blob: 35f83b48d4f54307fc465a75936999342be073de [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnere7886e42009-01-11 20:53:49 +000025 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000026 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000027 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000028 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000029 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000030 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000031 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000032 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000033 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000034 </ol>
35 </li>
Chris Lattner00950542001-06-06 20:29:01 +000036 <li><a href="#typesystem">Type System</a>
37 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000038 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000039 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000040 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000041 <li><a href="#t_floating">Floating Point Types</a></li>
42 <li><a href="#t_void">Void Type</a></li>
43 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000044 </ol>
45 </li>
Chris Lattner00950542001-06-06 20:29:01 +000046 <li><a href="#t_derived">Derived Types</a>
47 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000048 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000049 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000050 <li><a href="#t_function">Function Type</a></li>
51 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000052 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000053 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000054 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000055 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000056 </ol>
57 </li>
58 </ol>
59 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000060 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000061 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000062 <li><a href="#simpleconstants">Simple Constants</a></li>
63 <li><a href="#aggregateconstants">Aggregate Constants</a></li>
64 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
65 <li><a href="#undefvalues">Undefined Values</a></li>
66 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000067 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000068 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000069 <li><a href="#othervalues">Other Values</a>
70 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000071 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000072 </ol>
73 </li>
Chris Lattner00950542001-06-06 20:29:01 +000074 <li><a href="#instref">Instruction Reference</a>
75 <ol>
76 <li><a href="#terminators">Terminator Instructions</a>
77 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000078 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
79 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000080 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
81 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000082 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000083 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000084 </ol>
85 </li>
Chris Lattner00950542001-06-06 20:29:01 +000086 <li><a href="#binaryops">Binary Operations</a>
87 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000088 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
89 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
90 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000091 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
92 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
93 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000094 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
95 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
96 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000097 </ol>
98 </li>
Chris Lattner00950542001-06-06 20:29:01 +000099 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
100 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000101 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
102 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
103 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000104 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000105 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000106 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000107 </ol>
108 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000109 <li><a href="#vectorops">Vector Operations</a>
110 <ol>
111 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
112 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
113 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000114 </ol>
115 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000116 <li><a href="#aggregateops">Aggregate Operations</a>
117 <ol>
118 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
119 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
120 </ol>
121 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000122 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000123 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000124 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
125 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
126 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000127 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
128 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
129 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000130 </ol>
131 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000132 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000133 <ol>
134 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
135 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
138 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000139 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
140 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
141 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
142 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000143 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
144 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000145 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000146 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000147 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000148 <li><a href="#otherops">Other Operations</a>
149 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000150 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
151 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000152 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
153 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000154 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000155 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000156 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000157 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000158 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000159 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000160 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000161 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000162 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000163 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000164 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
165 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000166 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
167 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
168 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000169 </ol>
170 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000171 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
172 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000173 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
174 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
175 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000176 </ol>
177 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000178 <li><a href="#int_codegen">Code Generator Intrinsics</a>
179 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000180 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
181 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
182 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
183 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
184 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
185 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
186 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000187 </ol>
188 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000189 <li><a href="#int_libc">Standard C Library Intrinsics</a>
190 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000191 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
195 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000196 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000199 </ol>
200 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000201 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000202 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000203 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000204 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
205 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000207 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
208 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000209 </ol>
210 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000211 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000212 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000213 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000214 <ol>
215 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000216 </ol>
217 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000218 <li><a href="#int_atomics">Atomic intrinsics</a>
219 <ol>
220 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
221 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
222 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
223 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
224 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
225 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
226 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
227 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
228 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
229 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
230 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
231 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
232 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
233 </ol>
234 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000235 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000236 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000237 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000238 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000239 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000240 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000241 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000242 '<tt>llvm.trap</tt>' Intrinsic</a></li>
243 <li><a href="#int_stackprotector">
244 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000245 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000246 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000247 </ol>
248 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000249</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000250
251<div class="doc_author">
252 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
253 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000254</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000255
Chris Lattner00950542001-06-06 20:29:01 +0000256<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000257<div class="doc_section"> <a name="abstract">Abstract </a></div>
258<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000259
Misha Brukman9d0919f2003-11-08 01:05:38 +0000260<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000261<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000262LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000263type safety, low-level operations, flexibility, and the capability of
264representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000265representation used throughout all phases of the LLVM compilation
266strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000267</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000268
Chris Lattner00950542001-06-06 20:29:01 +0000269<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000270<div class="doc_section"> <a name="introduction">Introduction</a> </div>
271<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000272
Misha Brukman9d0919f2003-11-08 01:05:38 +0000273<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000274
Chris Lattner261efe92003-11-25 01:02:51 +0000275<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000276different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000277representation (suitable for fast loading by a Just-In-Time compiler),
278and as a human readable assembly language representation. This allows
279LLVM to provide a powerful intermediate representation for efficient
280compiler transformations and analysis, while providing a natural means
281to debug and visualize the transformations. The three different forms
282of LLVM are all equivalent. This document describes the human readable
283representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000284
John Criswellc1f786c2005-05-13 22:25:59 +0000285<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000286while being expressive, typed, and extensible at the same time. It
287aims to be a "universal IR" of sorts, by being at a low enough level
288that high-level ideas may be cleanly mapped to it (similar to how
289microprocessors are "universal IR's", allowing many source languages to
290be mapped to them). By providing type information, LLVM can be used as
291the target of optimizations: for example, through pointer analysis, it
292can be proven that a C automatic variable is never accessed outside of
293the current function... allowing it to be promoted to a simple SSA
294value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000295
Misha Brukman9d0919f2003-11-08 01:05:38 +0000296</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000297
Chris Lattner00950542001-06-06 20:29:01 +0000298<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000299<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000300
Misha Brukman9d0919f2003-11-08 01:05:38 +0000301<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000302
Chris Lattner261efe92003-11-25 01:02:51 +0000303<p>It is important to note that this document describes 'well formed'
304LLVM assembly language. There is a difference between what the parser
305accepts and what is considered 'well formed'. For example, the
306following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000307
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000308<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000309<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000310%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000311</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000312</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000313
Chris Lattner261efe92003-11-25 01:02:51 +0000314<p>...because the definition of <tt>%x</tt> does not dominate all of
315its uses. The LLVM infrastructure provides a verification pass that may
316be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000317automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000318the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000319by the verifier pass indicate bugs in transformation passes or input to
320the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000321</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000322
Chris Lattnercc689392007-10-03 17:34:29 +0000323<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000324
Chris Lattner00950542001-06-06 20:29:01 +0000325<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000326<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000327<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000328
Misha Brukman9d0919f2003-11-08 01:05:38 +0000329<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000330
Reid Spencer2c452282007-08-07 14:34:28 +0000331 <p>LLVM identifiers come in two basic types: global and local. Global
332 identifiers (functions, global variables) begin with the @ character. Local
333 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohman0e451ce2008-10-14 16:51:45 +0000334 there are three different formats for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000335
Chris Lattner00950542001-06-06 20:29:01 +0000336<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000337 <li>Named values are represented as a string of characters with their prefix.
338 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
339 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000340 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar76dea952008-10-14 23:51:43 +0000341 with quotes. Special characters may be escaped using "\xx" where xx is the
342 ASCII code for the character in hexadecimal. In this way, any character can
343 be used in a name value, even quotes themselves.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000344
Reid Spencer2c452282007-08-07 14:34:28 +0000345 <li>Unnamed values are represented as an unsigned numeric value with their
346 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000347
Reid Spencercc16dc32004-12-09 18:02:53 +0000348 <li>Constants, which are described in a <a href="#constants">section about
349 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000350</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000351
Reid Spencer2c452282007-08-07 14:34:28 +0000352<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000353don't need to worry about name clashes with reserved words, and the set of
354reserved words may be expanded in the future without penalty. Additionally,
355unnamed identifiers allow a compiler to quickly come up with a temporary
356variable without having to avoid symbol table conflicts.</p>
357
Chris Lattner261efe92003-11-25 01:02:51 +0000358<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000359languages. There are keywords for different opcodes
360('<tt><a href="#i_add">add</a></tt>',
361 '<tt><a href="#i_bitcast">bitcast</a></tt>',
362 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000363href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000364and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000365none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000366
367<p>Here is an example of LLVM code to multiply the integer variable
368'<tt>%X</tt>' by 8:</p>
369
Misha Brukman9d0919f2003-11-08 01:05:38 +0000370<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000371
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000372<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000373<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000374%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000375</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000376</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000377
Misha Brukman9d0919f2003-11-08 01:05:38 +0000378<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000379
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000380<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000381<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000382%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000383</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000384</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000385
Misha Brukman9d0919f2003-11-08 01:05:38 +0000386<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000387
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000388<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000389<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000390<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
391<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
392%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000393</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000394</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000395
Chris Lattner261efe92003-11-25 01:02:51 +0000396<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
397important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000398
Chris Lattner00950542001-06-06 20:29:01 +0000399<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000400
401 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
402 line.</li>
403
404 <li>Unnamed temporaries are created when the result of a computation is not
405 assigned to a named value.</li>
406
Misha Brukman9d0919f2003-11-08 01:05:38 +0000407 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000408
Misha Brukman9d0919f2003-11-08 01:05:38 +0000409</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000410
John Criswelle4c57cc2005-05-12 16:52:32 +0000411<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000412demonstrating instructions, we will follow an instruction with a comment that
413defines the type and name of value produced. Comments are shown in italic
414text.</p>
415
Misha Brukman9d0919f2003-11-08 01:05:38 +0000416</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000417
418<!-- *********************************************************************** -->
419<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
420<!-- *********************************************************************** -->
421
422<!-- ======================================================================= -->
423<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
424</div>
425
426<div class="doc_text">
427
428<p>LLVM programs are composed of "Module"s, each of which is a
429translation unit of the input programs. Each module consists of
430functions, global variables, and symbol table entries. Modules may be
431combined together with the LLVM linker, which merges function (and
432global variable) definitions, resolves forward declarations, and merges
433symbol table entries. Here is an example of the "hello world" module:</p>
434
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000435<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000436<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000437<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
438 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000439
440<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000441<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000442
443<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000444define i32 @main() { <i>; i32()* </i>
Dan Gohman2a08c532009-01-04 23:44:43 +0000445 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000446 %cast210 = <a
Dan Gohman2a08c532009-01-04 23:44:43 +0000447 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000448
449 <i>; Call puts function to write out the string to stdout...</i>
450 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000451 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000452 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000453 href="#i_ret">ret</a> i32 0<br>}<br>
454</pre>
455</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000456
457<p>This example is made up of a <a href="#globalvars">global variable</a>
458named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
459function, and a <a href="#functionstructure">function definition</a>
460for "<tt>main</tt>".</p>
461
Chris Lattnere5d947b2004-12-09 16:36:40 +0000462<p>In general, a module is made up of a list of global values,
463where both functions and global variables are global values. Global values are
464represented by a pointer to a memory location (in this case, a pointer to an
465array of char, and a pointer to a function), and have one of the following <a
466href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000467
Chris Lattnere5d947b2004-12-09 16:36:40 +0000468</div>
469
470<!-- ======================================================================= -->
471<div class="doc_subsection">
472 <a name="linkage">Linkage Types</a>
473</div>
474
475<div class="doc_text">
476
477<p>
478All Global Variables and Functions have one of the following types of linkage:
479</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000480
481<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000482
Rafael Espindolabb46f522009-01-15 20:18:42 +0000483 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
484
485 <dd>Global values with private linkage are only directly accessible by
486 objects in the current module. In particular, linking code into a module with
487 an private global value may cause the private to be renamed as necessary to
488 avoid collisions. Because the symbol is private to the module, all
489 references can be updated. This doesn't show up in any symbol table in the
490 object file.
491 </dd>
492
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000493 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000494
Duncan Sands81d05c22009-01-16 09:29:46 +0000495 <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
Rafael Espindolabb46f522009-01-15 20:18:42 +0000496 the case of ELF) in the object file. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000497 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000498 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000499
Chris Lattnerfa730212004-12-09 16:11:40 +0000500 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000501
Chris Lattner4887bd82007-01-14 06:51:48 +0000502 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
503 the same name when linkage occurs. This is typically used to implement
504 inline functions, templates, or other code which must be generated in each
505 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
506 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000507 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000508
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000509 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
510
511 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
512 linkage, except that unreferenced <tt>common</tt> globals may not be
513 discarded. This is used for globals that may be emitted in multiple
514 translation units, but that are not guaranteed to be emitted into every
515 translation unit that uses them. One example of this is tentative
516 definitions in C, such as "<tt>int X;</tt>" at global scope.
517 </dd>
518
Chris Lattnerfa730212004-12-09 16:11:40 +0000519 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000520
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000521 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
522 that some targets may choose to emit different assembly sequences for them
523 for target-dependent reasons. This is used for globals that are declared
524 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000525 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000526
Chris Lattnerfa730212004-12-09 16:11:40 +0000527 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000528
529 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
530 pointer to array type. When two global variables with appending linkage are
531 linked together, the two global arrays are appended together. This is the
532 LLVM, typesafe, equivalent of having the system linker append together
533 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000534 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000535
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000536 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000537 <dd>The semantics of this linkage follow the ELF object file model: the
538 symbol is weak until linked, if not linked, the symbol becomes null instead
539 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000540 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000541
Chris Lattnerfa730212004-12-09 16:11:40 +0000542 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000543
544 <dd>If none of the above identifiers are used, the global is externally
545 visible, meaning that it participates in linkage and can be used to resolve
546 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000547 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000548</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000549
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000550 <p>
551 The next two types of linkage are targeted for Microsoft Windows platform
552 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000553 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000554 </p>
555
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000556 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000557 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
558
559 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
560 or variable via a global pointer to a pointer that is set up by the DLL
561 exporting the symbol. On Microsoft Windows targets, the pointer name is
Dan Gohman79564122009-01-12 21:35:55 +0000562 formed by combining <code>__imp_</code> and the function or variable name.
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000563 </dd>
564
565 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
566
567 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
568 pointer to a pointer in a DLL, so that it can be referenced with the
569 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
Dan Gohman79564122009-01-12 21:35:55 +0000570 name is formed by combining <code>__imp_</code> and the function or variable
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000571 name.
572 </dd>
573
Chris Lattnerfa730212004-12-09 16:11:40 +0000574</dl>
575
Dan Gohmanf0032762008-11-24 17:18:39 +0000576<p>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000577variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
578variable and was linked with this one, one of the two would be renamed,
579preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
580external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000581outside of the current module.</p>
582<p>It is illegal for a function <i>declaration</i>
583to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000584or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000585<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000586linkages.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000587</div>
588
589<!-- ======================================================================= -->
590<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000591 <a name="callingconv">Calling Conventions</a>
592</div>
593
594<div class="doc_text">
595
596<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
597and <a href="#i_invoke">invokes</a> can all have an optional calling convention
598specified for the call. The calling convention of any pair of dynamic
599caller/callee must match, or the behavior of the program is undefined. The
600following calling conventions are supported by LLVM, and more may be added in
601the future:</p>
602
603<dl>
604 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
605
606 <dd>This calling convention (the default if no other calling convention is
607 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000608 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000609 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000610 </dd>
611
612 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
613
614 <dd>This calling convention attempts to make calls as fast as possible
615 (e.g. by passing things in registers). This calling convention allows the
616 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000617 without having to conform to an externally specified ABI (Application Binary
618 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000619 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
620 supported. This calling convention does not support varargs and requires the
621 prototype of all callees to exactly match the prototype of the function
622 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000623 </dd>
624
625 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
626
627 <dd>This calling convention attempts to make code in the caller as efficient
628 as possible under the assumption that the call is not commonly executed. As
629 such, these calls often preserve all registers so that the call does not break
630 any live ranges in the caller side. This calling convention does not support
631 varargs and requires the prototype of all callees to exactly match the
632 prototype of the function definition.
633 </dd>
634
Chris Lattnercfe6b372005-05-07 01:46:40 +0000635 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000636
637 <dd>Any calling convention may be specified by number, allowing
638 target-specific calling conventions to be used. Target specific calling
639 conventions start at 64.
640 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000641</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000642
643<p>More calling conventions can be added/defined on an as-needed basis, to
644support pascal conventions or any other well-known target-independent
645convention.</p>
646
647</div>
648
649<!-- ======================================================================= -->
650<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000651 <a name="visibility">Visibility Styles</a>
652</div>
653
654<div class="doc_text">
655
656<p>
657All Global Variables and Functions have one of the following visibility styles:
658</p>
659
660<dl>
661 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
662
Chris Lattnerd3eda892008-08-05 18:29:16 +0000663 <dd>On targets that use the ELF object file format, default visibility means
664 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000665 modules and, in shared libraries, means that the declared entity may be
666 overridden. On Darwin, default visibility means that the declaration is
667 visible to other modules. Default visibility corresponds to "external
668 linkage" in the language.
669 </dd>
670
671 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
672
673 <dd>Two declarations of an object with hidden visibility refer to the same
674 object if they are in the same shared object. Usually, hidden visibility
675 indicates that the symbol will not be placed into the dynamic symbol table,
676 so no other module (executable or shared library) can reference it
677 directly.
678 </dd>
679
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000680 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
681
682 <dd>On ELF, protected visibility indicates that the symbol will be placed in
683 the dynamic symbol table, but that references within the defining module will
684 bind to the local symbol. That is, the symbol cannot be overridden by another
685 module.
686 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000687</dl>
688
689</div>
690
691<!-- ======================================================================= -->
692<div class="doc_subsection">
Chris Lattnere7886e42009-01-11 20:53:49 +0000693 <a name="namedtypes">Named Types</a>
694</div>
695
696<div class="doc_text">
697
698<p>LLVM IR allows you to specify name aliases for certain types. This can make
699it easier to read the IR and make the IR more condensed (particularly when
700recursive types are involved). An example of a name specification is:
701</p>
702
703<div class="doc_code">
704<pre>
705%mytype = type { %mytype*, i32 }
706</pre>
707</div>
708
709<p>You may give a name to any <a href="#typesystem">type</a> except "<a
710href="t_void">void</a>". Type name aliases may be used anywhere a type is
711expected with the syntax "%mytype".</p>
712
713<p>Note that type names are aliases for the structural type that they indicate,
714and that you can therefore specify multiple names for the same type. This often
715leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
716structural typing, the name is not part of the type. When printing out LLVM IR,
717the printer will pick <em>one name</em> to render all types of a particular
718shape. This means that if you have code where two different source types end up
719having the same LLVM type, that the dumper will sometimes print the "wrong" or
720unexpected type. This is an important design point and isn't going to
721change.</p>
722
723</div>
724
725
726<!-- ======================================================================= -->
727<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000728 <a name="globalvars">Global Variables</a>
729</div>
730
731<div class="doc_text">
732
Chris Lattner3689a342005-02-12 19:30:21 +0000733<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000734instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000735an explicit section to be placed in, and may have an optional explicit alignment
736specified. A variable may be defined as "thread_local", which means that it
737will not be shared by threads (each thread will have a separated copy of the
738variable). A variable may be defined as a global "constant," which indicates
739that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000740optimization, allowing the global data to be placed in the read-only section of
741an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000742cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000743
744<p>
745LLVM explicitly allows <em>declarations</em> of global variables to be marked
746constant, even if the final definition of the global is not. This capability
747can be used to enable slightly better optimization of the program, but requires
748the language definition to guarantee that optimizations based on the
749'constantness' are valid for the translation units that do not include the
750definition.
751</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000752
753<p>As SSA values, global variables define pointer values that are in
754scope (i.e. they dominate) all basic blocks in the program. Global
755variables always define a pointer to their "content" type because they
756describe a region of memory, and all memory objects in LLVM are
757accessed through pointers.</p>
758
Christopher Lamb284d9922007-12-11 09:31:00 +0000759<p>A global variable may be declared to reside in a target-specifc numbered
760address space. For targets that support them, address spaces may affect how
761optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000762the variable. The default address space is zero. The address space qualifier
763must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000764
Chris Lattner88f6c462005-11-12 00:45:07 +0000765<p>LLVM allows an explicit section to be specified for globals. If the target
766supports it, it will emit globals to the section specified.</p>
767
Chris Lattner2cbdc452005-11-06 08:02:57 +0000768<p>An explicit alignment may be specified for a global. If not present, or if
769the alignment is set to zero, the alignment of the global is set by the target
770to whatever it feels convenient. If an explicit alignment is specified, the
771global is forced to have at least that much alignment. All alignments must be
772a power of 2.</p>
773
Christopher Lamb284d9922007-12-11 09:31:00 +0000774<p>For example, the following defines a global in a numbered address space with
775an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000776
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000777<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000778<pre>
Dan Gohman398873c2009-01-11 00:40:00 +0000779@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000780</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000781</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000782
Chris Lattnerfa730212004-12-09 16:11:40 +0000783</div>
784
785
786<!-- ======================================================================= -->
787<div class="doc_subsection">
788 <a name="functionstructure">Functions</a>
789</div>
790
791<div class="doc_text">
792
Reid Spencerca86e162006-12-31 07:07:53 +0000793<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
794an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000795<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000796<a href="#callingconv">calling convention</a>, a return type, an optional
797<a href="#paramattrs">parameter attribute</a> for the return type, a function
798name, a (possibly empty) argument list (each with optional
Devang Patelf642f472008-10-06 18:50:38 +0000799<a href="#paramattrs">parameter attributes</a>), optional
800<a href="#fnattrs">function attributes</a>, an optional section,
801an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000802an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000803
804LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
805optional <a href="#linkage">linkage type</a>, an optional
806<a href="#visibility">visibility style</a>, an optional
807<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000808<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000809name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000810<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000811
Chris Lattnerd3eda892008-08-05 18:29:16 +0000812<p>A function definition contains a list of basic blocks, forming the CFG
813(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000814the function. Each basic block may optionally start with a label (giving the
815basic block a symbol table entry), contains a list of instructions, and ends
816with a <a href="#terminators">terminator</a> instruction (such as a branch or
817function return).</p>
818
Chris Lattner4a3c9012007-06-08 16:52:14 +0000819<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000820executed on entrance to the function, and it is not allowed to have predecessor
821basic blocks (i.e. there can not be any branches to the entry block of a
822function). Because the block can have no predecessors, it also cannot have any
823<a href="#i_phi">PHI nodes</a>.</p>
824
Chris Lattner88f6c462005-11-12 00:45:07 +0000825<p>LLVM allows an explicit section to be specified for functions. If the target
826supports it, it will emit functions to the section specified.</p>
827
Chris Lattner2cbdc452005-11-06 08:02:57 +0000828<p>An explicit alignment may be specified for a function. If not present, or if
829the alignment is set to zero, the alignment of the function is set by the target
830to whatever it feels convenient. If an explicit alignment is specified, the
831function is forced to have at least that much alignment. All alignments must be
832a power of 2.</p>
833
Devang Patel307e8ab2008-10-07 17:48:33 +0000834 <h5>Syntax:</h5>
835
836<div class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000837<tt>
838define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
839 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
840 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
841 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
842 [<a href="#gc">gc</a>] { ... }
843</tt>
Devang Patel307e8ab2008-10-07 17:48:33 +0000844</div>
845
Chris Lattnerfa730212004-12-09 16:11:40 +0000846</div>
847
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000848
849<!-- ======================================================================= -->
850<div class="doc_subsection">
851 <a name="aliasstructure">Aliases</a>
852</div>
853<div class="doc_text">
854 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000855 function, global variable, another alias or bitcast of global value). Aliases
856 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000857 optional <a href="#visibility">visibility style</a>.</p>
858
859 <h5>Syntax:</h5>
860
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000861<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000862<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000863@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000864</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000865</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000866
867</div>
868
869
870
Chris Lattner4e9aba72006-01-23 23:23:47 +0000871<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000872<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
873<div class="doc_text">
874 <p>The return type and each parameter of a function type may have a set of
875 <i>parameter attributes</i> associated with them. Parameter attributes are
876 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000877 a function. Parameter attributes are considered to be part of the function,
878 not of the function type, so functions with different parameter attributes
879 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000880
Reid Spencer950e9f82007-01-15 18:27:39 +0000881 <p>Parameter attributes are simple keywords that follow the type specified. If
882 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000883 example:</p>
884
885<div class="doc_code">
886<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000887declare i32 @printf(i8* noalias , ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000888declare i32 @atoi(i8 zeroext)
889declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000890</pre>
891</div>
892
Duncan Sandsdc024672007-11-27 13:23:08 +0000893 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
894 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000895
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000896 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000897 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000898 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000899 <dd>This indicates to the code generator that the parameter or return value
900 should be zero-extended to a 32-bit value by the caller (for a parameter)
901 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000902
Reid Spencer9445e9a2007-07-19 23:13:04 +0000903 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000904 <dd>This indicates to the code generator that the parameter or return value
905 should be sign-extended to a 32-bit value by the caller (for a parameter)
906 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000907
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000908 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000909 <dd>This indicates that this parameter or return value should be treated
910 in a special target-dependent fashion during while emitting code for a
911 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000912 to memory, though some targets use it to distinguish between two different
913 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000914
Duncan Sandsedb05df2008-10-06 08:14:18 +0000915 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000916 <dd>This indicates that the pointer parameter should really be passed by
917 value to the function. The attribute implies that a hidden copy of the
918 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000919 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000920 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sandsedb05df2008-10-06 08:14:18 +0000921 value, but is also valid on pointers to scalars. The copy is considered to
922 belong to the caller not the callee (for example,
923 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelf642f472008-10-06 18:50:38 +0000924 <tt>byval</tt> parameters). This is not a valid attribute for return
925 values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000926
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000927 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000928 <dd>This indicates that the pointer parameter specifies the address of a
929 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000930 This pointer must be guaranteed by the caller to be valid: loads and stores
931 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelf642f472008-10-06 18:50:38 +0000932 be applied to the first parameter. This is not a valid attribute for
933 return values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000934
Zhou Shengfebca342007-06-05 05:28:26 +0000935 <dt><tt>noalias</tt></dt>
Nick Lewycky02ff3082008-11-24 03:41:24 +0000936 <dd>This indicates that the pointer does not alias any global or any other
937 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyb2b32fd2008-11-24 05:00:44 +0000938 case. On a function return value, <tt>noalias</tt> additionally indicates
939 that the pointer does not alias any other pointers visible to the
Nick Lewyckyf23d0d32008-12-19 06:39:12 +0000940 caller. For further details, please see the discussion of the NoAlias
941 response in
942 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
943 analysis</a>.</dd>
944
945 <dt><tt>nocapture</tt></dt>
946 <dd>This indicates that the callee does not make any copies of the pointer
947 that outlive the callee itself. This is not a valid attribute for return
948 values.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000949
Duncan Sands50f19f52007-07-27 19:57:41 +0000950 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000951 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelf642f472008-10-06 18:50:38 +0000952 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
953 attribute for return values.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000954 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000955
Reid Spencerca86e162006-12-31 07:07:53 +0000956</div>
957
958<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000959<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000960 <a name="gc">Garbage Collector Names</a>
961</div>
962
963<div class="doc_text">
964<p>Each function may specify a garbage collector name, which is simply a
965string.</p>
966
967<div class="doc_code"><pre
968>define void @f() gc "name" { ...</pre></div>
969
970<p>The compiler declares the supported values of <i>name</i>. Specifying a
971collector which will cause the compiler to alter its output in order to support
972the named garbage collection algorithm.</p>
973</div>
974
975<!-- ======================================================================= -->
976<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000977 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +0000978</div>
979
980<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000981
982<p>Function attributes are set to communicate additional information about
983 a function. Function attributes are considered to be part of the function,
984 not of the function type, so functions with different parameter attributes
985 can have the same function type.</p>
986
987 <p>Function attributes are simple keywords that follow the type specified. If
988 multiple attributes are needed, they are space separated. For
989 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +0000990
991<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000992<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000993define void @f() noinline { ... }
994define void @f() alwaysinline { ... }
995define void @f() alwaysinline optsize { ... }
996define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000997</pre>
Devang Patelf8b94812008-09-04 23:05:13 +0000998</div>
999
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001000<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001001<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001002<dd>This attribute indicates that the inliner should attempt to inline this
1003function into callers whenever possible, ignoring any active inlining size
1004threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001005
Devang Patel2c9c3e72008-09-26 23:51:19 +00001006<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001007<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner94b5f7d2008-10-05 17:14:59 +00001008in any situation. This attribute may not be used together with the
Chris Lattner88d4b592008-10-04 18:23:17 +00001009<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001010
Devang Patel2c9c3e72008-09-26 23:51:19 +00001011<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +00001012<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +00001013make choices that keep the code size of this function low, and otherwise do
1014optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001015
Devang Patel2c9c3e72008-09-26 23:51:19 +00001016<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001017<dd>This function attribute indicates that the function never returns normally.
1018This produces undefined behavior at runtime if the function ever does
1019dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001020
1021<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001022<dd>This function attribute indicates that the function never returns with an
1023unwind or exceptional control flow. If the function does unwind, its runtime
1024behavior is undefined.</dd>
1025
1026<dt><tt>readnone</tt></dt>
Duncan Sandsedb05df2008-10-06 08:14:18 +00001027<dd>This attribute indicates that the function computes its result (or the
1028exception it throws) based strictly on its arguments, without dereferencing any
1029pointer arguments or otherwise accessing any mutable state (e.g. memory, control
1030registers, etc) visible to caller functions. It does not write through any
1031pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
1032never changes any state visible to callers.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001033
Duncan Sandsedb05df2008-10-06 08:14:18 +00001034<dt><tt><a name="readonly">readonly</a></tt></dt>
1035<dd>This attribute indicates that the function does not write through any
1036pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
1037or otherwise modify any state (e.g. memory, control registers, etc) visible to
1038caller functions. It may dereference pointer arguments and read state that may
1039be set in the caller. A readonly function always returns the same value (or
1040throws the same exception) when called with the same set of arguments and global
1041state.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +00001042
1043<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001044<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendling31359ba2008-11-13 01:02:51 +00001045protector. It is in the form of a "canary"&mdash;a random value placed on the
1046stack before the local variables that's checked upon return from the function to
1047see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001048needs stack protectors or not.
Bill Wendling31359ba2008-11-13 01:02:51 +00001049
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001050<p>If a function that has an <tt>ssp</tt> attribute is inlined into a function
1051that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
1052have an <tt>ssp</tt> attribute.</p></dd>
1053
1054<dt><tt>sspreq</tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001055<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendling31359ba2008-11-13 01:02:51 +00001056stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001057function attribute.
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001058
1059<p>If a function that has an <tt>sspreq</tt> attribute is inlined into a
1060function that doesn't have an <tt>sspreq</tt> attribute or which has
1061an <tt>ssp</tt> attribute, then the resulting function will have
1062an <tt>sspreq</tt> attribute.</p></dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001063</dl>
1064
Devang Patelf8b94812008-09-04 23:05:13 +00001065</div>
1066
1067<!-- ======================================================================= -->
1068<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001069 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001070</div>
1071
1072<div class="doc_text">
1073<p>
1074Modules may contain "module-level inline asm" blocks, which corresponds to the
1075GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1076LLVM and treated as a single unit, but may be separated in the .ll file if
1077desired. The syntax is very simple:
1078</p>
1079
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001080<div class="doc_code">
1081<pre>
1082module asm "inline asm code goes here"
1083module asm "more can go here"
1084</pre>
1085</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001086
1087<p>The strings can contain any character by escaping non-printable characters.
1088 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1089 for the number.
1090</p>
1091
1092<p>
1093 The inline asm code is simply printed to the machine code .s file when
1094 assembly code is generated.
1095</p>
1096</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001097
Reid Spencerde151942007-02-19 23:54:10 +00001098<!-- ======================================================================= -->
1099<div class="doc_subsection">
1100 <a name="datalayout">Data Layout</a>
1101</div>
1102
1103<div class="doc_text">
1104<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001105data is to be laid out in memory. The syntax for the data layout is simply:</p>
1106<pre> target datalayout = "<i>layout specification</i>"</pre>
1107<p>The <i>layout specification</i> consists of a list of specifications
1108separated by the minus sign character ('-'). Each specification starts with a
1109letter and may include other information after the letter to define some
1110aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001111<dl>
1112 <dt><tt>E</tt></dt>
1113 <dd>Specifies that the target lays out data in big-endian form. That is, the
1114 bits with the most significance have the lowest address location.</dd>
1115 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001116 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001117 the bits with the least significance have the lowest address location.</dd>
1118 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1119 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1120 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1121 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1122 too.</dd>
1123 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1124 <dd>This specifies the alignment for an integer type of a given bit
1125 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1126 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1127 <dd>This specifies the alignment for a vector type of a given bit
1128 <i>size</i>.</dd>
1129 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1130 <dd>This specifies the alignment for a floating point type of a given bit
1131 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1132 (double).</dd>
1133 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1134 <dd>This specifies the alignment for an aggregate type of a given bit
1135 <i>size</i>.</dd>
1136</dl>
1137<p>When constructing the data layout for a given target, LLVM starts with a
1138default set of specifications which are then (possibly) overriden by the
1139specifications in the <tt>datalayout</tt> keyword. The default specifications
1140are given in this list:</p>
1141<ul>
1142 <li><tt>E</tt> - big endian</li>
1143 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1144 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1145 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1146 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1147 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001148 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001149 alignment of 64-bits</li>
1150 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1151 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1152 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1153 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1154 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1155</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001156<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohman0e451ce2008-10-14 16:51:45 +00001157following rules:</p>
Reid Spencerde151942007-02-19 23:54:10 +00001158<ol>
1159 <li>If the type sought is an exact match for one of the specifications, that
1160 specification is used.</li>
1161 <li>If no match is found, and the type sought is an integer type, then the
1162 smallest integer type that is larger than the bitwidth of the sought type is
1163 used. If none of the specifications are larger than the bitwidth then the the
1164 largest integer type is used. For example, given the default specifications
1165 above, the i7 type will use the alignment of i8 (next largest) while both
1166 i65 and i256 will use the alignment of i64 (largest specified).</li>
1167 <li>If no match is found, and the type sought is a vector type, then the
1168 largest vector type that is smaller than the sought vector type will be used
Dan Gohman0e451ce2008-10-14 16:51:45 +00001169 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1170 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001171</ol>
1172</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001173
Chris Lattner00950542001-06-06 20:29:01 +00001174<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001175<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1176<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001177
Misha Brukman9d0919f2003-11-08 01:05:38 +00001178<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001179
Misha Brukman9d0919f2003-11-08 01:05:38 +00001180<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001181intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001182optimizations to be performed on the intermediate representation directly,
1183without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001184extra analyses on the side before the transformation. A strong type
1185system makes it easier to read the generated code and enables novel
1186analyses and transformations that are not feasible to perform on normal
1187three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001188
1189</div>
1190
Chris Lattner00950542001-06-06 20:29:01 +00001191<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001192<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001193Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001194<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001195<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001196classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001197
1198<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001199 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001200 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001201 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001202 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001203 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001204 </tr>
1205 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001206 <td><a href="#t_floating">floating point</a></td>
1207 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001208 </tr>
1209 <tr>
1210 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001211 <td><a href="#t_integer">integer</a>,
1212 <a href="#t_floating">floating point</a>,
1213 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001214 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001215 <a href="#t_struct">structure</a>,
1216 <a href="#t_array">array</a>,
Dan Gohmanade5faa2008-05-23 22:50:26 +00001217 <a href="#t_label">label</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001218 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001219 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001220 <tr>
1221 <td><a href="#t_primitive">primitive</a></td>
1222 <td><a href="#t_label">label</a>,
1223 <a href="#t_void">void</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001224 <a href="#t_floating">floating point</a>.</td>
1225 </tr>
1226 <tr>
1227 <td><a href="#t_derived">derived</a></td>
1228 <td><a href="#t_integer">integer</a>,
1229 <a href="#t_array">array</a>,
1230 <a href="#t_function">function</a>,
1231 <a href="#t_pointer">pointer</a>,
1232 <a href="#t_struct">structure</a>,
1233 <a href="#t_pstruct">packed structure</a>,
1234 <a href="#t_vector">vector</a>,
1235 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001236 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001237 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001238 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001239</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001240
Chris Lattner261efe92003-11-25 01:02:51 +00001241<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1242most important. Values of these types are the only ones which can be
1243produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001244instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001245</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001246
Chris Lattner00950542001-06-06 20:29:01 +00001247<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001248<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001249
Chris Lattner4f69f462008-01-04 04:32:38 +00001250<div class="doc_text">
1251<p>The primitive types are the fundamental building blocks of the LLVM
1252system.</p>
1253
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001254</div>
1255
Chris Lattner4f69f462008-01-04 04:32:38 +00001256<!-- _______________________________________________________________________ -->
1257<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1258
1259<div class="doc_text">
1260 <table>
1261 <tbody>
1262 <tr><th>Type</th><th>Description</th></tr>
1263 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1264 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1265 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1266 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1267 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1268 </tbody>
1269 </table>
1270</div>
1271
1272<!-- _______________________________________________________________________ -->
1273<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1274
1275<div class="doc_text">
1276<h5>Overview:</h5>
1277<p>The void type does not represent any value and has no size.</p>
1278
1279<h5>Syntax:</h5>
1280
1281<pre>
1282 void
1283</pre>
1284</div>
1285
1286<!-- _______________________________________________________________________ -->
1287<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1288
1289<div class="doc_text">
1290<h5>Overview:</h5>
1291<p>The label type represents code labels.</p>
1292
1293<h5>Syntax:</h5>
1294
1295<pre>
1296 label
1297</pre>
1298</div>
1299
1300
1301<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001302<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001303
Misha Brukman9d0919f2003-11-08 01:05:38 +00001304<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001305
Chris Lattner261efe92003-11-25 01:02:51 +00001306<p>The real power in LLVM comes from the derived types in the system.
1307This is what allows a programmer to represent arrays, functions,
1308pointers, and other useful types. Note that these derived types may be
1309recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001310
Misha Brukman9d0919f2003-11-08 01:05:38 +00001311</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001312
Chris Lattner00950542001-06-06 20:29:01 +00001313<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001314<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1315
1316<div class="doc_text">
1317
1318<h5>Overview:</h5>
1319<p>The integer type is a very simple derived type that simply specifies an
1320arbitrary bit width for the integer type desired. Any bit width from 1 bit to
13212^23-1 (about 8 million) can be specified.</p>
1322
1323<h5>Syntax:</h5>
1324
1325<pre>
1326 iN
1327</pre>
1328
1329<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1330value.</p>
1331
1332<h5>Examples:</h5>
1333<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001334 <tbody>
1335 <tr>
1336 <td><tt>i1</tt></td>
1337 <td>a single-bit integer.</td>
1338 </tr><tr>
1339 <td><tt>i32</tt></td>
1340 <td>a 32-bit integer.</td>
1341 </tr><tr>
1342 <td><tt>i1942652</tt></td>
1343 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001344 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001345 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001346</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001347
1348<p>Note that the code generator does not yet support large integer types
1349to be used as function return types. The specific limit on how large a
1350return type the code generator can currently handle is target-dependent;
1351currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
1352targets.</p>
1353
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001354</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001355
1356<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001357<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001358
Misha Brukman9d0919f2003-11-08 01:05:38 +00001359<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001360
Chris Lattner00950542001-06-06 20:29:01 +00001361<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001362
Misha Brukman9d0919f2003-11-08 01:05:38 +00001363<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001364sequentially in memory. The array type requires a size (number of
1365elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001366
Chris Lattner7faa8832002-04-14 06:13:44 +00001367<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001368
1369<pre>
1370 [&lt;# elements&gt; x &lt;elementtype&gt;]
1371</pre>
1372
John Criswelle4c57cc2005-05-12 16:52:32 +00001373<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001374be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001375
Chris Lattner7faa8832002-04-14 06:13:44 +00001376<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001377<table class="layout">
1378 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001379 <td class="left"><tt>[40 x i32]</tt></td>
1380 <td class="left">Array of 40 32-bit integer values.</td>
1381 </tr>
1382 <tr class="layout">
1383 <td class="left"><tt>[41 x i32]</tt></td>
1384 <td class="left">Array of 41 32-bit integer values.</td>
1385 </tr>
1386 <tr class="layout">
1387 <td class="left"><tt>[4 x i8]</tt></td>
1388 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001389 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001390</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001391<p>Here are some examples of multidimensional arrays:</p>
1392<table class="layout">
1393 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001394 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1395 <td class="left">3x4 array of 32-bit integer values.</td>
1396 </tr>
1397 <tr class="layout">
1398 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1399 <td class="left">12x10 array of single precision floating point values.</td>
1400 </tr>
1401 <tr class="layout">
1402 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1403 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001404 </tr>
1405</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001406
John Criswell0ec250c2005-10-24 16:17:18 +00001407<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1408length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001409LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1410As a special case, however, zero length arrays are recognized to be variable
1411length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001412type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001413
Dan Gohmand8791e52009-01-24 15:58:40 +00001414<p>Note that the code generator does not yet support large aggregate types
1415to be used as function return types. The specific limit on how large an
1416aggregate return type the code generator can currently handle is
1417target-dependent, and also dependent on the aggregate element types.</p>
1418
Misha Brukman9d0919f2003-11-08 01:05:38 +00001419</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001420
Chris Lattner00950542001-06-06 20:29:01 +00001421<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001422<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001423<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001424
Chris Lattner00950542001-06-06 20:29:01 +00001425<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001426
Chris Lattner261efe92003-11-25 01:02:51 +00001427<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001428consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001429return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001430If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001431class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001432
Chris Lattner00950542001-06-06 20:29:01 +00001433<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001434
1435<pre>
1436 &lt;returntype list&gt; (&lt;parameter list&gt;)
1437</pre>
1438
John Criswell0ec250c2005-10-24 16:17:18 +00001439<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001440specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001441which indicates that the function takes a variable number of arguments.
1442Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001443 href="#int_varargs">variable argument handling intrinsic</a> functions.
1444'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1445<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001446
Chris Lattner00950542001-06-06 20:29:01 +00001447<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001448<table class="layout">
1449 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001450 <td class="left"><tt>i32 (i32)</tt></td>
1451 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001452 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001453 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001454 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001455 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001456 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1457 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001458 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001459 <tt>float</tt>.
1460 </td>
1461 </tr><tr class="layout">
1462 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1463 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001464 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001465 which returns an integer. This is the signature for <tt>printf</tt> in
1466 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001467 </td>
Devang Patela582f402008-03-24 05:35:41 +00001468 </tr><tr class="layout">
1469 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanb0a57aa2008-11-27 06:41:20 +00001470 <td class="left">A function taking an <tt>i32</tt>, returning two
1471 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001472 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001473 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001474</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001475
Misha Brukman9d0919f2003-11-08 01:05:38 +00001476</div>
Chris Lattner00950542001-06-06 20:29:01 +00001477<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001478<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001479<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001480<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001481<p>The structure type is used to represent a collection of data members
1482together in memory. The packing of the field types is defined to match
1483the ABI of the underlying processor. The elements of a structure may
1484be any type that has a size.</p>
1485<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1486and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1487field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1488instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001489<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001490<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001491<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001492<table class="layout">
1493 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001494 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1495 <td class="left">A triple of three <tt>i32</tt> values</td>
1496 </tr><tr class="layout">
1497 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1498 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1499 second element is a <a href="#t_pointer">pointer</a> to a
1500 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1501 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001502 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001503</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001504
1505<p>Note that the code generator does not yet support large aggregate types
1506to be used as function return types. The specific limit on how large an
1507aggregate return type the code generator can currently handle is
1508target-dependent, and also dependent on the aggregate element types.</p>
1509
Misha Brukman9d0919f2003-11-08 01:05:38 +00001510</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001511
Chris Lattner00950542001-06-06 20:29:01 +00001512<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001513<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1514</div>
1515<div class="doc_text">
1516<h5>Overview:</h5>
1517<p>The packed structure type is used to represent a collection of data members
1518together in memory. There is no padding between fields. Further, the alignment
1519of a packed structure is 1 byte. The elements of a packed structure may
1520be any type that has a size.</p>
1521<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1522and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1523field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1524instruction.</p>
1525<h5>Syntax:</h5>
1526<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1527<h5>Examples:</h5>
1528<table class="layout">
1529 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001530 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1531 <td class="left">A triple of three <tt>i32</tt> values</td>
1532 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001533 <td class="left">
1534<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001535 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1536 second element is a <a href="#t_pointer">pointer</a> to a
1537 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1538 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001539 </tr>
1540</table>
1541</div>
1542
1543<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001544<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001545<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001546<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001547<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001548reference to another object, which must live in memory. Pointer types may have
1549an optional address space attribute defining the target-specific numbered
1550address space where the pointed-to object resides. The default address space is
1551zero.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001552<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001553<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001554<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001555<table class="layout">
1556 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00001557 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001558 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1559 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1560 </tr>
1561 <tr class="layout">
1562 <td class="left"><tt>i32 (i32 *) *</tt></td>
1563 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001564 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001565 <tt>i32</tt>.</td>
1566 </tr>
1567 <tr class="layout">
1568 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1569 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1570 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001571 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001572</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001573</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001574
Chris Lattnera58561b2004-08-12 19:12:28 +00001575<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001576<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001577<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001578
Chris Lattnera58561b2004-08-12 19:12:28 +00001579<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001580
Reid Spencer485bad12007-02-15 03:07:05 +00001581<p>A vector type is a simple derived type that represents a vector
1582of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001583are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001584A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001585elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001586of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001587considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001588
Chris Lattnera58561b2004-08-12 19:12:28 +00001589<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001590
1591<pre>
1592 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1593</pre>
1594
John Criswellc1f786c2005-05-13 22:25:59 +00001595<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001596be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001597
Chris Lattnera58561b2004-08-12 19:12:28 +00001598<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001599
Reid Spencerd3f876c2004-11-01 08:19:36 +00001600<table class="layout">
1601 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001602 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1603 <td class="left">Vector of 4 32-bit integer values.</td>
1604 </tr>
1605 <tr class="layout">
1606 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1607 <td class="left">Vector of 8 32-bit floating-point values.</td>
1608 </tr>
1609 <tr class="layout">
1610 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1611 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001612 </tr>
1613</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001614
1615<p>Note that the code generator does not yet support large vector types
1616to be used as function return types. The specific limit on how large a
1617vector return type codegen can currently handle is target-dependent;
1618currently it's often a few times longer than a hardware vector register.</p>
1619
Misha Brukman9d0919f2003-11-08 01:05:38 +00001620</div>
1621
Chris Lattner69c11bb2005-04-25 17:34:15 +00001622<!-- _______________________________________________________________________ -->
1623<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1624<div class="doc_text">
1625
1626<h5>Overview:</h5>
1627
1628<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001629corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001630In LLVM, opaque types can eventually be resolved to any type (not just a
1631structure type).</p>
1632
1633<h5>Syntax:</h5>
1634
1635<pre>
1636 opaque
1637</pre>
1638
1639<h5>Examples:</h5>
1640
1641<table class="layout">
1642 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001643 <td class="left"><tt>opaque</tt></td>
1644 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001645 </tr>
1646</table>
1647</div>
1648
1649
Chris Lattnerc3f59762004-12-09 17:30:23 +00001650<!-- *********************************************************************** -->
1651<div class="doc_section"> <a name="constants">Constants</a> </div>
1652<!-- *********************************************************************** -->
1653
1654<div class="doc_text">
1655
1656<p>LLVM has several different basic types of constants. This section describes
1657them all and their syntax.</p>
1658
1659</div>
1660
1661<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001662<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001663
1664<div class="doc_text">
1665
1666<dl>
1667 <dt><b>Boolean constants</b></dt>
1668
1669 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001670 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001671 </dd>
1672
1673 <dt><b>Integer constants</b></dt>
1674
Reid Spencercc16dc32004-12-09 18:02:53 +00001675 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001676 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001677 integer types.
1678 </dd>
1679
1680 <dt><b>Floating point constants</b></dt>
1681
1682 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1683 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001684 notation (see below). The assembler requires the exact decimal value of
1685 a floating-point constant. For example, the assembler accepts 1.25 but
1686 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1687 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001688
1689 <dt><b>Null pointer constants</b></dt>
1690
John Criswell9e2485c2004-12-10 15:51:16 +00001691 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001692 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1693
1694</dl>
1695
John Criswell9e2485c2004-12-10 15:51:16 +00001696<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001697of floating point constants. For example, the form '<tt>double
16980x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
16994.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001700(and the only time that they are generated by the disassembler) is when a
1701floating point constant must be emitted but it cannot be represented as a
1702decimal floating point number. For example, NaN's, infinities, and other
1703special values are represented in their IEEE hexadecimal format so that
1704assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001705
1706</div>
1707
1708<!-- ======================================================================= -->
1709<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1710</div>
1711
1712<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001713<p>Aggregate constants arise from aggregation of simple constants
1714and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001715
1716<dl>
1717 <dt><b>Structure constants</b></dt>
1718
1719 <dd>Structure constants are represented with notation similar to structure
1720 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001721 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1722 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001723 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001724 types of elements must match those specified by the type.
1725 </dd>
1726
1727 <dt><b>Array constants</b></dt>
1728
1729 <dd>Array constants are represented with notation similar to array type
1730 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001731 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001732 constants must have <a href="#t_array">array type</a>, and the number and
1733 types of elements must match those specified by the type.
1734 </dd>
1735
Reid Spencer485bad12007-02-15 03:07:05 +00001736 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001737
Reid Spencer485bad12007-02-15 03:07:05 +00001738 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001739 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001740 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001741 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001742 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001743 match those specified by the type.
1744 </dd>
1745
1746 <dt><b>Zero initialization</b></dt>
1747
1748 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1749 value to zero of <em>any</em> type, including scalar and aggregate types.
1750 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001751 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001752 initializers.
1753 </dd>
1754</dl>
1755
1756</div>
1757
1758<!-- ======================================================================= -->
1759<div class="doc_subsection">
1760 <a name="globalconstants">Global Variable and Function Addresses</a>
1761</div>
1762
1763<div class="doc_text">
1764
1765<p>The addresses of <a href="#globalvars">global variables</a> and <a
1766href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001767constants. These constants are explicitly referenced when the <a
1768href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001769href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1770file:</p>
1771
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001772<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001773<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001774@X = global i32 17
1775@Y = global i32 42
1776@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001777</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001778</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001779
1780</div>
1781
1782<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001783<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001784<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001785 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001786 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001787 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001788
Reid Spencer2dc45b82004-12-09 18:13:12 +00001789 <p>Undefined values indicate to the compiler that the program is well defined
1790 no matter what value is used, giving the compiler more freedom to optimize.
1791 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001792</div>
1793
1794<!-- ======================================================================= -->
1795<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1796</div>
1797
1798<div class="doc_text">
1799
1800<p>Constant expressions are used to allow expressions involving other constants
1801to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001802href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001803that does not have side effects (e.g. load and call are not supported). The
1804following is the syntax for constant expressions:</p>
1805
1806<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001807 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1808 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001809 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001810
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001811 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1812 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001813 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001814
1815 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1816 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001817 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001818
1819 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1820 <dd>Truncate a floating point constant to another floating point type. The
1821 size of CST must be larger than the size of TYPE. Both types must be
1822 floating point.</dd>
1823
1824 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1825 <dd>Floating point extend a constant to another type. The size of CST must be
1826 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1827
Reid Spencer1539a1c2007-07-31 14:40:14 +00001828 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001829 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001830 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1831 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1832 of the same number of elements. If the value won't fit in the integer type,
1833 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001834
Reid Spencerd4448792006-11-09 23:03:26 +00001835 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001836 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001837 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1838 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1839 of the same number of elements. If the value won't fit in the integer type,
1840 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001841
Reid Spencerd4448792006-11-09 23:03:26 +00001842 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001843 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001844 constant. TYPE must be a scalar or vector floating point type. CST must be of
1845 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1846 of the same number of elements. If the value won't fit in the floating point
1847 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001848
Reid Spencerd4448792006-11-09 23:03:26 +00001849 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001850 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001851 constant. TYPE must be a scalar or vector floating point type. CST must be of
1852 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1853 of the same number of elements. If the value won't fit in the floating point
1854 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001855
Reid Spencer5c0ef472006-11-11 23:08:07 +00001856 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1857 <dd>Convert a pointer typed constant to the corresponding integer constant
1858 TYPE must be an integer type. CST must be of pointer type. The CST value is
1859 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1860
1861 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1862 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1863 pointer type. CST must be of integer type. The CST value is zero extended,
1864 truncated, or unchanged to make it fit in a pointer size. This one is
1865 <i>really</i> dangerous!</dd>
1866
1867 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001868 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1869 identical (same number of bits). The conversion is done as if the CST value
1870 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001871 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001872 vector types to any other type, as long as they have the same bit width. For
Dan Gohman500233a2008-09-08 16:45:59 +00001873 pointers it is only valid to cast to another pointer type. It is not valid
1874 to bitcast to or from an aggregate type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001875 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001876
1877 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1878
1879 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1880 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1881 instruction, the index list may have zero or more indexes, which are required
1882 to make sense for the type of "CSTPTR".</dd>
1883
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001884 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1885
1886 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001887 constants.</dd>
1888
1889 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1890 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1891
1892 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1893 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001894
Nate Begemanac80ade2008-05-12 19:01:56 +00001895 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1896 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1897
1898 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1899 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1900
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001901 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1902
1903 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohman0e451ce2008-10-14 16:51:45 +00001904 operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001905
Robert Bocchino05ccd702006-01-15 20:48:27 +00001906 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1907
1908 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001909 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001910
Chris Lattnerc1989542006-04-08 00:13:41 +00001911
1912 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1913
1914 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001915 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001916
Chris Lattnerc3f59762004-12-09 17:30:23 +00001917 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1918
Reid Spencer2dc45b82004-12-09 18:13:12 +00001919 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1920 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001921 binary</a> operations. The constraints on operands are the same as those for
1922 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001923 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001924</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001925</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001926
Chris Lattner00950542001-06-06 20:29:01 +00001927<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001928<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1929<!-- *********************************************************************** -->
1930
1931<!-- ======================================================================= -->
1932<div class="doc_subsection">
1933<a name="inlineasm">Inline Assembler Expressions</a>
1934</div>
1935
1936<div class="doc_text">
1937
1938<p>
1939LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1940Module-Level Inline Assembly</a>) through the use of a special value. This
1941value represents the inline assembler as a string (containing the instructions
1942to emit), a list of operand constraints (stored as a string), and a flag that
1943indicates whether or not the inline asm expression has side effects. An example
1944inline assembler expression is:
1945</p>
1946
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001947<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001948<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001949i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001950</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001951</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001952
1953<p>
1954Inline assembler expressions may <b>only</b> be used as the callee operand of
1955a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1956</p>
1957
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001958<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001959<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001960%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001961</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001962</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001963
1964<p>
1965Inline asms with side effects not visible in the constraint list must be marked
1966as having side effects. This is done through the use of the
1967'<tt>sideeffect</tt>' keyword, like so:
1968</p>
1969
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001970<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001971<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001972call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001973</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001974</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001975
1976<p>TODO: The format of the asm and constraints string still need to be
1977documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00001978need to be documented). This is probably best done by reference to another
1979document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00001980</p>
1981
1982</div>
1983
1984<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001985<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1986<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001987
Misha Brukman9d0919f2003-11-08 01:05:38 +00001988<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001989
Chris Lattner261efe92003-11-25 01:02:51 +00001990<p>The LLVM instruction set consists of several different
1991classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001992instructions</a>, <a href="#binaryops">binary instructions</a>,
1993<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001994 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1995instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001996
Misha Brukman9d0919f2003-11-08 01:05:38 +00001997</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001998
Chris Lattner00950542001-06-06 20:29:01 +00001999<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002000<div class="doc_subsection"> <a name="terminators">Terminator
2001Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002002
Misha Brukman9d0919f2003-11-08 01:05:38 +00002003<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002004
Chris Lattner261efe92003-11-25 01:02:51 +00002005<p>As mentioned <a href="#functionstructure">previously</a>, every
2006basic block in a program ends with a "Terminator" instruction, which
2007indicates which block should be executed after the current block is
2008finished. These terminator instructions typically yield a '<tt>void</tt>'
2009value: they produce control flow, not values (the one exception being
2010the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00002011<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00002012 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
2013instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00002014the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
2015 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
2016 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002017
Misha Brukman9d0919f2003-11-08 01:05:38 +00002018</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002019
Chris Lattner00950542001-06-06 20:29:01 +00002020<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002021<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2022Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002023<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002024<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002025<pre>
2026 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002027 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00002028</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002029
Chris Lattner00950542001-06-06 20:29:01 +00002030<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002031
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002032<p>The '<tt>ret</tt>' instruction is used to return control flow (and
2033optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00002034<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002035returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00002036control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002037
Chris Lattner00950542001-06-06 20:29:01 +00002038<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002039
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002040<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
2041the return value. The type of the return value must be a
2042'<a href="#t_firstclass">first class</a>' type.</p>
2043
2044<p>A function is not <a href="#wellformed">well formed</a> if
2045it it has a non-void return type and contains a '<tt>ret</tt>'
2046instruction with no return value or a return value with a type that
2047does not match its type, or if it has a void return type and contains
2048a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002049
Chris Lattner00950542001-06-06 20:29:01 +00002050<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002051
Chris Lattner261efe92003-11-25 01:02:51 +00002052<p>When the '<tt>ret</tt>' instruction is executed, control flow
2053returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00002054 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00002055the instruction after the call. If the caller was an "<a
2056 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00002057at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00002058returns a value, that value shall set the call or invoke instruction's
Dan Gohman0e451ce2008-10-14 16:51:45 +00002059return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002060
Chris Lattner00950542001-06-06 20:29:01 +00002061<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002062
2063<pre>
2064 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002065 ret void <i>; Return from a void function</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002066 ret { i32, i8 } { i32 4, i8 2 } <i>; Return an aggregate of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002067</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002068
Dan Gohmand8791e52009-01-24 15:58:40 +00002069<p>Note that the code generator does not yet fully support large
2070 return values. The specific sizes that are currently supported are
2071 dependent on the target. For integers, on 32-bit targets the limit
2072 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2073 For aggregate types, the current limits are dependent on the element
2074 types; for example targets are often limited to 2 total integer
2075 elements and 2 total floating-point elements.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002076
Misha Brukman9d0919f2003-11-08 01:05:38 +00002077</div>
Chris Lattner00950542001-06-06 20:29:01 +00002078<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002079<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002080<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002081<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002082<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002083</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002084<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002085<p>The '<tt>br</tt>' instruction is used to cause control flow to
2086transfer to a different basic block in the current function. There are
2087two forms of this instruction, corresponding to a conditional branch
2088and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002089<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002090<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00002091single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00002092unconditional form of the '<tt>br</tt>' instruction takes a single
2093'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002094<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002095<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002096argument is evaluated. If the value is <tt>true</tt>, control flows
2097to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2098control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002099<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002100<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00002101 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002102</div>
Chris Lattner00950542001-06-06 20:29:01 +00002103<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002104<div class="doc_subsubsection">
2105 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2106</div>
2107
Misha Brukman9d0919f2003-11-08 01:05:38 +00002108<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002109<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002110
2111<pre>
2112 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2113</pre>
2114
Chris Lattner00950542001-06-06 20:29:01 +00002115<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002116
2117<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2118several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00002119instruction, allowing a branch to occur to one of many possible
2120destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002121
2122
Chris Lattner00950542001-06-06 20:29:01 +00002123<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002124
2125<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2126comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2127an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2128table is not allowed to contain duplicate constant entries.</p>
2129
Chris Lattner00950542001-06-06 20:29:01 +00002130<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002131
Chris Lattner261efe92003-11-25 01:02:51 +00002132<p>The <tt>switch</tt> instruction specifies a table of values and
2133destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002134table is searched for the given value. If the value is found, control flow is
2135transfered to the corresponding destination; otherwise, control flow is
2136transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002137
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002138<h5>Implementation:</h5>
2139
2140<p>Depending on properties of the target machine and the particular
2141<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002142ways. For example, it could be generated as a series of chained conditional
2143branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002144
2145<h5>Example:</h5>
2146
2147<pre>
2148 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002149 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00002150 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002151
2152 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002153 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002154
2155 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00002156 switch i32 %val, label %otherwise [ i32 0, label %onzero
2157 i32 1, label %onone
2158 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002159</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002160</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002161
Chris Lattner00950542001-06-06 20:29:01 +00002162<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002163<div class="doc_subsubsection">
2164 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2165</div>
2166
Misha Brukman9d0919f2003-11-08 01:05:38 +00002167<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002168
Chris Lattner00950542001-06-06 20:29:01 +00002169<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002170
2171<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002172 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002173 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002174</pre>
2175
Chris Lattner6536cfe2002-05-06 22:08:29 +00002176<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002177
2178<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2179function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002180'<tt>normal</tt>' label or the
2181'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002182"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2183"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002184href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohman0e451ce2008-10-14 16:51:45 +00002185continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002186
Chris Lattner00950542001-06-06 20:29:01 +00002187<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002188
Misha Brukman9d0919f2003-11-08 01:05:38 +00002189<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002190
Chris Lattner00950542001-06-06 20:29:01 +00002191<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002192 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002193 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002194 convention</a> the call should use. If none is specified, the call defaults
2195 to using C calling conventions.
2196 </li>
Devang Patelf642f472008-10-06 18:50:38 +00002197
2198 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2199 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2200 and '<tt>inreg</tt>' attributes are valid here.</li>
2201
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002202 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2203 function value being invoked. In most cases, this is a direct function
2204 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2205 an arbitrary pointer to function value.
2206 </li>
2207
2208 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2209 function to be invoked. </li>
2210
2211 <li>'<tt>function args</tt>': argument list whose types match the function
2212 signature argument types. If the function signature indicates the function
2213 accepts a variable number of arguments, the extra arguments can be
2214 specified. </li>
2215
2216 <li>'<tt>normal label</tt>': the label reached when the called function
2217 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2218
2219 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2220 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2221
Devang Patel307e8ab2008-10-07 17:48:33 +00002222 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00002223 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2224 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002225</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002226
Chris Lattner00950542001-06-06 20:29:01 +00002227<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002228
Misha Brukman9d0919f2003-11-08 01:05:38 +00002229<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002230href="#i_call">call</a></tt>' instruction in most regards. The primary
2231difference is that it establishes an association with a label, which is used by
2232the runtime library to unwind the stack.</p>
2233
2234<p>This instruction is used in languages with destructors to ensure that proper
2235cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2236exception. Additionally, this is important for implementation of
2237'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2238
Chris Lattner00950542001-06-06 20:29:01 +00002239<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002240<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002241 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002242 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002243 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002244 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002245</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002246</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002247
2248
Chris Lattner27f71f22003-09-03 00:41:47 +00002249<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002250
Chris Lattner261efe92003-11-25 01:02:51 +00002251<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2252Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002253
Misha Brukman9d0919f2003-11-08 01:05:38 +00002254<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002255
Chris Lattner27f71f22003-09-03 00:41:47 +00002256<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002257<pre>
2258 unwind
2259</pre>
2260
Chris Lattner27f71f22003-09-03 00:41:47 +00002261<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002262
2263<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2264at the first callee in the dynamic call stack which used an <a
2265href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2266primarily used to implement exception handling.</p>
2267
Chris Lattner27f71f22003-09-03 00:41:47 +00002268<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002269
Chris Lattner72ed2002008-04-19 21:01:16 +00002270<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002271immediately halt. The dynamic call stack is then searched for the first <a
2272href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2273execution continues at the "exceptional" destination block specified by the
2274<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2275dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002276</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002277
2278<!-- _______________________________________________________________________ -->
2279
2280<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2281Instruction</a> </div>
2282
2283<div class="doc_text">
2284
2285<h5>Syntax:</h5>
2286<pre>
2287 unreachable
2288</pre>
2289
2290<h5>Overview:</h5>
2291
2292<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2293instruction is used to inform the optimizer that a particular portion of the
2294code is not reachable. This can be used to indicate that the code after a
2295no-return function cannot be reached, and other facts.</p>
2296
2297<h5>Semantics:</h5>
2298
2299<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2300</div>
2301
2302
2303
Chris Lattner00950542001-06-06 20:29:01 +00002304<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002305<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002306<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002307<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002308program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002309produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002310multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002311The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002312<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002313</div>
Chris Lattner00950542001-06-06 20:29:01 +00002314<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002315<div class="doc_subsubsection">
2316 <a name="i_add">'<tt>add</tt>' Instruction</a>
2317</div>
2318
Misha Brukman9d0919f2003-11-08 01:05:38 +00002319<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002320
Chris Lattner00950542001-06-06 20:29:01 +00002321<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002322
2323<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002324 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002325</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002326
Chris Lattner00950542001-06-06 20:29:01 +00002327<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002328
Misha Brukman9d0919f2003-11-08 01:05:38 +00002329<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002330
Chris Lattner00950542001-06-06 20:29:01 +00002331<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002332
2333<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2334 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2335 <a href="#t_vector">vector</a> values. Both arguments must have identical
2336 types.</p>
2337
Chris Lattner00950542001-06-06 20:29:01 +00002338<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002339
Misha Brukman9d0919f2003-11-08 01:05:38 +00002340<p>The value produced is the integer or floating point sum of the two
2341operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002342
Chris Lattner5ec89832008-01-28 00:36:27 +00002343<p>If an integer sum has unsigned overflow, the result returned is the
2344mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2345the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002346
Chris Lattner5ec89832008-01-28 00:36:27 +00002347<p>Because LLVM integers use a two's complement representation, this
2348instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002349
Chris Lattner00950542001-06-06 20:29:01 +00002350<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002351
2352<pre>
2353 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002354</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002355</div>
Chris Lattner00950542001-06-06 20:29:01 +00002356<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002357<div class="doc_subsubsection">
2358 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2359</div>
2360
Misha Brukman9d0919f2003-11-08 01:05:38 +00002361<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002362
Chris Lattner00950542001-06-06 20:29:01 +00002363<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002364
2365<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002366 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002367</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002368
Chris Lattner00950542001-06-06 20:29:01 +00002369<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002370
Misha Brukman9d0919f2003-11-08 01:05:38 +00002371<p>The '<tt>sub</tt>' instruction returns the difference of its two
2372operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002373
2374<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2375'<tt>neg</tt>' instruction present in most other intermediate
2376representations.</p>
2377
Chris Lattner00950542001-06-06 20:29:01 +00002378<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002379
2380<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2381 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2382 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2383 types.</p>
2384
Chris Lattner00950542001-06-06 20:29:01 +00002385<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002386
Chris Lattner261efe92003-11-25 01:02:51 +00002387<p>The value produced is the integer or floating point difference of
2388the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002389
Chris Lattner5ec89832008-01-28 00:36:27 +00002390<p>If an integer difference has unsigned overflow, the result returned is the
2391mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2392the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002393
Chris Lattner5ec89832008-01-28 00:36:27 +00002394<p>Because LLVM integers use a two's complement representation, this
2395instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002396
Chris Lattner00950542001-06-06 20:29:01 +00002397<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002398<pre>
2399 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002400 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002401</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002402</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002403
Chris Lattner00950542001-06-06 20:29:01 +00002404<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002405<div class="doc_subsubsection">
2406 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2407</div>
2408
Misha Brukman9d0919f2003-11-08 01:05:38 +00002409<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002410
Chris Lattner00950542001-06-06 20:29:01 +00002411<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002412<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002413</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002414<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002415<p>The '<tt>mul</tt>' instruction returns the product of its two
2416operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002417
Chris Lattner00950542001-06-06 20:29:01 +00002418<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002419
2420<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2421href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2422or <a href="#t_vector">vector</a> values. Both arguments must have identical
2423types.</p>
2424
Chris Lattner00950542001-06-06 20:29:01 +00002425<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002426
Chris Lattner261efe92003-11-25 01:02:51 +00002427<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002428two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002429
Chris Lattner5ec89832008-01-28 00:36:27 +00002430<p>If the result of an integer multiplication has unsigned overflow,
2431the result returned is the mathematical result modulo
24322<sup>n</sup>, where n is the bit width of the result.</p>
2433<p>Because LLVM integers use a two's complement representation, and the
2434result is the same width as the operands, this instruction returns the
2435correct result for both signed and unsigned integers. If a full product
2436(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2437should be sign-extended or zero-extended as appropriate to the
2438width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002439<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002440<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002441</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002442</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002443
Chris Lattner00950542001-06-06 20:29:01 +00002444<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002445<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2446</a></div>
2447<div class="doc_text">
2448<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002449<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002450</pre>
2451<h5>Overview:</h5>
2452<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2453operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002454
Reid Spencer1628cec2006-10-26 06:15:43 +00002455<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002456
Reid Spencer1628cec2006-10-26 06:15:43 +00002457<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002458<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2459values. Both arguments must have identical types.</p>
2460
Reid Spencer1628cec2006-10-26 06:15:43 +00002461<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002462
Chris Lattner5ec89832008-01-28 00:36:27 +00002463<p>The value produced is the unsigned integer quotient of the two operands.</p>
2464<p>Note that unsigned integer division and signed integer division are distinct
2465operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2466<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002467<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002468<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002469</pre>
2470</div>
2471<!-- _______________________________________________________________________ -->
2472<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2473</a> </div>
2474<div class="doc_text">
2475<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002476<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002477 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002478</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002479
Reid Spencer1628cec2006-10-26 06:15:43 +00002480<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002481
Reid Spencer1628cec2006-10-26 06:15:43 +00002482<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2483operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002484
Reid Spencer1628cec2006-10-26 06:15:43 +00002485<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002486
2487<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2488<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2489values. Both arguments must have identical types.</p>
2490
Reid Spencer1628cec2006-10-26 06:15:43 +00002491<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002492<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002493<p>Note that signed integer division and unsigned integer division are distinct
2494operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2495<p>Division by zero leads to undefined behavior. Overflow also leads to
2496undefined behavior; this is a rare case, but can occur, for example,
2497by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002498<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002499<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002500</pre>
2501</div>
2502<!-- _______________________________________________________________________ -->
2503<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002504Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002505<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002506<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002507<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002508 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002509</pre>
2510<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002511
Reid Spencer1628cec2006-10-26 06:15:43 +00002512<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002513operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002514
Chris Lattner261efe92003-11-25 01:02:51 +00002515<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002516
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002517<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002518<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2519of floating point values. Both arguments must have identical types.</p>
2520
Chris Lattner261efe92003-11-25 01:02:51 +00002521<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002522
Reid Spencer1628cec2006-10-26 06:15:43 +00002523<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002524
Chris Lattner261efe92003-11-25 01:02:51 +00002525<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002526
2527<pre>
2528 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002529</pre>
2530</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002531
Chris Lattner261efe92003-11-25 01:02:51 +00002532<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002533<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2534</div>
2535<div class="doc_text">
2536<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002537<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002538</pre>
2539<h5>Overview:</h5>
2540<p>The '<tt>urem</tt>' instruction returns the remainder from the
2541unsigned division of its two arguments.</p>
2542<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002543<p>The two arguments to the '<tt>urem</tt>' instruction must be
2544<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2545values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002546<h5>Semantics:</h5>
2547<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002548This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002549<p>Note that unsigned integer remainder and signed integer remainder are
2550distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2551<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002552<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002553<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002554</pre>
2555
2556</div>
2557<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002558<div class="doc_subsubsection">
2559 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2560</div>
2561
Chris Lattner261efe92003-11-25 01:02:51 +00002562<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002563
Chris Lattner261efe92003-11-25 01:02:51 +00002564<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002565
2566<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002567 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002568</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002569
Chris Lattner261efe92003-11-25 01:02:51 +00002570<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002571
Reid Spencer0a783f72006-11-02 01:53:59 +00002572<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002573signed division of its two operands. This instruction can also take
2574<a href="#t_vector">vector</a> versions of the values in which case
2575the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002576
Chris Lattner261efe92003-11-25 01:02:51 +00002577<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002578
Reid Spencer0a783f72006-11-02 01:53:59 +00002579<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002580<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2581values. Both arguments must have identical types.</p>
2582
Chris Lattner261efe92003-11-25 01:02:51 +00002583<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002584
Reid Spencer0a783f72006-11-02 01:53:59 +00002585<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002586has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2587operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002588a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002589 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002590Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002591please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002592Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002593<p>Note that signed integer remainder and unsigned integer remainder are
2594distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2595<p>Taking the remainder of a division by zero leads to undefined behavior.
2596Overflow also leads to undefined behavior; this is a rare case, but can occur,
2597for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2598(The remainder doesn't actually overflow, but this rule lets srem be
2599implemented using instructions that return both the result of the division
2600and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002601<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002602<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002603</pre>
2604
2605</div>
2606<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002607<div class="doc_subsubsection">
2608 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2609
Reid Spencer0a783f72006-11-02 01:53:59 +00002610<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002611
Reid Spencer0a783f72006-11-02 01:53:59 +00002612<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002613<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002614</pre>
2615<h5>Overview:</h5>
2616<p>The '<tt>frem</tt>' instruction returns the remainder from the
2617division of its two operands.</p>
2618<h5>Arguments:</h5>
2619<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002620<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2621of floating point values. Both arguments must have identical types.</p>
2622
Reid Spencer0a783f72006-11-02 01:53:59 +00002623<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002624
Chris Lattnera73afe02008-04-01 18:45:27 +00002625<p>This instruction returns the <i>remainder</i> of a division.
2626The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002627
Reid Spencer0a783f72006-11-02 01:53:59 +00002628<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002629
2630<pre>
2631 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002632</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002633</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002634
Reid Spencer8e11bf82007-02-02 13:57:07 +00002635<!-- ======================================================================= -->
2636<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2637Operations</a> </div>
2638<div class="doc_text">
2639<p>Bitwise binary operators are used to do various forms of
2640bit-twiddling in a program. They are generally very efficient
2641instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002642instructions. They require two operands of the same type, execute an operation on them,
2643and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002644</div>
2645
Reid Spencer569f2fa2007-01-31 21:39:12 +00002646<!-- _______________________________________________________________________ -->
2647<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2648Instruction</a> </div>
2649<div class="doc_text">
2650<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002651<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002652</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002653
Reid Spencer569f2fa2007-01-31 21:39:12 +00002654<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002655
Reid Spencer569f2fa2007-01-31 21:39:12 +00002656<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2657the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002658
Reid Spencer569f2fa2007-01-31 21:39:12 +00002659<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002660
Reid Spencer569f2fa2007-01-31 21:39:12 +00002661<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002662 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002663type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002664
Reid Spencer569f2fa2007-01-31 21:39:12 +00002665<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002666
Gabor Greiffb224a22008-08-07 21:46:00 +00002667<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2668where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang01f8d092008-12-10 08:55:09 +00002669equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2670If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2671corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002672
Reid Spencer569f2fa2007-01-31 21:39:12 +00002673<h5>Example:</h5><pre>
2674 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2675 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2676 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002677 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002678 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002679</pre>
2680</div>
2681<!-- _______________________________________________________________________ -->
2682<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2683Instruction</a> </div>
2684<div class="doc_text">
2685<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002686<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002687</pre>
2688
2689<h5>Overview:</h5>
2690<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002691operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002692
2693<h5>Arguments:</h5>
2694<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002695<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002696type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002697
2698<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002699
Reid Spencer569f2fa2007-01-31 21:39:12 +00002700<p>This instruction always performs a logical shift right operation. The most
2701significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002702shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang01f8d092008-12-10 08:55:09 +00002703the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2704vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2705amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002706
2707<h5>Example:</h5>
2708<pre>
2709 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2710 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2711 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2712 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002713 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002714 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002715</pre>
2716</div>
2717
Reid Spencer8e11bf82007-02-02 13:57:07 +00002718<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002719<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2720Instruction</a> </div>
2721<div class="doc_text">
2722
2723<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002724<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002725</pre>
2726
2727<h5>Overview:</h5>
2728<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002729operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002730
2731<h5>Arguments:</h5>
2732<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002733<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002734type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002735
2736<h5>Semantics:</h5>
2737<p>This instruction always performs an arithmetic shift right operation,
2738The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00002739of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang01f8d092008-12-10 08:55:09 +00002740larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
2741arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2742corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002743
2744<h5>Example:</h5>
2745<pre>
2746 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2747 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2748 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2749 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002750 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002751 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002752</pre>
2753</div>
2754
Chris Lattner00950542001-06-06 20:29:01 +00002755<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002756<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2757Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002758
Misha Brukman9d0919f2003-11-08 01:05:38 +00002759<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002760
Chris Lattner00950542001-06-06 20:29:01 +00002761<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002762
2763<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002764 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002765</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002766
Chris Lattner00950542001-06-06 20:29:01 +00002767<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002768
Chris Lattner261efe92003-11-25 01:02:51 +00002769<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2770its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002771
Chris Lattner00950542001-06-06 20:29:01 +00002772<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002773
2774<p>The two arguments to the '<tt>and</tt>' instruction must be
2775<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2776values. Both arguments must have identical types.</p>
2777
Chris Lattner00950542001-06-06 20:29:01 +00002778<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002779<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002780<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002781<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002782<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002783 <tbody>
2784 <tr>
2785 <td>In0</td>
2786 <td>In1</td>
2787 <td>Out</td>
2788 </tr>
2789 <tr>
2790 <td>0</td>
2791 <td>0</td>
2792 <td>0</td>
2793 </tr>
2794 <tr>
2795 <td>0</td>
2796 <td>1</td>
2797 <td>0</td>
2798 </tr>
2799 <tr>
2800 <td>1</td>
2801 <td>0</td>
2802 <td>0</td>
2803 </tr>
2804 <tr>
2805 <td>1</td>
2806 <td>1</td>
2807 <td>1</td>
2808 </tr>
2809 </tbody>
2810</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002811</div>
Chris Lattner00950542001-06-06 20:29:01 +00002812<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002813<pre>
2814 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002815 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2816 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002817</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002818</div>
Chris Lattner00950542001-06-06 20:29:01 +00002819<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002820<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002821<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002822<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002823<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002824</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002825<h5>Overview:</h5>
2826<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2827or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002828<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002829
2830<p>The two arguments to the '<tt>or</tt>' instruction must be
2831<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2832values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002833<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002834<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002835<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002836<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002837<table border="1" cellspacing="0" cellpadding="4">
2838 <tbody>
2839 <tr>
2840 <td>In0</td>
2841 <td>In1</td>
2842 <td>Out</td>
2843 </tr>
2844 <tr>
2845 <td>0</td>
2846 <td>0</td>
2847 <td>0</td>
2848 </tr>
2849 <tr>
2850 <td>0</td>
2851 <td>1</td>
2852 <td>1</td>
2853 </tr>
2854 <tr>
2855 <td>1</td>
2856 <td>0</td>
2857 <td>1</td>
2858 </tr>
2859 <tr>
2860 <td>1</td>
2861 <td>1</td>
2862 <td>1</td>
2863 </tr>
2864 </tbody>
2865</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002866</div>
Chris Lattner00950542001-06-06 20:29:01 +00002867<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002868<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2869 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2870 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002871</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002872</div>
Chris Lattner00950542001-06-06 20:29:01 +00002873<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002874<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2875Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002876<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002877<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002878<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002879</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002880<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002881<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2882or of its two operands. The <tt>xor</tt> is used to implement the
2883"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002884<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002885<p>The two arguments to the '<tt>xor</tt>' instruction must be
2886<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2887values. Both arguments must have identical types.</p>
2888
Chris Lattner00950542001-06-06 20:29:01 +00002889<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002890
Misha Brukman9d0919f2003-11-08 01:05:38 +00002891<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002892<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002893<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002894<table border="1" cellspacing="0" cellpadding="4">
2895 <tbody>
2896 <tr>
2897 <td>In0</td>
2898 <td>In1</td>
2899 <td>Out</td>
2900 </tr>
2901 <tr>
2902 <td>0</td>
2903 <td>0</td>
2904 <td>0</td>
2905 </tr>
2906 <tr>
2907 <td>0</td>
2908 <td>1</td>
2909 <td>1</td>
2910 </tr>
2911 <tr>
2912 <td>1</td>
2913 <td>0</td>
2914 <td>1</td>
2915 </tr>
2916 <tr>
2917 <td>1</td>
2918 <td>1</td>
2919 <td>0</td>
2920 </tr>
2921 </tbody>
2922</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002923</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002924<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002925<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002926<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2927 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2928 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2929 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002930</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002931</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002932
Chris Lattner00950542001-06-06 20:29:01 +00002933<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002934<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002935 <a name="vectorops">Vector Operations</a>
2936</div>
2937
2938<div class="doc_text">
2939
2940<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002941target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002942vector-specific operations needed to process vectors effectively. While LLVM
2943does directly support these vector operations, many sophisticated algorithms
2944will want to use target-specific intrinsics to take full advantage of a specific
2945target.</p>
2946
2947</div>
2948
2949<!-- _______________________________________________________________________ -->
2950<div class="doc_subsubsection">
2951 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2952</div>
2953
2954<div class="doc_text">
2955
2956<h5>Syntax:</h5>
2957
2958<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002959 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002960</pre>
2961
2962<h5>Overview:</h5>
2963
2964<p>
2965The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002966element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002967</p>
2968
2969
2970<h5>Arguments:</h5>
2971
2972<p>
2973The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002974value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002975an index indicating the position from which to extract the element.
2976The index may be a variable.</p>
2977
2978<h5>Semantics:</h5>
2979
2980<p>
2981The result is a scalar of the same type as the element type of
2982<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2983<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2984results are undefined.
2985</p>
2986
2987<h5>Example:</h5>
2988
2989<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002990 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002991</pre>
2992</div>
2993
2994
2995<!-- _______________________________________________________________________ -->
2996<div class="doc_subsubsection">
2997 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2998</div>
2999
3000<div class="doc_text">
3001
3002<h5>Syntax:</h5>
3003
3004<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00003005 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003006</pre>
3007
3008<h5>Overview:</h5>
3009
3010<p>
3011The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003012element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003013</p>
3014
3015
3016<h5>Arguments:</h5>
3017
3018<p>
3019The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003020value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00003021scalar value whose type must equal the element type of the first
3022operand. The third operand is an index indicating the position at
3023which to insert the value. The index may be a variable.</p>
3024
3025<h5>Semantics:</h5>
3026
3027<p>
Reid Spencer485bad12007-02-15 03:07:05 +00003028The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00003029element values are those of <tt>val</tt> except at position
3030<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
3031exceeds the length of <tt>val</tt>, the results are undefined.
3032</p>
3033
3034<h5>Example:</h5>
3035
3036<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003037 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003038</pre>
3039</div>
3040
3041<!-- _______________________________________________________________________ -->
3042<div class="doc_subsubsection">
3043 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3044</div>
3045
3046<div class="doc_text">
3047
3048<h5>Syntax:</h5>
3049
3050<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003051 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003052</pre>
3053
3054<h5>Overview:</h5>
3055
3056<p>
3057The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wangaeb06d22008-11-10 04:46:22 +00003058from two input vectors, returning a vector with the same element type as
3059the input and length that is the same as the shuffle mask.
Chris Lattner3df241e2006-04-08 23:07:04 +00003060</p>
3061
3062<h5>Arguments:</h5>
3063
3064<p>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003065The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3066with types that match each other. The third argument is a shuffle mask whose
3067element type is always 'i32'. The result of the instruction is a vector whose
3068length is the same as the shuffle mask and whose element type is the same as
3069the element type of the first two operands.
Chris Lattner3df241e2006-04-08 23:07:04 +00003070</p>
3071
3072<p>
3073The shuffle mask operand is required to be a constant vector with either
3074constant integer or undef values.
3075</p>
3076
3077<h5>Semantics:</h5>
3078
3079<p>
3080The elements of the two input vectors are numbered from left to right across
3081both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wangaeb06d22008-11-10 04:46:22 +00003082the result vector, which element of the two input vectors the result element
Chris Lattner3df241e2006-04-08 23:07:04 +00003083gets. The element selector may be undef (meaning "don't care") and the second
3084operand may be undef if performing a shuffle from only one vector.
3085</p>
3086
3087<h5>Example:</h5>
3088
3089<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003090 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003091 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003092 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3093 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00003094 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3095 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3096 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3097 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003098</pre>
3099</div>
3100
Tanya Lattner09474292006-04-14 19:24:33 +00003101
Chris Lattner3df241e2006-04-08 23:07:04 +00003102<!-- ======================================================================= -->
3103<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003104 <a name="aggregateops">Aggregate Operations</a>
3105</div>
3106
3107<div class="doc_text">
3108
3109<p>LLVM supports several instructions for working with aggregate values.
3110</p>
3111
3112</div>
3113
3114<!-- _______________________________________________________________________ -->
3115<div class="doc_subsubsection">
3116 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3117</div>
3118
3119<div class="doc_text">
3120
3121<h5>Syntax:</h5>
3122
3123<pre>
3124 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3125</pre>
3126
3127<h5>Overview:</h5>
3128
3129<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003130The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3131or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003132</p>
3133
3134
3135<h5>Arguments:</h5>
3136
3137<p>
3138The first operand of an '<tt>extractvalue</tt>' instruction is a
3139value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003140type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003141in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003142'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3143</p>
3144
3145<h5>Semantics:</h5>
3146
3147<p>
3148The result is the value at the position in the aggregate specified by
3149the index operands.
3150</p>
3151
3152<h5>Example:</h5>
3153
3154<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003155 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003156</pre>
3157</div>
3158
3159
3160<!-- _______________________________________________________________________ -->
3161<div class="doc_subsubsection">
3162 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3163</div>
3164
3165<div class="doc_text">
3166
3167<h5>Syntax:</h5>
3168
3169<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003170 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003171</pre>
3172
3173<h5>Overview:</h5>
3174
3175<p>
3176The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003177into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003178</p>
3179
3180
3181<h5>Arguments:</h5>
3182
3183<p>
3184The first operand of an '<tt>insertvalue</tt>' instruction is a
3185value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3186The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003187The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003188indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003189indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003190'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3191The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003192by the indices.
Dan Gohman0e451ce2008-10-14 16:51:45 +00003193</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003194
3195<h5>Semantics:</h5>
3196
3197<p>
3198The result is an aggregate of the same type as <tt>val</tt>. Its
3199value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003200specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003201</p>
3202
3203<h5>Example:</h5>
3204
3205<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003206 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003207</pre>
3208</div>
3209
3210
3211<!-- ======================================================================= -->
3212<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003213 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003214</div>
3215
Misha Brukman9d0919f2003-11-08 01:05:38 +00003216<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003217
Chris Lattner261efe92003-11-25 01:02:51 +00003218<p>A key design point of an SSA-based representation is how it
3219represents memory. In LLVM, no memory locations are in SSA form, which
3220makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003221allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003222
Misha Brukman9d0919f2003-11-08 01:05:38 +00003223</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003224
Chris Lattner00950542001-06-06 20:29:01 +00003225<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003226<div class="doc_subsubsection">
3227 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3228</div>
3229
Misha Brukman9d0919f2003-11-08 01:05:38 +00003230<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003231
Chris Lattner00950542001-06-06 20:29:01 +00003232<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003233
3234<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003235 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003236</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003237
Chris Lattner00950542001-06-06 20:29:01 +00003238<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003239
Chris Lattner261efe92003-11-25 01:02:51 +00003240<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003241heap and returns a pointer to it. The object is always allocated in the generic
3242address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003243
Chris Lattner00950542001-06-06 20:29:01 +00003244<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003245
3246<p>The '<tt>malloc</tt>' instruction allocates
3247<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003248bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003249appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003250number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003251If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003252be aligned to at least that boundary. If not specified, or if zero, the target can
3253choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003254
Misha Brukman9d0919f2003-11-08 01:05:38 +00003255<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003256
Chris Lattner00950542001-06-06 20:29:01 +00003257<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003258
Chris Lattner261efe92003-11-25 01:02:51 +00003259<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewycky02ff3082008-11-24 03:41:24 +00003260a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattner72ed2002008-04-19 21:01:16 +00003261result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003262
Chris Lattner2cbdc452005-11-06 08:02:57 +00003263<h5>Example:</h5>
3264
3265<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003266 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003267
Bill Wendlingaac388b2007-05-29 09:42:13 +00003268 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3269 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3270 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3271 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3272 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003273</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00003274
3275<p>Note that the code generator does not yet respect the
3276 alignment value.</p>
3277
Misha Brukman9d0919f2003-11-08 01:05:38 +00003278</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003279
Chris Lattner00950542001-06-06 20:29:01 +00003280<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003281<div class="doc_subsubsection">
3282 <a name="i_free">'<tt>free</tt>' Instruction</a>
3283</div>
3284
Misha Brukman9d0919f2003-11-08 01:05:38 +00003285<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003286
Chris Lattner00950542001-06-06 20:29:01 +00003287<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003288
3289<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003290 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003291</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003292
Chris Lattner00950542001-06-06 20:29:01 +00003293<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003294
Chris Lattner261efe92003-11-25 01:02:51 +00003295<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003296memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003297
Chris Lattner00950542001-06-06 20:29:01 +00003298<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003299
Chris Lattner261efe92003-11-25 01:02:51 +00003300<p>'<tt>value</tt>' shall be a pointer value that points to a value
3301that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3302instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003303
Chris Lattner00950542001-06-06 20:29:01 +00003304<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003305
John Criswell9e2485c2004-12-10 15:51:16 +00003306<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003307after this instruction executes. If the pointer is null, the operation
3308is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003309
Chris Lattner00950542001-06-06 20:29:01 +00003310<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003311
3312<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003313 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003314 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003315</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003316</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003317
Chris Lattner00950542001-06-06 20:29:01 +00003318<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003319<div class="doc_subsubsection">
3320 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3321</div>
3322
Misha Brukman9d0919f2003-11-08 01:05:38 +00003323<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003324
Chris Lattner00950542001-06-06 20:29:01 +00003325<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003326
3327<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003328 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003329</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003330
Chris Lattner00950542001-06-06 20:29:01 +00003331<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003332
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003333<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3334currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003335returns to its caller. The object is always allocated in the generic address
3336space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003337
Chris Lattner00950542001-06-06 20:29:01 +00003338<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003339
John Criswell9e2485c2004-12-10 15:51:16 +00003340<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003341bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003342appropriate type to the program. If "NumElements" is specified, it is the
3343number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003344If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003345to be aligned to at least that boundary. If not specified, or if zero, the target
3346can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003347
Misha Brukman9d0919f2003-11-08 01:05:38 +00003348<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003349
Chris Lattner00950542001-06-06 20:29:01 +00003350<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003351
Chris Lattner72ed2002008-04-19 21:01:16 +00003352<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3353there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003354memory is automatically released when the function returns. The '<tt>alloca</tt>'
3355instruction is commonly used to represent automatic variables that must
3356have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003357 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003358instructions), the memory is reclaimed. Allocating zero bytes
3359is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003360
Chris Lattner00950542001-06-06 20:29:01 +00003361<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003362
3363<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003364 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3365 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3366 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3367 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003368</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003369</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003370
Chris Lattner00950542001-06-06 20:29:01 +00003371<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003372<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3373Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003374<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003375<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003376<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003377<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003378<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003379<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003380<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003381address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003382 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003383marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003384the number or order of execution of this <tt>load</tt> with other
3385volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3386instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003387<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003388The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003389(that is, the alignment of the memory address). A value of 0 or an
3390omitted "align" argument means that the operation has the preferential
3391alignment for the target. It is the responsibility of the code emitter
3392to ensure that the alignment information is correct. Overestimating
3393the alignment results in an undefined behavior. Underestimating the
3394alignment may produce less efficient code. An alignment of 1 is always
3395safe.
3396</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003397<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003398<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003399<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003400<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003401 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003402 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3403 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003404</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003405</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003406<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003407<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3408Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003409<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003410<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003411<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3412 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003413</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003414<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003415<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003416<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003417<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003418to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003419operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3420of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003421operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003422optimizer is not allowed to modify the number or order of execution of
3423this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3424 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003425<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003426The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003427(that is, the alignment of the memory address). A value of 0 or an
3428omitted "align" argument means that the operation has the preferential
3429alignment for the target. It is the responsibility of the code emitter
3430to ensure that the alignment information is correct. Overestimating
3431the alignment results in an undefined behavior. Underestimating the
3432alignment may produce less efficient code. An alignment of 1 is always
3433safe.
3434</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003435<h5>Semantics:</h5>
3436<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3437at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003438<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003439<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003440 store i32 3, i32* %ptr <i>; yields {void}</i>
3441 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003442</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003443</div>
3444
Chris Lattner2b7d3202002-05-06 03:03:22 +00003445<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003446<div class="doc_subsubsection">
3447 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3448</div>
3449
Misha Brukman9d0919f2003-11-08 01:05:38 +00003450<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003451<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003452<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003453 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003454</pre>
3455
Chris Lattner7faa8832002-04-14 06:13:44 +00003456<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003457
3458<p>
3459The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003460subelement of an aggregate data structure. It performs address calculation only
3461and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003462
Chris Lattner7faa8832002-04-14 06:13:44 +00003463<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003464
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003465<p>The first argument is always a pointer, and forms the basis of the
3466calculation. The remaining arguments are indices, that indicate which of the
3467elements of the aggregate object are indexed. The interpretation of each index
3468is dependent on the type being indexed into. The first index always indexes the
3469pointer value given as the first argument, the second index indexes a value of
3470the type pointed to (not necessarily the value directly pointed to, since the
3471first index can be non-zero), etc. The first type indexed into must be a pointer
3472value, subsequent types can be arrays, vectors and structs. Note that subsequent
3473types being indexed into can never be pointers, since that would require loading
3474the pointer before continuing calculation.</p>
3475
3476<p>The type of each index argument depends on the type it is indexing into.
3477When indexing into a (packed) structure, only <tt>i32</tt> integer
3478<b>constants</b> are allowed. When indexing into an array, pointer or vector,
3479only integers of 32 or 64 bits are allowed (also non-constants). 32-bit values
3480will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003481
Chris Lattner261efe92003-11-25 01:02:51 +00003482<p>For example, let's consider a C code fragment and how it gets
3483compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003484
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003485<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003486<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003487struct RT {
3488 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003489 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003490 char C;
3491};
3492struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003493 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003494 double Y;
3495 struct RT Z;
3496};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003497
Chris Lattnercabc8462007-05-29 15:43:56 +00003498int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003499 return &amp;s[1].Z.B[5][13];
3500}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003501</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003502</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003503
Misha Brukman9d0919f2003-11-08 01:05:38 +00003504<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003505
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003506<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003507<pre>
Chris Lattnere7886e42009-01-11 20:53:49 +00003508%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3509%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003510
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003511define i32* %foo(%ST* %s) {
3512entry:
3513 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3514 ret i32* %reg
3515}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003516</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003517</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003518
Chris Lattner7faa8832002-04-14 06:13:44 +00003519<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003520
Misha Brukman9d0919f2003-11-08 01:05:38 +00003521<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003522type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003523}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003524the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3525i8 }</tt>' type, another structure. The third index indexes into the second
3526element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003527array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003528'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3529to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003530
Chris Lattner261efe92003-11-25 01:02:51 +00003531<p>Note that it is perfectly legal to index partially through a
3532structure, returning a pointer to an inner element. Because of this,
3533the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003534
3535<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003536 define i32* %foo(%ST* %s) {
3537 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003538 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3539 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003540 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3541 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3542 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003543 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003544</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003545
3546<p>Note that it is undefined to access an array out of bounds: array and
3547pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003548The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003549defined to be accessible as variable length arrays, which requires access
3550beyond the zero'th element.</p>
3551
Chris Lattner884a9702006-08-15 00:45:58 +00003552<p>The getelementptr instruction is often confusing. For some more insight
3553into how it works, see <a href="GetElementPtr.html">the getelementptr
3554FAQ</a>.</p>
3555
Chris Lattner7faa8832002-04-14 06:13:44 +00003556<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003557
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003558<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003559 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003560 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3561 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003562 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003563 <i>; yields i8*:eptr</i>
3564 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003565</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003566</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003567
Chris Lattner00950542001-06-06 20:29:01 +00003568<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003569<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003570</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003571<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003572<p>The instructions in this category are the conversion instructions (casting)
3573which all take a single operand and a type. They perform various bit conversions
3574on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003575</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003576
Chris Lattner6536cfe2002-05-06 22:08:29 +00003577<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003578<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003579 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3580</div>
3581<div class="doc_text">
3582
3583<h5>Syntax:</h5>
3584<pre>
3585 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3586</pre>
3587
3588<h5>Overview:</h5>
3589<p>
3590The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3591</p>
3592
3593<h5>Arguments:</h5>
3594<p>
3595The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3596be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003597and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003598type. The bit size of <tt>value</tt> must be larger than the bit size of
3599<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003600
3601<h5>Semantics:</h5>
3602<p>
3603The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003604and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3605larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3606It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003607
3608<h5>Example:</h5>
3609<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003610 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003611 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3612 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003613</pre>
3614</div>
3615
3616<!-- _______________________________________________________________________ -->
3617<div class="doc_subsubsection">
3618 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3619</div>
3620<div class="doc_text">
3621
3622<h5>Syntax:</h5>
3623<pre>
3624 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3625</pre>
3626
3627<h5>Overview:</h5>
3628<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3629<tt>ty2</tt>.</p>
3630
3631
3632<h5>Arguments:</h5>
3633<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003634<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3635also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003636<tt>value</tt> must be smaller than the bit size of the destination type,
3637<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003638
3639<h5>Semantics:</h5>
3640<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003641bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003642
Reid Spencerb5929522007-01-12 15:46:11 +00003643<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003644
3645<h5>Example:</h5>
3646<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003647 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003648 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003649</pre>
3650</div>
3651
3652<!-- _______________________________________________________________________ -->
3653<div class="doc_subsubsection">
3654 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3655</div>
3656<div class="doc_text">
3657
3658<h5>Syntax:</h5>
3659<pre>
3660 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3661</pre>
3662
3663<h5>Overview:</h5>
3664<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3665
3666<h5>Arguments:</h5>
3667<p>
3668The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003669<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3670also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003671<tt>value</tt> must be smaller than the bit size of the destination type,
3672<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003673
3674<h5>Semantics:</h5>
3675<p>
3676The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3677bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003678the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003679
Reid Spencerc78f3372007-01-12 03:35:51 +00003680<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003681
3682<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003683<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003684 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003685 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003686</pre>
3687</div>
3688
3689<!-- _______________________________________________________________________ -->
3690<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003691 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3692</div>
3693
3694<div class="doc_text">
3695
3696<h5>Syntax:</h5>
3697
3698<pre>
3699 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3700</pre>
3701
3702<h5>Overview:</h5>
3703<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3704<tt>ty2</tt>.</p>
3705
3706
3707<h5>Arguments:</h5>
3708<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3709 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3710cast it to. The size of <tt>value</tt> must be larger than the size of
3711<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3712<i>no-op cast</i>.</p>
3713
3714<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003715<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3716<a href="#t_floating">floating point</a> type to a smaller
3717<a href="#t_floating">floating point</a> type. If the value cannot fit within
3718the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003719
3720<h5>Example:</h5>
3721<pre>
3722 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3723 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3724</pre>
3725</div>
3726
3727<!-- _______________________________________________________________________ -->
3728<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003729 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3730</div>
3731<div class="doc_text">
3732
3733<h5>Syntax:</h5>
3734<pre>
3735 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3736</pre>
3737
3738<h5>Overview:</h5>
3739<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3740floating point value.</p>
3741
3742<h5>Arguments:</h5>
3743<p>The '<tt>fpext</tt>' instruction takes a
3744<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003745and a <a href="#t_floating">floating point</a> type to cast it to. The source
3746type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003747
3748<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003749<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003750<a href="#t_floating">floating point</a> type to a larger
3751<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003752used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003753<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003754
3755<h5>Example:</h5>
3756<pre>
3757 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3758 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3759</pre>
3760</div>
3761
3762<!-- _______________________________________________________________________ -->
3763<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003764 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003765</div>
3766<div class="doc_text">
3767
3768<h5>Syntax:</h5>
3769<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003770 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003771</pre>
3772
3773<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003774<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003775unsigned integer equivalent of type <tt>ty2</tt>.
3776</p>
3777
3778<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003779<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003780scalar or vector <a href="#t_floating">floating point</a> value, and a type
3781to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3782type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3783vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003784
3785<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003786<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003787<a href="#t_floating">floating point</a> operand into the nearest (rounding
3788towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3789the results are undefined.</p>
3790
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003791<h5>Example:</h5>
3792<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003793 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003794 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003795 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003796</pre>
3797</div>
3798
3799<!-- _______________________________________________________________________ -->
3800<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003801 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003802</div>
3803<div class="doc_text">
3804
3805<h5>Syntax:</h5>
3806<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003807 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003808</pre>
3809
3810<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003811<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003812<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003813</p>
3814
Chris Lattner6536cfe2002-05-06 22:08:29 +00003815<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003816<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003817scalar or vector <a href="#t_floating">floating point</a> value, and a type
3818to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3819type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3820vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003821
Chris Lattner6536cfe2002-05-06 22:08:29 +00003822<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003823<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003824<a href="#t_floating">floating point</a> operand into the nearest (rounding
3825towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3826the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003827
Chris Lattner33ba0d92001-07-09 00:26:23 +00003828<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003829<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003830 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003831 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003832 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003833</pre>
3834</div>
3835
3836<!-- _______________________________________________________________________ -->
3837<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003838 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003839</div>
3840<div class="doc_text">
3841
3842<h5>Syntax:</h5>
3843<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003844 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003845</pre>
3846
3847<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003848<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003849integer and converts that value to the <tt>ty2</tt> type.</p>
3850
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003851<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003852<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3853scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3854to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3855type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3856floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003857
3858<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003859<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003860integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003861the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003862
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003863<h5>Example:</h5>
3864<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003865 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003866 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003867</pre>
3868</div>
3869
3870<!-- _______________________________________________________________________ -->
3871<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003872 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003873</div>
3874<div class="doc_text">
3875
3876<h5>Syntax:</h5>
3877<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003878 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003879</pre>
3880
3881<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003882<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003883integer and converts that value to the <tt>ty2</tt> type.</p>
3884
3885<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003886<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3887scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3888to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3889type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3890floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003891
3892<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003893<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003894integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003895the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003896
3897<h5>Example:</h5>
3898<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003899 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003900 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003901</pre>
3902</div>
3903
3904<!-- _______________________________________________________________________ -->
3905<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003906 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3907</div>
3908<div class="doc_text">
3909
3910<h5>Syntax:</h5>
3911<pre>
3912 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3913</pre>
3914
3915<h5>Overview:</h5>
3916<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3917the integer type <tt>ty2</tt>.</p>
3918
3919<h5>Arguments:</h5>
3920<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003921must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohman0e451ce2008-10-14 16:51:45 +00003922<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003923
3924<h5>Semantics:</h5>
3925<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3926<tt>ty2</tt> by interpreting the pointer value as an integer and either
3927truncating or zero extending that value to the size of the integer type. If
3928<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3929<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003930are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3931change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003932
3933<h5>Example:</h5>
3934<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003935 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3936 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003937</pre>
3938</div>
3939
3940<!-- _______________________________________________________________________ -->
3941<div class="doc_subsubsection">
3942 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3943</div>
3944<div class="doc_text">
3945
3946<h5>Syntax:</h5>
3947<pre>
3948 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3949</pre>
3950
3951<h5>Overview:</h5>
3952<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3953a pointer type, <tt>ty2</tt>.</p>
3954
3955<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003956<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003957value to cast, and a type to cast it to, which must be a
Dan Gohman0e451ce2008-10-14 16:51:45 +00003958<a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003959
3960<h5>Semantics:</h5>
3961<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3962<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3963the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3964size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3965the size of a pointer then a zero extension is done. If they are the same size,
3966nothing is done (<i>no-op cast</i>).</p>
3967
3968<h5>Example:</h5>
3969<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003970 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3971 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3972 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003973</pre>
3974</div>
3975
3976<!-- _______________________________________________________________________ -->
3977<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003978 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003979</div>
3980<div class="doc_text">
3981
3982<h5>Syntax:</h5>
3983<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003984 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003985</pre>
3986
3987<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003988
Reid Spencer5c0ef472006-11-11 23:08:07 +00003989<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003990<tt>ty2</tt> without changing any bits.</p>
3991
3992<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003993
Reid Spencer5c0ef472006-11-11 23:08:07 +00003994<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00003995a non-aggregate first class value, and a type to cast it to, which must also be
3996a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
3997<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003998and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00003999type is a pointer, the destination type must also be a pointer. This
4000instruction supports bitwise conversion of vectors to integers and to vectors
4001of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004002
4003<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004004<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00004005<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4006this conversion. The conversion is done as if the <tt>value</tt> had been
4007stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
4008converted to other pointer types with this instruction. To convert pointers to
4009other types, use the <a href="#i_inttoptr">inttoptr</a> or
4010<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004011
4012<h5>Example:</h5>
4013<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004014 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004015 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004016 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00004017</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004018</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004019
Reid Spencer2fd21e62006-11-08 01:18:52 +00004020<!-- ======================================================================= -->
4021<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4022<div class="doc_text">
4023<p>The instructions in this category are the "miscellaneous"
4024instructions, which defy better classification.</p>
4025</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004026
4027<!-- _______________________________________________________________________ -->
4028<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4029</div>
4030<div class="doc_text">
4031<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004032<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004033</pre>
4034<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004035<p>The '<tt>icmp</tt>' instruction returns a boolean value or
4036a vector of boolean values based on comparison
4037of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004038<h5>Arguments:</h5>
4039<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004040the condition code indicating the kind of comparison to perform. It is not
4041a value, just a keyword. The possible condition code are:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004042</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004043<ol>
4044 <li><tt>eq</tt>: equal</li>
4045 <li><tt>ne</tt>: not equal </li>
4046 <li><tt>ugt</tt>: unsigned greater than</li>
4047 <li><tt>uge</tt>: unsigned greater or equal</li>
4048 <li><tt>ult</tt>: unsigned less than</li>
4049 <li><tt>ule</tt>: unsigned less or equal</li>
4050 <li><tt>sgt</tt>: signed greater than</li>
4051 <li><tt>sge</tt>: signed greater or equal</li>
4052 <li><tt>slt</tt>: signed less than</li>
4053 <li><tt>sle</tt>: signed less or equal</li>
4054</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00004055<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00004056<a href="#t_pointer">pointer</a>
4057or integer <a href="#t_vector">vector</a> typed.
4058They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004059<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004060<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00004061the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00004062yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004063</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004064<ol>
4065 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4066 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
4067 </li>
4068 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohman0e451ce2008-10-14 16:51:45 +00004069 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004070 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004071 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004072 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004073 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004074 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004075 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004076 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004077 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004078 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004079 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004080 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004081 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004082 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004083 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004084 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004085 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004086</ol>
4087<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00004088values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004089<p>If the operands are integer vectors, then they are compared
4090element by element. The result is an <tt>i1</tt> vector with
4091the same number of elements as the values being compared.
4092Otherwise, the result is an <tt>i1</tt>.
4093</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004094
4095<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00004096<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4097 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4098 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4099 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4100 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4101 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004102</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004103
4104<p>Note that the code generator does not yet support vector types with
4105 the <tt>icmp</tt> instruction.</p>
4106
Reid Spencerf3a70a62006-11-18 21:50:54 +00004107</div>
4108
4109<!-- _______________________________________________________________________ -->
4110<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4111</div>
4112<div class="doc_text">
4113<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004114<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004115</pre>
4116<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004117<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4118or vector of boolean values based on comparison
Dan Gohman0e451ce2008-10-14 16:51:45 +00004119of its operands.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004120<p>
4121If the operands are floating point scalars, then the result
4122type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4123</p>
4124<p>If the operands are floating point vectors, then the result type
4125is a vector of boolean with the same number of elements as the
4126operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004127<h5>Arguments:</h5>
4128<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004129the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004130a value, just a keyword. The possible condition code are:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004131<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004132 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004133 <li><tt>oeq</tt>: ordered and equal</li>
4134 <li><tt>ogt</tt>: ordered and greater than </li>
4135 <li><tt>oge</tt>: ordered and greater than or equal</li>
4136 <li><tt>olt</tt>: ordered and less than </li>
4137 <li><tt>ole</tt>: ordered and less than or equal</li>
4138 <li><tt>one</tt>: ordered and not equal</li>
4139 <li><tt>ord</tt>: ordered (no nans)</li>
4140 <li><tt>ueq</tt>: unordered or equal</li>
4141 <li><tt>ugt</tt>: unordered or greater than </li>
4142 <li><tt>uge</tt>: unordered or greater than or equal</li>
4143 <li><tt>ult</tt>: unordered or less than </li>
4144 <li><tt>ule</tt>: unordered or less than or equal</li>
4145 <li><tt>une</tt>: unordered or not equal</li>
4146 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004147 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004148</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004149<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00004150<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004151<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4152either a <a href="#t_floating">floating point</a> type
4153or a <a href="#t_vector">vector</a> of floating point type.
4154They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004155<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004156<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004157according to the condition code given as <tt>cond</tt>.
4158If the operands are vectors, then the vectors are compared
4159element by element.
4160Each comparison performed
Dan Gohman0e451ce2008-10-14 16:51:45 +00004161always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004162<ol>
4163 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004164 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004165 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004166 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004167 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004168 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004169 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004170 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004171 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004172 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004173 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004174 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004175 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004176 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4177 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004178 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004179 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004180 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004181 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004182 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004183 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004184 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004185 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004186 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004187 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004188 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004189 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004190 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4191</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004192
4193<h5>Example:</h5>
4194<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004195 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4196 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4197 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004198</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004199
4200<p>Note that the code generator does not yet support vector types with
4201 the <tt>fcmp</tt> instruction.</p>
4202
Reid Spencerf3a70a62006-11-18 21:50:54 +00004203</div>
4204
Reid Spencer2fd21e62006-11-08 01:18:52 +00004205<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004206<div class="doc_subsubsection">
4207 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4208</div>
4209<div class="doc_text">
4210<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004211<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004212</pre>
4213<h5>Overview:</h5>
4214<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4215element-wise comparison of its two integer vector operands.</p>
4216<h5>Arguments:</h5>
4217<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4218the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004219a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004220<ol>
4221 <li><tt>eq</tt>: equal</li>
4222 <li><tt>ne</tt>: not equal </li>
4223 <li><tt>ugt</tt>: unsigned greater than</li>
4224 <li><tt>uge</tt>: unsigned greater or equal</li>
4225 <li><tt>ult</tt>: unsigned less than</li>
4226 <li><tt>ule</tt>: unsigned less or equal</li>
4227 <li><tt>sgt</tt>: signed greater than</li>
4228 <li><tt>sge</tt>: signed greater or equal</li>
4229 <li><tt>slt</tt>: signed less than</li>
4230 <li><tt>sle</tt>: signed less or equal</li>
4231</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004232<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004233<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4234<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004235<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004236according to the condition code given as <tt>cond</tt>. The comparison yields a
4237<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4238identical type as the values being compared. The most significant bit in each
4239element is 1 if the element-wise comparison evaluates to true, and is 0
4240otherwise. All other bits of the result are undefined. The condition codes
4241are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohman0e451ce2008-10-14 16:51:45 +00004242instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004243
4244<h5>Example:</h5>
4245<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004246 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4247 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004248</pre>
4249</div>
4250
4251<!-- _______________________________________________________________________ -->
4252<div class="doc_subsubsection">
4253 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4254</div>
4255<div class="doc_text">
4256<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004257<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004258<h5>Overview:</h5>
4259<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4260element-wise comparison of its two floating point vector operands. The output
4261elements have the same width as the input elements.</p>
4262<h5>Arguments:</h5>
4263<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4264the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004265a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004266<ol>
4267 <li><tt>false</tt>: no comparison, always returns false</li>
4268 <li><tt>oeq</tt>: ordered and equal</li>
4269 <li><tt>ogt</tt>: ordered and greater than </li>
4270 <li><tt>oge</tt>: ordered and greater than or equal</li>
4271 <li><tt>olt</tt>: ordered and less than </li>
4272 <li><tt>ole</tt>: ordered and less than or equal</li>
4273 <li><tt>one</tt>: ordered and not equal</li>
4274 <li><tt>ord</tt>: ordered (no nans)</li>
4275 <li><tt>ueq</tt>: unordered or equal</li>
4276 <li><tt>ugt</tt>: unordered or greater than </li>
4277 <li><tt>uge</tt>: unordered or greater than or equal</li>
4278 <li><tt>ult</tt>: unordered or less than </li>
4279 <li><tt>ule</tt>: unordered or less than or equal</li>
4280 <li><tt>une</tt>: unordered or not equal</li>
4281 <li><tt>uno</tt>: unordered (either nans)</li>
4282 <li><tt>true</tt>: no comparison, always returns true</li>
4283</ol>
4284<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4285<a href="#t_floating">floating point</a> typed. They must also be identical
4286types.</p>
4287<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004288<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004289according to the condition code given as <tt>cond</tt>. The comparison yields a
4290<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4291an identical number of elements as the values being compared, and each element
4292having identical with to the width of the floating point elements. The most
4293significant bit in each element is 1 if the element-wise comparison evaluates to
4294true, and is 0 otherwise. All other bits of the result are undefined. The
4295condition codes are evaluated identically to the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004296<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004297
4298<h5>Example:</h5>
4299<pre>
Chris Lattner50ad45c2008-10-13 16:55:18 +00004300 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4301 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4302
4303 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4304 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemanac80ade2008-05-12 19:01:56 +00004305</pre>
4306</div>
4307
4308<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004309<div class="doc_subsubsection">
4310 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4311</div>
4312
Reid Spencer2fd21e62006-11-08 01:18:52 +00004313<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004314
Reid Spencer2fd21e62006-11-08 01:18:52 +00004315<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004316
Reid Spencer2fd21e62006-11-08 01:18:52 +00004317<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4318<h5>Overview:</h5>
4319<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4320the SSA graph representing the function.</p>
4321<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004322
Jeff Cohenb627eab2007-04-29 01:07:00 +00004323<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004324field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4325as arguments, with one pair for each predecessor basic block of the
4326current block. Only values of <a href="#t_firstclass">first class</a>
4327type may be used as the value arguments to the PHI node. Only labels
4328may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004329
Reid Spencer2fd21e62006-11-08 01:18:52 +00004330<p>There must be no non-phi instructions between the start of a basic
4331block and the PHI instructions: i.e. PHI instructions must be first in
4332a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004333
Reid Spencer2fd21e62006-11-08 01:18:52 +00004334<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004335
Jeff Cohenb627eab2007-04-29 01:07:00 +00004336<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4337specified by the pair corresponding to the predecessor basic block that executed
4338just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004339
Reid Spencer2fd21e62006-11-08 01:18:52 +00004340<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004341<pre>
4342Loop: ; Infinite loop that counts from 0 on up...
4343 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4344 %nextindvar = add i32 %indvar, 1
4345 br label %Loop
4346</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004347</div>
4348
Chris Lattnercc37aae2004-03-12 05:50:16 +00004349<!-- _______________________________________________________________________ -->
4350<div class="doc_subsubsection">
4351 <a name="i_select">'<tt>select</tt>' Instruction</a>
4352</div>
4353
4354<div class="doc_text">
4355
4356<h5>Syntax:</h5>
4357
4358<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004359 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4360
Dan Gohman0e451ce2008-10-14 16:51:45 +00004361 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004362</pre>
4363
4364<h5>Overview:</h5>
4365
4366<p>
4367The '<tt>select</tt>' instruction is used to choose one value based on a
4368condition, without branching.
4369</p>
4370
4371
4372<h5>Arguments:</h5>
4373
4374<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004375The '<tt>select</tt>' instruction requires an 'i1' value or
4376a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004377condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004378type. If the val1/val2 are vectors and
4379the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004380individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004381</p>
4382
4383<h5>Semantics:</h5>
4384
4385<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004386If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004387value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004388</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004389<p>
4390If the condition is a vector of i1, then the value arguments must
4391be vectors of the same size, and the selection is done element
4392by element.
4393</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004394
4395<h5>Example:</h5>
4396
4397<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004398 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004399</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004400
4401<p>Note that the code generator does not yet support conditions
4402 with vector type.</p>
4403
Chris Lattnercc37aae2004-03-12 05:50:16 +00004404</div>
4405
Robert Bocchino05ccd702006-01-15 20:48:27 +00004406
4407<!-- _______________________________________________________________________ -->
4408<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004409 <a name="i_call">'<tt>call</tt>' Instruction</a>
4410</div>
4411
Misha Brukman9d0919f2003-11-08 01:05:38 +00004412<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004413
Chris Lattner00950542001-06-06 20:29:01 +00004414<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004415<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004416 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004417</pre>
4418
Chris Lattner00950542001-06-06 20:29:01 +00004419<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004420
Misha Brukman9d0919f2003-11-08 01:05:38 +00004421<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004422
Chris Lattner00950542001-06-06 20:29:01 +00004423<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004424
Misha Brukman9d0919f2003-11-08 01:05:38 +00004425<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004426
Chris Lattner6536cfe2002-05-06 22:08:29 +00004427<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004428 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004429 <p>The optional "tail" marker indicates whether the callee function accesses
4430 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004431 function call is eligible for tail call optimization. Note that calls may
4432 be marked "tail" even if they do not occur before a <a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004433 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004434 </li>
4435 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004436 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004437 convention</a> the call should use. If none is specified, the call defaults
Dan Gohman0e451ce2008-10-14 16:51:45 +00004438 to using C calling conventions.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004439 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004440
4441 <li>
4442 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4443 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4444 and '<tt>inreg</tt>' attributes are valid here.</p>
4445 </li>
4446
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004447 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004448 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4449 the type of the return value. Functions that return no value are marked
4450 <tt><a href="#t_void">void</a></tt>.</p>
4451 </li>
4452 <li>
4453 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4454 value being invoked. The argument types must match the types implied by
4455 this signature. This type can be omitted if the function is not varargs
4456 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004457 </li>
4458 <li>
4459 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4460 be invoked. In most cases, this is a direct function invocation, but
4461 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004462 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004463 </li>
4464 <li>
4465 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004466 function signature argument types. All arguments must be of
4467 <a href="#t_firstclass">first class</a> type. If the function signature
4468 indicates the function accepts a variable number of arguments, the extra
4469 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004470 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004471 <li>
Devang Patel307e8ab2008-10-07 17:48:33 +00004472 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00004473 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4474 '<tt>readnone</tt>' attributes are valid here.</p>
4475 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004476</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004477
Chris Lattner00950542001-06-06 20:29:01 +00004478<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004479
Chris Lattner261efe92003-11-25 01:02:51 +00004480<p>The '<tt>call</tt>' instruction is used to cause control flow to
4481transfer to a specified function, with its incoming arguments bound to
4482the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4483instruction in the called function, control flow continues with the
4484instruction after the function call, and the return value of the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004485function is bound to the result argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004486
Chris Lattner00950542001-06-06 20:29:01 +00004487<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004488
4489<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004490 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004491 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4492 %X = tail call i32 @foo() <i>; yields i32</i>
4493 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4494 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004495
4496 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004497 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004498 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4499 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00004500 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00004501 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004502</pre>
4503
Misha Brukman9d0919f2003-11-08 01:05:38 +00004504</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004505
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004506<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004507<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004508 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004509</div>
4510
Misha Brukman9d0919f2003-11-08 01:05:38 +00004511<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004512
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004513<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004514
4515<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004516 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004517</pre>
4518
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004519<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004520
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004521<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004522the "variable argument" area of a function call. It is used to implement the
4523<tt>va_arg</tt> macro in C.</p>
4524
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004525<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004526
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004527<p>This instruction takes a <tt>va_list*</tt> value and the type of
4528the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004529increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004530actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004531
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004532<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004533
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004534<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4535type from the specified <tt>va_list</tt> and causes the
4536<tt>va_list</tt> to point to the next argument. For more information,
4537see the variable argument handling <a href="#int_varargs">Intrinsic
4538Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004539
4540<p>It is legal for this instruction to be called in a function which does not
4541take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004542function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004543
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004544<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004545href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004546argument.</p>
4547
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004548<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004549
4550<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4551
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00004552<p>Note that the code generator does not yet fully support va_arg
4553 on many targets. Also, it does not currently support va_arg with
4554 aggregate types on any target.</p>
4555
Misha Brukman9d0919f2003-11-08 01:05:38 +00004556</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004557
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004558<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004559<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4560<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004561
Misha Brukman9d0919f2003-11-08 01:05:38 +00004562<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004563
4564<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004565well known names and semantics and are required to follow certain restrictions.
4566Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004567language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004568adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004569
John Criswellfc6b8952005-05-16 16:17:45 +00004570<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004571prefix is reserved in LLVM for intrinsic names; thus, function names may not
4572begin with this prefix. Intrinsic functions must always be external functions:
4573you cannot define the body of intrinsic functions. Intrinsic functions may
4574only be used in call or invoke instructions: it is illegal to take the address
4575of an intrinsic function. Additionally, because intrinsic functions are part
4576of the LLVM language, it is required if any are added that they be documented
4577here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004578
Chandler Carruth69940402007-08-04 01:51:18 +00004579<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4580a family of functions that perform the same operation but on different data
4581types. Because LLVM can represent over 8 million different integer types,
4582overloading is used commonly to allow an intrinsic function to operate on any
4583integer type. One or more of the argument types or the result type can be
4584overloaded to accept any integer type. Argument types may also be defined as
4585exactly matching a previous argument's type or the result type. This allows an
4586intrinsic function which accepts multiple arguments, but needs all of them to
4587be of the same type, to only be overloaded with respect to a single argument or
4588the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004589
Chandler Carruth69940402007-08-04 01:51:18 +00004590<p>Overloaded intrinsics will have the names of its overloaded argument types
4591encoded into its function name, each preceded by a period. Only those types
4592which are overloaded result in a name suffix. Arguments whose type is matched
4593against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4594take an integer of any width and returns an integer of exactly the same integer
4595width. This leads to a family of functions such as
4596<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4597Only one type, the return type, is overloaded, and only one type suffix is
4598required. Because the argument's type is matched against the return type, it
4599does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004600
4601<p>To learn how to add an intrinsic function, please see the
4602<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004603</p>
4604
Misha Brukman9d0919f2003-11-08 01:05:38 +00004605</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004606
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004607<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004608<div class="doc_subsection">
4609 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4610</div>
4611
Misha Brukman9d0919f2003-11-08 01:05:38 +00004612<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004613
Misha Brukman9d0919f2003-11-08 01:05:38 +00004614<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004615 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004616intrinsic functions. These functions are related to the similarly
4617named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004618
Chris Lattner261efe92003-11-25 01:02:51 +00004619<p>All of these functions operate on arguments that use a
4620target-specific value type "<tt>va_list</tt>". The LLVM assembly
4621language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004622transformations should be prepared to handle these functions regardless of
4623the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004624
Chris Lattner374ab302006-05-15 17:26:46 +00004625<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004626instruction and the variable argument handling intrinsic functions are
4627used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004628
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004629<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004630<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004631define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004632 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004633 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004634 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004635 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004636
4637 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004638 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004639
4640 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004641 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004642 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004643 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004644 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004645
4646 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004647 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004648 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004649}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004650
4651declare void @llvm.va_start(i8*)
4652declare void @llvm.va_copy(i8*, i8*)
4653declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004654</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004655</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004656
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004657</div>
4658
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004659<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004660<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004661 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004662</div>
4663
4664
Misha Brukman9d0919f2003-11-08 01:05:38 +00004665<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004666<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004667<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004668<h5>Overview:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004669<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004670<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4671href="#i_va_arg">va_arg</a></tt>.</p>
4672
4673<h5>Arguments:</h5>
4674
Dan Gohman0e451ce2008-10-14 16:51:45 +00004675<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004676
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004677<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004678
Dan Gohman0e451ce2008-10-14 16:51:45 +00004679<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004680macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004681<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004682<tt>va_arg</tt> will produce the first variable argument passed to the function.
4683Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004684last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004685
Misha Brukman9d0919f2003-11-08 01:05:38 +00004686</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004687
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004688<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004689<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004690 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004691</div>
4692
Misha Brukman9d0919f2003-11-08 01:05:38 +00004693<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004694<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004695<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004696<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004697
Jeff Cohenb627eab2007-04-29 01:07:00 +00004698<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004699which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004700or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004701
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004702<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004703
Jeff Cohenb627eab2007-04-29 01:07:00 +00004704<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004705
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004706<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004707
Misha Brukman9d0919f2003-11-08 01:05:38 +00004708<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004709macro available in C. In a target-dependent way, it destroys the
4710<tt>va_list</tt> element to which the argument points. Calls to <a
4711href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4712<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4713<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004714
Misha Brukman9d0919f2003-11-08 01:05:38 +00004715</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004716
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004717<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004718<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004719 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004720</div>
4721
Misha Brukman9d0919f2003-11-08 01:05:38 +00004722<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004723
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004724<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004725
4726<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004727 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004728</pre>
4729
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004730<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004731
Jeff Cohenb627eab2007-04-29 01:07:00 +00004732<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4733from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004734
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004735<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004736
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004737<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004738The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004739
Chris Lattnerd7923912004-05-23 21:06:01 +00004740
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004741<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004742
Jeff Cohenb627eab2007-04-29 01:07:00 +00004743<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4744macro available in C. In a target-dependent way, it copies the source
4745<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4746intrinsic is necessary because the <tt><a href="#int_va_start">
4747llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4748example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004749
Misha Brukman9d0919f2003-11-08 01:05:38 +00004750</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004751
Chris Lattner33aec9e2004-02-12 17:01:32 +00004752<!-- ======================================================================= -->
4753<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004754 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4755</div>
4756
4757<div class="doc_text">
4758
4759<p>
4760LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004761Collection</a> (GC) requires the implementation and generation of these
4762intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004763These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004764stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004765href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004766Front-ends for type-safe garbage collected languages should generate these
4767intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4768href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4769</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004770
4771<p>The garbage collection intrinsics only operate on objects in the generic
4772 address space (address space zero).</p>
4773
Chris Lattnerd7923912004-05-23 21:06:01 +00004774</div>
4775
4776<!-- _______________________________________________________________________ -->
4777<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004778 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004779</div>
4780
4781<div class="doc_text">
4782
4783<h5>Syntax:</h5>
4784
4785<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004786 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004787</pre>
4788
4789<h5>Overview:</h5>
4790
John Criswell9e2485c2004-12-10 15:51:16 +00004791<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004792the code generator, and allows some metadata to be associated with it.</p>
4793
4794<h5>Arguments:</h5>
4795
4796<p>The first argument specifies the address of a stack object that contains the
4797root pointer. The second pointer (which must be either a constant or a global
4798value address) contains the meta-data to be associated with the root.</p>
4799
4800<h5>Semantics:</h5>
4801
Chris Lattner05d67092008-04-24 05:59:56 +00004802<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004803location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004804the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4805intrinsic may only be used in a function which <a href="#gc">specifies a GC
4806algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004807
4808</div>
4809
4810
4811<!-- _______________________________________________________________________ -->
4812<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004813 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004814</div>
4815
4816<div class="doc_text">
4817
4818<h5>Syntax:</h5>
4819
4820<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004821 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004822</pre>
4823
4824<h5>Overview:</h5>
4825
4826<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4827locations, allowing garbage collector implementations that require read
4828barriers.</p>
4829
4830<h5>Arguments:</h5>
4831
Chris Lattner80626e92006-03-14 20:02:51 +00004832<p>The second argument is the address to read from, which should be an address
4833allocated from the garbage collector. The first object is a pointer to the
4834start of the referenced object, if needed by the language runtime (otherwise
4835null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004836
4837<h5>Semantics:</h5>
4838
4839<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4840instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004841garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4842may only be used in a function which <a href="#gc">specifies a GC
4843algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004844
4845</div>
4846
4847
4848<!-- _______________________________________________________________________ -->
4849<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004850 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004851</div>
4852
4853<div class="doc_text">
4854
4855<h5>Syntax:</h5>
4856
4857<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004858 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004859</pre>
4860
4861<h5>Overview:</h5>
4862
4863<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4864locations, allowing garbage collector implementations that require write
4865barriers (such as generational or reference counting collectors).</p>
4866
4867<h5>Arguments:</h5>
4868
Chris Lattner80626e92006-03-14 20:02:51 +00004869<p>The first argument is the reference to store, the second is the start of the
4870object to store it to, and the third is the address of the field of Obj to
4871store to. If the runtime does not require a pointer to the object, Obj may be
4872null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004873
4874<h5>Semantics:</h5>
4875
4876<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4877instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004878garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4879may only be used in a function which <a href="#gc">specifies a GC
4880algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004881
4882</div>
4883
4884
4885
4886<!-- ======================================================================= -->
4887<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004888 <a name="int_codegen">Code Generator Intrinsics</a>
4889</div>
4890
4891<div class="doc_text">
4892<p>
4893These intrinsics are provided by LLVM to expose special features that may only
4894be implemented with code generator support.
4895</p>
4896
4897</div>
4898
4899<!-- _______________________________________________________________________ -->
4900<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004901 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004902</div>
4903
4904<div class="doc_text">
4905
4906<h5>Syntax:</h5>
4907<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004908 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004909</pre>
4910
4911<h5>Overview:</h5>
4912
4913<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004914The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4915target-specific value indicating the return address of the current function
4916or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004917</p>
4918
4919<h5>Arguments:</h5>
4920
4921<p>
4922The argument to this intrinsic indicates which function to return the address
4923for. Zero indicates the calling function, one indicates its caller, etc. The
4924argument is <b>required</b> to be a constant integer value.
4925</p>
4926
4927<h5>Semantics:</h5>
4928
4929<p>
4930The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4931the return address of the specified call frame, or zero if it cannot be
4932identified. The value returned by this intrinsic is likely to be incorrect or 0
4933for arguments other than zero, so it should only be used for debugging purposes.
4934</p>
4935
4936<p>
4937Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004938aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004939source-language caller.
4940</p>
4941</div>
4942
4943
4944<!-- _______________________________________________________________________ -->
4945<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004946 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004947</div>
4948
4949<div class="doc_text">
4950
4951<h5>Syntax:</h5>
4952<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004953 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004954</pre>
4955
4956<h5>Overview:</h5>
4957
4958<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004959The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4960target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004961</p>
4962
4963<h5>Arguments:</h5>
4964
4965<p>
4966The argument to this intrinsic indicates which function to return the frame
4967pointer for. Zero indicates the calling function, one indicates its caller,
4968etc. The argument is <b>required</b> to be a constant integer value.
4969</p>
4970
4971<h5>Semantics:</h5>
4972
4973<p>
4974The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4975the frame address of the specified call frame, or zero if it cannot be
4976identified. The value returned by this intrinsic is likely to be incorrect or 0
4977for arguments other than zero, so it should only be used for debugging purposes.
4978</p>
4979
4980<p>
4981Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004982aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004983source-language caller.
4984</p>
4985</div>
4986
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004987<!-- _______________________________________________________________________ -->
4988<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004989 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004990</div>
4991
4992<div class="doc_text">
4993
4994<h5>Syntax:</h5>
4995<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004996 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004997</pre>
4998
4999<h5>Overview:</h5>
5000
5001<p>
5002The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00005003the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00005004<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
5005features like scoped automatic variable sized arrays in C99.
5006</p>
5007
5008<h5>Semantics:</h5>
5009
5010<p>
5011This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005012href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00005013<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
5014<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
5015state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
5016practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
5017that were allocated after the <tt>llvm.stacksave</tt> was executed.
5018</p>
5019
5020</div>
5021
5022<!-- _______________________________________________________________________ -->
5023<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005024 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005025</div>
5026
5027<div class="doc_text">
5028
5029<h5>Syntax:</h5>
5030<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005031 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00005032</pre>
5033
5034<h5>Overview:</h5>
5035
5036<p>
5037The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5038the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005039href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00005040useful for implementing language features like scoped automatic variable sized
5041arrays in C99.
5042</p>
5043
5044<h5>Semantics:</h5>
5045
5046<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00005047See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00005048</p>
5049
5050</div>
5051
5052
5053<!-- _______________________________________________________________________ -->
5054<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005055 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005056</div>
5057
5058<div class="doc_text">
5059
5060<h5>Syntax:</h5>
5061<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005062 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005063</pre>
5064
5065<h5>Overview:</h5>
5066
5067
5068<p>
5069The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00005070a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
5071no
5072effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00005073characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005074</p>
5075
5076<h5>Arguments:</h5>
5077
5078<p>
5079<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
5080determining if the fetch should be for a read (0) or write (1), and
5081<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00005082locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005083<tt>locality</tt> arguments must be constant integers.
5084</p>
5085
5086<h5>Semantics:</h5>
5087
5088<p>
5089This intrinsic does not modify the behavior of the program. In particular,
5090prefetches cannot trap and do not produce a value. On targets that support this
5091intrinsic, the prefetch can provide hints to the processor cache for better
5092performance.
5093</p>
5094
5095</div>
5096
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005097<!-- _______________________________________________________________________ -->
5098<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005099 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005100</div>
5101
5102<div class="doc_text">
5103
5104<h5>Syntax:</h5>
5105<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005106 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005107</pre>
5108
5109<h5>Overview:</h5>
5110
5111
5112<p>
John Criswellfc6b8952005-05-16 16:17:45 +00005113The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00005114(PC) in a region of
5115code to simulators and other tools. The method is target specific, but it is
5116expected that the marker will use exported symbols to transmit the PC of the
5117marker.
5118The marker makes no guarantees that it will remain with any specific instruction
5119after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00005120optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00005121correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005122</p>
5123
5124<h5>Arguments:</h5>
5125
5126<p>
5127<tt>id</tt> is a numerical id identifying the marker.
5128</p>
5129
5130<h5>Semantics:</h5>
5131
5132<p>
5133This intrinsic does not modify the behavior of the program. Backends that do not
5134support this intrinisic may ignore it.
5135</p>
5136
5137</div>
5138
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005139<!-- _______________________________________________________________________ -->
5140<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005141 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005142</div>
5143
5144<div class="doc_text">
5145
5146<h5>Syntax:</h5>
5147<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005148 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005149</pre>
5150
5151<h5>Overview:</h5>
5152
5153
5154<p>
5155The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5156counter register (or similar low latency, high accuracy clocks) on those targets
5157that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5158As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5159should only be used for small timings.
5160</p>
5161
5162<h5>Semantics:</h5>
5163
5164<p>
5165When directly supported, reading the cycle counter should not modify any memory.
5166Implementations are allowed to either return a application specific value or a
5167system wide value. On backends without support, this is lowered to a constant 0.
5168</p>
5169
5170</div>
5171
Chris Lattner10610642004-02-14 04:08:35 +00005172<!-- ======================================================================= -->
5173<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005174 <a name="int_libc">Standard C Library Intrinsics</a>
5175</div>
5176
5177<div class="doc_text">
5178<p>
Chris Lattner10610642004-02-14 04:08:35 +00005179LLVM provides intrinsics for a few important standard C library functions.
5180These intrinsics allow source-language front-ends to pass information about the
5181alignment of the pointer arguments to the code generator, providing opportunity
5182for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005183</p>
5184
5185</div>
5186
5187<!-- _______________________________________________________________________ -->
5188<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005189 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005190</div>
5191
5192<div class="doc_text">
5193
5194<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005195<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5196width. Not all targets support all bit widths however.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005197<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005198 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5199 i8 &lt;len&gt;, i32 &lt;align&gt;)
5200 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5201 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005202 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005203 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005204 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005205 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005206</pre>
5207
5208<h5>Overview:</h5>
5209
5210<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005211The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005212location to the destination location.
5213</p>
5214
5215<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005216Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5217intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005218</p>
5219
5220<h5>Arguments:</h5>
5221
5222<p>
5223The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005224the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005225specifying the number of bytes to copy, and the fourth argument is the alignment
5226of the source and destination locations.
5227</p>
5228
Chris Lattner3301ced2004-02-12 21:18:15 +00005229<p>
5230If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005231the caller guarantees that both the source and destination pointers are aligned
5232to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005233</p>
5234
Chris Lattner33aec9e2004-02-12 17:01:32 +00005235<h5>Semantics:</h5>
5236
5237<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005238The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005239location to the destination location, which are not allowed to overlap. It
5240copies "len" bytes of memory over. If the argument is known to be aligned to
5241some boundary, this can be specified as the fourth argument, otherwise it should
5242be set to 0 or 1.
5243</p>
5244</div>
5245
5246
Chris Lattner0eb51b42004-02-12 18:10:10 +00005247<!-- _______________________________________________________________________ -->
5248<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005249 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005250</div>
5251
5252<div class="doc_text">
5253
5254<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005255<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5256width. Not all targets support all bit widths however.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005257<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005258 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5259 i8 &lt;len&gt;, i32 &lt;align&gt;)
5260 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5261 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005262 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005263 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005264 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005265 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005266</pre>
5267
5268<h5>Overview:</h5>
5269
5270<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005271The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5272location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005273'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005274</p>
5275
5276<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005277Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5278intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005279</p>
5280
5281<h5>Arguments:</h5>
5282
5283<p>
5284The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005285the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005286specifying the number of bytes to copy, and the fourth argument is the alignment
5287of the source and destination locations.
5288</p>
5289
Chris Lattner3301ced2004-02-12 21:18:15 +00005290<p>
5291If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005292the caller guarantees that the source and destination pointers are aligned to
5293that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005294</p>
5295
Chris Lattner0eb51b42004-02-12 18:10:10 +00005296<h5>Semantics:</h5>
5297
5298<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005299The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005300location to the destination location, which may overlap. It
5301copies "len" bytes of memory over. If the argument is known to be aligned to
5302some boundary, this can be specified as the fourth argument, otherwise it should
5303be set to 0 or 1.
5304</p>
5305</div>
5306
Chris Lattner8ff75902004-01-06 05:31:32 +00005307
Chris Lattner10610642004-02-14 04:08:35 +00005308<!-- _______________________________________________________________________ -->
5309<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005310 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005311</div>
5312
5313<div class="doc_text">
5314
5315<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005316<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5317width. Not all targets support all bit widths however.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005318<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005319 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5320 i8 &lt;len&gt;, i32 &lt;align&gt;)
5321 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5322 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005323 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005324 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005325 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005326 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005327</pre>
5328
5329<h5>Overview:</h5>
5330
5331<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005332The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005333byte value.
5334</p>
5335
5336<p>
5337Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5338does not return a value, and takes an extra alignment argument.
5339</p>
5340
5341<h5>Arguments:</h5>
5342
5343<p>
5344The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005345byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005346argument specifying the number of bytes to fill, and the fourth argument is the
5347known alignment of destination location.
5348</p>
5349
5350<p>
5351If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005352the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005353</p>
5354
5355<h5>Semantics:</h5>
5356
5357<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005358The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5359the
Chris Lattner10610642004-02-14 04:08:35 +00005360destination location. If the argument is known to be aligned to some boundary,
5361this can be specified as the fourth argument, otherwise it should be set to 0 or
53621.
5363</p>
5364</div>
5365
5366
Chris Lattner32006282004-06-11 02:28:03 +00005367<!-- _______________________________________________________________________ -->
5368<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005369 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005370</div>
5371
5372<div class="doc_text">
5373
5374<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005375<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005376floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005377types however.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005378<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005379 declare float @llvm.sqrt.f32(float %Val)
5380 declare double @llvm.sqrt.f64(double %Val)
5381 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5382 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5383 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005384</pre>
5385
5386<h5>Overview:</h5>
5387
5388<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005389The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005390returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005391<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005392negative numbers other than -0.0 (which allows for better optimization, because
5393there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5394defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005395</p>
5396
5397<h5>Arguments:</h5>
5398
5399<p>
5400The argument and return value are floating point numbers of the same type.
5401</p>
5402
5403<h5>Semantics:</h5>
5404
5405<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005406This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005407floating point number.
5408</p>
5409</div>
5410
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005411<!-- _______________________________________________________________________ -->
5412<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005413 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005414</div>
5415
5416<div class="doc_text">
5417
5418<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005419<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005420floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005421types however.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005422<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005423 declare float @llvm.powi.f32(float %Val, i32 %power)
5424 declare double @llvm.powi.f64(double %Val, i32 %power)
5425 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5426 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5427 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005428</pre>
5429
5430<h5>Overview:</h5>
5431
5432<p>
5433The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5434specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005435multiplications is not defined. When a vector of floating point type is
5436used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005437</p>
5438
5439<h5>Arguments:</h5>
5440
5441<p>
5442The second argument is an integer power, and the first is a value to raise to
5443that power.
5444</p>
5445
5446<h5>Semantics:</h5>
5447
5448<p>
5449This function returns the first value raised to the second power with an
5450unspecified sequence of rounding operations.</p>
5451</div>
5452
Dan Gohman91c284c2007-10-15 20:30:11 +00005453<!-- _______________________________________________________________________ -->
5454<div class="doc_subsubsection">
5455 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5456</div>
5457
5458<div class="doc_text">
5459
5460<h5>Syntax:</h5>
5461<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5462floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005463types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005464<pre>
5465 declare float @llvm.sin.f32(float %Val)
5466 declare double @llvm.sin.f64(double %Val)
5467 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5468 declare fp128 @llvm.sin.f128(fp128 %Val)
5469 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5470</pre>
5471
5472<h5>Overview:</h5>
5473
5474<p>
5475The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5476</p>
5477
5478<h5>Arguments:</h5>
5479
5480<p>
5481The argument and return value are floating point numbers of the same type.
5482</p>
5483
5484<h5>Semantics:</h5>
5485
5486<p>
5487This function returns the sine of the specified operand, returning the
5488same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005489conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005490</div>
5491
5492<!-- _______________________________________________________________________ -->
5493<div class="doc_subsubsection">
5494 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5495</div>
5496
5497<div class="doc_text">
5498
5499<h5>Syntax:</h5>
5500<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5501floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005502types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005503<pre>
5504 declare float @llvm.cos.f32(float %Val)
5505 declare double @llvm.cos.f64(double %Val)
5506 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5507 declare fp128 @llvm.cos.f128(fp128 %Val)
5508 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5509</pre>
5510
5511<h5>Overview:</h5>
5512
5513<p>
5514The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5515</p>
5516
5517<h5>Arguments:</h5>
5518
5519<p>
5520The argument and return value are floating point numbers of the same type.
5521</p>
5522
5523<h5>Semantics:</h5>
5524
5525<p>
5526This function returns the cosine of the specified operand, returning the
5527same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005528conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005529</div>
5530
5531<!-- _______________________________________________________________________ -->
5532<div class="doc_subsubsection">
5533 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5534</div>
5535
5536<div class="doc_text">
5537
5538<h5>Syntax:</h5>
5539<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5540floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005541types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005542<pre>
5543 declare float @llvm.pow.f32(float %Val, float %Power)
5544 declare double @llvm.pow.f64(double %Val, double %Power)
5545 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5546 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5547 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5548</pre>
5549
5550<h5>Overview:</h5>
5551
5552<p>
5553The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5554specified (positive or negative) power.
5555</p>
5556
5557<h5>Arguments:</h5>
5558
5559<p>
5560The second argument is a floating point power, and the first is a value to
5561raise to that power.
5562</p>
5563
5564<h5>Semantics:</h5>
5565
5566<p>
5567This function returns the first value raised to the second power,
5568returning the
5569same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005570conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005571</div>
5572
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005573
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005574<!-- ======================================================================= -->
5575<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005576 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005577</div>
5578
5579<div class="doc_text">
5580<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005581LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005582These allow efficient code generation for some algorithms.
5583</p>
5584
5585</div>
5586
5587<!-- _______________________________________________________________________ -->
5588<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005589 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005590</div>
5591
5592<div class="doc_text">
5593
5594<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005595<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohman0e451ce2008-10-14 16:51:45 +00005596type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005597<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005598 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5599 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5600 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005601</pre>
5602
5603<h5>Overview:</h5>
5604
5605<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005606The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005607values with an even number of bytes (positive multiple of 16 bits). These are
5608useful for performing operations on data that is not in the target's native
5609byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005610</p>
5611
5612<h5>Semantics:</h5>
5613
5614<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005615The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005616and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5617intrinsic returns an i32 value that has the four bytes of the input i32
5618swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005619i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5620<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005621additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005622</p>
5623
5624</div>
5625
5626<!-- _______________________________________________________________________ -->
5627<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005628 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005629</div>
5630
5631<div class="doc_text">
5632
5633<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005634<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohman0e451ce2008-10-14 16:51:45 +00005635width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005636<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005637 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5638 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005639 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005640 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5641 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005642</pre>
5643
5644<h5>Overview:</h5>
5645
5646<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005647The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5648value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005649</p>
5650
5651<h5>Arguments:</h5>
5652
5653<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005654The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005655integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005656</p>
5657
5658<h5>Semantics:</h5>
5659
5660<p>
5661The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5662</p>
5663</div>
5664
5665<!-- _______________________________________________________________________ -->
5666<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005667 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005668</div>
5669
5670<div class="doc_text">
5671
5672<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005673<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005674integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005675<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005676 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5677 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005678 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005679 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5680 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005681</pre>
5682
5683<h5>Overview:</h5>
5684
5685<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005686The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5687leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005688</p>
5689
5690<h5>Arguments:</h5>
5691
5692<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005693The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005694integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005695</p>
5696
5697<h5>Semantics:</h5>
5698
5699<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005700The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5701in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005702of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005703</p>
5704</div>
Chris Lattner32006282004-06-11 02:28:03 +00005705
5706
Chris Lattnereff29ab2005-05-15 19:39:26 +00005707
5708<!-- _______________________________________________________________________ -->
5709<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005710 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005711</div>
5712
5713<div class="doc_text">
5714
5715<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005716<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005717integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005718<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005719 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5720 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005721 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005722 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5723 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005724</pre>
5725
5726<h5>Overview:</h5>
5727
5728<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005729The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5730trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005731</p>
5732
5733<h5>Arguments:</h5>
5734
5735<p>
5736The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005737integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005738</p>
5739
5740<h5>Semantics:</h5>
5741
5742<p>
5743The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5744in a variable. If the src == 0 then the result is the size in bits of the type
5745of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5746</p>
5747</div>
5748
Reid Spencer497d93e2007-04-01 08:27:01 +00005749<!-- _______________________________________________________________________ -->
5750<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005751 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005752</div>
5753
5754<div class="doc_text">
5755
5756<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005757<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005758on any integer bit width.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005759<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005760 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5761 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005762</pre>
5763
5764<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005765<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005766range of bits from an integer value and returns them in the same bit width as
5767the original value.</p>
5768
5769<h5>Arguments:</h5>
5770<p>The first argument, <tt>%val</tt> and the result may be integer types of
5771any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005772arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005773
5774<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005775<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005776of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5777<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5778operates in forward mode.</p>
5779<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5780right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005781only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5782<ol>
5783 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5784 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5785 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5786 to determine the number of bits to retain.</li>
5787 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005788 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005789</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005790<p>In reverse mode, a similar computation is made except that the bits are
5791returned in the reverse order. So, for example, if <tt>X</tt> has the value
5792<tt>i16 0x0ACF (101011001111)</tt> and we apply
5793<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5794<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005795</div>
5796
Reid Spencerf86037f2007-04-11 23:23:49 +00005797<div class="doc_subsubsection">
5798 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5799</div>
5800
5801<div class="doc_text">
5802
5803<h5>Syntax:</h5>
5804<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005805on any integer bit width.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00005806<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005807 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5808 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005809</pre>
5810
5811<h5>Overview:</h5>
5812<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5813of bits in an integer value with another integer value. It returns the integer
5814with the replaced bits.</p>
5815
5816<h5>Arguments:</h5>
5817<p>The first argument, <tt>%val</tt> and the result may be integer types of
5818any bit width but they must have the same bit width. <tt>%val</tt> is the value
5819whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5820integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5821type since they specify only a bit index.</p>
5822
5823<h5>Semantics:</h5>
5824<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5825of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5826<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5827operates in forward mode.</p>
5828<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5829truncating it down to the size of the replacement area or zero extending it
5830up to that size.</p>
5831<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5832are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5833in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohman0e451ce2008-10-14 16:51:45 +00005834to the <tt>%hi</tt>th bit.</p>
Reid Spencerc6749c42007-05-14 16:50:20 +00005835<p>In reverse mode, a similar computation is made except that the bits are
5836reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohman0e451ce2008-10-14 16:51:45 +00005837<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00005838<h5>Examples:</h5>
5839<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005840 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005841 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5842 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5843 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005844 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005845</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00005846</div>
5847
Chris Lattner8ff75902004-01-06 05:31:32 +00005848<!-- ======================================================================= -->
5849<div class="doc_subsection">
5850 <a name="int_debugger">Debugger Intrinsics</a>
5851</div>
5852
5853<div class="doc_text">
5854<p>
5855The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5856are described in the <a
5857href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5858Debugging</a> document.
5859</p>
5860</div>
5861
5862
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005863<!-- ======================================================================= -->
5864<div class="doc_subsection">
5865 <a name="int_eh">Exception Handling Intrinsics</a>
5866</div>
5867
5868<div class="doc_text">
5869<p> The LLVM exception handling intrinsics (which all start with
5870<tt>llvm.eh.</tt> prefix), are described in the <a
5871href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5872Handling</a> document. </p>
5873</div>
5874
Tanya Lattner6d806e92007-06-15 20:50:54 +00005875<!-- ======================================================================= -->
5876<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005877 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005878</div>
5879
5880<div class="doc_text">
5881<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005882 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005883 the <tt>nest</tt> attribute, from a function. The result is a callable
5884 function pointer lacking the nest parameter - the caller does not need
5885 to provide a value for it. Instead, the value to use is stored in
5886 advance in a "trampoline", a block of memory usually allocated
5887 on the stack, which also contains code to splice the nest value into the
5888 argument list. This is used to implement the GCC nested function address
5889 extension.
5890</p>
5891<p>
5892 For example, if the function is
5893 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00005894 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005895<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005896 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5897 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5898 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5899 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005900</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00005901 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5902 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005903</div>
5904
5905<!-- _______________________________________________________________________ -->
5906<div class="doc_subsubsection">
5907 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5908</div>
5909<div class="doc_text">
5910<h5>Syntax:</h5>
5911<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005912declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005913</pre>
5914<h5>Overview:</h5>
5915<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005916 This fills the memory pointed to by <tt>tramp</tt> with code
5917 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005918</p>
5919<h5>Arguments:</h5>
5920<p>
5921 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5922 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5923 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005924 intrinsic. Note that the size and the alignment are target-specific - LLVM
5925 currently provides no portable way of determining them, so a front-end that
5926 generates this intrinsic needs to have some target-specific knowledge.
5927 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005928</p>
5929<h5>Semantics:</h5>
5930<p>
5931 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005932 dependent code, turning it into a function. A pointer to this function is
5933 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005934 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005935 before being called. The new function's signature is the same as that of
5936 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5937 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5938 of pointer type. Calling the new function is equivalent to calling
5939 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5940 missing <tt>nest</tt> argument. If, after calling
5941 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5942 modified, then the effect of any later call to the returned function pointer is
5943 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005944</p>
5945</div>
5946
5947<!-- ======================================================================= -->
5948<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005949 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5950</div>
5951
5952<div class="doc_text">
5953<p>
5954 These intrinsic functions expand the "universal IR" of LLVM to represent
5955 hardware constructs for atomic operations and memory synchronization. This
5956 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00005957 is aimed at a low enough level to allow any programming models or APIs
5958 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005959 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5960 hardware behavior. Just as hardware provides a "universal IR" for source
5961 languages, it also provides a starting point for developing a "universal"
5962 atomic operation and synchronization IR.
5963</p>
5964<p>
5965 These do <em>not</em> form an API such as high-level threading libraries,
5966 software transaction memory systems, atomic primitives, and intrinsic
5967 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5968 application libraries. The hardware interface provided by LLVM should allow
5969 a clean implementation of all of these APIs and parallel programming models.
5970 No one model or paradigm should be selected above others unless the hardware
5971 itself ubiquitously does so.
5972
5973</p>
5974</div>
5975
5976<!-- _______________________________________________________________________ -->
5977<div class="doc_subsubsection">
5978 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5979</div>
5980<div class="doc_text">
5981<h5>Syntax:</h5>
5982<pre>
5983declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5984i1 &lt;device&gt; )
5985
5986</pre>
5987<h5>Overview:</h5>
5988<p>
5989 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5990 specific pairs of memory access types.
5991</p>
5992<h5>Arguments:</h5>
5993<p>
5994 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5995 The first four arguments enables a specific barrier as listed below. The fith
5996 argument specifies that the barrier applies to io or device or uncached memory.
5997
5998</p>
5999 <ul>
6000 <li><tt>ll</tt>: load-load barrier</li>
6001 <li><tt>ls</tt>: load-store barrier</li>
6002 <li><tt>sl</tt>: store-load barrier</li>
6003 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006004 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006005 </ul>
6006<h5>Semantics:</h5>
6007<p>
6008 This intrinsic causes the system to enforce some ordering constraints upon
6009 the loads and stores of the program. This barrier does not indicate
6010 <em>when</em> any events will occur, it only enforces an <em>order</em> in
6011 which they occur. For any of the specified pairs of load and store operations
6012 (f.ex. load-load, or store-load), all of the first operations preceding the
6013 barrier will complete before any of the second operations succeeding the
6014 barrier begin. Specifically the semantics for each pairing is as follows:
6015</p>
6016 <ul>
6017 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6018 after the barrier begins.</li>
6019
6020 <li><tt>ls</tt>: All loads before the barrier must complete before any
6021 store after the barrier begins.</li>
6022 <li><tt>ss</tt>: All stores before the barrier must complete before any
6023 store after the barrier begins.</li>
6024 <li><tt>sl</tt>: All stores before the barrier must complete before any
6025 load after the barrier begins.</li>
6026 </ul>
6027<p>
6028 These semantics are applied with a logical "and" behavior when more than one
6029 is enabled in a single memory barrier intrinsic.
6030</p>
6031<p>
6032 Backends may implement stronger barriers than those requested when they do not
6033 support as fine grained a barrier as requested. Some architectures do not
6034 need all types of barriers and on such architectures, these become noops.
6035</p>
6036<h5>Example:</h5>
6037<pre>
6038%ptr = malloc i32
6039 store i32 4, %ptr
6040
6041%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6042 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6043 <i>; guarantee the above finishes</i>
6044 store i32 8, %ptr <i>; before this begins</i>
6045</pre>
6046</div>
6047
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006048<!-- _______________________________________________________________________ -->
6049<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006050 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006051</div>
6052<div class="doc_text">
6053<h5>Syntax:</h5>
6054<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00006055 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6056 any integer bit width and for different address spaces. Not all targets
6057 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006058
6059<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006060declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6061declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6062declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6063declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006064
6065</pre>
6066<h5>Overview:</h5>
6067<p>
6068 This loads a value in memory and compares it to a given value. If they are
6069 equal, it stores a new value into the memory.
6070</p>
6071<h5>Arguments:</h5>
6072<p>
Mon P Wang28873102008-06-25 08:15:39 +00006073 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006074 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6075 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6076 this integer type. While any bit width integer may be used, targets may only
6077 lower representations they support in hardware.
6078
6079</p>
6080<h5>Semantics:</h5>
6081<p>
6082 This entire intrinsic must be executed atomically. It first loads the value
6083 in memory pointed to by <tt>ptr</tt> and compares it with the value
6084 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
6085 loaded value is yielded in all cases. This provides the equivalent of an
6086 atomic compare-and-swap operation within the SSA framework.
6087</p>
6088<h5>Examples:</h5>
6089
6090<pre>
6091%ptr = malloc i32
6092 store i32 4, %ptr
6093
6094%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006095%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006096 <i>; yields {i32}:result1 = 4</i>
6097%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6098%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6099
6100%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006101%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006102 <i>; yields {i32}:result2 = 8</i>
6103%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6104
6105%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6106</pre>
6107</div>
6108
6109<!-- _______________________________________________________________________ -->
6110<div class="doc_subsubsection">
6111 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6112</div>
6113<div class="doc_text">
6114<h5>Syntax:</h5>
6115
6116<p>
6117 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6118 integer bit width. Not all targets support all bit widths however.</p>
6119<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006120declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6121declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6122declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6123declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006124
6125</pre>
6126<h5>Overview:</h5>
6127<p>
6128 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6129 the value from memory. It then stores the value in <tt>val</tt> in the memory
6130 at <tt>ptr</tt>.
6131</p>
6132<h5>Arguments:</h5>
6133
6134<p>
Mon P Wang28873102008-06-25 08:15:39 +00006135 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006136 <tt>val</tt> argument and the result must be integers of the same bit width.
6137 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6138 integer type. The targets may only lower integer representations they
6139 support.
6140</p>
6141<h5>Semantics:</h5>
6142<p>
6143 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6144 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6145 equivalent of an atomic swap operation within the SSA framework.
6146
6147</p>
6148<h5>Examples:</h5>
6149<pre>
6150%ptr = malloc i32
6151 store i32 4, %ptr
6152
6153%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006154%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006155 <i>; yields {i32}:result1 = 4</i>
6156%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6157%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6158
6159%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006160%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006161 <i>; yields {i32}:result2 = 8</i>
6162
6163%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6164%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6165</pre>
6166</div>
6167
6168<!-- _______________________________________________________________________ -->
6169<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006170 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006171
6172</div>
6173<div class="doc_text">
6174<h5>Syntax:</h5>
6175<p>
Mon P Wang28873102008-06-25 08:15:39 +00006176 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006177 integer bit width. Not all targets support all bit widths however.</p>
6178<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006179declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6180declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6181declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6182declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006183
6184</pre>
6185<h5>Overview:</h5>
6186<p>
6187 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6188 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6189</p>
6190<h5>Arguments:</h5>
6191<p>
6192
6193 The intrinsic takes two arguments, the first a pointer to an integer value
6194 and the second an integer value. The result is also an integer value. These
6195 integer types can have any bit width, but they must all have the same bit
6196 width. The targets may only lower integer representations they support.
6197</p>
6198<h5>Semantics:</h5>
6199<p>
6200 This intrinsic does a series of operations atomically. It first loads the
6201 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6202 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6203</p>
6204
6205<h5>Examples:</h5>
6206<pre>
6207%ptr = malloc i32
6208 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006209%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006210 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006211%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006212 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006213%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006214 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006215%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006216</pre>
6217</div>
6218
Mon P Wang28873102008-06-25 08:15:39 +00006219<!-- _______________________________________________________________________ -->
6220<div class="doc_subsubsection">
6221 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6222
6223</div>
6224<div class="doc_text">
6225<h5>Syntax:</h5>
6226<p>
6227 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006228 any integer bit width and for different address spaces. Not all targets
6229 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006230<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006231declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6232declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6233declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6234declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006235
6236</pre>
6237<h5>Overview:</h5>
6238<p>
6239 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6240 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6241</p>
6242<h5>Arguments:</h5>
6243<p>
6244
6245 The intrinsic takes two arguments, the first a pointer to an integer value
6246 and the second an integer value. The result is also an integer value. These
6247 integer types can have any bit width, but they must all have the same bit
6248 width. The targets may only lower integer representations they support.
6249</p>
6250<h5>Semantics:</h5>
6251<p>
6252 This intrinsic does a series of operations atomically. It first loads the
6253 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6254 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6255</p>
6256
6257<h5>Examples:</h5>
6258<pre>
6259%ptr = malloc i32
6260 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006261%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006262 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006263%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006264 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006265%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006266 <i>; yields {i32}:result3 = 2</i>
6267%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6268</pre>
6269</div>
6270
6271<!-- _______________________________________________________________________ -->
6272<div class="doc_subsubsection">
6273 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6274 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6275 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6276 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6277
6278</div>
6279<div class="doc_text">
6280<h5>Syntax:</h5>
6281<p>
6282 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6283 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006284 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6285 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006286<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006287declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6288declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6289declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6290declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006291
6292</pre>
6293
6294<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006295declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6296declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6297declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6298declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006299
6300</pre>
6301
6302<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006303declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6304declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6305declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6306declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006307
6308</pre>
6309
6310<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006311declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6312declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6313declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6314declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006315
6316</pre>
6317<h5>Overview:</h5>
6318<p>
6319 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6320 the value stored in memory at <tt>ptr</tt>. It yields the original value
6321 at <tt>ptr</tt>.
6322</p>
6323<h5>Arguments:</h5>
6324<p>
6325
6326 These intrinsics take two arguments, the first a pointer to an integer value
6327 and the second an integer value. The result is also an integer value. These
6328 integer types can have any bit width, but they must all have the same bit
6329 width. The targets may only lower integer representations they support.
6330</p>
6331<h5>Semantics:</h5>
6332<p>
6333 These intrinsics does a series of operations atomically. They first load the
6334 value stored at <tt>ptr</tt>. They then do the bitwise operation
6335 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6336 value stored at <tt>ptr</tt>.
6337</p>
6338
6339<h5>Examples:</h5>
6340<pre>
6341%ptr = malloc i32
6342 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006343%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006344 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006345%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006346 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006347%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006348 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006349%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006350 <i>; yields {i32}:result3 = FF</i>
6351%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6352</pre>
6353</div>
6354
6355
6356<!-- _______________________________________________________________________ -->
6357<div class="doc_subsubsection">
6358 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6359 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6360 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6361 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6362
6363</div>
6364<div class="doc_text">
6365<h5>Syntax:</h5>
6366<p>
6367 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6368 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006369 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6370 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006371 support all bit widths however.</p>
6372<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006373declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6374declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6375declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6376declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006377
6378</pre>
6379
6380<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006381declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6382declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6383declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6384declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006385
6386</pre>
6387
6388<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006389declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6390declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6391declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6392declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006393
6394</pre>
6395
6396<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006397declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6398declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6399declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6400declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006401
6402</pre>
6403<h5>Overview:</h5>
6404<p>
6405 These intrinsics takes the signed or unsigned minimum or maximum of
6406 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6407 original value at <tt>ptr</tt>.
6408</p>
6409<h5>Arguments:</h5>
6410<p>
6411
6412 These intrinsics take two arguments, the first a pointer to an integer value
6413 and the second an integer value. The result is also an integer value. These
6414 integer types can have any bit width, but they must all have the same bit
6415 width. The targets may only lower integer representations they support.
6416</p>
6417<h5>Semantics:</h5>
6418<p>
6419 These intrinsics does a series of operations atomically. They first load the
6420 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6421 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6422 the original value stored at <tt>ptr</tt>.
6423</p>
6424
6425<h5>Examples:</h5>
6426<pre>
6427%ptr = malloc i32
6428 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006429%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006430 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006431%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006432 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006433%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006434 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006435%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006436 <i>; yields {i32}:result3 = 8</i>
6437%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6438</pre>
6439</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006440
6441<!-- ======================================================================= -->
6442<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006443 <a name="int_general">General Intrinsics</a>
6444</div>
6445
6446<div class="doc_text">
6447<p> This class of intrinsics is designed to be generic and has
6448no specific purpose. </p>
6449</div>
6450
6451<!-- _______________________________________________________________________ -->
6452<div class="doc_subsubsection">
6453 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6454</div>
6455
6456<div class="doc_text">
6457
6458<h5>Syntax:</h5>
6459<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006460 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006461</pre>
6462
6463<h5>Overview:</h5>
6464
6465<p>
6466The '<tt>llvm.var.annotation</tt>' intrinsic
6467</p>
6468
6469<h5>Arguments:</h5>
6470
6471<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006472The first argument is a pointer to a value, the second is a pointer to a
6473global string, the third is a pointer to a global string which is the source
6474file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006475</p>
6476
6477<h5>Semantics:</h5>
6478
6479<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006480This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006481This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006482annotations. These have no other defined use, they are ignored by code
6483generation and optimization.
6484</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006485</div>
6486
Tanya Lattnerb6367882007-09-21 22:59:12 +00006487<!-- _______________________________________________________________________ -->
6488<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006489 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006490</div>
6491
6492<div class="doc_text">
6493
6494<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006495<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6496any integer bit width.
6497</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006498<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006499 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6500 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6501 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6502 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6503 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006504</pre>
6505
6506<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006507
6508<p>
6509The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006510</p>
6511
6512<h5>Arguments:</h5>
6513
6514<p>
6515The first argument is an integer value (result of some expression),
6516the second is a pointer to a global string, the third is a pointer to a global
6517string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006518It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006519</p>
6520
6521<h5>Semantics:</h5>
6522
6523<p>
6524This intrinsic allows annotations to be put on arbitrary expressions
6525with arbitrary strings. This can be useful for special purpose optimizations
6526that want to look for these annotations. These have no other defined use, they
6527are ignored by code generation and optimization.
Dan Gohman0e451ce2008-10-14 16:51:45 +00006528</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006529</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006530
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006531<!-- _______________________________________________________________________ -->
6532<div class="doc_subsubsection">
6533 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6534</div>
6535
6536<div class="doc_text">
6537
6538<h5>Syntax:</h5>
6539<pre>
6540 declare void @llvm.trap()
6541</pre>
6542
6543<h5>Overview:</h5>
6544
6545<p>
6546The '<tt>llvm.trap</tt>' intrinsic
6547</p>
6548
6549<h5>Arguments:</h5>
6550
6551<p>
6552None
6553</p>
6554
6555<h5>Semantics:</h5>
6556
6557<p>
6558This intrinsics is lowered to the target dependent trap instruction. If the
6559target does not have a trap instruction, this intrinsic will be lowered to the
6560call of the abort() function.
6561</p>
6562</div>
6563
Bill Wendling69e4adb2008-11-19 05:56:17 +00006564<!-- _______________________________________________________________________ -->
6565<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00006566 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00006567</div>
6568<div class="doc_text">
6569<h5>Syntax:</h5>
6570<pre>
6571declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
6572
6573</pre>
6574<h5>Overview:</h5>
6575<p>
6576 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
6577 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
6578 it is placed on the stack before local variables.
6579</p>
6580<h5>Arguments:</h5>
6581<p>
6582 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
6583 first argument is the value loaded from the stack guard
6584 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
6585 has enough space to hold the value of the guard.
6586</p>
6587<h5>Semantics:</h5>
6588<p>
6589 This intrinsic causes the prologue/epilogue inserter to force the position of
6590 the <tt>AllocaInst</tt> stack slot to be before local variables on the
6591 stack. This is to ensure that if a local variable on the stack is overwritten,
6592 it will destroy the value of the guard. When the function exits, the guard on
6593 the stack is checked against the original guard. If they're different, then
6594 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
6595</p>
6596</div>
6597
Chris Lattner00950542001-06-06 20:29:01 +00006598<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00006599<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006600<address>
6601 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00006602 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006603 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00006604 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006605
6606 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00006607 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006608 Last modified: $Date$
6609</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006610
Misha Brukman9d0919f2003-11-08 01:05:38 +00006611</body>
6612</html>