blob: 3e062988823277c261917210099d8e0309d8db5d [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Micah Villmow3574eca2012-10-08 16:38:25 +000076#include "llvm/DataLayout.h"
Chad Rosier618c1db2011-12-01 03:08:23 +000077#include "llvm/Target/TargetLibraryInfo.h"
Chris Lattner95255282006-06-28 23:17:24 +000078#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000079#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000080#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000081#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000082#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000083#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000084#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000085#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000086#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000087#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000088#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000089#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000090using namespace llvm;
91
Chris Lattner3b27d682006-12-19 22:30:33 +000092STATISTIC(NumArrayLenItCounts,
93 "Number of trip counts computed with array length");
94STATISTIC(NumTripCountsComputed,
95 "Number of loops with predictable loop counts");
96STATISTIC(NumTripCountsNotComputed,
97 "Number of loops without predictable loop counts");
98STATISTIC(NumBruteForceTripCountsComputed,
99 "Number of loops with trip counts computed by force");
100
Dan Gohman844731a2008-05-13 00:00:25 +0000101static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000102MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000104 "symbolically execute a constant "
105 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000106 cl::init(100));
107
Owen Anderson2ab36d32010-10-12 19:48:12 +0000108INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
109 "Scalar Evolution Analysis", false, true)
110INITIALIZE_PASS_DEPENDENCY(LoopInfo)
111INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Chad Rosier618c1db2011-12-01 03:08:23 +0000112INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000113INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000114 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000115char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000116
117//===----------------------------------------------------------------------===//
118// SCEV class definitions
119//===----------------------------------------------------------------------===//
120
121//===----------------------------------------------------------------------===//
122// Implementation of the SCEV class.
123//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000124
Manman Ren286c4dc2012-09-12 05:06:18 +0000125#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattner53e677a2004-04-02 20:23:17 +0000126void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000127 print(dbgs());
128 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000129}
Manman Rencc77eec2012-09-06 19:55:56 +0000130#endif
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000131
Dan Gohman4ce32db2010-11-17 22:27:42 +0000132void SCEV::print(raw_ostream &OS) const {
133 switch (getSCEVType()) {
134 case scConstant:
135 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
136 return;
137 case scTruncate: {
138 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
139 const SCEV *Op = Trunc->getOperand();
140 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
141 << *Trunc->getType() << ")";
142 return;
143 }
144 case scZeroExtend: {
145 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
146 const SCEV *Op = ZExt->getOperand();
147 OS << "(zext " << *Op->getType() << " " << *Op << " to "
148 << *ZExt->getType() << ")";
149 return;
150 }
151 case scSignExtend: {
152 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
153 const SCEV *Op = SExt->getOperand();
154 OS << "(sext " << *Op->getType() << " " << *Op << " to "
155 << *SExt->getType() << ")";
156 return;
157 }
158 case scAddRecExpr: {
159 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
160 OS << "{" << *AR->getOperand(0);
161 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
162 OS << ",+," << *AR->getOperand(i);
163 OS << "}<";
Andrew Trick3228cc22011-03-14 16:50:06 +0000164 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000165 OS << "nuw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000166 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnerf1859892011-01-09 02:16:18 +0000167 OS << "nsw><";
Andrew Trick3228cc22011-03-14 16:50:06 +0000168 if (AR->getNoWrapFlags(FlagNW) &&
169 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
170 OS << "nw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000171 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
172 OS << ">";
173 return;
174 }
175 case scAddExpr:
176 case scMulExpr:
177 case scUMaxExpr:
178 case scSMaxExpr: {
179 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000180 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000181 switch (NAry->getSCEVType()) {
182 case scAddExpr: OpStr = " + "; break;
183 case scMulExpr: OpStr = " * "; break;
184 case scUMaxExpr: OpStr = " umax "; break;
185 case scSMaxExpr: OpStr = " smax "; break;
186 }
187 OS << "(";
188 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
189 I != E; ++I) {
190 OS << **I;
191 if (llvm::next(I) != E)
192 OS << OpStr;
193 }
194 OS << ")";
Andrew Trick121d78f2011-11-29 02:06:35 +0000195 switch (NAry->getSCEVType()) {
196 case scAddExpr:
197 case scMulExpr:
198 if (NAry->getNoWrapFlags(FlagNUW))
199 OS << "<nuw>";
200 if (NAry->getNoWrapFlags(FlagNSW))
201 OS << "<nsw>";
202 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000203 return;
204 }
205 case scUDivExpr: {
206 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
207 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
208 return;
209 }
210 case scUnknown: {
211 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000212 Type *AllocTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000213 if (U->isSizeOf(AllocTy)) {
214 OS << "sizeof(" << *AllocTy << ")";
215 return;
216 }
217 if (U->isAlignOf(AllocTy)) {
218 OS << "alignof(" << *AllocTy << ")";
219 return;
220 }
Andrew Trick635f7182011-03-09 17:23:39 +0000221
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000222 Type *CTy;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000223 Constant *FieldNo;
224 if (U->isOffsetOf(CTy, FieldNo)) {
225 OS << "offsetof(" << *CTy << ", ";
226 WriteAsOperand(OS, FieldNo, false);
227 OS << ")";
228 return;
229 }
Andrew Trick635f7182011-03-09 17:23:39 +0000230
Dan Gohman4ce32db2010-11-17 22:27:42 +0000231 // Otherwise just print it normally.
232 WriteAsOperand(OS, U->getValue(), false);
233 return;
234 }
235 case scCouldNotCompute:
236 OS << "***COULDNOTCOMPUTE***";
237 return;
238 default: break;
239 }
240 llvm_unreachable("Unknown SCEV kind!");
241}
242
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000243Type *SCEV::getType() const {
Dan Gohman4ce32db2010-11-17 22:27:42 +0000244 switch (getSCEVType()) {
245 case scConstant:
246 return cast<SCEVConstant>(this)->getType();
247 case scTruncate:
248 case scZeroExtend:
249 case scSignExtend:
250 return cast<SCEVCastExpr>(this)->getType();
251 case scAddRecExpr:
252 case scMulExpr:
253 case scUMaxExpr:
254 case scSMaxExpr:
255 return cast<SCEVNAryExpr>(this)->getType();
256 case scAddExpr:
257 return cast<SCEVAddExpr>(this)->getType();
258 case scUDivExpr:
259 return cast<SCEVUDivExpr>(this)->getType();
260 case scUnknown:
261 return cast<SCEVUnknown>(this)->getType();
262 case scCouldNotCompute:
263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +0000264 default:
265 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman4ce32db2010-11-17 22:27:42 +0000266 }
Dan Gohman4ce32db2010-11-17 22:27:42 +0000267}
268
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000269bool SCEV::isZero() const {
270 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
271 return SC->getValue()->isZero();
272 return false;
273}
274
Dan Gohman70a1fe72009-05-18 15:22:39 +0000275bool SCEV::isOne() const {
276 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
277 return SC->getValue()->isOne();
278 return false;
279}
Chris Lattner53e677a2004-04-02 20:23:17 +0000280
Dan Gohman4d289bf2009-06-24 00:30:26 +0000281bool SCEV::isAllOnesValue() const {
282 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
283 return SC->getValue()->isAllOnesValue();
284 return false;
285}
286
Andrew Trickf8fd8412012-01-07 00:27:31 +0000287/// isNonConstantNegative - Return true if the specified scev is negated, but
288/// not a constant.
289bool SCEV::isNonConstantNegative() const {
290 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
291 if (!Mul) return false;
292
293 // If there is a constant factor, it will be first.
294 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
295 if (!SC) return false;
296
297 // Return true if the value is negative, this matches things like (-42 * V).
298 return SC->getValue()->getValue().isNegative();
299}
300
Owen Anderson753ad612009-06-22 21:57:23 +0000301SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000302 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000303
Chris Lattner53e677a2004-04-02 20:23:17 +0000304bool SCEVCouldNotCompute::classof(const SCEV *S) {
305 return S->getSCEVType() == scCouldNotCompute;
306}
307
Dan Gohman0bba49c2009-07-07 17:06:11 +0000308const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000309 FoldingSetNodeID ID;
310 ID.AddInteger(scConstant);
311 ID.AddPointer(V);
312 void *IP = 0;
313 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000314 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000315 UniqueSCEVs.InsertNode(S, IP);
316 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000317}
Chris Lattner53e677a2004-04-02 20:23:17 +0000318
Dan Gohman0bba49c2009-07-07 17:06:11 +0000319const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000320 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000321}
322
Dan Gohman0bba49c2009-07-07 17:06:11 +0000323const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000324ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
325 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana560fd22010-04-21 16:04:04 +0000326 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000327}
328
Dan Gohman3bf63762010-06-18 19:54:20 +0000329SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000330 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000331 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000332
Dan Gohman3bf63762010-06-18 19:54:20 +0000333SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000334 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000335 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000336 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
337 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000339}
Chris Lattner53e677a2004-04-02 20:23:17 +0000340
Dan Gohman3bf63762010-06-18 19:54:20 +0000341SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000342 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000343 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000346 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000347}
348
Dan Gohman3bf63762010-06-18 19:54:20 +0000349SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000350 const SCEV *op, Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000351 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000354 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000355}
356
Dan Gohmanab37f502010-08-02 23:49:30 +0000357void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000358 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000359 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000360
361 // Remove this SCEVUnknown from the uniquing map.
362 SE->UniqueSCEVs.RemoveNode(this);
363
364 // Release the value.
365 setValPtr(0);
366}
367
368void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000369 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000370 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000371
372 // Remove this SCEVUnknown from the uniquing map.
373 SE->UniqueSCEVs.RemoveNode(this);
374
375 // Update this SCEVUnknown to point to the new value. This is needed
376 // because there may still be outstanding SCEVs which still point to
377 // this SCEVUnknown.
378 setValPtr(New);
379}
380
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000381bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000382 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000383 if (VCE->getOpcode() == Instruction::PtrToInt)
384 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000385 if (CE->getOpcode() == Instruction::GetElementPtr &&
386 CE->getOperand(0)->isNullValue() &&
387 CE->getNumOperands() == 2)
388 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
389 if (CI->isOne()) {
390 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
391 ->getElementType();
392 return true;
393 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000394
395 return false;
396}
397
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000398bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000399 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000400 if (VCE->getOpcode() == Instruction::PtrToInt)
401 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000402 if (CE->getOpcode() == Instruction::GetElementPtr &&
403 CE->getOperand(0)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000404 Type *Ty =
Dan Gohman8db08df2010-02-02 01:38:49 +0000405 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000406 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman8db08df2010-02-02 01:38:49 +0000407 if (!STy->isPacked() &&
408 CE->getNumOperands() == 3 &&
409 CE->getOperand(1)->isNullValue()) {
410 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
411 if (CI->isOne() &&
412 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000413 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000414 AllocTy = STy->getElementType(1);
415 return true;
416 }
417 }
418 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000419
420 return false;
421}
422
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000423bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000424 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000425 if (VCE->getOpcode() == Instruction::PtrToInt)
426 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
427 if (CE->getOpcode() == Instruction::GetElementPtr &&
428 CE->getNumOperands() == 3 &&
429 CE->getOperand(0)->isNullValue() &&
430 CE->getOperand(1)->isNullValue()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000431 Type *Ty =
Dan Gohman4f8eea82010-02-01 18:27:38 +0000432 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
433 // Ignore vector types here so that ScalarEvolutionExpander doesn't
434 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000435 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000436 CTy = Ty;
437 FieldNo = CE->getOperand(2);
438 return true;
439 }
440 }
441
442 return false;
443}
444
Chris Lattner8d741b82004-06-20 06:23:15 +0000445//===----------------------------------------------------------------------===//
446// SCEV Utilities
447//===----------------------------------------------------------------------===//
448
449namespace {
450 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
451 /// than the complexity of the RHS. This comparator is used to canonicalize
452 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000453 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000454 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000455 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000456 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000457
Dan Gohman67ef74e2010-08-27 15:26:01 +0000458 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000459 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000460 return compare(LHS, RHS) < 0;
461 }
462
463 // Return negative, zero, or positive, if LHS is less than, equal to, or
464 // greater than RHS, respectively. A three-way result allows recursive
465 // comparisons to be more efficient.
466 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000467 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
468 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000469 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000470
Dan Gohman72861302009-05-07 14:39:04 +0000471 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000472 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
473 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000474 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000475
Dan Gohman3bf63762010-06-18 19:54:20 +0000476 // Aside from the getSCEVType() ordering, the particular ordering
477 // isn't very important except that it's beneficial to be consistent,
478 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000479 switch (LType) {
480 case scUnknown: {
481 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000482 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000483
484 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
485 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000486 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000487
488 // Order pointer values after integer values. This helps SCEVExpander
489 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000490 bool LIsPointer = LV->getType()->isPointerTy(),
491 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000492 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000493 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000494
495 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000496 unsigned LID = LV->getValueID(),
497 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000498 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000499 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000500
501 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000502 if (const Argument *LA = dyn_cast<Argument>(LV)) {
503 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000504 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
505 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000506 }
507
Dan Gohman67ef74e2010-08-27 15:26:01 +0000508 // For instructions, compare their loop depth, and their operand
509 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000510 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
511 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000512
513 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000514 const BasicBlock *LParent = LInst->getParent(),
515 *RParent = RInst->getParent();
516 if (LParent != RParent) {
517 unsigned LDepth = LI->getLoopDepth(LParent),
518 RDepth = LI->getLoopDepth(RParent);
519 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000520 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000521 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000522
523 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000524 unsigned LNumOps = LInst->getNumOperands(),
525 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000526 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000527 }
528
Dan Gohman67ef74e2010-08-27 15:26:01 +0000529 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000530 }
531
Dan Gohman67ef74e2010-08-27 15:26:01 +0000532 case scConstant: {
533 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000534 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000535
536 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000537 const APInt &LA = LC->getValue()->getValue();
538 const APInt &RA = RC->getValue()->getValue();
539 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000540 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000541 return (int)LBitWidth - (int)RBitWidth;
542 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000543 }
544
Dan Gohman67ef74e2010-08-27 15:26:01 +0000545 case scAddRecExpr: {
546 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000547 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000548
549 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000550 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
551 if (LLoop != RLoop) {
552 unsigned LDepth = LLoop->getLoopDepth(),
553 RDepth = RLoop->getLoopDepth();
554 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000555 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000556 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000557
558 // Addrec complexity grows with operand count.
559 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
560 if (LNumOps != RNumOps)
561 return (int)LNumOps - (int)RNumOps;
562
563 // Lexicographically compare.
564 for (unsigned i = 0; i != LNumOps; ++i) {
565 long X = compare(LA->getOperand(i), RA->getOperand(i));
566 if (X != 0)
567 return X;
568 }
569
570 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000571 }
572
Dan Gohman67ef74e2010-08-27 15:26:01 +0000573 case scAddExpr:
574 case scMulExpr:
575 case scSMaxExpr:
576 case scUMaxExpr: {
577 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000578 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000579
580 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000581 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
582 for (unsigned i = 0; i != LNumOps; ++i) {
583 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000584 return 1;
585 long X = compare(LC->getOperand(i), RC->getOperand(i));
586 if (X != 0)
587 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000588 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000589 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000590 }
591
Dan Gohman67ef74e2010-08-27 15:26:01 +0000592 case scUDivExpr: {
593 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000594 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000595
596 // Lexicographically compare udiv expressions.
597 long X = compare(LC->getLHS(), RC->getLHS());
598 if (X != 0)
599 return X;
600 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000601 }
602
Dan Gohman67ef74e2010-08-27 15:26:01 +0000603 case scTruncate:
604 case scZeroExtend:
605 case scSignExtend: {
606 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000607 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000608
609 // Compare cast expressions by operand.
610 return compare(LC->getOperand(), RC->getOperand());
611 }
612
613 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +0000614 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman3bf63762010-06-18 19:54:20 +0000615 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000616 }
617 };
618}
619
620/// GroupByComplexity - Given a list of SCEV objects, order them by their
621/// complexity, and group objects of the same complexity together by value.
622/// When this routine is finished, we know that any duplicates in the vector are
623/// consecutive and that complexity is monotonically increasing.
624///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000625/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000626/// results from this routine. In other words, we don't want the results of
627/// this to depend on where the addresses of various SCEV objects happened to
628/// land in memory.
629///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000630static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000631 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000632 if (Ops.size() < 2) return; // Noop
633 if (Ops.size() == 2) {
634 // This is the common case, which also happens to be trivially simple.
635 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000636 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
637 if (SCEVComplexityCompare(LI)(RHS, LHS))
638 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000639 return;
640 }
641
Dan Gohman3bf63762010-06-18 19:54:20 +0000642 // Do the rough sort by complexity.
643 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
644
645 // Now that we are sorted by complexity, group elements of the same
646 // complexity. Note that this is, at worst, N^2, but the vector is likely to
647 // be extremely short in practice. Note that we take this approach because we
648 // do not want to depend on the addresses of the objects we are grouping.
649 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
650 const SCEV *S = Ops[i];
651 unsigned Complexity = S->getSCEVType();
652
653 // If there are any objects of the same complexity and same value as this
654 // one, group them.
655 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
656 if (Ops[j] == S) { // Found a duplicate.
657 // Move it to immediately after i'th element.
658 std::swap(Ops[i+1], Ops[j]);
659 ++i; // no need to rescan it.
660 if (i == e-2) return; // Done!
661 }
662 }
663 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000664}
665
Chris Lattner53e677a2004-04-02 20:23:17 +0000666
Chris Lattner53e677a2004-04-02 20:23:17 +0000667
668//===----------------------------------------------------------------------===//
669// Simple SCEV method implementations
670//===----------------------------------------------------------------------===//
671
Eli Friedmanb42a6262008-08-04 23:49:06 +0000672/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000673/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000674static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000675 ScalarEvolution &SE,
Nick Lewycky8cfb2f82011-09-06 06:39:54 +0000676 Type *ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000677 // Handle the simplest case efficiently.
678 if (K == 1)
679 return SE.getTruncateOrZeroExtend(It, ResultTy);
680
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000681 // We are using the following formula for BC(It, K):
682 //
683 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
684 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000685 // Suppose, W is the bitwidth of the return value. We must be prepared for
686 // overflow. Hence, we must assure that the result of our computation is
687 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
688 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000689 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000690 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000691 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000692 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
693 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000694 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000695 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000696 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000697 // This formula is trivially equivalent to the previous formula. However,
698 // this formula can be implemented much more efficiently. The trick is that
699 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
700 // arithmetic. To do exact division in modular arithmetic, all we have
701 // to do is multiply by the inverse. Therefore, this step can be done at
702 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000703 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000704 // The next issue is how to safely do the division by 2^T. The way this
705 // is done is by doing the multiplication step at a width of at least W + T
706 // bits. This way, the bottom W+T bits of the product are accurate. Then,
707 // when we perform the division by 2^T (which is equivalent to a right shift
708 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
709 // truncated out after the division by 2^T.
710 //
711 // In comparison to just directly using the first formula, this technique
712 // is much more efficient; using the first formula requires W * K bits,
713 // but this formula less than W + K bits. Also, the first formula requires
714 // a division step, whereas this formula only requires multiplies and shifts.
715 //
716 // It doesn't matter whether the subtraction step is done in the calculation
717 // width or the input iteration count's width; if the subtraction overflows,
718 // the result must be zero anyway. We prefer here to do it in the width of
719 // the induction variable because it helps a lot for certain cases; CodeGen
720 // isn't smart enough to ignore the overflow, which leads to much less
721 // efficient code if the width of the subtraction is wider than the native
722 // register width.
723 //
724 // (It's possible to not widen at all by pulling out factors of 2 before
725 // the multiplication; for example, K=2 can be calculated as
726 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
727 // extra arithmetic, so it's not an obvious win, and it gets
728 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000729
Eli Friedmanb42a6262008-08-04 23:49:06 +0000730 // Protection from insane SCEVs; this bound is conservative,
731 // but it probably doesn't matter.
732 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000733 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000734
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000735 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000736
Eli Friedmanb42a6262008-08-04 23:49:06 +0000737 // Calculate K! / 2^T and T; we divide out the factors of two before
738 // multiplying for calculating K! / 2^T to avoid overflow.
739 // Other overflow doesn't matter because we only care about the bottom
740 // W bits of the result.
741 APInt OddFactorial(W, 1);
742 unsigned T = 1;
743 for (unsigned i = 3; i <= K; ++i) {
744 APInt Mult(W, i);
745 unsigned TwoFactors = Mult.countTrailingZeros();
746 T += TwoFactors;
747 Mult = Mult.lshr(TwoFactors);
748 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000749 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000750
Eli Friedmanb42a6262008-08-04 23:49:06 +0000751 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000752 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000753
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000754 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000755 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
756
757 // Calculate the multiplicative inverse of K! / 2^T;
758 // this multiplication factor will perform the exact division by
759 // K! / 2^T.
760 APInt Mod = APInt::getSignedMinValue(W+1);
761 APInt MultiplyFactor = OddFactorial.zext(W+1);
762 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
763 MultiplyFactor = MultiplyFactor.trunc(W);
764
765 // Calculate the product, at width T+W
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000766 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +0000767 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000768 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000769 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000770 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000771 Dividend = SE.getMulExpr(Dividend,
772 SE.getTruncateOrZeroExtend(S, CalculationTy));
773 }
774
775 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000776 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000777
778 // Truncate the result, and divide by K! / 2^T.
779
780 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
781 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000782}
783
Chris Lattner53e677a2004-04-02 20:23:17 +0000784/// evaluateAtIteration - Return the value of this chain of recurrences at
785/// the specified iteration number. We can evaluate this recurrence by
786/// multiplying each element in the chain by the binomial coefficient
787/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
788///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000789/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000790///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000791/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000792///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000793const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000794 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000795 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000796 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000797 // The computation is correct in the face of overflow provided that the
798 // multiplication is performed _after_ the evaluation of the binomial
799 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000800 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000801 if (isa<SCEVCouldNotCompute>(Coeff))
802 return Coeff;
803
804 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000805 }
806 return Result;
807}
808
Chris Lattner53e677a2004-04-02 20:23:17 +0000809//===----------------------------------------------------------------------===//
810// SCEV Expression folder implementations
811//===----------------------------------------------------------------------===//
812
Dan Gohman0bba49c2009-07-07 17:06:11 +0000813const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000814 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000815 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000816 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000817 assert(isSCEVable(Ty) &&
818 "This is not a conversion to a SCEVable type!");
819 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000820
Dan Gohmanc050fd92009-07-13 20:50:19 +0000821 FoldingSetNodeID ID;
822 ID.AddInteger(scTruncate);
823 ID.AddPointer(Op);
824 ID.AddPointer(Ty);
825 void *IP = 0;
826 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
827
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000828 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000829 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000830 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000831 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000832
Dan Gohman20900ca2009-04-22 16:20:48 +0000833 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000834 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000835 return getTruncateExpr(ST->getOperand(), Ty);
836
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000837 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000838 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000839 return getTruncateOrSignExtend(SS->getOperand(), Ty);
840
841 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000842 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000843 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
844
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000845 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
846 // eliminate all the truncates.
847 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
848 SmallVector<const SCEV *, 4> Operands;
849 bool hasTrunc = false;
850 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
851 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
852 hasTrunc = isa<SCEVTruncateExpr>(S);
853 Operands.push_back(S);
854 }
855 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000856 return getAddExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000857 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky30aa8b12011-01-19 16:59:46 +0000858 }
859
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000860 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
861 // eliminate all the truncates.
862 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
863 SmallVector<const SCEV *, 4> Operands;
864 bool hasTrunc = false;
865 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
866 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
867 hasTrunc = isa<SCEVTruncateExpr>(S);
868 Operands.push_back(S);
869 }
870 if (!hasTrunc)
Andrew Trick3228cc22011-03-14 16:50:06 +0000871 return getMulExpr(Operands);
Nick Lewyckye19b7b82011-01-26 08:40:22 +0000872 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c6fc1c2011-01-19 18:56:00 +0000873 }
874
Dan Gohman6864db62009-06-18 16:24:47 +0000875 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000876 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000877 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000878 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000879 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick3228cc22011-03-14 16:50:06 +0000880 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +0000881 }
882
Dan Gohman420ab912010-06-25 18:47:08 +0000883 // The cast wasn't folded; create an explicit cast node. We can reuse
884 // the existing insert position since if we get here, we won't have
885 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000886 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
887 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000888 UniqueSCEVs.InsertNode(S, IP);
889 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000890}
891
Dan Gohman0bba49c2009-07-07 17:06:11 +0000892const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000893 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000894 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000895 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000896 assert(isSCEVable(Ty) &&
897 "This is not a conversion to a SCEVable type!");
898 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000899
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000900 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000901 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
902 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +0000903 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattner53e677a2004-04-02 20:23:17 +0000904
Dan Gohman20900ca2009-04-22 16:20:48 +0000905 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000906 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000907 return getZeroExtendExpr(SZ->getOperand(), Ty);
908
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000909 // Before doing any expensive analysis, check to see if we've already
910 // computed a SCEV for this Op and Ty.
911 FoldingSetNodeID ID;
912 ID.AddInteger(scZeroExtend);
913 ID.AddPointer(Op);
914 ID.AddPointer(Ty);
915 void *IP = 0;
916 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
917
Nick Lewycky630d85a2011-01-23 06:20:19 +0000918 // zext(trunc(x)) --> zext(x) or x or trunc(x)
919 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
920 // It's possible the bits taken off by the truncate were all zero bits. If
921 // so, we should be able to simplify this further.
922 const SCEV *X = ST->getOperand();
923 ConstantRange CR = getUnsignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000924 unsigned TruncBits = getTypeSizeInBits(ST->getType());
925 unsigned NewBits = getTypeSizeInBits(Ty);
926 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +0000927 CR.zextOrTrunc(NewBits)))
928 return getTruncateOrZeroExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +0000929 }
930
Dan Gohman01ecca22009-04-27 20:16:15 +0000931 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000932 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000933 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000934 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000935 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000936 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000937 const SCEV *Start = AR->getStart();
938 const SCEV *Step = AR->getStepRecurrence(*this);
939 unsigned BitWidth = getTypeSizeInBits(AR->getType());
940 const Loop *L = AR->getLoop();
941
Dan Gohmaneb490a72009-07-25 01:22:26 +0000942 // If we have special knowledge that this addrec won't overflow,
943 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +0000944 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmaneb490a72009-07-25 01:22:26 +0000945 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
946 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000947 L, AR->getNoWrapFlags());
Dan Gohmaneb490a72009-07-25 01:22:26 +0000948
Dan Gohman01ecca22009-04-27 20:16:15 +0000949 // Check whether the backedge-taken count is SCEVCouldNotCompute.
950 // Note that this serves two purposes: It filters out loops that are
951 // simply not analyzable, and it covers the case where this code is
952 // being called from within backedge-taken count analysis, such that
953 // attempting to ask for the backedge-taken count would likely result
954 // in infinite recursion. In the later case, the analysis code will
955 // cope with a conservative value, and it will take care to purge
956 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000957 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000958 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000959 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000960 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000961
962 // Check whether the backedge-taken count can be losslessly casted to
963 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000964 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000965 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000966 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000967 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
968 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000969 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000970 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000971 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +0000972 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
973 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
974 const SCEV *WideMaxBECount =
975 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000976 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000977 getAddExpr(WideStart,
978 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000979 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +0000980 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +0000981 // Cache knowledge of AR NUW, which is propagated to this AddRec.
982 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000983 // Return the expression with the addrec on the outside.
984 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
985 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +0000986 L, AR->getNoWrapFlags());
987 }
Dan Gohman01ecca22009-04-27 20:16:15 +0000988 // Similar to above, only this time treat the step value as signed.
989 // This covers loops that count down.
Dan Gohman5183cae2009-05-18 15:58:39 +0000990 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +0000991 getAddExpr(WideStart,
992 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +0000993 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +0000994 if (ZAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +0000995 // Cache knowledge of AR NW, which is propagated to this AddRec.
996 // Negative step causes unsigned wrap, but it still can't self-wrap.
997 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000998 // Return the expression with the addrec on the outside.
999 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1000 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001001 L, AR->getNoWrapFlags());
1002 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001003 }
1004
1005 // If the backedge is guarded by a comparison with the pre-inc value
1006 // the addrec is safe. Also, if the entry is guarded by a comparison
1007 // with the start value and the backedge is guarded by a comparison
1008 // with the post-inc value, the addrec is safe.
1009 if (isKnownPositive(Step)) {
1010 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1011 getUnsignedRange(Step).getUnsignedMax());
1012 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001013 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001014 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001015 AR->getPostIncExpr(*this), N))) {
1016 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1017 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman85b05a22009-07-13 21:35:55 +00001018 // Return the expression with the addrec on the outside.
1019 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1020 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001021 L, AR->getNoWrapFlags());
1022 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001023 } else if (isKnownNegative(Step)) {
1024 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1025 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001026 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1027 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001028 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickc343c1e2011-03-15 00:37:00 +00001029 AR->getPostIncExpr(*this), N))) {
1030 // Cache knowledge of AR NW, which is propagated to this AddRec.
1031 // Negative step causes unsigned wrap, but it still can't self-wrap.
1032 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1033 // Return the expression with the addrec on the outside.
Dan Gohman85b05a22009-07-13 21:35:55 +00001034 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1035 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001036 L, AR->getNoWrapFlags());
1037 }
Dan Gohman01ecca22009-04-27 20:16:15 +00001038 }
1039 }
1040 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001041
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001042 // The cast wasn't folded; create an explicit cast node.
1043 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001044 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001045 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1046 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001047 UniqueSCEVs.InsertNode(S, IP);
1048 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001049}
1050
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001051// Get the limit of a recurrence such that incrementing by Step cannot cause
1052// signed overflow as long as the value of the recurrence within the loop does
1053// not exceed this limit before incrementing.
1054static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1055 ICmpInst::Predicate *Pred,
1056 ScalarEvolution *SE) {
1057 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1058 if (SE->isKnownPositive(Step)) {
1059 *Pred = ICmpInst::ICMP_SLT;
1060 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1061 SE->getSignedRange(Step).getSignedMax());
1062 }
1063 if (SE->isKnownNegative(Step)) {
1064 *Pred = ICmpInst::ICMP_SGT;
1065 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1066 SE->getSignedRange(Step).getSignedMin());
1067 }
1068 return 0;
1069}
1070
1071// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1072// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1073// or postincrement sibling. This allows normalizing a sign extended AddRec as
1074// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1075// result, the expression "Step + sext(PreIncAR)" is congruent with
1076// "sext(PostIncAR)"
1077static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001078 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001079 ScalarEvolution *SE) {
1080 const Loop *L = AR->getLoop();
1081 const SCEV *Start = AR->getStart();
1082 const SCEV *Step = AR->getStepRecurrence(*SE);
1083
1084 // Check for a simple looking step prior to loop entry.
1085 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickf63ae212011-09-28 17:02:54 +00001086 if (!SA)
1087 return 0;
1088
1089 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1090 // subtraction is expensive. For this purpose, perform a quick and dirty
1091 // difference, by checking for Step in the operand list.
1092 SmallVector<const SCEV *, 4> DiffOps;
1093 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1094 I != E; ++I) {
1095 if (*I != Step)
1096 DiffOps.push_back(*I);
1097 }
1098 if (DiffOps.size() == SA->getNumOperands())
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001099 return 0;
1100
1101 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1102 // same three conditions that getSignExtendedExpr checks.
1103
1104 // 1. NSW flags on the step increment.
Andrew Trickf63ae212011-09-28 17:02:54 +00001105 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001106 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1107 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1108
Andrew Trickcf31f912011-06-01 19:14:56 +00001109 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001110 return PreStart;
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001111
1112 // 2. Direct overflow check on the step operation's expression.
1113 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001114 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001115 const SCEV *OperandExtendedStart =
1116 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1117 SE->getSignExtendExpr(Step, WideTy));
1118 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1119 // Cache knowledge of PreAR NSW.
1120 if (PreAR)
1121 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1122 // FIXME: this optimization needs a unit test
1123 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1124 return PreStart;
1125 }
1126
1127 // 3. Loop precondition.
1128 ICmpInst::Predicate Pred;
1129 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1130
Andrew Trickcf31f912011-06-01 19:14:56 +00001131 if (OverflowLimit &&
1132 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001133 return PreStart;
1134 }
1135 return 0;
1136}
1137
1138// Get the normalized sign-extended expression for this AddRec's Start.
1139static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001140 Type *Ty,
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001141 ScalarEvolution *SE) {
1142 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1143 if (!PreStart)
1144 return SE->getSignExtendExpr(AR->getStart(), Ty);
1145
1146 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1147 SE->getSignExtendExpr(PreStart, Ty));
1148}
1149
Dan Gohman0bba49c2009-07-07 17:06:11 +00001150const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001151 Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001152 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001153 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001154 assert(isSCEVable(Ty) &&
1155 "This is not a conversion to a SCEVable type!");
1156 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001157
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001158 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001159 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1160 return getConstant(
Nuno Lopes39de32f2012-05-15 15:44:38 +00001161 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmand19534a2007-06-15 14:38:12 +00001162
Dan Gohman20900ca2009-04-22 16:20:48 +00001163 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001164 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001165 return getSignExtendExpr(SS->getOperand(), Ty);
1166
Nick Lewycky73f565e2011-01-19 15:56:12 +00001167 // sext(zext(x)) --> zext(x)
1168 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1169 return getZeroExtendExpr(SZ->getOperand(), Ty);
1170
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001171 // Before doing any expensive analysis, check to see if we've already
1172 // computed a SCEV for this Op and Ty.
1173 FoldingSetNodeID ID;
1174 ID.AddInteger(scSignExtend);
1175 ID.AddPointer(Op);
1176 ID.AddPointer(Ty);
1177 void *IP = 0;
1178 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1179
Nick Lewycky9b8d2c22011-01-22 22:06:21 +00001180 // If the input value is provably positive, build a zext instead.
1181 if (isKnownNonNegative(Op))
1182 return getZeroExtendExpr(Op, Ty);
1183
Nick Lewycky630d85a2011-01-23 06:20:19 +00001184 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1185 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1186 // It's possible the bits taken off by the truncate were all sign bits. If
1187 // so, we should be able to simplify this further.
1188 const SCEV *X = ST->getOperand();
1189 ConstantRange CR = getSignedRange(X);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001190 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1191 unsigned NewBits = getTypeSizeInBits(Ty);
1192 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewycky76167af2011-01-23 20:06:05 +00001193 CR.sextOrTrunc(NewBits)))
1194 return getTruncateOrSignExtend(X, Ty);
Nick Lewycky630d85a2011-01-23 06:20:19 +00001195 }
1196
Dan Gohman01ecca22009-04-27 20:16:15 +00001197 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001198 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001199 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001200 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001201 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001202 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001203 const SCEV *Start = AR->getStart();
1204 const SCEV *Step = AR->getStepRecurrence(*this);
1205 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1206 const Loop *L = AR->getLoop();
1207
Dan Gohmaneb490a72009-07-25 01:22:26 +00001208 // If we have special knowledge that this addrec won't overflow,
1209 // we don't need to do any further analysis.
Andrew Trick3228cc22011-03-14 16:50:06 +00001210 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001211 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmaneb490a72009-07-25 01:22:26 +00001212 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001213 L, SCEV::FlagNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00001214
Dan Gohman01ecca22009-04-27 20:16:15 +00001215 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1216 // Note that this serves two purposes: It filters out loops that are
1217 // simply not analyzable, and it covers the case where this code is
1218 // being called from within backedge-taken count analysis, such that
1219 // attempting to ask for the backedge-taken count would likely result
1220 // in infinite recursion. In the later case, the analysis code will
1221 // cope with a conservative value, and it will take care to purge
1222 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001223 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001224 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001225 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001226 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001227
1228 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001229 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001230 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001231 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001232 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001233 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1234 if (MaxBECount == RecastedMaxBECount) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001235 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001236 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001237 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesac94bd82012-05-15 20:20:14 +00001238 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1239 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1240 const SCEV *WideMaxBECount =
1241 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001242 const SCEV *OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001243 getAddExpr(WideStart,
1244 getMulExpr(WideMaxBECount,
Dan Gohman5183cae2009-05-18 15:58:39 +00001245 getSignExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001246 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001247 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1248 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001249 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001250 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohmanac70cea2009-04-29 22:28:28 +00001251 getSignExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001252 L, AR->getNoWrapFlags());
1253 }
Dan Gohman850f7912009-07-16 17:34:36 +00001254 // Similar to above, only this time treat the step value as unsigned.
1255 // This covers loops that count up with an unsigned step.
Dan Gohman850f7912009-07-16 17:34:36 +00001256 OperandExtendedAdd =
Nuno Lopesac94bd82012-05-15 20:20:14 +00001257 getAddExpr(WideStart,
1258 getMulExpr(WideMaxBECount,
Dan Gohman850f7912009-07-16 17:34:36 +00001259 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesac94bd82012-05-15 20:20:14 +00001260 if (SAdd == OperandExtendedAdd) {
Andrew Trickc343c1e2011-03-15 00:37:00 +00001261 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1262 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman850f7912009-07-16 17:34:36 +00001263 // Return the expression with the addrec on the outside.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001264 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman850f7912009-07-16 17:34:36 +00001265 getZeroExtendExpr(Step, Ty),
Andrew Trickc343c1e2011-03-15 00:37:00 +00001266 L, AR->getNoWrapFlags());
1267 }
Dan Gohman85b05a22009-07-13 21:35:55 +00001268 }
1269
1270 // If the backedge is guarded by a comparison with the pre-inc value
1271 // the addrec is safe. Also, if the entry is guarded by a comparison
1272 // with the start value and the backedge is guarded by a comparison
1273 // with the post-inc value, the addrec is safe.
Andrew Trickb1ce4c02011-05-31 21:17:47 +00001274 ICmpInst::Predicate Pred;
1275 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1276 if (OverflowLimit &&
1277 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1278 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1279 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1280 OverflowLimit)))) {
1281 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1282 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1283 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1284 getSignExtendExpr(Step, Ty),
1285 L, AR->getNoWrapFlags());
Dan Gohman01ecca22009-04-27 20:16:15 +00001286 }
1287 }
1288 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001289
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001290 // The cast wasn't folded; create an explicit cast node.
1291 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001292 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001293 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1294 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001295 UniqueSCEVs.InsertNode(S, IP);
1296 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001297}
1298
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001299/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1300/// unspecified bits out to the given type.
1301///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001302const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001303 Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001304 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1305 "This is not an extending conversion!");
1306 assert(isSCEVable(Ty) &&
1307 "This is not a conversion to a SCEVable type!");
1308 Ty = getEffectiveSCEVType(Ty);
1309
1310 // Sign-extend negative constants.
1311 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1312 if (SC->getValue()->getValue().isNegative())
1313 return getSignExtendExpr(Op, Ty);
1314
1315 // Peel off a truncate cast.
1316 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001317 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001318 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1319 return getAnyExtendExpr(NewOp, Ty);
1320 return getTruncateOrNoop(NewOp, Ty);
1321 }
1322
1323 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001324 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001325 if (!isa<SCEVZeroExtendExpr>(ZExt))
1326 return ZExt;
1327
1328 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001329 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001330 if (!isa<SCEVSignExtendExpr>(SExt))
1331 return SExt;
1332
Dan Gohmana10756e2010-01-21 02:09:26 +00001333 // Force the cast to be folded into the operands of an addrec.
1334 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1335 SmallVector<const SCEV *, 4> Ops;
1336 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1337 I != E; ++I)
1338 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickc343c1e2011-03-15 00:37:00 +00001339 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00001340 }
1341
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001342 // If the expression is obviously signed, use the sext cast value.
1343 if (isa<SCEVSMaxExpr>(Op))
1344 return SExt;
1345
1346 // Absent any other information, use the zext cast value.
1347 return ZExt;
1348}
1349
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001350/// CollectAddOperandsWithScales - Process the given Ops list, which is
1351/// a list of operands to be added under the given scale, update the given
1352/// map. This is a helper function for getAddRecExpr. As an example of
1353/// what it does, given a sequence of operands that would form an add
1354/// expression like this:
1355///
1356/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1357///
1358/// where A and B are constants, update the map with these values:
1359///
1360/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1361///
1362/// and add 13 + A*B*29 to AccumulatedConstant.
1363/// This will allow getAddRecExpr to produce this:
1364///
1365/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1366///
1367/// This form often exposes folding opportunities that are hidden in
1368/// the original operand list.
1369///
Sylvestre Ledru94c22712012-09-27 10:14:43 +00001370/// Return true iff it appears that any interesting folding opportunities
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001371/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1372/// the common case where no interesting opportunities are present, and
1373/// is also used as a check to avoid infinite recursion.
1374///
1375static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001376CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1377 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001378 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001379 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001380 const APInt &Scale,
1381 ScalarEvolution &SE) {
1382 bool Interesting = false;
1383
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001384 // Iterate over the add operands. They are sorted, with constants first.
1385 unsigned i = 0;
1386 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1387 ++i;
1388 // Pull a buried constant out to the outside.
1389 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1390 Interesting = true;
1391 AccumulatedConstant += Scale * C->getValue()->getValue();
1392 }
1393
1394 // Next comes everything else. We're especially interested in multiplies
1395 // here, but they're in the middle, so just visit the rest with one loop.
1396 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001397 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1398 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1399 APInt NewScale =
1400 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1401 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1402 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001403 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001404 Interesting |=
1405 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001406 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001407 NewScale, SE);
1408 } else {
1409 // A multiplication of a constant with some other value. Update
1410 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001411 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1412 const SCEV *Key = SE.getMulExpr(MulOps);
1413 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001414 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001415 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001416 NewOps.push_back(Pair.first->first);
1417 } else {
1418 Pair.first->second += NewScale;
1419 // The map already had an entry for this value, which may indicate
1420 // a folding opportunity.
1421 Interesting = true;
1422 }
1423 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001424 } else {
1425 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001426 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001427 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001428 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001429 NewOps.push_back(Pair.first->first);
1430 } else {
1431 Pair.first->second += Scale;
1432 // The map already had an entry for this value, which may indicate
1433 // a folding opportunity.
1434 Interesting = true;
1435 }
1436 }
1437 }
1438
1439 return Interesting;
1440}
1441
1442namespace {
1443 struct APIntCompare {
1444 bool operator()(const APInt &LHS, const APInt &RHS) const {
1445 return LHS.ult(RHS);
1446 }
1447 };
1448}
1449
Dan Gohman6c0866c2009-05-24 23:45:28 +00001450/// getAddExpr - Get a canonical add expression, or something simpler if
1451/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001452const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001453 SCEV::NoWrapFlags Flags) {
1454 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1455 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001456 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001457 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001458#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001459 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001460 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001461 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001462 "SCEVAddExpr operand types don't match!");
1463#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001464
Andrew Trick3228cc22011-03-14 16:50:06 +00001465 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001466 // And vice-versa.
1467 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1468 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1469 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001470 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001471 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1472 E = Ops.end(); I != E; ++I)
1473 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001474 All = false;
1475 break;
1476 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001477 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001478 }
1479
Chris Lattner53e677a2004-04-02 20:23:17 +00001480 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001481 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001482
1483 // If there are any constants, fold them together.
1484 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001485 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001486 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001487 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001488 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001489 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001490 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1491 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001492 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001493 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001494 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001495 }
1496
1497 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001498 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001499 Ops.erase(Ops.begin());
1500 --Idx;
1501 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001502
Dan Gohmanbca091d2010-04-12 23:08:18 +00001503 if (Ops.size() == 1) return Ops[0];
1504 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001505
Dan Gohman68ff7762010-08-27 21:39:59 +00001506 // Okay, check to see if the same value occurs in the operand list more than
1507 // once. If so, merge them together into an multiply expression. Since we
1508 // sorted the list, these values are required to be adjacent.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001509 Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001510 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001511 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001512 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001513 // Scan ahead to count how many equal operands there are.
1514 unsigned Count = 2;
1515 while (i+Count != e && Ops[i+Count] == Ops[i])
1516 ++Count;
1517 // Merge the values into a multiply.
1518 const SCEV *Scale = getConstant(Ty, Count);
1519 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1520 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001521 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001522 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001523 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001524 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001525 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001526 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001527 if (FoundMatch)
Andrew Trick3228cc22011-03-14 16:50:06 +00001528 return getAddExpr(Ops, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00001529
Dan Gohman728c7f32009-05-08 21:03:19 +00001530 // Check for truncates. If all the operands are truncated from the same
1531 // type, see if factoring out the truncate would permit the result to be
1532 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1533 // if the contents of the resulting outer trunc fold to something simple.
1534 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1535 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001536 Type *DstType = Trunc->getType();
1537 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001538 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001539 bool Ok = true;
1540 // Check all the operands to see if they can be represented in the
1541 // source type of the truncate.
1542 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1543 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1544 if (T->getOperand()->getType() != SrcType) {
1545 Ok = false;
1546 break;
1547 }
1548 LargeOps.push_back(T->getOperand());
1549 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001550 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001551 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001552 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001553 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1554 if (const SCEVTruncateExpr *T =
1555 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1556 if (T->getOperand()->getType() != SrcType) {
1557 Ok = false;
1558 break;
1559 }
1560 LargeMulOps.push_back(T->getOperand());
1561 } else if (const SCEVConstant *C =
1562 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001563 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001564 } else {
1565 Ok = false;
1566 break;
1567 }
1568 }
1569 if (Ok)
1570 LargeOps.push_back(getMulExpr(LargeMulOps));
1571 } else {
1572 Ok = false;
1573 break;
1574 }
1575 }
1576 if (Ok) {
1577 // Evaluate the expression in the larger type.
Andrew Trick3228cc22011-03-14 16:50:06 +00001578 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman728c7f32009-05-08 21:03:19 +00001579 // If it folds to something simple, use it. Otherwise, don't.
1580 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1581 return getTruncateExpr(Fold, DstType);
1582 }
1583 }
1584
1585 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001586 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1587 ++Idx;
1588
1589 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001590 if (Idx < Ops.size()) {
1591 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001592 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001593 // If we have an add, expand the add operands onto the end of the operands
1594 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001595 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001596 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001597 DeletedAdd = true;
1598 }
1599
1600 // If we deleted at least one add, we added operands to the end of the list,
1601 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001602 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001603 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001604 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001605 }
1606
1607 // Skip over the add expression until we get to a multiply.
1608 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1609 ++Idx;
1610
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001611 // Check to see if there are any folding opportunities present with
1612 // operands multiplied by constant values.
1613 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1614 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001615 DenseMap<const SCEV *, APInt> M;
1616 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001617 APInt AccumulatedConstant(BitWidth, 0);
1618 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001619 Ops.data(), Ops.size(),
1620 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001621 // Some interesting folding opportunity is present, so its worthwhile to
1622 // re-generate the operands list. Group the operands by constant scale,
1623 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001624 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001625 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001626 E = NewOps.end(); I != E; ++I)
1627 MulOpLists[M.find(*I)->second].push_back(*I);
1628 // Re-generate the operands list.
1629 Ops.clear();
1630 if (AccumulatedConstant != 0)
1631 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001632 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1633 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001634 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001635 Ops.push_back(getMulExpr(getConstant(I->first),
1636 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001637 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001638 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001639 if (Ops.size() == 1)
1640 return Ops[0];
1641 return getAddExpr(Ops);
1642 }
1643 }
1644
Chris Lattner53e677a2004-04-02 20:23:17 +00001645 // If we are adding something to a multiply expression, make sure the
1646 // something is not already an operand of the multiply. If so, merge it into
1647 // the multiply.
1648 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001649 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001650 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001651 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001652 if (isa<SCEVConstant>(MulOpSCEV))
1653 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001654 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001655 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001656 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001657 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001658 if (Mul->getNumOperands() != 2) {
1659 // If the multiply has more than two operands, we must get the
1660 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001661 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1662 Mul->op_begin()+MulOp);
1663 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001664 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001665 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001666 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001667 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001668 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001669 if (Ops.size() == 2) return OuterMul;
1670 if (AddOp < Idx) {
1671 Ops.erase(Ops.begin()+AddOp);
1672 Ops.erase(Ops.begin()+Idx-1);
1673 } else {
1674 Ops.erase(Ops.begin()+Idx);
1675 Ops.erase(Ops.begin()+AddOp-1);
1676 }
1677 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001678 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001679 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001680
Chris Lattner53e677a2004-04-02 20:23:17 +00001681 // Check this multiply against other multiplies being added together.
1682 for (unsigned OtherMulIdx = Idx+1;
1683 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1684 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001685 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001686 // If MulOp occurs in OtherMul, we can fold the two multiplies
1687 // together.
1688 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1689 OMulOp != e; ++OMulOp)
1690 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1691 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001692 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001693 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001694 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001695 Mul->op_begin()+MulOp);
1696 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001697 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001698 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001699 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001700 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001701 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001702 OtherMul->op_begin()+OMulOp);
1703 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001704 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001705 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001706 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1707 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001708 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001709 Ops.erase(Ops.begin()+Idx);
1710 Ops.erase(Ops.begin()+OtherMulIdx-1);
1711 Ops.push_back(OuterMul);
1712 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001713 }
1714 }
1715 }
1716 }
1717
1718 // If there are any add recurrences in the operands list, see if any other
1719 // added values are loop invariant. If so, we can fold them into the
1720 // recurrence.
1721 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1722 ++Idx;
1723
1724 // Scan over all recurrences, trying to fold loop invariants into them.
1725 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1726 // Scan all of the other operands to this add and add them to the vector if
1727 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001728 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001729 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001730 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001731 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001732 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001733 LIOps.push_back(Ops[i]);
1734 Ops.erase(Ops.begin()+i);
1735 --i; --e;
1736 }
1737
1738 // If we found some loop invariants, fold them into the recurrence.
1739 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001740 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001741 LIOps.push_back(AddRec->getStart());
1742
Dan Gohman0bba49c2009-07-07 17:06:11 +00001743 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001744 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001745 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001746
Dan Gohmanb9f96512010-06-30 07:16:37 +00001747 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher87376832011-01-11 09:02:09 +00001748 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001749 // Always propagate NW.
1750 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick3228cc22011-03-14 16:50:06 +00001751 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman59de33e2009-12-18 18:45:31 +00001752
Chris Lattner53e677a2004-04-02 20:23:17 +00001753 // If all of the other operands were loop invariant, we are done.
1754 if (Ops.size() == 1) return NewRec;
1755
Nick Lewycky980e9f32011-09-06 05:08:09 +00001756 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00001757 for (unsigned i = 0;; ++i)
1758 if (Ops[i] == AddRec) {
1759 Ops[i] = NewRec;
1760 break;
1761 }
Dan Gohman246b2562007-10-22 18:31:58 +00001762 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001763 }
1764
1765 // Okay, if there weren't any loop invariants to be folded, check to see if
1766 // there are multiple AddRec's with the same loop induction variable being
1767 // added together. If so, we can fold them.
1768 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001769 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1770 ++OtherIdx)
1771 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1772 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1773 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1774 AddRec->op_end());
1775 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1776 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001777 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001778 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001779 if (OtherAddRec->getLoop() == AddRecLoop) {
1780 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1781 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001782 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001783 AddRecOps.append(OtherAddRec->op_begin()+i,
1784 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001785 break;
1786 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001787 AddRecOps[i] = getAddExpr(AddRecOps[i],
1788 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001789 }
1790 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001791 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001792 // Step size has changed, so we cannot guarantee no self-wraparound.
1793 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohman32527152010-08-27 20:45:56 +00001794 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001795 }
1796
1797 // Otherwise couldn't fold anything into this recurrence. Move onto the
1798 // next one.
1799 }
1800
1801 // Okay, it looks like we really DO need an add expr. Check to see if we
1802 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001803 FoldingSetNodeID ID;
1804 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001805 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1806 ID.AddPointer(Ops[i]);
1807 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001808 SCEVAddExpr *S =
1809 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1810 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001811 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1812 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001813 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1814 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001815 UniqueSCEVs.InsertNode(S, IP);
1816 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001817 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00001818 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001819}
1820
Nick Lewyckye97728e2011-10-04 06:51:26 +00001821static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1822 uint64_t k = i*j;
1823 if (j > 1 && k / j != i) Overflow = true;
1824 return k;
1825}
1826
1827/// Compute the result of "n choose k", the binomial coefficient. If an
1828/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerd9b0b022012-06-02 10:20:22 +00001829/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewyckye97728e2011-10-04 06:51:26 +00001830static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1831 // We use the multiplicative formula:
1832 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1833 // At each iteration, we take the n-th term of the numeral and divide by the
1834 // (k-n)th term of the denominator. This division will always produce an
1835 // integral result, and helps reduce the chance of overflow in the
1836 // intermediate computations. However, we can still overflow even when the
1837 // final result would fit.
1838
1839 if (n == 0 || n == k) return 1;
1840 if (k > n) return 0;
1841
1842 if (k > n/2)
1843 k = n-k;
1844
1845 uint64_t r = 1;
1846 for (uint64_t i = 1; i <= k; ++i) {
1847 r = umul_ov(r, n-(i-1), Overflow);
1848 r /= i;
1849 }
1850 return r;
1851}
1852
Dan Gohman6c0866c2009-05-24 23:45:28 +00001853/// getMulExpr - Get a canonical multiply expression, or something simpler if
1854/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001855const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick3228cc22011-03-14 16:50:06 +00001856 SCEV::NoWrapFlags Flags) {
1857 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1858 "only nuw or nsw allowed");
Chris Lattner53e677a2004-04-02 20:23:17 +00001859 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001860 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001861#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001862 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001863 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001864 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001865 "SCEVMulExpr operand types don't match!");
1866#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001867
Andrew Trick3228cc22011-03-14 16:50:06 +00001868 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00001869 // And vice-versa.
1870 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1871 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1872 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001873 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001874 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1875 E = Ops.end(); I != E; ++I)
1876 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001877 All = false;
1878 break;
1879 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00001880 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00001881 }
1882
Chris Lattner53e677a2004-04-02 20:23:17 +00001883 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001884 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001885
1886 // If there are any constants, fold them together.
1887 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001888 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001889
1890 // C1*(C2+V) -> C1*C2 + C1*V
1891 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001892 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001893 if (Add->getNumOperands() == 2 &&
1894 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001895 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1896 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001897
Chris Lattner53e677a2004-04-02 20:23:17 +00001898 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001899 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001900 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001901 ConstantInt *Fold = ConstantInt::get(getContext(),
1902 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001903 RHSC->getValue()->getValue());
1904 Ops[0] = getConstant(Fold);
1905 Ops.erase(Ops.begin()+1); // Erase the folded element
1906 if (Ops.size() == 1) return Ops[0];
1907 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001908 }
1909
1910 // If we are left with a constant one being multiplied, strip it off.
1911 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1912 Ops.erase(Ops.begin());
1913 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001914 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001915 // If we have a multiply of zero, it will always be zero.
1916 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001917 } else if (Ops[0]->isAllOnesValue()) {
1918 // If we have a mul by -1 of an add, try distributing the -1 among the
1919 // add operands.
Andrew Trick3228cc22011-03-14 16:50:06 +00001920 if (Ops.size() == 2) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001921 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1922 SmallVector<const SCEV *, 4> NewOps;
1923 bool AnyFolded = false;
Andrew Trick3228cc22011-03-14 16:50:06 +00001924 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1925 E = Add->op_end(); I != E; ++I) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001926 const SCEV *Mul = getMulExpr(Ops[0], *I);
1927 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1928 NewOps.push_back(Mul);
1929 }
1930 if (AnyFolded)
1931 return getAddExpr(NewOps);
1932 }
Andrew Tricka053b212011-03-14 17:38:54 +00001933 else if (const SCEVAddRecExpr *
1934 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1935 // Negation preserves a recurrence's no self-wrap property.
1936 SmallVector<const SCEV *, 4> Operands;
1937 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1938 E = AddRec->op_end(); I != E; ++I) {
1939 Operands.push_back(getMulExpr(Ops[0], *I));
1940 }
1941 return getAddRecExpr(Operands, AddRec->getLoop(),
1942 AddRec->getNoWrapFlags(SCEV::FlagNW));
1943 }
Andrew Trick3228cc22011-03-14 16:50:06 +00001944 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001945 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001946
1947 if (Ops.size() == 1)
1948 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001949 }
1950
1951 // Skip over the add expression until we get to a multiply.
1952 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1953 ++Idx;
1954
Chris Lattner53e677a2004-04-02 20:23:17 +00001955 // If there are mul operands inline them all into this expression.
1956 if (Idx < Ops.size()) {
1957 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001958 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001959 // If we have an mul, expand the mul operands onto the end of the operands
1960 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001961 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001962 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001963 DeletedMul = true;
1964 }
1965
1966 // If we deleted at least one mul, we added operands to the end of the list,
1967 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001968 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001969 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001970 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001971 }
1972
1973 // If there are any add recurrences in the operands list, see if any other
1974 // added values are loop invariant. If so, we can fold them into the
1975 // recurrence.
1976 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1977 ++Idx;
1978
1979 // Scan over all recurrences, trying to fold loop invariants into them.
1980 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1981 // Scan all of the other operands to this mul and add them to the vector if
1982 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001983 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001984 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001985 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001986 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001987 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001988 LIOps.push_back(Ops[i]);
1989 Ops.erase(Ops.begin()+i);
1990 --i; --e;
1991 }
1992
1993 // If we found some loop invariants, fold them into the recurrence.
1994 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001995 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001996 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001997 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001998 const SCEV *Scale = getMulExpr(LIOps);
1999 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2000 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00002001
Dan Gohmanb9f96512010-06-30 07:16:37 +00002002 // Build the new addrec. Propagate the NUW and NSW flags if both the
2003 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick3228cc22011-03-14 16:50:06 +00002004 //
2005 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002006 // will be inferred if either NUW or NSW is true.
Andrew Trick3228cc22011-03-14 16:50:06 +00002007 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2008 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002009
2010 // If all of the other operands were loop invariant, we are done.
2011 if (Ops.size() == 1) return NewRec;
2012
Nick Lewycky980e9f32011-09-06 05:08:09 +00002013 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattner53e677a2004-04-02 20:23:17 +00002014 for (unsigned i = 0;; ++i)
2015 if (Ops[i] == AddRec) {
2016 Ops[i] = NewRec;
2017 break;
2018 }
Dan Gohman246b2562007-10-22 18:31:58 +00002019 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002020 }
2021
2022 // Okay, if there weren't any loop invariants to be folded, check to see if
2023 // there are multiple AddRec's with the same loop induction variable being
2024 // multiplied together. If so, we can fold them.
2025 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00002026 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002027 ++OtherIdx) {
Andrew Trick97178ae2012-05-30 03:35:17 +00002028 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2029 continue;
2030
2031 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2032 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2033 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2034 // ]]],+,...up to x=2n}.
2035 // Note that the arguments to choose() are always integers with values
2036 // known at compile time, never SCEV objects.
2037 //
2038 // The implementation avoids pointless extra computations when the two
2039 // addrec's are of different length (mathematically, it's equivalent to
2040 // an infinite stream of zeros on the right).
2041 bool OpsModified = false;
2042 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2043 ++OtherIdx) {
2044 const SCEVAddRecExpr *OtherAddRec =
2045 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2046 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2047 continue;
2048
2049 bool Overflow = false;
2050 Type *Ty = AddRec->getType();
2051 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2052 SmallVector<const SCEV*, 7> AddRecOps;
2053 for (int x = 0, xe = AddRec->getNumOperands() +
2054 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2055 const SCEV *Term = getConstant(Ty, 0);
2056 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2057 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2058 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2059 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2060 z < ze && !Overflow; ++z) {
2061 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2062 uint64_t Coeff;
2063 if (LargerThan64Bits)
2064 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2065 else
2066 Coeff = Coeff1*Coeff2;
2067 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2068 const SCEV *Term1 = AddRec->getOperand(y-z);
2069 const SCEV *Term2 = OtherAddRec->getOperand(z);
2070 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Dan Gohman6a0c1252010-08-31 22:52:12 +00002071 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002072 }
2073 AddRecOps.push_back(Term);
2074 }
2075 if (!Overflow) {
2076 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2077 SCEV::FlagAnyWrap);
2078 if (Ops.size() == 2) return NewAddRec;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002079 Ops[Idx] = NewAddRec;
Andrew Trick97178ae2012-05-30 03:35:17 +00002080 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2081 OpsModified = true;
Andrew Trickfe3516f2012-05-30 03:35:20 +00002082 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2083 if (!AddRec)
2084 break;
Andrew Trick97178ae2012-05-30 03:35:17 +00002085 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002086 }
Andrew Trick97178ae2012-05-30 03:35:17 +00002087 if (OpsModified)
2088 return getMulExpr(Ops);
Nick Lewyckyc103a082011-09-06 21:42:18 +00002089 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002090
2091 // Otherwise couldn't fold anything into this recurrence. Move onto the
2092 // next one.
2093 }
2094
2095 // Okay, it looks like we really DO need an mul expr. Check to see if we
2096 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002097 FoldingSetNodeID ID;
2098 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002099 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2100 ID.AddPointer(Ops[i]);
2101 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002102 SCEVMulExpr *S =
2103 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2104 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002105 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2106 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002107 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2108 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00002109 UniqueSCEVs.InsertNode(S, IP);
2110 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002111 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002112 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002113}
2114
Andreas Bolka8a11c982009-08-07 22:55:26 +00002115/// getUDivExpr - Get a canonical unsigned division expression, or something
2116/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00002117const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2118 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00002119 assert(getEffectiveSCEVType(LHS->getType()) ==
2120 getEffectiveSCEVType(RHS->getType()) &&
2121 "SCEVUDivExpr operand types don't match!");
2122
Dan Gohman622ed672009-05-04 22:02:23 +00002123 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002124 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00002125 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002126 // If the denominator is zero, the result of the udiv is undefined. Don't
2127 // try to analyze it, because the resolution chosen here may differ from
2128 // the resolution chosen in other parts of the compiler.
2129 if (!RHSC->getValue()->isZero()) {
2130 // Determine if the division can be folded into the operands of
2131 // its operands.
2132 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002133 Type *Ty = LHS->getType();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002134 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00002135 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002136 // For non-power-of-two values, effectively round the value up to the
2137 // nearest power of two.
2138 if (!RHSC->getValue()->getValue().isPowerOf2())
2139 ++MaxShiftAmt;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002140 IntegerType *ExtTy =
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002141 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002142 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2143 if (const SCEVConstant *Step =
Andrew Trick06988bc2011-08-06 07:00:37 +00002144 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2145 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2146 const APInt &StepInt = Step->getValue()->getValue();
2147 const APInt &DivInt = RHSC->getValue()->getValue();
2148 if (!StepInt.urem(DivInt) &&
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002149 getZeroExtendExpr(AR, ExtTy) ==
2150 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2151 getZeroExtendExpr(Step, ExtTy),
Andrew Trick3228cc22011-03-14 16:50:06 +00002152 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002153 SmallVector<const SCEV *, 4> Operands;
2154 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2155 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick3228cc22011-03-14 16:50:06 +00002156 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00002157 SCEV::FlagNW);
Dan Gohman185cf032009-05-08 20:18:49 +00002158 }
Andrew Trick06988bc2011-08-06 07:00:37 +00002159 /// Get a canonical UDivExpr for a recurrence.
2160 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2161 // We can currently only fold X%N if X is constant.
2162 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2163 if (StartC && !DivInt.urem(StepInt) &&
2164 getZeroExtendExpr(AR, ExtTy) ==
2165 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2166 getZeroExtendExpr(Step, ExtTy),
2167 AR->getLoop(), SCEV::FlagAnyWrap)) {
2168 const APInt &StartInt = StartC->getValue()->getValue();
2169 const APInt &StartRem = StartInt.urem(StepInt);
2170 if (StartRem != 0)
2171 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2172 AR->getLoop(), SCEV::FlagNW);
2173 }
2174 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002175 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2176 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2177 SmallVector<const SCEV *, 4> Operands;
2178 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2179 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2180 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2181 // Find an operand that's safely divisible.
2182 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2183 const SCEV *Op = M->getOperand(i);
2184 const SCEV *Div = getUDivExpr(Op, RHSC);
2185 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2186 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2187 M->op_end());
2188 Operands[i] = Div;
2189 return getMulExpr(Operands);
2190 }
2191 }
Dan Gohman185cf032009-05-08 20:18:49 +00002192 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002193 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Tricka2a16202011-04-27 18:17:36 +00002194 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002195 SmallVector<const SCEV *, 4> Operands;
2196 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2197 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2198 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2199 Operands.clear();
2200 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2201 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2202 if (isa<SCEVUDivExpr>(Op) ||
2203 getMulExpr(Op, RHS) != A->getOperand(i))
2204 break;
2205 Operands.push_back(Op);
2206 }
2207 if (Operands.size() == A->getNumOperands())
2208 return getAddExpr(Operands);
2209 }
2210 }
Dan Gohman185cf032009-05-08 20:18:49 +00002211
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002212 // Fold if both operands are constant.
2213 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2214 Constant *LHSCV = LHSC->getValue();
2215 Constant *RHSCV = RHSC->getValue();
2216 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2217 RHSCV)));
2218 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002219 }
2220 }
2221
Dan Gohman1c343752009-06-27 21:21:31 +00002222 FoldingSetNodeID ID;
2223 ID.AddInteger(scUDivExpr);
2224 ID.AddPointer(LHS);
2225 ID.AddPointer(RHS);
2226 void *IP = 0;
2227 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002228 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2229 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002230 UniqueSCEVs.InsertNode(S, IP);
2231 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002232}
2233
2234
Dan Gohman6c0866c2009-05-24 23:45:28 +00002235/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2236/// Simplify the expression as much as possible.
Andrew Trick3228cc22011-03-14 16:50:06 +00002237const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2238 const Loop *L,
2239 SCEV::NoWrapFlags Flags) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002240 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002241 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002242 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002243 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002244 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickc343c1e2011-03-15 00:37:00 +00002245 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattner53e677a2004-04-02 20:23:17 +00002246 }
2247
2248 Operands.push_back(Step);
Andrew Trick3228cc22011-03-14 16:50:06 +00002249 return getAddRecExpr(Operands, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00002250}
2251
Dan Gohman6c0866c2009-05-24 23:45:28 +00002252/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2253/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002254const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002255ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick3228cc22011-03-14 16:50:06 +00002256 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002257 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002258#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002259 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002260 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002261 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002262 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002263 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002264 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002265 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002266#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002267
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002268 if (Operands.back()->isZero()) {
2269 Operands.pop_back();
Andrew Trick3228cc22011-03-14 16:50:06 +00002270 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002271 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002272
Dan Gohmanbc028532010-02-19 18:49:22 +00002273 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2274 // use that information to infer NUW and NSW flags. However, computing a
2275 // BE count requires calling getAddRecExpr, so we may not yet have a
2276 // meaningful BE count at this point (and if we don't, we'd be stuck
2277 // with a SCEVCouldNotCompute as the cached BE count).
2278
Andrew Trick3228cc22011-03-14 16:50:06 +00002279 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002280 // And vice-versa.
2281 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2282 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2283 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002284 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002285 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2286 E = Operands.end(); I != E; ++I)
2287 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002288 All = false;
2289 break;
2290 }
Andrew Trickc343c1e2011-03-15 00:37:00 +00002291 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohmana10756e2010-01-21 02:09:26 +00002292 }
2293
Dan Gohmand9cc7492008-08-08 18:33:12 +00002294 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002295 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002296 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002297 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002298 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002299 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002300 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002301 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002302 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002303 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002304 // AddRecs require their operands be loop-invariant with respect to their
2305 // loops. Don't perform this transformation if it would break this
2306 // requirement.
2307 bool AllInvariant = true;
2308 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002309 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002310 AllInvariant = false;
2311 break;
2312 }
2313 if (AllInvariant) {
Andrew Trick3228cc22011-03-14 16:50:06 +00002314 // Create a recurrence for the outer loop with the same step size.
2315 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002316 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2317 // inner recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002318 SCEV::NoWrapFlags OuterFlags =
2319 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick3228cc22011-03-14 16:50:06 +00002320
2321 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohman9a80b452009-06-26 22:36:20 +00002322 AllInvariant = true;
2323 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002324 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002325 AllInvariant = false;
2326 break;
2327 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002328 if (AllInvariant) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002329 // Ok, both add recurrences are valid after the transformation.
Andrew Trick3228cc22011-03-14 16:50:06 +00002330 //
Andrew Trick3228cc22011-03-14 16:50:06 +00002331 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2332 // the outer recurrence has the same property.
Andrew Trickc343c1e2011-03-15 00:37:00 +00002333 SCEV::NoWrapFlags InnerFlags =
2334 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick3228cc22011-03-14 16:50:06 +00002335 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2336 }
Dan Gohman9a80b452009-06-26 22:36:20 +00002337 }
2338 // Reset Operands to its original state.
2339 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002340 }
2341 }
2342
Dan Gohman67847532010-01-19 22:27:22 +00002343 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2344 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002345 FoldingSetNodeID ID;
2346 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002347 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2348 ID.AddPointer(Operands[i]);
2349 ID.AddPointer(L);
2350 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002351 SCEVAddRecExpr *S =
2352 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2353 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002354 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2355 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002356 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2357 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002358 UniqueSCEVs.InsertNode(S, IP);
2359 }
Andrew Trick3228cc22011-03-14 16:50:06 +00002360 S->setNoWrapFlags(Flags);
Dan Gohman1c343752009-06-27 21:21:31 +00002361 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002362}
2363
Dan Gohman9311ef62009-06-24 14:49:00 +00002364const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2365 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002366 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002367 Ops.push_back(LHS);
2368 Ops.push_back(RHS);
2369 return getSMaxExpr(Ops);
2370}
2371
Dan Gohman0bba49c2009-07-07 17:06:11 +00002372const SCEV *
2373ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002374 assert(!Ops.empty() && "Cannot get empty smax!");
2375 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002376#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002377 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002378 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002379 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002380 "SCEVSMaxExpr operand types don't match!");
2381#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002382
2383 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002384 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002385
2386 // If there are any constants, fold them together.
2387 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002388 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002389 ++Idx;
2390 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002391 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002392 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002393 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002394 APIntOps::smax(LHSC->getValue()->getValue(),
2395 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002396 Ops[0] = getConstant(Fold);
2397 Ops.erase(Ops.begin()+1); // Erase the folded element
2398 if (Ops.size() == 1) return Ops[0];
2399 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002400 }
2401
Dan Gohmane5aceed2009-06-24 14:46:22 +00002402 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002403 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2404 Ops.erase(Ops.begin());
2405 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002406 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2407 // If we have an smax with a constant maximum-int, it will always be
2408 // maximum-int.
2409 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002410 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002411
Dan Gohman3ab13122010-04-13 16:49:23 +00002412 if (Ops.size() == 1) return Ops[0];
2413 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002414
2415 // Find the first SMax
2416 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2417 ++Idx;
2418
2419 // Check to see if one of the operands is an SMax. If so, expand its operands
2420 // onto our operand list, and recurse to simplify.
2421 if (Idx < Ops.size()) {
2422 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002423 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002424 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002425 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002426 DeletedSMax = true;
2427 }
2428
2429 if (DeletedSMax)
2430 return getSMaxExpr(Ops);
2431 }
2432
2433 // Okay, check to see if the same value occurs in the operand list twice. If
2434 // so, delete one. Since we sorted the list, these values are required to
2435 // be adjacent.
2436 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002437 // X smax Y smax Y --> X smax Y
2438 // X smax Y --> X, if X is always greater than Y
2439 if (Ops[i] == Ops[i+1] ||
2440 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2441 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2442 --i; --e;
2443 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002444 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2445 --i; --e;
2446 }
2447
2448 if (Ops.size() == 1) return Ops[0];
2449
2450 assert(!Ops.empty() && "Reduced smax down to nothing!");
2451
Nick Lewycky3e630762008-02-20 06:48:22 +00002452 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002453 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002454 FoldingSetNodeID ID;
2455 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002456 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2457 ID.AddPointer(Ops[i]);
2458 void *IP = 0;
2459 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002460 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2461 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002462 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2463 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002464 UniqueSCEVs.InsertNode(S, IP);
2465 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002466}
2467
Dan Gohman9311ef62009-06-24 14:49:00 +00002468const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2469 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002470 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002471 Ops.push_back(LHS);
2472 Ops.push_back(RHS);
2473 return getUMaxExpr(Ops);
2474}
2475
Dan Gohman0bba49c2009-07-07 17:06:11 +00002476const SCEV *
2477ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002478 assert(!Ops.empty() && "Cannot get empty umax!");
2479 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002480#ifndef NDEBUG
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002481 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002482 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002483 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002484 "SCEVUMaxExpr operand types don't match!");
2485#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002486
2487 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002488 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002489
2490 // If there are any constants, fold them together.
2491 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002492 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002493 ++Idx;
2494 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002495 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002496 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002497 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002498 APIntOps::umax(LHSC->getValue()->getValue(),
2499 RHSC->getValue()->getValue()));
2500 Ops[0] = getConstant(Fold);
2501 Ops.erase(Ops.begin()+1); // Erase the folded element
2502 if (Ops.size() == 1) return Ops[0];
2503 LHSC = cast<SCEVConstant>(Ops[0]);
2504 }
2505
Dan Gohmane5aceed2009-06-24 14:46:22 +00002506 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002507 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2508 Ops.erase(Ops.begin());
2509 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002510 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2511 // If we have an umax with a constant maximum-int, it will always be
2512 // maximum-int.
2513 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002514 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002515
Dan Gohman3ab13122010-04-13 16:49:23 +00002516 if (Ops.size() == 1) return Ops[0];
2517 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002518
2519 // Find the first UMax
2520 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2521 ++Idx;
2522
2523 // Check to see if one of the operands is a UMax. If so, expand its operands
2524 // onto our operand list, and recurse to simplify.
2525 if (Idx < Ops.size()) {
2526 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002527 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002528 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002529 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002530 DeletedUMax = true;
2531 }
2532
2533 if (DeletedUMax)
2534 return getUMaxExpr(Ops);
2535 }
2536
2537 // Okay, check to see if the same value occurs in the operand list twice. If
2538 // so, delete one. Since we sorted the list, these values are required to
2539 // be adjacent.
2540 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002541 // X umax Y umax Y --> X umax Y
2542 // X umax Y --> X, if X is always greater than Y
2543 if (Ops[i] == Ops[i+1] ||
2544 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2545 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2546 --i; --e;
2547 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002548 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2549 --i; --e;
2550 }
2551
2552 if (Ops.size() == 1) return Ops[0];
2553
2554 assert(!Ops.empty() && "Reduced umax down to nothing!");
2555
2556 // Okay, it looks like we really DO need a umax expr. Check to see if we
2557 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002558 FoldingSetNodeID ID;
2559 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002560 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2561 ID.AddPointer(Ops[i]);
2562 void *IP = 0;
2563 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002564 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2565 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002566 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2567 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002568 UniqueSCEVs.InsertNode(S, IP);
2569 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002570}
2571
Dan Gohman9311ef62009-06-24 14:49:00 +00002572const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2573 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002574 // ~smax(~x, ~y) == smin(x, y).
2575 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2576}
2577
Dan Gohman9311ef62009-06-24 14:49:00 +00002578const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2579 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002580 // ~umax(~x, ~y) == umin(x, y)
2581 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2582}
2583
Micah Villmowaa76e9e2012-10-24 15:52:52 +00002584const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy, Type *IntPtrTy) {
Micah Villmow3574eca2012-10-08 16:38:25 +00002585 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman6ab10f62010-04-12 23:03:26 +00002586 // constant expression and then folding it back into a ConstantInt.
2587 // This is just a compile-time optimization.
2588 if (TD)
Micah Villmowaa76e9e2012-10-24 15:52:52 +00002589 return getConstant(IntPtrTy, TD->getTypeAllocSize(AllocTy));
Dan Gohman6ab10f62010-04-12 23:03:26 +00002590
Dan Gohman4f8eea82010-02-01 18:27:38 +00002591 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2592 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002593 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002594 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002595 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002596 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2597}
2598
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002599const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00002600 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2601 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002602 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002603 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002604 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Dan Gohman4f8eea82010-02-01 18:27:38 +00002605 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2606}
2607
Micah Villmowaa76e9e2012-10-24 15:52:52 +00002608const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy, Type *IntPtrTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002609 unsigned FieldNo) {
Micah Villmow3574eca2012-10-08 16:38:25 +00002610 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman6ab10f62010-04-12 23:03:26 +00002611 // constant expression and then folding it back into a ConstantInt.
2612 // This is just a compile-time optimization.
2613 if (TD)
Micah Villmowaa76e9e2012-10-24 15:52:52 +00002614 return getConstant(IntPtrTy,
Dan Gohman6ab10f62010-04-12 23:03:26 +00002615 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2616
Dan Gohman0f5efe52010-01-28 02:15:55 +00002617 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2618 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002619 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002620 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002621 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002622 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002623}
2624
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002625const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002626 Constant *FieldNo) {
2627 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002628 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Chad Rosieraab8e282011-12-02 01:26:24 +00002629 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
Dan Gohman70001222010-05-28 16:12:08 +00002630 C = Folded;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002631 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002632 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002633}
2634
Dan Gohman0bba49c2009-07-07 17:06:11 +00002635const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002636 // Don't attempt to do anything other than create a SCEVUnknown object
2637 // here. createSCEV only calls getUnknown after checking for all other
2638 // interesting possibilities, and any other code that calls getUnknown
2639 // is doing so in order to hide a value from SCEV canonicalization.
2640
Dan Gohman1c343752009-06-27 21:21:31 +00002641 FoldingSetNodeID ID;
2642 ID.AddInteger(scUnknown);
2643 ID.AddPointer(V);
2644 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002645 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2646 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2647 "Stale SCEVUnknown in uniquing map!");
2648 return S;
2649 }
2650 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2651 FirstUnknown);
2652 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002653 UniqueSCEVs.InsertNode(S, IP);
2654 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002655}
2656
Chris Lattner53e677a2004-04-02 20:23:17 +00002657//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002658// Basic SCEV Analysis and PHI Idiom Recognition Code
2659//
2660
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002661/// isSCEVable - Test if values of the given type are analyzable within
2662/// the SCEV framework. This primarily includes integer types, and it
2663/// can optionally include pointer types if the ScalarEvolution class
2664/// has access to target-specific information.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002665bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002666 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002667 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002668}
2669
2670/// getTypeSizeInBits - Return the size in bits of the specified type,
2671/// for which isSCEVable must return true.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002672uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002673 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2674
Micah Villmow3574eca2012-10-08 16:38:25 +00002675 // If we have a DataLayout, use it!
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002676 if (TD)
2677 return TD->getTypeSizeInBits(Ty);
2678
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002679 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002680 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002681 return Ty->getPrimitiveSizeInBits();
2682
Micah Villmow3574eca2012-10-08 16:38:25 +00002683 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002684 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002685 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002686 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002687}
2688
2689/// getEffectiveSCEVType - Return a type with the same bitwidth as
2690/// the given type and which represents how SCEV will treat the given
2691/// type, for which isSCEVable must return true. For pointer types,
2692/// this is the pointer-sized integer type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002693Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002694 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2695
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002696 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002697 return Ty;
2698
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002699 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002700 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Micah Villmowaa76e9e2012-10-24 15:52:52 +00002701 if (TD) return TD->getIntPtrType(Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002702
Micah Villmow3574eca2012-10-08 16:38:25 +00002703 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002704 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002705}
Chris Lattner53e677a2004-04-02 20:23:17 +00002706
Dan Gohman0bba49c2009-07-07 17:06:11 +00002707const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002708 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002709}
2710
Chris Lattner53e677a2004-04-02 20:23:17 +00002711/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2712/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002713const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002714 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002715
Benjamin Kramer992c25a2012-06-30 22:37:15 +00002716 ValueExprMapType::const_iterator I = ValueExprMap.find_as(V);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002717 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002718 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002719
2720 // The process of creating a SCEV for V may have caused other SCEVs
2721 // to have been created, so it's necessary to insert the new entry
2722 // from scratch, rather than trying to remember the insert position
2723 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002724 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002725 return S;
2726}
2727
Dan Gohman2d1be872009-04-16 03:18:22 +00002728/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2729///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002730const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002731 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002732 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002733 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002734
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002735 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002736 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002737 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002738 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002739}
2740
2741/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002742const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002743 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002744 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002745 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002746
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002747 Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002748 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002749 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002750 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002751 return getMinusSCEV(AllOnes, V);
2752}
2753
Andrew Trick3228cc22011-03-14 16:50:06 +00002754/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattner992efb02011-01-09 22:26:35 +00002755const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00002756 SCEV::NoWrapFlags Flags) {
Andrew Trick4dbe2002011-03-15 01:16:14 +00002757 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2758
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002759 // Fast path: X - X --> 0.
2760 if (LHS == RHS)
2761 return getConstant(LHS->getType(), 0);
2762
Dan Gohman2d1be872009-04-16 03:18:22 +00002763 // X - Y --> X + -Y
Andrew Trick3228cc22011-03-14 16:50:06 +00002764 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman2d1be872009-04-16 03:18:22 +00002765}
2766
2767/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2768/// input value to the specified type. If the type must be extended, it is zero
2769/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002770const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002771ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2772 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002773 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2774 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002775 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002776 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002777 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002778 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002779 return getTruncateExpr(V, Ty);
2780 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002781}
2782
2783/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2784/// input value to the specified type. If the type must be extended, it is sign
2785/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002786const SCEV *
2787ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002788 Type *Ty) {
2789 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002790 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2791 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002792 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002793 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002794 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002795 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002796 return getTruncateExpr(V, Ty);
2797 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002798}
2799
Dan Gohman467c4302009-05-13 03:46:30 +00002800/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2801/// input value to the specified type. If the type must be extended, it is zero
2802/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002803const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002804ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2805 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002806 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2807 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002808 "Cannot noop or zero extend with non-integer arguments!");
2809 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2810 "getNoopOrZeroExtend cannot truncate!");
2811 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2812 return V; // No conversion
2813 return getZeroExtendExpr(V, Ty);
2814}
2815
2816/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2817/// input value to the specified type. If the type must be extended, it is sign
2818/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002819const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002820ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2821 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002822 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2823 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002824 "Cannot noop or sign extend with non-integer arguments!");
2825 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2826 "getNoopOrSignExtend cannot truncate!");
2827 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2828 return V; // No conversion
2829 return getSignExtendExpr(V, Ty);
2830}
2831
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002832/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2833/// the input value to the specified type. If the type must be extended,
2834/// it is extended with unspecified bits. The conversion must not be
2835/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002836const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002837ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2838 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002839 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2840 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002841 "Cannot noop or any extend with non-integer arguments!");
2842 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2843 "getNoopOrAnyExtend cannot truncate!");
2844 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2845 return V; // No conversion
2846 return getAnyExtendExpr(V, Ty);
2847}
2848
Dan Gohman467c4302009-05-13 03:46:30 +00002849/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2850/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002851const SCEV *
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002852ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2853 Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002854 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2855 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002856 "Cannot truncate or noop with non-integer arguments!");
2857 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2858 "getTruncateOrNoop cannot extend!");
2859 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2860 return V; // No conversion
2861 return getTruncateExpr(V, Ty);
2862}
2863
Dan Gohmana334aa72009-06-22 00:31:57 +00002864/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2865/// the types using zero-extension, and then perform a umax operation
2866/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002867const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2868 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002869 const SCEV *PromotedLHS = LHS;
2870 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002871
2872 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2873 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2874 else
2875 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2876
2877 return getUMaxExpr(PromotedLHS, PromotedRHS);
2878}
2879
Dan Gohmanc9759e82009-06-22 15:03:27 +00002880/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2881/// the types using zero-extension, and then perform a umin operation
2882/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002883const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2884 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002885 const SCEV *PromotedLHS = LHS;
2886 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002887
2888 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2889 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2890 else
2891 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2892
2893 return getUMinExpr(PromotedLHS, PromotedRHS);
2894}
2895
Andrew Trickb12a7542011-03-17 23:51:11 +00002896/// getPointerBase - Transitively follow the chain of pointer-type operands
2897/// until reaching a SCEV that does not have a single pointer operand. This
2898/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2899/// but corner cases do exist.
2900const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2901 // A pointer operand may evaluate to a nonpointer expression, such as null.
2902 if (!V->getType()->isPointerTy())
2903 return V;
2904
2905 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2906 return getPointerBase(Cast->getOperand());
2907 }
2908 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2909 const SCEV *PtrOp = 0;
2910 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2911 I != E; ++I) {
2912 if ((*I)->getType()->isPointerTy()) {
2913 // Cannot find the base of an expression with multiple pointer operands.
2914 if (PtrOp)
2915 return V;
2916 PtrOp = *I;
2917 }
2918 }
2919 if (!PtrOp)
2920 return V;
2921 return getPointerBase(PtrOp);
2922 }
2923 return V;
2924}
2925
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002926/// PushDefUseChildren - Push users of the given Instruction
2927/// onto the given Worklist.
2928static void
2929PushDefUseChildren(Instruction *I,
2930 SmallVectorImpl<Instruction *> &Worklist) {
2931 // Push the def-use children onto the Worklist stack.
2932 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2933 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002934 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002935}
2936
2937/// ForgetSymbolicValue - This looks up computed SCEV values for all
2938/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002939/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002940/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002941void
Dan Gohman85669632010-02-25 06:57:05 +00002942ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002943 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002944 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002945
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002946 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002947 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002948 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002949 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002950 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002951
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002952 ValueExprMapType::iterator It =
Benjamin Kramer992c25a2012-06-30 22:37:15 +00002953 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002954 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002955 const SCEV *Old = It->second;
2956
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002957 // Short-circuit the def-use traversal if the symbolic name
2958 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002959 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002960 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002961
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002962 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002963 // structure, it's a PHI that's in the progress of being computed
2964 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2965 // additional loop trip count information isn't going to change anything.
2966 // In the second case, createNodeForPHI will perform the necessary
2967 // updates on its own when it gets to that point. In the third, we do
2968 // want to forget the SCEVUnknown.
2969 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002970 !isa<SCEVUnknown>(Old) ||
2971 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002972 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002973 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002974 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002975 }
2976
2977 PushDefUseChildren(I, Worklist);
2978 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002979}
Chris Lattner53e677a2004-04-02 20:23:17 +00002980
2981/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2982/// a loop header, making it a potential recurrence, or it doesn't.
2983///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002984const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002985 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2986 if (L->getHeader() == PN->getParent()) {
2987 // The loop may have multiple entrances or multiple exits; we can analyze
2988 // this phi as an addrec if it has a unique entry value and a unique
2989 // backedge value.
2990 Value *BEValueV = 0, *StartValueV = 0;
2991 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2992 Value *V = PN->getIncomingValue(i);
2993 if (L->contains(PN->getIncomingBlock(i))) {
2994 if (!BEValueV) {
2995 BEValueV = V;
2996 } else if (BEValueV != V) {
2997 BEValueV = 0;
2998 break;
2999 }
3000 } else if (!StartValueV) {
3001 StartValueV = V;
3002 } else if (StartValueV != V) {
3003 StartValueV = 0;
3004 break;
3005 }
3006 }
3007 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003008 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003009 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramer992c25a2012-06-30 22:37:15 +00003010 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00003011 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003012 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00003013
3014 // Using this symbolic name for the PHI, analyze the value coming around
3015 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003016 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00003017
3018 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3019 // has a special value for the first iteration of the loop.
3020
3021 // If the value coming around the backedge is an add with the symbolic
3022 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00003023 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003024 // If there is a single occurrence of the symbolic value, replace it
3025 // with a recurrence.
3026 unsigned FoundIndex = Add->getNumOperands();
3027 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3028 if (Add->getOperand(i) == SymbolicName)
3029 if (FoundIndex == e) {
3030 FoundIndex = i;
3031 break;
3032 }
3033
3034 if (FoundIndex != Add->getNumOperands()) {
3035 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003036 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00003037 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3038 if (i != FoundIndex)
3039 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00003040 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00003041
3042 // This is not a valid addrec if the step amount is varying each
3043 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003044 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00003045 (isa<SCEVAddRecExpr>(Accum) &&
3046 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003047 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohmana10756e2010-01-21 02:09:26 +00003048
3049 // If the increment doesn't overflow, then neither the addrec nor
3050 // the post-increment will overflow.
3051 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3052 if (OBO->hasNoUnsignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003053 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003054 if (OBO->hasNoSignedWrap())
Andrew Trick3228cc22011-03-14 16:50:06 +00003055 Flags = setFlags(Flags, SCEV::FlagNSW);
Andrew Trick635f7182011-03-09 17:23:39 +00003056 } else if (const GEPOperator *GEP =
Andrew Trick3228cc22011-03-14 16:50:06 +00003057 dyn_cast<GEPOperator>(BEValueV)) {
3058 // If the increment is an inbounds GEP, then we know the address
3059 // space cannot be wrapped around. We cannot make any guarantee
3060 // about signed or unsigned overflow because pointers are
3061 // unsigned but we may have a negative index from the base
3062 // pointer.
3063 if (GEP->isInBounds())
Andrew Trickc343c1e2011-03-15 00:37:00 +00003064 Flags = setFlags(Flags, SCEV::FlagNW);
Dan Gohmana10756e2010-01-21 02:09:26 +00003065 }
3066
Dan Gohman27dead42010-04-12 07:49:36 +00003067 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick3228cc22011-03-14 16:50:06 +00003068 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohmaneb490a72009-07-25 01:22:26 +00003069
Dan Gohmana10756e2010-01-21 02:09:26 +00003070 // Since the no-wrap flags are on the increment, they apply to the
3071 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00003072 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00003073 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick3228cc22011-03-14 16:50:06 +00003074 Accum, L, Flags);
Chris Lattner53e677a2004-04-02 20:23:17 +00003075
3076 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003077 // to be symbolic. We now need to go back and purge all of the
3078 // entries for the scalars that use the symbolic expression.
3079 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003080 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00003081 return PHISCEV;
3082 }
3083 }
Dan Gohman622ed672009-05-04 22:02:23 +00003084 } else if (const SCEVAddRecExpr *AddRec =
3085 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00003086 // Otherwise, this could be a loop like this:
3087 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3088 // In this case, j = {1,+,1} and BEValue is j.
3089 // Because the other in-value of i (0) fits the evolution of BEValue
3090 // i really is an addrec evolution.
3091 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00003092 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00003093
3094 // If StartVal = j.start - j.stride, we can use StartVal as the
3095 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003096 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00003097 AddRec->getOperand(1))) {
Andrew Trick3228cc22011-03-14 16:50:06 +00003098 // FIXME: For constant StartVal, we should be able to infer
3099 // no-wrap flags.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003100 const SCEV *PHISCEV =
Andrew Trick3228cc22011-03-14 16:50:06 +00003101 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3102 SCEV::FlagAnyWrap);
Chris Lattner97156e72006-04-26 18:34:07 +00003103
3104 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00003105 // to be symbolic. We now need to go back and purge all of the
3106 // entries for the scalars that use the symbolic expression.
3107 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003108 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00003109 return PHISCEV;
3110 }
3111 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003112 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003113 }
Dan Gohman27dead42010-04-12 07:49:36 +00003114 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003115
Dan Gohman85669632010-02-25 06:57:05 +00003116 // If the PHI has a single incoming value, follow that value, unless the
3117 // PHI's incoming blocks are in a different loop, in which case doing so
3118 // risks breaking LCSSA form. Instcombine would normally zap these, but
3119 // it doesn't have DominatorTree information, so it may miss cases.
Chad Rosier618c1db2011-12-01 03:08:23 +00003120 if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00003121 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00003122 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00003123
Chris Lattner53e677a2004-04-02 20:23:17 +00003124 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003125 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00003126}
3127
Dan Gohman26466c02009-05-08 20:26:55 +00003128/// createNodeForGEP - Expand GEP instructions into add and multiply
3129/// operations. This allows them to be analyzed by regular SCEV code.
3130///
Dan Gohmand281ed22009-12-18 02:09:29 +00003131const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00003132
Dan Gohmanb9f96512010-06-30 07:16:37 +00003133 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3134 // Add expression, because the Instruction may be guarded by control flow
3135 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00003136 // context.
Chris Lattner8ebaf902011-02-13 03:14:49 +00003137 bool isInBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00003138
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003139 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00003140 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00003141 // Don't attempt to analyze GEPs over unsized objects.
3142 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3143 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00003144 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00003145 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00003146 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00003147 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00003148 I != E; ++I) {
3149 Value *Index = *I;
3150 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003151 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohman26466c02009-05-08 20:26:55 +00003152 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00003153 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Micah Villmowaa76e9e2012-10-24 15:52:52 +00003154 const SCEV *FieldOffset = getOffsetOfExpr(STy, IntPtrTy, FieldNo);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003155
Dan Gohmanb9f96512010-06-30 07:16:37 +00003156 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003157 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003158 } else {
3159 // For an array, add the element offset, explicitly scaled.
Micah Villmowaa76e9e2012-10-24 15:52:52 +00003160 const SCEV *ElementSize = getSizeOfExpr(*GTI, IntPtrTy);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003161 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003162 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00003163 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3164
Dan Gohmanb9f96512010-06-30 07:16:37 +00003165 // Multiply the index by the element size to compute the element offset.
Andrew Trick3228cc22011-03-14 16:50:06 +00003166 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3167 isInBounds ? SCEV::FlagNSW :
3168 SCEV::FlagAnyWrap);
Dan Gohmanb9f96512010-06-30 07:16:37 +00003169
3170 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00003171 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00003172 }
3173 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00003174
3175 // Get the SCEV for the GEP base.
3176 const SCEV *BaseS = getSCEV(Base);
3177
Dan Gohmanb9f96512010-06-30 07:16:37 +00003178 // Add the total offset from all the GEP indices to the base.
Andrew Trick3228cc22011-03-14 16:50:06 +00003179 return getAddExpr(BaseS, TotalOffset,
Benjamin Kramer86df0622012-04-17 06:33:57 +00003180 isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
Dan Gohman26466c02009-05-08 20:26:55 +00003181}
3182
Nick Lewycky83bb0052007-11-22 07:59:40 +00003183/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3184/// guaranteed to end in (at every loop iteration). It is, at the same time,
3185/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3186/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003187uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00003188ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00003189 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00003190 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00003191
Dan Gohman622ed672009-05-04 22:02:23 +00003192 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00003193 return std::min(GetMinTrailingZeros(T->getOperand()),
3194 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003195
Dan Gohman622ed672009-05-04 22:02:23 +00003196 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003197 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3198 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3199 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003200 }
3201
Dan Gohman622ed672009-05-04 22:02:23 +00003202 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003203 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3204 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3205 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00003206 }
3207
Dan Gohman622ed672009-05-04 22:02:23 +00003208 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003209 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003210 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003211 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003212 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003213 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003214 }
3215
Dan Gohman622ed672009-05-04 22:02:23 +00003216 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003217 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003218 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3219 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00003220 for (unsigned i = 1, e = M->getNumOperands();
3221 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003222 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00003223 BitWidth);
3224 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003225 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003226
Dan Gohman622ed672009-05-04 22:02:23 +00003227 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00003228 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003229 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003230 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003231 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00003232 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00003233 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00003234
Dan Gohman622ed672009-05-04 22:02:23 +00003235 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003236 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003237 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003238 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003239 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003240 return MinOpRes;
3241 }
3242
Dan Gohman622ed672009-05-04 22:02:23 +00003243 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003244 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003245 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003246 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003247 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003248 return MinOpRes;
3249 }
3250
Dan Gohman2c364ad2009-06-19 23:29:04 +00003251 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3252 // For a SCEVUnknown, ask ValueTracking.
3253 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohman2c364ad2009-06-19 23:29:04 +00003254 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003255 ComputeMaskedBits(U->getValue(), Zeros, Ones);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003256 return Zeros.countTrailingOnes();
3257 }
3258
3259 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003260 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003261}
Chris Lattner53e677a2004-04-02 20:23:17 +00003262
Dan Gohman85b05a22009-07-13 21:35:55 +00003263/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3264///
3265ConstantRange
3266ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003267 // See if we've computed this range already.
3268 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3269 if (I != UnsignedRanges.end())
3270 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003271
3272 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003273 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003274
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003275 unsigned BitWidth = getTypeSizeInBits(S->getType());
3276 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3277
3278 // If the value has known zeros, the maximum unsigned value will have those
3279 // known zeros as well.
3280 uint32_t TZ = GetMinTrailingZeros(S);
3281 if (TZ != 0)
3282 ConservativeResult =
3283 ConstantRange(APInt::getMinValue(BitWidth),
3284 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3285
Dan Gohman85b05a22009-07-13 21:35:55 +00003286 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3287 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3288 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3289 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003290 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003291 }
3292
3293 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3294 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3295 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3296 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003297 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003298 }
3299
3300 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3301 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3302 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3303 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003304 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003305 }
3306
3307 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3308 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3309 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3310 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003311 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003312 }
3313
3314 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3315 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3316 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003317 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003318 }
3319
3320 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3321 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003322 return setUnsignedRange(ZExt,
3323 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003324 }
3325
3326 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3327 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003328 return setUnsignedRange(SExt,
3329 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003330 }
3331
3332 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3333 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003334 return setUnsignedRange(Trunc,
3335 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003336 }
3337
Dan Gohman85b05a22009-07-13 21:35:55 +00003338 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003339 // If there's no unsigned wrap, the value will never be less than its
3340 // initial value.
Andrew Trick3228cc22011-03-14 16:50:06 +00003341 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohmana10756e2010-01-21 02:09:26 +00003342 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003343 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003344 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003345 ConservativeResult.intersectWith(
3346 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003347
3348 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003349 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003350 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003351 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003352 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3353 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003354 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3355
3356 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003357 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003358
3359 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003360 ConstantRange StepRange = getSignedRange(Step);
3361 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3362 ConstantRange EndRange =
3363 StartRange.add(MaxBECountRange.multiply(StepRange));
3364
3365 // Check for overflow. This must be done with ConstantRange arithmetic
3366 // because we could be called from within the ScalarEvolution overflow
3367 // checking code.
3368 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3369 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3370 ConstantRange ExtMaxBECountRange =
3371 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3372 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3373 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3374 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003375 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003376
Dan Gohman85b05a22009-07-13 21:35:55 +00003377 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3378 EndRange.getUnsignedMin());
3379 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3380 EndRange.getUnsignedMax());
3381 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003382 return setUnsignedRange(AddRec, ConservativeResult);
3383 return setUnsignedRange(AddRec,
3384 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003385 }
3386 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003387
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003388 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003389 }
3390
3391 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3392 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003393 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003394 ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003395 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003396 return setUnsignedRange(U, ConservativeResult);
3397 return setUnsignedRange(U,
3398 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003399 }
3400
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003401 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003402}
3403
Dan Gohman85b05a22009-07-13 21:35:55 +00003404/// getSignedRange - Determine the signed range for a particular SCEV.
3405///
3406ConstantRange
3407ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohmana3bbf242011-01-24 17:54:18 +00003408 // See if we've computed this range already.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003409 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3410 if (I != SignedRanges.end())
3411 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003412
Dan Gohman85b05a22009-07-13 21:35:55 +00003413 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003414 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003415
Dan Gohman52fddd32010-01-26 04:40:18 +00003416 unsigned BitWidth = getTypeSizeInBits(S->getType());
3417 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3418
3419 // If the value has known zeros, the maximum signed value will have those
3420 // known zeros as well.
3421 uint32_t TZ = GetMinTrailingZeros(S);
3422 if (TZ != 0)
3423 ConservativeResult =
3424 ConstantRange(APInt::getSignedMinValue(BitWidth),
3425 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3426
Dan Gohman85b05a22009-07-13 21:35:55 +00003427 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3428 ConstantRange X = getSignedRange(Add->getOperand(0));
3429 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3430 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003431 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003432 }
3433
Dan Gohman85b05a22009-07-13 21:35:55 +00003434 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3435 ConstantRange X = getSignedRange(Mul->getOperand(0));
3436 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3437 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003438 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003439 }
3440
Dan Gohman85b05a22009-07-13 21:35:55 +00003441 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3442 ConstantRange X = getSignedRange(SMax->getOperand(0));
3443 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3444 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003445 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003446 }
Dan Gohman62849c02009-06-24 01:05:09 +00003447
Dan Gohman85b05a22009-07-13 21:35:55 +00003448 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3449 ConstantRange X = getSignedRange(UMax->getOperand(0));
3450 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3451 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003452 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003453 }
Dan Gohman62849c02009-06-24 01:05:09 +00003454
Dan Gohman85b05a22009-07-13 21:35:55 +00003455 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3456 ConstantRange X = getSignedRange(UDiv->getLHS());
3457 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003458 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003459 }
Dan Gohman62849c02009-06-24 01:05:09 +00003460
Dan Gohman85b05a22009-07-13 21:35:55 +00003461 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3462 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003463 return setSignedRange(ZExt,
3464 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003465 }
3466
3467 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3468 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003469 return setSignedRange(SExt,
3470 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003471 }
3472
3473 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3474 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003475 return setSignedRange(Trunc,
3476 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003477 }
3478
Dan Gohman85b05a22009-07-13 21:35:55 +00003479 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003480 // If there's no signed wrap, and all the operands have the same sign or
3481 // zero, the value won't ever change sign.
Andrew Trick3228cc22011-03-14 16:50:06 +00003482 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003483 bool AllNonNeg = true;
3484 bool AllNonPos = true;
3485 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3486 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3487 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3488 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003489 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003490 ConservativeResult = ConservativeResult.intersectWith(
3491 ConstantRange(APInt(BitWidth, 0),
3492 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003493 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003494 ConservativeResult = ConservativeResult.intersectWith(
3495 ConstantRange(APInt::getSignedMinValue(BitWidth),
3496 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003497 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003498
3499 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003500 if (AddRec->isAffine()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003501 Type *Ty = AddRec->getType();
Dan Gohman85b05a22009-07-13 21:35:55 +00003502 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003503 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3504 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003505 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3506
3507 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003508 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003509
3510 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003511 ConstantRange StepRange = getSignedRange(Step);
3512 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3513 ConstantRange EndRange =
3514 StartRange.add(MaxBECountRange.multiply(StepRange));
3515
3516 // Check for overflow. This must be done with ConstantRange arithmetic
3517 // because we could be called from within the ScalarEvolution overflow
3518 // checking code.
3519 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3520 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3521 ConstantRange ExtMaxBECountRange =
3522 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3523 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3524 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3525 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003526 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003527
Dan Gohman85b05a22009-07-13 21:35:55 +00003528 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3529 EndRange.getSignedMin());
3530 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3531 EndRange.getSignedMax());
3532 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003533 return setSignedRange(AddRec, ConservativeResult);
3534 return setSignedRange(AddRec,
3535 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003536 }
Dan Gohman62849c02009-06-24 01:05:09 +00003537 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003538
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003539 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003540 }
3541
Dan Gohman2c364ad2009-06-19 23:29:04 +00003542 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3543 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003544 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003545 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003546 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3547 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003548 return setSignedRange(U, ConservativeResult);
3549 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003550 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003551 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003552 }
3553
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003554 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003555}
3556
Chris Lattner53e677a2004-04-02 20:23:17 +00003557/// createSCEV - We know that there is no SCEV for the specified value.
3558/// Analyze the expression.
3559///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003560const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003561 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003562 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003563
Dan Gohman6c459a22008-06-22 19:56:46 +00003564 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003565 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003566 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003567
3568 // Don't attempt to analyze instructions in blocks that aren't
3569 // reachable. Such instructions don't matter, and they aren't required
3570 // to obey basic rules for definitions dominating uses which this
3571 // analysis depends on.
3572 if (!DT->isReachableFromEntry(I->getParent()))
3573 return getUnknown(V);
3574 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003575 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003576 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3577 return getConstant(CI);
3578 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003579 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003580 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3581 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003582 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003583 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003584
Dan Gohmanca178902009-07-17 20:47:02 +00003585 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003586 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003587 case Instruction::Add: {
3588 // The simple thing to do would be to just call getSCEV on both operands
3589 // and call getAddExpr with the result. However if we're looking at a
3590 // bunch of things all added together, this can be quite inefficient,
3591 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3592 // Instead, gather up all the operands and make a single getAddExpr call.
3593 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickecb35ec2011-11-29 02:16:38 +00003594 //
3595 // Don't apply this instruction's NSW or NUW flags to the new
3596 // expression. The instruction may be guarded by control flow that the
3597 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3598 // mapped to the same SCEV expression, and it would be incorrect to transfer
3599 // NSW/NUW semantics to those operations.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003600 SmallVector<const SCEV *, 4> AddOps;
3601 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003602 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3603 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3604 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3605 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003606 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003607 const SCEV *Op1 = getSCEV(U->getOperand(1));
3608 if (Opcode == Instruction::Sub)
3609 AddOps.push_back(getNegativeSCEV(Op1));
3610 else
3611 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003612 }
3613 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickecb35ec2011-11-29 02:16:38 +00003614 return getAddExpr(AddOps);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003615 }
3616 case Instruction::Mul: {
Andrew Trickecb35ec2011-11-29 02:16:38 +00003617 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmand3f171d2010-08-16 16:03:49 +00003618 SmallVector<const SCEV *, 4> MulOps;
3619 MulOps.push_back(getSCEV(U->getOperand(1)));
3620 for (Value *Op = U->getOperand(0);
Andrew Trick635f7182011-03-09 17:23:39 +00003621 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003622 Op = U->getOperand(0)) {
3623 U = cast<Operator>(Op);
3624 MulOps.push_back(getSCEV(U->getOperand(1)));
3625 }
3626 MulOps.push_back(getSCEV(U->getOperand(0)));
3627 return getMulExpr(MulOps);
3628 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003629 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003630 return getUDivExpr(getSCEV(U->getOperand(0)),
3631 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003632 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003633 return getMinusSCEV(getSCEV(U->getOperand(0)),
3634 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003635 case Instruction::And:
3636 // For an expression like x&255 that merely masks off the high bits,
3637 // use zext(trunc(x)) as the SCEV expression.
3638 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003639 if (CI->isNullValue())
3640 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003641 if (CI->isAllOnesValue())
3642 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003643 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003644
3645 // Instcombine's ShrinkDemandedConstant may strip bits out of
3646 // constants, obscuring what would otherwise be a low-bits mask.
3647 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3648 // knew about to reconstruct a low-bits mask value.
3649 unsigned LZ = A.countLeadingZeros();
3650 unsigned BitWidth = A.getBitWidth();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003651 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola26c8dcc2012-04-04 12:51:34 +00003652 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003653
3654 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3655
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003656 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003657 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003658 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003659 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003660 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003661 }
3662 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003663
Dan Gohman6c459a22008-06-22 19:56:46 +00003664 case Instruction::Or:
3665 // If the RHS of the Or is a constant, we may have something like:
3666 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3667 // optimizations will transparently handle this case.
3668 //
3669 // In order for this transformation to be safe, the LHS must be of the
3670 // form X*(2^n) and the Or constant must be less than 2^n.
3671 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003672 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003673 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003674 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003675 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3676 // Build a plain add SCEV.
3677 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3678 // If the LHS of the add was an addrec and it has no-wrap flags,
3679 // transfer the no-wrap flags, since an or won't introduce a wrap.
3680 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3681 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick3228cc22011-03-14 16:50:06 +00003682 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3683 OldAR->getNoWrapFlags());
Dan Gohman1f96e672009-09-17 18:05:20 +00003684 }
3685 return S;
3686 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003687 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003688 break;
3689 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003690 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003691 // If the RHS of the xor is a signbit, then this is just an add.
3692 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003693 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003694 return getAddExpr(getSCEV(U->getOperand(0)),
3695 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003696
3697 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003698 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003699 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003700
3701 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3702 // This is a variant of the check for xor with -1, and it handles
3703 // the case where instcombine has trimmed non-demanded bits out
3704 // of an xor with -1.
3705 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3706 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3707 if (BO->getOpcode() == Instruction::And &&
3708 LCI->getValue() == CI->getValue())
3709 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003710 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003711 Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003712 const SCEV *Z0 = Z->getOperand();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00003713 Type *Z0Ty = Z0->getType();
Dan Gohman82052832009-06-18 00:00:20 +00003714 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3715
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003716 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003717 // mask off the high bits. Complement the operand and
3718 // re-apply the zext.
3719 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3720 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3721
3722 // If C is a single bit, it may be in the sign-bit position
3723 // before the zero-extend. In this case, represent the xor
3724 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003725 APInt Trunc = CI->getValue().trunc(Z0TySize);
3726 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003727 Trunc.isSignBit())
3728 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3729 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003730 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003731 }
3732 break;
3733
3734 case Instruction::Shl:
3735 // Turn shift left of a constant amount into a multiply.
3736 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003737 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003738
3739 // If the shift count is not less than the bitwidth, the result of
3740 // the shift is undefined. Don't try to analyze it, because the
3741 // resolution chosen here may differ from the resolution chosen in
3742 // other parts of the compiler.
3743 if (SA->getValue().uge(BitWidth))
3744 break;
3745
Owen Andersoneed707b2009-07-24 23:12:02 +00003746 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003747 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003748 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003749 }
3750 break;
3751
Nick Lewycky01eaf802008-07-07 06:15:49 +00003752 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003753 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003754 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003755 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003756
3757 // If the shift count is not less than the bitwidth, the result of
3758 // the shift is undefined. Don't try to analyze it, because the
3759 // resolution chosen here may differ from the resolution chosen in
3760 // other parts of the compiler.
3761 if (SA->getValue().uge(BitWidth))
3762 break;
3763
Owen Andersoneed707b2009-07-24 23:12:02 +00003764 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003765 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003766 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003767 }
3768 break;
3769
Dan Gohman4ee29af2009-04-21 02:26:00 +00003770 case Instruction::AShr:
3771 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3772 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003773 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003774 if (L->getOpcode() == Instruction::Shl &&
3775 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003776 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3777
3778 // If the shift count is not less than the bitwidth, the result of
3779 // the shift is undefined. Don't try to analyze it, because the
3780 // resolution chosen here may differ from the resolution chosen in
3781 // other parts of the compiler.
3782 if (CI->getValue().uge(BitWidth))
3783 break;
3784
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003785 uint64_t Amt = BitWidth - CI->getZExtValue();
3786 if (Amt == BitWidth)
3787 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003788 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003789 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003790 IntegerType::get(getContext(),
3791 Amt)),
3792 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003793 }
3794 break;
3795
Dan Gohman6c459a22008-06-22 19:56:46 +00003796 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003797 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003798
3799 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003800 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003801
3802 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003803 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003804
3805 case Instruction::BitCast:
3806 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003807 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003808 return getSCEV(U->getOperand(0));
3809 break;
3810
Dan Gohman4f8eea82010-02-01 18:27:38 +00003811 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3812 // lead to pointer expressions which cannot safely be expanded to GEPs,
3813 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3814 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003815
Dan Gohman26466c02009-05-08 20:26:55 +00003816 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003817 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003818
Dan Gohman6c459a22008-06-22 19:56:46 +00003819 case Instruction::PHI:
3820 return createNodeForPHI(cast<PHINode>(U));
3821
3822 case Instruction::Select:
3823 // This could be a smax or umax that was lowered earlier.
3824 // Try to recover it.
3825 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3826 Value *LHS = ICI->getOperand(0);
3827 Value *RHS = ICI->getOperand(1);
3828 switch (ICI->getPredicate()) {
3829 case ICmpInst::ICMP_SLT:
3830 case ICmpInst::ICMP_SLE:
3831 std::swap(LHS, RHS);
3832 // fall through
3833 case ICmpInst::ICMP_SGT:
3834 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003835 // a >s b ? a+x : b+x -> smax(a, b)+x
3836 // a >s b ? b+x : a+x -> smin(a, b)+x
3837 if (LHS->getType() == U->getType()) {
3838 const SCEV *LS = getSCEV(LHS);
3839 const SCEV *RS = getSCEV(RHS);
3840 const SCEV *LA = getSCEV(U->getOperand(1));
3841 const SCEV *RA = getSCEV(U->getOperand(2));
3842 const SCEV *LDiff = getMinusSCEV(LA, LS);
3843 const SCEV *RDiff = getMinusSCEV(RA, RS);
3844 if (LDiff == RDiff)
3845 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3846 LDiff = getMinusSCEV(LA, RS);
3847 RDiff = getMinusSCEV(RA, LS);
3848 if (LDiff == RDiff)
3849 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3850 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003851 break;
3852 case ICmpInst::ICMP_ULT:
3853 case ICmpInst::ICMP_ULE:
3854 std::swap(LHS, RHS);
3855 // fall through
3856 case ICmpInst::ICMP_UGT:
3857 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003858 // a >u b ? a+x : b+x -> umax(a, b)+x
3859 // a >u b ? b+x : a+x -> umin(a, b)+x
3860 if (LHS->getType() == U->getType()) {
3861 const SCEV *LS = getSCEV(LHS);
3862 const SCEV *RS = getSCEV(RHS);
3863 const SCEV *LA = getSCEV(U->getOperand(1));
3864 const SCEV *RA = getSCEV(U->getOperand(2));
3865 const SCEV *LDiff = getMinusSCEV(LA, LS);
3866 const SCEV *RDiff = getMinusSCEV(RA, RS);
3867 if (LDiff == RDiff)
3868 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3869 LDiff = getMinusSCEV(LA, RS);
3870 RDiff = getMinusSCEV(RA, LS);
3871 if (LDiff == RDiff)
3872 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3873 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003874 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003875 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003876 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3877 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003878 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003879 cast<ConstantInt>(RHS)->isZero()) {
3880 const SCEV *One = getConstant(LHS->getType(), 1);
3881 const SCEV *LS = getSCEV(LHS);
3882 const SCEV *LA = getSCEV(U->getOperand(1));
3883 const SCEV *RA = getSCEV(U->getOperand(2));
3884 const SCEV *LDiff = getMinusSCEV(LA, LS);
3885 const SCEV *RDiff = getMinusSCEV(RA, One);
3886 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003887 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003888 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003889 break;
3890 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003891 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3892 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003893 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003894 cast<ConstantInt>(RHS)->isZero()) {
3895 const SCEV *One = getConstant(LHS->getType(), 1);
3896 const SCEV *LS = getSCEV(LHS);
3897 const SCEV *LA = getSCEV(U->getOperand(1));
3898 const SCEV *RA = getSCEV(U->getOperand(2));
3899 const SCEV *LDiff = getMinusSCEV(LA, One);
3900 const SCEV *RDiff = getMinusSCEV(RA, LS);
3901 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003902 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003903 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003904 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003905 default:
3906 break;
3907 }
3908 }
3909
3910 default: // We cannot analyze this expression.
3911 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003912 }
3913
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003914 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003915}
3916
3917
3918
3919//===----------------------------------------------------------------------===//
3920// Iteration Count Computation Code
3921//
3922
Andrew Trickb1831c62011-08-11 23:36:16 +00003923/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Trick3eada312012-01-11 06:52:55 +00003924/// normal unsigned value. Returns 0 if the trip count is unknown or not
3925/// constant. Will also return 0 if the maximum trip count is very large (>=
3926/// 2^32).
3927///
3928/// This "trip count" assumes that control exits via ExitingBlock. More
3929/// precisely, it is the number of times that control may reach ExitingBlock
3930/// before taking the branch. For loops with multiple exits, it may not be the
3931/// number times that the loop header executes because the loop may exit
3932/// prematurely via another branch.
3933unsigned ScalarEvolution::
3934getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) {
Andrew Trickb1831c62011-08-11 23:36:16 +00003935 const SCEVConstant *ExitCount =
Andrew Trick3eada312012-01-11 06:52:55 +00003936 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trickb1831c62011-08-11 23:36:16 +00003937 if (!ExitCount)
3938 return 0;
3939
3940 ConstantInt *ExitConst = ExitCount->getValue();
3941
3942 // Guard against huge trip counts.
3943 if (ExitConst->getValue().getActiveBits() > 32)
3944 return 0;
3945
3946 // In case of integer overflow, this returns 0, which is correct.
3947 return ((unsigned)ExitConst->getZExtValue()) + 1;
3948}
3949
3950/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3951/// trip count of this loop as a normal unsigned value, if possible. This
3952/// means that the actual trip count is always a multiple of the returned
3953/// value (don't forget the trip count could very well be zero as well!).
3954///
3955/// Returns 1 if the trip count is unknown or not guaranteed to be the
3956/// multiple of a constant (which is also the case if the trip count is simply
3957/// constant, use getSmallConstantTripCount for that case), Will also return 1
3958/// if the trip count is very large (>= 2^32).
Andrew Trick3eada312012-01-11 06:52:55 +00003959///
3960/// As explained in the comments for getSmallConstantTripCount, this assumes
3961/// that control exits the loop via ExitingBlock.
3962unsigned ScalarEvolution::
3963getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) {
3964 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trickb1831c62011-08-11 23:36:16 +00003965 if (ExitCount == getCouldNotCompute())
3966 return 1;
3967
3968 // Get the trip count from the BE count by adding 1.
3969 const SCEV *TCMul = getAddExpr(ExitCount,
3970 getConstant(ExitCount->getType(), 1));
3971 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3972 // to factor simple cases.
3973 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3974 TCMul = Mul->getOperand(0);
3975
3976 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3977 if (!MulC)
3978 return 1;
3979
3980 ConstantInt *Result = MulC->getValue();
3981
3982 // Guard against huge trip counts.
3983 if (!Result || Result->getValue().getActiveBits() > 32)
3984 return 1;
3985
3986 return (unsigned)Result->getZExtValue();
3987}
3988
Andrew Trick5116ff62011-07-26 17:19:55 +00003989// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickfcb43562011-08-02 04:23:35 +00003990// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
Andrew Trick5116ff62011-07-26 17:19:55 +00003991// SCEVCouldNotCompute.
Andrew Trickfcb43562011-08-02 04:23:35 +00003992const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
3993 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick5116ff62011-07-26 17:19:55 +00003994}
3995
Dan Gohman46bdfb02009-02-24 18:55:53 +00003996/// getBackedgeTakenCount - If the specified loop has a predictable
3997/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3998/// object. The backedge-taken count is the number of times the loop header
3999/// will be branched to from within the loop. This is one less than the
4000/// trip count of the loop, since it doesn't count the first iteration,
4001/// when the header is branched to from outside the loop.
4002///
4003/// Note that it is not valid to call this method on a loop without a
4004/// loop-invariant backedge-taken count (see
4005/// hasLoopInvariantBackedgeTakenCount).
4006///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004007const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004008 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004009}
4010
4011/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4012/// return the least SCEV value that is known never to be less than the
4013/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004014const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004015 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohmana1af7572009-04-30 20:47:05 +00004016}
4017
Dan Gohman59ae6b92009-07-08 19:23:34 +00004018/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4019/// onto the given Worklist.
4020static void
4021PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4022 BasicBlock *Header = L->getHeader();
4023
4024 // Push all Loop-header PHIs onto the Worklist stack.
4025 for (BasicBlock::iterator I = Header->begin();
4026 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4027 Worklist.push_back(PN);
4028}
4029
Dan Gohmana1af7572009-04-30 20:47:05 +00004030const ScalarEvolution::BackedgeTakenInfo &
4031ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004032 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004033 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00004034 // update the value. The temporary CouldNotCompute value tells SCEV
4035 // code elsewhere that it shouldn't attempt to request a new
4036 // backedge-taken count, which could result in infinite recursion.
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004037 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick5116ff62011-07-26 17:19:55 +00004038 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnerf1859892011-01-09 02:16:18 +00004039 if (!Pair.second)
4040 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00004041
Andrew Trick5116ff62011-07-26 17:19:55 +00004042 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4043 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4044 // must be cleared in this scope.
4045 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4046
4047 if (Result.getExact(this) != getCouldNotCompute()) {
4048 assert(isLoopInvariant(Result.getExact(this), L) &&
4049 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnerf1859892011-01-09 02:16:18 +00004050 "Computed backedge-taken count isn't loop invariant for loop!");
4051 ++NumTripCountsComputed;
Andrew Trick5116ff62011-07-26 17:19:55 +00004052 }
4053 else if (Result.getMax(this) == getCouldNotCompute() &&
4054 isa<PHINode>(L->getHeader()->begin())) {
4055 // Only count loops that have phi nodes as not being computable.
4056 ++NumTripCountsNotComputed;
Chris Lattnerf1859892011-01-09 02:16:18 +00004057 }
Dan Gohmana1af7572009-04-30 20:47:05 +00004058
Chris Lattnerf1859892011-01-09 02:16:18 +00004059 // Now that we know more about the trip count for this loop, forget any
4060 // existing SCEV values for PHI nodes in this loop since they are only
4061 // conservative estimates made without the benefit of trip count
4062 // information. This is similar to the code in forgetLoop, except that
4063 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick5116ff62011-07-26 17:19:55 +00004064 if (Result.hasAnyInfo()) {
Chris Lattnerf1859892011-01-09 02:16:18 +00004065 SmallVector<Instruction *, 16> Worklist;
4066 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004067
Chris Lattnerf1859892011-01-09 02:16:18 +00004068 SmallPtrSet<Instruction *, 8> Visited;
4069 while (!Worklist.empty()) {
4070 Instruction *I = Worklist.pop_back_val();
4071 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004072
Chris Lattnerf1859892011-01-09 02:16:18 +00004073 ValueExprMapType::iterator It =
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004074 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnerf1859892011-01-09 02:16:18 +00004075 if (It != ValueExprMap.end()) {
4076 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00004077
Chris Lattnerf1859892011-01-09 02:16:18 +00004078 // SCEVUnknown for a PHI either means that it has an unrecognized
4079 // structure, or it's a PHI that's in the progress of being computed
4080 // by createNodeForPHI. In the former case, additional loop trip
4081 // count information isn't going to change anything. In the later
4082 // case, createNodeForPHI will perform the necessary updates on its
4083 // own when it gets to that point.
4084 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4085 forgetMemoizedResults(Old);
4086 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004087 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004088 if (PHINode *PN = dyn_cast<PHINode>(I))
4089 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004090 }
Chris Lattnerf1859892011-01-09 02:16:18 +00004091
4092 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004093 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004094 }
Dan Gohman308bec32011-04-25 22:48:29 +00004095
4096 // Re-lookup the insert position, since the call to
4097 // ComputeBackedgeTakenCount above could result in a
4098 // recusive call to getBackedgeTakenInfo (on a different
4099 // loop), which would invalidate the iterator computed
4100 // earlier.
4101 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattner53e677a2004-04-02 20:23:17 +00004102}
4103
Dan Gohman4c7279a2009-10-31 15:04:55 +00004104/// forgetLoop - This method should be called by the client when it has
4105/// changed a loop in a way that may effect ScalarEvolution's ability to
4106/// compute a trip count, or if the loop is deleted.
4107void ScalarEvolution::forgetLoop(const Loop *L) {
4108 // Drop any stored trip count value.
Andrew Trick5116ff62011-07-26 17:19:55 +00004109 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4110 BackedgeTakenCounts.find(L);
4111 if (BTCPos != BackedgeTakenCounts.end()) {
4112 BTCPos->second.clear();
4113 BackedgeTakenCounts.erase(BTCPos);
4114 }
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00004115
Dan Gohman4c7279a2009-10-31 15:04:55 +00004116 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00004117 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00004118 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004119
Dan Gohman59ae6b92009-07-08 19:23:34 +00004120 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00004121 while (!Worklist.empty()) {
4122 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00004123 if (!Visited.insert(I)) continue;
4124
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004125 ValueExprMapType::iterator It =
4126 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004127 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004128 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004129 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00004130 if (PHINode *PN = dyn_cast<PHINode>(I))
4131 ConstantEvolutionLoopExitValue.erase(PN);
4132 }
4133
4134 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00004135 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00004136
4137 // Forget all contained loops too, to avoid dangling entries in the
4138 // ValuesAtScopes map.
4139 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4140 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00004141}
4142
Eric Christophere6cbfa62010-07-29 01:25:38 +00004143/// forgetValue - This method should be called by the client when it has
4144/// changed a value in a way that may effect its value, or which may
4145/// disconnect it from a def-use chain linking it to a loop.
4146void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004147 Instruction *I = dyn_cast<Instruction>(V);
4148 if (!I) return;
4149
4150 // Drop information about expressions based on loop-header PHIs.
4151 SmallVector<Instruction *, 16> Worklist;
4152 Worklist.push_back(I);
4153
4154 SmallPtrSet<Instruction *, 8> Visited;
4155 while (!Worklist.empty()) {
4156 I = Worklist.pop_back_val();
4157 if (!Visited.insert(I)) continue;
4158
Benjamin Kramer992c25a2012-06-30 22:37:15 +00004159 ValueExprMapType::iterator It =
4160 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004161 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00004162 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00004163 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00004164 if (PHINode *PN = dyn_cast<PHINode>(I))
4165 ConstantEvolutionLoopExitValue.erase(PN);
4166 }
4167
4168 PushDefUseChildren(I, Worklist);
4169 }
4170}
4171
Andrew Trick5116ff62011-07-26 17:19:55 +00004172/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004173/// exits. A computable result can only be return for loops with a single exit.
4174/// Returning the minimum taken count among all exits is incorrect because one
4175/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4176/// the limit of each loop test is never skipped. This is a valid assumption as
4177/// long as the loop exits via that test. For precise results, it is the
4178/// caller's responsibility to specify the relevant loop exit using
4179/// getExact(ExitingBlock, SE).
Andrew Trick5116ff62011-07-26 17:19:55 +00004180const SCEV *
4181ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4182 // If any exits were not computable, the loop is not computable.
4183 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4184
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004185 // We need exactly one computable exit.
Andrew Trickfcb43562011-08-02 04:23:35 +00004186 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004187 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4188
4189 const SCEV *BECount = 0;
4190 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4191 ENT != 0; ENT = ENT->getNextExit()) {
4192
4193 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4194
4195 if (!BECount)
4196 BECount = ENT->ExactNotTaken;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004197 else if (BECount != ENT->ExactNotTaken)
4198 return SE->getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004199 }
Andrew Trick252ef7a2011-09-02 21:20:46 +00004200 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick5116ff62011-07-26 17:19:55 +00004201 return BECount;
4202}
4203
4204/// getExact - Get the exact not taken count for this loop exit.
4205const SCEV *
Andrew Trickfcb43562011-08-02 04:23:35 +00004206ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick5116ff62011-07-26 17:19:55 +00004207 ScalarEvolution *SE) const {
4208 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4209 ENT != 0; ENT = ENT->getNextExit()) {
4210
Andrew Trickfcb43562011-08-02 04:23:35 +00004211 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick5116ff62011-07-26 17:19:55 +00004212 return ENT->ExactNotTaken;
4213 }
4214 return SE->getCouldNotCompute();
4215}
4216
4217/// getMax - Get the max backedge taken count for the loop.
4218const SCEV *
4219ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4220 return Max ? Max : SE->getCouldNotCompute();
4221}
4222
4223/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4224/// computable exit into a persistent ExitNotTakenInfo array.
4225ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4226 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4227 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4228
4229 if (!Complete)
4230 ExitNotTaken.setIncomplete();
4231
4232 unsigned NumExits = ExitCounts.size();
4233 if (NumExits == 0) return;
4234
Andrew Trickfcb43562011-08-02 04:23:35 +00004235 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004236 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4237 if (NumExits == 1) return;
4238
4239 // Handle the rare case of multiple computable exits.
4240 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4241
4242 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4243 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4244 PrevENT->setNextExit(ENT);
Andrew Trickfcb43562011-08-02 04:23:35 +00004245 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick5116ff62011-07-26 17:19:55 +00004246 ENT->ExactNotTaken = ExitCounts[i].second;
4247 }
4248}
4249
4250/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4251void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trickfcb43562011-08-02 04:23:35 +00004252 ExitNotTaken.ExitingBlock = 0;
Andrew Trick5116ff62011-07-26 17:19:55 +00004253 ExitNotTaken.ExactNotTaken = 0;
4254 delete[] ExitNotTaken.getNextExit();
4255}
4256
Dan Gohman46bdfb02009-02-24 18:55:53 +00004257/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4258/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00004259ScalarEvolution::BackedgeTakenInfo
4260ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00004261 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00004262 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00004263
Dan Gohmana334aa72009-06-22 00:31:57 +00004264 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004265 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5116ff62011-07-26 17:19:55 +00004266 bool CouldComputeBECount = true;
4267 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohmana334aa72009-06-22 00:31:57 +00004268 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004269 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4270 if (EL.Exact == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004271 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00004272 // we won't be able to compute an exact value for the loop.
Andrew Trick5116ff62011-07-26 17:19:55 +00004273 CouldComputeBECount = false;
4274 else
4275 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4276
Dan Gohman1c343752009-06-27 21:21:31 +00004277 if (MaxBECount == getCouldNotCompute())
Andrew Trick5116ff62011-07-26 17:19:55 +00004278 MaxBECount = EL.Max;
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004279 else if (EL.Max != getCouldNotCompute()) {
4280 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4281 // skip some loop tests. Taking the max over the exits is sufficiently
4282 // conservative. TODO: We could do better taking into consideration
4283 // that (1) the loop has unit stride (2) the last loop test is
4284 // less-than/greater-than (3) any loop test is less-than/greater-than AND
4285 // falls-through some constant times less then the other tests.
4286 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4287 }
Dan Gohmana334aa72009-06-22 00:31:57 +00004288 }
4289
Andrew Trick5116ff62011-07-26 17:19:55 +00004290 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004291}
4292
Andrew Trick5116ff62011-07-26 17:19:55 +00004293/// ComputeExitLimit - Compute the number of times the backedge of the specified
4294/// loop will execute if it exits via the specified block.
4295ScalarEvolution::ExitLimit
4296ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohmana334aa72009-06-22 00:31:57 +00004297
4298 // Okay, we've chosen an exiting block. See what condition causes us to
4299 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00004300 //
4301 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00004302 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00004303 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004304 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00004305
Chris Lattner8b0e3602007-01-07 02:24:26 +00004306 // At this point, we know we have a conditional branch that determines whether
4307 // the loop is exited. However, we don't know if the branch is executed each
4308 // time through the loop. If not, then the execution count of the branch will
4309 // not be equal to the trip count of the loop.
4310 //
4311 // Currently we check for this by checking to see if the Exit branch goes to
4312 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00004313 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00004314 // loop header. This is common for un-rotated loops.
4315 //
4316 // If both of those tests fail, walk up the unique predecessor chain to the
4317 // header, stopping if there is an edge that doesn't exit the loop. If the
4318 // header is reached, the execution count of the branch will be equal to the
4319 // trip count of the loop.
4320 //
4321 // More extensive analysis could be done to handle more cases here.
4322 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00004323 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00004324 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00004325 ExitBr->getParent() != L->getHeader()) {
4326 // The simple checks failed, try climbing the unique predecessor chain
4327 // up to the header.
4328 bool Ok = false;
4329 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4330 BasicBlock *Pred = BB->getUniquePredecessor();
4331 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00004332 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004333 TerminatorInst *PredTerm = Pred->getTerminator();
4334 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4335 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4336 if (PredSucc == BB)
4337 continue;
4338 // If the predecessor has a successor that isn't BB and isn't
4339 // outside the loop, assume the worst.
4340 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00004341 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004342 }
4343 if (Pred == L->getHeader()) {
4344 Ok = true;
4345 break;
4346 }
4347 BB = Pred;
4348 }
4349 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00004350 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004351 }
4352
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004353 // Proceed to the next level to examine the exit condition expression.
Andrew Trick5116ff62011-07-26 17:19:55 +00004354 return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4355 ExitBr->getSuccessor(0),
4356 ExitBr->getSuccessor(1));
Dan Gohmana334aa72009-06-22 00:31:57 +00004357}
4358
Andrew Trick5116ff62011-07-26 17:19:55 +00004359/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004360/// backedge of the specified loop will execute if its exit condition
4361/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004362ScalarEvolution::ExitLimit
4363ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4364 Value *ExitCond,
4365 BasicBlock *TBB,
4366 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00004367 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00004368 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4369 if (BO->getOpcode() == Instruction::And) {
4370 // Recurse on the operands of the and.
Andrew Trick5116ff62011-07-26 17:19:55 +00004371 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4372 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004373 const SCEV *BECount = getCouldNotCompute();
4374 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004375 if (L->contains(TBB)) {
4376 // Both conditions must be true for the loop to continue executing.
4377 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004378 if (EL0.Exact == getCouldNotCompute() ||
4379 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004380 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004381 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004382 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4383 if (EL0.Max == getCouldNotCompute())
4384 MaxBECount = EL1.Max;
4385 else if (EL1.Max == getCouldNotCompute())
4386 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004387 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004388 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004389 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004390 // Both conditions must be true at the same time for the loop to exit.
4391 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004392 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004393 if (EL0.Max == EL1.Max)
4394 MaxBECount = EL0.Max;
4395 if (EL0.Exact == EL1.Exact)
4396 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004397 }
4398
Andrew Trick5116ff62011-07-26 17:19:55 +00004399 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004400 }
4401 if (BO->getOpcode() == Instruction::Or) {
4402 // Recurse on the operands of the or.
Andrew Trick5116ff62011-07-26 17:19:55 +00004403 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4404 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004405 const SCEV *BECount = getCouldNotCompute();
4406 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004407 if (L->contains(FBB)) {
4408 // Both conditions must be false for the loop to continue executing.
4409 // Choose the less conservative count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004410 if (EL0.Exact == getCouldNotCompute() ||
4411 EL1.Exact == getCouldNotCompute())
Dan Gohman1c343752009-06-27 21:21:31 +00004412 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004413 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004414 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4415 if (EL0.Max == getCouldNotCompute())
4416 MaxBECount = EL1.Max;
4417 else if (EL1.Max == getCouldNotCompute())
4418 MaxBECount = EL0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004419 else
Andrew Trick5116ff62011-07-26 17:19:55 +00004420 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004421 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004422 // Both conditions must be false at the same time for the loop to exit.
4423 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004424 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick5116ff62011-07-26 17:19:55 +00004425 if (EL0.Max == EL1.Max)
4426 MaxBECount = EL0.Max;
4427 if (EL0.Exact == EL1.Exact)
4428 BECount = EL0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004429 }
4430
Andrew Trick5116ff62011-07-26 17:19:55 +00004431 return ExitLimit(BECount, MaxBECount);
Dan Gohmana334aa72009-06-22 00:31:57 +00004432 }
4433 }
4434
4435 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004436 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004437 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5116ff62011-07-26 17:19:55 +00004438 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004439
Dan Gohman00cb5b72010-02-19 18:12:07 +00004440 // Check for a constant condition. These are normally stripped out by
4441 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4442 // preserve the CFG and is temporarily leaving constant conditions
4443 // in place.
4444 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4445 if (L->contains(FBB) == !CI->getZExtValue())
4446 // The backedge is always taken.
4447 return getCouldNotCompute();
4448 else
4449 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004450 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004451 }
4452
Eli Friedman361e54d2009-05-09 12:32:42 +00004453 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick5116ff62011-07-26 17:19:55 +00004454 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmana334aa72009-06-22 00:31:57 +00004455}
4456
Andrew Trick5116ff62011-07-26 17:19:55 +00004457/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohmana334aa72009-06-22 00:31:57 +00004458/// backedge of the specified loop will execute if its exit condition
4459/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick5116ff62011-07-26 17:19:55 +00004460ScalarEvolution::ExitLimit
4461ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4462 ICmpInst *ExitCond,
4463 BasicBlock *TBB,
4464 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004465
Reid Spencere4d87aa2006-12-23 06:05:41 +00004466 // If the condition was exit on true, convert the condition to exit on false
4467 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004468 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004469 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004470 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004471 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004472
4473 // Handle common loops like: for (X = "string"; *X; ++X)
4474 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4475 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick5116ff62011-07-26 17:19:55 +00004476 ExitLimit ItCnt =
4477 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004478 if (ItCnt.hasAnyInfo())
4479 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004480 }
4481
Dan Gohman0bba49c2009-07-07 17:06:11 +00004482 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4483 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004484
4485 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004486 LHS = getSCEVAtScope(LHS, L);
4487 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004488
Dan Gohman64a845e2009-06-24 04:48:43 +00004489 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004490 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004491 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004492 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004493 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004494 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004495 }
4496
Dan Gohman03557dc2010-05-03 16:35:17 +00004497 // Simplify the operands before analyzing them.
4498 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4499
Chris Lattner53e677a2004-04-02 20:23:17 +00004500 // If we have a comparison of a chrec against a constant, try to use value
4501 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004502 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4503 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004504 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004505 // Form the constant range.
4506 ConstantRange CompRange(
4507 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004508
Dan Gohman0bba49c2009-07-07 17:06:11 +00004509 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004510 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004511 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004512
Chris Lattner53e677a2004-04-02 20:23:17 +00004513 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004514 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004515 // Convert to: while (X-Y != 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004516 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4517 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004518 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004519 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004520 case ICmpInst::ICMP_EQ: { // while (X == Y)
4521 // Convert to: while (X-Y == 0)
Andrew Trick5116ff62011-07-26 17:19:55 +00004522 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4523 if (EL.hasAnyInfo()) return EL;
Chris Lattner53e677a2004-04-02 20:23:17 +00004524 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004525 }
4526 case ICmpInst::ICMP_SLT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004527 ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4528 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004529 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004530 }
4531 case ICmpInst::ICMP_SGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004532 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004533 getNotSCEV(RHS), L, true);
Andrew Trick5116ff62011-07-26 17:19:55 +00004534 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004535 break;
4536 }
4537 case ICmpInst::ICMP_ULT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004538 ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4539 if (EL.hasAnyInfo()) return EL;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004540 break;
4541 }
4542 case ICmpInst::ICMP_UGT: {
Andrew Trick5116ff62011-07-26 17:19:55 +00004543 ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
Dan Gohmana1af7572009-04-30 20:47:05 +00004544 getNotSCEV(RHS), L, false);
Andrew Trick5116ff62011-07-26 17:19:55 +00004545 if (EL.hasAnyInfo()) return EL;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004546 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004547 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004548 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004549#if 0
David Greene25e0e872009-12-23 22:18:14 +00004550 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004551 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004552 dbgs() << "[unsigned] ";
4553 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004554 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004555 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004556#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004557 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004558 }
Andrew Trick5116ff62011-07-26 17:19:55 +00004559 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004560}
4561
Chris Lattner673e02b2004-10-12 01:49:27 +00004562static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004563EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4564 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004565 const SCEV *InVal = SE.getConstant(C);
4566 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004567 assert(isa<SCEVConstant>(Val) &&
4568 "Evaluation of SCEV at constant didn't fold correctly?");
4569 return cast<SCEVConstant>(Val)->getValue();
4570}
4571
Andrew Trick5116ff62011-07-26 17:19:55 +00004572/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman46bdfb02009-02-24 18:55:53 +00004573/// 'icmp op load X, cst', try to see if we can compute the backedge
4574/// execution count.
Andrew Trick5116ff62011-07-26 17:19:55 +00004575ScalarEvolution::ExitLimit
4576ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4577 LoadInst *LI,
4578 Constant *RHS,
4579 const Loop *L,
4580 ICmpInst::Predicate predicate) {
4581
Dan Gohman1c343752009-06-27 21:21:31 +00004582 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004583
4584 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004585 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004586 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004587 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004588
4589 // Make sure that it is really a constant global we are gepping, with an
4590 // initializer, and make sure the first IDX is really 0.
4591 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004592 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004593 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4594 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004595 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004596
4597 // Okay, we allow one non-constant index into the GEP instruction.
4598 Value *VarIdx = 0;
Chris Lattnerdada5862012-01-24 05:49:24 +00004599 std::vector<Constant*> Indexes;
Chris Lattner673e02b2004-10-12 01:49:27 +00004600 unsigned VarIdxNum = 0;
4601 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4602 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4603 Indexes.push_back(CI);
4604 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004605 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004606 VarIdx = GEP->getOperand(i);
4607 VarIdxNum = i-2;
4608 Indexes.push_back(0);
4609 }
4610
Andrew Trickeb6dd232012-03-26 22:33:59 +00004611 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4612 if (!VarIdx)
4613 return getCouldNotCompute();
4614
Chris Lattner673e02b2004-10-12 01:49:27 +00004615 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4616 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004617 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004618 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004619
4620 // We can only recognize very limited forms of loop index expressions, in
4621 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004622 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004623 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004624 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4625 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004626 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004627
4628 unsigned MaxSteps = MaxBruteForceIterations;
4629 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004630 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004631 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004632 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004633
4634 // Form the GEP offset.
4635 Indexes[VarIdxNum] = Val;
4636
Chris Lattnerdada5862012-01-24 05:49:24 +00004637 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4638 Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004639 if (Result == 0) break; // Cannot compute!
4640
4641 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004642 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004643 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004644 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004645#if 0
David Greene25e0e872009-12-23 22:18:14 +00004646 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004647 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4648 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004649#endif
4650 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004651 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004652 }
4653 }
Dan Gohman1c343752009-06-27 21:21:31 +00004654 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004655}
4656
4657
Chris Lattner3221ad02004-04-17 22:58:41 +00004658/// CanConstantFold - Return true if we can constant fold an instruction of the
4659/// specified type, assuming that all operands were constants.
4660static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004661 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewycky614fef62011-10-22 19:58:20 +00004662 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4663 isa<LoadInst>(I))
Chris Lattner3221ad02004-04-17 22:58:41 +00004664 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004665
Chris Lattner3221ad02004-04-17 22:58:41 +00004666 if (const CallInst *CI = dyn_cast<CallInst>(I))
4667 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004668 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004669 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004670}
4671
Andrew Trick13d31e02011-10-05 03:25:31 +00004672/// Determine whether this instruction can constant evolve within this loop
4673/// assuming its operands can all constant evolve.
4674static bool canConstantEvolve(Instruction *I, const Loop *L) {
4675 // An instruction outside of the loop can't be derived from a loop PHI.
4676 if (!L->contains(I)) return false;
4677
4678 if (isa<PHINode>(I)) {
4679 if (L->getHeader() == I->getParent())
4680 return true;
4681 else
4682 // We don't currently keep track of the control flow needed to evaluate
4683 // PHIs, so we cannot handle PHIs inside of loops.
4684 return false;
4685 }
4686
4687 // If we won't be able to constant fold this expression even if the operands
4688 // are constants, bail early.
4689 return CanConstantFold(I);
4690}
4691
4692/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4693/// recursing through each instruction operand until reaching a loop header phi.
4694static PHINode *
4695getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Trick28ab7db2011-10-05 05:58:49 +00004696 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004697
4698 // Otherwise, we can evaluate this instruction if all of its operands are
4699 // constant or derived from a PHI node themselves.
4700 PHINode *PHI = 0;
4701 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4702 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4703
4704 if (isa<Constant>(*OpI)) continue;
4705
4706 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4707 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4708
4709 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trickef8a4c22011-10-05 22:06:53 +00004710 if (!P)
4711 // If this operand is already visited, reuse the prior result.
4712 // We may have P != PHI if this is the deepest point at which the
4713 // inconsistent paths meet.
4714 P = PHIMap.lookup(OpInst);
4715 if (!P) {
4716 // Recurse and memoize the results, whether a phi is found or not.
4717 // This recursive call invalidates pointers into PHIMap.
4718 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4719 PHIMap[OpInst] = P;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004720 }
Andrew Trick28ab7db2011-10-05 05:58:49 +00004721 if (P == 0) return 0; // Not evolving from PHI
4722 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4723 PHI = P;
Andrew Trick13d31e02011-10-05 03:25:31 +00004724 }
4725 // This is a expression evolving from a constant PHI!
4726 return PHI;
4727}
4728
Chris Lattner3221ad02004-04-17 22:58:41 +00004729/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4730/// in the loop that V is derived from. We allow arbitrary operations along the
4731/// way, but the operands of an operation must either be constants or a value
4732/// derived from a constant PHI. If this expression does not fit with these
4733/// constraints, return null.
4734static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004735 Instruction *I = dyn_cast<Instruction>(V);
Andrew Trick13d31e02011-10-05 03:25:31 +00004736 if (I == 0 || !canConstantEvolve(I, L)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004737
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004738 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick13d31e02011-10-05 03:25:31 +00004739 return PN;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004740 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004741
Andrew Trick13d31e02011-10-05 03:25:31 +00004742 // Record non-constant instructions contained by the loop.
Andrew Trick28ab7db2011-10-05 05:58:49 +00004743 DenseMap<Instruction *, PHINode *> PHIMap;
4744 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattner3221ad02004-04-17 22:58:41 +00004745}
4746
4747/// EvaluateExpression - Given an expression that passes the
4748/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4749/// in the loop has the value PHIVal. If we can't fold this expression for some
4750/// reason, return null.
Andrew Trick13d31e02011-10-05 03:25:31 +00004751static Constant *EvaluateExpression(Value *V, const Loop *L,
4752 DenseMap<Instruction *, Constant *> &Vals,
Micah Villmow3574eca2012-10-08 16:38:25 +00004753 const DataLayout *TD,
Chad Rosier00737bd2011-12-01 21:29:16 +00004754 const TargetLibraryInfo *TLI) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004755 // Convenient constant check, but redundant for recursive calls.
Reid Spencere8404342004-07-18 00:18:30 +00004756 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewycky614fef62011-10-22 19:58:20 +00004757 Instruction *I = dyn_cast<Instruction>(V);
4758 if (!I) return 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004759
Andrew Trick13d31e02011-10-05 03:25:31 +00004760 if (Constant *C = Vals.lookup(I)) return C;
4761
Nick Lewycky614fef62011-10-22 19:58:20 +00004762 // An instruction inside the loop depends on a value outside the loop that we
4763 // weren't given a mapping for, or a value such as a call inside the loop.
4764 if (!canConstantEvolve(I, L)) return 0;
4765
4766 // An unmapped PHI can be due to a branch or another loop inside this loop,
4767 // or due to this not being the initial iteration through a loop where we
4768 // couldn't compute the evolution of this particular PHI last time.
4769 if (isa<PHINode>(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004770
Dan Gohman9d4588f2010-06-22 13:15:46 +00004771 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004772
4773 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Trick28ab7db2011-10-05 05:58:49 +00004774 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4775 if (!Operand) {
Nick Lewycky4c7f1ca2011-10-14 09:38:46 +00004776 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4777 if (!Operands[i]) return 0;
Andrew Trick28ab7db2011-10-05 05:58:49 +00004778 continue;
4779 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004780 Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
Andrew Trick28ab7db2011-10-05 05:58:49 +00004781 Vals[Operand] = C;
4782 if (!C) return 0;
4783 Operands[i] = C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004784 }
4785
Nick Lewycky614fef62011-10-22 19:58:20 +00004786 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004787 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chad Rosieraab8e282011-12-02 01:26:24 +00004788 Operands[1], TD, TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00004789 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4790 if (!LI->isVolatile())
4791 return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4792 }
Chad Rosier00737bd2011-12-01 21:29:16 +00004793 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4794 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004795}
4796
4797/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4798/// in the header of its containing loop, we know the loop executes a
4799/// constant number of times, and the PHI node is just a recurrence
4800/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004801Constant *
4802ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004803 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004804 const Loop *L) {
Dan Gohman77a2c4c2011-05-09 18:44:09 +00004805 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004806 ConstantEvolutionLoopExitValue.find(PN);
4807 if (I != ConstantEvolutionLoopExitValue.end())
4808 return I->second;
4809
Dan Gohmane0567812010-04-08 23:03:40 +00004810 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004811 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4812
4813 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4814
Andrew Trick13d31e02011-10-05 03:25:31 +00004815 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewycky614fef62011-10-22 19:58:20 +00004816 BasicBlock *Header = L->getHeader();
4817 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick13d31e02011-10-05 03:25:31 +00004818
Chris Lattner3221ad02004-04-17 22:58:41 +00004819 // Since the loop is canonicalized, the PHI node must have two entries. One
4820 // entry must be a constant (coming in from outside of the loop), and the
4821 // second must be derived from the same PHI.
4822 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Nick Lewycky614fef62011-10-22 19:58:20 +00004823 PHINode *PHI = 0;
4824 for (BasicBlock::iterator I = Header->begin();
4825 (PHI = dyn_cast<PHINode>(I)); ++I) {
4826 Constant *StartCST =
4827 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4828 if (StartCST == 0) continue;
4829 CurrentIterVals[PHI] = StartCST;
4830 }
4831 if (!CurrentIterVals.count(PN))
4832 return RetVal = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004833
4834 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattner3221ad02004-04-17 22:58:41 +00004835
4836 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004837 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004838 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004839
Dan Gohman46bdfb02009-02-24 18:55:53 +00004840 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004841 unsigned IterationNum = 0;
Andrew Trick13d31e02011-10-05 03:25:31 +00004842 for (; ; ++IterationNum) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004843 if (IterationNum == NumIterations)
Andrew Trick13d31e02011-10-05 03:25:31 +00004844 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattner3221ad02004-04-17 22:58:41 +00004845
Nick Lewycky614fef62011-10-22 19:58:20 +00004846 // Compute the value of the PHIs for the next iteration.
Andrew Trick13d31e02011-10-05 03:25:31 +00004847 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewycky614fef62011-10-22 19:58:20 +00004848 DenseMap<Instruction *, Constant *> NextIterVals;
Chad Rosier00737bd2011-12-01 21:29:16 +00004849 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4850 TLI);
Chris Lattner3221ad02004-04-17 22:58:41 +00004851 if (NextPHI == 0)
4852 return 0; // Couldn't evaluate!
Andrew Trick13d31e02011-10-05 03:25:31 +00004853 NextIterVals[PN] = NextPHI;
Nick Lewycky614fef62011-10-22 19:58:20 +00004854
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004855 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4856
Nick Lewycky614fef62011-10-22 19:58:20 +00004857 // Also evaluate the other PHI nodes. However, we don't get to stop if we
4858 // cease to be able to evaluate one of them or if they stop evolving,
4859 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004860 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewycky614fef62011-10-22 19:58:20 +00004861 for (DenseMap<Instruction *, Constant *>::const_iterator
4862 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4863 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky5bef0eb2011-10-24 05:51:01 +00004864 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004865 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4866 }
4867 // We use two distinct loops because EvaluateExpression may invalidate any
4868 // iterators into CurrentIterVals.
4869 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4870 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4871 PHINode *PHI = I->first;
Nick Lewycky614fef62011-10-22 19:58:20 +00004872 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004873 if (!NextPHI) { // Not already computed.
4874 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004875 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004876 }
4877 if (NextPHI != I->second)
4878 StoppedEvolving = false;
Nick Lewycky614fef62011-10-22 19:58:20 +00004879 }
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004880
4881 // If all entries in CurrentIterVals == NextIterVals then we can stop
4882 // iterating, the loop can't continue to change.
4883 if (StoppedEvolving)
4884 return RetVal = CurrentIterVals[PN];
4885
Andrew Trick13d31e02011-10-05 03:25:31 +00004886 CurrentIterVals.swap(NextIterVals);
Chris Lattner3221ad02004-04-17 22:58:41 +00004887 }
4888}
4889
Andrew Trick5116ff62011-07-26 17:19:55 +00004890/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004891/// constant number of times (the condition evolves only from constants),
4892/// try to evaluate a few iterations of the loop until we get the exit
4893/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004894/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewycky614fef62011-10-22 19:58:20 +00004895const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4896 Value *Cond,
4897 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004898 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004899 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004900
Dan Gohmanb92654d2010-06-19 14:17:24 +00004901 // If the loop is canonicalized, the PHI will have exactly two entries.
4902 // That's the only form we support here.
4903 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4904
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004905 DenseMap<Instruction *, Constant *> CurrentIterVals;
4906 BasicBlock *Header = L->getHeader();
4907 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4908
Dan Gohmanb92654d2010-06-19 14:17:24 +00004909 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004910 // second must be derived from the same PHI.
4911 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004912 PHINode *PHI = 0;
4913 for (BasicBlock::iterator I = Header->begin();
4914 (PHI = dyn_cast<PHINode>(I)); ++I) {
4915 Constant *StartCST =
4916 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4917 if (StartCST == 0) continue;
4918 CurrentIterVals[PHI] = StartCST;
4919 }
4920 if (!CurrentIterVals.count(PN))
4921 return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004922
4923 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4924 // the loop symbolically to determine when the condition gets a value of
4925 // "ExitWhen".
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004926
Andrew Trick79f0bfc2011-11-16 00:52:40 +00004927 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004928 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004929 ConstantInt *CondVal =
Chad Rosier00737bd2011-12-01 21:29:16 +00004930 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
4931 TD, TLI));
Chris Lattner3221ad02004-04-17 22:58:41 +00004932
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004933 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004934 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004935
Reid Spencere8019bb2007-03-01 07:25:48 +00004936 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004937 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004938 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004939 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004940
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004941 // Update all the PHI nodes for the next iteration.
4942 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004943
4944 // Create a list of which PHIs we need to compute. We want to do this before
4945 // calling EvaluateExpression on them because that may invalidate iterators
4946 // into CurrentIterVals.
4947 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004948 for (DenseMap<Instruction *, Constant *>::const_iterator
4949 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4950 PHINode *PHI = dyn_cast<PHINode>(I->first);
4951 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd7ecff42011-11-12 03:09:12 +00004952 PHIsToCompute.push_back(PHI);
4953 }
4954 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
4955 E = PHIsToCompute.end(); I != E; ++I) {
4956 PHINode *PHI = *I;
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004957 Constant *&NextPHI = NextIterVals[PHI];
4958 if (NextPHI) continue; // Already computed!
4959
4960 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chad Rosier00737bd2011-12-01 21:29:16 +00004961 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
Duncan Sandsf8a9eb12011-10-25 12:28:52 +00004962 }
4963 CurrentIterVals.swap(NextIterVals);
Chris Lattner7980fb92004-04-17 18:36:24 +00004964 }
4965
4966 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004967 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004968}
4969
Dan Gohmane7125f42009-09-03 15:00:26 +00004970/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004971/// at the specified scope in the program. The L value specifies a loop
4972/// nest to evaluate the expression at, where null is the top-level or a
4973/// specified loop is immediately inside of the loop.
4974///
4975/// This method can be used to compute the exit value for a variable defined
4976/// in a loop by querying what the value will hold in the parent loop.
4977///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004978/// In the case that a relevant loop exit value cannot be computed, the
4979/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004980const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004981 // Check to see if we've folded this expression at this loop before.
4982 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4983 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4984 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4985 if (!Pair.second)
4986 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004987
Dan Gohman42214892009-08-31 21:15:23 +00004988 // Otherwise compute it.
4989 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004990 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004991 return C;
4992}
4993
Nick Lewycky614fef62011-10-22 19:58:20 +00004994/// This builds up a Constant using the ConstantExpr interface. That way, we
4995/// will return Constants for objects which aren't represented by a
4996/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
4997/// Returns NULL if the SCEV isn't representable as a Constant.
4998static Constant *BuildConstantFromSCEV(const SCEV *V) {
4999 switch (V->getSCEVType()) {
5000 default: // TODO: smax, umax.
5001 case scCouldNotCompute:
5002 case scAddRecExpr:
5003 break;
5004 case scConstant:
5005 return cast<SCEVConstant>(V)->getValue();
5006 case scUnknown:
5007 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5008 case scSignExtend: {
5009 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5010 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5011 return ConstantExpr::getSExt(CastOp, SS->getType());
5012 break;
5013 }
5014 case scZeroExtend: {
5015 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5016 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5017 return ConstantExpr::getZExt(CastOp, SZ->getType());
5018 break;
5019 }
5020 case scTruncate: {
5021 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5022 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5023 return ConstantExpr::getTrunc(CastOp, ST->getType());
5024 break;
5025 }
5026 case scAddExpr: {
5027 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5028 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5029 if (C->getType()->isPointerTy())
5030 C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5031 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5032 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5033 if (!C2) return 0;
5034
5035 // First pointer!
5036 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5037 std::swap(C, C2);
5038 // The offsets have been converted to bytes. We can add bytes to an
5039 // i8* by GEP with the byte count in the first index.
5040 C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5041 }
5042
5043 // Don't bother trying to sum two pointers. We probably can't
5044 // statically compute a load that results from it anyway.
5045 if (C2->getType()->isPointerTy())
5046 return 0;
5047
5048 if (C->getType()->isPointerTy()) {
5049 if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5050 C2 = ConstantExpr::getIntegerCast(
5051 C2, Type::getInt32Ty(C->getContext()), true);
5052 C = ConstantExpr::getGetElementPtr(C, C2);
5053 } else
5054 C = ConstantExpr::getAdd(C, C2);
5055 }
5056 return C;
5057 }
5058 break;
5059 }
5060 case scMulExpr: {
5061 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5062 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5063 // Don't bother with pointers at all.
5064 if (C->getType()->isPointerTy()) return 0;
5065 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5066 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5067 if (!C2 || C2->getType()->isPointerTy()) return 0;
5068 C = ConstantExpr::getMul(C, C2);
5069 }
5070 return C;
5071 }
5072 break;
5073 }
5074 case scUDivExpr: {
5075 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5076 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5077 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5078 if (LHS->getType() == RHS->getType())
5079 return ConstantExpr::getUDiv(LHS, RHS);
5080 break;
5081 }
5082 }
5083 return 0;
5084}
5085
Dan Gohman42214892009-08-31 21:15:23 +00005086const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005087 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005088
Nick Lewycky3e630762008-02-20 06:48:22 +00005089 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00005090 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00005091 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005092 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005093 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00005094 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5095 if (PHINode *PN = dyn_cast<PHINode>(I))
5096 if (PN->getParent() == LI->getHeader()) {
5097 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00005098 // to see if the loop that contains it has a known backedge-taken
5099 // count. If so, we may be able to force computation of the exit
5100 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005101 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00005102 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00005103 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00005104 // Okay, we know how many times the containing loop executes. If
5105 // this is a constant evolving PHI node, get the final value at
5106 // the specified iteration number.
5107 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00005108 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00005109 LI);
Dan Gohman09987962009-06-29 21:31:18 +00005110 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00005111 }
5112 }
5113
Reid Spencer09906f32006-12-04 21:33:23 +00005114 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00005115 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00005116 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00005117 // result. This is particularly useful for computing loop exit values.
5118 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00005119 SmallVector<Constant *, 4> Operands;
5120 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00005121 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5122 Value *Op = I->getOperand(i);
5123 if (Constant *C = dyn_cast<Constant>(Op)) {
5124 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00005125 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00005126 }
Dan Gohman11046452010-06-29 23:43:06 +00005127
5128 // If any of the operands is non-constant and if they are
5129 // non-integer and non-pointer, don't even try to analyze them
5130 // with scev techniques.
5131 if (!isSCEVable(Op->getType()))
5132 return V;
5133
5134 const SCEV *OrigV = getSCEV(Op);
5135 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5136 MadeImprovement |= OrigV != OpV;
5137
Nick Lewycky614fef62011-10-22 19:58:20 +00005138 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohman11046452010-06-29 23:43:06 +00005139 if (!C) return V;
5140 if (C->getType() != Op->getType())
5141 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5142 Op->getType(),
5143 false),
5144 C, Op->getType());
5145 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00005146 }
Dan Gohman64a845e2009-06-24 04:48:43 +00005147
Dan Gohman11046452010-06-29 23:43:06 +00005148 // Check to see if getSCEVAtScope actually made an improvement.
5149 if (MadeImprovement) {
5150 Constant *C = 0;
5151 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5152 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Chad Rosieraab8e282011-12-02 01:26:24 +00005153 Operands[0], Operands[1], TD,
5154 TLI);
Nick Lewycky614fef62011-10-22 19:58:20 +00005155 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5156 if (!LI->isVolatile())
5157 C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5158 } else
Dan Gohman11046452010-06-29 23:43:06 +00005159 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Chad Rosier00737bd2011-12-01 21:29:16 +00005160 Operands, TD, TLI);
Dan Gohman11046452010-06-29 23:43:06 +00005161 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00005162 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00005163 }
Chris Lattner3221ad02004-04-17 22:58:41 +00005164 }
5165 }
5166
5167 // This is some other type of SCEVUnknown, just return it.
5168 return V;
5169 }
5170
Dan Gohman622ed672009-05-04 22:02:23 +00005171 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005172 // Avoid performing the look-up in the common case where the specified
5173 // expression has no loop-variant portions.
5174 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005175 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005176 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005177 // Okay, at least one of these operands is loop variant but might be
5178 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00005179 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5180 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00005181 NewOps.push_back(OpAtScope);
5182
5183 for (++i; i != e; ++i) {
5184 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005185 NewOps.push_back(OpAtScope);
5186 }
5187 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005188 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005189 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005190 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00005191 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005192 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00005193 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005194 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00005195 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005196 }
5197 }
5198 // If we got here, all operands are loop invariant.
5199 return Comm;
5200 }
5201
Dan Gohman622ed672009-05-04 22:02:23 +00005202 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005203 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5204 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00005205 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5206 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005207 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00005208 }
5209
5210 // If this is a loop recurrence for a loop that does not contain L, then we
5211 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00005212 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00005213 // First, attempt to evaluate each operand.
5214 // Avoid performing the look-up in the common case where the specified
5215 // expression has no loop-variant portions.
5216 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5217 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5218 if (OpAtScope == AddRec->getOperand(i))
5219 continue;
5220
5221 // Okay, at least one of these operands is loop variant but might be
5222 // foldable. Build a new instance of the folded commutative expression.
5223 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5224 AddRec->op_begin()+i);
5225 NewOps.push_back(OpAtScope);
5226 for (++i; i != e; ++i)
5227 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5228
Andrew Trick3f95c882011-04-27 01:21:25 +00005229 const SCEV *FoldedRec =
Andrew Trick3228cc22011-03-14 16:50:06 +00005230 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick3f95c882011-04-27 01:21:25 +00005231 AddRec->getNoWrapFlags(SCEV::FlagNW));
5232 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick104f4ad2011-04-27 05:42:17 +00005233 // The addrec may be folded to a nonrecurrence, for example, if the
5234 // induction variable is multiplied by zero after constant folding. Go
5235 // ahead and return the folded value.
Andrew Trick3f95c882011-04-27 01:21:25 +00005236 if (!AddRec)
5237 return FoldedRec;
Dan Gohman11046452010-06-29 23:43:06 +00005238 break;
5239 }
5240
5241 // If the scope is outside the addrec's loop, evaluate it by using the
5242 // loop exit value of the addrec.
5243 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005244 // To evaluate this recurrence, we need to know how many times the AddRec
5245 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005246 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00005247 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005248
Eli Friedmanb42a6262008-08-04 23:49:06 +00005249 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005250 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005251 }
Dan Gohman11046452010-06-29 23:43:06 +00005252
Dan Gohmand594e6f2009-05-24 23:25:42 +00005253 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00005254 }
5255
Dan Gohman622ed672009-05-04 22:02:23 +00005256 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005257 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005258 if (Op == Cast->getOperand())
5259 return Cast; // must be loop invariant
5260 return getZeroExtendExpr(Op, Cast->getType());
5261 }
5262
Dan Gohman622ed672009-05-04 22:02:23 +00005263 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005264 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005265 if (Op == Cast->getOperand())
5266 return Cast; // must be loop invariant
5267 return getSignExtendExpr(Op, Cast->getType());
5268 }
5269
Dan Gohman622ed672009-05-04 22:02:23 +00005270 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005271 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00005272 if (Op == Cast->getOperand())
5273 return Cast; // must be loop invariant
5274 return getTruncateExpr(Op, Cast->getType());
5275 }
5276
Torok Edwinc23197a2009-07-14 16:55:14 +00005277 llvm_unreachable("Unknown SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00005278}
5279
Dan Gohman66a7e852009-05-08 20:38:54 +00005280/// getSCEVAtScope - This is a convenience function which does
5281/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00005282const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005283 return getSCEVAtScope(getSCEV(V), L);
5284}
5285
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005286/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5287/// following equation:
5288///
5289/// A * X = B (mod N)
5290///
5291/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5292/// A and B isn't important.
5293///
5294/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005295static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005296 ScalarEvolution &SE) {
5297 uint32_t BW = A.getBitWidth();
5298 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5299 assert(A != 0 && "A must be non-zero.");
5300
5301 // 1. D = gcd(A, N)
5302 //
5303 // The gcd of A and N may have only one prime factor: 2. The number of
5304 // trailing zeros in A is its multiplicity
5305 uint32_t Mult2 = A.countTrailingZeros();
5306 // D = 2^Mult2
5307
5308 // 2. Check if B is divisible by D.
5309 //
5310 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5311 // is not less than multiplicity of this prime factor for D.
5312 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005313 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005314
5315 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5316 // modulo (N / D).
5317 //
5318 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5319 // bit width during computations.
5320 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5321 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00005322 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00005323 APInt I = AD.multiplicativeInverse(Mod);
5324
5325 // 4. Compute the minimum unsigned root of the equation:
5326 // I * (B / D) mod (N / D)
5327 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5328
5329 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5330 // bits.
5331 return SE.getConstant(Result.trunc(BW));
5332}
Chris Lattner53e677a2004-04-02 20:23:17 +00005333
5334/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5335/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5336/// might be the same) or two SCEVCouldNotCompute objects.
5337///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005338static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00005339SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005340 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005341 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5342 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5343 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005344
Chris Lattner53e677a2004-04-02 20:23:17 +00005345 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00005346 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005347 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005348 return std::make_pair(CNC, CNC);
5349 }
5350
Reid Spencere8019bb2007-03-01 07:25:48 +00005351 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00005352 const APInt &L = LC->getValue()->getValue();
5353 const APInt &M = MC->getValue()->getValue();
5354 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00005355 APInt Two(BitWidth, 2);
5356 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005357
Dan Gohman64a845e2009-06-24 04:48:43 +00005358 {
Reid Spencere8019bb2007-03-01 07:25:48 +00005359 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00005360 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00005361 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5362 // The B coefficient is M-N/2
5363 APInt B(M);
5364 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005365
Reid Spencere8019bb2007-03-01 07:25:48 +00005366 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00005367 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00005368
Reid Spencere8019bb2007-03-01 07:25:48 +00005369 // Compute the B^2-4ac term.
5370 APInt SqrtTerm(B);
5371 SqrtTerm *= B;
5372 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00005373
Nick Lewycky6ce24712012-08-01 09:14:36 +00005374 if (SqrtTerm.isNegative()) {
5375 // The loop is provably infinite.
5376 const SCEV *CNC = SE.getCouldNotCompute();
5377 return std::make_pair(CNC, CNC);
5378 }
5379
Reid Spencere8019bb2007-03-01 07:25:48 +00005380 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5381 // integer value or else APInt::sqrt() will assert.
5382 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005383
Dan Gohman64a845e2009-06-24 04:48:43 +00005384 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00005385 // The divisions must be performed as signed divisions.
5386 APInt NegB(-B);
Nick Lewycky1cbae182011-10-03 07:10:45 +00005387 APInt TwoA(A << 1);
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005388 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00005389 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00005390 return std::make_pair(CNC, CNC);
5391 }
5392
Owen Andersone922c022009-07-22 00:24:57 +00005393 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00005394
5395 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005396 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00005397 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00005398 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005399
Dan Gohman64a845e2009-06-24 04:48:43 +00005400 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00005401 SE.getConstant(Solution2));
Nick Lewycky1cbae182011-10-03 07:10:45 +00005402 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00005403}
5404
5405/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005406/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick3228cc22011-03-14 16:50:06 +00005407///
5408/// This is only used for loops with a "x != y" exit test. The exit condition is
5409/// now expressed as a single expression, V = x-y. So the exit test is
5410/// effectively V != 0. We know and take advantage of the fact that this
5411/// expression only being used in a comparison by zero context.
Andrew Trick5116ff62011-07-26 17:19:55 +00005412ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005413ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005414 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00005415 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005416 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00005417 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00005418 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005419 }
5420
Dan Gohman35738ac2009-05-04 22:30:44 +00005421 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00005422 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005423 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005424
Chris Lattner7975e3e2011-01-09 22:39:48 +00005425 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5426 // the quadratic equation to solve it.
5427 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5428 std::pair<const SCEV *,const SCEV *> Roots =
5429 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00005430 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5431 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00005432 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005433#if 0
David Greene25e0e872009-12-23 22:18:14 +00005434 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005435 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00005436#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00005437 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005438 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00005439 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5440 R1->getValue(),
5441 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005442 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005443 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick635f7182011-03-09 17:23:39 +00005444
Chris Lattner53e677a2004-04-02 20:23:17 +00005445 // We can only use this value if the chrec ends up with an exact zero
5446 // value at this index. When solving for "X*X != 5", for example, we
5447 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005448 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00005449 if (Val->isZero())
5450 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00005451 }
5452 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005453 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005454 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005455
Chris Lattner7975e3e2011-01-09 22:39:48 +00005456 // Otherwise we can only handle this if it is affine.
5457 if (!AddRec->isAffine())
5458 return getCouldNotCompute();
5459
5460 // If this is an affine expression, the execution count of this branch is
5461 // the minimum unsigned root of the following equation:
5462 //
5463 // Start + Step*N = 0 (mod 2^BW)
5464 //
5465 // equivalent to:
5466 //
5467 // Step*N = -Start (mod 2^BW)
5468 //
5469 // where BW is the common bit width of Start and Step.
5470
5471 // Get the initial value for the loop.
5472 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5473 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5474
5475 // For now we handle only constant steps.
Andrew Trick3228cc22011-03-14 16:50:06 +00005476 //
5477 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5478 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5479 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5480 // We have not yet seen any such cases.
Chris Lattner7975e3e2011-01-09 22:39:48 +00005481 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Nick Lewycky4d3bba52012-06-28 23:44:57 +00005482 if (StepC == 0 || StepC->getValue()->equalsInt(0))
Chris Lattner7975e3e2011-01-09 22:39:48 +00005483 return getCouldNotCompute();
5484
Andrew Trick3228cc22011-03-14 16:50:06 +00005485 // For positive steps (counting up until unsigned overflow):
5486 // N = -Start/Step (as unsigned)
5487 // For negative steps (counting down to zero):
5488 // N = Start/-Step
5489 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005490 bool CountDown = StepC->getValue()->getValue().isNegative();
5491 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick3228cc22011-03-14 16:50:06 +00005492
5493 // Handle unitary steps, which cannot wraparound.
Andrew Trickdcfd4042011-03-14 17:28:02 +00005494 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5495 // N = Distance (as unsigned)
Nick Lewycky1cbae182011-10-03 07:10:45 +00005496 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5497 ConstantRange CR = getUnsignedRange(Start);
5498 const SCEV *MaxBECount;
5499 if (!CountDown && CR.getUnsignedMin().isMinValue())
5500 // When counting up, the worst starting value is 1, not 0.
5501 MaxBECount = CR.getUnsignedMax().isMinValue()
5502 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5503 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5504 else
5505 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5506 : -CR.getUnsignedMin());
5507 return ExitLimit(Distance, MaxBECount);
5508 }
Andrew Trick635f7182011-03-09 17:23:39 +00005509
Andrew Trickdcfd4042011-03-14 17:28:02 +00005510 // If the recurrence is known not to wraparound, unsigned divide computes the
5511 // back edge count. We know that the value will either become zero (and thus
5512 // the loop terminates), that the loop will terminate through some other exit
5513 // condition first, or that the loop has undefined behavior. This means
5514 // we can't "miss" the exit value, even with nonunit stride.
5515 //
5516 // FIXME: Prove that loops always exhibits *acceptable* undefined
5517 // behavior. Loops must exhibit defined behavior until a wrapped value is
5518 // actually used. So the trip count computed by udiv could be smaller than the
5519 // number of well-defined iterations.
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005520 if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
Andrew Trickdcfd4042011-03-14 17:28:02 +00005521 // FIXME: We really want an "isexact" bit for udiv.
5522 return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
Andrew Trick79f0bfc2011-11-16 00:52:40 +00005523 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00005524 // Then, try to solve the above equation provided that Start is constant.
5525 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5526 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5527 -StartC->getValue()->getValue(),
5528 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00005529 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005530}
5531
5532/// HowFarToNonZero - Return the number of times a backedge checking the
5533/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005534/// CouldNotCompute
Andrew Trick5116ff62011-07-26 17:19:55 +00005535ScalarEvolution::ExitLimit
Dan Gohmanf6d009f2010-02-24 17:31:30 +00005536ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005537 // Loops that look like: while (X == 0) are very strange indeed. We don't
5538 // handle them yet except for the trivial case. This could be expanded in the
5539 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005540
Chris Lattner53e677a2004-04-02 20:23:17 +00005541 // If the value is a constant, check to see if it is known to be non-zero
5542 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00005543 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00005544 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00005545 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00005546 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00005547 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005548
Chris Lattner53e677a2004-04-02 20:23:17 +00005549 // We could implement others, but I really doubt anyone writes loops like
5550 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00005551 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005552}
5553
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005554/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5555/// (which may not be an immediate predecessor) which has exactly one
5556/// successor from which BB is reachable, or null if no such block is
5557/// found.
5558///
Dan Gohman005752b2010-04-15 16:19:08 +00005559std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005560ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00005561 // If the block has a unique predecessor, then there is no path from the
5562 // predecessor to the block that does not go through the direct edge
5563 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005564 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00005565 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005566
5567 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00005568 // If the header has a unique predecessor outside the loop, it must be
5569 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005570 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00005571 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005572
Dan Gohman005752b2010-04-15 16:19:08 +00005573 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005574}
5575
Dan Gohman763bad12009-06-20 00:35:32 +00005576/// HasSameValue - SCEV structural equivalence is usually sufficient for
5577/// testing whether two expressions are equal, however for the purposes of
5578/// looking for a condition guarding a loop, it can be useful to be a little
5579/// more general, since a front-end may have replicated the controlling
5580/// expression.
5581///
Dan Gohman0bba49c2009-07-07 17:06:11 +00005582static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00005583 // Quick check to see if they are the same SCEV.
5584 if (A == B) return true;
5585
5586 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5587 // two different instructions with the same value. Check for this case.
5588 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5589 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5590 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5591 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00005592 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00005593 return true;
5594
5595 // Otherwise assume they may have a different value.
5596 return false;
5597}
5598
Dan Gohmane9796502010-04-24 01:28:42 +00005599/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru94c22712012-09-27 10:14:43 +00005600/// predicate Pred. Return true iff any changes were made.
Dan Gohmane9796502010-04-24 01:28:42 +00005601///
5602bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005603 const SCEV *&LHS, const SCEV *&RHS,
5604 unsigned Depth) {
Dan Gohmane9796502010-04-24 01:28:42 +00005605 bool Changed = false;
5606
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005607 // If we hit the max recursion limit bail out.
5608 if (Depth >= 3)
5609 return false;
5610
Dan Gohmane9796502010-04-24 01:28:42 +00005611 // Canonicalize a constant to the right side.
5612 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5613 // Check for both operands constant.
5614 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5615 if (ConstantExpr::getICmp(Pred,
5616 LHSC->getValue(),
5617 RHSC->getValue())->isNullValue())
5618 goto trivially_false;
5619 else
5620 goto trivially_true;
5621 }
5622 // Otherwise swap the operands to put the constant on the right.
5623 std::swap(LHS, RHS);
5624 Pred = ICmpInst::getSwappedPredicate(Pred);
5625 Changed = true;
5626 }
5627
5628 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00005629 // addrec's loop, put the addrec on the left. Also make a dominance check,
5630 // as both operands could be addrecs loop-invariant in each other's loop.
5631 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5632 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00005633 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00005634 std::swap(LHS, RHS);
5635 Pred = ICmpInst::getSwappedPredicate(Pred);
5636 Changed = true;
5637 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00005638 }
Dan Gohmane9796502010-04-24 01:28:42 +00005639
5640 // If there's a constant operand, canonicalize comparisons with boundary
5641 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5642 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5643 const APInt &RA = RC->getValue()->getValue();
5644 switch (Pred) {
5645 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5646 case ICmpInst::ICMP_EQ:
5647 case ICmpInst::ICMP_NE:
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005648 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5649 if (!RA)
5650 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5651 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer127563b2012-05-30 18:42:43 +00005652 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5653 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005654 RHS = AE->getOperand(1);
5655 LHS = ME->getOperand(1);
5656 Changed = true;
5657 }
Dan Gohmane9796502010-04-24 01:28:42 +00005658 break;
5659 case ICmpInst::ICMP_UGE:
5660 if ((RA - 1).isMinValue()) {
5661 Pred = ICmpInst::ICMP_NE;
5662 RHS = getConstant(RA - 1);
5663 Changed = true;
5664 break;
5665 }
5666 if (RA.isMaxValue()) {
5667 Pred = ICmpInst::ICMP_EQ;
5668 Changed = true;
5669 break;
5670 }
5671 if (RA.isMinValue()) goto trivially_true;
5672
5673 Pred = ICmpInst::ICMP_UGT;
5674 RHS = getConstant(RA - 1);
5675 Changed = true;
5676 break;
5677 case ICmpInst::ICMP_ULE:
5678 if ((RA + 1).isMaxValue()) {
5679 Pred = ICmpInst::ICMP_NE;
5680 RHS = getConstant(RA + 1);
5681 Changed = true;
5682 break;
5683 }
5684 if (RA.isMinValue()) {
5685 Pred = ICmpInst::ICMP_EQ;
5686 Changed = true;
5687 break;
5688 }
5689 if (RA.isMaxValue()) goto trivially_true;
5690
5691 Pred = ICmpInst::ICMP_ULT;
5692 RHS = getConstant(RA + 1);
5693 Changed = true;
5694 break;
5695 case ICmpInst::ICMP_SGE:
5696 if ((RA - 1).isMinSignedValue()) {
5697 Pred = ICmpInst::ICMP_NE;
5698 RHS = getConstant(RA - 1);
5699 Changed = true;
5700 break;
5701 }
5702 if (RA.isMaxSignedValue()) {
5703 Pred = ICmpInst::ICMP_EQ;
5704 Changed = true;
5705 break;
5706 }
5707 if (RA.isMinSignedValue()) goto trivially_true;
5708
5709 Pred = ICmpInst::ICMP_SGT;
5710 RHS = getConstant(RA - 1);
5711 Changed = true;
5712 break;
5713 case ICmpInst::ICMP_SLE:
5714 if ((RA + 1).isMaxSignedValue()) {
5715 Pred = ICmpInst::ICMP_NE;
5716 RHS = getConstant(RA + 1);
5717 Changed = true;
5718 break;
5719 }
5720 if (RA.isMinSignedValue()) {
5721 Pred = ICmpInst::ICMP_EQ;
5722 Changed = true;
5723 break;
5724 }
5725 if (RA.isMaxSignedValue()) goto trivially_true;
5726
5727 Pred = ICmpInst::ICMP_SLT;
5728 RHS = getConstant(RA + 1);
5729 Changed = true;
5730 break;
5731 case ICmpInst::ICMP_UGT:
5732 if (RA.isMinValue()) {
5733 Pred = ICmpInst::ICMP_NE;
5734 Changed = true;
5735 break;
5736 }
5737 if ((RA + 1).isMaxValue()) {
5738 Pred = ICmpInst::ICMP_EQ;
5739 RHS = getConstant(RA + 1);
5740 Changed = true;
5741 break;
5742 }
5743 if (RA.isMaxValue()) goto trivially_false;
5744 break;
5745 case ICmpInst::ICMP_ULT:
5746 if (RA.isMaxValue()) {
5747 Pred = ICmpInst::ICMP_NE;
5748 Changed = true;
5749 break;
5750 }
5751 if ((RA - 1).isMinValue()) {
5752 Pred = ICmpInst::ICMP_EQ;
5753 RHS = getConstant(RA - 1);
5754 Changed = true;
5755 break;
5756 }
5757 if (RA.isMinValue()) goto trivially_false;
5758 break;
5759 case ICmpInst::ICMP_SGT:
5760 if (RA.isMinSignedValue()) {
5761 Pred = ICmpInst::ICMP_NE;
5762 Changed = true;
5763 break;
5764 }
5765 if ((RA + 1).isMaxSignedValue()) {
5766 Pred = ICmpInst::ICMP_EQ;
5767 RHS = getConstant(RA + 1);
5768 Changed = true;
5769 break;
5770 }
5771 if (RA.isMaxSignedValue()) goto trivially_false;
5772 break;
5773 case ICmpInst::ICMP_SLT:
5774 if (RA.isMaxSignedValue()) {
5775 Pred = ICmpInst::ICMP_NE;
5776 Changed = true;
5777 break;
5778 }
5779 if ((RA - 1).isMinSignedValue()) {
5780 Pred = ICmpInst::ICMP_EQ;
5781 RHS = getConstant(RA - 1);
5782 Changed = true;
5783 break;
5784 }
5785 if (RA.isMinSignedValue()) goto trivially_false;
5786 break;
5787 }
5788 }
5789
5790 // Check for obvious equality.
5791 if (HasSameValue(LHS, RHS)) {
5792 if (ICmpInst::isTrueWhenEqual(Pred))
5793 goto trivially_true;
5794 if (ICmpInst::isFalseWhenEqual(Pred))
5795 goto trivially_false;
5796 }
5797
Dan Gohman03557dc2010-05-03 16:35:17 +00005798 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5799 // adding or subtracting 1 from one of the operands.
5800 switch (Pred) {
5801 case ICmpInst::ICMP_SLE:
5802 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5803 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005804 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005805 Pred = ICmpInst::ICMP_SLT;
5806 Changed = true;
5807 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005808 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005809 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005810 Pred = ICmpInst::ICMP_SLT;
5811 Changed = true;
5812 }
5813 break;
5814 case ICmpInst::ICMP_SGE:
5815 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005816 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005817 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005818 Pred = ICmpInst::ICMP_SGT;
5819 Changed = true;
5820 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5821 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005822 SCEV::FlagNSW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005823 Pred = ICmpInst::ICMP_SGT;
5824 Changed = true;
5825 }
5826 break;
5827 case ICmpInst::ICMP_ULE:
5828 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005829 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005830 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005831 Pred = ICmpInst::ICMP_ULT;
5832 Changed = true;
5833 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005834 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005835 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005836 Pred = ICmpInst::ICMP_ULT;
5837 Changed = true;
5838 }
5839 break;
5840 case ICmpInst::ICMP_UGE:
5841 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005842 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005843 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005844 Pred = ICmpInst::ICMP_UGT;
5845 Changed = true;
5846 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005847 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick3228cc22011-03-14 16:50:06 +00005848 SCEV::FlagNUW);
Dan Gohman03557dc2010-05-03 16:35:17 +00005849 Pred = ICmpInst::ICMP_UGT;
5850 Changed = true;
5851 }
5852 break;
5853 default:
5854 break;
5855 }
5856
Dan Gohmane9796502010-04-24 01:28:42 +00005857 // TODO: More simplifications are possible here.
5858
Benjamin Kramer6cf07a82012-05-30 18:32:23 +00005859 // Recursively simplify until we either hit a recursion limit or nothing
5860 // changes.
5861 if (Changed)
5862 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
5863
Dan Gohmane9796502010-04-24 01:28:42 +00005864 return Changed;
5865
5866trivially_true:
5867 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005868 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005869 Pred = ICmpInst::ICMP_EQ;
5870 return true;
5871
5872trivially_false:
5873 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005874 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005875 Pred = ICmpInst::ICMP_NE;
5876 return true;
5877}
5878
Dan Gohman85b05a22009-07-13 21:35:55 +00005879bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5880 return getSignedRange(S).getSignedMax().isNegative();
5881}
5882
5883bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5884 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5885}
5886
5887bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5888 return !getSignedRange(S).getSignedMin().isNegative();
5889}
5890
5891bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5892 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5893}
5894
5895bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5896 return isKnownNegative(S) || isKnownPositive(S);
5897}
5898
5899bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5900 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005901 // Canonicalize the inputs first.
5902 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5903
Dan Gohman53c66ea2010-04-11 22:16:48 +00005904 // If LHS or RHS is an addrec, check to see if the condition is true in
5905 // every iteration of the loop.
5906 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5907 if (isLoopEntryGuardedByCond(
5908 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5909 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005910 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005911 return true;
5912 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5913 if (isLoopEntryGuardedByCond(
5914 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5915 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005916 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005917 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005918
Dan Gohman53c66ea2010-04-11 22:16:48 +00005919 // Otherwise see what can be done with known constant ranges.
5920 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5921}
5922
5923bool
5924ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5925 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005926 if (HasSameValue(LHS, RHS))
5927 return ICmpInst::isTrueWhenEqual(Pred);
5928
Dan Gohman53c66ea2010-04-11 22:16:48 +00005929 // This code is split out from isKnownPredicate because it is called from
5930 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005931 switch (Pred) {
5932 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005933 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005934 case ICmpInst::ICMP_SGT:
5935 Pred = ICmpInst::ICMP_SLT;
5936 std::swap(LHS, RHS);
5937 case ICmpInst::ICMP_SLT: {
5938 ConstantRange LHSRange = getSignedRange(LHS);
5939 ConstantRange RHSRange = getSignedRange(RHS);
5940 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5941 return true;
5942 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5943 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005944 break;
5945 }
5946 case ICmpInst::ICMP_SGE:
5947 Pred = ICmpInst::ICMP_SLE;
5948 std::swap(LHS, RHS);
5949 case ICmpInst::ICMP_SLE: {
5950 ConstantRange LHSRange = getSignedRange(LHS);
5951 ConstantRange RHSRange = getSignedRange(RHS);
5952 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5953 return true;
5954 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5955 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005956 break;
5957 }
5958 case ICmpInst::ICMP_UGT:
5959 Pred = ICmpInst::ICMP_ULT;
5960 std::swap(LHS, RHS);
5961 case ICmpInst::ICMP_ULT: {
5962 ConstantRange LHSRange = getUnsignedRange(LHS);
5963 ConstantRange RHSRange = getUnsignedRange(RHS);
5964 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5965 return true;
5966 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5967 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005968 break;
5969 }
5970 case ICmpInst::ICMP_UGE:
5971 Pred = ICmpInst::ICMP_ULE;
5972 std::swap(LHS, RHS);
5973 case ICmpInst::ICMP_ULE: {
5974 ConstantRange LHSRange = getUnsignedRange(LHS);
5975 ConstantRange RHSRange = getUnsignedRange(RHS);
5976 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5977 return true;
5978 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5979 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005980 break;
5981 }
5982 case ICmpInst::ICMP_NE: {
5983 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5984 return true;
5985 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5986 return true;
5987
5988 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5989 if (isKnownNonZero(Diff))
5990 return true;
5991 break;
5992 }
5993 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005994 // The check at the top of the function catches the case where
5995 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005996 break;
5997 }
5998 return false;
5999}
6000
6001/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6002/// protected by a conditional between LHS and RHS. This is used to
6003/// to eliminate casts.
6004bool
6005ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6006 ICmpInst::Predicate Pred,
6007 const SCEV *LHS, const SCEV *RHS) {
6008 // Interpret a null as meaning no loop, where there is obviously no guard
6009 // (interprocedural conditions notwithstanding).
6010 if (!L) return true;
6011
6012 BasicBlock *Latch = L->getLoopLatch();
6013 if (!Latch)
6014 return false;
6015
6016 BranchInst *LoopContinuePredicate =
6017 dyn_cast<BranchInst>(Latch->getTerminator());
6018 if (!LoopContinuePredicate ||
6019 LoopContinuePredicate->isUnconditional())
6020 return false;
6021
Dan Gohmanaf08a362010-08-10 23:46:30 +00006022 return isImpliedCond(Pred, LHS, RHS,
6023 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00006024 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00006025}
6026
Dan Gohman3948d0b2010-04-11 19:27:13 +00006027/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00006028/// by a conditional between LHS and RHS. This is used to help avoid max
6029/// expressions in loop trip counts, and to eliminate casts.
6030bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00006031ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6032 ICmpInst::Predicate Pred,
6033 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00006034 // Interpret a null as meaning no loop, where there is obviously no guard
6035 // (interprocedural conditions notwithstanding).
6036 if (!L) return false;
6037
Dan Gohman859b4822009-05-18 15:36:09 +00006038 // Starting at the loop predecessor, climb up the predecessor chain, as long
6039 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00006040 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00006041 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00006042 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00006043 Pair.first;
6044 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00006045
6046 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00006047 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00006048 if (!LoopEntryPredicate ||
6049 LoopEntryPredicate->isUnconditional())
6050 continue;
6051
Dan Gohmanaf08a362010-08-10 23:46:30 +00006052 if (isImpliedCond(Pred, LHS, RHS,
6053 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00006054 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00006055 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00006056 }
6057
Dan Gohman38372182008-08-12 20:17:31 +00006058 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00006059}
6060
Andrew Trick8aa22012012-05-19 00:48:25 +00006061/// RAII wrapper to prevent recursive application of isImpliedCond.
6062/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6063/// currently evaluating isImpliedCond.
6064struct MarkPendingLoopPredicate {
6065 Value *Cond;
6066 DenseSet<Value*> &LoopPreds;
6067 bool Pending;
6068
6069 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6070 : Cond(C), LoopPreds(LP) {
6071 Pending = !LoopPreds.insert(Cond).second;
6072 }
6073 ~MarkPendingLoopPredicate() {
6074 if (!Pending)
6075 LoopPreds.erase(Cond);
6076 }
6077};
6078
Dan Gohman0f4b2852009-07-21 23:03:19 +00006079/// isImpliedCond - Test whether the condition described by Pred, LHS,
6080/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006081bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006082 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00006083 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006084 bool Inverse) {
Andrew Trick8aa22012012-05-19 00:48:25 +00006085 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6086 if (Mark.Pending)
6087 return false;
6088
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006089 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00006090 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006091 if (BO->getOpcode() == Instruction::And) {
6092 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006093 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6094 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006095 } else if (BO->getOpcode() == Instruction::Or) {
6096 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00006097 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6098 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006099 }
6100 }
6101
Dan Gohmanaf08a362010-08-10 23:46:30 +00006102 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006103 if (!ICI) return false;
6104
Dan Gohman85b05a22009-07-13 21:35:55 +00006105 // Bail if the ICmp's operands' types are wider than the needed type
6106 // before attempting to call getSCEV on them. This avoids infinite
6107 // recursion, since the analysis of widening casts can require loop
6108 // exit condition information for overflow checking, which would
6109 // lead back here.
6110 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00006111 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00006112 return false;
6113
Dan Gohman0f4b2852009-07-21 23:03:19 +00006114 // Now that we found a conditional branch that dominates the loop, check to
6115 // see if it is the comparison we are looking for.
6116 ICmpInst::Predicate FoundPred;
6117 if (Inverse)
6118 FoundPred = ICI->getInversePredicate();
6119 else
6120 FoundPred = ICI->getPredicate();
6121
6122 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6123 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00006124
6125 // Balance the types. The case where FoundLHS' type is wider than
6126 // LHS' type is checked for above.
6127 if (getTypeSizeInBits(LHS->getType()) >
6128 getTypeSizeInBits(FoundLHS->getType())) {
6129 if (CmpInst::isSigned(Pred)) {
6130 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6131 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6132 } else {
6133 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6134 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6135 }
6136 }
6137
Dan Gohman0f4b2852009-07-21 23:03:19 +00006138 // Canonicalize the query to match the way instcombine will have
6139 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00006140 if (SimplifyICmpOperands(Pred, LHS, RHS))
6141 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006142 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00006143 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6144 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00006145 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00006146
6147 // Check to see if we can make the LHS or RHS match.
6148 if (LHS == FoundRHS || RHS == FoundLHS) {
6149 if (isa<SCEVConstant>(RHS)) {
6150 std::swap(FoundLHS, FoundRHS);
6151 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6152 } else {
6153 std::swap(LHS, RHS);
6154 Pred = ICmpInst::getSwappedPredicate(Pred);
6155 }
6156 }
6157
6158 // Check whether the found predicate is the same as the desired predicate.
6159 if (FoundPred == Pred)
6160 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6161
6162 // Check whether swapping the found predicate makes it the same as the
6163 // desired predicate.
6164 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6165 if (isa<SCEVConstant>(RHS))
6166 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6167 else
6168 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6169 RHS, LHS, FoundLHS, FoundRHS);
6170 }
6171
6172 // Check whether the actual condition is beyond sufficient.
6173 if (FoundPred == ICmpInst::ICMP_EQ)
6174 if (ICmpInst::isTrueWhenEqual(Pred))
6175 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6176 return true;
6177 if (Pred == ICmpInst::ICMP_NE)
6178 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6179 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6180 return true;
6181
6182 // Otherwise assume the worst.
6183 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00006184}
6185
Dan Gohman0f4b2852009-07-21 23:03:19 +00006186/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006187/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006188/// and FoundRHS is true.
6189bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6190 const SCEV *LHS, const SCEV *RHS,
6191 const SCEV *FoundLHS,
6192 const SCEV *FoundRHS) {
6193 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6194 FoundLHS, FoundRHS) ||
6195 // ~x < ~y --> x > y
6196 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6197 getNotSCEV(FoundRHS),
6198 getNotSCEV(FoundLHS));
6199}
6200
6201/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006202/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00006203/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00006204bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00006205ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6206 const SCEV *LHS, const SCEV *RHS,
6207 const SCEV *FoundLHS,
6208 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00006209 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00006210 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6211 case ICmpInst::ICMP_EQ:
6212 case ICmpInst::ICMP_NE:
6213 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6214 return true;
6215 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00006216 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00006217 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006218 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6219 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006220 return true;
6221 break;
6222 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006223 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006224 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6225 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006226 return true;
6227 break;
6228 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00006229 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006230 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6231 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006232 return true;
6233 break;
6234 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00006235 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00006236 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6237 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00006238 return true;
6239 break;
6240 }
6241
6242 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00006243}
6244
Dan Gohman51f53b72009-06-21 23:46:38 +00006245/// getBECount - Subtract the end and start values and divide by the step,
6246/// rounding up, to get the number of times the backedge is executed. Return
6247/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006248const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00006249 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00006250 const SCEV *Step,
6251 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00006252 assert(!isKnownNegative(Step) &&
6253 "This code doesn't handle negative strides yet!");
6254
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006255 Type *Ty = Start->getType();
Andrew Tricke62289b2011-03-09 17:29:58 +00006256
6257 // When Start == End, we have an exact BECount == 0. Short-circuit this case
6258 // here because SCEV may not be able to determine that the unsigned division
6259 // after rounding is zero.
6260 if (Start == End)
6261 return getConstant(Ty, 0);
6262
Dan Gohmandeff6212010-05-03 22:09:21 +00006263 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00006264 const SCEV *Diff = getMinusSCEV(End, Start);
6265 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00006266
6267 // Add an adjustment to the difference between End and Start so that
6268 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006269 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00006270
Dan Gohman1f96e672009-09-17 18:05:20 +00006271 if (!NoWrap) {
6272 // Check Add for unsigned overflow.
6273 // TODO: More sophisticated things could be done here.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00006274 Type *WideTy = IntegerType::get(getContext(),
Dan Gohman1f96e672009-09-17 18:05:20 +00006275 getTypeSizeInBits(Ty) + 1);
6276 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6277 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6278 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6279 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6280 return getCouldNotCompute();
6281 }
Dan Gohman51f53b72009-06-21 23:46:38 +00006282
6283 return getUDivExpr(Add, Step);
6284}
6285
Chris Lattnerdb25de42005-08-15 23:33:51 +00006286/// HowManyLessThans - Return the number of times a backedge containing the
6287/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00006288/// CouldNotCompute.
Andrew Trick5116ff62011-07-26 17:19:55 +00006289ScalarEvolution::ExitLimit
Dan Gohman64a845e2009-06-24 04:48:43 +00006290ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6291 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00006292 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00006293 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006294
Dan Gohman35738ac2009-05-04 22:30:44 +00006295 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006296 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00006297 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006298
Dan Gohman1f96e672009-09-17 18:05:20 +00006299 // Check to see if we have a flag which makes analysis easy.
Nick Lewycky89d093d2011-11-09 07:11:37 +00006300 bool NoWrap = isSigned ?
6301 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
6302 AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
Dan Gohman1f96e672009-09-17 18:05:20 +00006303
Chris Lattnerdb25de42005-08-15 23:33:51 +00006304 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006305 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00006306 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00006307
Dan Gohman52fddd32010-01-26 04:40:18 +00006308 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00006309 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00006310 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00006311 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00006312 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00006313 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00006314 // value and past the maximum value for its type in a single step.
6315 // Note that it's not sufficient to check NoWrap here, because even
6316 // though the value after a wrap is undefined, it's not undefined
6317 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00006318 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00006319 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00006320 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00006321 if (isSigned) {
6322 APInt Max = APInt::getSignedMaxValue(BitWidth);
6323 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6324 .slt(getSignedRange(RHS).getSignedMax()))
6325 return getCouldNotCompute();
6326 } else {
6327 APInt Max = APInt::getMaxValue(BitWidth);
6328 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6329 .ult(getUnsignedRange(RHS).getUnsignedMax()))
6330 return getCouldNotCompute();
6331 }
Dan Gohmana1af7572009-04-30 20:47:05 +00006332 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00006333 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00006334 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006335
Dan Gohmana1af7572009-04-30 20:47:05 +00006336 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6337 // m. So, we count the number of iterations in which {n,+,s} < m is true.
6338 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00006339 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00006340
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006341 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00006342 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006343
Dan Gohmana1af7572009-04-30 20:47:05 +00006344 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006345 const SCEV *MinStart = getConstant(isSigned ?
6346 getSignedRange(Start).getSignedMin() :
6347 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00006348
Dan Gohmana1af7572009-04-30 20:47:05 +00006349 // If we know that the condition is true in order to enter the loop,
6350 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00006351 // only know that it will execute (max(m,n)-n)/s times. In both cases,
6352 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006353 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00006354 if (!isLoopEntryGuardedByCond(L,
6355 isSigned ? ICmpInst::ICMP_SLT :
6356 ICmpInst::ICMP_ULT,
6357 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00006358 End = isSigned ? getSMaxExpr(RHS, Start)
6359 : getUMaxExpr(RHS, Start);
6360
6361 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00006362 const SCEV *MaxEnd = getConstant(isSigned ?
6363 getSignedRange(End).getSignedMax() :
6364 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00006365
Dan Gohman52fddd32010-01-26 04:40:18 +00006366 // If MaxEnd is within a step of the maximum integer value in its type,
6367 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006368 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00006369 // compute the correct value.
6370 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00006371 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00006372 MaxEnd = isSigned ?
6373 getSMinExpr(MaxEnd,
6374 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6375 StepMinusOne)) :
6376 getUMinExpr(MaxEnd,
6377 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6378 StepMinusOne));
6379
Dan Gohmana1af7572009-04-30 20:47:05 +00006380 // Finally, we subtract these two values and divide, rounding up, to get
6381 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00006382 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00006383
6384 // The maximum backedge count is similar, except using the minimum start
6385 // value and the maximum end value.
Andrew Tricke62289b2011-03-09 17:29:58 +00006386 // If we already have an exact constant BECount, use it instead.
6387 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6388 : getBECount(MinStart, MaxEnd, Step, NoWrap);
6389
6390 // If the stride is nonconstant, and NoWrap == true, then
6391 // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6392 // exact BECount and invalid MaxBECount, which should be avoided to catch
6393 // more optimization opportunities.
6394 if (isa<SCEVCouldNotCompute>(MaxBECount))
6395 MaxBECount = BECount;
Dan Gohmana1af7572009-04-30 20:47:05 +00006396
Andrew Trick5116ff62011-07-26 17:19:55 +00006397 return ExitLimit(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00006398 }
6399
Dan Gohman1c343752009-06-27 21:21:31 +00006400 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00006401}
6402
Chris Lattner53e677a2004-04-02 20:23:17 +00006403/// getNumIterationsInRange - Return the number of iterations of this loop that
6404/// produce values in the specified constant range. Another way of looking at
6405/// this is that it returns the first iteration number where the value is not in
6406/// the condition, thus computing the exit count. If the iteration count can't
6407/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006408const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00006409 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00006410 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006411 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006412
6413 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00006414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00006415 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00006416 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00006417 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick3228cc22011-03-14 16:50:06 +00006418 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickc343c1e2011-03-15 00:37:00 +00006419 getNoWrapFlags(FlagNW));
Dan Gohman622ed672009-05-04 22:02:23 +00006420 if (const SCEVAddRecExpr *ShiftedAddRec =
6421 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00006422 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00006423 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00006424 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006425 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006426 }
6427
6428 // The only time we can solve this is when we have all constant indices.
6429 // Otherwise, we cannot determine the overflow conditions.
6430 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6431 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006432 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006433
6434
6435 // Okay at this point we know that all elements of the chrec are constants and
6436 // that the start element is zero.
6437
6438 // First check to see if the range contains zero. If not, the first
6439 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00006440 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00006441 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00006442 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006443
Chris Lattner53e677a2004-04-02 20:23:17 +00006444 if (isAffine()) {
6445 // If this is an affine expression then we have this situation:
6446 // Solve {0,+,A} in Range === Ax in Range
6447
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006448 // We know that zero is in the range. If A is positive then we know that
6449 // the upper value of the range must be the first possible exit value.
6450 // If A is negative then the lower of the range is the last possible loop
6451 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00006452 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006453 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6454 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00006455
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00006456 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00006457 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00006458 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00006459
6460 // Evaluate at the exit value. If we really did fall out of the valid
6461 // range, then we computed our trip count, otherwise wrap around or other
6462 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00006463 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006464 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006465 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006466
6467 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00006468 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00006469 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00006470 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00006471 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00006472 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00006473 } else if (isQuadratic()) {
6474 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6475 // quadratic equation to solve it. To do this, we must frame our problem in
6476 // terms of figuring out when zero is crossed, instead of when
6477 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00006478 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00006479 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick3228cc22011-03-14 16:50:06 +00006480 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6481 // getNoWrapFlags(FlagNW)
6482 FlagAnyWrap);
Chris Lattner53e677a2004-04-02 20:23:17 +00006483
6484 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00006485 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00006486 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00006487 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6488 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00006489 if (R1) {
6490 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00006491 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00006492 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00006493 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00006494 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00006495 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006496
Chris Lattner53e677a2004-04-02 20:23:17 +00006497 // Make sure the root is not off by one. The returned iteration should
6498 // not be in the range, but the previous one should be. When solving
6499 // for "X*X < 5", for example, we should not return a root of 2.
6500 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00006501 R1->getValue(),
6502 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006503 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006504 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00006505 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006506 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006507
Dan Gohman246b2562007-10-22 18:31:58 +00006508 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006509 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00006510 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006511 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006512 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006513
Chris Lattner53e677a2004-04-02 20:23:17 +00006514 // If R1 was not in the range, then it is a good return value. Make
6515 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00006516 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00006517 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00006518 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00006519 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00006520 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006521 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00006522 }
6523 }
6524 }
6525
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00006526 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00006527}
6528
6529
6530
6531//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00006532// SCEVCallbackVH Class Implementation
6533//===----------------------------------------------------------------------===//
6534
Dan Gohman1959b752009-05-19 19:22:47 +00006535void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006536 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00006537 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6538 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006539 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00006540 // this now dangles!
6541}
6542
Dan Gohman81f91212010-07-28 01:09:07 +00006543void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00006544 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00006545
Dan Gohman35738ac2009-05-04 22:30:44 +00006546 // Forget all the expressions associated with users of the old value,
6547 // so that future queries will recompute the expressions using the new
6548 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00006549 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00006550 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00006551 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00006552 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6553 UI != UE; ++UI)
6554 Worklist.push_back(*UI);
6555 while (!Worklist.empty()) {
6556 User *U = Worklist.pop_back_val();
6557 // Deleting the Old value will cause this to dangle. Postpone
6558 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00006559 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00006560 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00006561 if (!Visited.insert(U))
6562 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00006563 if (PHINode *PN = dyn_cast<PHINode>(U))
6564 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006565 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00006566 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6567 UI != UE; ++UI)
6568 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00006569 }
Dan Gohman59846ac2010-07-28 00:28:25 +00006570 // Delete the Old value.
6571 if (PHINode *PN = dyn_cast<PHINode>(Old))
6572 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006573 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00006574 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00006575}
6576
Dan Gohman1959b752009-05-19 19:22:47 +00006577ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00006578 : CallbackVH(V), SE(se) {}
6579
6580//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00006581// ScalarEvolution Class Implementation
6582//===----------------------------------------------------------------------===//
6583
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006584ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00006585 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00006586 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006587}
6588
Chris Lattner53e677a2004-04-02 20:23:17 +00006589bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006590 this->F = &F;
6591 LI = &getAnalysis<LoopInfo>();
Micah Villmow3574eca2012-10-08 16:38:25 +00006592 TD = getAnalysisIfAvailable<DataLayout>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006593 TLI = &getAnalysis<TargetLibraryInfo>();
Dan Gohman454d26d2010-02-22 04:11:59 +00006594 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00006595 return false;
6596}
6597
6598void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00006599 // Iterate through all the SCEVUnknown instances and call their
6600 // destructors, so that they release their references to their values.
6601 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6602 U->~SCEVUnknown();
6603 FirstUnknown = 0;
6604
Dan Gohmane8ac3f32010-08-27 18:55:03 +00006605 ValueExprMap.clear();
Andrew Trick5116ff62011-07-26 17:19:55 +00006606
6607 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6608 // that a loop had multiple computable exits.
6609 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6610 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6611 I != E; ++I) {
6612 I->second.clear();
6613 }
6614
Andrew Trick8aa22012012-05-19 00:48:25 +00006615 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
6616
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006617 BackedgeTakenCounts.clear();
6618 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00006619 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00006620 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006621 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00006622 UnsignedRanges.clear();
6623 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00006624 UniqueSCEVs.clear();
6625 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00006626}
6627
6628void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6629 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00006630 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00006631 AU.addRequiredTransitive<DominatorTree>();
Chad Rosier618c1db2011-12-01 03:08:23 +00006632 AU.addRequired<TargetLibraryInfo>();
Dan Gohman2d1be872009-04-16 03:18:22 +00006633}
6634
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006635bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006636 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00006637}
6638
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006639static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00006640 const Loop *L) {
6641 // Print all inner loops first
6642 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6643 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006644
Dan Gohman30733292010-01-09 18:17:45 +00006645 OS << "Loop ";
6646 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6647 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006648
Dan Gohman5d984912009-12-18 01:14:11 +00006649 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00006650 L->getExitBlocks(ExitBlocks);
6651 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00006652 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006653
Dan Gohman46bdfb02009-02-24 18:55:53 +00006654 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6655 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00006656 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00006657 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00006658 }
6659
Dan Gohman30733292010-01-09 18:17:45 +00006660 OS << "\n"
6661 "Loop ";
6662 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6663 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00006664
6665 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6666 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6667 } else {
6668 OS << "Unpredictable max backedge-taken count. ";
6669 }
6670
6671 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006672}
6673
Dan Gohman5d984912009-12-18 01:14:11 +00006674void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00006675 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006676 // out SCEV values of all instructions that are interesting. Doing
6677 // this potentially causes it to create new SCEV objects though,
6678 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00006679 // observable from outside the class though, so casting away the
6680 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00006681 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00006682
Dan Gohman30733292010-01-09 18:17:45 +00006683 OS << "Classifying expressions for: ";
6684 WriteAsOperand(OS, F, /*PrintType=*/false);
6685 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00006686 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00006687 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00006688 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00006689 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006690 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006691 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00006692
Dan Gohman0c689c52009-06-19 17:49:54 +00006693 const Loop *L = LI->getLoopFor((*I).getParent());
6694
Dan Gohman0bba49c2009-07-07 17:06:11 +00006695 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00006696 if (AtUse != SV) {
6697 OS << " --> ";
6698 AtUse->print(OS);
6699 }
6700
6701 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00006702 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00006703 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00006704 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00006705 OS << "<<Unknown>>";
6706 } else {
6707 OS << *ExitValue;
6708 }
6709 }
6710
Chris Lattner53e677a2004-04-02 20:23:17 +00006711 OS << "\n";
6712 }
6713
Dan Gohman30733292010-01-09 18:17:45 +00006714 OS << "Determining loop execution counts for: ";
6715 WriteAsOperand(OS, F, /*PrintType=*/false);
6716 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006717 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6718 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006719}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006720
Dan Gohman714b5292010-11-17 23:21:44 +00006721ScalarEvolution::LoopDisposition
6722ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6723 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6724 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6725 Values.insert(std::make_pair(L, LoopVariant));
6726 if (!Pair.second)
6727 return Pair.first->second;
6728
6729 LoopDisposition D = computeLoopDisposition(S, L);
6730 return LoopDispositions[S][L] = D;
6731}
6732
6733ScalarEvolution::LoopDisposition
6734ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006735 switch (S->getSCEVType()) {
6736 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006737 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006738 case scTruncate:
6739 case scZeroExtend:
6740 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006741 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006742 case scAddRecExpr: {
6743 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6744
Dan Gohman714b5292010-11-17 23:21:44 +00006745 // If L is the addrec's loop, it's computable.
6746 if (AR->getLoop() == L)
6747 return LoopComputable;
6748
Dan Gohman17ead4f2010-11-17 21:23:15 +00006749 // Add recurrences are never invariant in the function-body (null loop).
6750 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006751 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006752
6753 // This recurrence is variant w.r.t. L if L contains AR's loop.
6754 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006755 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006756
6757 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6758 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006759 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006760
6761 // This recurrence is variant w.r.t. L if any of its operands
6762 // are variant.
6763 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6764 I != E; ++I)
6765 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006766 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006767
6768 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006769 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006770 }
6771 case scAddExpr:
6772 case scMulExpr:
6773 case scUMaxExpr:
6774 case scSMaxExpr: {
6775 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006776 bool HasVarying = false;
6777 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6778 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006779 LoopDisposition D = getLoopDisposition(*I, L);
6780 if (D == LoopVariant)
6781 return LoopVariant;
6782 if (D == LoopComputable)
6783 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006784 }
Dan Gohman714b5292010-11-17 23:21:44 +00006785 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006786 }
6787 case scUDivExpr: {
6788 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006789 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6790 if (LD == LoopVariant)
6791 return LoopVariant;
6792 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6793 if (RD == LoopVariant)
6794 return LoopVariant;
6795 return (LD == LoopInvariant && RD == LoopInvariant) ?
6796 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006797 }
6798 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006799 // All non-instruction values are loop invariant. All instructions are loop
6800 // invariant if they are not contained in the specified loop.
6801 // Instructions are never considered invariant in the function body
6802 // (null loop) because they are defined within the "loop".
6803 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6804 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6805 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006806 case scCouldNotCompute:
6807 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
David Blaikie4d6ccb52012-01-20 21:51:11 +00006808 default: llvm_unreachable("Unknown SCEV kind!");
Dan Gohman17ead4f2010-11-17 21:23:15 +00006809 }
Dan Gohman714b5292010-11-17 23:21:44 +00006810}
6811
6812bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6813 return getLoopDisposition(S, L) == LoopInvariant;
6814}
6815
6816bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6817 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006818}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006819
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006820ScalarEvolution::BlockDisposition
6821ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6822 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6823 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6824 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6825 if (!Pair.second)
6826 return Pair.first->second;
6827
6828 BlockDisposition D = computeBlockDisposition(S, BB);
6829 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006830}
6831
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006832ScalarEvolution::BlockDisposition
6833ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006834 switch (S->getSCEVType()) {
6835 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006836 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006837 case scTruncate:
6838 case scZeroExtend:
6839 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006840 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006841 case scAddRecExpr: {
6842 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006843 // to test for proper dominance too, because the instruction which
6844 // produces the addrec's value is a PHI, and a PHI effectively properly
6845 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006846 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6847 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006848 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006849 }
6850 // FALL THROUGH into SCEVNAryExpr handling.
6851 case scAddExpr:
6852 case scMulExpr:
6853 case scUMaxExpr:
6854 case scSMaxExpr: {
6855 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006856 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006857 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006858 I != E; ++I) {
6859 BlockDisposition D = getBlockDisposition(*I, BB);
6860 if (D == DoesNotDominateBlock)
6861 return DoesNotDominateBlock;
6862 if (D == DominatesBlock)
6863 Proper = false;
6864 }
6865 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006866 }
6867 case scUDivExpr: {
6868 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006869 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6870 BlockDisposition LD = getBlockDisposition(LHS, BB);
6871 if (LD == DoesNotDominateBlock)
6872 return DoesNotDominateBlock;
6873 BlockDisposition RD = getBlockDisposition(RHS, BB);
6874 if (RD == DoesNotDominateBlock)
6875 return DoesNotDominateBlock;
6876 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6877 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006878 }
6879 case scUnknown:
6880 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006881 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6882 if (I->getParent() == BB)
6883 return DominatesBlock;
6884 if (DT->properlyDominates(I->getParent(), BB))
6885 return ProperlyDominatesBlock;
6886 return DoesNotDominateBlock;
6887 }
6888 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006889 case scCouldNotCompute:
6890 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Andrew Trickeb6dd232012-03-26 22:33:59 +00006891 default:
David Blaikie4d6ccb52012-01-20 21:51:11 +00006892 llvm_unreachable("Unknown SCEV kind!");
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006893 }
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006894}
6895
6896bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6897 return getBlockDisposition(S, BB) >= DominatesBlock;
6898}
6899
6900bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6901 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006902}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006903
Andrew Trick8b7036b2012-07-13 23:33:03 +00006904namespace {
6905// Search for a SCEV expression node within an expression tree.
6906// Implements SCEVTraversal::Visitor.
6907struct SCEVSearch {
6908 const SCEV *Node;
6909 bool IsFound;
6910
6911 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
6912
6913 bool follow(const SCEV *S) {
6914 IsFound |= (S == Node);
6915 return !IsFound;
6916 }
6917 bool isDone() const { return IsFound; }
6918};
6919}
6920
Dan Gohman4ce32db2010-11-17 22:27:42 +00006921bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick8b7036b2012-07-13 23:33:03 +00006922 SCEVSearch Search(Op);
6923 visitAll(S, Search);
6924 return Search.IsFound;
Dan Gohman4ce32db2010-11-17 22:27:42 +00006925}
Dan Gohman56a75682010-11-17 23:28:48 +00006926
6927void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6928 ValuesAtScopes.erase(S);
6929 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006930 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006931 UnsignedRanges.erase(S);
6932 SignedRanges.erase(S);
6933}