectors to integers and to vectors of other types (as
6049long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006050
6051Semantics:
6052""""""""""
6053
Matt Arsenault24b49c42013-07-31 17:49:08 +00006054The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6055is always a *no-op cast* because no bits change with this
6056conversion. The conversion is done as if the ``value`` had been stored
6057to memory and read back as type ``ty2``. Pointer (or vector of
6058pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006059pointers) types with the same address space through this instruction.
6060To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6061or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006062
6063Example:
6064""""""""
6065
6066.. code-block:: llvm
6067
6068 %X = bitcast i8 255 to i8 ; yields i8 :-1
6069 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6070 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6071 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6072
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006073.. _i_addrspacecast:
6074
6075'``addrspacecast .. to``' Instruction
6076^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6077
6078Syntax:
6079"""""""
6080
6081::
6082
6083 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6084
6085Overview:
6086"""""""""
6087
6088The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6089address space ``n`` to type ``pty2`` in address space ``m``.
6090
6091Arguments:
6092""""""""""
6093
6094The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6095to cast and a pointer type to cast it to, which must have a different
6096address space.
6097
6098Semantics:
6099""""""""""
6100
6101The '``addrspacecast``' instruction converts the pointer value
6102``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006103value modification, depending on the target and the address space
6104pair. Pointer conversions within the same address space must be
6105performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006106conversion is legal then both result and operand refer to the same memory
6107location.
6108
6109Example:
6110""""""""
6111
6112.. code-block:: llvm
6113
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006114 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6115 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6116 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006117
Sean Silvab084af42012-12-07 10:36:55 +00006118.. _otherops:
6119
6120Other Operations
6121----------------
6122
6123The instructions in this category are the "miscellaneous" instructions,
6124which defy better classification.
6125
6126.. _i_icmp:
6127
6128'``icmp``' Instruction
6129^^^^^^^^^^^^^^^^^^^^^^
6130
6131Syntax:
6132"""""""
6133
6134::
6135
Tim Northover675a0962014-06-13 14:24:23 +00006136 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006137
6138Overview:
6139"""""""""
6140
6141The '``icmp``' instruction returns a boolean value or a vector of
6142boolean values based on comparison of its two integer, integer vector,
6143pointer, or pointer vector operands.
6144
6145Arguments:
6146""""""""""
6147
6148The '``icmp``' instruction takes three operands. The first operand is
6149the condition code indicating the kind of comparison to perform. It is
6150not a value, just a keyword. The possible condition code are:
6151
6152#. ``eq``: equal
6153#. ``ne``: not equal
6154#. ``ugt``: unsigned greater than
6155#. ``uge``: unsigned greater or equal
6156#. ``ult``: unsigned less than
6157#. ``ule``: unsigned less or equal
6158#. ``sgt``: signed greater than
6159#. ``sge``: signed greater or equal
6160#. ``slt``: signed less than
6161#. ``sle``: signed less or equal
6162
6163The remaining two arguments must be :ref:`integer <t_integer>` or
6164:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6165must also be identical types.
6166
6167Semantics:
6168""""""""""
6169
6170The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6171code given as ``cond``. The comparison performed always yields either an
6172:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6173
6174#. ``eq``: yields ``true`` if the operands are equal, ``false``
6175 otherwise. No sign interpretation is necessary or performed.
6176#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6177 otherwise. No sign interpretation is necessary or performed.
6178#. ``ugt``: interprets the operands as unsigned values and yields
6179 ``true`` if ``op1`` is greater than ``op2``.
6180#. ``uge``: interprets the operands as unsigned values and yields
6181 ``true`` if ``op1`` is greater than or equal to ``op2``.
6182#. ``ult``: interprets the operands as unsigned values and yields
6183 ``true`` if ``op1`` is less than ``op2``.
6184#. ``ule``: interprets the operands as unsigned values and yields
6185 ``true`` if ``op1`` is less than or equal to ``op2``.
6186#. ``sgt``: interprets the operands as signed values and yields ``true``
6187 if ``op1`` is greater than ``op2``.
6188#. ``sge``: interprets the operands as signed values and yields ``true``
6189 if ``op1`` is greater than or equal to ``op2``.
6190#. ``slt``: interprets the operands as signed values and yields ``true``
6191 if ``op1`` is less than ``op2``.
6192#. ``sle``: interprets the operands as signed values and yields ``true``
6193 if ``op1`` is less than or equal to ``op2``.
6194
6195If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6196are compared as if they were integers.
6197
6198If the operands are integer vectors, then they are compared element by
6199element. The result is an ``i1`` vector with the same number of elements
6200as the values being compared. Otherwise, the result is an ``i1``.
6201
6202Example:
6203""""""""
6204
6205.. code-block:: llvm
6206
6207 <result> = icmp eq i32 4, 5 ; yields: result=false
6208 <result> = icmp ne float* %X, %X ; yields: result=false
6209 <result> = icmp ult i16 4, 5 ; yields: result=true
6210 <result> = icmp sgt i16 4, 5 ; yields: result=false
6211 <result> = icmp ule i16 -4, 5 ; yields: result=false
6212 <result> = icmp sge i16 4, 5 ; yields: result=false
6213
6214Note that the code generator does not yet support vector types with the
6215``icmp`` instruction.
6216
6217.. _i_fcmp:
6218
6219'``fcmp``' Instruction
6220^^^^^^^^^^^^^^^^^^^^^^
6221
6222Syntax:
6223"""""""
6224
6225::
6226
Tim Northover675a0962014-06-13 14:24:23 +00006227 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006228
6229Overview:
6230"""""""""
6231
6232The '``fcmp``' instruction returns a boolean value or vector of boolean
6233values based on comparison of its operands.
6234
6235If the operands are floating point scalars, then the result type is a
6236boolean (:ref:`i1 <t_integer>`).
6237
6238If the operands are floating point vectors, then the result type is a
6239vector of boolean with the same number of elements as the operands being
6240compared.
6241
6242Arguments:
6243""""""""""
6244
6245The '``fcmp``' instruction takes three operands. The first operand is
6246the condition code indicating the kind of comparison to perform. It is
6247not a value, just a keyword. The possible condition code are:
6248
6249#. ``false``: no comparison, always returns false
6250#. ``oeq``: ordered and equal
6251#. ``ogt``: ordered and greater than
6252#. ``oge``: ordered and greater than or equal
6253#. ``olt``: ordered and less than
6254#. ``ole``: ordered and less than or equal
6255#. ``one``: ordered and not equal
6256#. ``ord``: ordered (no nans)
6257#. ``ueq``: unordered or equal
6258#. ``ugt``: unordered or greater than
6259#. ``uge``: unordered or greater than or equal
6260#. ``ult``: unordered or less than
6261#. ``ule``: unordered or less than or equal
6262#. ``une``: unordered or not equal
6263#. ``uno``: unordered (either nans)
6264#. ``true``: no comparison, always returns true
6265
6266*Ordered* means that neither operand is a QNAN while *unordered* means
6267that either operand may be a QNAN.
6268
6269Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6270point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6271type. They must have identical types.
6272
6273Semantics:
6274""""""""""
6275
6276The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6277condition code given as ``cond``. If the operands are vectors, then the
6278vectors are compared element by element. Each comparison performed
6279always yields an :ref:`i1 <t_integer>` result, as follows:
6280
6281#. ``false``: always yields ``false``, regardless of operands.
6282#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6283 is equal to ``op2``.
6284#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6285 is greater than ``op2``.
6286#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6287 is greater than or equal to ``op2``.
6288#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6289 is less than ``op2``.
6290#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6291 is less than or equal to ``op2``.
6292#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6293 is not equal to ``op2``.
6294#. ``ord``: yields ``true`` if both operands are not a QNAN.
6295#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6296 equal to ``op2``.
6297#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6298 greater than ``op2``.
6299#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6300 greater than or equal to ``op2``.
6301#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6302 less than ``op2``.
6303#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6304 less than or equal to ``op2``.
6305#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6306 not equal to ``op2``.
6307#. ``uno``: yields ``true`` if either operand is a QNAN.
6308#. ``true``: always yields ``true``, regardless of operands.
6309
6310Example:
6311""""""""
6312
6313.. code-block:: llvm
6314
6315 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6316 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6317 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6318 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6319
6320Note that the code generator does not yet support vector types with the
6321``fcmp`` instruction.
6322
6323.. _i_phi:
6324
6325'``phi``' Instruction
6326^^^^^^^^^^^^^^^^^^^^^
6327
6328Syntax:
6329"""""""
6330
6331::
6332
6333 <result> = phi <ty> [ <val0>, <label0>], ...
6334
6335Overview:
6336"""""""""
6337
6338The '``phi``' instruction is used to implement the φ node in the SSA
6339graph representing the function.
6340
6341Arguments:
6342""""""""""
6343
6344The type of the incoming values is specified with the first type field.
6345After this, the '``phi``' instruction takes a list of pairs as
6346arguments, with one pair for each predecessor basic block of the current
6347block. Only values of :ref:`first class <t_firstclass>` type may be used as
6348the value arguments to the PHI node. Only labels may be used as the
6349label arguments.
6350
6351There must be no non-phi instructions between the start of a basic block
6352and the PHI instructions: i.e. PHI instructions must be first in a basic
6353block.
6354
6355For the purposes of the SSA form, the use of each incoming value is
6356deemed to occur on the edge from the corresponding predecessor block to
6357the current block (but after any definition of an '``invoke``'
6358instruction's return value on the same edge).
6359
6360Semantics:
6361""""""""""
6362
6363At runtime, the '``phi``' instruction logically takes on the value
6364specified by the pair corresponding to the predecessor basic block that
6365executed just prior to the current block.
6366
6367Example:
6368""""""""
6369
6370.. code-block:: llvm
6371
6372 Loop: ; Infinite loop that counts from 0 on up...
6373 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6374 %nextindvar = add i32 %indvar, 1
6375 br label %Loop
6376
6377.. _i_select:
6378
6379'``select``' Instruction
6380^^^^^^^^^^^^^^^^^^^^^^^^
6381
6382Syntax:
6383"""""""
6384
6385::
6386
6387 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6388
6389 selty is either i1 or {<N x i1>}
6390
6391Overview:
6392"""""""""
6393
6394The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006395condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006396
6397Arguments:
6398""""""""""
6399
6400The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6401values indicating the condition, and two values of the same :ref:`first
6402class <t_firstclass>` type. If the val1/val2 are vectors and the
6403condition is a scalar, then entire vectors are selected, not individual
6404elements.
6405
6406Semantics:
6407""""""""""
6408
6409If the condition is an i1 and it evaluates to 1, the instruction returns
6410the first value argument; otherwise, it returns the second value
6411argument.
6412
6413If the condition is a vector of i1, then the value arguments must be
6414vectors of the same size, and the selection is done element by element.
6415
6416Example:
6417""""""""
6418
6419.. code-block:: llvm
6420
6421 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6422
6423.. _i_call:
6424
6425'``call``' Instruction
6426^^^^^^^^^^^^^^^^^^^^^^
6427
6428Syntax:
6429"""""""
6430
6431::
6432
Reid Kleckner5772b772014-04-24 20:14:34 +00006433 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006434
6435Overview:
6436"""""""""
6437
6438The '``call``' instruction represents a simple function call.
6439
6440Arguments:
6441""""""""""
6442
6443This instruction requires several arguments:
6444
Reid Kleckner5772b772014-04-24 20:14:34 +00006445#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6446 should perform tail call optimization. The ``tail`` marker is a hint that
6447 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6448 means that the call must be tail call optimized in order for the program to
6449 be correct. The ``musttail`` marker provides these guarantees:
6450
6451 #. The call will not cause unbounded stack growth if it is part of a
6452 recursive cycle in the call graph.
6453 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6454 forwarded in place.
6455
6456 Both markers imply that the callee does not access allocas or varargs from
6457 the caller. Calls marked ``musttail`` must obey the following additional
6458 rules:
6459
6460 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6461 or a pointer bitcast followed by a ret instruction.
6462 - The ret instruction must return the (possibly bitcasted) value
6463 produced by the call or void.
6464 - The caller and callee prototypes must match. Pointer types of
6465 parameters or return types may differ in pointee type, but not
6466 in address space.
6467 - The calling conventions of the caller and callee must match.
6468 - All ABI-impacting function attributes, such as sret, byval, inreg,
6469 returned, and inalloca, must match.
6470
6471 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6472 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006473
6474 - Caller and callee both have the calling convention ``fastcc``.
6475 - The call is in tail position (ret immediately follows call and ret
6476 uses value of call or is void).
6477 - Option ``-tailcallopt`` is enabled, or
6478 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006479 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006480 met. <CodeGenerator.html#tailcallopt>`_
6481
6482#. The optional "cconv" marker indicates which :ref:`calling
6483 convention <callingconv>` the call should use. If none is
6484 specified, the call defaults to using C calling conventions. The
6485 calling convention of the call must match the calling convention of
6486 the target function, or else the behavior is undefined.
6487#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6488 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6489 are valid here.
6490#. '``ty``': the type of the call instruction itself which is also the
6491 type of the return value. Functions that return no value are marked
6492 ``void``.
6493#. '``fnty``': shall be the signature of the pointer to function value
6494 being invoked. The argument types must match the types implied by
6495 this signature. This type can be omitted if the function is not
6496 varargs and if the function type does not return a pointer to a
6497 function.
6498#. '``fnptrval``': An LLVM value containing a pointer to a function to
6499 be invoked. In most cases, this is a direct function invocation, but
6500 indirect ``call``'s are just as possible, calling an arbitrary pointer
6501 to function value.
6502#. '``function args``': argument list whose types match the function
6503 signature argument types and parameter attributes. All arguments must
6504 be of :ref:`first class <t_firstclass>` type. If the function signature
6505 indicates the function accepts a variable number of arguments, the
6506 extra arguments can be specified.
6507#. The optional :ref:`function attributes <fnattrs>` list. Only
6508 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6509 attributes are valid here.
6510
6511Semantics:
6512""""""""""
6513
6514The '``call``' instruction is used to cause control flow to transfer to
6515a specified function, with its incoming arguments bound to the specified
6516values. Upon a '``ret``' instruction in the called function, control
6517flow continues with the instruction after the function call, and the
6518return value of the function is bound to the result argument.
6519
6520Example:
6521""""""""
6522
6523.. code-block:: llvm
6524
6525 %retval = call i32 @test(i32 %argc)
6526 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6527 %X = tail call i32 @foo() ; yields i32
6528 %Y = tail call fastcc i32 @foo() ; yields i32
6529 call void %foo(i8 97 signext)
6530
6531 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006532 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006533 %gr = extractvalue %struct.A %r, 0 ; yields i32
6534 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6535 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6536 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6537
6538llvm treats calls to some functions with names and arguments that match
6539the standard C99 library as being the C99 library functions, and may
6540perform optimizations or generate code for them under that assumption.
6541This is something we'd like to change in the future to provide better
6542support for freestanding environments and non-C-based languages.
6543
6544.. _i_va_arg:
6545
6546'``va_arg``' Instruction
6547^^^^^^^^^^^^^^^^^^^^^^^^
6548
6549Syntax:
6550"""""""
6551
6552::
6553
6554 <resultval> = va_arg <va_list*> <arglist>, <argty>
6555
6556Overview:
6557"""""""""
6558
6559The '``va_arg``' instruction is used to access arguments passed through
6560the "variable argument" area of a function call. It is used to implement
6561the ``va_arg`` macro in C.
6562
6563Arguments:
6564""""""""""
6565
6566This instruction takes a ``va_list*`` value and the type of the
6567argument. It returns a value of the specified argument type and
6568increments the ``va_list`` to point to the next argument. The actual
6569type of ``va_list`` is target specific.
6570
6571Semantics:
6572""""""""""
6573
6574The '``va_arg``' instruction loads an argument of the specified type
6575from the specified ``va_list`` and causes the ``va_list`` to point to
6576the next argument. For more information, see the variable argument
6577handling :ref:`Intrinsic Functions <int_varargs>`.
6578
6579It is legal for this instruction to be called in a function which does
6580not take a variable number of arguments, for example, the ``vfprintf``
6581function.
6582
6583``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6584function <intrinsics>` because it takes a type as an argument.
6585
6586Example:
6587""""""""
6588
6589See the :ref:`variable argument processing <int_varargs>` section.
6590
6591Note that the code generator does not yet fully support va\_arg on many
6592targets. Also, it does not currently support va\_arg with aggregate
6593types on any target.
6594
6595.. _i_landingpad:
6596
6597'``landingpad``' Instruction
6598^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6599
6600Syntax:
6601"""""""
6602
6603::
6604
6605 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6606 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6607
6608 <clause> := catch <type> <value>
6609 <clause> := filter <array constant type> <array constant>
6610
6611Overview:
6612"""""""""
6613
6614The '``landingpad``' instruction is used by `LLVM's exception handling
6615system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006616is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006617code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6618defines values supplied by the personality function (``pers_fn``) upon
6619re-entry to the function. The ``resultval`` has the type ``resultty``.
6620
6621Arguments:
6622""""""""""
6623
6624This instruction takes a ``pers_fn`` value. This is the personality
6625function associated with the unwinding mechanism. The optional
6626``cleanup`` flag indicates that the landing pad block is a cleanup.
6627
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006628A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006629contains the global variable representing the "type" that may be caught
6630or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6631clause takes an array constant as its argument. Use
6632"``[0 x i8**] undef``" for a filter which cannot throw. The
6633'``landingpad``' instruction must contain *at least* one ``clause`` or
6634the ``cleanup`` flag.
6635
6636Semantics:
6637""""""""""
6638
6639The '``landingpad``' instruction defines the values which are set by the
6640personality function (``pers_fn``) upon re-entry to the function, and
6641therefore the "result type" of the ``landingpad`` instruction. As with
6642calling conventions, how the personality function results are
6643represented in LLVM IR is target specific.
6644
6645The clauses are applied in order from top to bottom. If two
6646``landingpad`` instructions are merged together through inlining, the
6647clauses from the calling function are appended to the list of clauses.
6648When the call stack is being unwound due to an exception being thrown,
6649the exception is compared against each ``clause`` in turn. If it doesn't
6650match any of the clauses, and the ``cleanup`` flag is not set, then
6651unwinding continues further up the call stack.
6652
6653The ``landingpad`` instruction has several restrictions:
6654
6655- A landing pad block is a basic block which is the unwind destination
6656 of an '``invoke``' instruction.
6657- A landing pad block must have a '``landingpad``' instruction as its
6658 first non-PHI instruction.
6659- There can be only one '``landingpad``' instruction within the landing
6660 pad block.
6661- A basic block that is not a landing pad block may not include a
6662 '``landingpad``' instruction.
6663- All '``landingpad``' instructions in a function must have the same
6664 personality function.
6665
6666Example:
6667""""""""
6668
6669.. code-block:: llvm
6670
6671 ;; A landing pad which can catch an integer.
6672 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6673 catch i8** @_ZTIi
6674 ;; A landing pad that is a cleanup.
6675 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6676 cleanup
6677 ;; A landing pad which can catch an integer and can only throw a double.
6678 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6679 catch i8** @_ZTIi
6680 filter [1 x i8**] [@_ZTId]
6681
6682.. _intrinsics:
6683
6684Intrinsic Functions
6685===================
6686
6687LLVM supports the notion of an "intrinsic function". These functions
6688have well known names and semantics and are required to follow certain
6689restrictions. Overall, these intrinsics represent an extension mechanism
6690for the LLVM language that does not require changing all of the
6691transformations in LLVM when adding to the language (or the bitcode
6692reader/writer, the parser, etc...).
6693
6694Intrinsic function names must all start with an "``llvm.``" prefix. This
6695prefix is reserved in LLVM for intrinsic names; thus, function names may
6696not begin with this prefix. Intrinsic functions must always be external
6697functions: you cannot define the body of intrinsic functions. Intrinsic
6698functions may only be used in call or invoke instructions: it is illegal
6699to take the address of an intrinsic function. Additionally, because
6700intrinsic functions are part of the LLVM language, it is required if any
6701are added that they be documented here.
6702
6703Some intrinsic functions can be overloaded, i.e., the intrinsic
6704represents a family of functions that perform the same operation but on
6705different data types. Because LLVM can represent over 8 million
6706different integer types, overloading is used commonly to allow an
6707intrinsic function to operate on any integer type. One or more of the
6708argument types or the result type can be overloaded to accept any
6709integer type. Argument types may also be defined as exactly matching a
6710previous argument's type or the result type. This allows an intrinsic
6711function which accepts multiple arguments, but needs all of them to be
6712of the same type, to only be overloaded with respect to a single
6713argument or the result.
6714
6715Overloaded intrinsics will have the names of its overloaded argument
6716types encoded into its function name, each preceded by a period. Only
6717those types which are overloaded result in a name suffix. Arguments
6718whose type is matched against another type do not. For example, the
6719``llvm.ctpop`` function can take an integer of any width and returns an
6720integer of exactly the same integer width. This leads to a family of
6721functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6722``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6723overloaded, and only one type suffix is required. Because the argument's
6724type is matched against the return type, it does not require its own
6725name suffix.
6726
6727To learn how to add an intrinsic function, please see the `Extending
6728LLVM Guide <ExtendingLLVM.html>`_.
6729
6730.. _int_varargs:
6731
6732Variable Argument Handling Intrinsics
6733-------------------------------------
6734
6735Variable argument support is defined in LLVM with the
6736:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6737functions. These functions are related to the similarly named macros
6738defined in the ``<stdarg.h>`` header file.
6739
6740All of these functions operate on arguments that use a target-specific
6741value type "``va_list``". The LLVM assembly language reference manual
6742does not define what this type is, so all transformations should be
6743prepared to handle these functions regardless of the type used.
6744
6745This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6746variable argument handling intrinsic functions are used.
6747
6748.. code-block:: llvm
6749
6750 define i32 @test(i32 %X, ...) {
6751 ; Initialize variable argument processing
6752 %ap = alloca i8*
6753 %ap2 = bitcast i8** %ap to i8*
6754 call void @llvm.va_start(i8* %ap2)
6755
6756 ; Read a single integer argument
6757 %tmp = va_arg i8** %ap, i32
6758
6759 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6760 %aq = alloca i8*
6761 %aq2 = bitcast i8** %aq to i8*
6762 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6763 call void @llvm.va_end(i8* %aq2)
6764
6765 ; Stop processing of arguments.
6766 call void @llvm.va_end(i8* %ap2)
6767 ret i32 %tmp
6768 }
6769
6770 declare void @llvm.va_start(i8*)
6771 declare void @llvm.va_copy(i8*, i8*)
6772 declare void @llvm.va_end(i8*)
6773
6774.. _int_va_start:
6775
6776'``llvm.va_start``' Intrinsic
6777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6778
6779Syntax:
6780"""""""
6781
6782::
6783
Nick Lewycky04f6de02013-09-11 22:04:52 +00006784 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006785
6786Overview:
6787"""""""""
6788
6789The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6790subsequent use by ``va_arg``.
6791
6792Arguments:
6793""""""""""
6794
6795The argument is a pointer to a ``va_list`` element to initialize.
6796
6797Semantics:
6798""""""""""
6799
6800The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6801available in C. In a target-dependent way, it initializes the
6802``va_list`` element to which the argument points, so that the next call
6803to ``va_arg`` will produce the first variable argument passed to the
6804function. Unlike the C ``va_start`` macro, this intrinsic does not need
6805to know the last argument of the function as the compiler can figure
6806that out.
6807
6808'``llvm.va_end``' Intrinsic
6809^^^^^^^^^^^^^^^^^^^^^^^^^^^
6810
6811Syntax:
6812"""""""
6813
6814::
6815
6816 declare void @llvm.va_end(i8* <arglist>)
6817
6818Overview:
6819"""""""""
6820
6821The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6822initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6823
6824Arguments:
6825""""""""""
6826
6827The argument is a pointer to a ``va_list`` to destroy.
6828
6829Semantics:
6830""""""""""
6831
6832The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6833available in C. In a target-dependent way, it destroys the ``va_list``
6834element to which the argument points. Calls to
6835:ref:`llvm.va_start <int_va_start>` and
6836:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6837``llvm.va_end``.
6838
6839.. _int_va_copy:
6840
6841'``llvm.va_copy``' Intrinsic
6842^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6843
6844Syntax:
6845"""""""
6846
6847::
6848
6849 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6850
6851Overview:
6852"""""""""
6853
6854The '``llvm.va_copy``' intrinsic copies the current argument position
6855from the source argument list to the destination argument list.
6856
6857Arguments:
6858""""""""""
6859
6860The first argument is a pointer to a ``va_list`` element to initialize.
6861The second argument is a pointer to a ``va_list`` element to copy from.
6862
6863Semantics:
6864""""""""""
6865
6866The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6867available in C. In a target-dependent way, it copies the source
6868``va_list`` element into the destination ``va_list`` element. This
6869intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6870arbitrarily complex and require, for example, memory allocation.
6871
6872Accurate Garbage Collection Intrinsics
6873--------------------------------------
6874
6875LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6876(GC) requires the implementation and generation of these intrinsics.
6877These intrinsics allow identification of :ref:`GC roots on the
6878stack <int_gcroot>`, as well as garbage collector implementations that
6879require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6880Front-ends for type-safe garbage collected languages should generate
6881these intrinsics to make use of the LLVM garbage collectors. For more
6882details, see `Accurate Garbage Collection with
6883LLVM <GarbageCollection.html>`_.
6884
6885The garbage collection intrinsics only operate on objects in the generic
6886address space (address space zero).
6887
6888.. _int_gcroot:
6889
6890'``llvm.gcroot``' Intrinsic
6891^^^^^^^^^^^^^^^^^^^^^^^^^^^
6892
6893Syntax:
6894"""""""
6895
6896::
6897
6898 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6899
6900Overview:
6901"""""""""
6902
6903The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6904the code generator, and allows some metadata to be associated with it.
6905
6906Arguments:
6907""""""""""
6908
6909The first argument specifies the address of a stack object that contains
6910the root pointer. The second pointer (which must be either a constant or
6911a global value address) contains the meta-data to be associated with the
6912root.
6913
6914Semantics:
6915""""""""""
6916
6917At runtime, a call to this intrinsic stores a null pointer into the
6918"ptrloc" location. At compile-time, the code generator generates
6919information to allow the runtime to find the pointer at GC safe points.
6920The '``llvm.gcroot``' intrinsic may only be used in a function which
6921:ref:`specifies a GC algorithm <gc>`.
6922
6923.. _int_gcread:
6924
6925'``llvm.gcread``' Intrinsic
6926^^^^^^^^^^^^^^^^^^^^^^^^^^^
6927
6928Syntax:
6929"""""""
6930
6931::
6932
6933 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6934
6935Overview:
6936"""""""""
6937
6938The '``llvm.gcread``' intrinsic identifies reads of references from heap
6939locations, allowing garbage collector implementations that require read
6940barriers.
6941
6942Arguments:
6943""""""""""
6944
6945The second argument is the address to read from, which should be an
6946address allocated from the garbage collector. The first object is a
6947pointer to the start of the referenced object, if needed by the language
6948runtime (otherwise null).
6949
6950Semantics:
6951""""""""""
6952
6953The '``llvm.gcread``' intrinsic has the same semantics as a load
6954instruction, but may be replaced with substantially more complex code by
6955the garbage collector runtime, as needed. The '``llvm.gcread``'
6956intrinsic may only be used in a function which :ref:`specifies a GC
6957algorithm <gc>`.
6958
6959.. _int_gcwrite:
6960
6961'``llvm.gcwrite``' Intrinsic
6962^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6963
6964Syntax:
6965"""""""
6966
6967::
6968
6969 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6970
6971Overview:
6972"""""""""
6973
6974The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6975locations, allowing garbage collector implementations that require write
6976barriers (such as generational or reference counting collectors).
6977
6978Arguments:
6979""""""""""
6980
6981The first argument is the reference to store, the second is the start of
6982the object to store it to, and the third is the address of the field of
6983Obj to store to. If the runtime does not require a pointer to the
6984object, Obj may be null.
6985
6986Semantics:
6987""""""""""
6988
6989The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6990instruction, but may be replaced with substantially more complex code by
6991the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6992intrinsic may only be used in a function which :ref:`specifies a GC
6993algorithm <gc>`.
6994
6995Code Generator Intrinsics
6996-------------------------
6997
6998These intrinsics are provided by LLVM to expose special features that
6999may only be implemented with code generator support.
7000
7001'``llvm.returnaddress``' Intrinsic
7002^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7003
7004Syntax:
7005"""""""
7006
7007::
7008
7009 declare i8 *@llvm.returnaddress(i32 <level>)
7010
7011Overview:
7012"""""""""
7013
7014The '``llvm.returnaddress``' intrinsic attempts to compute a
7015target-specific value indicating the return address of the current
7016function or one of its callers.
7017
7018Arguments:
7019""""""""""
7020
7021The argument to this intrinsic indicates which function to return the
7022address for. Zero indicates the calling function, one indicates its
7023caller, etc. The argument is **required** to be a constant integer
7024value.
7025
7026Semantics:
7027""""""""""
7028
7029The '``llvm.returnaddress``' intrinsic either returns a pointer
7030indicating the return address of the specified call frame, or zero if it
7031cannot be identified. The value returned by this intrinsic is likely to
7032be incorrect or 0 for arguments other than zero, so it should only be
7033used for debugging purposes.
7034
7035Note that calling this intrinsic does not prevent function inlining or
7036other aggressive transformations, so the value returned may not be that
7037of the obvious source-language caller.
7038
7039'``llvm.frameaddress``' Intrinsic
7040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7041
7042Syntax:
7043"""""""
7044
7045::
7046
7047 declare i8* @llvm.frameaddress(i32 <level>)
7048
7049Overview:
7050"""""""""
7051
7052The '``llvm.frameaddress``' intrinsic attempts to return the
7053target-specific frame pointer value for the specified stack frame.
7054
7055Arguments:
7056""""""""""
7057
7058The argument to this intrinsic indicates which function to return the
7059frame pointer for. Zero indicates the calling function, one indicates
7060its caller, etc. The argument is **required** to be a constant integer
7061value.
7062
7063Semantics:
7064""""""""""
7065
7066The '``llvm.frameaddress``' intrinsic either returns a pointer
7067indicating the frame address of the specified call frame, or zero if it
7068cannot be identified. The value returned by this intrinsic is likely to
7069be incorrect or 0 for arguments other than zero, so it should only be
7070used for debugging purposes.
7071
7072Note that calling this intrinsic does not prevent function inlining or
7073other aggressive transformations, so the value returned may not be that
7074of the obvious source-language caller.
7075
Renato Golinc7aea402014-05-06 16:51:25 +00007076.. _int_read_register:
7077.. _int_write_register:
7078
7079'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7080^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7081
7082Syntax:
7083"""""""
7084
7085::
7086
7087 declare i32 @llvm.read_register.i32(metadata)
7088 declare i64 @llvm.read_register.i64(metadata)
7089 declare void @llvm.write_register.i32(metadata, i32 @value)
7090 declare void @llvm.write_register.i64(metadata, i64 @value)
7091 !0 = metadata !{metadata !"sp\00"}
7092
7093Overview:
7094"""""""""
7095
7096The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7097provides access to the named register. The register must be valid on
7098the architecture being compiled to. The type needs to be compatible
7099with the register being read.
7100
7101Semantics:
7102""""""""""
7103
7104The '``llvm.read_register``' intrinsic returns the current value of the
7105register, where possible. The '``llvm.write_register``' intrinsic sets
7106the current value of the register, where possible.
7107
7108This is useful to implement named register global variables that need
7109to always be mapped to a specific register, as is common practice on
7110bare-metal programs including OS kernels.
7111
7112The compiler doesn't check for register availability or use of the used
7113register in surrounding code, including inline assembly. Because of that,
7114allocatable registers are not supported.
7115
7116Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007117architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007118work is needed to support other registers and even more so, allocatable
7119registers.
7120
Sean Silvab084af42012-12-07 10:36:55 +00007121.. _int_stacksave:
7122
7123'``llvm.stacksave``' Intrinsic
7124^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7125
7126Syntax:
7127"""""""
7128
7129::
7130
7131 declare i8* @llvm.stacksave()
7132
7133Overview:
7134"""""""""
7135
7136The '``llvm.stacksave``' intrinsic is used to remember the current state
7137of the function stack, for use with
7138:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7139implementing language features like scoped automatic variable sized
7140arrays in C99.
7141
7142Semantics:
7143""""""""""
7144
7145This intrinsic returns a opaque pointer value that can be passed to
7146:ref:`llvm.stackrestore <int_stackrestore>`. When an
7147``llvm.stackrestore`` intrinsic is executed with a value saved from
7148``llvm.stacksave``, it effectively restores the state of the stack to
7149the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7150practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7151were allocated after the ``llvm.stacksave`` was executed.
7152
7153.. _int_stackrestore:
7154
7155'``llvm.stackrestore``' Intrinsic
7156^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7157
7158Syntax:
7159"""""""
7160
7161::
7162
7163 declare void @llvm.stackrestore(i8* %ptr)
7164
7165Overview:
7166"""""""""
7167
7168The '``llvm.stackrestore``' intrinsic is used to restore the state of
7169the function stack to the state it was in when the corresponding
7170:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7171useful for implementing language features like scoped automatic variable
7172sized arrays in C99.
7173
7174Semantics:
7175""""""""""
7176
7177See the description for :ref:`llvm.stacksave <int_stacksave>`.
7178
7179'``llvm.prefetch``' Intrinsic
7180^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7181
7182Syntax:
7183"""""""
7184
7185::
7186
7187 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7188
7189Overview:
7190"""""""""
7191
7192The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7193insert a prefetch instruction if supported; otherwise, it is a noop.
7194Prefetches have no effect on the behavior of the program but can change
7195its performance characteristics.
7196
7197Arguments:
7198""""""""""
7199
7200``address`` is the address to be prefetched, ``rw`` is the specifier
7201determining if the fetch should be for a read (0) or write (1), and
7202``locality`` is a temporal locality specifier ranging from (0) - no
7203locality, to (3) - extremely local keep in cache. The ``cache type``
7204specifies whether the prefetch is performed on the data (1) or
7205instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7206arguments must be constant integers.
7207
7208Semantics:
7209""""""""""
7210
7211This intrinsic does not modify the behavior of the program. In
7212particular, prefetches cannot trap and do not produce a value. On
7213targets that support this intrinsic, the prefetch can provide hints to
7214the processor cache for better performance.
7215
7216'``llvm.pcmarker``' Intrinsic
7217^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7218
7219Syntax:
7220"""""""
7221
7222::
7223
7224 declare void @llvm.pcmarker(i32 <id>)
7225
7226Overview:
7227"""""""""
7228
7229The '``llvm.pcmarker``' intrinsic is a method to export a Program
7230Counter (PC) in a region of code to simulators and other tools. The
7231method is target specific, but it is expected that the marker will use
7232exported symbols to transmit the PC of the marker. The marker makes no
7233guarantees that it will remain with any specific instruction after
7234optimizations. It is possible that the presence of a marker will inhibit
7235optimizations. The intended use is to be inserted after optimizations to
7236allow correlations of simulation runs.
7237
7238Arguments:
7239""""""""""
7240
7241``id`` is a numerical id identifying the marker.
7242
7243Semantics:
7244""""""""""
7245
7246This intrinsic does not modify the behavior of the program. Backends
7247that do not support this intrinsic may ignore it.
7248
7249'``llvm.readcyclecounter``' Intrinsic
7250^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7251
7252Syntax:
7253"""""""
7254
7255::
7256
7257 declare i64 @llvm.readcyclecounter()
7258
7259Overview:
7260"""""""""
7261
7262The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7263counter register (or similar low latency, high accuracy clocks) on those
7264targets that support it. On X86, it should map to RDTSC. On Alpha, it
7265should map to RPCC. As the backing counters overflow quickly (on the
7266order of 9 seconds on alpha), this should only be used for small
7267timings.
7268
7269Semantics:
7270""""""""""
7271
7272When directly supported, reading the cycle counter should not modify any
7273memory. Implementations are allowed to either return a application
7274specific value or a system wide value. On backends without support, this
7275is lowered to a constant 0.
7276
Tim Northoverbc933082013-05-23 19:11:20 +00007277Note that runtime support may be conditional on the privilege-level code is
7278running at and the host platform.
7279
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007280'``llvm.clear_cache``' Intrinsic
7281^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7282
7283Syntax:
7284"""""""
7285
7286::
7287
7288 declare void @llvm.clear_cache(i8*, i8*)
7289
7290Overview:
7291"""""""""
7292
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007293The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7294in the specified range to the execution unit of the processor. On
7295targets with non-unified instruction and data cache, the implementation
7296flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007297
7298Semantics:
7299""""""""""
7300
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007301On platforms with coherent instruction and data caches (e.g. x86), this
7302intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007303cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007304instructions or a system call, if cache flushing requires special
7305privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007306
Sean Silvad02bf3e2014-04-07 22:29:53 +00007307The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007308time library.
Renato Golin93010e62014-03-26 14:01:32 +00007309
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007310This instrinsic does *not* empty the instruction pipeline. Modifications
7311of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007312
Sean Silvab084af42012-12-07 10:36:55 +00007313Standard C Library Intrinsics
7314-----------------------------
7315
7316LLVM provides intrinsics for a few important standard C library
7317functions. These intrinsics allow source-language front-ends to pass
7318information about the alignment of the pointer arguments to the code
7319generator, providing opportunity for more efficient code generation.
7320
7321.. _int_memcpy:
7322
7323'``llvm.memcpy``' Intrinsic
7324^^^^^^^^^^^^^^^^^^^^^^^^^^^
7325
7326Syntax:
7327"""""""
7328
7329This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7330integer bit width and for different address spaces. Not all targets
7331support all bit widths however.
7332
7333::
7334
7335 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7336 i32 <len>, i32 <align>, i1 <isvolatile>)
7337 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7338 i64 <len>, i32 <align>, i1 <isvolatile>)
7339
7340Overview:
7341"""""""""
7342
7343The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7344source location to the destination location.
7345
7346Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7347intrinsics do not return a value, takes extra alignment/isvolatile
7348arguments and the pointers can be in specified address spaces.
7349
7350Arguments:
7351""""""""""
7352
7353The first argument is a pointer to the destination, the second is a
7354pointer to the source. The third argument is an integer argument
7355specifying the number of bytes to copy, the fourth argument is the
7356alignment of the source and destination locations, and the fifth is a
7357boolean indicating a volatile access.
7358
7359If the call to this intrinsic has an alignment value that is not 0 or 1,
7360then the caller guarantees that both the source and destination pointers
7361are aligned to that boundary.
7362
7363If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7364a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7365very cleanly specified and it is unwise to depend on it.
7366
7367Semantics:
7368""""""""""
7369
7370The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7371source location to the destination location, which are not allowed to
7372overlap. It copies "len" bytes of memory over. If the argument is known
7373to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007374argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007375
7376'``llvm.memmove``' Intrinsic
7377^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7378
7379Syntax:
7380"""""""
7381
7382This is an overloaded intrinsic. You can use llvm.memmove on any integer
7383bit width and for different address space. Not all targets support all
7384bit widths however.
7385
7386::
7387
7388 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7389 i32 <len>, i32 <align>, i1 <isvolatile>)
7390 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7391 i64 <len>, i32 <align>, i1 <isvolatile>)
7392
7393Overview:
7394"""""""""
7395
7396The '``llvm.memmove.*``' intrinsics move a block of memory from the
7397source location to the destination location. It is similar to the
7398'``llvm.memcpy``' intrinsic but allows the two memory locations to
7399overlap.
7400
7401Note that, unlike the standard libc function, the ``llvm.memmove.*``
7402intrinsics do not return a value, takes extra alignment/isvolatile
7403arguments and the pointers can be in specified address spaces.
7404
7405Arguments:
7406""""""""""
7407
7408The first argument is a pointer to the destination, the second is a
7409pointer to the source. The third argument is an integer argument
7410specifying the number of bytes to copy, the fourth argument is the
7411alignment of the source and destination locations, and the fifth is a
7412boolean indicating a volatile access.
7413
7414If the call to this intrinsic has an alignment value that is not 0 or 1,
7415then the caller guarantees that the source and destination pointers are
7416aligned to that boundary.
7417
7418If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7419is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7420not very cleanly specified and it is unwise to depend on it.
7421
7422Semantics:
7423""""""""""
7424
7425The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7426source location to the destination location, which may overlap. It
7427copies "len" bytes of memory over. If the argument is known to be
7428aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007429otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007430
7431'``llvm.memset.*``' Intrinsics
7432^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7433
7434Syntax:
7435"""""""
7436
7437This is an overloaded intrinsic. You can use llvm.memset on any integer
7438bit width and for different address spaces. However, not all targets
7439support all bit widths.
7440
7441::
7442
7443 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7444 i32 <len>, i32 <align>, i1 <isvolatile>)
7445 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7446 i64 <len>, i32 <align>, i1 <isvolatile>)
7447
7448Overview:
7449"""""""""
7450
7451The '``llvm.memset.*``' intrinsics fill a block of memory with a
7452particular byte value.
7453
7454Note that, unlike the standard libc function, the ``llvm.memset``
7455intrinsic does not return a value and takes extra alignment/volatile
7456arguments. Also, the destination can be in an arbitrary address space.
7457
7458Arguments:
7459""""""""""
7460
7461The first argument is a pointer to the destination to fill, the second
7462is the byte value with which to fill it, the third argument is an
7463integer argument specifying the number of bytes to fill, and the fourth
7464argument is the known alignment of the destination location.
7465
7466If the call to this intrinsic has an alignment value that is not 0 or 1,
7467then the caller guarantees that the destination pointer is aligned to
7468that boundary.
7469
7470If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7471a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7472very cleanly specified and it is unwise to depend on it.
7473
7474Semantics:
7475""""""""""
7476
7477The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7478at the destination location. If the argument is known to be aligned to
7479some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007480it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007481
7482'``llvm.sqrt.*``' Intrinsic
7483^^^^^^^^^^^^^^^^^^^^^^^^^^^
7484
7485Syntax:
7486"""""""
7487
7488This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7489floating point or vector of floating point type. Not all targets support
7490all types however.
7491
7492::
7493
7494 declare float @llvm.sqrt.f32(float %Val)
7495 declare double @llvm.sqrt.f64(double %Val)
7496 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7497 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7498 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7499
7500Overview:
7501"""""""""
7502
7503The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7504returning the same value as the libm '``sqrt``' functions would. Unlike
7505``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7506negative numbers other than -0.0 (which allows for better optimization,
7507because there is no need to worry about errno being set).
7508``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7509
7510Arguments:
7511""""""""""
7512
7513The argument and return value are floating point numbers of the same
7514type.
7515
7516Semantics:
7517""""""""""
7518
7519This function returns the sqrt of the specified operand if it is a
7520nonnegative floating point number.
7521
7522'``llvm.powi.*``' Intrinsic
7523^^^^^^^^^^^^^^^^^^^^^^^^^^^
7524
7525Syntax:
7526"""""""
7527
7528This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7529floating point or vector of floating point type. Not all targets support
7530all types however.
7531
7532::
7533
7534 declare float @llvm.powi.f32(float %Val, i32 %power)
7535 declare double @llvm.powi.f64(double %Val, i32 %power)
7536 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7537 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7538 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7539
7540Overview:
7541"""""""""
7542
7543The '``llvm.powi.*``' intrinsics return the first operand raised to the
7544specified (positive or negative) power. The order of evaluation of
7545multiplications is not defined. When a vector of floating point type is
7546used, the second argument remains a scalar integer value.
7547
7548Arguments:
7549""""""""""
7550
7551The second argument is an integer power, and the first is a value to
7552raise to that power.
7553
7554Semantics:
7555""""""""""
7556
7557This function returns the first value raised to the second power with an
7558unspecified sequence of rounding operations.
7559
7560'``llvm.sin.*``' Intrinsic
7561^^^^^^^^^^^^^^^^^^^^^^^^^^
7562
7563Syntax:
7564"""""""
7565
7566This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7567floating point or vector of floating point type. Not all targets support
7568all types however.
7569
7570::
7571
7572 declare float @llvm.sin.f32(float %Val)
7573 declare double @llvm.sin.f64(double %Val)
7574 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7575 declare fp128 @llvm.sin.f128(fp128 %Val)
7576 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7577
7578Overview:
7579"""""""""
7580
7581The '``llvm.sin.*``' intrinsics return the sine of the operand.
7582
7583Arguments:
7584""""""""""
7585
7586The argument and return value are floating point numbers of the same
7587type.
7588
7589Semantics:
7590""""""""""
7591
7592This function returns the sine of the specified operand, returning the
7593same values as the libm ``sin`` functions would, and handles error
7594conditions in the same way.
7595
7596'``llvm.cos.*``' Intrinsic
7597^^^^^^^^^^^^^^^^^^^^^^^^^^
7598
7599Syntax:
7600"""""""
7601
7602This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7603floating point or vector of floating point type. Not all targets support
7604all types however.
7605
7606::
7607
7608 declare float @llvm.cos.f32(float %Val)
7609 declare double @llvm.cos.f64(double %Val)
7610 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7611 declare fp128 @llvm.cos.f128(fp128 %Val)
7612 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7613
7614Overview:
7615"""""""""
7616
7617The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7618
7619Arguments:
7620""""""""""
7621
7622The argument and return value are floating point numbers of the same
7623type.
7624
7625Semantics:
7626""""""""""
7627
7628This function returns the cosine of the specified operand, returning the
7629same values as the libm ``cos`` functions would, and handles error
7630conditions in the same way.
7631
7632'``llvm.pow.*``' Intrinsic
7633^^^^^^^^^^^^^^^^^^^^^^^^^^
7634
7635Syntax:
7636"""""""
7637
7638This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7639floating point or vector of floating point type. Not all targets support
7640all types however.
7641
7642::
7643
7644 declare float @llvm.pow.f32(float %Val, float %Power)
7645 declare double @llvm.pow.f64(double %Val, double %Power)
7646 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7647 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7648 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7649
7650Overview:
7651"""""""""
7652
7653The '``llvm.pow.*``' intrinsics return the first operand raised to the
7654specified (positive or negative) power.
7655
7656Arguments:
7657""""""""""
7658
7659The second argument is a floating point power, and the first is a value
7660to raise to that power.
7661
7662Semantics:
7663""""""""""
7664
7665This function returns the first value raised to the second power,
7666returning the same values as the libm ``pow`` functions would, and
7667handles error conditions in the same way.
7668
7669'``llvm.exp.*``' Intrinsic
7670^^^^^^^^^^^^^^^^^^^^^^^^^^
7671
7672Syntax:
7673"""""""
7674
7675This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7676floating point or vector of floating point type. Not all targets support
7677all types however.
7678
7679::
7680
7681 declare float @llvm.exp.f32(float %Val)
7682 declare double @llvm.exp.f64(double %Val)
7683 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7684 declare fp128 @llvm.exp.f128(fp128 %Val)
7685 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7686
7687Overview:
7688"""""""""
7689
7690The '``llvm.exp.*``' intrinsics perform the exp function.
7691
7692Arguments:
7693""""""""""
7694
7695The argument and return value are floating point numbers of the same
7696type.
7697
7698Semantics:
7699""""""""""
7700
7701This function returns the same values as the libm ``exp`` functions
7702would, and handles error conditions in the same way.
7703
7704'``llvm.exp2.*``' Intrinsic
7705^^^^^^^^^^^^^^^^^^^^^^^^^^^
7706
7707Syntax:
7708"""""""
7709
7710This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7711floating point or vector of floating point type. Not all targets support
7712all types however.
7713
7714::
7715
7716 declare float @llvm.exp2.f32(float %Val)
7717 declare double @llvm.exp2.f64(double %Val)
7718 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7719 declare fp128 @llvm.exp2.f128(fp128 %Val)
7720 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7721
7722Overview:
7723"""""""""
7724
7725The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7726
7727Arguments:
7728""""""""""
7729
7730The argument and return value are floating point numbers of the same
7731type.
7732
7733Semantics:
7734""""""""""
7735
7736This function returns the same values as the libm ``exp2`` functions
7737would, and handles error conditions in the same way.
7738
7739'``llvm.log.*``' Intrinsic
7740^^^^^^^^^^^^^^^^^^^^^^^^^^
7741
7742Syntax:
7743"""""""
7744
7745This is an overloaded intrinsic. You can use ``llvm.log`` on any
7746floating point or vector of floating point type. Not all targets support
7747all types however.
7748
7749::
7750
7751 declare float @llvm.log.f32(float %Val)
7752 declare double @llvm.log.f64(double %Val)
7753 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7754 declare fp128 @llvm.log.f128(fp128 %Val)
7755 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7756
7757Overview:
7758"""""""""
7759
7760The '``llvm.log.*``' intrinsics perform the log function.
7761
7762Arguments:
7763""""""""""
7764
7765The argument and return value are floating point numbers of the same
7766type.
7767
7768Semantics:
7769""""""""""
7770
7771This function returns the same values as the libm ``log`` functions
7772would, and handles error conditions in the same way.
7773
7774'``llvm.log10.*``' Intrinsic
7775^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7776
7777Syntax:
7778"""""""
7779
7780This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7781floating point or vector of floating point type. Not all targets support
7782all types however.
7783
7784::
7785
7786 declare float @llvm.log10.f32(float %Val)
7787 declare double @llvm.log10.f64(double %Val)
7788 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7789 declare fp128 @llvm.log10.f128(fp128 %Val)
7790 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7791
7792Overview:
7793"""""""""
7794
7795The '``llvm.log10.*``' intrinsics perform the log10 function.
7796
7797Arguments:
7798""""""""""
7799
7800The argument and return value are floating point numbers of the same
7801type.
7802
7803Semantics:
7804""""""""""
7805
7806This function returns the same values as the libm ``log10`` functions
7807would, and handles error conditions in the same way.
7808
7809'``llvm.log2.*``' Intrinsic
7810^^^^^^^^^^^^^^^^^^^^^^^^^^^
7811
7812Syntax:
7813"""""""
7814
7815This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7816floating point or vector of floating point type. Not all targets support
7817all types however.
7818
7819::
7820
7821 declare float @llvm.log2.f32(float %Val)
7822 declare double @llvm.log2.f64(double %Val)
7823 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7824 declare fp128 @llvm.log2.f128(fp128 %Val)
7825 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7826
7827Overview:
7828"""""""""
7829
7830The '``llvm.log2.*``' intrinsics perform the log2 function.
7831
7832Arguments:
7833""""""""""
7834
7835The argument and return value are floating point numbers of the same
7836type.
7837
7838Semantics:
7839""""""""""
7840
7841This function returns the same values as the libm ``log2`` functions
7842would, and handles error conditions in the same way.
7843
7844'``llvm.fma.*``' Intrinsic
7845^^^^^^^^^^^^^^^^^^^^^^^^^^
7846
7847Syntax:
7848"""""""
7849
7850This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7851floating point or vector of floating point type. Not all targets support
7852all types however.
7853
7854::
7855
7856 declare float @llvm.fma.f32(float %a, float %b, float %c)
7857 declare double @llvm.fma.f64(double %a, double %b, double %c)
7858 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7859 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7860 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7861
7862Overview:
7863"""""""""
7864
7865The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7866operation.
7867
7868Arguments:
7869""""""""""
7870
7871The argument and return value are floating point numbers of the same
7872type.
7873
7874Semantics:
7875""""""""""
7876
7877This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007878would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007879
7880'``llvm.fabs.*``' Intrinsic
7881^^^^^^^^^^^^^^^^^^^^^^^^^^^
7882
7883Syntax:
7884"""""""
7885
7886This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7887floating point or vector of floating point type. Not all targets support
7888all types however.
7889
7890::
7891
7892 declare float @llvm.fabs.f32(float %Val)
7893 declare double @llvm.fabs.f64(double %Val)
7894 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7895 declare fp128 @llvm.fabs.f128(fp128 %Val)
7896 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7897
7898Overview:
7899"""""""""
7900
7901The '``llvm.fabs.*``' intrinsics return the absolute value of the
7902operand.
7903
7904Arguments:
7905""""""""""
7906
7907The argument and return value are floating point numbers of the same
7908type.
7909
7910Semantics:
7911""""""""""
7912
7913This function returns the same values as the libm ``fabs`` functions
7914would, and handles error conditions in the same way.
7915
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007916'``llvm.copysign.*``' Intrinsic
7917^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7918
7919Syntax:
7920"""""""
7921
7922This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7923floating point or vector of floating point type. Not all targets support
7924all types however.
7925
7926::
7927
7928 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7929 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7930 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7931 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7932 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7933
7934Overview:
7935"""""""""
7936
7937The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7938first operand and the sign of the second operand.
7939
7940Arguments:
7941""""""""""
7942
7943The arguments and return value are floating point numbers of the same
7944type.
7945
7946Semantics:
7947""""""""""
7948
7949This function returns the same values as the libm ``copysign``
7950functions would, and handles error conditions in the same way.
7951
Sean Silvab084af42012-12-07 10:36:55 +00007952'``llvm.floor.*``' Intrinsic
7953^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7954
7955Syntax:
7956"""""""
7957
7958This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7959floating point or vector of floating point type. Not all targets support
7960all types however.
7961
7962::
7963
7964 declare float @llvm.floor.f32(float %Val)
7965 declare double @llvm.floor.f64(double %Val)
7966 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7967 declare fp128 @llvm.floor.f128(fp128 %Val)
7968 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7969
7970Overview:
7971"""""""""
7972
7973The '``llvm.floor.*``' intrinsics return the floor of the operand.
7974
7975Arguments:
7976""""""""""
7977
7978The argument and return value are floating point numbers of the same
7979type.
7980
7981Semantics:
7982""""""""""
7983
7984This function returns the same values as the libm ``floor`` functions
7985would, and handles error conditions in the same way.
7986
7987'``llvm.ceil.*``' Intrinsic
7988^^^^^^^^^^^^^^^^^^^^^^^^^^^
7989
7990Syntax:
7991"""""""
7992
7993This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7994floating point or vector of floating point type. Not all targets support
7995all types however.
7996
7997::
7998
7999 declare float @llvm.ceil.f32(float %Val)
8000 declare double @llvm.ceil.f64(double %Val)
8001 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8002 declare fp128 @llvm.ceil.f128(fp128 %Val)
8003 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8004
8005Overview:
8006"""""""""
8007
8008The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8009
8010Arguments:
8011""""""""""
8012
8013The argument and return value are floating point numbers of the same
8014type.
8015
8016Semantics:
8017""""""""""
8018
8019This function returns the same values as the libm ``ceil`` functions
8020would, and handles error conditions in the same way.
8021
8022'``llvm.trunc.*``' Intrinsic
8023^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8024
8025Syntax:
8026"""""""
8027
8028This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8029floating point or vector of floating point type. Not all targets support
8030all types however.
8031
8032::
8033
8034 declare float @llvm.trunc.f32(float %Val)
8035 declare double @llvm.trunc.f64(double %Val)
8036 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8037 declare fp128 @llvm.trunc.f128(fp128 %Val)
8038 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8039
8040Overview:
8041"""""""""
8042
8043The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8044nearest integer not larger in magnitude than the operand.
8045
8046Arguments:
8047""""""""""
8048
8049The argument and return value are floating point numbers of the same
8050type.
8051
8052Semantics:
8053""""""""""
8054
8055This function returns the same values as the libm ``trunc`` functions
8056would, and handles error conditions in the same way.
8057
8058'``llvm.rint.*``' Intrinsic
8059^^^^^^^^^^^^^^^^^^^^^^^^^^^
8060
8061Syntax:
8062"""""""
8063
8064This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8065floating point or vector of floating point type. Not all targets support
8066all types however.
8067
8068::
8069
8070 declare float @llvm.rint.f32(float %Val)
8071 declare double @llvm.rint.f64(double %Val)
8072 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8073 declare fp128 @llvm.rint.f128(fp128 %Val)
8074 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8075
8076Overview:
8077"""""""""
8078
8079The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8080nearest integer. It may raise an inexact floating-point exception if the
8081operand isn't an integer.
8082
8083Arguments:
8084""""""""""
8085
8086The argument and return value are floating point numbers of the same
8087type.
8088
8089Semantics:
8090""""""""""
8091
8092This function returns the same values as the libm ``rint`` functions
8093would, and handles error conditions in the same way.
8094
8095'``llvm.nearbyint.*``' Intrinsic
8096^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8097
8098Syntax:
8099"""""""
8100
8101This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8102floating point or vector of floating point type. Not all targets support
8103all types however.
8104
8105::
8106
8107 declare float @llvm.nearbyint.f32(float %Val)
8108 declare double @llvm.nearbyint.f64(double %Val)
8109 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8110 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8111 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8112
8113Overview:
8114"""""""""
8115
8116The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8117nearest integer.
8118
8119Arguments:
8120""""""""""
8121
8122The argument and return value are floating point numbers of the same
8123type.
8124
8125Semantics:
8126""""""""""
8127
8128This function returns the same values as the libm ``nearbyint``
8129functions would, and handles error conditions in the same way.
8130
Hal Finkel171817e2013-08-07 22:49:12 +00008131'``llvm.round.*``' Intrinsic
8132^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8133
8134Syntax:
8135"""""""
8136
8137This is an overloaded intrinsic. You can use ``llvm.round`` on any
8138floating point or vector of floating point type. Not all targets support
8139all types however.
8140
8141::
8142
8143 declare float @llvm.round.f32(float %Val)
8144 declare double @llvm.round.f64(double %Val)
8145 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8146 declare fp128 @llvm.round.f128(fp128 %Val)
8147 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8148
8149Overview:
8150"""""""""
8151
8152The '``llvm.round.*``' intrinsics returns the operand rounded to the
8153nearest integer.
8154
8155Arguments:
8156""""""""""
8157
8158The argument and return value are floating point numbers of the same
8159type.
8160
8161Semantics:
8162""""""""""
8163
8164This function returns the same values as the libm ``round``
8165functions would, and handles error conditions in the same way.
8166
Sean Silvab084af42012-12-07 10:36:55 +00008167Bit Manipulation Intrinsics
8168---------------------------
8169
8170LLVM provides intrinsics for a few important bit manipulation
8171operations. These allow efficient code generation for some algorithms.
8172
8173'``llvm.bswap.*``' Intrinsics
8174^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8175
8176Syntax:
8177"""""""
8178
8179This is an overloaded intrinsic function. You can use bswap on any
8180integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8181
8182::
8183
8184 declare i16 @llvm.bswap.i16(i16 <id>)
8185 declare i32 @llvm.bswap.i32(i32 <id>)
8186 declare i64 @llvm.bswap.i64(i64 <id>)
8187
8188Overview:
8189"""""""""
8190
8191The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8192values with an even number of bytes (positive multiple of 16 bits).
8193These are useful for performing operations on data that is not in the
8194target's native byte order.
8195
8196Semantics:
8197""""""""""
8198
8199The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8200and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8201intrinsic returns an i32 value that has the four bytes of the input i32
8202swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8203returned i32 will have its bytes in 3, 2, 1, 0 order. The
8204``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8205concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8206respectively).
8207
8208'``llvm.ctpop.*``' Intrinsic
8209^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8210
8211Syntax:
8212"""""""
8213
8214This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8215bit width, or on any vector with integer elements. Not all targets
8216support all bit widths or vector types, however.
8217
8218::
8219
8220 declare i8 @llvm.ctpop.i8(i8 <src>)
8221 declare i16 @llvm.ctpop.i16(i16 <src>)
8222 declare i32 @llvm.ctpop.i32(i32 <src>)
8223 declare i64 @llvm.ctpop.i64(i64 <src>)
8224 declare i256 @llvm.ctpop.i256(i256 <src>)
8225 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8226
8227Overview:
8228"""""""""
8229
8230The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8231in a value.
8232
8233Arguments:
8234""""""""""
8235
8236The only argument is the value to be counted. The argument may be of any
8237integer type, or a vector with integer elements. The return type must
8238match the argument type.
8239
8240Semantics:
8241""""""""""
8242
8243The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8244each element of a vector.
8245
8246'``llvm.ctlz.*``' Intrinsic
8247^^^^^^^^^^^^^^^^^^^^^^^^^^^
8248
8249Syntax:
8250"""""""
8251
8252This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8253integer bit width, or any vector whose elements are integers. Not all
8254targets support all bit widths or vector types, however.
8255
8256::
8257
8258 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8259 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8260 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8261 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8262 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8263 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8264
8265Overview:
8266"""""""""
8267
8268The '``llvm.ctlz``' family of intrinsic functions counts the number of
8269leading zeros in a variable.
8270
8271Arguments:
8272""""""""""
8273
8274The first argument is the value to be counted. This argument may be of
8275any integer type, or a vectory with integer element type. The return
8276type must match the first argument type.
8277
8278The second argument must be a constant and is a flag to indicate whether
8279the intrinsic should ensure that a zero as the first argument produces a
8280defined result. Historically some architectures did not provide a
8281defined result for zero values as efficiently, and many algorithms are
8282now predicated on avoiding zero-value inputs.
8283
8284Semantics:
8285""""""""""
8286
8287The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8288zeros in a variable, or within each element of the vector. If
8289``src == 0`` then the result is the size in bits of the type of ``src``
8290if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8291``llvm.ctlz(i32 2) = 30``.
8292
8293'``llvm.cttz.*``' Intrinsic
8294^^^^^^^^^^^^^^^^^^^^^^^^^^^
8295
8296Syntax:
8297"""""""
8298
8299This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8300integer bit width, or any vector of integer elements. Not all targets
8301support all bit widths or vector types, however.
8302
8303::
8304
8305 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8306 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8307 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8308 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8309 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8310 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8311
8312Overview:
8313"""""""""
8314
8315The '``llvm.cttz``' family of intrinsic functions counts the number of
8316trailing zeros.
8317
8318Arguments:
8319""""""""""
8320
8321The first argument is the value to be counted. This argument may be of
8322any integer type, or a vectory with integer element type. The return
8323type must match the first argument type.
8324
8325The second argument must be a constant and is a flag to indicate whether
8326the intrinsic should ensure that a zero as the first argument produces a
8327defined result. Historically some architectures did not provide a
8328defined result for zero values as efficiently, and many algorithms are
8329now predicated on avoiding zero-value inputs.
8330
8331Semantics:
8332""""""""""
8333
8334The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8335zeros in a variable, or within each element of a vector. If ``src == 0``
8336then the result is the size in bits of the type of ``src`` if
8337``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8338``llvm.cttz(2) = 1``.
8339
8340Arithmetic with Overflow Intrinsics
8341-----------------------------------
8342
8343LLVM provides intrinsics for some arithmetic with overflow operations.
8344
8345'``llvm.sadd.with.overflow.*``' Intrinsics
8346^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8347
8348Syntax:
8349"""""""
8350
8351This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8352on any integer bit width.
8353
8354::
8355
8356 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8357 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8358 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8359
8360Overview:
8361"""""""""
8362
8363The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8364a signed addition of the two arguments, and indicate whether an overflow
8365occurred during the signed summation.
8366
8367Arguments:
8368""""""""""
8369
8370The arguments (%a and %b) and the first element of the result structure
8371may be of integer types of any bit width, but they must have the same
8372bit width. The second element of the result structure must be of type
8373``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8374addition.
8375
8376Semantics:
8377""""""""""
8378
8379The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008380a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008381first element of which is the signed summation, and the second element
8382of which is a bit specifying if the signed summation resulted in an
8383overflow.
8384
8385Examples:
8386"""""""""
8387
8388.. code-block:: llvm
8389
8390 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8391 %sum = extractvalue {i32, i1} %res, 0
8392 %obit = extractvalue {i32, i1} %res, 1
8393 br i1 %obit, label %overflow, label %normal
8394
8395'``llvm.uadd.with.overflow.*``' Intrinsics
8396^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8397
8398Syntax:
8399"""""""
8400
8401This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8402on any integer bit width.
8403
8404::
8405
8406 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8407 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8408 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8409
8410Overview:
8411"""""""""
8412
8413The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8414an unsigned addition of the two arguments, and indicate whether a carry
8415occurred during the unsigned summation.
8416
8417Arguments:
8418""""""""""
8419
8420The arguments (%a and %b) and the first element of the result structure
8421may be of integer types of any bit width, but they must have the same
8422bit width. The second element of the result structure must be of type
8423``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8424addition.
8425
8426Semantics:
8427""""""""""
8428
8429The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008430an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008431first element of which is the sum, and the second element of which is a
8432bit specifying if the unsigned summation resulted in a carry.
8433
8434Examples:
8435"""""""""
8436
8437.. code-block:: llvm
8438
8439 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8440 %sum = extractvalue {i32, i1} %res, 0
8441 %obit = extractvalue {i32, i1} %res, 1
8442 br i1 %obit, label %carry, label %normal
8443
8444'``llvm.ssub.with.overflow.*``' Intrinsics
8445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8446
8447Syntax:
8448"""""""
8449
8450This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8451on any integer bit width.
8452
8453::
8454
8455 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8456 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8457 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8458
8459Overview:
8460"""""""""
8461
8462The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8463a signed subtraction of the two arguments, and indicate whether an
8464overflow occurred during the signed subtraction.
8465
8466Arguments:
8467""""""""""
8468
8469The arguments (%a and %b) and the first element of the result structure
8470may be of integer types of any bit width, but they must have the same
8471bit width. The second element of the result structure must be of type
8472``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8473subtraction.
8474
8475Semantics:
8476""""""""""
8477
8478The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008479a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008480first element of which is the subtraction, and the second element of
8481which is a bit specifying if the signed subtraction resulted in an
8482overflow.
8483
8484Examples:
8485"""""""""
8486
8487.. code-block:: llvm
8488
8489 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8490 %sum = extractvalue {i32, i1} %res, 0
8491 %obit = extractvalue {i32, i1} %res, 1
8492 br i1 %obit, label %overflow, label %normal
8493
8494'``llvm.usub.with.overflow.*``' Intrinsics
8495^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8496
8497Syntax:
8498"""""""
8499
8500This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8501on any integer bit width.
8502
8503::
8504
8505 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8506 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8507 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8508
8509Overview:
8510"""""""""
8511
8512The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8513an unsigned subtraction of the two arguments, and indicate whether an
8514overflow occurred during the unsigned subtraction.
8515
8516Arguments:
8517""""""""""
8518
8519The arguments (%a and %b) and the first element of the result structure
8520may be of integer types of any bit width, but they must have the same
8521bit width. The second element of the result structure must be of type
8522``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8523subtraction.
8524
8525Semantics:
8526""""""""""
8527
8528The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008529an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008530the first element of which is the subtraction, and the second element of
8531which is a bit specifying if the unsigned subtraction resulted in an
8532overflow.
8533
8534Examples:
8535"""""""""
8536
8537.. code-block:: llvm
8538
8539 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8540 %sum = extractvalue {i32, i1} %res, 0
8541 %obit = extractvalue {i32, i1} %res, 1
8542 br i1 %obit, label %overflow, label %normal
8543
8544'``llvm.smul.with.overflow.*``' Intrinsics
8545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8546
8547Syntax:
8548"""""""
8549
8550This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8551on any integer bit width.
8552
8553::
8554
8555 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8556 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8557 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8558
8559Overview:
8560"""""""""
8561
8562The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8563a signed multiplication of the two arguments, and indicate whether an
8564overflow occurred during the signed multiplication.
8565
8566Arguments:
8567""""""""""
8568
8569The arguments (%a and %b) and the first element of the result structure
8570may be of integer types of any bit width, but they must have the same
8571bit width. The second element of the result structure must be of type
8572``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8573multiplication.
8574
8575Semantics:
8576""""""""""
8577
8578The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008579a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008580the first element of which is the multiplication, and the second element
8581of which is a bit specifying if the signed multiplication resulted in an
8582overflow.
8583
8584Examples:
8585"""""""""
8586
8587.. code-block:: llvm
8588
8589 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8590 %sum = extractvalue {i32, i1} %res, 0
8591 %obit = extractvalue {i32, i1} %res, 1
8592 br i1 %obit, label %overflow, label %normal
8593
8594'``llvm.umul.with.overflow.*``' Intrinsics
8595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8596
8597Syntax:
8598"""""""
8599
8600This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8601on any integer bit width.
8602
8603::
8604
8605 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8606 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8607 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8608
8609Overview:
8610"""""""""
8611
8612The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8613a unsigned multiplication of the two arguments, and indicate whether an
8614overflow occurred during the unsigned multiplication.
8615
8616Arguments:
8617""""""""""
8618
8619The arguments (%a and %b) and the first element of the result structure
8620may be of integer types of any bit width, but they must have the same
8621bit width. The second element of the result structure must be of type
8622``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8623multiplication.
8624
8625Semantics:
8626""""""""""
8627
8628The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008629an unsigned multiplication of the two arguments. They return a structure ---
8630the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008631element of which is a bit specifying if the unsigned multiplication
8632resulted in an overflow.
8633
8634Examples:
8635"""""""""
8636
8637.. code-block:: llvm
8638
8639 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8640 %sum = extractvalue {i32, i1} %res, 0
8641 %obit = extractvalue {i32, i1} %res, 1
8642 br i1 %obit, label %overflow, label %normal
8643
8644Specialised Arithmetic Intrinsics
8645---------------------------------
8646
8647'``llvm.fmuladd.*``' Intrinsic
8648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8649
8650Syntax:
8651"""""""
8652
8653::
8654
8655 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8656 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8657
8658Overview:
8659"""""""""
8660
8661The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008662expressions that can be fused if the code generator determines that (a) the
8663target instruction set has support for a fused operation, and (b) that the
8664fused operation is more efficient than the equivalent, separate pair of mul
8665and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008666
8667Arguments:
8668""""""""""
8669
8670The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8671multiplicands, a and b, and an addend c.
8672
8673Semantics:
8674""""""""""
8675
8676The expression:
8677
8678::
8679
8680 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8681
8682is equivalent to the expression a \* b + c, except that rounding will
8683not be performed between the multiplication and addition steps if the
8684code generator fuses the operations. Fusion is not guaranteed, even if
8685the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008686corresponding llvm.fma.\* intrinsic function should be used
8687instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008688
8689Examples:
8690"""""""""
8691
8692.. code-block:: llvm
8693
Tim Northover675a0962014-06-13 14:24:23 +00008694 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00008695
8696Half Precision Floating Point Intrinsics
8697----------------------------------------
8698
8699For most target platforms, half precision floating point is a
8700storage-only format. This means that it is a dense encoding (in memory)
8701but does not support computation in the format.
8702
8703This means that code must first load the half-precision floating point
8704value as an i16, then convert it to float with
8705:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8706then be performed on the float value (including extending to double
8707etc). To store the value back to memory, it is first converted to float
8708if needed, then converted to i16 with
8709:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8710i16 value.
8711
8712.. _int_convert_to_fp16:
8713
8714'``llvm.convert.to.fp16``' Intrinsic
8715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8716
8717Syntax:
8718"""""""
8719
8720::
8721
Tim Northoverfd7e4242014-07-17 10:51:23 +00008722 declare i16 @llvm.convert.to.fp16.f32(float %a)
8723 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00008724
8725Overview:
8726"""""""""
8727
Tim Northoverfd7e4242014-07-17 10:51:23 +00008728The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8729conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00008730
8731Arguments:
8732""""""""""
8733
8734The intrinsic function contains single argument - the value to be
8735converted.
8736
8737Semantics:
8738""""""""""
8739
Tim Northoverfd7e4242014-07-17 10:51:23 +00008740The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8741conventional floating point format to half precision floating point format. The
8742return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00008743
8744Examples:
8745"""""""""
8746
8747.. code-block:: llvm
8748
Tim Northoverfd7e4242014-07-17 10:51:23 +00008749 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00008750 store i16 %res, i16* @x, align 2
8751
8752.. _int_convert_from_fp16:
8753
8754'``llvm.convert.from.fp16``' Intrinsic
8755^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8756
8757Syntax:
8758"""""""
8759
8760::
8761
Tim Northoverfd7e4242014-07-17 10:51:23 +00008762 declare float @llvm.convert.from.fp16.f32(i16 %a)
8763 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008764
8765Overview:
8766"""""""""
8767
8768The '``llvm.convert.from.fp16``' intrinsic function performs a
8769conversion from half precision floating point format to single precision
8770floating point format.
8771
8772Arguments:
8773""""""""""
8774
8775The intrinsic function contains single argument - the value to be
8776converted.
8777
8778Semantics:
8779""""""""""
8780
8781The '``llvm.convert.from.fp16``' intrinsic function performs a
8782conversion from half single precision floating point format to single
8783precision floating point format. The input half-float value is
8784represented by an ``i16`` value.
8785
8786Examples:
8787"""""""""
8788
8789.. code-block:: llvm
8790
8791 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00008792 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008793
8794Debugger Intrinsics
8795-------------------
8796
8797The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8798prefix), are described in the `LLVM Source Level
8799Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8800document.
8801
8802Exception Handling Intrinsics
8803-----------------------------
8804
8805The LLVM exception handling intrinsics (which all start with
8806``llvm.eh.`` prefix), are described in the `LLVM Exception
8807Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8808
8809.. _int_trampoline:
8810
8811Trampoline Intrinsics
8812---------------------
8813
8814These intrinsics make it possible to excise one parameter, marked with
8815the :ref:`nest <nest>` attribute, from a function. The result is a
8816callable function pointer lacking the nest parameter - the caller does
8817not need to provide a value for it. Instead, the value to use is stored
8818in advance in a "trampoline", a block of memory usually allocated on the
8819stack, which also contains code to splice the nest value into the
8820argument list. This is used to implement the GCC nested function address
8821extension.
8822
8823For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8824then the resulting function pointer has signature ``i32 (i32, i32)*``.
8825It can be created as follows:
8826
8827.. code-block:: llvm
8828
8829 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8830 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8831 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8832 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8833 %fp = bitcast i8* %p to i32 (i32, i32)*
8834
8835The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8836``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8837
8838.. _int_it:
8839
8840'``llvm.init.trampoline``' Intrinsic
8841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8842
8843Syntax:
8844"""""""
8845
8846::
8847
8848 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8849
8850Overview:
8851"""""""""
8852
8853This fills the memory pointed to by ``tramp`` with executable code,
8854turning it into a trampoline.
8855
8856Arguments:
8857""""""""""
8858
8859The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8860pointers. The ``tramp`` argument must point to a sufficiently large and
8861sufficiently aligned block of memory; this memory is written to by the
8862intrinsic. Note that the size and the alignment are target-specific -
8863LLVM currently provides no portable way of determining them, so a
8864front-end that generates this intrinsic needs to have some
8865target-specific knowledge. The ``func`` argument must hold a function
8866bitcast to an ``i8*``.
8867
8868Semantics:
8869""""""""""
8870
8871The block of memory pointed to by ``tramp`` is filled with target
8872dependent code, turning it into a function. Then ``tramp`` needs to be
8873passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8874be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8875function's signature is the same as that of ``func`` with any arguments
8876marked with the ``nest`` attribute removed. At most one such ``nest``
8877argument is allowed, and it must be of pointer type. Calling the new
8878function is equivalent to calling ``func`` with the same argument list,
8879but with ``nval`` used for the missing ``nest`` argument. If, after
8880calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8881modified, then the effect of any later call to the returned function
8882pointer is undefined.
8883
8884.. _int_at:
8885
8886'``llvm.adjust.trampoline``' Intrinsic
8887^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8888
8889Syntax:
8890"""""""
8891
8892::
8893
8894 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8895
8896Overview:
8897"""""""""
8898
8899This performs any required machine-specific adjustment to the address of
8900a trampoline (passed as ``tramp``).
8901
8902Arguments:
8903""""""""""
8904
8905``tramp`` must point to a block of memory which already has trampoline
8906code filled in by a previous call to
8907:ref:`llvm.init.trampoline <int_it>`.
8908
8909Semantics:
8910""""""""""
8911
8912On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00008913different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00008914intrinsic returns the executable address corresponding to ``tramp``
8915after performing the required machine specific adjustments. The pointer
8916returned can then be :ref:`bitcast and executed <int_trampoline>`.
8917
8918Memory Use Markers
8919------------------
8920
Sanjay Patel69bf48e2014-07-04 19:40:43 +00008921This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00008922memory objects and ranges where variables are immutable.
8923
Reid Klecknera534a382013-12-19 02:14:12 +00008924.. _int_lifestart:
8925
Sean Silvab084af42012-12-07 10:36:55 +00008926'``llvm.lifetime.start``' Intrinsic
8927^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8928
8929Syntax:
8930"""""""
8931
8932::
8933
8934 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8935
8936Overview:
8937"""""""""
8938
8939The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8940object's lifetime.
8941
8942Arguments:
8943""""""""""
8944
8945The first argument is a constant integer representing the size of the
8946object, or -1 if it is variable sized. The second argument is a pointer
8947to the object.
8948
8949Semantics:
8950""""""""""
8951
8952This intrinsic indicates that before this point in the code, the value
8953of the memory pointed to by ``ptr`` is dead. This means that it is known
8954to never be used and has an undefined value. A load from the pointer
8955that precedes this intrinsic can be replaced with ``'undef'``.
8956
Reid Klecknera534a382013-12-19 02:14:12 +00008957.. _int_lifeend:
8958
Sean Silvab084af42012-12-07 10:36:55 +00008959'``llvm.lifetime.end``' Intrinsic
8960^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8961
8962Syntax:
8963"""""""
8964
8965::
8966
8967 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8968
8969Overview:
8970"""""""""
8971
8972The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8973object's lifetime.
8974
8975Arguments:
8976""""""""""
8977
8978The first argument is a constant integer representing the size of the
8979object, or -1 if it is variable sized. The second argument is a pointer
8980to the object.
8981
8982Semantics:
8983""""""""""
8984
8985This intrinsic indicates that after this point in the code, the value of
8986the memory pointed to by ``ptr`` is dead. This means that it is known to
8987never be used and has an undefined value. Any stores into the memory
8988object following this intrinsic may be removed as dead.
8989
8990'``llvm.invariant.start``' Intrinsic
8991^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8992
8993Syntax:
8994"""""""
8995
8996::
8997
8998 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8999
9000Overview:
9001"""""""""
9002
9003The '``llvm.invariant.start``' intrinsic specifies that the contents of
9004a memory object will not change.
9005
9006Arguments:
9007""""""""""
9008
9009The first argument is a constant integer representing the size of the
9010object, or -1 if it is variable sized. The second argument is a pointer
9011to the object.
9012
9013Semantics:
9014""""""""""
9015
9016This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9017the return value, the referenced memory location is constant and
9018unchanging.
9019
9020'``llvm.invariant.end``' Intrinsic
9021^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9022
9023Syntax:
9024"""""""
9025
9026::
9027
9028 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9029
9030Overview:
9031"""""""""
9032
9033The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9034memory object are mutable.
9035
9036Arguments:
9037""""""""""
9038
9039The first argument is the matching ``llvm.invariant.start`` intrinsic.
9040The second argument is a constant integer representing the size of the
9041object, or -1 if it is variable sized and the third argument is a
9042pointer to the object.
9043
9044Semantics:
9045""""""""""
9046
9047This intrinsic indicates that the memory is mutable again.
9048
9049General Intrinsics
9050------------------
9051
9052This class of intrinsics is designed to be generic and has no specific
9053purpose.
9054
9055'``llvm.var.annotation``' Intrinsic
9056^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9057
9058Syntax:
9059"""""""
9060
9061::
9062
9063 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9064
9065Overview:
9066"""""""""
9067
9068The '``llvm.var.annotation``' intrinsic.
9069
9070Arguments:
9071""""""""""
9072
9073The first argument is a pointer to a value, the second is a pointer to a
9074global string, the third is a pointer to a global string which is the
9075source file name, and the last argument is the line number.
9076
9077Semantics:
9078""""""""""
9079
9080This intrinsic allows annotation of local variables with arbitrary
9081strings. This can be useful for special purpose optimizations that want
9082to look for these annotations. These have no other defined use; they are
9083ignored by code generation and optimization.
9084
Michael Gottesman88d18832013-03-26 00:34:27 +00009085'``llvm.ptr.annotation.*``' Intrinsic
9086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9087
9088Syntax:
9089"""""""
9090
9091This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9092pointer to an integer of any width. *NOTE* you must specify an address space for
9093the pointer. The identifier for the default address space is the integer
9094'``0``'.
9095
9096::
9097
9098 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9099 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9100 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9101 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9102 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9103
9104Overview:
9105"""""""""
9106
9107The '``llvm.ptr.annotation``' intrinsic.
9108
9109Arguments:
9110""""""""""
9111
9112The first argument is a pointer to an integer value of arbitrary bitwidth
9113(result of some expression), the second is a pointer to a global string, the
9114third is a pointer to a global string which is the source file name, and the
9115last argument is the line number. It returns the value of the first argument.
9116
9117Semantics:
9118""""""""""
9119
9120This intrinsic allows annotation of a pointer to an integer with arbitrary
9121strings. This can be useful for special purpose optimizations that want to look
9122for these annotations. These have no other defined use; they are ignored by code
9123generation and optimization.
9124
Sean Silvab084af42012-12-07 10:36:55 +00009125'``llvm.annotation.*``' Intrinsic
9126^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9127
9128Syntax:
9129"""""""
9130
9131This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9132any integer bit width.
9133
9134::
9135
9136 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9137 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9138 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9139 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9140 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9141
9142Overview:
9143"""""""""
9144
9145The '``llvm.annotation``' intrinsic.
9146
9147Arguments:
9148""""""""""
9149
9150The first argument is an integer value (result of some expression), the
9151second is a pointer to a global string, the third is a pointer to a
9152global string which is the source file name, and the last argument is
9153the line number. It returns the value of the first argument.
9154
9155Semantics:
9156""""""""""
9157
9158This intrinsic allows annotations to be put on arbitrary expressions
9159with arbitrary strings. This can be useful for special purpose
9160optimizations that want to look for these annotations. These have no
9161other defined use; they are ignored by code generation and optimization.
9162
9163'``llvm.trap``' Intrinsic
9164^^^^^^^^^^^^^^^^^^^^^^^^^
9165
9166Syntax:
9167"""""""
9168
9169::
9170
9171 declare void @llvm.trap() noreturn nounwind
9172
9173Overview:
9174"""""""""
9175
9176The '``llvm.trap``' intrinsic.
9177
9178Arguments:
9179""""""""""
9180
9181None.
9182
9183Semantics:
9184""""""""""
9185
9186This intrinsic is lowered to the target dependent trap instruction. If
9187the target does not have a trap instruction, this intrinsic will be
9188lowered to a call of the ``abort()`` function.
9189
9190'``llvm.debugtrap``' Intrinsic
9191^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9192
9193Syntax:
9194"""""""
9195
9196::
9197
9198 declare void @llvm.debugtrap() nounwind
9199
9200Overview:
9201"""""""""
9202
9203The '``llvm.debugtrap``' intrinsic.
9204
9205Arguments:
9206""""""""""
9207
9208None.
9209
9210Semantics:
9211""""""""""
9212
9213This intrinsic is lowered to code which is intended to cause an
9214execution trap with the intention of requesting the attention of a
9215debugger.
9216
9217'``llvm.stackprotector``' Intrinsic
9218^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9219
9220Syntax:
9221"""""""
9222
9223::
9224
9225 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9226
9227Overview:
9228"""""""""
9229
9230The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9231onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9232is placed on the stack before local variables.
9233
9234Arguments:
9235""""""""""
9236
9237The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9238The first argument is the value loaded from the stack guard
9239``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9240enough space to hold the value of the guard.
9241
9242Semantics:
9243""""""""""
9244
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009245This intrinsic causes the prologue/epilogue inserter to force the position of
9246the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9247to ensure that if a local variable on the stack is overwritten, it will destroy
9248the value of the guard. When the function exits, the guard on the stack is
9249checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9250different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9251calling the ``__stack_chk_fail()`` function.
9252
9253'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009255
9256Syntax:
9257"""""""
9258
9259::
9260
9261 declare void @llvm.stackprotectorcheck(i8** <guard>)
9262
9263Overview:
9264"""""""""
9265
9266The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009267created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009268``__stack_chk_fail()`` function.
9269
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009270Arguments:
9271""""""""""
9272
9273The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9274the variable ``@__stack_chk_guard``.
9275
9276Semantics:
9277""""""""""
9278
9279This intrinsic is provided to perform the stack protector check by comparing
9280``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9281values do not match call the ``__stack_chk_fail()`` function.
9282
9283The reason to provide this as an IR level intrinsic instead of implementing it
9284via other IR operations is that in order to perform this operation at the IR
9285level without an intrinsic, one would need to create additional basic blocks to
9286handle the success/failure cases. This makes it difficult to stop the stack
9287protector check from disrupting sibling tail calls in Codegen. With this
9288intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009289codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009290
Sean Silvab084af42012-12-07 10:36:55 +00009291'``llvm.objectsize``' Intrinsic
9292^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9293
9294Syntax:
9295"""""""
9296
9297::
9298
9299 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9300 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9301
9302Overview:
9303"""""""""
9304
9305The ``llvm.objectsize`` intrinsic is designed to provide information to
9306the optimizers to determine at compile time whether a) an operation
9307(like memcpy) will overflow a buffer that corresponds to an object, or
9308b) that a runtime check for overflow isn't necessary. An object in this
9309context means an allocation of a specific class, structure, array, or
9310other object.
9311
9312Arguments:
9313""""""""""
9314
9315The ``llvm.objectsize`` intrinsic takes two arguments. The first
9316argument is a pointer to or into the ``object``. The second argument is
9317a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9318or -1 (if false) when the object size is unknown. The second argument
9319only accepts constants.
9320
9321Semantics:
9322""""""""""
9323
9324The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9325the size of the object concerned. If the size cannot be determined at
9326compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9327on the ``min`` argument).
9328
9329'``llvm.expect``' Intrinsic
9330^^^^^^^^^^^^^^^^^^^^^^^^^^^
9331
9332Syntax:
9333"""""""
9334
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009335This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9336integer bit width.
9337
Sean Silvab084af42012-12-07 10:36:55 +00009338::
9339
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009340 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009341 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9342 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9343
9344Overview:
9345"""""""""
9346
9347The ``llvm.expect`` intrinsic provides information about expected (the
9348most probable) value of ``val``, which can be used by optimizers.
9349
9350Arguments:
9351""""""""""
9352
9353The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9354a value. The second argument is an expected value, this needs to be a
9355constant value, variables are not allowed.
9356
9357Semantics:
9358""""""""""
9359
9360This intrinsic is lowered to the ``val``.
9361
9362'``llvm.donothing``' Intrinsic
9363^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9364
9365Syntax:
9366"""""""
9367
9368::
9369
9370 declare void @llvm.donothing() nounwind readnone
9371
9372Overview:
9373"""""""""
9374
9375The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9376only intrinsic that can be called with an invoke instruction.
9377
9378Arguments:
9379""""""""""
9380
9381None.
9382
9383Semantics:
9384""""""""""
9385
9386This intrinsic does nothing, and it's removed by optimizers and ignored
9387by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009388
9389Stack Map Intrinsics
9390--------------------
9391
9392LLVM provides experimental intrinsics to support runtime patching
9393mechanisms commonly desired in dynamic language JITs. These intrinsics
9394are described in :doc:`StackMaps`.