blob: 55aceba9f270925c5f1244ea3e5c2f8cf05ee339 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
Chris Lattner2ac19022010-11-15 05:19:05 +000014#define DEBUG_TYPE "mccodeemitter"
Chris Lattner45762472010-02-03 21:24:49 +000015#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Daniel Dunbara8dfb792010-02-13 09:27:52 +000017#include "X86FixupKinds.h"
Chris Lattner45762472010-02-03 21:24:49 +000018#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000019#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000020#include "llvm/MC/MCInst.h"
Rafael Espindola64e67192010-10-20 16:46:08 +000021#include "llvm/MC/MCSymbol.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000022#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000023using namespace llvm;
24
25namespace {
26class X86MCCodeEmitter : public MCCodeEmitter {
Argyrios Kyrtzidis8c8b9ee2010-08-15 10:27:23 +000027 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
28 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000029 const TargetMachine &TM;
30 const TargetInstrInfo &TII;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000031 MCContext &Ctx;
Chris Lattner1ac23b12010-02-05 02:18:40 +000032 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000033public:
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000034 X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000035 : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000036 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000037 }
38
39 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000040
Chris Lattner28249d92010-02-05 01:53:19 +000041 static unsigned GetX86RegNum(const MCOperand &MO) {
42 return X86RegisterInfo::getX86RegNum(MO.getReg());
43 }
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000044
45 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
46 // 0-7 and the difference between the 2 groups is given by the REX prefix.
47 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
48 // in 1's complement form, example:
49 //
50 // ModRM field => XMM9 => 1
51 // VEX.VVVV => XMM9 => ~9
52 //
53 // See table 4-35 of Intel AVX Programming Reference for details.
54 static unsigned char getVEXRegisterEncoding(const MCInst &MI,
55 unsigned OpNum) {
56 unsigned SrcReg = MI.getOperand(OpNum).getReg();
57 unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
Bruno Cardoso Lopese86b01c2010-07-09 18:27:43 +000058 if ((SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15) ||
59 (SrcReg >= X86::YMM8 && SrcReg <= X86::YMM15))
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000060 SrcRegNum += 8;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000061
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000062 // The registers represented through VEX_VVVV should
63 // be encoded in 1's complement form.
64 return (~SrcRegNum) & 0xf;
65 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000066
Chris Lattner37ce80e2010-02-10 06:41:02 +000067 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000068 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000069 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000070 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000071
Chris Lattner37ce80e2010-02-10 06:41:02 +000072 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
73 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000074 // Output the constant in little endian byte order.
75 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000076 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000077 Val >>= 8;
78 }
79 }
Chris Lattner0e73c392010-02-05 06:16:07 +000080
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000081 void EmitImmediate(const MCOperand &Disp,
Chris Lattnercf653392010-02-12 22:36:47 +000082 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +000083 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +000084 SmallVectorImpl<MCFixup> &Fixups,
85 int ImmOffset = 0) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000086
Chris Lattner28249d92010-02-05 01:53:19 +000087 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
88 unsigned RM) {
89 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
90 return RM | (RegOpcode << 3) | (Mod << 6);
91 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000092
Chris Lattner28249d92010-02-05 01:53:19 +000093 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +000094 unsigned &CurByte, raw_ostream &OS) const {
95 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000096 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +000097
Chris Lattner0e73c392010-02-05 06:16:07 +000098 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +000099 unsigned &CurByte, raw_ostream &OS) const {
100 // SIB byte is in the same format as the ModRMByte.
101 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000102 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000103
104
Chris Lattner1ac23b12010-02-05 02:18:40 +0000105 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000106 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000107 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000108 SmallVectorImpl<MCFixup> &Fixups) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000109
Daniel Dunbar73c55742010-02-09 22:59:55 +0000110 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
111 SmallVectorImpl<MCFixup> &Fixups) const;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000112
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000113 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000114 const MCInst &MI, const TargetInstrDesc &Desc,
115 raw_ostream &OS) const;
116
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000117 void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
118 int MemOperand, const MCInst &MI,
119 raw_ostream &OS) const;
120
Chris Lattner834df192010-07-08 22:28:12 +0000121 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000122 const MCInst &MI, const TargetInstrDesc &Desc,
123 raw_ostream &OS) const;
Chris Lattner45762472010-02-03 21:24:49 +0000124};
125
126} // end anonymous namespace
127
128
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000129MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000130 TargetMachine &TM,
131 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000132 return new X86MCCodeEmitter(TM, Ctx, false);
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000133}
134
135MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000136 TargetMachine &TM,
137 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000138 return new X86MCCodeEmitter(TM, Ctx, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000139}
140
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000141/// isDisp8 - Return true if this signed displacement fits in a 8-bit
142/// sign-extended field.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000143static bool isDisp8(int Value) {
144 return Value == (signed char)Value;
145}
146
Chris Lattnercf653392010-02-12 22:36:47 +0000147/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
148/// in an instruction with the specified TSFlags.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000149static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
Chris Lattnercf653392010-02-12 22:36:47 +0000150 unsigned Size = X86II::getSizeOfImm(TSFlags);
151 bool isPCRel = X86II::isImmPCRel(TSFlags);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000152
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000153 return MCFixup::getKindForSize(Size, isPCRel);
Chris Lattnercf653392010-02-12 22:36:47 +0000154}
155
Chris Lattner8a507292010-09-29 03:33:25 +0000156/// Is32BitMemOperand - Return true if the specified instruction with a memory
157/// operand should emit the 0x67 prefix byte in 64-bit mode due to a 32-bit
158/// memory operand. Op specifies the operand # of the memoperand.
159static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
160 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
161 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
162
Nick Lewycky8892b032010-09-29 18:56:57 +0000163 if ((BaseReg.getReg() != 0 && X86::GR32RegClass.contains(BaseReg.getReg())) ||
164 (IndexReg.getReg() != 0 && X86::GR32RegClass.contains(IndexReg.getReg())))
Chris Lattner8a507292010-09-29 03:33:25 +0000165 return true;
166 return false;
167}
Chris Lattnercf653392010-02-12 22:36:47 +0000168
Rafael Espindola64e67192010-10-20 16:46:08 +0000169/// StartsWithGlobalOffsetTable - Return true for the simple cases where this
170/// expression starts with _GLOBAL_OFFSET_TABLE_. This is a needed to support
171/// PIC on ELF i386 as that symbol is magic. We check only simple case that
172/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
173/// of a binary expression.
174static bool StartsWithGlobalOffsetTable(const MCExpr *Expr) {
175 if (Expr->getKind() == MCExpr::Binary) {
176 const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
177 Expr = BE->getLHS();
178 }
179
180 if (Expr->getKind() != MCExpr::SymbolRef)
181 return false;
182
183 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
184 const MCSymbol &S = Ref->getSymbol();
185 return S.getName() == "_GLOBAL_OFFSET_TABLE_";
186}
187
Chris Lattner0e73c392010-02-05 06:16:07 +0000188void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000189EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000190 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000191 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Rafael Espindolad93ceeb2010-11-23 07:20:12 +0000192 const MCExpr *Expr = NULL;
Chris Lattner8496a262010-02-10 06:30:00 +0000193 if (DispOp.isImm()) {
Rafael Espindolad93ceeb2010-11-23 07:20:12 +0000194 // If this is a simple integer displacement that doesn't require a relocation,
195 // emit it now.
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000196 if (FixupKind != FK_PCRel_1 &&
197 FixupKind != FK_PCRel_2 &&
198 FixupKind != FK_PCRel_4) {
Rafael Espindolad93ceeb2010-11-23 07:20:12 +0000199 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
200 return;
201 }
202 Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
203 } else {
204 Expr = DispOp.getExpr();
Chris Lattner0e73c392010-02-05 06:16:07 +0000205 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000206
Chris Lattner835acab2010-02-12 23:00:36 +0000207 // If we have an immoffset, add it to the expression.
Rafael Espindola24ba4f72010-10-24 17:35:42 +0000208 if (FixupKind == FK_Data_4 && StartsWithGlobalOffsetTable(Expr)) {
Rafael Espindola64e67192010-10-20 16:46:08 +0000209 assert(ImmOffset == 0);
Rafael Espindola24ba4f72010-10-24 17:35:42 +0000210
211 FixupKind = MCFixupKind(X86::reloc_global_offset_table);
Rafael Espindola64e67192010-10-20 16:46:08 +0000212 ImmOffset = CurByte;
213 }
214
Chris Lattnera08b5872010-02-16 05:03:17 +0000215 // If the fixup is pc-relative, we need to bias the value to be relative to
216 // the start of the field, not the end of the field.
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000217 if (FixupKind == FK_PCRel_4 ||
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000218 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
219 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
Chris Lattnera08b5872010-02-16 05:03:17 +0000220 ImmOffset -= 4;
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000221 if (FixupKind == FK_PCRel_2)
Chris Lattnerda3051a2010-07-07 22:35:13 +0000222 ImmOffset -= 2;
Rafael Espindolae04ed7e2010-11-28 14:17:56 +0000223 if (FixupKind == FK_PCRel_1)
Chris Lattnera08b5872010-02-16 05:03:17 +0000224 ImmOffset -= 1;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000225
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000226 if (ImmOffset)
Chris Lattnera08b5872010-02-16 05:03:17 +0000227 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000228 Ctx);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000229
Chris Lattner5dccfad2010-02-10 06:52:12 +0000230 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000231 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000232 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000233}
234
Chris Lattner1ac23b12010-02-05 02:18:40 +0000235void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
236 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000237 uint64_t TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000238 raw_ostream &OS,
239 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8a507292010-09-29 03:33:25 +0000240 const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
241 const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg);
242 const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt);
243 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000244 unsigned BaseReg = Base.getReg();
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000245
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000246 // Handle %rip relative addressing.
247 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Eric Christopher497f1eb2010-06-08 22:57:33 +0000248 assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode");
249 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000250 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000251
Chris Lattner0f53cf22010-03-18 18:10:56 +0000252 unsigned FixupKind = X86::reloc_riprel_4byte;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000253
Chris Lattner0f53cf22010-03-18 18:10:56 +0000254 // movq loads are handled with a special relocation form which allows the
255 // linker to eliminate some loads for GOT references which end up in the
256 // same linkage unit.
Jakob Stoklund Olesend0eeeeb2010-10-12 17:15:00 +0000257 if (MI.getOpcode() == X86::MOV64rm)
Chris Lattner0f53cf22010-03-18 18:10:56 +0000258 FixupKind = X86::reloc_riprel_4byte_movq_load;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000259
Chris Lattner835acab2010-02-12 23:00:36 +0000260 // rip-relative addressing is actually relative to the *next* instruction.
261 // Since an immediate can follow the mod/rm byte for an instruction, this
262 // means that we need to bias the immediate field of the instruction with
263 // the size of the immediate field. If we have this case, add it into the
264 // expression to emit.
265 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000266
Chris Lattner0f53cf22010-03-18 18:10:56 +0000267 EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
Chris Lattner835acab2010-02-12 23:00:36 +0000268 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000269 return;
270 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000271
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000272 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000273
Chris Lattnera8168ec2010-02-09 21:57:34 +0000274 // Determine whether a SIB byte is needed.
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000275 // If no BaseReg, issue a RIP relative instruction only if the MCE can
Chris Lattner1ac23b12010-02-05 02:18:40 +0000276 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
277 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000278
Chris Lattnera8168ec2010-02-09 21:57:34 +0000279 if (// The SIB byte must be used if there is an index register.
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000280 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000281 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
282 // encode to an R/M value of 4, which indicates that a SIB byte is
283 // present.
284 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000285 // If there is no base register and we're in 64-bit mode, we need a SIB
286 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
287 (!Is64BitMode || BaseReg != 0)) {
288
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000289 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000290 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000291 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000292 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000293 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000294
Chris Lattnera8168ec2010-02-09 21:57:34 +0000295 // If the base is not EBP/ESP and there is no displacement, use simple
296 // indirect register encoding, this handles addresses like [EAX]. The
297 // encoding for [EBP] with no displacement means [disp32] so we handle it
298 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000299 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000300 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000301 return;
302 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000303
Chris Lattnera8168ec2010-02-09 21:57:34 +0000304 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000305 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000306 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000307 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000308 return;
309 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000310
Chris Lattnera8168ec2010-02-09 21:57:34 +0000311 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000312 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Rafael Espindolaa8c02c32010-09-30 03:11:42 +0000313 EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
314 Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000315 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000316 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000317
Chris Lattner0e73c392010-02-05 06:16:07 +0000318 // We need a SIB byte, so start by outputting the ModR/M byte first
319 assert(IndexReg.getReg() != X86::ESP &&
320 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000321
Chris Lattner0e73c392010-02-05 06:16:07 +0000322 bool ForceDisp32 = false;
323 bool ForceDisp8 = false;
324 if (BaseReg == 0) {
325 // If there is no base register, we emit the special case SIB byte with
326 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000327 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000328 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000329 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000330 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000331 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000332 ForceDisp32 = true;
Chris Lattner618d0ed2010-03-18 20:04:36 +0000333 } else if (Disp.getImm() == 0 &&
334 // Base reg can't be anything that ends up with '5' as the base
335 // reg, it is the magic [*] nomenclature that indicates no base.
336 BaseRegNo != N86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000337 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000338 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000339 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000340 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000341 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000342 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
343 } else {
344 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000345 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000346 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000347
Chris Lattner0e73c392010-02-05 06:16:07 +0000348 // Calculate what the SS field value should be...
349 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
350 unsigned SS = SSTable[Scale.getImm()];
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000351
Chris Lattner0e73c392010-02-05 06:16:07 +0000352 if (BaseReg == 0) {
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000353 // Handle the SIB byte for the case where there is no base, see Intel
Chris Lattner0e73c392010-02-05 06:16:07 +0000354 // Manual 2A, table 2-7. The displacement has already been output.
355 unsigned IndexRegNo;
356 if (IndexReg.getReg())
357 IndexRegNo = GetX86RegNum(IndexReg);
358 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
359 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000360 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000361 } else {
362 unsigned IndexRegNo;
363 if (IndexReg.getReg())
364 IndexRegNo = GetX86RegNum(IndexReg);
365 else
366 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000367 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000368 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000369
Chris Lattner0e73c392010-02-05 06:16:07 +0000370 // Do we need to output a displacement?
371 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000372 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000373 else if (ForceDisp32 || Disp.getImm() != 0)
Rafael Espindolaa8c02c32010-09-30 03:11:42 +0000374 EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
375 Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000376}
377
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000378/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
379/// called VEX.
380void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000381 int MemOperand, const MCInst &MI,
382 const TargetInstrDesc &Desc,
383 raw_ostream &OS) const {
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000384 bool HasVEX_4V = false;
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000385 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V)
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000386 HasVEX_4V = true;
387
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000388 // VEX_R: opcode externsion equivalent to REX.R in
389 // 1's complement (inverted) form
390 //
391 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
392 // 0: Same as REX_R=1 (64 bit mode only)
393 //
394 unsigned char VEX_R = 0x1;
395
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000396 // VEX_X: equivalent to REX.X, only used when a
397 // register is used for index in SIB Byte.
398 //
399 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
400 // 0: Same as REX.X=1 (64-bit mode only)
401 unsigned char VEX_X = 0x1;
402
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000403 // VEX_B:
404 //
405 // 1: Same as REX_B=0 (ignored in 32-bit mode)
406 // 0: Same as REX_B=1 (64 bit mode only)
407 //
408 unsigned char VEX_B = 0x1;
409
410 // VEX_W: opcode specific (use like REX.W, or used for
411 // opcode extension, or ignored, depending on the opcode byte)
412 unsigned char VEX_W = 0;
413
414 // VEX_5M (VEX m-mmmmm field):
415 //
416 // 0b00000: Reserved for future use
417 // 0b00001: implied 0F leading opcode
418 // 0b00010: implied 0F 38 leading opcode bytes
419 // 0b00011: implied 0F 3A leading opcode bytes
420 // 0b00100-0b11111: Reserved for future use
421 //
422 unsigned char VEX_5M = 0x1;
423
424 // VEX_4V (VEX vvvv field): a register specifier
425 // (in 1's complement form) or 1111 if unused.
426 unsigned char VEX_4V = 0xf;
427
428 // VEX_L (Vector Length):
429 //
430 // 0: scalar or 128-bit vector
431 // 1: 256-bit vector
432 //
433 unsigned char VEX_L = 0;
434
435 // VEX_PP: opcode extension providing equivalent
436 // functionality of a SIMD prefix
437 //
438 // 0b00: None
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000439 // 0b01: 66
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000440 // 0b10: F3
441 // 0b11: F2
442 //
443 unsigned char VEX_PP = 0;
444
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000445 // Encode the operand size opcode prefix as needed.
446 if (TSFlags & X86II::OpSize)
447 VEX_PP = 0x01;
448
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000449 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000450 VEX_W = 1;
451
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000452 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
Bruno Cardoso Lopes87a85c72010-07-13 21:07:28 +0000453 VEX_L = 1;
454
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000455 switch (TSFlags & X86II::Op0Mask) {
456 default: assert(0 && "Invalid prefix!");
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000457 case X86II::T8: // 0F 38
458 VEX_5M = 0x2;
459 break;
460 case X86II::TA: // 0F 3A
461 VEX_5M = 0x3;
462 break;
463 case X86II::TF: // F2 0F 38
464 VEX_PP = 0x3;
465 VEX_5M = 0x2;
466 break;
467 case X86II::XS: // F3 0F
468 VEX_PP = 0x2;
469 break;
470 case X86II::XD: // F2 0F
471 VEX_PP = 0x3;
472 break;
Joerg Sonnenberger4a8ac8d2011-04-04 16:58:13 +0000473 case X86II::A6: // Bypass: Not used by VEX
474 case X86II::A7: // Bypass: Not used by VEX
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000475 case X86II::TB: // Bypass: Not used by VEX
476 case 0:
477 break; // No prefix!
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000478 }
479
Bruno Cardoso Lopese86b01c2010-07-09 18:27:43 +0000480 // Set the vector length to 256-bit if YMM0-YMM15 is used
481 for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
482 if (!MI.getOperand(i).isReg())
483 continue;
484 unsigned SrcReg = MI.getOperand(i).getReg();
485 if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
486 VEX_L = 1;
487 }
488
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000489 unsigned NumOps = MI.getNumOperands();
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000490 unsigned CurOp = 0;
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000491 bool IsDestMem = false;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000492
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000493 switch (TSFlags & X86II::FormMask) {
494 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000495 case X86II::MRMDestMem:
496 IsDestMem = true;
497 // The important info for the VEX prefix is never beyond the address
498 // registers. Don't check beyond that.
499 NumOps = CurOp = X86::AddrNumOperands;
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000500 case X86II::MRM0m: case X86II::MRM1m:
501 case X86II::MRM2m: case X86II::MRM3m:
502 case X86II::MRM4m: case X86II::MRM5m:
503 case X86II::MRM6m: case X86II::MRM7m:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000504 case X86II::MRMSrcMem:
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000505 case X86II::MRMSrcReg:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000506 if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000507 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000508 VEX_R = 0x0;
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000509 CurOp++;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000510
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000511 if (HasVEX_4V) {
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000512 VEX_4V = getVEXRegisterEncoding(MI, IsDestMem ? CurOp-1 : CurOp);
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000513 CurOp++;
514 }
515
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000516 // To only check operands before the memory address ones, start
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000517 // the search from the beginning
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000518 if (IsDestMem)
519 CurOp = 0;
520
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000521 // If the last register should be encoded in the immediate field
Bruno Cardoso Lopes01066802010-07-06 22:38:32 +0000522 // do not use any bit from VEX prefix to this register, ignore it
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000523 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM)
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000524 NumOps--;
525
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000526 for (; CurOp != NumOps; ++CurOp) {
527 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000528 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
529 VEX_B = 0x0;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000530 if (!VEX_B && MO.isReg() &&
531 ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000532 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
533 VEX_X = 0x0;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000534 }
535 break;
Bruno Cardoso Lopescf6ca032010-07-21 08:56:24 +0000536 default: // MRMDestReg, MRM0r-MRM7r, RawFrm
537 if (!MI.getNumOperands())
538 break;
539
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000540 if (MI.getOperand(CurOp).isReg() &&
541 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
542 VEX_B = 0;
543
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000544 if (HasVEX_4V)
545 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
546
547 CurOp++;
548 for (; CurOp != NumOps; ++CurOp) {
549 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000550 if (MO.isReg() && !HasVEX_4V &&
551 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
552 VEX_R = 0x0;
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000553 }
554 break;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000555 }
556
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000557 // Emit segment override opcode prefix as needed.
558 EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
559
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000560 // VEX opcode prefix can have 2 or 3 bytes
561 //
562 // 3 bytes:
563 // +-----+ +--------------+ +-------------------+
564 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
565 // +-----+ +--------------+ +-------------------+
566 // 2 bytes:
567 // +-----+ +-------------------+
568 // | C5h | | R | vvvv | L | pp |
569 // +-----+ +-------------------+
570 //
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000571 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
572
Bruno Cardoso Lopesf5cd8c52010-07-02 22:06:54 +0000573 if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000574 EmitByte(0xC5, CurByte, OS);
575 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
576 return;
577 }
578
579 // 3 byte VEX prefix
580 EmitByte(0xC4, CurByte, OS);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000581 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000582 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
583}
584
Chris Lattner39a612e2010-02-05 22:10:22 +0000585/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
586/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
587/// size, and 3) use of X86-64 extended registers.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000588static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
Chris Lattner39a612e2010-02-05 22:10:22 +0000589 const TargetInstrDesc &Desc) {
Chris Lattner7e851802010-02-11 22:39:10 +0000590 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000591 if (TSFlags & X86II::REX_W)
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000592 REX |= 1 << 3; // set REX.W
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000593
Chris Lattner39a612e2010-02-05 22:10:22 +0000594 if (MI.getNumOperands() == 0) return REX;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000595
Chris Lattner39a612e2010-02-05 22:10:22 +0000596 unsigned NumOps = MI.getNumOperands();
597 // FIXME: MCInst should explicitize the two-addrness.
598 bool isTwoAddr = NumOps > 1 &&
599 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000600
Chris Lattner39a612e2010-02-05 22:10:22 +0000601 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
602 unsigned i = isTwoAddr ? 1 : 0;
603 for (; i != NumOps; ++i) {
604 const MCOperand &MO = MI.getOperand(i);
605 if (!MO.isReg()) continue;
606 unsigned Reg = MO.getReg();
607 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000608 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
609 // that returns non-zero.
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000610 REX |= 0x40; // REX fixed encoding prefix
Chris Lattner39a612e2010-02-05 22:10:22 +0000611 break;
612 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000613
Chris Lattner39a612e2010-02-05 22:10:22 +0000614 switch (TSFlags & X86II::FormMask) {
615 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
616 case X86II::MRMSrcReg:
617 if (MI.getOperand(0).isReg() &&
618 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000619 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000620 i = isTwoAddr ? 2 : 1;
621 for (; i != NumOps; ++i) {
622 const MCOperand &MO = MI.getOperand(i);
623 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000624 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000625 }
626 break;
627 case X86II::MRMSrcMem: {
628 if (MI.getOperand(0).isReg() &&
629 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000630 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000631 unsigned Bit = 0;
632 i = isTwoAddr ? 2 : 1;
633 for (; i != NumOps; ++i) {
634 const MCOperand &MO = MI.getOperand(i);
635 if (MO.isReg()) {
636 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000637 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000638 Bit++;
639 }
640 }
641 break;
642 }
643 case X86II::MRM0m: case X86II::MRM1m:
644 case X86II::MRM2m: case X86II::MRM3m:
645 case X86II::MRM4m: case X86II::MRM5m:
646 case X86II::MRM6m: case X86II::MRM7m:
647 case X86II::MRMDestMem: {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000648 unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
Chris Lattner39a612e2010-02-05 22:10:22 +0000649 i = isTwoAddr ? 1 : 0;
650 if (NumOps > e && MI.getOperand(e).isReg() &&
651 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000652 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000653 unsigned Bit = 0;
654 for (; i != e; ++i) {
655 const MCOperand &MO = MI.getOperand(i);
656 if (MO.isReg()) {
657 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000658 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000659 Bit++;
660 }
661 }
662 break;
663 }
664 default:
665 if (MI.getOperand(0).isReg() &&
666 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000667 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000668 i = isTwoAddr ? 2 : 1;
669 for (unsigned e = NumOps; i != e; ++i) {
670 const MCOperand &MO = MI.getOperand(i);
671 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000672 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000673 }
674 break;
675 }
676 return REX;
677}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000678
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000679/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
680void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
681 unsigned &CurByte, int MemOperand,
682 const MCInst &MI,
Chris Lattner9d199892010-07-04 22:56:10 +0000683 raw_ostream &OS) const {
Chris Lattner1e80f402010-02-03 21:57:59 +0000684 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000685 default: assert(0 && "Invalid segment!");
Chris Lattner834df192010-07-08 22:28:12 +0000686 case 0:
687 // No segment override, check for explicit one on memory operand.
Chris Lattner599b5312010-07-08 23:46:44 +0000688 if (MemOperand != -1) { // If the instruction has a memory operand.
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000689 switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
Chris Lattner834df192010-07-08 22:28:12 +0000690 default: assert(0 && "Unknown segment register!");
691 case 0: break;
692 case X86::CS: EmitByte(0x2E, CurByte, OS); break;
693 case X86::SS: EmitByte(0x36, CurByte, OS); break;
694 case X86::DS: EmitByte(0x3E, CurByte, OS); break;
695 case X86::ES: EmitByte(0x26, CurByte, OS); break;
696 case X86::FS: EmitByte(0x64, CurByte, OS); break;
697 case X86::GS: EmitByte(0x65, CurByte, OS); break;
698 }
699 }
700 break;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000701 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000702 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000703 break;
704 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000705 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000706 break;
707 }
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000708}
709
710/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
711///
712/// MemOperand is the operand # of the start of a memory operand if present. If
713/// Not present, it is -1.
714void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
715 int MemOperand, const MCInst &MI,
716 const TargetInstrDesc &Desc,
717 raw_ostream &OS) const {
718
719 // Emit the lock opcode prefix as needed.
720 if (TSFlags & X86II::LOCK)
721 EmitByte(0xF0, CurByte, OS);
722
723 // Emit segment override opcode prefix as needed.
724 EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000725
Chris Lattner1e80f402010-02-03 21:57:59 +0000726 // Emit the repeat opcode prefix as needed.
727 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000728 EmitByte(0xF3, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000729
Chris Lattner1e80f402010-02-03 21:57:59 +0000730 // Emit the address size opcode prefix as needed.
Chris Lattner8a507292010-09-29 03:33:25 +0000731 if ((TSFlags & X86II::AdSize) ||
732 (MemOperand != -1 && Is64BitMode && Is32BitMemOperand(MI, MemOperand)))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000733 EmitByte(0x67, CurByte, OS);
Chris Lattner78a19462010-09-29 03:43:43 +0000734
735 // Emit the operand size opcode prefix as needed.
736 if (TSFlags & X86II::OpSize)
737 EmitByte(0x66, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000738
Chris Lattner1e80f402010-02-03 21:57:59 +0000739 bool Need0FPrefix = false;
740 switch (TSFlags & X86II::Op0Mask) {
741 default: assert(0 && "Invalid prefix!");
742 case 0: break; // No prefix!
743 case X86II::REP: break; // already handled.
744 case X86II::TB: // Two-byte opcode prefix
745 case X86II::T8: // 0F 38
746 case X86II::TA: // 0F 3A
Joerg Sonnenberger4a8ac8d2011-04-04 16:58:13 +0000747 case X86II::A6: // 0F A6
748 case X86II::A7: // 0F A7
Chris Lattner1e80f402010-02-03 21:57:59 +0000749 Need0FPrefix = true;
750 break;
751 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000752 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000753 Need0FPrefix = true;
754 break;
755 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000756 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000757 Need0FPrefix = true;
758 break;
759 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000760 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000761 Need0FPrefix = true;
762 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000763 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
764 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
765 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
766 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
767 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
768 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
769 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
770 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000771 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000772
Chris Lattner1e80f402010-02-03 21:57:59 +0000773 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000774 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000775 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000776 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000777 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000778 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000779
Chris Lattner1e80f402010-02-03 21:57:59 +0000780 // 0x0F escape code must be emitted just before the opcode.
781 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000782 EmitByte(0x0F, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000783
Chris Lattner1e80f402010-02-03 21:57:59 +0000784 // FIXME: Pull this up into previous switch if REX can be moved earlier.
785 switch (TSFlags & X86II::Op0Mask) {
786 case X86II::TF: // F2 0F 38
787 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000788 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000789 break;
790 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000791 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000792 break;
Joerg Sonnenberger4a8ac8d2011-04-04 16:58:13 +0000793 case X86II::A6: // 0F A6
794 EmitByte(0xA6, CurByte, OS);
795 break;
796 case X86II::A7: // 0F A7
797 EmitByte(0xA7, CurByte, OS);
798 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000799 }
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000800}
801
802void X86MCCodeEmitter::
803EncodeInstruction(const MCInst &MI, raw_ostream &OS,
804 SmallVectorImpl<MCFixup> &Fixups) const {
805 unsigned Opcode = MI.getOpcode();
806 const TargetInstrDesc &Desc = TII.get(Opcode);
807 uint64_t TSFlags = Desc.TSFlags;
808
Chris Lattner757e8d62010-07-09 00:17:50 +0000809 // Pseudo instructions don't get encoded.
810 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
811 return;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000812
Chris Lattner834df192010-07-08 22:28:12 +0000813 // If this is a two-address instruction, skip one of the register operands.
814 // FIXME: This should be handled during MCInst lowering.
815 unsigned NumOps = Desc.getNumOperands();
816 unsigned CurOp = 0;
817 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
818 ++CurOp;
819 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
820 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
821 --NumOps;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000822
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000823 // Keep track of the current byte being emitted.
824 unsigned CurByte = 0;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000825
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000826 // Is this instruction encoded using the AVX VEX prefix?
827 bool HasVEXPrefix = false;
828
829 // It uses the VEX.VVVV field?
830 bool HasVEX_4V = false;
831
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000832 if ((TSFlags >> X86II::VEXShift) & X86II::VEX)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000833 HasVEXPrefix = true;
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000834 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000835 HasVEX_4V = true;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000836
Chris Lattner548abfc2010-10-03 18:08:05 +0000837
Chris Lattner834df192010-07-08 22:28:12 +0000838 // Determine where the memory operand starts, if present.
839 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
840 if (MemoryOperand != -1) MemoryOperand += CurOp;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000841
Chris Lattner834df192010-07-08 22:28:12 +0000842 if (!HasVEXPrefix)
843 EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
844 else
Bruno Cardoso Lopes1cd05092010-07-09 00:38:14 +0000845 EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000846
Chris Lattner548abfc2010-10-03 18:08:05 +0000847
Chris Lattner74a21512010-02-05 19:24:13 +0000848 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner548abfc2010-10-03 18:08:05 +0000849
Joerg Sonnenberger229e4522011-04-04 15:58:30 +0000850 if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
Chris Lattner548abfc2010-10-03 18:08:05 +0000851 BaseOpcode = 0x0F; // Weird 3DNow! encoding.
852
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000853 unsigned SrcRegNum = 0;
Chris Lattner1e80f402010-02-03 21:57:59 +0000854 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000855 case X86II::MRMInitReg:
856 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000857 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000858 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner757e8d62010-07-09 00:17:50 +0000859 case X86II::Pseudo:
860 assert(0 && "Pseudo instruction shouldn't be emitted");
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000861 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000862 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000863 break;
Chris Lattner59f8a6a2010-08-19 01:18:43 +0000864
Chris Lattner40cc3f82010-09-17 18:02:29 +0000865 case X86II::RawFrmImm8:
866 EmitByte(BaseOpcode, CurByte, OS);
867 EmitImmediate(MI.getOperand(CurOp++),
868 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
869 CurByte, OS, Fixups);
870 EmitImmediate(MI.getOperand(CurOp++), 1, FK_Data_1, CurByte, OS, Fixups);
871 break;
Chris Lattner59f8a6a2010-08-19 01:18:43 +0000872 case X86II::RawFrmImm16:
873 EmitByte(BaseOpcode, CurByte, OS);
874 EmitImmediate(MI.getOperand(CurOp++),
875 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
876 CurByte, OS, Fixups);
877 EmitImmediate(MI.getOperand(CurOp++), 2, FK_Data_2, CurByte, OS, Fixups);
878 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000879
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000880 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000881 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000882 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000883
Chris Lattner28249d92010-02-05 01:53:19 +0000884 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000885 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000886 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000887 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000888 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000889 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000890
Chris Lattner1ac23b12010-02-05 02:18:40 +0000891 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000892 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000893 SrcRegNum = CurOp + X86::AddrNumOperands;
894
895 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
896 SrcRegNum++;
897
Chris Lattner1ac23b12010-02-05 02:18:40 +0000898 EmitMemModRMByte(MI, CurOp,
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000899 GetX86RegNum(MI.getOperand(SrcRegNum)),
Chris Lattner835acab2010-02-12 23:00:36 +0000900 TSFlags, CurByte, OS, Fixups);
Bruno Cardoso Lopes4b13f3c2010-07-21 02:46:58 +0000901 CurOp = SrcRegNum + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000902 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000903
Chris Lattnerdaa45552010-02-05 19:04:37 +0000904 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000905 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000906 SrcRegNum = CurOp + 1;
907
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000908 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000909 SrcRegNum++;
910
911 EmitRegModRMByte(MI.getOperand(SrcRegNum),
912 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
913 CurOp = SrcRegNum + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000914 break;
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000915
Chris Lattnerdaa45552010-02-05 19:04:37 +0000916 case X86II::MRMSrcMem: {
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000917 int AddrOperands = X86::AddrNumOperands;
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000918 unsigned FirstMemOp = CurOp+1;
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000919 if (HasVEX_4V) {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000920 ++AddrOperands;
921 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
922 }
Chris Lattnerdaa45552010-02-05 19:04:37 +0000923
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000924 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +0000925
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000926 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000927 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000928 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000929 break;
930 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000931
932 case X86II::MRM0r: case X86II::MRM1r:
933 case X86II::MRM2r: case X86II::MRM3r:
934 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000935 case X86II::MRM6r: case X86II::MRM7r:
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000936 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
937 CurOp++;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000938 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000939 EmitRegModRMByte(MI.getOperand(CurOp++),
940 (TSFlags & X86II::FormMask)-X86II::MRM0r,
941 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000942 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000943 case X86II::MRM0m: case X86II::MRM1m:
944 case X86II::MRM2m: case X86II::MRM3m:
945 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000946 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000947 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000948 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000949 TSFlags, CurByte, OS, Fixups);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000950 CurOp += X86::AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000951 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000952 case X86II::MRM_C1:
953 EmitByte(BaseOpcode, CurByte, OS);
954 EmitByte(0xC1, CurByte, OS);
955 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000956 case X86II::MRM_C2:
957 EmitByte(BaseOpcode, CurByte, OS);
958 EmitByte(0xC2, CurByte, OS);
959 break;
960 case X86II::MRM_C3:
961 EmitByte(BaseOpcode, CurByte, OS);
962 EmitByte(0xC3, CurByte, OS);
963 break;
964 case X86II::MRM_C4:
965 EmitByte(BaseOpcode, CurByte, OS);
966 EmitByte(0xC4, CurByte, OS);
967 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000968 case X86II::MRM_C8:
969 EmitByte(BaseOpcode, CurByte, OS);
970 EmitByte(0xC8, CurByte, OS);
971 break;
972 case X86II::MRM_C9:
973 EmitByte(BaseOpcode, CurByte, OS);
974 EmitByte(0xC9, CurByte, OS);
975 break;
976 case X86II::MRM_E8:
977 EmitByte(BaseOpcode, CurByte, OS);
978 EmitByte(0xE8, CurByte, OS);
979 break;
980 case X86II::MRM_F0:
981 EmitByte(BaseOpcode, CurByte, OS);
982 EmitByte(0xF0, CurByte, OS);
983 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000984 case X86II::MRM_F8:
985 EmitByte(BaseOpcode, CurByte, OS);
986 EmitByte(0xF8, CurByte, OS);
987 break;
Chris Lattnerb7790332010-02-13 03:42:24 +0000988 case X86II::MRM_F9:
989 EmitByte(BaseOpcode, CurByte, OS);
990 EmitByte(0xF9, CurByte, OS);
991 break;
Rafael Espindola87ca0e02011-02-22 00:35:18 +0000992 case X86II::MRM_D0:
993 EmitByte(BaseOpcode, CurByte, OS);
994 EmitByte(0xD0, CurByte, OS);
995 break;
996 case X86II::MRM_D1:
997 EmitByte(BaseOpcode, CurByte, OS);
998 EmitByte(0xD1, CurByte, OS);
999 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +00001000 }
Bruno Cardoso Lopes96716c7b2010-07-09 00:07:19 +00001001
Chris Lattner8b0f7a72010-02-11 07:06:31 +00001002 // If there is a remaining operand, it must be a trailing immediate. Emit it
1003 // according to the right size for the instruction.
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001004 if (CurOp != NumOps) {
1005 // The last source register of a 4 operand instruction in AVX is encoded
1006 // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
Joerg Sonnenberger229e4522011-04-04 15:58:30 +00001007 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001008 const MCOperand &MO = MI.getOperand(CurOp++);
1009 bool IsExtReg =
1010 X86InstrInfo::isX86_64ExtendedReg(MO.getReg());
1011 unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
1012 RegNum |= GetX86RegNum(MO) << 4;
1013 EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
1014 Fixups);
Rafael Espindolaa8c02c32010-09-30 03:11:42 +00001015 } else {
1016 unsigned FixupKind;
Rafael Espindola3ee33aa2010-12-16 22:50:01 +00001017 // FIXME: Is there a better way to know that we need a signed relocation?
Rafael Espindolaa3bff992011-05-19 20:32:34 +00001018 if (MI.getOpcode() == X86::ADD64ri32 ||
1019 MI.getOpcode() == X86::MOV64ri32 ||
Rafael Espindola3ee33aa2010-12-16 22:50:01 +00001020 MI.getOpcode() == X86::MOV64mi32 ||
1021 MI.getOpcode() == X86::PUSH64i32)
Rafael Espindolaa8c02c32010-09-30 03:11:42 +00001022 FixupKind = X86::reloc_signed_4byte;
1023 else
1024 FixupKind = getImmFixupKind(TSFlags);
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001025 EmitImmediate(MI.getOperand(CurOp++),
Rafael Espindolaa8c02c32010-09-30 03:11:42 +00001026 X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001027 CurByte, OS, Fixups);
Rafael Espindolaa8c02c32010-09-30 03:11:42 +00001028 }
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001029 }
1030
Joerg Sonnenberger229e4522011-04-04 15:58:30 +00001031 if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
Chris Lattner548abfc2010-10-03 18:08:05 +00001032 EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1033
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +00001034
Chris Lattner28249d92010-02-05 01:53:19 +00001035#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +00001036 // FIXME: Verify.
1037 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +00001038 errs() << "Cannot encode all operands of: ";
1039 MI.dump();
1040 errs() << '\n';
1041 abort();
1042 }
1043#endif
Chris Lattner45762472010-02-03 21:24:49 +00001044}